linux/fs/btrfs/disk-io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <asm/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "print-tree.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
  32#include "inode-map.h"
  33#include "check-integrity.h"
  34#include "rcu-string.h"
  35#include "dev-replace.h"
  36#include "raid56.h"
  37#include "sysfs.h"
  38#include "qgroup.h"
  39#include "compression.h"
  40#include "tree-checker.h"
  41#include "ref-verify.h"
  42#include "block-group.h"
  43#include "discard.h"
  44#include "space-info.h"
  45
  46#define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
  47                                 BTRFS_HEADER_FLAG_RELOC |\
  48                                 BTRFS_SUPER_FLAG_ERROR |\
  49                                 BTRFS_SUPER_FLAG_SEEDING |\
  50                                 BTRFS_SUPER_FLAG_METADUMP |\
  51                                 BTRFS_SUPER_FLAG_METADUMP_V2)
  52
  53static const struct extent_io_ops btree_extent_io_ops;
  54static void end_workqueue_fn(struct btrfs_work *work);
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57                                      struct btrfs_fs_info *fs_info);
  58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  60                                        struct extent_io_tree *dirty_pages,
  61                                        int mark);
  62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  63                                       struct extent_io_tree *pinned_extents);
  64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  66
  67/*
  68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  69 * is complete.  This is used during reads to verify checksums, and it is used
  70 * by writes to insert metadata for new file extents after IO is complete.
  71 */
  72struct btrfs_end_io_wq {
  73        struct bio *bio;
  74        bio_end_io_t *end_io;
  75        void *private;
  76        struct btrfs_fs_info *info;
  77        blk_status_t status;
  78        enum btrfs_wq_endio_type metadata;
  79        struct btrfs_work work;
  80};
  81
  82static struct kmem_cache *btrfs_end_io_wq_cache;
  83
  84int __init btrfs_end_io_wq_init(void)
  85{
  86        btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  87                                        sizeof(struct btrfs_end_io_wq),
  88                                        0,
  89                                        SLAB_MEM_SPREAD,
  90                                        NULL);
  91        if (!btrfs_end_io_wq_cache)
  92                return -ENOMEM;
  93        return 0;
  94}
  95
  96void __cold btrfs_end_io_wq_exit(void)
  97{
  98        kmem_cache_destroy(btrfs_end_io_wq_cache);
  99}
 100
 101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 102{
 103        if (fs_info->csum_shash)
 104                crypto_free_shash(fs_info->csum_shash);
 105}
 106
 107/*
 108 * async submit bios are used to offload expensive checksumming
 109 * onto the worker threads.  They checksum file and metadata bios
 110 * just before they are sent down the IO stack.
 111 */
 112struct async_submit_bio {
 113        void *private_data;
 114        struct bio *bio;
 115        extent_submit_bio_start_t *submit_bio_start;
 116        int mirror_num;
 117        /*
 118         * bio_offset is optional, can be used if the pages in the bio
 119         * can't tell us where in the file the bio should go
 120         */
 121        u64 bio_offset;
 122        struct btrfs_work work;
 123        blk_status_t status;
 124};
 125
 126/*
 127 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 129 * the level the eb occupies in the tree.
 130 *
 131 * Different roots are used for different purposes and may nest inside each
 132 * other and they require separate keysets.  As lockdep keys should be
 133 * static, assign keysets according to the purpose of the root as indicated
 134 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 135 * roots have separate keysets.
 136 *
 137 * Lock-nesting across peer nodes is always done with the immediate parent
 138 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 139 * subclass to avoid triggering lockdep warning in such cases.
 140 *
 141 * The key is set by the readpage_end_io_hook after the buffer has passed
 142 * csum validation but before the pages are unlocked.  It is also set by
 143 * btrfs_init_new_buffer on freshly allocated blocks.
 144 *
 145 * We also add a check to make sure the highest level of the tree is the
 146 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 147 * needs update as well.
 148 */
 149#ifdef CONFIG_DEBUG_LOCK_ALLOC
 150# if BTRFS_MAX_LEVEL != 8
 151#  error
 152# endif
 153
 154static struct btrfs_lockdep_keyset {
 155        u64                     id;             /* root objectid */
 156        const char              *name_stem;     /* lock name stem */
 157        char                    names[BTRFS_MAX_LEVEL + 1][20];
 158        struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
 159} btrfs_lockdep_keysets[] = {
 160        { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
 161        { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
 162        { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
 163        { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
 164        { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
 165        { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
 166        { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
 167        { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
 168        { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
 169        { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
 170        { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
 171        { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
 172        { .id = 0,                              .name_stem = "tree"     },
 173};
 174
 175void __init btrfs_init_lockdep(void)
 176{
 177        int i, j;
 178
 179        /* initialize lockdep class names */
 180        for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 181                struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 182
 183                for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 184                        snprintf(ks->names[j], sizeof(ks->names[j]),
 185                                 "btrfs-%s-%02d", ks->name_stem, j);
 186        }
 187}
 188
 189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 190                                    int level)
 191{
 192        struct btrfs_lockdep_keyset *ks;
 193
 194        BUG_ON(level >= ARRAY_SIZE(ks->keys));
 195
 196        /* find the matching keyset, id 0 is the default entry */
 197        for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 198                if (ks->id == objectid)
 199                        break;
 200
 201        lockdep_set_class_and_name(&eb->lock,
 202                                   &ks->keys[level], ks->names[level]);
 203}
 204
 205#endif
 206
 207/*
 208 * extents on the btree inode are pretty simple, there's one extent
 209 * that covers the entire device
 210 */
 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 212                                    struct page *page, size_t pg_offset,
 213                                    u64 start, u64 len)
 214{
 215        struct extent_map_tree *em_tree = &inode->extent_tree;
 216        struct extent_map *em;
 217        int ret;
 218
 219        read_lock(&em_tree->lock);
 220        em = lookup_extent_mapping(em_tree, start, len);
 221        if (em) {
 222                read_unlock(&em_tree->lock);
 223                goto out;
 224        }
 225        read_unlock(&em_tree->lock);
 226
 227        em = alloc_extent_map();
 228        if (!em) {
 229                em = ERR_PTR(-ENOMEM);
 230                goto out;
 231        }
 232        em->start = 0;
 233        em->len = (u64)-1;
 234        em->block_len = (u64)-1;
 235        em->block_start = 0;
 236
 237        write_lock(&em_tree->lock);
 238        ret = add_extent_mapping(em_tree, em, 0);
 239        if (ret == -EEXIST) {
 240                free_extent_map(em);
 241                em = lookup_extent_mapping(em_tree, start, len);
 242                if (!em)
 243                        em = ERR_PTR(-EIO);
 244        } else if (ret) {
 245                free_extent_map(em);
 246                em = ERR_PTR(ret);
 247        }
 248        write_unlock(&em_tree->lock);
 249
 250out:
 251        return em;
 252}
 253
 254/*
 255 * Compute the csum of a btree block and store the result to provided buffer.
 256 */
 257static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 258{
 259        struct btrfs_fs_info *fs_info = buf->fs_info;
 260        const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
 261        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 262        char *kaddr;
 263        int i;
 264
 265        shash->tfm = fs_info->csum_shash;
 266        crypto_shash_init(shash);
 267        kaddr = page_address(buf->pages[0]);
 268        crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 269                            PAGE_SIZE - BTRFS_CSUM_SIZE);
 270
 271        for (i = 1; i < num_pages; i++) {
 272                kaddr = page_address(buf->pages[i]);
 273                crypto_shash_update(shash, kaddr, PAGE_SIZE);
 274        }
 275        memset(result, 0, BTRFS_CSUM_SIZE);
 276        crypto_shash_final(shash, result);
 277}
 278
 279/*
 280 * we can't consider a given block up to date unless the transid of the
 281 * block matches the transid in the parent node's pointer.  This is how we
 282 * detect blocks that either didn't get written at all or got written
 283 * in the wrong place.
 284 */
 285static int verify_parent_transid(struct extent_io_tree *io_tree,
 286                                 struct extent_buffer *eb, u64 parent_transid,
 287                                 int atomic)
 288{
 289        struct extent_state *cached_state = NULL;
 290        int ret;
 291        bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 292
 293        if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 294                return 0;
 295
 296        if (atomic)
 297                return -EAGAIN;
 298
 299        if (need_lock) {
 300                btrfs_tree_read_lock(eb);
 301                btrfs_set_lock_blocking_read(eb);
 302        }
 303
 304        lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 305                         &cached_state);
 306        if (extent_buffer_uptodate(eb) &&
 307            btrfs_header_generation(eb) == parent_transid) {
 308                ret = 0;
 309                goto out;
 310        }
 311        btrfs_err_rl(eb->fs_info,
 312                "parent transid verify failed on %llu wanted %llu found %llu",
 313                        eb->start,
 314                        parent_transid, btrfs_header_generation(eb));
 315        ret = 1;
 316
 317        /*
 318         * Things reading via commit roots that don't have normal protection,
 319         * like send, can have a really old block in cache that may point at a
 320         * block that has been freed and re-allocated.  So don't clear uptodate
 321         * if we find an eb that is under IO (dirty/writeback) because we could
 322         * end up reading in the stale data and then writing it back out and
 323         * making everybody very sad.
 324         */
 325        if (!extent_buffer_under_io(eb))
 326                clear_extent_buffer_uptodate(eb);
 327out:
 328        unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 329                             &cached_state);
 330        if (need_lock)
 331                btrfs_tree_read_unlock_blocking(eb);
 332        return ret;
 333}
 334
 335static bool btrfs_supported_super_csum(u16 csum_type)
 336{
 337        switch (csum_type) {
 338        case BTRFS_CSUM_TYPE_CRC32:
 339        case BTRFS_CSUM_TYPE_XXHASH:
 340        case BTRFS_CSUM_TYPE_SHA256:
 341        case BTRFS_CSUM_TYPE_BLAKE2:
 342                return true;
 343        default:
 344                return false;
 345        }
 346}
 347
 348/*
 349 * Return 0 if the superblock checksum type matches the checksum value of that
 350 * algorithm. Pass the raw disk superblock data.
 351 */
 352static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 353                                  char *raw_disk_sb)
 354{
 355        struct btrfs_super_block *disk_sb =
 356                (struct btrfs_super_block *)raw_disk_sb;
 357        char result[BTRFS_CSUM_SIZE];
 358        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 359
 360        shash->tfm = fs_info->csum_shash;
 361
 362        /*
 363         * The super_block structure does not span the whole
 364         * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 365         * filled with zeros and is included in the checksum.
 366         */
 367        crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
 368                            BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 369
 370        if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
 371                return 1;
 372
 373        return 0;
 374}
 375
 376int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 377                           struct btrfs_key *first_key, u64 parent_transid)
 378{
 379        struct btrfs_fs_info *fs_info = eb->fs_info;
 380        int found_level;
 381        struct btrfs_key found_key;
 382        int ret;
 383
 384        found_level = btrfs_header_level(eb);
 385        if (found_level != level) {
 386                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 387                     KERN_ERR "BTRFS: tree level check failed\n");
 388                btrfs_err(fs_info,
 389"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 390                          eb->start, level, found_level);
 391                return -EIO;
 392        }
 393
 394        if (!first_key)
 395                return 0;
 396
 397        /*
 398         * For live tree block (new tree blocks in current transaction),
 399         * we need proper lock context to avoid race, which is impossible here.
 400         * So we only checks tree blocks which is read from disk, whose
 401         * generation <= fs_info->last_trans_committed.
 402         */
 403        if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 404                return 0;
 405
 406        /* We have @first_key, so this @eb must have at least one item */
 407        if (btrfs_header_nritems(eb) == 0) {
 408                btrfs_err(fs_info,
 409                "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 410                          eb->start);
 411                WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 412                return -EUCLEAN;
 413        }
 414
 415        if (found_level)
 416                btrfs_node_key_to_cpu(eb, &found_key, 0);
 417        else
 418                btrfs_item_key_to_cpu(eb, &found_key, 0);
 419        ret = btrfs_comp_cpu_keys(first_key, &found_key);
 420
 421        if (ret) {
 422                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 423                     KERN_ERR "BTRFS: tree first key check failed\n");
 424                btrfs_err(fs_info,
 425"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 426                          eb->start, parent_transid, first_key->objectid,
 427                          first_key->type, first_key->offset,
 428                          found_key.objectid, found_key.type,
 429                          found_key.offset);
 430        }
 431        return ret;
 432}
 433
 434/*
 435 * helper to read a given tree block, doing retries as required when
 436 * the checksums don't match and we have alternate mirrors to try.
 437 *
 438 * @parent_transid:     expected transid, skip check if 0
 439 * @level:              expected level, mandatory check
 440 * @first_key:          expected key of first slot, skip check if NULL
 441 */
 442static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 443                                          u64 parent_transid, int level,
 444                                          struct btrfs_key *first_key)
 445{
 446        struct btrfs_fs_info *fs_info = eb->fs_info;
 447        struct extent_io_tree *io_tree;
 448        int failed = 0;
 449        int ret;
 450        int num_copies = 0;
 451        int mirror_num = 0;
 452        int failed_mirror = 0;
 453
 454        io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 455        while (1) {
 456                clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 457                ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 458                if (!ret) {
 459                        if (verify_parent_transid(io_tree, eb,
 460                                                   parent_transid, 0))
 461                                ret = -EIO;
 462                        else if (btrfs_verify_level_key(eb, level,
 463                                                first_key, parent_transid))
 464                                ret = -EUCLEAN;
 465                        else
 466                                break;
 467                }
 468
 469                num_copies = btrfs_num_copies(fs_info,
 470                                              eb->start, eb->len);
 471                if (num_copies == 1)
 472                        break;
 473
 474                if (!failed_mirror) {
 475                        failed = 1;
 476                        failed_mirror = eb->read_mirror;
 477                }
 478
 479                mirror_num++;
 480                if (mirror_num == failed_mirror)
 481                        mirror_num++;
 482
 483                if (mirror_num > num_copies)
 484                        break;
 485        }
 486
 487        if (failed && !ret && failed_mirror)
 488                btrfs_repair_eb_io_failure(eb, failed_mirror);
 489
 490        return ret;
 491}
 492
 493/*
 494 * checksum a dirty tree block before IO.  This has extra checks to make sure
 495 * we only fill in the checksum field in the first page of a multi-page block
 496 */
 497
 498static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 499{
 500        u64 start = page_offset(page);
 501        u64 found_start;
 502        u8 result[BTRFS_CSUM_SIZE];
 503        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 504        struct extent_buffer *eb;
 505        int ret;
 506
 507        eb = (struct extent_buffer *)page->private;
 508        if (page != eb->pages[0])
 509                return 0;
 510
 511        found_start = btrfs_header_bytenr(eb);
 512        /*
 513         * Please do not consolidate these warnings into a single if.
 514         * It is useful to know what went wrong.
