linux/fs/btrfs/compression.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
  11#include <linux/highmem.h>
  12#include <linux/time.h>
  13#include <linux/init.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/writeback.h>
  17#include <linux/slab.h>
  18#include <linux/sched/mm.h>
  19#include <linux/log2.h>
  20#include <crypto/hash.h>
  21#include "misc.h"
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "ordered-data.h"
  28#include "compression.h"
  29#include "extent_io.h"
  30#include "extent_map.h"
  31
  32int zlib_compress_pages(struct list_head *ws, struct address_space *mapping,
  33                u64 start, struct page **pages, unsigned long *out_pages,
  34                unsigned long *total_in, unsigned long *total_out);
  35int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
  36int zlib_decompress(struct list_head *ws, unsigned char *data_in,
  37                struct page *dest_page, unsigned long start_byte, size_t srclen,
  38                size_t destlen);
  39struct list_head *zlib_alloc_workspace(unsigned int level);
  40void zlib_free_workspace(struct list_head *ws);
  41struct list_head *zlib_get_workspace(unsigned int level);
  42
  43int lzo_compress_pages(struct list_head *ws, struct address_space *mapping,
  44                u64 start, struct page **pages, unsigned long *out_pages,
  45                unsigned long *total_in, unsigned long *total_out);
  46int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
  47int lzo_decompress(struct list_head *ws, unsigned char *data_in,
  48                struct page *dest_page, unsigned long start_byte, size_t srclen,
  49                size_t destlen);
  50struct list_head *lzo_alloc_workspace(unsigned int level);
  51void lzo_free_workspace(struct list_head *ws);
  52
  53int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
  54                u64 start, struct page **pages, unsigned long *out_pages,
  55                unsigned long *total_in, unsigned long *total_out);
  56int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
  57int zstd_decompress(struct list_head *ws, unsigned char *data_in,
  58                struct page *dest_page, unsigned long start_byte, size_t srclen,
  59                size_t destlen);
  60void zstd_init_workspace_manager(void);
  61void zstd_cleanup_workspace_manager(void);
  62struct list_head *zstd_alloc_workspace(unsigned int level);
  63void zstd_free_workspace(struct list_head *ws);
  64struct list_head *zstd_get_workspace(unsigned int level);
  65void zstd_put_workspace(struct list_head *ws);
  66
  67static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
  68
  69const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  70{
  71        switch (type) {
  72        case BTRFS_COMPRESS_ZLIB:
  73        case BTRFS_COMPRESS_LZO:
  74        case BTRFS_COMPRESS_ZSTD:
  75        case BTRFS_COMPRESS_NONE:
  76                return btrfs_compress_types[type];
  77        default:
  78                break;
  79        }
  80
  81        return NULL;
  82}
  83
  84bool btrfs_compress_is_valid_type(const char *str, size_t len)
  85{
  86        int i;
  87
  88        for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  89                size_t comp_len = strlen(btrfs_compress_types[i]);
  90
  91                if (len < comp_len)
  92                        continue;
  93
  94                if (!strncmp(btrfs_compress_types[i], str, comp_len))
  95                        return true;
  96        }
  97        return false;
  98}
  99
 100static int compression_compress_pages(int type, struct list_head *ws,
 101               struct address_space *mapping, u64 start, struct page **pages,
 102               unsigned long *out_pages, unsigned long *total_in,
 103               unsigned long *total_out)
 104{
 105        switch (type) {
 106        case BTRFS_COMPRESS_ZLIB:
 107                return zlib_compress_pages(ws, mapping, start, pages,
 108                                out_pages, total_in, total_out);
 109        case BTRFS_COMPRESS_LZO:
 110                return lzo_compress_pages(ws, mapping, start, pages,
 111                                out_pages, total_in, total_out);
 112        case BTRFS_COMPRESS_ZSTD:
 113                return zstd_compress_pages(ws, mapping, start, pages,
 114                                out_pages, total_in, total_out);
 115        case BTRFS_COMPRESS_NONE:
 116        default:
 117                /*
 118                 * This can't happen, the type is validated several times
 119                 * before we get here. As a sane fallback, return what the
 120                 * callers will understand as 'no compression happened'.
 121                 */
 122                return -E2BIG;
 123        }
 124}
 125
 126static int compression_decompress_bio(int type, struct list_head *ws,
 127                struct compressed_bio *cb)
 128{
 129        switch (type) {
 130        case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
 131        case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
 132        case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
 133        case BTRFS_COMPRESS_NONE:
 134        default:
 135                /*
 136                 * This can't happen, the type is validated several times
 137                 * before we get here.
 138                 */
 139                BUG();
 140        }
 141}
 142
 143static int compression_decompress(int type, struct list_head *ws,
 144               unsigned char *data_in, struct page *dest_page,
 145               unsigned long start_byte, size_t srclen, size_t destlen)
 146{
 147        switch (type) {
 148        case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
 149                                                start_byte, srclen, destlen);
 150        case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
 151                                                start_byte, srclen, destlen);
 152        case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
 153                                                start_byte, srclen, destlen);
 154        case BTRFS_COMPRESS_NONE:
 155        default:
 156                /*
 157                 * This can't happen, the type is validated several times
 158                 * before we get here.
 159                 */
 160                BUG();
 161        }
 162}
 163
 164static int btrfs_decompress_bio(struct compressed_bio *cb);
 165
 166static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
 167                                      unsigned long disk_size)
 168{
 169        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 170
 171        return sizeof(struct compressed_bio) +
 172                (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
 173}
 174
 175static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
 176                                 u64 disk_start)
 177{
 178        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 179        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 180        const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 181        struct page *page;
 182        unsigned long i;
 183        char *kaddr;
 184        u8 csum[BTRFS_CSUM_SIZE];
 185        struct compressed_bio *cb = bio->bi_private;
 186        u8 *cb_sum = cb->sums;
 187
 188        if (inode->flags & BTRFS_INODE_NODATASUM)
 189                return 0;
 190
 191        shash->tfm = fs_info->csum_shash;
 192
 193        for (i = 0; i < cb->nr_pages; i++) {
 194                page = cb->compressed_pages[i];
 195
 196                kaddr = kmap_atomic(page);
 197                crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
 198                kunmap_atomic(kaddr);
 199
 200                if (memcmp(&csum, cb_sum, csum_size)) {
 201                        btrfs_print_data_csum_error(inode, disk_start,
 202                                        csum, cb_sum, cb->mirror_num);
 203                        if (btrfs_io_bio(bio)->device)
 204                                btrfs_dev_stat_inc_and_print(
 205                                        btrfs_io_bio(bio)->device,
 206                                        BTRFS_DEV_STAT_CORRUPTION_ERRS);
 207                        return -EIO;
 208                }
 209                cb_sum += csum_size;
 210        }
 211        return 0;
 212}
 213
 214/* when we finish reading compressed pages from the disk, we
 215 * decompress them and then run the bio end_io routines on the
 216 * decompressed pages (in the inode address space).