 515         */
 516        if (WARN_ON(found_start != start))
 517                return -EUCLEAN;
 518        if (WARN_ON(!PageUptodate(page)))
 519                return -EUCLEAN;
 520
 521        ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 522                                    offsetof(struct btrfs_header, fsid),
 523                                    BTRFS_FSID_SIZE) == 0);
 524
 525        csum_tree_block(eb, result);
 526
 527        if (btrfs_header_level(eb))
 528                ret = btrfs_check_node(eb);
 529        else
 530                ret = btrfs_check_leaf_full(eb);
 531
 532        if (ret < 0) {
 533                btrfs_print_tree(eb, 0);
 534                btrfs_err(fs_info,
 535                "block=%llu write time tree block corruption detected",
 536                          eb->start);
 537                WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 538                return ret;
 539        }
 540        write_extent_buffer(eb, result, 0, csum_size);
 541
 542        return 0;
 543}
 544
 545static int check_tree_block_fsid(struct extent_buffer *eb)
 546{
 547        struct btrfs_fs_info *fs_info = eb->fs_info;
 548        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 549        u8 fsid[BTRFS_FSID_SIZE];
 550        int ret = 1;
 551
 552        read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 553                           BTRFS_FSID_SIZE);
 554        while (fs_devices) {
 555                u8 *metadata_uuid;
 556
 557                /*
 558                 * Checking the incompat flag is only valid for the current
 559                 * fs. For seed devices it's forbidden to have their uuid
 560                 * changed so reading ->fsid in this case is fine
 561                 */
 562                if (fs_devices == fs_info->fs_devices &&
 563                    btrfs_fs_incompat(fs_info, METADATA_UUID))
 564                        metadata_uuid = fs_devices->metadata_uuid;
 565                else
 566                        metadata_uuid = fs_devices->fsid;
 567
 568                if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
 569                        ret = 0;
 570                        break;
 571                }
 572                fs_devices = fs_devices->seed;
 573        }
 574        return ret;
 575}
 576
 577static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 578                                      u64 phy_offset, struct page *page,
 579                                      u64 start, u64 end, int mirror)
 580{
 581        u64 found_start;
 582        int found_level;
 583        struct extent_buffer *eb;
 584        struct btrfs_fs_info *fs_info;
 585        u16 csum_size;
 586        int ret = 0;
 587        u8 result[BTRFS_CSUM_SIZE];
 588        int reads_done;
 589
 590        if (!page->private)
 591                goto out;
 592
 593        eb = (struct extent_buffer *)page->private;
 594        fs_info = eb->fs_info;
 595        csum_size = btrfs_super_csum_size(fs_info->super_copy);
 596
 597        /* the pending IO might have been the only thing that kept this buffer
 598         * in memory.  Make sure we have a ref for all this other checks
 599         */
 600        atomic_inc(&eb->refs);
 601
 602        reads_done = atomic_dec_and_test(&eb->io_pages);
 603        if (!reads_done)
 604                goto err;
 605
 606        eb->read_mirror = mirror;
 607        if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 608                ret = -EIO;
 609                goto err;
 610        }
 611
 612        found_start = btrfs_header_bytenr(eb);
 613        if (found_start != eb->start) {
 614                btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 615                             eb->start, found_start);
 616                ret = -EIO;
 617                goto err;
 618        }
 619        if (check_tree_block_fsid(eb)) {
 620                btrfs_err_rl(fs_info, "bad fsid on block %llu",
 621                             eb->start);
 622                ret = -EIO;
 623                goto err;
 624        }
 625        found_level = btrfs_header_level(eb);
 626        if (found_level >= BTRFS_MAX_LEVEL) {
 627                btrfs_err(fs_info, "bad tree block level %d on %llu",
 628                          (int)btrfs_header_level(eb), eb->start);
 629                ret = -EIO;
 630                goto err;
 631        }
 632
 633        btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 634                                       eb, found_level);
 635
 636        csum_tree_block(eb, result);
 637
 638        if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
 639                u8 val[BTRFS_CSUM_SIZE] = { 0 };
 640
 641                read_extent_buffer(eb, &val, 0, csum_size);
 642                btrfs_warn_rl(fs_info,
 643        "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
 644                              fs_info->sb->s_id, eb->start,
 645                              CSUM_FMT_VALUE(csum_size, val),
 646                              CSUM_FMT_VALUE(csum_size, result),
 647                              btrfs_header_level(eb));
 648                ret = -EUCLEAN;
 649                goto err;
 650        }
 651
 652        /*
 653         * If this is a leaf block and it is corrupt, set the corrupt bit so
 654         * that we don't try and read the other copies of this block, just
 655         * return -EIO.
 656         */
 657        if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 658                set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 659                ret = -EIO;
 660        }
 661
 662        if (found_level > 0 && btrfs_check_node(eb))
 663                ret = -EIO;
 664
 665        if (!ret)
 666                set_extent_buffer_uptodate(eb);
 667        else
 668                btrfs_err(fs_info,
 669                          "block=%llu read time tree block corruption detected",
 670                          eb->start);
 671err:
 672        if (reads_done &&
 673            test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 674                btree_readahead_hook(eb, ret);
 675
 676        if (ret) {
 677                /*
 678                 * our io error hook is going to dec the io pages
 679                 * again, we have to make sure it has something
 680                 * to decrement
 681                 */
 682                atomic_inc(&eb->io_pages);
 683                clear_extent_buffer_uptodate(eb);
 684        }
 685        free_extent_buffer(eb);
 686out:
 687        return ret;
 688}
 689
 690static void end_workqueue_bio(struct bio *bio)
 691{
 692        struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 693        struct btrfs_fs_info *fs_info;
 694        struct btrfs_workqueue *wq;
 695
 696        fs_info = end_io_wq->info;
 697        end_io_wq->status = bio->bi_status;
 698
 699        if (bio_op(bio) == REQ_OP_WRITE) {
 700                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
 701                        wq = fs_info->endio_meta_write_workers;
 702                else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
 703                        wq = fs_info->endio_freespace_worker;
 704                else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 705                        wq = fs_info->endio_raid56_workers;
 706                else
 707                        wq = fs_info->endio_write_workers;
 708        } else {
 709                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 710                        wq = fs_info->endio_raid56_workers;
 711                else if (end_io_wq->metadata)
 712                        wq = fs_info->endio_meta_workers;
 713                else
 714                        wq = fs_info->endio_workers;
 715        }
 716
 717        btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
 718        btrfs_queue_work(wq, &end_io_wq->work);
 719}
 720
 721blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 722                        enum btrfs_wq_endio_type metadata)
 723{
 724        struct btrfs_end_io_wq *end_io_wq;
 725
 726        end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 727        if (!end_io_wq)
 728                return BLK_STS_RESOURCE;
 729
 730        end_io_wq->private = bio->bi_private;
 731        end_io_wq->end_io = bio->bi_end_io;
 732        end_io_wq->info = info;
 733        end_io_wq->status = 0;
 734        end_io_wq->bio = bio;
 735        end_io_wq->metadata = metadata;
 736
 737        bio->bi_private = end_io_wq;
 738        bio->bi_end_io = end_workqueue_bio;
 739        return 0;
 740}
 741
 742static void run_one_async_start(struct btrfs_work *work)
 743{
 744        struct async_submit_bio *async;
 745        blk_status_t ret;
 746
 747        async = container_of(work, struct  async_submit_bio, work);
 748        ret = async->submit_bio_start(async->private_data, async->bio,
 749                                      async->bio_offset);
 750        if (ret)
 751                async->status = ret;
 752}
 753
 754/*
 755 * In order to insert checksums into the metadata in large chunks, we wait
 756 * until bio submission time.   All the pages in the bio are checksummed and
 757 * sums are attached onto the ordered extent record.
 758 *
 759 * At IO completion time the csums attached on the ordered extent record are
 760 * inserted into the tree.
 761 */
 762static void run_one_async_done(struct btrfs_work *work)
 763{
 764        struct async_submit_bio *async;
 765        struct inode *inode;
 766        blk_status_t ret;
 767
 768        async = container_of(work, struct  async_submit_bio, work);
 769        inode = async->private_data;
 770
 771        /* If an error occurred we just want to clean up the bio and move on */
 772        if (async->status) {
 773                async->bio->bi_status = async->status;
 774                bio_endio(async->bio);
 775                return;
 776        }
 777
 778        /*
 779         * All of the bios that pass through here are from async helpers.
 780         * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
 781         * This changes nothing when cgroups aren't in use.
 782         */
 783        async->bio->bi_opf |= REQ_CGROUP_PUNT;
 784        ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
 785        if (ret) {
 786                async->bio->bi_status = ret;
 787                bio_endio(async->bio);
 788        }
 789}
 790
 791static void run_one_async_free(struct btrfs_work *work)
 792{
 793        struct async_submit_bio *async;
 794
 795        async = container_of(work, struct  async_submit_bio, work);
 796        kfree(async);
 797}
 798
 799blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 800                                 int mirror_num, unsigned long bio_flags,
 801                                 u64 bio_offset, void *private_data,
 802                                 extent_submit_bio_start_t *submit_bio_start)
 803{
 804        struct async_submit_bio *async;
 805
 806        async = kmalloc(sizeof(*async), GFP_NOFS);
 807        if (!async)
 808                return BLK_STS_RESOURCE;
 809
 810        async->private_data = private_data;
 811        async->bio = bio;
 812        async->mirror_num = mirror_num;
 813        async->submit_bio_start = submit_bio_start;
 814
 815        btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
 816                        run_one_async_free);
 817
 818        async->bio_offset = bio_offset;
 819
 820        async->status = 0;
 821
 822        if (op_is_sync(bio->bi_opf))
 823                btrfs_set_work_high_priority(&async->work);
 824
 825        btrfs_queue_work(fs_info->workers, &async->work);
 826        return 0;
 827}
 828
 829static blk_status_t btree_csum_one_bio(struct bio *bio)
 830{
 831        struct bio_vec *bvec;
 832        struct btrfs_root *root;
 833        int ret = 0;
 834        struct bvec_iter_all iter_all;
 835
 836        ASSERT(!bio_flagged(bio, BIO_CLONED));
 837        bio_for_each_segment_all(bvec, bio, iter_all) {
 838                root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 839                ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 840                if (ret)
 841                        break;
 842        }
 843
 844        return errno_to_blk_status(ret);
 845}
 846
 847static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 848                                             u64 bio_offset)
 849{
 850        /*
 851         * when we're called for a write, we're already in the async
 852         * submission context.  Just jump into btrfs_map_bio
 853         */
 854        return btree_csum_one_bio(bio);
 855}
 856
 857static int check_async_write(struct btrfs_fs_info *fs_info,
 858                             struct btrfs_inode *bi)
 859{
 860        if (atomic_read(&bi->sync_writers))
 861                return 0;
 862        if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 863                return 0;
 864        return 1;
 865}
 866
 867static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
 868                                          int mirror_num,
 869                                          unsigned long bio_flags)
 870{
 871        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 872        int async = check_async_write(fs_info, BTRFS_I(inode));
 873        blk_status_t ret;
 874
 875        if (bio_op(bio) != REQ_OP_WRITE) {
 876                /*
 877                 * called for a read, do the setup so that checksum validation
 878                 * can happen in the async kernel threads
 879                 */
 880                ret = btrfs_bio_wq_end_io(fs_info, bio,
 881                                          BTRFS_WQ_ENDIO_METADATA);
 882                if (ret)
 883                        goto out_w_error;
 884                ret = btrfs_map_bio(fs_info, bio, mirror_num);
 885        } else if (!async) {
 886                ret = btree_csum_one_bio(bio);
 887                if (ret)
 888                        goto out_w_error;
 889                ret = btrfs_map_bio(fs_info, bio, mirror_num);
 890        } else {
 891                /*
 892                 * kthread helpers are used to submit writes so that
 893                 * checksumming can happen in parallel across all CPUs
 894                 */
 895                ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 896                                          0, inode, btree_submit_bio_start);
 897        }
 898
 899        if (ret)
 900                goto out_w_error;
 901        return 0;
 902
 903out_w_error:
 904        bio->bi_status = ret;
 905        bio_endio(bio);
 906        return ret;
 907}
 908
 909#ifdef CONFIG_MIGRATION
 910static int btree_migratepage(struct address_space *mapping,
 911                        struct page *newpage, struct page *page,
 912                        enum migrate_mode mode)
 913{
 914        /*
 915         * we can't safely write a btree page from here,
 916         * we haven't done the locking hook
 917         */
 918        if (PageDirty(page))
 919                return -EAGAIN;
 920        /*
 921         * Buffers may be managed in a filesystem specific way.
 922         * We must have no buffers or drop them.
 923         */
 924        if (page_has_private(page) &&
 925            !try_to_release_page(page, GFP_KERNEL))
 926                return -EAGAIN;
 927        return migrate_page(mapping, newpage, page, mode);
 928}
 929#endif
 930
 931
 932static int btree_writepages(struct address_space *mapping,
 933                            struct writeback_control *wbc)
 934{
 935        struct btrfs_fs_info *fs_info;
 936        int ret;
 937
 938        if (wbc->sync_mode == WB_SYNC_NONE) {
 939
 940                if (wbc->for_kupdate)
 941                        return 0;
 942
 943                fs_info = BTRFS_I(mapping->host)->root->fs_info;
 944                /* this is a bit racy, but that's ok */
 945                ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 946                                             BTRFS_DIRTY_METADATA_THRESH,
 947                                             fs_info->dirty_metadata_batch);
 948                if (ret < 0)
 949                        return 0;
 950        }
 951        return btree_write_cache_pages(mapping, wbc);
 952}
 953
 954static int btree_readpage(struct file *file, struct page *page)
 955{
 956        return extent_read_full_page(page, btree_get_extent, 0);
 957}
 958
 959static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 960{
 961        if (PageWriteback(page) || PageDirty(page))
 962                return 0;
 963
 964        return try_release_extent_buffer(page);
 965}
 966
 967static void btree_invalidatepage(struct page *page, unsigned int offset,
 968                                 unsigned int length)
 969{
 970        struct extent_io_tree *tree;
 971        tree = &BTRFS_I(page->mapping->host)->io_tree;
 972        extent_invalidatepage(tree, page, offset);
 973        btree_releasepage(page, GFP_NOFS);
 974        if (PagePrivate(page)) {
 975                btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
 976                           "page private not zero on page %llu",
 977                           (unsigned long long)page_offset(page));
 978                detach_page_private(page);
 979        }
 980}
 981
 982static int btree_set_page_dirty(struct page *page)
 983{
 984#ifdef DEBUG
 985        struct extent_buffer *eb;
 986
 987        BUG_ON(!PagePrivate(page));
 988        eb = (struct extent_buffer *)page->private;
 989        BUG_ON(!eb);
 990        BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 991        BUG_ON(!atomic_read(&eb->refs));
 992        btrfs_assert_tree_locked(eb);
 993#endif
 994        return __set_page_dirty_nobuffers(page);
 995}
 996
 997static const struct address_space_operations btree_aops = {
 998        .readpage       = btree_readpage,
 999        .writepages     = btree_writepages,
1000        .releasepage    = btree_releasepage,
1001        .invalidatepage = btree_invalidatepage,
1002#ifdef CONFIG_MIGRATION
1003        .migratepage    = btree_migratepage,
1004#endif
1005        .set_page_dirty = btree_set_page_dirty,
1006};
1007
1008void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1009{
1010        struct extent_buffer *buf = NULL;
1011        int ret;
1012
1013        buf = btrfs_find_create_tree_block(fs_info, bytenr);
1014        if (IS_ERR(buf))
1015                return;
1016
1017        ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1018        if (ret < 0)
1019                free_extent_buffer_stale(buf);
1020        else
1021                free_extent_buffer(buf);
1022}
1023
1024struct extent_buffer *btrfs_find_create_tree_block(
1025                                                struct btrfs_fs_info *fs_info,
1026                                                u64 bytenr)
1027{
1028        if (btrfs_is_testing(fs_info))
1029                return alloc_test_extent_buffer(fs_info, bytenr);
1030        return alloc_extent_buffer(fs_info, bytenr);
1031}
1032
1033/*
1034 * Read tree block at logical address @bytenr and do variant basic but critical
1035 * verification.
1036 *
1037 * @parent_transid:     expected transid of this tree block, skip check if 0
1038 * @level:              expected level, mandatory check
1039 * @first_key:          expected key in slot 0, skip check if NULL
1040 */
1041struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1042                                      u64 parent_transid, int level,
1043                                      struct btrfs_key *first_key)
1044{
1045        struct extent_buffer *buf = NULL;
1046        int ret;
1047
1048        buf = btrfs_find_create_tree_block(fs_info, bytenr);
1049        if (IS_ERR(buf))
1050                return buf;
1051
1052        ret = btree_read_extent_buffer_pages(buf, parent_transid,
1053                                             level, first_key);
1054        if (ret) {
1055                free_extent_buffer_stale(buf);
1056                return ERR_PTR(ret);
1057        }
1058        return buf;
1059
1060}
1061
1062void btrfs_clean_tree_block(struct extent_buffer *buf)
1063{
1064        struct btrfs_fs_info *fs_info = buf->fs_info;
1065        if (btrfs_header_generation(buf) ==
1066            fs_info->running_transaction->transid) {
1067                btrfs_assert_tree_locked(buf);
1068
1069                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1070                        percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1071                                                 -buf->len,
1072                                                 fs_info->dirty_metadata_batch);
1073                        /* ugh, clear_extent_buffer_dirty needs to lock the page */
1074                        btrfs_set_lock_blocking_write(buf);
1075                        clear_extent_buffer_dirty(buf);
1076                }
1077        }
1078}
1079
1080static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1081                         u64 objectid)
1082{
1083        bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1084        root->fs_info = fs_info;
1085        root->node = NULL;
1086        root->commit_root = NULL;
1087        root->state = 0;
1088        root->orphan_cleanup_state = 0;
1089
1090        root->last_trans = 0;
1091        root->highest_objectid = 0;
1092        root->nr_delalloc_inodes = 0;
1093        root->nr_ordered_extents = 0;
1094        root->inode_tree = RB_ROOT;
1095        INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1096        root->block_rsv = NULL;
1097
1098        INIT_LIST_HEAD(&root->dirty_list);
1099        INIT_LIST_HEAD(&root->root_list);
1100        INIT_LIST_HEAD(&root->delalloc_inodes);
1101        INIT_LIST_HEAD(&root->delalloc_root);
1102        INIT_LIST_HEAD(&root->ordered_extents);
1103        INIT_LIST_HEAD(&root->ordered_root);
1104        INIT_LIST_HEAD(&root->reloc_dirty_list);
1105        INIT_LIST_HEAD(&root->logged_list[0]);
1106        INIT_LIST_HEAD(&root->logged_list[1]);
1107        spin_lock_init(&root->inode_lock);
1108        spin_lock_init(&root->delalloc_lock);
1109        spin_lock_init(&root->ordered_extent_lock);
1110        spin_lock_init(&root->accounting_lock);
1111        spin_lock_init(&root->log_extents_lock[0]);
1112        spin_lock_init(&root->log_extents_lock[1]);
1113        spin_lock_init(&root->qgroup_meta_rsv_lock);
1114        mutex_init(&root->objectid_mutex);
1115        mutex_init(&root->log_mutex);
1116        mutex_init(&root->ordered_extent_mutex);
1117        mutex_init(&root->delalloc_mutex);
1118        init_waitqueue_head(&root->qgroup_flush_wait);
1119        init_waitqueue_head(&root->log_writer_wait);
1120        init_waitqueue_head(&root->log_commit_wait[0]);
1121        init_waitqueue_head(&root->log_commit_wait[1]);
1122        INIT_LIST_HEAD(&root->log_ctxs[0]);
1123        INIT_LIST_HEAD(&root->log_ctxs[1]);
1124        atomic_set(&root->log_commit[0], 0);
1125        atomic_set(&root->log_commit[1], 0);
1126        atomic_set(&root->log_writers, 0);
1127        atomic_set(&root->log_batch, 0);
1128        refcount_set(&root->refs, 1);
1129        atomic_set(&root->snapshot_force_cow, 0);
1130        atomic_set(&root->nr_swapfiles, 0);
1131        root->log_transid = 0;
1132        root->log_transid_committed = -1;
1133        root->last_log_commit = 0;
1134        if (!dummy) {
1135                extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136                                    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1137                extent_io_tree_init(fs_info, &root->log_csum_range,
1138                                    IO_TREE_LOG_CSUM_RANGE, NULL);
1139        }
1140
1141        memset(&root->root_key, 0, sizeof(root->root_key));
1142        memset(&root->root_item, 0, sizeof(root->root_item));
1143        memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1144        root->root_key.objectid = objectid;
1145        root->anon_dev = 0;
1146
1147        spin_lock_init(&root->root_item_lock);
1148        btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1149#ifdef CONFIG_BTRFS_DEBUG
1150        INIT_LIST_HEAD(&root->leak_list);
1151        spin_lock(&fs_info->fs_roots_radix_lock);
1152        list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1153        spin_unlock(&fs_info->fs_roots_radix_lock);
1154#endif
1155}
1156
1157static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1158                                           u64 objectid, gfp_t flags)
1159{
1160        struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1161        if (root)
1162                __setup_root(root, fs_info, objectid);
1163        return root;
1164}
1165
1166#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1167/* Should only be used by the testing infrastructure */
1168struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1169{
1170        struct btrfs_root *root;
1171
1172        if (!fs_info)
1173                return ERR_PTR(-EINVAL);
1174
1175        root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1176        if (!root)
1177                return ERR_PTR(-ENOMEM);
1178
1179        /* We don't use the stripesize in selftest, set it as sectorsize */
1180        root->alloc_bytenr = 0;
1181
1182        return root;
1183}
1184#endif
1185
1186struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1187                                     u64 objectid)
1188{
1189        struct btrfs_fs_info *fs_info = trans->fs_info;
1190        struct extent_buffer *leaf;
1191        struct btrfs_root *tree_root = fs_info->tree_root;
1192        struct btrfs_root *root;
1193        struct btrfs_key key;
1194        unsigned int nofs_flag;
1195        int ret = 0;
1196
1197        /*
1198         * We're holding a transaction handle, so use a NOFS memory allocation
1199         * context to avoid deadlock if reclaim happens.
1200         */
1201        nofs_flag = memalloc_nofs_save();
1202        root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1203        memalloc_nofs_restore(nofs_flag);
1204        if (!root)
1205                return ERR_PTR(-ENOMEM);
1206
1207        root->root_key.objectid = objectid;
1208        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1209        root->root_key.offset = 0;
1210
1211        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1212        if (IS_ERR(leaf)) {
1213                ret = PTR_ERR(leaf);
1214                leaf = NULL;
1215                goto fail;
1216        }
1217
1218        root->node = leaf;
1219        btrfs_mark_buffer_dirty(leaf);
1220
1221        root->commit_root = btrfs_root_node(root);
1222        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1223
1224        root->root_item.flags = 0;
1225        root->root_item.byte_limit = 0;
1226        btrfs_set_root_bytenr(&root->root_item, leaf->start);
1227        btrfs_set_root_generation(&root->root_item, trans->transid);
1228        btrfs_set_root_level(&root->root_item, 0);
1229        btrfs_set_root_refs(&root->root_item, 1);
1230        btrfs_set_root_used(&root->root_item, leaf->len);
1231        btrfs_set_root_last_snapshot(&root->root_item, 0);
1232        btrfs_set_root_dirid(&root->root_item, 0);
1233        if (is_fstree(objectid))
1234                generate_random_guid(root->root_item.uuid);
1235        else
1236                export_guid(root->root_item.uuid, &guid_null);
1237        root->root_item.drop_level = 0;
1238
1239        key.objectid = objectid;
1240        key.type = BTRFS_ROOT_ITEM_KEY;
1241        key.offset = 0;
1242        ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1243        if (ret)
1244                goto fail;
1245
1246        btrfs_tree_unlock(leaf);
1247
1248        return root;
1249
1250fail:
1251        if (leaf)
1252                btrfs_tree_unlock(leaf);
1253        btrfs_put_root(root);
1254
1255        return ERR_PTR(ret);
1256}
1257
1258static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1259                                         struct btrfs_fs_info *fs_info)
1260{
1261        struct btrfs_root *root;
1262        struct extent_buffer *leaf;
1263
1264        root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1265        if (!root)
1266                return ERR_PTR(-ENOMEM);
1267
1268        root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1269        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270        root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1271
1272        /*
1273         * DON'T set SHAREABLE bit for log trees.
1274         *
1275         * Log trees are not exposed to user space thus can't be snapshotted,
1276         * and they go away before a real commit is actually done.
1277         *
1278         * They do store pointers to file data extents, and those reference
1279         * counts still get updated (along with back refs to the log tree).
1280         */
1281
1282        leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1283                        NULL, 0, 0, 0);
1284        if (IS_ERR(leaf)) {
1285                btrfs_put_root(root);
1286                return ERR_CAST(leaf);
1287        }
1288
1289        root->node = leaf;
1290
1291        btrfs_mark_buffer_dirty(root->node);
1292        btrfs_tree_unlock(root->node);
1293        return root;
1294}
1295
1296int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1297                             struct btrfs_fs_info *fs_info)
1298{
1299        struct btrfs_root *log_root;
1300
1301        log_root = alloc_log_tree(trans, fs_info);
1302        if (IS_ERR(log_root))
1303                return PTR_ERR(log_root);
1304        WARN_ON(fs_info->log_root_tree);
1305        fs_info->log_root_tree = log_root;
1306        return 0;
1307}
1308
1309int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1310                       struct btrfs_root *root)
1311{
1312        struct btrfs_fs_info *fs_info = root->fs_info;
1313        struct btrfs_root *log_root;
1314        struct btrfs_inode_item *inode_item;
1315
1316        log_root = alloc_log_tree(trans, fs_info);
1317        if (IS_ERR(log_root))
1318                return PTR_ERR(log_root);
1319
1320        log_root->last_trans = trans->transid;
1321        log_root->root_key.offset = root->root_key.objectid;
1322
1323        inode_item = &log_root->root_item.inode;
1324        btrfs_set_stack_inode_generation(inode_item, 1);
1325        btrfs_set_stack_inode_size(inode_item, 3);
1326        btrfs_set_stack_inode_nlink(inode_item, 1);
1327        btrfs_set_stack_inode_nbytes(inode_item,
1328                                     fs_info->nodesize);
1329        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1330
1331        btrfs_set_root_node(&log_root->root_item, log_root->node);
1332
1333        WARN_ON(root->log_root);
1334        root->log_root = log_root;
1335        root->log_transid = 0;
1336        root->log_transid_committed = -1;
1337        root->last_log_commit = 0;
1338        return 0;
1339}
1340
1341struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1342                                        struct btrfs_key *key)
1343{
1344        struct btrfs_root *root;
1345        struct btrfs_fs_info *fs_info = tree_root->fs_info;
1346        struct btrfs_path *path;
1347        u64 generation;
1348        int ret;
1349        int level;
1350
1351        path = btrfs_alloc_path();
1352        if (!path)
1353                return ERR_PTR(-ENOMEM);
1354
1355        root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1356        if (!root) {
1357                ret = -ENOMEM;
1358                goto alloc_fail;
1359        }
1360
1361        ret = btrfs_find_root(tree_root, key, path,
1362                              &root->root_item, &root->root_key);
1363        if (ret) {
1364                if (ret > 0)
1365                        ret = -ENOENT;
1366                goto find_fail;
1367        }
1368
1369        generation = btrfs_root_generation(&root->root_item);
1370        level = btrfs_root_level(&root->root_item);
1371        root->node = read_tree_block(fs_info,
1372                                     btrfs_root_bytenr(&root->root_item),
1373                                     generation, level, NULL);
1374        if (IS_ERR(root->node)) {
1375                ret = PTR_ERR(root->node);
1376                root->node = NULL;
1377                goto find_fail;
1378        } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1379                ret = -EIO;
1380                goto find_fail;
1381        }
1382        root->commit_root = btrfs_root_node(root);
1383out:
1384        btrfs_free_path(path);
1385        return root;
1386
1387find_fail:
1388        btrfs_put_root(root);
1389alloc_fail:
1390        root = ERR_PTR(ret);
1391        goto out;
1392}
1393
1394/*
1395 * Initialize subvolume root in-memory structure
1396 *
1397 * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1398 */
1399static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1400{
1401        int ret;
1402        unsigned int nofs_flag;
1403
1404        root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1405        root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1406                                        GFP_NOFS);
1407        if (!root->free_ino_pinned || !root->free_ino_ctl) {
1408                ret = -ENOMEM;
1409                goto fail;
1410        }
1411
1412        /*
1413         * We might be called under a transaction (e.g. indirect backref
1414         * resolution) which could deadlock if it triggers memory reclaim
1415         */
1416        nofs_flag = memalloc_nofs_save();
1417        ret = btrfs_drew_lock_init(&root->snapshot_lock);
1418        memalloc_nofs_restore(nofs_flag);
1419        if (ret)
1420                goto fail;
1421
1422        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1423            root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1424                set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1425                btrfs_check_and_init_root_item(&root->root_item);
1426        }
1427
1428        btrfs_init_free_ino_ctl(root);
1429        spin_lock_init(&root->ino_cache_lock);
1430        init_waitqueue_head(&root->ino_cache_wait);
1431
1432        /*
1433         * Don't assign anonymous block device to roots that are not exposed to
1434         * userspace, the id pool is limited to 1M
1435         */
1436        if (is_fstree(root->root_key.objectid) &&
1437            btrfs_root_refs(&root->root_item) > 0) {
1438                if (!anon_dev) {
1439                        ret = get_anon_bdev(&root->anon_dev);
1440                        if (ret)
1441                                goto fail;
1442                } else {
1443                        root->anon_dev = anon_dev;
1444                }
1445        }
1446
1447        mutex_lock(&root->objectid_mutex);
1448        ret = btrfs_find_highest_objectid(root,
1449                                        &root->highest_objectid);
1450        if (ret) {
1451                mutex_unlock(&root->objectid_mutex);
1452                goto fail;
1453        }
1454
1455        ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1456
1457        mutex_unlock(&root->objectid_mutex);
1458
1459        return 0;
1460fail:
1461        /* The caller is responsible to call btrfs_free_fs_root */
1462        return ret;
1463}
1464
1465static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1466                                               u64 root_id)
1467{
1468        struct btrfs_root *root;
1469
1470        spin_lock(&fs_info->fs_roots_radix_lock);
1471        root = radix_tree_lookup(&fs_info->fs_roots_radix,
1472                                 (unsigned long)root_id);
1473        if (root)
1474                root = btrfs_grab_root(root);
1475        spin_unlock(&fs_info->fs_roots_radix_lock);
1476        return root;
1477}
1478
1479int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1480                         struct btrfs_root *root)
1481{
1482        int ret;
1483
1484        ret = radix_tree_preload(GFP_NOFS);
1485        if (ret)
1486                return ret;
1487
1488        spin_lock(&fs_info->fs_roots_radix_lock);
1489        ret = radix_tree_insert(&fs_info->fs_roots_radix,
1490                                (unsigned long)root->root_key.objectid,
1491                                root);
1492        if (ret == 0) {
1493                btrfs_grab_root(root);
1494                set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1495        }
1496        spin_unlock(&fs_info->fs_roots_radix_lock);
1497        radix_tree_preload_end();
1498
1499        return ret;
1500}
1501
1502void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1503{
1504#ifdef CONFIG_BTRFS_DEBUG
1505        struct btrfs_root *root;
1506
1507        while (!list_empty(&fs_info->allocated_roots)) {
1508                root = list_first_entry(&fs_info->allocated_roots,
1509                                        struct btrfs_root, leak_list);
1510                btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1511                          root->root_key.objectid, root->root_key.offset,
1512                          refcount_read(&root->refs));
1513                while (refcount_read(&root->refs) > 1)
1514                        btrfs_put_root(root);
1515                btrfs_put_root(root);
1516        }
1517#endif
1518}
1519
1520void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1521{
1522        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1523        percpu_counter_destroy(&fs_info->delalloc_bytes);
1524        percpu_counter_destroy(&fs_info->dio_bytes);
1525        percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1526        btrfs_free_csum_hash(fs_info);
1527        btrfs_free_stripe_hash_table(fs_info);
1528        btrfs_free_ref_cache(fs_info);
1529        kfree(fs_info->balance_ctl);
1530        kfree(fs_info->delayed_root);
1531        btrfs_put_root(fs_info->extent_root);
1532        btrfs_put_root(fs_info->tree_root);
1533        btrfs_put_root(fs_info->chunk_root);
1534        btrfs_put_root(fs_info->dev_root);
1535        btrfs_put_root(fs_info->csum_root);
1536        btrfs_put_root(fs_info->quota_root);
1537        btrfs_put_root(fs_info->uuid_root);
1538        btrfs_put_root(fs_info->free_space_root);
1539        btrfs_put_root(fs_info->fs_root);
1540        btrfs_put_root(fs_info->data_reloc_root);
1541        btrfs_check_leaked_roots(fs_info);
1542        btrfs_extent_buffer_leak_debug_check(fs_info);
1543        kfree(fs_info->super_copy);
1544        kfree(fs_info->super_for_commit);
1545        kvfree(fs_info);
1546}
1547
1548
1549/*
1550 * Get an in-memory reference of a root structure.
1551 *
1552 * For essential trees like root/extent tree, we grab it from fs_info directly.
1553 * For subvolume trees, we check the cached filesystem roots first. If not
1554 * found, then read it from disk and add it to cached fs roots.
1555 *
1556 * Caller should release the root by calling btrfs_put_root() after the usage.
1557 *
1558 * NOTE: Reloc and log trees can't be read by this function as they share the
1559 *       same root objectid.
1560 *
1561 * @objectid:   root id
1562 * @anon_dev:   preallocated anonymous block device number for new roots,
1563 *              pass 0 for new allocation.
1564 * @check_ref:  whether to check root item references, If true, return -ENOENT
1565 *              for orphan roots
1566 */
1567static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1568                                             u64 objectid, dev_t anon_dev,
1569                                             bool check_ref)
1570{
1571        struct btrfs_root *root;
1572        struct btrfs_path *path;
1573        struct btrfs_key key;
1574        int ret;
1575
1576        if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1577                return btrfs_grab_root(fs_info->tree_root);
1578        if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579                return btrfs_grab_root(fs_info->extent_root);
1580        if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581                return btrfs_grab_root(fs_info->chunk_root);
1582        if (objectid == BTRFS_DEV_TREE_OBJECTID)
1583                return btrfs_grab_root(fs_info->dev_root);
1584        if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1585                return btrfs_grab_root(fs_info->csum_root);
1586        if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587                return btrfs_grab_root(fs_info->quota_root) ?
1588                        fs_info->quota_root : ERR_PTR(-ENOENT);
1589        if (objectid == BTRFS_UUID_TREE_OBJECTID)
1590                return btrfs_grab_root(fs_info->uuid_root) ?
1591                        fs_info->uuid_root : ERR_PTR(-ENOENT);
1592        if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1593                return btrfs_grab_root(fs_info->free_space_root) ?