 217 *
 218 * This allows the checksumming and other IO error handling routines
 219 * to work normally
 220 *
 221 * The compressed pages are freed here, and it must be run
 222 * in process context
 223 */
 224static void end_compressed_bio_read(struct bio *bio)
 225{
 226        struct compressed_bio *cb = bio->bi_private;
 227        struct inode *inode;
 228        struct page *page;
 229        unsigned long index;
 230        unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
 231        int ret = 0;
 232
 233        if (bio->bi_status)
 234                cb->errors = 1;
 235
 236        /* if there are more bios still pending for this compressed
 237         * extent, just exit
 238         */
 239        if (!refcount_dec_and_test(&cb->pending_bios))
 240                goto out;
 241
 242        /*
 243         * Record the correct mirror_num in cb->orig_bio so that
 244         * read-repair can work properly.
 245         */
 246        btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
 247        cb->mirror_num = mirror;
 248
 249        /*
 250         * Some IO in this cb have failed, just skip checksum as there
 251         * is no way it could be correct.
 252         */
 253        if (cb->errors == 1)
 254                goto csum_failed;
 255
 256        inode = cb->inode;
 257        ret = check_compressed_csum(BTRFS_I(inode), bio,
 258                                    (u64)bio->bi_iter.bi_sector << 9);
 259        if (ret)
 260                goto csum_failed;
 261
 262        /* ok, we're the last bio for this extent, lets start
 263         * the decompression.
 264         */
 265        ret = btrfs_decompress_bio(cb);
 266
 267csum_failed:
 268        if (ret)
 269                cb->errors = 1;
 270
 271        /* release the compressed pages */
 272        index = 0;
 273        for (index = 0; index < cb->nr_pages; index++) {
 274                page = cb->compressed_pages[index];
 275                page->mapping = NULL;
 276                put_page(page);
 277        }
 278
 279        /* do io completion on the original bio */
 280        if (cb->errors) {
 281                bio_io_error(cb->orig_bio);
 282        } else {
 283                struct bio_vec *bvec;
 284                struct bvec_iter_all iter_all;
 285
 286                /*
 287                 * we have verified the checksum already, set page
 288                 * checked so the end_io handlers know about it
 289                 */
 290                ASSERT(!bio_flagged(bio, BIO_CLONED));
 291                bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
 292                        SetPageChecked(bvec->bv_page);
 293
 294                bio_endio(cb->orig_bio);
 295        }
 296
 297        /* finally free the cb struct */
 298        kfree(cb->compressed_pages);
 299        kfree(cb);
 300out:
 301        bio_put(bio);
 302}
 303
 304/*
 305 * Clear the writeback bits on all of the file
 306 * pages for a compressed write
 307 */
 308static noinline void end_compressed_writeback(struct inode *inode,
 309                                              const struct compressed_bio *cb)
 310{
 311        unsigned long index = cb->start >> PAGE_SHIFT;
 312        unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 313        struct page *pages[16];
 314        unsigned long nr_pages = end_index - index + 1;
 315        int i;
 316        int ret;
 317
 318        if (cb->errors)
 319                mapping_set_error(inode->i_mapping, -EIO);
 320
 321        while (nr_pages > 0) {
 322                ret = find_get_pages_contig(inode->i_mapping, index,
 323                                     min_t(unsigned long,
 324                                     nr_pages, ARRAY_SIZE(pages)), pages);
 325                if (ret == 0) {
 326                        nr_pages -= 1;
 327                        index += 1;
 328                        continue;
 329                }
 330                for (i = 0; i < ret; i++) {
 331                        if (cb->errors)
 332                                SetPageError(pages[i]);
 333                        end_page_writeback(pages[i]);
 334                        put_page(pages[i]);
 335                }
 336                nr_pages -= ret;
 337                index += ret;
 338        }
 339        /* the inode may be gone now */
 340}
 341
 342/*
 343 * do the cleanup once all the compressed pages hit the disk.
 344 * This will clear writeback on the file pages and free the compressed
 345 * pages.
 346 *
 347 * This also calls the writeback end hooks for the file pages so that
 348 * metadata and checksums can be updated in the file.
 349 */
 350static void end_compressed_bio_write(struct bio *bio)
 351{
 352        struct compressed_bio *cb = bio->bi_private;
 353        struct inode *inode;
 354        struct page *page;
 355        unsigned long index;
 356
 357        if (bio->bi_status)
 358                cb->errors = 1;
 359
 360        /* if there are more bios still pending for this compressed
 361         * extent, just exit
 362         */
 363        if (!refcount_dec_and_test(&cb->pending_bios))
 364                goto out;
 365
 366        /* ok, we're the last bio for this extent, step one is to
 367         * call back into the FS and do all the end_io operations
 368         */
 369        inode = cb->inode;
 370        cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 371        btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
 372                        cb->start, cb->start + cb->len - 1,
 373                        bio->bi_status == BLK_STS_OK);
 374        cb->compressed_pages[0]->mapping = NULL;
 375
 376        end_compressed_writeback(inode, cb);
 377        /* note, our inode could be gone now */
 378
 379        /*
 380         * release the compressed pages, these came from alloc_page and
 381         * are not attached to the inode at all
 382         */
 383        index = 0;
 384        for (index = 0; index < cb->nr_pages; index++) {
 385                page = cb->compressed_pages[index];
 386                page->mapping = NULL;
 387                put_page(page);
 388        }
 389
 390        /* finally free the cb struct */
 391        kfree(cb->compressed_pages);
 392        kfree(cb);
 393out:
 394        bio_put(bio);
 395}
 396
 397/*
 398 * worker function to build and submit bios for previously compressed pages.
 399 * The corresponding pages in the inode should be marked for writeback
 400 * and the compressed pages should have a reference on them for dropping
 401 * when the IO is complete.
 402 *
 403 * This also checksums the file bytes and gets things ready for
 404 * the end io hooks.
 405 */
 406blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
 407                                 unsigned long len, u64 disk_start,
 408                                 unsigned long compressed_len,
 409                                 struct page **compressed_pages,
 410                                 unsigned long nr_pages,
 411                                 unsigned int write_flags,
 412                                 struct cgroup_subsys_state *blkcg_css)
 413{
 414        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 415        struct bio *bio = NULL;
 416        struct compressed_bio *cb;
 417        unsigned long bytes_left;
 418        int pg_index = 0;
 419        struct page *page;
 420        u64 first_byte = disk_start;
 421        blk_status_t ret;
 422        int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
 423
 424        WARN_ON(!PAGE_ALIGNED(start));
 425        cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 426        if (!cb)
 427                return BLK_STS_RESOURCE;
 428        refcount_set(&cb->pending_bios, 0);
 429        cb->errors = 0;
 430        cb->inode = &inode->vfs_inode;
 431        cb->start = start;
 432        cb->len = len;
 433        cb->mirror_num = 0;
 434        cb->compressed_pages = compressed_pages;
 435        cb->compressed_len = compressed_len;
 436        cb->orig_bio = NULL;
 437        cb->nr_pages = nr_pages;
 438
 439        bio = btrfs_bio_alloc(first_byte);
 440        bio->bi_opf = REQ_OP_WRITE | write_flags;
 441        bio->bi_private = cb;
 442        bio->bi_end_io = end_compressed_bio_write;
 443
 444        if (blkcg_css) {
 445                bio->bi_opf |= REQ_CGROUP_PUNT;
 446                kthread_associate_blkcg(blkcg_css);
 447        }
 448        refcount_set(&cb->pending_bios, 1);
 449
 450        /* create and submit bios for the compressed pages */
 451        bytes_left = compressed_len;
 452        for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 453                int submit = 0;
 454
 455                page = compressed_pages[pg_index];
 456                page->mapping = inode->vfs_inode.i_mapping;
 457                if (bio->bi_iter.bi_size)
 458                        submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
 459                                                          0);
 460
 461                page->mapping = NULL;
 462                if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
 463                    PAGE_SIZE) {
 464                        /*
 465                         * inc the count before we submit the bio so
 466                         * we know the end IO handler won't happen before
 467                         * we inc the count.  Otherwise, the cb might get
 468                         * freed before we're done setting it up
 469                         */
 470                        refcount_inc(&cb->pending_bios);
 471                        ret = btrfs_bio_wq_end_io(fs_info, bio,
 472                                                  BTRFS_WQ_ENDIO_DATA);
 473                        BUG_ON(ret); /* -ENOMEM */
 474
 475                        if (!skip_sum) {
 476                                ret = btrfs_csum_one_bio(inode, bio, start, 1);
 477                                BUG_ON(ret); /* -ENOMEM */
 478                        }
 479
 480                        ret = btrfs_map_bio(fs_info, bio, 0);
 481                        if (ret) {
 482                                bio->bi_status = ret;
 483                                bio_endio(bio);
 484                        }
 485
 486                        bio = btrfs_bio_alloc(first_byte);
 487                        bio->bi_opf = REQ_OP_WRITE | write_flags;
 488                        bio->bi_private = cb;
 489                        bio->bi_end_io = end_compressed_bio_write;
 490                        if (blkcg_css)
 491                                bio->bi_opf |= REQ_CGROUP_PUNT;
 492                        bio_add_page(bio, page, PAGE_SIZE, 0);
 493                }
 494                if (bytes_left < PAGE_SIZE) {
 495                        btrfs_info(fs_info,
 496                                        "bytes left %lu compress len %lu nr %lu",
 497                               bytes_left, cb->compressed_len, cb->nr_pages);
 498                }
 499                bytes_left -= PAGE_SIZE;
 500                first_byte += PAGE_SIZE;
 501                cond_resched();
 502        }
 503
 504        ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 505        BUG_ON(ret); /* -ENOMEM */
 506
 507        if (!skip_sum) {
 508                ret = btrfs_csum_one_bio(inode, bio, start, 1);
 509                BUG_ON(ret); /* -ENOMEM */
 510        }
 511
 512        ret = btrfs_map_bio(fs_info, bio, 0);
 513        if (ret) {
 514                bio->bi_status = ret;
 515                bio_endio(bio);
 516        }
 517
 518        if (blkcg_css)
 519                kthread_associate_blkcg(NULL);
 520
 521        return 0;
 522}
 523
 524static u64 bio_end_offset(struct bio *bio)
 525{
 526        struct bio_vec *last = bio_last_bvec_all(bio);
 527
 528        return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 529}
 530
 531static noinline int add_ra_bio_pages(struct inode *inode,
 532                                     u64 compressed_end,
 533                                     struct compressed_bio *cb)
 534{
 535        unsigned long end_index;
 536        unsigned long pg_index;
 537        u64 last_offset;
 538        u64 isize = i_size_read(inode);
 539        int ret;
 540        struct page *page;
 541        unsigned long nr_pages = 0;
 542        struct extent_map *em;
 543        struct address_space *mapping = inode->i_mapping;
 544        struct extent_map_tree *em_tree;
 545        struct extent_io_tree *tree;
 546        u64 end;
 547        int misses = 0;
 548
 549        last_offset = bio_end_offset(cb->orig_bio);
 550        em_tree = &BTRFS_I(inode)->extent_tree;
 551        tree = &BTRFS_I(inode)->io_tree;
 552
 553        if (isize == 0)
 554                return 0;
 555
 556        end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 557
 558        while (last_offset < compressed_end) {
 559                pg_index = last_offset >> PAGE_SHIFT;
 560
 561                if (pg_index > end_index)
 562                        break;
 563
 564                page = xa_load(&mapping->i_pages, pg_index);
 565                if (page && !xa_is_value(page)) {
 566                        misses++;
 567                        if (misses > 4)
 568                                break;
 569                        goto next;
 570                }
 571
 572                page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 573                                                                 ~__GFP_FS));
 574                if (!page)
 575                        break;
 576
 577                if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 578                        put_page(page);
 579                        goto next;
 580                }
 581
 582                end = last_offset + PAGE_SIZE - 1;
 583                /*
 584                 * at this point, we have a locked page in the page cache
 585                 * for these bytes in the file.  But, we have to make
 586                 * sure they map to this compressed extent on disk.
 587                 */
 588                set_page_extent_mapped(page);
 589                lock_extent(tree, last_offset, end);
 590                read_lock(&em_tree->lock);
 591                em = lookup_extent_mapping(em_tree, last_offset,
 592                                           PAGE_SIZE);
 593                read_unlock(&em_tree->lock);
 594
 595                if (!em || last_offset < em->start ||
 596                    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 597                    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 598                        free_extent_map(em);
 599                        unlock_extent(tree, last_offset, end);
 600                        unlock_page(page);
 601                        put_page(page);
 602                        break;
 603                }
 604                free_extent_map(em);
 605
 606                if (page->index == end_index) {
 607                        char *userpage;
 608                        size_t zero_offset = offset_in_page(isize);
 609
 610                        if (zero_offset) {
 611                                int zeros;
 612                                zeros = PAGE_SIZE - zero_offset;
 613                                userpage = kmap_atomic(page);
 614                                memset(userpage + zero_offset, 0, zeros);
 615                                flush_dcache_page(page);
 616                                kunmap_atomic(userpage);
 617                        }
 618                }
 619
 620                ret = bio_add_page(cb->orig_bio, page,
 621                                   PAGE_SIZE, 0);
 622
 623                if (ret == PAGE_SIZE) {
 624                        nr_pages++;
 625                        put_page(page);
 626                } else {
 627                        unlock_extent(tree, last_offset, end);
 628                        unlock_page(page);
 629                        put_page(page);
 630                        break;
 631                }
 632next:
 633                last_offset += PAGE_SIZE;
 634        }
 635        return 0;
 636}
 637
 638/*
 639 * for a compressed read, the bio we get passed has all the inode pages
 640 * in it.  We don't actually do IO on those pages but allocate new ones
 641 * to hold the compressed pages on disk.