1594                        fs_info->free_space_root : ERR_PTR(-ENOENT);
1595again:
1596        root = btrfs_lookup_fs_root(fs_info, objectid);
1597        if (root) {
1598                /* Shouldn't get preallocated anon_dev for cached roots */
1599                ASSERT(!anon_dev);
1600                if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1601                        btrfs_put_root(root);
1602                        return ERR_PTR(-ENOENT);
1603                }
1604                return root;
1605        }
1606
1607        key.objectid = objectid;
1608        key.type = BTRFS_ROOT_ITEM_KEY;
1609        key.offset = (u64)-1;
1610        root = btrfs_read_tree_root(fs_info->tree_root, &key);
1611        if (IS_ERR(root))
1612                return root;
1613
1614        if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1615                ret = -ENOENT;
1616                goto fail;
1617        }
1618
1619        ret = btrfs_init_fs_root(root, anon_dev);
1620        if (ret)
1621                goto fail;
1622
1623        path = btrfs_alloc_path();
1624        if (!path) {
1625                ret = -ENOMEM;
1626                goto fail;
1627        }
1628        key.objectid = BTRFS_ORPHAN_OBJECTID;
1629        key.type = BTRFS_ORPHAN_ITEM_KEY;
1630        key.offset = objectid;
1631
1632        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1633        btrfs_free_path(path);
1634        if (ret < 0)
1635                goto fail;
1636        if (ret == 0)
1637                set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1638
1639        ret = btrfs_insert_fs_root(fs_info, root);
1640        if (ret) {
1641                btrfs_put_root(root);
1642                if (ret == -EEXIST)
1643                        goto again;
1644                goto fail;
1645        }
1646        return root;
1647fail:
1648        btrfs_put_root(root);
1649        return ERR_PTR(ret);
1650}
1651
1652/*
1653 * Get in-memory reference of a root structure
1654 *
1655 * @objectid:   tree objectid
1656 * @check_ref:  if set, verify that the tree exists and the item has at least
1657 *              one reference
1658 */
1659struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660                                     u64 objectid, bool check_ref)
1661{
1662        return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1663}
1664
1665/*
1666 * Get in-memory reference of a root structure, created as new, optionally pass
1667 * the anonymous block device id
1668 *
1669 * @objectid:   tree objectid
1670 * @anon_dev:   if zero, allocate a new anonymous block device or use the
1671 *              parameter value
1672 */
1673struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1674                                         u64 objectid, dev_t anon_dev)
1675{
1676        return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1677}
1678
1679/*
1680 * called by the kthread helper functions to finally call the bio end_io
1681 * functions.  This is where read checksum verification actually happens
1682 */
1683static void end_workqueue_fn(struct btrfs_work *work)
1684{
1685        struct bio *bio;
1686        struct btrfs_end_io_wq *end_io_wq;
1687
1688        end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1689        bio = end_io_wq->bio;
1690
1691        bio->bi_status = end_io_wq->status;
1692        bio->bi_private = end_io_wq->private;
1693        bio->bi_end_io = end_io_wq->end_io;
1694        bio_endio(bio);
1695        kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1696}
1697
1698static int cleaner_kthread(void *arg)
1699{
1700        struct btrfs_root *root = arg;
1701        struct btrfs_fs_info *fs_info = root->fs_info;
1702        int again;
1703
1704        while (1) {
1705                again = 0;
1706
1707                set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1708
1709                /* Make the cleaner go to sleep early. */
1710                if (btrfs_need_cleaner_sleep(fs_info))
1711                        goto sleep;
1712
1713                /*
1714                 * Do not do anything if we might cause open_ctree() to block
1715                 * before we have finished mounting the filesystem.
1716                 */
1717                if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1718                        goto sleep;
1719
1720                if (!mutex_trylock(&fs_info->cleaner_mutex))
1721                        goto sleep;
1722
1723                /*
1724                 * Avoid the problem that we change the status of the fs
1725                 * during the above check and trylock.
1726                 */
1727                if (btrfs_need_cleaner_sleep(fs_info)) {
1728                        mutex_unlock(&fs_info->cleaner_mutex);
1729                        goto sleep;
1730                }
1731
1732                btrfs_run_delayed_iputs(fs_info);
1733
1734                again = btrfs_clean_one_deleted_snapshot(root);
1735                mutex_unlock(&fs_info->cleaner_mutex);
1736
1737                /*
1738                 * The defragger has dealt with the R/O remount and umount,
1739                 * needn't do anything special here.
1740                 */
1741                btrfs_run_defrag_inodes(fs_info);
1742
1743                /*
1744                 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1745                 * with relocation (btrfs_relocate_chunk) and relocation
1746                 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1747                 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1748                 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1749                 * unused block groups.
1750                 */
1751                btrfs_delete_unused_bgs(fs_info);
1752sleep:
1753                clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1754                if (kthread_should_park())
1755                        kthread_parkme();
1756                if (kthread_should_stop())
1757                        return 0;
1758                if (!again) {
1759                        set_current_state(TASK_INTERRUPTIBLE);
1760                        schedule();
1761                        __set_current_state(TASK_RUNNING);
1762                }
1763        }
1764}
1765
1766static int transaction_kthread(void *arg)
1767{
1768        struct btrfs_root *root = arg;
1769        struct btrfs_fs_info *fs_info = root->fs_info;
1770        struct btrfs_trans_handle *trans;
1771        struct btrfs_transaction *cur;
1772        u64 transid;
1773        time64_t now;
1774        unsigned long delay;
1775        bool cannot_commit;
1776
1777        do {
1778                cannot_commit = false;
1779                delay = HZ * fs_info->commit_interval;
1780                mutex_lock(&fs_info->transaction_kthread_mutex);
1781
1782                spin_lock(&fs_info->trans_lock);
1783                cur = fs_info->running_transaction;
1784                if (!cur) {
1785                        spin_unlock(&fs_info->trans_lock);
1786                        goto sleep;
1787                }
1788
1789                now = ktime_get_seconds();
1790                if (cur->state < TRANS_STATE_COMMIT_START &&
1791                    (now < cur->start_time ||
1792                     now - cur->start_time < fs_info->commit_interval)) {
1793                        spin_unlock(&fs_info->trans_lock);
1794                        delay = HZ * 5;
1795                        goto sleep;
1796                }
1797                transid = cur->transid;
1798                spin_unlock(&fs_info->trans_lock);
1799
1800                /* If the file system is aborted, this will always fail. */
1801                trans = btrfs_attach_transaction(root);
1802                if (IS_ERR(trans)) {
1803                        if (PTR_ERR(trans) != -ENOENT)
1804                                cannot_commit = true;
1805                        goto sleep;
1806                }
1807                if (transid == trans->transid) {
1808                        btrfs_commit_transaction(trans);
1809                } else {
1810                        btrfs_end_transaction(trans);
1811                }
1812sleep:
1813                wake_up_process(fs_info->cleaner_kthread);
1814                mutex_unlock(&fs_info->transaction_kthread_mutex);
1815
1816                if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1817                                      &fs_info->fs_state)))
1818                        btrfs_cleanup_transaction(fs_info);
1819                if (!kthread_should_stop() &&
1820                                (!btrfs_transaction_blocked(fs_info) ||
1821                                 cannot_commit))
1822                        schedule_timeout_interruptible(delay);
1823        } while (!kthread_should_stop());
1824        return 0;
1825}
1826
1827/*
1828 * This will find the highest generation in the array of root backups.  The
1829 * index of the highest array is returned, or -EINVAL if we can't find
1830 * anything.
1831 *
1832 * We check to make sure the array is valid by comparing the
1833 * generation of the latest  root in the array with the generation
1834 * in the super block.  If they don't match we pitch it.
1835 */
1836static int find_newest_super_backup(struct btrfs_fs_info *info)
1837{
1838        const u64 newest_gen = btrfs_super_generation(info->super_copy);
1839        u64 cur;
1840        struct btrfs_root_backup *root_backup;
1841        int i;
1842
1843        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1844                root_backup = info->super_copy->super_roots + i;
1845                cur = btrfs_backup_tree_root_gen(root_backup);
1846                if (cur == newest_gen)
1847                        return i;
1848        }
1849
1850        return -EINVAL;
1851}
1852
1853/*
1854 * copy all the root pointers into the super backup array.
1855 * this will bump the backup pointer by one when it is
1856 * done
1857 */
1858static void backup_super_roots(struct btrfs_fs_info *info)
1859{
1860        const int next_backup = info->backup_root_index;
1861        struct btrfs_root_backup *root_backup;
1862
1863        root_backup = info->super_for_commit->super_roots + next_backup;
1864
1865        /*
1866         * make sure all of our padding and empty slots get zero filled
1867         * regardless of which ones we use today
1868         */
1869        memset(root_backup, 0, sizeof(*root_backup));
1870
1871        info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1872
1873        btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1874        btrfs_set_backup_tree_root_gen(root_backup,
1875                               btrfs_header_generation(info->tree_root->node));
1876
1877        btrfs_set_backup_tree_root_level(root_backup,
1878                               btrfs_header_level(info->tree_root->node));
1879
1880        btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1881        btrfs_set_backup_chunk_root_gen(root_backup,
1882                               btrfs_header_generation(info->chunk_root->node));
1883        btrfs_set_backup_chunk_root_level(root_backup,
1884                               btrfs_header_level(info->chunk_root->node));
1885
1886        btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1887        btrfs_set_backup_extent_root_gen(root_backup,
1888                               btrfs_header_generation(info->extent_root->node));
1889        btrfs_set_backup_extent_root_level(root_backup,
1890                               btrfs_header_level(info->extent_root->node));
1891
1892        /*
1893         * we might commit during log recovery, which happens before we set
1894         * the fs_root.  Make sure it is valid before we fill it in.
1895         */
1896        if (info->fs_root && info->fs_root->node) {
1897                btrfs_set_backup_fs_root(root_backup,
1898                                         info->fs_root->node->start);
1899                btrfs_set_backup_fs_root_gen(root_backup,
1900                               btrfs_header_generation(info->fs_root->node));
1901                btrfs_set_backup_fs_root_level(root_backup,
1902                               btrfs_header_level(info->fs_root->node));
1903        }
1904
1905        btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1906        btrfs_set_backup_dev_root_gen(root_backup,
1907                               btrfs_header_generation(info->dev_root->node));
1908        btrfs_set_backup_dev_root_level(root_backup,
1909                                       btrfs_header_level(info->dev_root->node));
1910
1911        btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1912        btrfs_set_backup_csum_root_gen(root_backup,
1913                               btrfs_header_generation(info->csum_root->node));
1914        btrfs_set_backup_csum_root_level(root_backup,
1915                               btrfs_header_level(info->csum_root->node));
1916
1917        btrfs_set_backup_total_bytes(root_backup,
1918                             btrfs_super_total_bytes(info->super_copy));
1919        btrfs_set_backup_bytes_used(root_backup,
1920                             btrfs_super_bytes_used(info->super_copy));
1921        btrfs_set_backup_num_devices(root_backup,
1922                             btrfs_super_num_devices(info->super_copy));
1923
1924        /*
1925         * if we don't copy this out to the super_copy, it won't get remembered
1926         * for the next commit
1927         */
1928        memcpy(&info->super_copy->super_roots,
1929               &info->super_for_commit->super_roots,
1930               sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1931}
1932
1933/*
1934 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1935 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1936 *
1937 * fs_info - filesystem whose backup roots need to be read
1938 * priority - priority of backup root required
1939 *
1940 * Returns backup root index on success and -EINVAL otherwise.
1941 */
1942static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1943{
1944        int backup_index = find_newest_super_backup(fs_info);
1945        struct btrfs_super_block *super = fs_info->super_copy;
1946        struct btrfs_root_backup *root_backup;
1947
1948        if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1949                if (priority == 0)
1950                        return backup_index;
1951
1952                backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1953                backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1954        } else {
1955                return -EINVAL;
1956        }
1957
1958        root_backup = super->super_roots + backup_index;
1959
1960        btrfs_set_super_generation(super,
1961                                   btrfs_backup_tree_root_gen(root_backup));
1962        btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1963        btrfs_set_super_root_level(super,
1964                                   btrfs_backup_tree_root_level(root_backup));
1965        btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1966
1967        /*
1968         * Fixme: the total bytes and num_devices need to match or we should
1969         * need a fsck
1970         */
1971        btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1972        btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1973
1974        return backup_index;
1975}
1976
1977/* helper to cleanup workers */
1978static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1979{
1980        btrfs_destroy_workqueue(fs_info->fixup_workers);
1981        btrfs_destroy_workqueue(fs_info->delalloc_workers);
1982        btrfs_destroy_workqueue(fs_info->workers);
1983        btrfs_destroy_workqueue(fs_info->endio_workers);
1984        btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1985        btrfs_destroy_workqueue(fs_info->rmw_workers);
1986        btrfs_destroy_workqueue(fs_info->endio_write_workers);
1987        btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1988        btrfs_destroy_workqueue(fs_info->delayed_workers);
1989        btrfs_destroy_workqueue(fs_info->caching_workers);
1990        btrfs_destroy_workqueue(fs_info->readahead_workers);
1991        btrfs_destroy_workqueue(fs_info->flush_workers);
1992        btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1993        if (fs_info->discard_ctl.discard_workers)
1994                destroy_workqueue(fs_info->discard_ctl.discard_workers);
1995        /*
1996         * Now that all other work queues are destroyed, we can safely destroy
1997         * the queues used for metadata I/O, since tasks from those other work
1998         * queues can do metadata I/O operations.
1999         */
2000        btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2001        btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2002}
2003
2004static void free_root_extent_buffers(struct btrfs_root *root)
2005{
2006        if (root) {
2007                free_extent_buffer(root->node);
2008                free_extent_buffer(root->commit_root);
2009                root->node = NULL;
2010                root->commit_root = NULL;
2011        }
2012}
2013
2014/* helper to cleanup tree roots */
2015static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2016{
2017        free_root_extent_buffers(info->tree_root);
2018
2019        free_root_extent_buffers(info->dev_root);
2020        free_root_extent_buffers(info->extent_root);
2021        free_root_extent_buffers(info->csum_root);
2022        free_root_extent_buffers(info->quota_root);
2023        free_root_extent_buffers(info->uuid_root);
2024        free_root_extent_buffers(info->fs_root);
2025        free_root_extent_buffers(info->data_reloc_root);
2026        if (free_chunk_root)
2027                free_root_extent_buffers(info->chunk_root);
2028        free_root_extent_buffers(info->free_space_root);
2029}
2030
2031void btrfs_put_root(struct btrfs_root *root)
2032{
2033        if (!root)
2034                return;
2035
2036        if (refcount_dec_and_test(&root->refs)) {
2037                WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2038                WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2039                if (root->anon_dev)
2040                        free_anon_bdev(root->anon_dev);
2041                btrfs_drew_lock_destroy(&root->snapshot_lock);
2042                free_root_extent_buffers(root);
2043                kfree(root->free_ino_ctl);
2044                kfree(root->free_ino_pinned);
2045#ifdef CONFIG_BTRFS_DEBUG
2046                spin_lock(&root->fs_info->fs_roots_radix_lock);
2047                list_del_init(&root->leak_list);
2048                spin_unlock(&root->fs_info->fs_roots_radix_lock);
2049#endif
2050                kfree(root);
2051        }
2052}
2053
2054void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2055{
2056        int ret;
2057        struct btrfs_root *gang[8];
2058        int i;
2059
2060        while (!list_empty(&fs_info->dead_roots)) {
2061                gang[0] = list_entry(fs_info->dead_roots.next,
2062                                     struct btrfs_root, root_list);
2063                list_del(&gang[0]->root_list);
2064
2065                if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2066                        btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2067                btrfs_put_root(gang[0]);
2068        }
2069
2070        while (1) {
2071                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2072                                             (void **)gang, 0,
2073                                             ARRAY_SIZE(gang));
2074                if (!ret)
2075                        break;
2076                for (i = 0; i < ret; i++)
2077                        btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2078        }
2079}
2080
2081static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082{
2083        mutex_init(&fs_info->scrub_lock);
2084        atomic_set(&fs_info->scrubs_running, 0);
2085        atomic_set(&fs_info->scrub_pause_req, 0);
2086        atomic_set(&fs_info->scrubs_paused, 0);
2087        atomic_set(&fs_info->scrub_cancel_req, 0);
2088        init_waitqueue_head(&fs_info->scrub_pause_wait);
2089        refcount_set(&fs_info->scrub_workers_refcnt, 0);
2090}
2091
2092static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093{
2094        spin_lock_init(&fs_info->balance_lock);
2095        mutex_init(&fs_info->balance_mutex);
2096        atomic_set(&fs_info->balance_pause_req, 0);
2097        atomic_set(&fs_info->balance_cancel_req, 0);
2098        fs_info->balance_ctl = NULL;
2099        init_waitqueue_head(&fs_info->balance_wait_q);
2100}
2101
2102static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2103{
2104        struct inode *inode = fs_info->btree_inode;
2105
2106        inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107        set_nlink(inode, 1);
2108        /*
2109         * we set the i_size on the btree inode to the max possible int.