 642 *
 643 * bio->bi_iter.bi_sector points to the compressed extent on disk
 644 * bio->bi_io_vec points to all of the inode pages
 645 *
 646 * After the compressed pages are read, we copy the bytes into the
 647 * bio we were passed and then call the bio end_io calls
 648 */
 649blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 650                                 int mirror_num, unsigned long bio_flags)
 651{
 652        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 653        struct extent_map_tree *em_tree;
 654        struct compressed_bio *cb;
 655        unsigned long compressed_len;
 656        unsigned long nr_pages;
 657        unsigned long pg_index;
 658        struct page *page;
 659        struct bio *comp_bio;
 660        u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 661        u64 em_len;
 662        u64 em_start;
 663        struct extent_map *em;
 664        blk_status_t ret = BLK_STS_RESOURCE;
 665        int faili = 0;
 666        const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 667        u8 *sums;
 668
 669        em_tree = &BTRFS_I(inode)->extent_tree;
 670
 671        /* we need the actual starting offset of this extent in the file */
 672        read_lock(&em_tree->lock);
 673        em = lookup_extent_mapping(em_tree,
 674                                   page_offset(bio_first_page_all(bio)),
 675                                   PAGE_SIZE);
 676        read_unlock(&em_tree->lock);
 677        if (!em)
 678                return BLK_STS_IOERR;
 679
 680        compressed_len = em->block_len;
 681        cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 682        if (!cb)
 683                goto out;
 684
 685        refcount_set(&cb->pending_bios, 0);
 686        cb->errors = 0;
 687        cb->inode = inode;
 688        cb->mirror_num = mirror_num;
 689        sums = cb->sums;
 690
 691        cb->start = em->orig_start;
 692        em_len = em->len;
 693        em_start = em->start;
 694
 695        free_extent_map(em);
 696        em = NULL;
 697
 698        cb->len = bio->bi_iter.bi_size;
 699        cb->compressed_len = compressed_len;
 700        cb->compress_type = extent_compress_type(bio_flags);
 701        cb->orig_bio = bio;
 702
 703        nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 704        cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 705                                       GFP_NOFS);
 706        if (!cb->compressed_pages)
 707                goto fail1;
 708
 709        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 710                cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 711                                                              __GFP_HIGHMEM);
 712                if (!cb->compressed_pages[pg_index]) {
 713                        faili = pg_index - 1;
 714                        ret = BLK_STS_RESOURCE;
 715                        goto fail2;
 716                }
 717        }
 718        faili = nr_pages - 1;
 719        cb->nr_pages = nr_pages;
 720
 721        add_ra_bio_pages(inode, em_start + em_len, cb);
 722
 723        /* include any pages we added in add_ra-bio_pages */
 724        cb->len = bio->bi_iter.bi_size;
 725
 726        comp_bio = btrfs_bio_alloc(cur_disk_byte);
 727        comp_bio->bi_opf = REQ_OP_READ;
 728        comp_bio->bi_private = cb;
 729        comp_bio->bi_end_io = end_compressed_bio_read;
 730        refcount_set(&cb->pending_bios, 1);
 731
 732        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 733                int submit = 0;
 734
 735                page = cb->compressed_pages[pg_index];
 736                page->mapping = inode->i_mapping;
 737                page->index = em_start >> PAGE_SHIFT;
 738
 739                if (comp_bio->bi_iter.bi_size)
 740                        submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
 741                                                          comp_bio, 0);
 742
 743                page->mapping = NULL;
 744                if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 745                    PAGE_SIZE) {
 746                        unsigned int nr_sectors;
 747
 748                        ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 749                                                  BTRFS_WQ_ENDIO_DATA);
 750                        BUG_ON(ret); /* -ENOMEM */
 751
 752                        /*
 753                         * inc the count before we submit the bio so
 754                         * we know the end IO handler won't happen before
 755                         * we inc the count.  Otherwise, the cb might get
 756                         * freed before we're done setting it up
 757                         */
 758                        refcount_inc(&cb->pending_bios);
 759
 760                        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 761                                ret = btrfs_lookup_bio_sums(inode, comp_bio,
 762                                                            (u64)-1, sums);
 763                                BUG_ON(ret); /* -ENOMEM */
 764                        }
 765
 766                        nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 767                                                  fs_info->sectorsize);
 768                        sums += csum_size * nr_sectors;
 769
 770                        ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
 771                        if (ret) {
 772                                comp_bio->bi_status = ret;
 773                                bio_endio(comp_bio);
 774                        }
 775
 776                        comp_bio = btrfs_bio_alloc(cur_disk_byte);
 777                        comp_bio->bi_opf = REQ_OP_READ;
 778                        comp_bio->bi_private = cb;
 779                        comp_bio->bi_end_io = end_compressed_bio_read;
 780
 781                        bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 782                }
 783                cur_disk_byte += PAGE_SIZE;
 784        }
 785
 786        ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 787        BUG_ON(ret); /* -ENOMEM */
 788
 789        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 790                ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
 791                BUG_ON(ret); /* -ENOMEM */
 792        }
 793
 794        ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
 795        if (ret) {
 796                comp_bio->bi_status = ret;
 797                bio_endio(comp_bio);
 798        }
 799
 800        return 0;
 801
 802fail2:
 803        while (faili >= 0) {
 804                __free_page(cb->compressed_pages[faili]);
 805                faili--;
 806        }
 807
 808        kfree(cb->compressed_pages);
 809fail1:
 810        kfree(cb);
 811out:
 812        free_extent_map(em);
 813        return ret;
 814}
 815
 816/*
 817 * Heuristic uses systematic sampling to collect data from the input data
 818 * range, the logic can be tuned by the following constants:
 819 *
 820 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 821 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 822 */
 823#define SAMPLING_READ_SIZE      (16)
 824#define SAMPLING_INTERVAL       (256)
 825
 826/*
 827 * For statistical analysis of the input data we consider bytes that form a
 828 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 829 * many times the object appeared in the sample.
 830 */
 831#define BUCKET_SIZE             (256)
 832
 833/*
 834 * The size of the sample is based on a statistical sampling rule of thumb.
 835 * The common way is to perform sampling tests as long as the number of
 836 * elements in each cell is at least 5.
 837 *
 838 * Instead of 5, we choose 32 to obtain more accurate results.
 839 * If the data contain the maximum number of symbols, which is 256, we obtain a
 840 * sample size bound by 8192.
 841 *
 842 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 843 * from up to 512 locations.
 844 */
 845#define MAX_SAMPLE_SIZE         (BTRFS_MAX_UNCOMPRESSED *               \
 846                                 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 847
 848struct bucket_item {
 849        u32 count;
 850};
 851
 852struct heuristic_ws {
 853        /* Partial copy of input data */
 854        u8 *sample;
 855        u32 sample_size;
 856        /* Buckets store counters for each byte value */
 857        struct bucket_item *bucket;
 858        /* Sorting buffer */
 859        struct bucket_item *bucket_b;
 860        struct list_head list;
 861};
 862
 863static struct workspace_manager heuristic_wsm;
 864
 865static void free_heuristic_ws(struct list_head *ws)
 866{
 867        struct heuristic_ws *workspace;
 868
 869        workspace = list_entry(ws, struct heuristic_ws, list);
 870
 871        kvfree(workspace->sample);
 872        kfree(workspace->bucket);
 873        kfree(workspace->bucket_b);
 874        kfree(workspace);
 875}
 876
 877static struct list_head *alloc_heuristic_ws(unsigned int level)
 878{
 879        struct heuristic_ws *ws;
 880
 881        ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 882        if (!ws)
 883                return ERR_PTR(-ENOMEM);
 884
 885        ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 886        if (!ws->sample)
 887                goto fail;
 888
 889        ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 890        if (!ws->bucket)
 891                goto fail;
 892
 893        ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 894        if (!ws->bucket_b)
 895                goto fail;
 896
 897        INIT_LIST_HEAD(&ws->list);
 898        return &ws->list;
 899fail:
 900        free_heuristic_ws(&ws->list);
 901        return ERR_PTR(-ENOMEM);
 902}
 903
 904const struct btrfs_compress_op btrfs_heuristic_compress = {
 905        .workspace_manager = &heuristic_wsm,
 906};
 907
 908static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 909        /* The heuristic is represented as compression type 0 */
 910        &btrfs_heuristic_compress,
 911        &btrfs_zlib_compress,
 912        &btrfs_lzo_compress,
 913        &btrfs_zstd_compress,
 914};
 915
 916static struct list_head *alloc_workspace(int type, unsigned int level)
 917{
 918        switch (type) {
 919        case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
 920        case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
 921        case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
 922        case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
 923        default:
 924                /*
 925                 * This can't happen, the type is validated several times
 926                 * before we get here.
 927                 */
 928                BUG();
 929        }
 930}
 931
 932static void free_workspace(int type, struct list_head *ws)
 933{
 934        switch (type) {
 935        case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
 936        case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
 937        case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
 938        case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
 939        default:
 940                /*
 941                 * This can't happen, the type is validated several times
 942                 * before we get here.
 943                 */
 944                BUG();
 945        }
 946}
 947
 948static void btrfs_init_workspace_manager(int type)
 949{
 950        struct workspace_manager *wsm;
 951        struct list_head *workspace;
 952
 953        wsm = btrfs_compress_op[type]->workspace_manager;
 954        INIT_LIST_HEAD(&wsm->idle_ws);
 955        spin_lock_init(&wsm->ws_lock);
 956        atomic_set(&wsm->total_ws, 0);
 957        init_waitqueue_head(&wsm->ws_wait);
 958
 959        /*
 960         * Preallocate one workspace for each compression type so we can
 961         * guarantee forward progress in the worst case
 962         */
 963        workspace = alloc_workspace(type, 0);
 964        if (IS_ERR(workspace)) {
 965                pr_warn(
 966        "BTRFS: cannot preallocate compression workspace, will try later\n");
 967        } else {
 968                atomic_set(&wsm->total_ws, 1);
 969                wsm->free_ws = 1;
 970                list_add(workspace, &wsm->idle_ws);
 971        }
 972}
 973
 974static void btrfs_cleanup_workspace_manager(int type)
 975{
 976        struct workspace_manager *wsman;
 977        struct list_head *ws;
 978
 979        wsman = btrfs_compress_op[type]->workspace_manager;
 980        while (!list_empty(&wsman->idle_ws)) {
 981                ws = wsman->idle_ws.next;
 982                list_del(ws);
 983                free_workspace(type, ws);
 984                atomic_dec(&wsman->total_ws);
 985        }
 986}
 987
 988/*
 989 * This finds an available workspace or allocates a new one.
 990 * If it's not possible to allocate a new one, waits until there's one.
 991 * Preallocation makes a forward progress guarantees and we do not return
 992 * errors.
 993 */
 994struct list_head *btrfs_get_workspace(int type, unsigned int level)
 995{
 996        struct workspace_manager *wsm;
 997        struct list_head *workspace;
 998        int cpus = num_online_cpus();
 999        unsigned nofs_flag;
1000        struct list_head *idle_ws;
1001        spinlock_t *ws_lock;
1002        atomic_t *total_ws;
1003        wait_queue_head_t *ws_wait;
1004        int *free_ws;
1005
1006        wsm = btrfs_compress_op[type]->workspace_manager;
1007        idle_ws  = &wsm->idle_ws;
1008        ws_lock  = &wsm->ws_lock;
1009        total_ws = &wsm->total_ws;
1010        ws_wait  = &wsm->ws_wait;
1011        free_ws  = &wsm->free_ws;
1012
1013again:
1014        spin_lock(ws_lock);
1015        if (!list_empty(idle_ws)) {
1016                workspace = idle_ws->next;
1017                list_del(workspace);
1018                (*free_ws)--;
1019                spin_unlock(ws_lock);
1020                return workspace;
1021
1022        }
1023        if (atomic_read(total_ws) > cpus) {
1024                DEFINE_WAIT(wait);
1025
1026                spin_unlock(ws_lock);
1027                prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1028                if (atomic_read(total_ws) > cpus && !*free_ws)
1029                        schedule();
1030                finish_wait(ws_wait, &wait);
1031                goto again;
1032        }
1033        atomic_inc(total_ws);
1034        spin_unlock(ws_lock);
1035
1036        /*
1037         * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1038         * to turn it off here because we might get called from the restricted
1039         * context of btrfs_compress_bio/btrfs_compress_pages
1040         */
1041        nofs_flag = memalloc_nofs_save();
1042        workspace = alloc_workspace(type, level);
1043        memalloc_nofs_restore(nofs_flag);
1044
1045        if (IS_ERR(workspace)) {
1046                atomic_dec(total_ws);
1047                wake_up(ws_wait);
1048
1049                /*
1050                 * Do not return the error but go back to waiting. There's a
1051                 * workspace preallocated for each type and the compression
1052                 * time is bounded so we get to a workspace eventually. This
1053                 * makes our caller's life easier.
1054                 *
1055                 * To prevent silent and low-probability deadlocks (when the
1056                 * initial preallocation fails), check if there are any
1057                 * workspaces at all.
1058                 */
1059                if (atomic_read(total_ws) == 0) {
1060                        static DEFINE_RATELIMIT_STATE(_rs,
1061                                        /* once per minute */ 60 * HZ,
1062                                        /* no burst */ 1);
1063
1064                        if (__ratelimit(&_rs)) {
1065                                pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1066                        }
1067                }
1068                goto again;
1069        }
1070        return workspace;
1071}
1072
1073static struct list_head *get_workspace(int type, int level)
1074{
1075        switch (type) {
1076        case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1077        case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1078        case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1079        case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1080        default:
1081                /*
1082                 * This can't happen, the type is validated several times
1083                 * before we get here.