2110         * the real end of the address space is determined by all of
2111         * the devices in the system
2112         */
2113        inode->i_size = OFFSET_MAX;
2114        inode->i_mapping->a_ops = &btree_aops;
2115
2116        RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2117        extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118                            IO_TREE_INODE_IO, inode);
2119        BTRFS_I(inode)->io_tree.track_uptodate = false;
2120        extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2121
2122        BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124        BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2125        memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127        btrfs_insert_inode_hash(inode);
2128}
2129
2130static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131{
2132        mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2133        init_rwsem(&fs_info->dev_replace.rwsem);
2134        init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2135}
2136
2137static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138{
2139        spin_lock_init(&fs_info->qgroup_lock);
2140        mutex_init(&fs_info->qgroup_ioctl_lock);
2141        fs_info->qgroup_tree = RB_ROOT;
2142        INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143        fs_info->qgroup_seq = 1;
2144        fs_info->qgroup_ulist = NULL;
2145        fs_info->qgroup_rescan_running = false;
2146        mutex_init(&fs_info->qgroup_rescan_lock);
2147}
2148
2149static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150                struct btrfs_fs_devices *fs_devices)
2151{
2152        u32 max_active = fs_info->thread_pool_size;
2153        unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2154
2155        fs_info->workers =
2156                btrfs_alloc_workqueue(fs_info, "worker",
2157                                      flags | WQ_HIGHPRI, max_active, 16);
2158
2159        fs_info->delalloc_workers =
2160                btrfs_alloc_workqueue(fs_info, "delalloc",
2161                                      flags, max_active, 2);
2162
2163        fs_info->flush_workers =
2164                btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165                                      flags, max_active, 0);
2166
2167        fs_info->caching_workers =
2168                btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169
2170        fs_info->fixup_workers =
2171                btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2172
2173        /*
2174         * endios are largely parallel and should have a very
2175         * low idle thresh
2176         */
2177        fs_info->endio_workers =
2178                btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2179        fs_info->endio_meta_workers =
2180                btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2181                                      max_active, 4);
2182        fs_info->endio_meta_write_workers =
2183                btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2184                                      max_active, 2);
2185        fs_info->endio_raid56_workers =
2186                btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2187                                      max_active, 4);
2188        fs_info->rmw_workers =
2189                btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2190        fs_info->endio_write_workers =
2191                btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2192                                      max_active, 2);
2193        fs_info->endio_freespace_worker =
2194                btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2195                                      max_active, 0);
2196        fs_info->delayed_workers =
2197                btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2198                                      max_active, 0);
2199        fs_info->readahead_workers =
2200                btrfs_alloc_workqueue(fs_info, "readahead", flags,
2201                                      max_active, 2);
2202        fs_info->qgroup_rescan_workers =
2203                btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2204        fs_info->discard_ctl.discard_workers =
2205                alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2206
2207        if (!(fs_info->workers && fs_info->delalloc_workers &&
2208              fs_info->flush_workers &&
2209              fs_info->endio_workers && fs_info->endio_meta_workers &&
2210              fs_info->endio_meta_write_workers &&
2211              fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2212              fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2213              fs_info->caching_workers && fs_info->readahead_workers &&
2214              fs_info->fixup_workers && fs_info->delayed_workers &&
2215              fs_info->qgroup_rescan_workers &&
2216              fs_info->discard_ctl.discard_workers)) {
2217                return -ENOMEM;
2218        }
2219
2220        return 0;
2221}
2222
2223static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2224{
2225        struct crypto_shash *csum_shash;
2226        const char *csum_driver = btrfs_super_csum_driver(csum_type);
2227
2228        csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2229
2230        if (IS_ERR(csum_shash)) {
2231                btrfs_err(fs_info, "error allocating %s hash for checksum",
2232                          csum_driver);
2233                return PTR_ERR(csum_shash);
2234        }
2235
2236        fs_info->csum_shash = csum_shash;
2237
2238        return 0;
2239}
2240
2241static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2242                            struct btrfs_fs_devices *fs_devices)
2243{
2244        int ret;
2245        struct btrfs_root *log_tree_root;
2246        struct btrfs_super_block *disk_super = fs_info->super_copy;
2247        u64 bytenr = btrfs_super_log_root(disk_super);
2248        int level = btrfs_super_log_root_level(disk_super);
2249
2250        if (fs_devices->rw_devices == 0) {
2251                btrfs_warn(fs_info, "log replay required on RO media");
2252                return -EIO;
2253        }
2254
2255        log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2256                                         GFP_KERNEL);
2257        if (!log_tree_root)
2258                return -ENOMEM;
2259
2260        log_tree_root->node = read_tree_block(fs_info, bytenr,
2261                                              fs_info->generation + 1,
2262                                              level, NULL);
2263        if (IS_ERR(log_tree_root->node)) {
2264                btrfs_warn(fs_info, "failed to read log tree");
2265                ret = PTR_ERR(log_tree_root->node);
2266                log_tree_root->node = NULL;
2267                btrfs_put_root(log_tree_root);
2268                return ret;
2269        } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2270                btrfs_err(fs_info, "failed to read log tree");
2271                btrfs_put_root(log_tree_root);
2272                return -EIO;
2273        }
2274        /* returns with log_tree_root freed on success */
2275        ret = btrfs_recover_log_trees(log_tree_root);
2276        if (ret) {
2277                btrfs_handle_fs_error(fs_info, ret,
2278                                      "Failed to recover log tree");
2279                btrfs_put_root(log_tree_root);
2280                return ret;
2281        }
2282
2283        if (sb_rdonly(fs_info->sb)) {
2284                ret = btrfs_commit_super(fs_info);
2285                if (ret)
2286                        return ret;
2287        }
2288
2289        return 0;
2290}
2291
2292static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2293{
2294        struct btrfs_root *tree_root = fs_info->tree_root;
2295        struct btrfs_root *root;
2296        struct btrfs_key location;
2297        int ret;
2298
2299        BUG_ON(!fs_info->tree_root);
2300
2301        location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2302        location.type = BTRFS_ROOT_ITEM_KEY;
2303        location.offset = 0;
2304
2305        root = btrfs_read_tree_root(tree_root, &location);
2306        if (IS_ERR(root)) {
2307                ret = PTR_ERR(root);
2308                goto out;
2309        }
2310        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311        fs_info->extent_root = root;
2312
2313        location.objectid = BTRFS_DEV_TREE_OBJECTID;
2314        root = btrfs_read_tree_root(tree_root, &location);
2315        if (IS_ERR(root)) {
2316                ret = PTR_ERR(root);
2317                goto out;
2318        }
2319        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320        fs_info->dev_root = root;
2321        btrfs_init_devices_late(fs_info);
2322
2323        location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2324        root = btrfs_read_tree_root(tree_root, &location);
2325        if (IS_ERR(root)) {
2326                ret = PTR_ERR(root);
2327                goto out;
2328        }
2329        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2330        fs_info->csum_root = root;
2331
2332        /*
2333         * This tree can share blocks with some other fs tree during relocation
2334         * and we need a proper setup by btrfs_get_fs_root
2335         */
2336        root = btrfs_get_fs_root(tree_root->fs_info,
2337                                 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2338        if (IS_ERR(root)) {
2339                ret = PTR_ERR(root);
2340                goto out;
2341        }
2342        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343        fs_info->data_reloc_root = root;
2344
2345        location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2346        root = btrfs_read_tree_root(tree_root, &location);
2347        if (!IS_ERR(root)) {
2348                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2349                set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2350                fs_info->quota_root = root;
2351        }
2352
2353        location.objectid = BTRFS_UUID_TREE_OBJECTID;
2354        root = btrfs_read_tree_root(tree_root, &location);
2355        if (IS_ERR(root)) {
2356                ret = PTR_ERR(root);
2357                if (ret != -ENOENT)
2358                        goto out;
2359        } else {
2360                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361                fs_info->uuid_root = root;
2362        }
2363
2364        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2365                location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2366                root = btrfs_read_tree_root(tree_root, &location);
2367                if (IS_ERR(root)) {
2368                        ret = PTR_ERR(root);
2369                        goto out;
2370                }
2371                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2372                fs_info->free_space_root = root;
2373        }
2374
2375        return 0;
2376out:
2377        btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2378                   location.objectid, ret);
2379        return ret;
2380}
2381
2382/*
2383 * Real super block validation
2384 * NOTE: super csum type and incompat features will not be checked here.
2385 *
2386 * @sb:         super block to check
2387 * @mirror_num: the super block number to check its bytenr:
2388 *              0       the primary (1st) sb
2389 *              1, 2    2nd and 3rd backup copy
2390 *             -1       skip bytenr check
2391 */
2392static int validate_super(struct btrfs_fs_info *fs_info,
2393                            struct btrfs_super_block *sb, int mirror_num)
2394{
2395        u64 nodesize = btrfs_super_nodesize(sb);
2396        u64 sectorsize = btrfs_super_sectorsize(sb);
2397        int ret = 0;
2398
2399        if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2400                btrfs_err(fs_info, "no valid FS found");
2401                ret = -EINVAL;
2402        }
2403        if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2404                btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2405                                btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2406                ret = -EINVAL;
2407        }
2408        if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2409                btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2410                                btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2411                ret = -EINVAL;
2412        }
2413        if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2414                btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2415                                btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2416                ret = -EINVAL;
2417        }
2418        if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419                btrfs_err(fs_info, "log_root level too big: %d >= %d",
2420                                btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2421                ret = -EINVAL;
2422        }
2423
2424        /*
2425         * Check sectorsize and nodesize first, other check will need it.
2426         * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2427         */
2428        if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2429            sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2430                btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2431                ret = -EINVAL;
2432        }
2433        /* Only PAGE SIZE is supported yet */
2434        if (sectorsize != PAGE_SIZE) {
2435                btrfs_err(fs_info,
2436                        "sectorsize %llu not supported yet, only support %lu",
2437                        sectorsize, PAGE_SIZE);
2438                ret = -EINVAL;
2439        }
2440        if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2441            nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2442                btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2443                ret = -EINVAL;
2444        }
2445        if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2446                btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2447                          le32_to_cpu(sb->__unused_leafsize), nodesize);
2448                ret = -EINVAL;
2449        }
2450
2451        /* Root alignment check */
2452        if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2453                btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2454                           btrfs_super_root(sb));
2455                ret = -EINVAL;
2456        }
2457        if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2458                btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2459                           btrfs_super_chunk_root(sb));
2460                ret = -EINVAL;
2461        }
2462        if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2463                btrfs_warn(fs_info, "log_root block unaligned: %llu",
2464                           btrfs_super_log_root(sb));
2465                ret = -EINVAL;
2466        }
2467
2468        if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2469                   BTRFS_FSID_SIZE) != 0) {
2470                btrfs_err(fs_info,
2471                        "dev_item UUID does not match metadata fsid: %pU != %pU",
2472                        fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2473                ret = -EINVAL;
2474        }
2475
2476        /*
2477         * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2478         * done later
2479         */
2480        if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2481                btrfs_err(fs_info, "bytes_used is too small %llu",
2482                          btrfs_super_bytes_used(sb));
2483                ret = -EINVAL;
2484        }
2485        if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2486                btrfs_err(fs_info, "invalid stripesize %u",
2487                          btrfs_super_stripesize(sb));
2488                ret = -EINVAL;
2489        }
2490        if (btrfs_super_num_devices(sb) > (1UL << 31))
2491                btrfs_warn(fs_info, "suspicious number of devices: %llu",
2492                           btrfs_super_num_devices(sb));
2493        if (btrfs_super_num_devices(sb) == 0) {
2494                btrfs_err(fs_info, "number of devices is 0");
2495                ret = -EINVAL;
2496        }
2497
2498        if (mirror_num >= 0 &&
2499            btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2500                btrfs_err(fs_info, "super offset mismatch %llu != %u",
2501                          btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2502                ret = -EINVAL;
2503        }
2504
2505        /*
2506         * Obvious sys_chunk_array corruptions, it must hold at least one key
2507         * and one chunk
2508         */
2509        if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2510                btrfs_err(fs_info, "system chunk array too big %u > %u",
2511                          btrfs_super_sys_array_size(sb),
2512                          BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2513                ret = -EINVAL;
2514        }
2515        if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2516                        + sizeof(struct btrfs_chunk)) {
2517                btrfs_err(fs_info, "system chunk array too small %u < %zu",
2518                          btrfs_super_sys_array_size(sb),
2519                          sizeof(struct btrfs_disk_key)
2520                          + sizeof(struct btrfs_chunk));
2521                ret = -EINVAL;
2522        }
2523
2524        /*
2525         * The generation is a global counter, we'll trust it more than the others
2526         * but it's still possible that it's the one that's wrong.
2527         */
2528        if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2529                btrfs_warn(fs_info,
2530                        "suspicious: generation < chunk_root_generation: %llu < %llu",
2531                        btrfs_super_generation(sb),
2532                        btrfs_super_chunk_root_generation(sb));
2533        if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2534            && btrfs_super_cache_generation(sb) != (u64)-1)
2535                btrfs_warn(fs_info,
2536                        "suspicious: generation < cache_generation: %llu < %llu",
2537                        btrfs_super_generation(sb),
2538                        btrfs_super_cache_generation(sb));
2539
2540        return ret;
2541}
2542
2543/*
2544 * Validation of super block at mount time.
2545 * Some checks already done early at mount time, like csum type and incompat
2546 * flags will be skipped.
2547 */
2548static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2549{
2550        return validate_super(fs_info, fs_info->super_copy, 0);
2551}
2552
2553/*
2554 * Validation of super block at write time.
2555 * Some checks like bytenr check will be skipped as their values will be
2556 * overwritten soon.
2557 * Extra checks like csum type and incompat flags will be done here.
2558 */
2559static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2560                                      struct btrfs_super_block *sb)
2561{
2562        int ret;
2563
2564        ret = validate_super(fs_info, sb, -1);
2565        if (ret < 0)
2566                goto out;
2567        if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2568                ret = -EUCLEAN;
2569                btrfs_err(fs_info, "invalid csum type, has %u want %u",
2570                          btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2571                goto out;
2572        }
2573        if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2574                ret = -EUCLEAN;
2575                btrfs_err(fs_info,
2576                "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2577                          btrfs_super_incompat_flags(sb),
2578                          (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2579                goto out;
2580        }
2581out:
2582        if (ret < 0)
2583                btrfs_err(fs_info,
2584                "super block corruption detected before writing it to disk");
2585        return ret;
2586}
2587
2588static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2589{
2590        int backup_index = find_newest_super_backup(fs_info);
2591        struct btrfs_super_block *sb = fs_info->super_copy;
2592        struct btrfs_root *tree_root = fs_info->tree_root;
2593        bool handle_error = false;
2594        int ret = 0;
2595        int i;
2596
2597        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2598                u64 generation;
2599                int level;
2600
2601                if (handle_error) {
2602                        if (!IS_ERR(tree_root->node))
2603                                free_extent_buffer(tree_root->node);
2604                        tree_root->node = NULL;
2605
2606                        if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2607                                break;
2608
2609                        free_root_pointers(fs_info, 0);
2610
2611                        /*
2612                         * Don't use the log in recovery mode, it won't be
2613                         * valid
2614                         */
2615                        btrfs_set_super_log_root(sb, 0);
2616
2617                        /* We can't trust the free space cache either */
2618                        btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2619
2620                        ret = read_backup_root(fs_info, i);
2621                        backup_index = ret;
2622                        if (ret < 0)
2623                                return ret;
2624                }
2625                generation = btrfs_super_generation(sb);
2626                level = btrfs_super_root_level(sb);
2627                tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2628                                                  generation, level, NULL);
2629                if (IS_ERR(tree_root->node) ||
2630                    !extent_buffer_uptodate(tree_root->node)) {
2631                        handle_error = true;
2632
2633                        if (IS_ERR(tree_root->node)) {
2634                                ret = PTR_ERR(tree_root->node);
2635                                tree_root->node = NULL;
2636                        } else if (!extent_buffer_uptodate(tree_root->node)) {
2637                                ret = -EUCLEAN;
2638                        }
2639
2640                        btrfs_warn(fs_info, "failed to read tree root");
2641                        continue;
2642                }
2643
2644                btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2645                tree_root->commit_root = btrfs_root_node(tree_root);
2646                btrfs_set_root_refs(&tree_root->root_item, 1);
2647
2648                /*
2649                 * No need to hold btrfs_root::objectid_mutex since the fs
2650                 * hasn't been fully initialised and we are the only user
2651                 */
2652                ret = btrfs_find_highest_objectid(tree_root,
2653                                                &tree_root->highest_objectid);
2654                if (ret < 0) {
2655                        handle_error = true;
2656                        continue;
2657                }
2658
2659                ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2660
2661                ret = btrfs_read_roots(fs_info);
2662                if (ret < 0) {
2663                        handle_error = true;
2664                        continue;
2665                }
2666
2667                /* All successful */
2668                fs_info->generation = generation;
2669                fs_info->last_trans_committed = generation;
2670
2671                /* Always begin writing backup roots after the one being used */
2672                if (backup_index < 0) {
2673                        fs_info->backup_root_index = 0;
2674                } else {
2675                        fs_info->backup_root_index = backup_index + 1;
2676                        fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2677                }
2678                break;
2679        }
2680
2681        return ret;
2682}
2683
2684void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2685{
2686        INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2687        INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2688        INIT_LIST_HEAD(&fs_info->trans_list);
2689        INIT_LIST_HEAD(&fs_info->dead_roots);
2690        INIT_LIST_HEAD(&fs_info->delayed_iputs);
2691        INIT_LIST_HEAD(&fs_info->delalloc_roots);
2692        INIT_LIST_HEAD(&fs_info->caching_block_groups);
2693        spin_lock_init(&fs_info->delalloc_root_lock);
2694        spin_lock_init(&fs_info->trans_lock);
2695        spin_lock_init(&fs_info->fs_roots_radix_lock);
2696        spin_lock_init(&fs_info->delayed_iput_lock);
2697        spin_lock_init(&fs_info->defrag_inodes_lock);
2698        spin_lock_init(&fs_info->super_lock);
2699        spin_lock_init(&fs_info->buffer_lock);
2700        spin_lock_init(&fs_info->unused_bgs_lock);
2701        rwlock_init(&fs_info->tree_mod_log_lock);
2702        mutex_init(&fs_info->unused_bg_unpin_mutex);
2703        mutex_init(&fs_info->delete_unused_bgs_mutex);
2704        mutex_init(&fs_info->reloc_mutex);
2705        mutex_init(&fs_info->delalloc_root_mutex);
2706        seqlock_init(&fs_info->profiles_lock);
2707
2708        INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2709        INIT_LIST_HEAD(&fs_info->space_info);
2710        INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2711        INIT_LIST_HEAD(&fs_info->unused_bgs);
2712#ifdef CONFIG_BTRFS_DEBUG
2713        INIT_LIST_HEAD(&fs_info->allocated_roots);
2714        INIT_LIST_HEAD(&fs_info->allocated_ebs);
2715        spin_lock_init(&fs_info->eb_leak_lock);
2716#endif
2717        extent_map_tree_init(&fs_info->mapping_tree);
2718        btrfs_init_block_rsv(&fs_info->global_block_rsv,
2719                             BTRFS_BLOCK_RSV_GLOBAL);
2720        btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2721        btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2722        btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2723        btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2724                             BTRFS_BLOCK_RSV_DELOPS);
2725        btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2726                             BTRFS_BLOCK_RSV_DELREFS);
2727
2728        atomic_set(&fs_info->async_delalloc_pages, 0);
2729        atomic_set(&fs_info->defrag_running, 0);
2730        atomic_set(&fs_info->reada_works_cnt, 0);
2731        atomic_set(&fs_info->nr_delayed_iputs, 0);
2732        atomic64_set(&fs_info->tree_mod_seq, 0);
2733        fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2734        fs_info->metadata_ratio = 0;
2735        fs_info->defrag_inodes = RB_ROOT;
2736        atomic64_set(&fs_info->free_chunk_space, 0);
2737        fs_info->tree_mod_log = RB_ROOT;
2738        fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2739        fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2740        /* readahead state */
2741        INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2742        spin_lock_init(&fs_info->reada_lock);
2743        btrfs_init_ref_verify(fs_info);
2744
2745        fs_info->thread_pool_size = min_t(unsigned long,
2746                                          num_online_cpus() + 2, 8);
2747
2748        INIT_LIST_HEAD(&fs_info->ordered_roots);
2749        spin_lock_init(&fs_info->ordered_root_lock);
2750
2751        btrfs_init_scrub(fs_info);
2752#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2753        fs_info->check_integrity_print_mask = 0;
2754#endif
2755        btrfs_init_balance(fs_info);
2756        btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2757
2758        spin_lock_init(&fs_info->block_group_cache_lock);
2759        fs_info->block_group_cache_tree = RB_ROOT;
2760        fs_info->first_logical_byte = (u64)-1;
2761
2762        extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2763                            IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2764        set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2765
2766        mutex_init(&fs_info->ordered_operations_mutex);
2767        mutex_init(&fs_info->tree_log_mutex);
2768        mutex_init(&fs_info->chunk_mutex);
2769        mutex_init(&fs_info->transaction_kthread_mutex);
2770        mutex_init(&fs_info->cleaner_mutex);
2771        mutex_init(&fs_info->ro_block_group_mutex);
2772        init_rwsem(&fs_info->commit_root_sem);
2773        init_rwsem(&fs_info->cleanup_work_sem);
2774        init_rwsem(&fs_info->subvol_sem);
2775        sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2776
2777        btrfs_init_dev_replace_locks(fs_info);
2778        btrfs_init_qgroup(fs_info);
2779        btrfs_discard_init(fs_info);
2780
2781        btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2782        btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2783
2784        init_waitqueue_head(&fs_info->transaction_throttle);
2785        init_waitqueue_head(&fs_info->transaction_wait);
2786        init_waitqueue_head(&fs_info->transaction_blocked_wait);
2787        init_waitqueue_head(&fs_info->async_submit_wait);
2788        init_waitqueue_head(&fs_info->delayed_iputs_wait);
2789
2790        /* Usable values until the real ones are cached from the superblock */
2791        fs_info->nodesize = 4096;
2792        fs_info->sectorsize = 4096;
2793        fs_info->stripesize = 4096;
2794
2795        spin_lock_init(&fs_info->swapfile_pins_lock);
2796        fs_info->swapfile_pins = RB_ROOT;
2797
2798        fs_info->send_in_progress = 0;
2799}
2800
2801static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2802{
2803        int ret;
2804
2805        fs_info->sb = sb;
2806        sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2807        sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2808
2809        ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2810        if (ret)
2811                return ret;
2812
2813        ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2814        if (ret)
2815                return ret;
2816
2817        fs_info->dirty_metadata_batch = PAGE_SIZE *
2818                                        (1 + ilog2(nr_cpu_ids));
2819
2820        ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2821        if (ret)
2822                return ret;
2823
2824        ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2825                        GFP_KERNEL);
2826        if (ret)
2827                return ret;
2828
2829        fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2830                                        GFP_KERNEL);
2831        if (!fs_info->delayed_root)
2832                return -ENOMEM;
2833        btrfs_init_delayed_root(fs_info->delayed_root);
2834
2835        return btrfs_alloc_stripe_hash_table(fs_info);
2836}
2837
2838static int btrfs_uuid_rescan_kthread(void *data)
2839{
2840        struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2841        int ret;
2842
2843        /*
2844         * 1st step is to iterate through the existing UUID tree and
2845         * to delete all entries that contain outdated data.
2846         * 2nd step is to add all missing entries to the UUID tree.
2847         */
2848        ret = btrfs_uuid_tree_iterate(fs_info);
2849        if (ret < 0) {
2850                if (ret != -EINTR)
2851                        btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2852                                   ret);
2853                up(&fs_info->uuid_tree_rescan_sem);
2854                return ret;
2855        }
2856        return btrfs_uuid_scan_kthread(data);
2857}
2858
2859static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2860{
2861        struct task_struct *task;
2862
2863        down(&fs_info->uuid_tree_rescan_sem);
2864        task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2865        if (IS_ERR(task)) {
2866                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2867                btrfs_warn(fs_info, "failed to start uuid_rescan task");
2868                up(&fs_info->uuid_tree_rescan_sem);
2869                return PTR_ERR(task);
2870        }
2871
2872        return 0;
2873}
2874
2875int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2876                      char *options)
2877{
2878        u32 sectorsize;
2879        u32 nodesize;
2880        u32 stripesize;
2881        u64 generation;
2882        u64 features;
2883        u16 csum_type;
2884        struct btrfs_super_block *disk_super;
2885        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2886        struct btrfs_root *tree_root;
2887        struct btrfs_root *chunk_root;
2888        int ret;
2889        int err = -EINVAL;
2890        int clear_free_space_tree = 0;
2891        int level;
2892
2893        ret = init_mount_fs_info(fs_info, sb);
2894        if (ret) {
2895                err = ret;
2896                goto fail;
2897        }
2898
2899        /* These need to be init'ed before we start creating inodes and such. */
2900        tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2901                                     GFP_KERNEL);
2902        fs_info->tree_root = tree_root;
2903        chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2904                                      GFP_KERNEL);
2905        fs_info->chunk_root = chunk_root;
2906        if (!tree_root || !chunk_root) {
2907                err = -ENOMEM;
2908                goto fail;
2909        }
2910
2911        fs_info->btree_inode = new_inode(sb);
2912        if (!fs_info->btree_inode) {
2913                err = -ENOMEM;
2914                goto fail;
2915        }
2916        mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2917        btrfs_init_btree_inode(fs_info);
2918
2919        invalidate_bdev(fs_devices->latest_bdev);
2920
2921        /*
2922         * Read super block and check the signature bytes only
2923         */
2924        disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2925        if (IS_ERR(disk_super)) {
2926                err = PTR_ERR(disk_super);
2927                goto fail_alloc;
2928        }
2929
2930        /*
2931         * Verify the type first, if that or the the checksum value are
2932         * corrupted, we'll find out
2933         */
2934        csum_type = btrfs_super_csum_type(disk_super);
2935        if (!btrfs_supported_super_csum(csum_type)) {
2936                btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2937                          csum_type);
2938                err = -EINVAL;
2939                btrfs_release_disk_super(disk_super);
2940                goto fail_alloc;
2941        }
2942
2943        ret = btrfs_init_csum_hash(fs_info, csum_type);
2944        if (ret) {
2945                err = ret;
2946                btrfs_release_disk_super(disk_super);
2947                goto fail_alloc;
2948        }
2949
2950        /*
2951         * We want to check superblock checksum, the type is stored inside.
2952         * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2953         */
2954        if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2955                btrfs_err(fs_info, "superblock checksum mismatch");
2956                err = -EINVAL;
2957                btrfs_release_disk_super(disk_super);
2958                goto fail_alloc;
2959        }
2960
2961        /*
2962         * super_copy is zeroed at allocation time and we never touch the
2963         * following bytes up to INFO_SIZE, the checksum is calculated from
2964         * the whole block of INFO_SIZE
2965         */
2966        memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2967        btrfs_release_disk_super(disk_super);
2968
2969        disk_super = fs_info->super_copy;
2970
2971        ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2972                       BTRFS_FSID_SIZE));
2973
2974        if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2975                ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2976                                fs_info->super_copy->metadata_uuid,
2977                                BTRFS_FSID_SIZE));
2978        }
2979
2980        features = btrfs_super_flags(disk_super);
2981        if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2982                features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2983                btrfs_set_super_flags(disk_super, features);
2984                btrfs_info(fs_info,
2985                        "found metadata UUID change in progress flag, clearing");
2986        }
2987
2988        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2989               sizeof(*fs_info->super_for_commit));
2990
2991        ret = btrfs_validate_mount_super(fs_info);
2992        if (ret) {
2993                btrfs_err(fs_info, "superblock contains fatal errors");
2994                err = -EINVAL;
2995                goto fail_alloc;
2996        }
2997
2998        if (!btrfs_super_root(disk_super))
2999                goto fail_alloc;
3000
3001        /* check FS state, whether FS is broken. */
3002        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3003                set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3004
3005        /*
3006         * In the long term, we'll store the compression type in the super
3007         * block, and it'll be used for per file compression control.
3008         */
3009        fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3010
3011        ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3012        if (ret) {
3013                err = ret;
3014                goto fail_alloc;
3015        }
3016
3017        features = btrfs_super_incompat_flags(disk_super) &
3018                ~BTRFS_FEATURE_INCOMPAT_SUPP;
3019        if (features) {
3020                btrfs_err(fs_info,
3021                    "cannot mount because of unsupported optional features (%llx)",
3022                    features);
3023                err = -EINVAL;
3024                goto fail_alloc;
3025        }
3026
3027        features = btrfs_super_incompat_flags(disk_super);
3028        features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3029        if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3030                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3031        else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3032                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3033
3034        if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3035                btrfs_info(fs_info, "has skinny extents");
3036
3037        /*
3038         * flag our filesystem as having big metadata blocks if
3039         * they are bigger than the page size
3040         */
3041        if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3042                if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3043                        btrfs_info(fs_info,
3044                                "flagging fs with big metadata feature");
3045                features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3046        }
3047
3048        nodesize = btrfs_super_nodesize(disk_super);
3049        sectorsize = btrfs_super_sectorsize(disk_super);
3050        stripesize = sectorsize;
3051        fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3052        fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3053
3054        /* Cache block sizes */
3055        fs_info->nodesize = nodesize;
3056        fs_info->sectorsize = sectorsize;
3057        fs_info->stripesize = stripesize;
3058
3059        /*
3060         * mixed block groups end up with duplicate but slightly offset
3061         * extent buffers for the same range.  It leads to corruptions
3062         */
3063        if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3064            (sectorsize != nodesize)) {
3065                btrfs_err(fs_info,
3066"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3067                        nodesize, sectorsize);
3068                goto fail_alloc;
3069        }
3070
3071        /*
3072         * Needn't use the lock because there is no other task which will
3073         * update the flag.
3074         */
3075        btrfs_set_super_incompat_flags(disk_super, features);
3076
3077        features = btrfs_super_compat_ro_flags(disk_super) &
3078                ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3079        if (!sb_rdonly(sb) && features) {
3080                btrfs_err(fs_info,
3081        "cannot mount read-write because of unsupported optional features (%llx)",
3082                       features);
3083                err = -EINVAL;
3084                goto fail_alloc;
3085        }
3086
3087        ret = btrfs_init_workqueues(fs_info, fs_devices);
3088        if (ret) {
3089                err = ret;
3090                goto fail_sb_buffer;
3091        }
3092
3093        sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3094        sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3095        sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3096        sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3097
3098        sb->s_blocksize = sectorsize;
3099        sb->s_blocksize_bits = blksize_bits(sectorsize);
3100        memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3101
3102        mutex_lock(&fs_info->chunk_mutex);
3103        ret = btrfs_read_sys_array(fs_info);
3104        mutex_unlock(&fs_info->chunk_mutex);
3105        if (ret) {
3106                btrfs_err(fs_info, "failed to read the system array: %d", ret);
3107                goto fail_sb_buffer;
3108        }
3109
3110        generation = btrfs_super_chunk_root_generation(disk_super);
3111        level = btrfs_super_chunk_root_level(disk_super);
3112
3113        chunk_root->node = read_tree_block(fs_info,
3114                                           btrfs_super_chunk_root(disk_super),
3115                                           generation, level, NULL);
3116        if (IS_ERR(chunk_root->node) ||
3117            !extent_buffer_uptodate(chunk_root->node)) {
3118                btrfs_err(fs_info, "failed to read chunk root");
3119                if (!IS_ERR(chunk_root->node))
3120                        free_extent_buffer(chunk_root->node);
3121                chunk_root->node = NULL;
3122                goto fail_tree_roots;
3123        }
3124        btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3125        chunk_root->commit_root = btrfs_root_node(chunk_root);
3126
3127        read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3128                           offsetof(struct btrfs_header, chunk_tree_uuid),
3129                           BTRFS_UUID_SIZE);
3130
3131        ret = btrfs_read_chunk_tree(fs_info);
3132        if (ret) {
3133                btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3134                goto fail_tree_roots;
3135        }
3136
3137        /*
3138         * Keep the devid that is marked to be the target device for the
3139         * device replace procedure
3140         */
3141        btrfs_free_extra_devids(fs_devices, 0);
3142
3143        if (!fs_devices->latest_bdev) {
3144                btrfs_err(fs_info, "failed to read devices");
3145                goto fail_tree_roots;
3146        }
3147
3148        ret = init_tree_roots(fs_info);
3149        if (ret)
3150                goto fail_tree_roots;
3151
3152        /*
3153         * If we have a uuid root and we're not being told to rescan we need to
3154         * check the generation here so we can set the
3155         * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3156         * transaction during a balance or the log replay without updating the
3157         * uuid generation, and then if we crash we would rescan the uuid tree,
3158         * even though it was perfectly fine.