1084                 */
1085                BUG();
1086        }
1087}
1088
1089/*
1090 * put a workspace struct back on the list or free it if we have enough
1091 * idle ones sitting around
1092 */
1093void btrfs_put_workspace(int type, struct list_head *ws)
1094{
1095        struct workspace_manager *wsm;
1096        struct list_head *idle_ws;
1097        spinlock_t *ws_lock;
1098        atomic_t *total_ws;
1099        wait_queue_head_t *ws_wait;
1100        int *free_ws;
1101
1102        wsm = btrfs_compress_op[type]->workspace_manager;
1103        idle_ws  = &wsm->idle_ws;
1104        ws_lock  = &wsm->ws_lock;
1105        total_ws = &wsm->total_ws;
1106        ws_wait  = &wsm->ws_wait;
1107        free_ws  = &wsm->free_ws;
1108
1109        spin_lock(ws_lock);
1110        if (*free_ws <= num_online_cpus()) {
1111                list_add(ws, idle_ws);
1112                (*free_ws)++;
1113                spin_unlock(ws_lock);
1114                goto wake;
1115        }
1116        spin_unlock(ws_lock);
1117
1118        free_workspace(type, ws);
1119        atomic_dec(total_ws);
1120wake:
1121        cond_wake_up(ws_wait);
1122}
1123
1124static void put_workspace(int type, struct list_head *ws)
1125{
1126        switch (type) {
1127        case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1128        case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1129        case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1130        case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1131        default:
1132                /*
1133                 * This can't happen, the type is validated several times
1134                 * before we get here.
1135                 */
1136                BUG();
1137        }
1138}
1139
1140/*
1141 * Adjust @level according to the limits of the compression algorithm or
1142 * fallback to default
1143 */
1144static unsigned int btrfs_compress_set_level(int type, unsigned level)
1145{
1146        const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1147
1148        if (level == 0)
1149                level = ops->default_level;
1150        else
1151                level = min(level, ops->max_level);
1152
1153        return level;
1154}
1155
1156/*
1157 * Given an address space and start and length, compress the bytes into @pages
1158 * that are allocated on demand.
1159 *
1160 * @type_level is encoded algorithm and level, where level 0 means whatever
1161 * default the algorithm chooses and is opaque here;
1162 * - compression algo are 0-3
1163 * - the level are bits 4-7
1164 *
1165 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1166 * and returns number of actually allocated pages
1167 *
1168 * @total_in is used to return the number of bytes actually read.  It
1169 * may be smaller than the input length if we had to exit early because we
1170 * ran out of room in the pages array or because we cross the
1171 * max_out threshold.
1172 *
1173 * @total_out is an in/out parameter, must be set to the input length and will
1174 * be also used to return the total number of compressed bytes
1175 *
1176 * @max_out tells us the max number of bytes that we're allowed to
1177 * stuff into pages
1178 */
1179int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1180                         u64 start, struct page **pages,
1181                         unsigned long *out_pages,
1182                         unsigned long *total_in,
1183                         unsigned long *total_out)
1184{
1185        int type = btrfs_compress_type(type_level);
1186        int level = btrfs_compress_level(type_level);
1187        struct list_head *workspace;
1188        int ret;
1189
1190        level = btrfs_compress_set_level(type, level);
1191        workspace = get_workspace(type, level);
1192        ret = compression_compress_pages(type, workspace, mapping, start, pages,
1193                                         out_pages, total_in, total_out);
1194        put_workspace(type, workspace);
1195        return ret;
1196}
1197
1198/*
1199 * pages_in is an array of pages with compressed data.
1200 *
1201 * disk_start is the starting logical offset of this array in the file
1202 *
1203 * orig_bio contains the pages from the file that we want to decompress into
1204 *
1205 * srclen is the number of bytes in pages_in
1206 *
1207 * The basic idea is that we have a bio that was created by readpages.
1208 * The pages in the bio are for the uncompressed data, and they may not
1209 * be contiguous.  They all correspond to the range of bytes covered by
1210 * the compressed extent.
1211 */
1212static int btrfs_decompress_bio(struct compressed_bio *cb)
1213{
1214        struct list_head *workspace;
1215        int ret;
1216        int type = cb->compress_type;
1217
1218        workspace = get_workspace(type, 0);
1219        ret = compression_decompress_bio(type, workspace, cb);
1220        put_workspace(type, workspace);
1221
1222        return ret;
1223}
1224
1225/*
1226 * a less complex decompression routine.  Our compressed data fits in a
1227 * single page, and we want to read a single page out of it.
1228 * start_byte tells us the offset into the compressed data we're interested in
1229 */
1230int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1231                     unsigned long start_byte, size_t srclen, size_t destlen)
1232{
1233        struct list_head *workspace;
1234        int ret;
1235
1236        workspace = get_workspace(type, 0);
1237        ret = compression_decompress(type, workspace, data_in, dest_page,
1238                                     start_byte, srclen, destlen);
1239        put_workspace(type, workspace);
1240
1241        return ret;
1242}
1243
1244void __init btrfs_init_compress(void)
1245{
1246        btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1247        btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1248        btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1249        zstd_init_workspace_manager();
1250}
1251
1252void __cold btrfs_exit_compress(void)
1253{
1254        btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1255        btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1256        btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1257        zstd_cleanup_workspace_manager();
1258}
1259
1260/*
1261 * Copy uncompressed data from working buffer to pages.
1262 *
1263 * buf_start is the byte offset we're of the start of our workspace buffer.
1264 *
1265 * total_out is the last byte of the buffer
1266 */
1267int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1268                              unsigned long total_out, u64 disk_start,
1269                              struct bio *bio)
1270{
1271        unsigned long buf_offset;
1272        unsigned long current_buf_start;
1273        unsigned long start_byte;
1274        unsigned long prev_start_byte;
1275        unsigned long working_bytes = total_out - buf_start;
1276        unsigned long bytes;
1277        char *kaddr;
1278        struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1279
1280        /*
1281         * start byte is the first byte of the page we're currently
1282         * copying into relative to the start of the compressed data.
1283         */
1284        start_byte = page_offset(bvec.bv_page) - disk_start;
1285
1286        /* we haven't yet hit data corresponding to this page */
1287        if (total_out <= start_byte)
1288                return 1;
1289
1290        /*
1291         * the start of the data we care about is offset into
1292         * the middle of our working buffer
1293         */
1294        if (total_out > start_byte && buf_start < start_byte) {
1295                buf_offset = start_byte - buf_start;
1296                working_bytes -= buf_offset;
1297        } else {
1298                buf_offset = 0;
1299        }
1300        current_buf_start = buf_start;
1301
1302        /* copy bytes from the working buffer into the pages */
1303        while (working_bytes > 0) {
1304                bytes = min_t(unsigned long, bvec.bv_len,
1305                                PAGE_SIZE - (buf_offset % PAGE_SIZE));
1306                bytes = min(bytes, working_bytes);
1307
1308                kaddr = kmap_atomic(bvec.bv_page);
1309                memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1310                kunmap_atomic(kaddr);
1311                flush_dcache_page(bvec.bv_page);
1312
1313                buf_offset += bytes;
1314                working_bytes -= bytes;
1315                current_buf_start += bytes;
1316
1317                /* check if we need to pick another page */
1318                bio_advance(bio, bytes);
1319                if (!bio->bi_iter.bi_size)
1320                        return 0;
1321                bvec = bio_iter_iovec(bio, bio->bi_iter);
1322                prev_start_byte = start_byte;
1323                start_byte = page_offset(bvec.bv_page) - disk_start;
1324
1325                /*
1326                 * We need to make sure we're only adjusting
1327                 * our offset into compression working buffer when
1328                 * we're switching pages.  Otherwise we can incorrectly
1329                 * keep copying when we were actually done.
1330                 */
1331                if (start_byte != prev_start_byte) {
1332                        /*
1333                         * make sure our new page is covered by this
1334                         * working buffer
1335                         */
1336                        if (total_out <= start_byte)
1337                                return 1;
1338
1339                        /*
1340                         * the next page in the biovec might not be adjacent
1341                         * to the last page, but it might still be found
1342                         * inside this working buffer. bump our offset pointer
1343                         */
1344                        if (total_out > start_byte &&
1345                            current_buf_start < start_byte) {
1346                                buf_offset = start_byte - buf_start;
1347                                working_bytes = total_out - start_byte;
1348                                current_buf_start = buf_start + buf_offset;
1349                        }
1350                }
1351        }
1352
1353        return 1;
1354}
1355
1356/*
1357 * Shannon Entropy calculation
1358 *
1359 * Pure byte distribution analysis fails to determine compressibility of data.
1360 * Try calculating entropy to estimate the average minimum number of bits
1361 * needed to encode the sampled data.
1362 *
1363 * For convenience, return the percentage of needed bits, instead of amount of
1364 * bits directly.
1365 *
1366 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1367 *                          and can be compressible with high probability
1368 *
1369 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1370 *
1371 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1372 */
1373#define ENTROPY_LVL_ACEPTABLE           (65)
1374#define ENTROPY_LVL_HIGH                (80)
1375
1376/*
1377 * For increasead precision in shannon_entropy calculation,
1378 * let's do pow(n, M) to save more digits after comma:
1379 *
1380 * - maximum int bit length is 64
1381 * - ilog2(MAX_SAMPLE_SIZE)     -> 13
1382 * - 13 * 4 = 52 < 64           -> M = 4
1383 *
1384 * So use pow(n, 4).
1385 */
1386static inline u32 ilog2_w(u64 n)
1387{
1388        return ilog2(n * n * n * n);
1389}
1390
1391static u32 shannon_entropy(struct heuristic_ws *ws)
1392{
1393        const u32 entropy_max = 8 * ilog2_w(2);
1394        u32 entropy_sum = 0;
1395        u32 p, p_base, sz_base;
1396        u32 i;
1397
1398        sz_base = ilog2_w(ws->sample_size);
1399        for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1400                p = ws->bucket[i].count;
1401                p_base = ilog2_w(p);
1402                entropy_sum += p * (sz_base - p_base);
1403        }
1404
1405        entropy_sum /= ws->sample_size;
1406        return entropy_sum * 100 / entropy_max;
1407}
1408
1409#define RADIX_BASE              4U
1410#define COUNTERS_SIZE           (1U << RADIX_BASE)
1411
1412static u8 get4bits(u64 num, int shift) {
1413        u8 low4bits;
1414
1415        num >>= shift;
1416        /* Reverse order */
1417        low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1418        return low4bits;
1419}
1420
1421/*
1422 * Use 4 bits as radix base
1423 * Use 16 u32 counters for calculating new position in buf array
1424 *
1425 * @array     - array that will be sorted
1426 * @array_buf - buffer array to store sorting results
1427 *              must be equal in size to @array
1428 * @num       - array size
1429 */
1430static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1431                       int num)
1432{
1433        u64 max_num;
1434        u64 buf_num;
1435        u32 counters[COUNTERS_SIZE];
1436        u32 new_addr;
1437        u32 addr;
1438        int bitlen;
1439        int shift;
1440        int i;
1441
1442        /*
1443         * Try avoid useless loop iterations for small numbers stored in big
1444         * counters.  Example: 48 33 4 ... in 64bit array
1445         */
1446        max_num = array[0].count;
1447        for (i = 1; i < num; i++) {
1448                buf_num = array[i].count;
1449                if (buf_num > max_num)
1450                        max_num = buf_num;
1451        }
1452
1453        buf_num = ilog2(max_num);
1454        bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1455
1456        shift = 0;
1457        while (shift < bitlen) {
1458                memset(counters, 0, sizeof(counters));
1459
1460                for (i = 0; i < num; i++) {
1461                        buf_num = array[i].count;
1462                        addr = get4bits(buf_num, shift);
1463                        counters[addr]++;
1464                }
1465
1466                for (i = 1; i < COUNTERS_SIZE; i++)
1467                        counters[i] += counters[i - 1];
1468
1469                for (i = num - 1; i >= 0; i--) {
1470                        buf_num = array[i].count;
1471                        addr = get4bits(buf_num, shift);
1472                        counters[addr]--;
1473                        new_addr = counters[addr];
1474                        array_buf[new_addr] = array[i];
1475                }
1476
1477                shift += RADIX_BASE;
1478
1479                /*
1480                 * Normal radix expects to move data from a temporary array, to
1481                 * the main one.  But that requires some CPU time. Avoid that
1482                 * by doing another sort iteration to original array instead of
1483                 * memcpy()
1484                 */
1485                memset(counters, 0, sizeof(counters));
1486
1487                for (i = 0; i < num; i ++) {
1488                        buf_num = array_buf[i].count;
1489                        addr = get4bits(buf_num, shift);
1490                        counters[addr]++;
1491                }
1492
1493                for (i = 1; i < COUNTERS_SIZE; i++)
1494                        counters[i] += counters[i - 1];
1495
1496                for (i = num - 1; i >= 0; i--) {
1497                        buf_num = array_buf[i].count;
1498                        addr = get4bits(buf_num, shift);
1499                        counters[addr]--;
1500                        new_addr = counters[addr];
1501                        array[new_addr] = array_buf[i];
1502                }
1503
1504                shift += RADIX_BASE;
1505        }
1506}
1507
1508/*
1509 * Size of the core byte set - how many bytes cover 90% of the sample
1510 *
1511 * There are several types of structured binary data that use nearly all byte
1512 * values. The distribution can be uniform and counts in all buckets will be
1513 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1514 *
1515 * Other possibility is normal (Gaussian) distribution, where the data could
1516 * be potentially compressible, but we have to take a few more steps to decide
1517 * how much.