3159         */
3160        if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3161            fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3162                set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3163
3164        ret = btrfs_verify_dev_extents(fs_info);
3165        if (ret) {
3166                btrfs_err(fs_info,
3167                          "failed to verify dev extents against chunks: %d",
3168                          ret);
3169                goto fail_block_groups;
3170        }
3171        ret = btrfs_recover_balance(fs_info);
3172        if (ret) {
3173                btrfs_err(fs_info, "failed to recover balance: %d", ret);
3174                goto fail_block_groups;
3175        }
3176
3177        ret = btrfs_init_dev_stats(fs_info);
3178        if (ret) {
3179                btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3180                goto fail_block_groups;
3181        }
3182
3183        ret = btrfs_init_dev_replace(fs_info);
3184        if (ret) {
3185                btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3186                goto fail_block_groups;
3187        }
3188
3189        btrfs_free_extra_devids(fs_devices, 1);
3190
3191        ret = btrfs_sysfs_add_fsid(fs_devices);
3192        if (ret) {
3193                btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3194                                ret);
3195                goto fail_block_groups;
3196        }
3197
3198        ret = btrfs_sysfs_add_mounted(fs_info);
3199        if (ret) {
3200                btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3201                goto fail_fsdev_sysfs;
3202        }
3203
3204        ret = btrfs_init_space_info(fs_info);
3205        if (ret) {
3206                btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3207                goto fail_sysfs;
3208        }
3209
3210        ret = btrfs_read_block_groups(fs_info);
3211        if (ret) {
3212                btrfs_err(fs_info, "failed to read block groups: %d", ret);
3213                goto fail_sysfs;
3214        }
3215
3216        if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3217                btrfs_warn(fs_info,
3218                "writable mount is not allowed due to too many missing devices");
3219                goto fail_sysfs;
3220        }
3221
3222        fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3223                                               "btrfs-cleaner");
3224        if (IS_ERR(fs_info->cleaner_kthread))
3225                goto fail_sysfs;
3226
3227        fs_info->transaction_kthread = kthread_run(transaction_kthread,
3228                                                   tree_root,
3229                                                   "btrfs-transaction");
3230        if (IS_ERR(fs_info->transaction_kthread))
3231                goto fail_cleaner;
3232
3233        if (!btrfs_test_opt(fs_info, NOSSD) &&
3234            !fs_info->fs_devices->rotating) {
3235                btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3236        }
3237
3238        /*
3239         * Mount does not set all options immediately, we can do it now and do
3240         * not have to wait for transaction commit
3241         */
3242        btrfs_apply_pending_changes(fs_info);
3243
3244#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3245        if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3246                ret = btrfsic_mount(fs_info, fs_devices,
3247                                    btrfs_test_opt(fs_info,
3248                                        CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3249                                    1 : 0,
3250                                    fs_info->check_integrity_print_mask);
3251                if (ret)
3252                        btrfs_warn(fs_info,
3253                                "failed to initialize integrity check module: %d",
3254                                ret);
3255        }
3256#endif
3257        ret = btrfs_read_qgroup_config(fs_info);
3258        if (ret)
3259                goto fail_trans_kthread;
3260
3261        if (btrfs_build_ref_tree(fs_info))
3262                btrfs_err(fs_info, "couldn't build ref tree");
3263
3264        /* do not make disk changes in broken FS or nologreplay is given */
3265        if (btrfs_super_log_root(disk_super) != 0 &&
3266            !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3267                btrfs_info(fs_info, "start tree-log replay");
3268                ret = btrfs_replay_log(fs_info, fs_devices);
3269                if (ret) {
3270                        err = ret;
3271                        goto fail_qgroup;
3272                }
3273        }
3274
3275        ret = btrfs_find_orphan_roots(fs_info);
3276        if (ret)
3277                goto fail_qgroup;
3278
3279        if (!sb_rdonly(sb)) {
3280                ret = btrfs_cleanup_fs_roots(fs_info);
3281                if (ret)
3282                        goto fail_qgroup;
3283
3284                mutex_lock(&fs_info->cleaner_mutex);
3285                ret = btrfs_recover_relocation(tree_root);
3286                mutex_unlock(&fs_info->cleaner_mutex);
3287                if (ret < 0) {
3288                        btrfs_warn(fs_info, "failed to recover relocation: %d",
3289                                        ret);
3290                        err = -EINVAL;
3291                        goto fail_qgroup;
3292                }
3293        }
3294
3295        fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3296        if (IS_ERR(fs_info->fs_root)) {
3297                err = PTR_ERR(fs_info->fs_root);
3298                btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3299                fs_info->fs_root = NULL;
3300                goto fail_qgroup;
3301        }
3302
3303        if (sb_rdonly(sb))
3304                return 0;
3305
3306        if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3307            btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3308                clear_free_space_tree = 1;
3309        } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3310                   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3311                btrfs_warn(fs_info, "free space tree is invalid");
3312                clear_free_space_tree = 1;
3313        }
3314
3315        if (clear_free_space_tree) {
3316                btrfs_info(fs_info, "clearing free space tree");
3317                ret = btrfs_clear_free_space_tree(fs_info);
3318                if (ret) {
3319                        btrfs_warn(fs_info,
3320                                   "failed to clear free space tree: %d", ret);
3321                        close_ctree(fs_info);
3322                        return ret;
3323                }
3324        }
3325
3326        if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3327            !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3328                btrfs_info(fs_info, "creating free space tree");
3329                ret = btrfs_create_free_space_tree(fs_info);
3330                if (ret) {
3331                        btrfs_warn(fs_info,
3332                                "failed to create free space tree: %d", ret);
3333                        close_ctree(fs_info);
3334                        return ret;
3335                }
3336        }
3337
3338        down_read(&fs_info->cleanup_work_sem);
3339        if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3340            (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3341                up_read(&fs_info->cleanup_work_sem);
3342                close_ctree(fs_info);
3343                return ret;
3344        }
3345        up_read(&fs_info->cleanup_work_sem);
3346
3347        ret = btrfs_resume_balance_async(fs_info);
3348        if (ret) {
3349                btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3350                close_ctree(fs_info);
3351                return ret;
3352        }
3353
3354        ret = btrfs_resume_dev_replace_async(fs_info);
3355        if (ret) {
3356                btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3357                close_ctree(fs_info);
3358                return ret;
3359        }
3360
3361        btrfs_qgroup_rescan_resume(fs_info);
3362        btrfs_discard_resume(fs_info);
3363
3364        if (!fs_info->uuid_root) {
3365                btrfs_info(fs_info, "creating UUID tree");
3366                ret = btrfs_create_uuid_tree(fs_info);
3367                if (ret) {
3368                        btrfs_warn(fs_info,
3369                                "failed to create the UUID tree: %d", ret);
3370                        close_ctree(fs_info);
3371                        return ret;
3372                }
3373        } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3374                   fs_info->generation !=
3375                                btrfs_super_uuid_tree_generation(disk_super)) {
3376                btrfs_info(fs_info, "checking UUID tree");
3377                ret = btrfs_check_uuid_tree(fs_info);
3378                if (ret) {
3379                        btrfs_warn(fs_info,
3380                                "failed to check the UUID tree: %d", ret);
3381                        close_ctree(fs_info);
3382                        return ret;
3383                }
3384        }
3385        set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3386
3387        /*
3388         * backuproot only affect mount behavior, and if open_ctree succeeded,
3389         * no need to keep the flag
3390         */
3391        btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3392
3393        return 0;
3394
3395fail_qgroup:
3396        btrfs_free_qgroup_config(fs_info);
3397fail_trans_kthread:
3398        kthread_stop(fs_info->transaction_kthread);
3399        btrfs_cleanup_transaction(fs_info);
3400        btrfs_free_fs_roots(fs_info);
3401fail_cleaner:
3402        kthread_stop(fs_info->cleaner_kthread);
3403
3404        /*
3405         * make sure we're done with the btree inode before we stop our
3406         * kthreads
3407         */
3408        filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3409
3410fail_sysfs:
3411        btrfs_sysfs_remove_mounted(fs_info);
3412
3413fail_fsdev_sysfs:
3414        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3415
3416fail_block_groups:
3417        btrfs_put_block_group_cache(fs_info);
3418
3419fail_tree_roots:
3420        if (fs_info->data_reloc_root)
3421                btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3422        free_root_pointers(fs_info, true);
3423        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3424
3425fail_sb_buffer:
3426        btrfs_stop_all_workers(fs_info);
3427        btrfs_free_block_groups(fs_info);
3428fail_alloc:
3429        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3430
3431        iput(fs_info->btree_inode);
3432fail:
3433        btrfs_close_devices(fs_info->fs_devices);
3434        return err;
3435}
3436ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3437
3438static void btrfs_end_super_write(struct bio *bio)
3439{
3440        struct btrfs_device *device = bio->bi_private;
3441        struct bio_vec *bvec;
3442        struct bvec_iter_all iter_all;
3443        struct page *page;
3444
3445        bio_for_each_segment_all(bvec, bio, iter_all) {
3446                page = bvec->bv_page;
3447
3448                if (bio->bi_status) {
3449                        btrfs_warn_rl_in_rcu(device->fs_info,
3450                                "lost page write due to IO error on %s (%d)",
3451                                rcu_str_deref(device->name),
3452                                blk_status_to_errno(bio->bi_status));
3453                        ClearPageUptodate(page);
3454                        SetPageError(page);
3455                        btrfs_dev_stat_inc_and_print(device,
3456                                                     BTRFS_DEV_STAT_WRITE_ERRS);
3457                } else {
3458                        SetPageUptodate(page);
3459                }
3460
3461                put_page(page);
3462                unlock_page(page);
3463        }
3464
3465        bio_put(bio);
3466}
3467
3468struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3469                                                   int copy_num)
3470{
3471        struct btrfs_super_block *super;
3472        struct page *page;
3473        u64 bytenr;
3474        struct address_space *mapping = bdev->bd_inode->i_mapping;
3475
3476        bytenr = btrfs_sb_offset(copy_num);
3477        if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3478                return ERR_PTR(-EINVAL);
3479
3480        page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3481        if (IS_ERR(page))
3482                return ERR_CAST(page);
3483
3484        super = page_address(page);
3485        if (btrfs_super_bytenr(super) != bytenr ||
3486                    btrfs_super_magic(super) != BTRFS_MAGIC) {
3487                btrfs_release_disk_super(super);
3488                return ERR_PTR(-EINVAL);
3489        }
3490
3491        return super;
3492}
3493
3494
3495struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3496{
3497        struct btrfs_super_block *super, *latest = NULL;
3498        int i;
3499        u64 transid = 0;
3500
3501        /* we would like to check all the supers, but that would make
3502         * a btrfs mount succeed after a mkfs from a different FS.
3503         * So, we need to add a special mount option to scan for
3504         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3505         */
3506        for (i = 0; i < 1; i++) {
3507                super = btrfs_read_dev_one_super(bdev, i);
3508                if (IS_ERR(super))
3509                        continue;
3510
3511                if (!latest || btrfs_super_generation(super) > transid) {
3512                        if (latest)
3513                                btrfs_release_disk_super(super);
3514
3515                        latest = super;
3516                        transid = btrfs_super_generation(super);
3517                }
3518        }
3519
3520        return super;
3521}
3522
3523/*
3524 * Write superblock @sb to the @device. Do not wait for completion, all the
3525 * pages we use for writing are locked.
3526 *
3527 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3528 * the expected device size at commit time. Note that max_mirrors must be
3529 * same for write and wait phases.
3530 *
3531 * Return number of errors when page is not found or submission fails.
3532 */
3533static int write_dev_supers(struct btrfs_device *device,
3534                            struct btrfs_super_block *sb, int max_mirrors)
3535{
3536        struct btrfs_fs_info *fs_info = device->fs_info;
3537        struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3538        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3539        int i;
3540        int errors = 0;
3541        u64 bytenr;
3542
3543        if (max_mirrors == 0)
3544                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3545
3546        shash->tfm = fs_info->csum_shash;
3547
3548        for (i = 0; i < max_mirrors; i++) {
3549                struct page *page;
3550                struct bio *bio;
3551                struct btrfs_super_block *disk_super;
3552
3553                bytenr = btrfs_sb_offset(i);
3554                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3555                    device->commit_total_bytes)
3556                        break;
3557
3558                btrfs_set_super_bytenr(sb, bytenr);
3559
3560                crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3561                                    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3562                                    sb->csum);
3563
3564                page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3565                                           GFP_NOFS);
3566                if (!page) {
3567                        btrfs_err(device->fs_info,
3568                            "couldn't get super block page for bytenr %llu",
3569                            bytenr);
3570                        errors++;
3571                        continue;
3572                }
3573
3574                /* Bump the refcount for wait_dev_supers() */
3575                get_page(page);
3576
3577                disk_super = page_address(page);
3578                memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3579
3580                /*
3581                 * Directly use bios here instead of relying on the page cache
3582                 * to do I/O, so we don't lose the ability to do integrity
3583                 * checking.
3584                 */
3585                bio = bio_alloc(GFP_NOFS, 1);
3586                bio_set_dev(bio, device->bdev);
3587                bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3588                bio->bi_private = device;
3589                bio->bi_end_io = btrfs_end_super_write;
3590                __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3591                               offset_in_page(bytenr));
3592
3593                /*
3594                 * We FUA only the first super block.  The others we allow to
3595                 * go down lazy and there's a short window where the on-disk
3596                 * copies might still contain the older version.
3597                 */
3598                bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3599                if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3600                        bio->bi_opf |= REQ_FUA;
3601
3602                btrfsic_submit_bio(bio);
3603        }
3604        return errors < i ? 0 : -1;
3605}
3606
3607/*
3608 * Wait for write completion of superblocks done by write_dev_supers,
3609 * @max_mirrors same for write and wait phases.
3610 *
3611 * Return number of errors when page is not found or not marked up to
3612 * date.
3613 */
3614static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3615{
3616        int i;
3617        int errors = 0;
3618        bool primary_failed = false;
3619        u64 bytenr;
3620
3621        if (max_mirrors == 0)
3622                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3623
3624        for (i = 0; i < max_mirrors; i++) {
3625                struct page *page;
3626
3627                bytenr = btrfs_sb_offset(i);
3628                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3629                    device->commit_total_bytes)
3630                        break;
3631
3632                page = find_get_page(device->bdev->bd_inode->i_mapping,
3633                                     bytenr >> PAGE_SHIFT);
3634                if (!page) {
3635                        errors++;
3636                        if (i == 0)
3637                                primary_failed = true;
3638                        continue;
3639                }
3640                /* Page is submitted locked and unlocked once the IO completes */
3641                wait_on_page_locked(page);
3642                if (PageError(page)) {
3643                        errors++;
3644                        if (i == 0)
3645                                primary_failed = true;
3646                }
3647
3648                /* Drop our reference */
3649                put_page(page);
3650
3651                /* Drop the reference from the writing run */
3652                put_page(page);
3653        }
3654
3655        /* log error, force error return */
3656        if (primary_failed) {
3657                btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3658                          device->devid);
3659                return -1;
3660        }
3661
3662        return errors < i ? 0 : -1;
3663}
3664
3665/*
3666 * endio for the write_dev_flush, this will wake anyone waiting
3667 * for the barrier when it is done
3668 */
3669static void btrfs_end_empty_barrier(struct bio *bio)
3670{
3671        complete(bio->bi_private);
3672}
3673
3674/*
3675 * Submit a flush request to the device if it supports it. Error handling is
3676 * done in the waiting counterpart.
3677 */
3678static void write_dev_flush(struct btrfs_device *device)
3679{
3680        struct request_queue *q = bdev_get_queue(device->bdev);
3681        struct bio *bio = device->flush_bio;
3682
3683        if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3684                return;
3685
3686        bio_reset(bio);
3687        bio->bi_end_io = btrfs_end_empty_barrier;
3688        bio_set_dev(bio, device->bdev);
3689        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3690        init_completion(&device->flush_wait);
3691        bio->bi_private = &device->flush_wait;
3692
3693        btrfsic_submit_bio(bio);
3694        set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3695}
3696
3697/*
3698 * If the flush bio has been submitted by write_dev_flush, wait for it.
3699 */
3700static blk_status_t wait_dev_flush(struct btrfs_device *device)
3701{
3702        struct bio *bio = device->flush_bio;
3703
3704        if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3705                return BLK_STS_OK;
3706
3707        clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3708        wait_for_completion_io(&device->flush_wait);
3709
3710        return bio->bi_status;
3711}
3712
3713static int check_barrier_error(struct btrfs_fs_info *fs_info)
3714{
3715        if (!btrfs_check_rw_degradable(fs_info, NULL))
3716                return -EIO;
3717        return 0;
3718}
3719
3720/*
3721 * send an empty flush down to each device in parallel,
3722 * then wait for them
3723 */
3724static int barrier_all_devices(struct btrfs_fs_info *info)
3725{
3726        struct list_head *head;
3727        struct btrfs_device *dev;
3728        int errors_wait = 0;
3729        blk_status_t ret;
3730
3731        lockdep_assert_held(&info->fs_devices->device_list_mutex);
3732        /* send down all the barriers */
3733        head = &info->fs_devices->devices;
3734        list_for_each_entry(dev, head, dev_list) {
3735                if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3736                        continue;
3737                if (!dev->bdev)
3738                        continue;
3739                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3740                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3741                        continue;
3742
3743                write_dev_flush(dev);
3744                dev->last_flush_error = BLK_STS_OK;
3745        }
3746
3747        /* wait for all the barriers */
3748        list_for_each_entry(dev, head, dev_list) {
3749                if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3750                        continue;
3751                if (!dev->bdev) {
3752                        errors_wait++;
3753                        continue;
3754                }
3755                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3756                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3757                        continue;
3758
3759                ret = wait_dev_flush(dev);
3760                if (ret) {
3761                        dev->last_flush_error = ret;
3762                        btrfs_dev_stat_inc_and_print(dev,
3763                                        BTRFS_DEV_STAT_FLUSH_ERRS);
3764                        errors_wait++;
3765                }
3766        }
3767
3768        if (errors_wait) {
3769                /*
3770                 * At some point we need the status of all disks
3771                 * to arrive at the volume status. So error checking
3772                 * is being pushed to a separate loop.