1518 *
1519 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1520 *                       compression algo can easy fix that
1521 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1522 *                       probability is not compressible
1523 */
1524#define BYTE_CORE_SET_LOW               (64)
1525#define BYTE_CORE_SET_HIGH              (200)
1526
1527static int byte_core_set_size(struct heuristic_ws *ws)
1528{
1529        u32 i;
1530        u32 coreset_sum = 0;
1531        const u32 core_set_threshold = ws->sample_size * 90 / 100;
1532        struct bucket_item *bucket = ws->bucket;
1533
1534        /* Sort in reverse order */
1535        radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1536
1537        for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1538                coreset_sum += bucket[i].count;
1539
1540        if (coreset_sum > core_set_threshold)
1541                return i;
1542
1543        for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1544                coreset_sum += bucket[i].count;
1545                if (coreset_sum > core_set_threshold)
1546                        break;
1547        }
1548
1549        return i;
1550}
1551
1552/*
1553 * Count byte values in buckets.
1554 * This heuristic can detect textual data (configs, xml, json, html, etc).
1555 * Because in most text-like data byte set is restricted to limited number of
1556 * possible characters, and that restriction in most cases makes data easy to
1557 * compress.
1558 *
1559 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1560 *      less - compressible
1561 *      more - need additional analysis
1562 */
1563#define BYTE_SET_THRESHOLD              (64)
1564
1565static u32 byte_set_size(const struct heuristic_ws *ws)
1566{
1567        u32 i;
1568        u32 byte_set_size = 0;
1569
1570        for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1571                if (ws->bucket[i].count > 0)
1572                        byte_set_size++;
1573        }
1574
1575        /*
1576         * Continue collecting count of byte values in buckets.  If the byte
1577         * set size is bigger then the threshold, it's pointless to continue,
1578         * the detection technique would fail for this type of data.
1579         */
1580        for (; i < BUCKET_SIZE; i++) {
1581                if (ws->bucket[i].count > 0) {
1582                        byte_set_size++;
1583                        if (byte_set_size > BYTE_SET_THRESHOLD)
1584                                return byte_set_size;
1585                }
1586        }
1587
1588        return byte_set_size;
1589}
1590
1591static bool sample_repeated_patterns(struct heuristic_ws *ws)
1592{
1593        const u32 half_of_sample = ws->sample_size / 2;
1594        const u8 *data = ws->sample;
1595
1596        return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1597}
1598
1599static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1600                                     struct heuristic_ws *ws)
1601{
1602        struct page *page;
1603        u64 index, index_end;
1604        u32 i, curr_sample_pos;
1605        u8 *in_data;
1606
1607        /*
1608         * Compression handles the input data by chunks of 128KiB
1609         * (defined by BTRFS_MAX_UNCOMPRESSED)
1610         *
1611         * We do the same for the heuristic and loop over the whole range.
1612         *
1613         * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1614         * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1615         */
1616        if (end - start > BTRFS_MAX_UNCOMPRESSED)
1617                end = start + BTRFS_MAX_UNCOMPRESSED;
1618
1619        index = start >> PAGE_SHIFT;
1620        index_end = end >> PAGE_SHIFT;
1621
1622        /* Don't miss unaligned end */
1623        if (!IS_ALIGNED(end, PAGE_SIZE))
1624                index_end++;
1625
1626        curr_sample_pos = 0;
1627        while (index < index_end) {
1628                page = find_get_page(inode->i_mapping, index);
1629                in_data = kmap(page);
1630                /* Handle case where the start is not aligned to PAGE_SIZE */
1631                i = start % PAGE_SIZE;
1632                while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1633                        /* Don't sample any garbage from the last page */
1634                        if (start > end - SAMPLING_READ_SIZE)
1635                                break;
1636                        memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1637                                        SAMPLING_READ_SIZE);
1638                        i += SAMPLING_INTERVAL;
1639                        start += SAMPLING_INTERVAL;
1640                        curr_sample_pos += SAMPLING_READ_SIZE;
1641                }
1642                kunmap(page);
1643                put_page(page);
1644
1645                index++;
1646        }
1647
1648        ws->sample_size = curr_sample_pos;
1649}
1650
1651/*
1652 * Compression heuristic.
1653 *
1654 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1655 * quickly (compared to direct compression) detect data characteristics
1656 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1657 * data.
1658 *
1659 * The following types of analysis can be performed:
1660 * - detect mostly zero data
1661 * - detect data with low "byte set" size (text, etc)
1662 * - detect data with low/high "core byte" set
1663 *
1664 * Return non-zero if the compression should be done, 0 otherwise.
1665 */
1666int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1667{
1668        struct list_head *ws_list = get_workspace(0, 0);
1669        struct heuristic_ws *ws;
1670        u32 i;
1671        u8 byte;
1672        int ret = 0;
1673
1674        ws = list_entry(ws_list, struct heuristic_ws, list);
1675
1676        heuristic_collect_sample(inode, start, end, ws);
1677
1678        if (sample_repeated_patterns(ws)) {
1679                ret = 1;
1680                goto out;
1681        }
1682
1683        memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1684
1685        for (i = 0; i < ws->sample_size; i++) {
1686                byte = ws->sample[i];
1687                ws->bucket[byte].count++;
1688        }
1689
1690        i = byte_set_size(ws);
1691        if (i < BYTE_SET_THRESHOLD) {
1692                ret = 2;
1693                goto out;
1694        }
1695
1696        i = byte_core_set_size(ws);
1697        if (i <= BYTE_CORE_SET_LOW) {
1698                ret = 3;
1699                goto out;
1700        }
1701
1702        if (i >= BYTE_CORE_SET_HIGH) {
1703                ret = 0;
1704                goto out;
1705        }
1706
1707        i = shannon_entropy(ws);
1708        if (i <= ENTROPY_LVL_ACEPTABLE) {
1709                ret = 4;
1710                goto out;
1711        }
1712
1713        /*
1714         * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1715         * needed to give green light to compression.
1716         *
1717         * For now just assume that compression at that level is not worth the
1718         * resources because:
1719         *
1720         * 1. it is possible to defrag the data later
1721         *
1722         * 2. the data would turn out to be hardly compressible, eg. 150 byte
1723         * values, every bucket has counter at level ~54. The heuristic would
1724         * be confused. This can happen when data have some internal repeated
1725         * patterns like "abbacbbc...". This can be detected by analyzing
1726         * pairs of bytes, which is too costly.
1727         */
1728        if (i < ENTROPY_LVL_HIGH) {
1729                ret = 5;
1730                goto out;
1731        } else {
1732                ret = 0;
1733                goto out;
1734        }
1735
1736out:
1737        put_workspace(0, ws_list);
1738        return ret;
1739}
1740
1741/*
1742 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1743 * level, unrecognized string will set the default level
1744 */
1745unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1746{
1747        unsigned int level = 0;
1748        int ret;
1749
1750        if (!type)
1751                return 0;
1752
1753        if (str[0] == ':') {
1754                ret = kstrtouint(str + 1, 10, &level);
1755                if (ret)
1756                        level = 0;
1757        }
1758
1759        level = btrfs_compress_set_level(type, level);
1760
1761        return level;
1762}
1763