3773                 */
3774                return check_barrier_error(info);
3775        }
3776        return 0;
3777}
3778
3779int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3780{
3781        int raid_type;
3782        int min_tolerated = INT_MAX;
3783
3784        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3785            (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3786                min_tolerated = min_t(int, min_tolerated,
3787                                    btrfs_raid_array[BTRFS_RAID_SINGLE].
3788                                    tolerated_failures);
3789
3790        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3791                if (raid_type == BTRFS_RAID_SINGLE)
3792                        continue;
3793                if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3794                        continue;
3795                min_tolerated = min_t(int, min_tolerated,
3796                                    btrfs_raid_array[raid_type].
3797                                    tolerated_failures);
3798        }
3799
3800        if (min_tolerated == INT_MAX) {
3801                pr_warn("BTRFS: unknown raid flag: %llu", flags);
3802                min_tolerated = 0;
3803        }
3804
3805        return min_tolerated;
3806}
3807
3808int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3809{
3810        struct list_head *head;
3811        struct btrfs_device *dev;
3812        struct btrfs_super_block *sb;
3813        struct btrfs_dev_item *dev_item;
3814        int ret;
3815        int do_barriers;
3816        int max_errors;
3817        int total_errors = 0;
3818        u64 flags;
3819
3820        do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3821
3822        /*
3823         * max_mirrors == 0 indicates we're from commit_transaction,
3824         * not from fsync where the tree roots in fs_info have not
3825         * been consistent on disk.
3826         */
3827        if (max_mirrors == 0)
3828                backup_super_roots(fs_info);
3829
3830        sb = fs_info->super_for_commit;
3831        dev_item = &sb->dev_item;
3832
3833        mutex_lock(&fs_info->fs_devices->device_list_mutex);
3834        head = &fs_info->fs_devices->devices;
3835        max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3836
3837        if (do_barriers) {
3838                ret = barrier_all_devices(fs_info);
3839                if (ret) {
3840                        mutex_unlock(
3841                                &fs_info->fs_devices->device_list_mutex);
3842                        btrfs_handle_fs_error(fs_info, ret,
3843                                              "errors while submitting device barriers.");
3844                        return ret;
3845                }
3846        }
3847
3848        list_for_each_entry(dev, head, dev_list) {
3849                if (!dev->bdev) {
3850                        total_errors++;
3851                        continue;
3852                }
3853                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3854                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3855                        continue;
3856
3857                btrfs_set_stack_device_generation(dev_item, 0);
3858                btrfs_set_stack_device_type(dev_item, dev->type);
3859                btrfs_set_stack_device_id(dev_item, dev->devid);
3860                btrfs_set_stack_device_total_bytes(dev_item,
3861                                                   dev->commit_total_bytes);
3862                btrfs_set_stack_device_bytes_used(dev_item,
3863                                                  dev->commit_bytes_used);
3864                btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3865                btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3866                btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3867                memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3868                memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3869                       BTRFS_FSID_SIZE);
3870
3871                flags = btrfs_super_flags(sb);
3872                btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3873
3874                ret = btrfs_validate_write_super(fs_info, sb);
3875                if (ret < 0) {
3876                        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3877                        btrfs_handle_fs_error(fs_info, -EUCLEAN,
3878                                "unexpected superblock corruption detected");
3879                        return -EUCLEAN;
3880                }
3881
3882                ret = write_dev_supers(dev, sb, max_mirrors);
3883                if (ret)
3884                        total_errors++;
3885        }
3886        if (total_errors > max_errors) {
3887                btrfs_err(fs_info, "%d errors while writing supers",
3888                          total_errors);
3889                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890
3891                /* FUA is masked off if unsupported and can't be the reason */
3892                btrfs_handle_fs_error(fs_info, -EIO,
3893                                      "%d errors while writing supers",
3894                                      total_errors);
3895                return -EIO;
3896        }
3897
3898        total_errors = 0;
3899        list_for_each_entry(dev, head, dev_list) {
3900                if (!dev->bdev)
3901                        continue;
3902                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3903                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3904                        continue;
3905
3906                ret = wait_dev_supers(dev, max_mirrors);
3907                if (ret)
3908                        total_errors++;
3909        }
3910        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3911        if (total_errors > max_errors) {
3912                btrfs_handle_fs_error(fs_info, -EIO,
3913                                      "%d errors while writing supers",
3914                                      total_errors);
3915                return -EIO;
3916        }
3917        return 0;
3918}
3919
3920/* Drop a fs root from the radix tree and free it. */
3921void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3922                                  struct btrfs_root *root)
3923{
3924        bool drop_ref = false;
3925
3926        spin_lock(&fs_info->fs_roots_radix_lock);
3927        radix_tree_delete(&fs_info->fs_roots_radix,
3928                          (unsigned long)root->root_key.objectid);
3929        if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3930                drop_ref = true;
3931        spin_unlock(&fs_info->fs_roots_radix_lock);
3932
3933        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3934                ASSERT(root->log_root == NULL);
3935                if (root->reloc_root) {
3936                        btrfs_put_root(root->reloc_root);
3937                        root->reloc_root = NULL;
3938                }
3939        }
3940
3941        if (root->free_ino_pinned)
3942                __btrfs_remove_free_space_cache(root->free_ino_pinned);
3943        if (root->free_ino_ctl)
3944                __btrfs_remove_free_space_cache(root->free_ino_ctl);
3945        if (root->ino_cache_inode) {
3946                iput(root->ino_cache_inode);
3947                root->ino_cache_inode = NULL;
3948        }
3949        if (drop_ref)
3950                btrfs_put_root(root);
3951}
3952
3953int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3954{
3955        u64 root_objectid = 0;
3956        struct btrfs_root *gang[8];
3957        int i = 0;
3958        int err = 0;
3959        unsigned int ret = 0;
3960
3961        while (1) {
3962                spin_lock(&fs_info->fs_roots_radix_lock);
3963                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3964                                             (void **)gang, root_objectid,
3965                                             ARRAY_SIZE(gang));
3966                if (!ret) {
3967                        spin_unlock(&fs_info->fs_roots_radix_lock);
3968                        break;
3969                }
3970                root_objectid = gang[ret - 1]->root_key.objectid + 1;
3971
3972                for (i = 0; i < ret; i++) {
3973                        /* Avoid to grab roots in dead_roots */
3974                        if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3975                                gang[i] = NULL;
3976                                continue;
3977                        }
3978                        /* grab all the search result for later use */
3979                        gang[i] = btrfs_grab_root(gang[i]);
3980                }
3981                spin_unlock(&fs_info->fs_roots_radix_lock);
3982
3983                for (i = 0; i < ret; i++) {
3984                        if (!gang[i])
3985                                continue;
3986                        root_objectid = gang[i]->root_key.objectid;
3987                        err = btrfs_orphan_cleanup(gang[i]);
3988                        if (err)
3989                                break;
3990                        btrfs_put_root(gang[i]);
3991                }
3992                root_objectid++;
3993        }
3994
3995        /* release the uncleaned roots due to error */
3996        for (; i < ret; i++) {
3997                if (gang[i])
3998                        btrfs_put_root(gang[i]);
3999        }
4000        return err;
4001}
4002
4003int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4004{
4005        struct btrfs_root *root = fs_info->tree_root;
4006        struct btrfs_trans_handle *trans;
4007
4008        mutex_lock(&fs_info->cleaner_mutex);
4009        btrfs_run_delayed_iputs(fs_info);
4010        mutex_unlock(&fs_info->cleaner_mutex);
4011        wake_up_process(fs_info->cleaner_kthread);
4012
4013        /* wait until ongoing cleanup work done */
4014        down_write(&fs_info->cleanup_work_sem);
4015        up_write(&fs_info->cleanup_work_sem);
4016
4017        trans = btrfs_join_transaction(root);
4018        if (IS_ERR(trans))
4019                return PTR_ERR(trans);
4020        return btrfs_commit_transaction(trans);
4021}
4022
4023void __cold close_ctree(struct btrfs_fs_info *fs_info)
4024{
4025        int ret;
4026
4027        set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4028        /*
4029         * We don't want the cleaner to start new transactions, add more delayed
4030         * iputs, etc. while we're closing. We can't use kthread_stop() yet
4031         * because that frees the task_struct, and the transaction kthread might
4032         * still try to wake up the cleaner.
4033         */
4034        kthread_park(fs_info->cleaner_kthread);
4035
4036        /* wait for the qgroup rescan worker to stop */
4037        btrfs_qgroup_wait_for_completion(fs_info, false);
4038
4039        /* wait for the uuid_scan task to finish */
4040        down(&fs_info->uuid_tree_rescan_sem);
4041        /* avoid complains from lockdep et al., set sem back to initial state */
4042        up(&fs_info->uuid_tree_rescan_sem);
4043
4044        /* pause restriper - we want to resume on mount */
4045        btrfs_pause_balance(fs_info);
4046
4047        btrfs_dev_replace_suspend_for_unmount(fs_info);
4048
4049        btrfs_scrub_cancel(fs_info);
4050
4051        /* wait for any defraggers to finish */
4052        wait_event(fs_info->transaction_wait,
4053                   (atomic_read(&fs_info->defrag_running) == 0));
4054
4055        /* clear out the rbtree of defraggable inodes */
4056        btrfs_cleanup_defrag_inodes(fs_info);
4057
4058        cancel_work_sync(&fs_info->async_reclaim_work);
4059
4060        /* Cancel or finish ongoing discard work */
4061        btrfs_discard_cleanup(fs_info);
4062
4063        if (!sb_rdonly(fs_info->sb)) {
4064                /*
4065                 * The cleaner kthread is stopped, so do one final pass over
4066                 * unused block groups.
4067                 */
4068                btrfs_delete_unused_bgs(fs_info);
4069
4070                /*
4071                 * There might be existing delayed inode workers still running
4072                 * and holding an empty delayed inode item. We must wait for
4073                 * them to complete first because they can create a transaction.
4074                 * This happens when someone calls btrfs_balance_delayed_items()
4075                 * and then a transaction commit runs the same delayed nodes
4076                 * before any delayed worker has done something with the nodes.
4077                 * We must wait for any worker here and not at transaction
4078                 * commit time since that could cause a deadlock.
4079                 * This is a very rare case.
4080                 */
4081                btrfs_flush_workqueue(fs_info->delayed_workers);
4082
4083                ret = btrfs_commit_super(fs_info);
4084                if (ret)
4085                        btrfs_err(fs_info, "commit super ret %d", ret);
4086        }
4087
4088        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4089            test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4090                btrfs_error_commit_super(fs_info);
4091
4092        kthread_stop(fs_info->transaction_kthread);
4093        kthread_stop(fs_info->cleaner_kthread);
4094
4095        ASSERT(list_empty(&fs_info->delayed_iputs));
4096        set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4097
4098        if (btrfs_check_quota_leak(fs_info)) {
4099                WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4100                btrfs_err(fs_info, "qgroup reserved space leaked");
4101        }
4102
4103        btrfs_free_qgroup_config(fs_info);
4104        ASSERT(list_empty(&fs_info->delalloc_roots));
4105
4106        if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4107                btrfs_info(fs_info, "at unmount delalloc count %lld",
4108                       percpu_counter_sum(&fs_info->delalloc_bytes));
4109        }
4110
4111        if (percpu_counter_sum(&fs_info->dio_bytes))
4112                btrfs_info(fs_info, "at unmount dio bytes count %lld",
4113                           percpu_counter_sum(&fs_info->dio_bytes));
4114
4115        btrfs_sysfs_remove_mounted(fs_info);
4116        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4117
4118        btrfs_put_block_group_cache(fs_info);
4119
4120        /*
4121         * we must make sure there is not any read request to
4122         * submit after we stopping all workers.
4123         */
4124        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4125        btrfs_stop_all_workers(fs_info);
4126
4127        clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4128        free_root_pointers(fs_info, true);
4129        btrfs_free_fs_roots(fs_info);
4130
4131        /*
4132         * We must free the block groups after dropping the fs_roots as we could
4133         * have had an IO error and have left over tree log blocks that aren't
4134         * cleaned up until the fs roots are freed.  This makes the block group
4135         * accounting appear to be wrong because there's pending reserved bytes,
4136         * so make sure we do the block group cleanup afterwards.
4137         */
4138        btrfs_free_block_groups(fs_info);
4139
4140        iput(fs_info->btree_inode);
4141
4142#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4143        if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4144                btrfsic_unmount(fs_info->fs_devices);
4145#endif
4146
4147        btrfs_mapping_tree_free(&fs_info->mapping_tree);
4148        btrfs_close_devices(fs_info->fs_devices);
4149}
4150
4151int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4152                          int atomic)
4153{
4154        int ret;
4155        struct inode *btree_inode = buf->pages[0]->mapping->host;
4156
4157        ret = extent_buffer_uptodate(buf);
4158        if (!ret)
4159                return ret;
4160
4161        ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4162                                    parent_transid, atomic);
4163        if (ret == -EAGAIN)
4164                return ret;
4165        return !ret;
4166}
4167
4168void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4169{
4170        struct btrfs_fs_info *fs_info;
4171        struct btrfs_root *root;
4172        u64 transid = btrfs_header_generation(buf);
4173        int was_dirty;
4174
4175#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4176        /*
4177         * This is a fast path so only do this check if we have sanity tests
4178         * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4179         * outside of the sanity tests.
4180         */
4181        if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4182                return;
4183#endif
4184        root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4185        fs_info = root->fs_info;
4186        btrfs_assert_tree_locked(buf);
4187        if (transid != fs_info->generation)
4188                WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4189                        buf->start, transid, fs_info->generation);
4190        was_dirty = set_extent_buffer_dirty(buf);
4191        if (!was_dirty)
4192                percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4193                                         buf->len,
4194                                         fs_info->dirty_metadata_batch);
4195#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4196        /*
4197         * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4198         * but item data not updated.
4199         * So here we should only check item pointers, not item data.
4200         */
4201        if (btrfs_header_level(buf) == 0 &&
4202            btrfs_check_leaf_relaxed(buf)) {
4203                btrfs_print_leaf(buf);
4204                ASSERT(0);
4205        }
4206#endif
4207}
4208
4209static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4210                                        int flush_delayed)
4211{
4212        /*
4213         * looks as though older kernels can get into trouble with
4214         * this code, they end up stuck in balance_dirty_pages forever
4215         */
4216        int ret;
4217
4218        if (current->flags & PF_MEMALLOC)
4219                return;
4220
4221        if (flush_delayed)
4222                btrfs_balance_delayed_items(fs_info);
4223
4224        ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4225                                     BTRFS_DIRTY_METADATA_THRESH,
4226                                     fs_info->dirty_metadata_batch);
4227        if (ret > 0) {
4228                balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4229        }
4230}
4231
4232void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4233{
4234        __btrfs_btree_balance_dirty(fs_info, 1);
4235}
4236
4237void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4238{
4239        __btrfs_btree_balance_dirty(fs_info, 0);
4240}
4241
4242int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4243                      struct btrfs_key *first_key)
4244{
4245        return btree_read_extent_buffer_pages(buf, parent_transid,
4246                                              level, first_key);
4247}
4248
4249static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4250{
4251        /* cleanup FS via transaction */
4252        btrfs_cleanup_transaction(fs_info);
4253
4254        mutex_lock(&fs_info->cleaner_mutex);
4255        btrfs_run_delayed_iputs(fs_info);
4256        mutex_unlock(&fs_info->cleaner_mutex);
4257
4258        down_write(&fs_info->cleanup_work_sem);
4259        up_write(&fs_info->cleanup_work_sem);
4260}
4261
4262static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4263{
4264        struct btrfs_root *gang[8];
4265        u64 root_objectid = 0;
4266        int ret;
4267
4268        spin_lock(&fs_info->fs_roots_radix_lock);
4269        while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4270                                             (void **)gang, root_objectid,
4271                                             ARRAY_SIZE(gang))) != 0) {
4272                int i;
4273
4274                for (i = 0; i < ret; i++)
4275                        gang[i] = btrfs_grab_root(gang[i]);
4276                spin_unlock(&fs_info->fs_roots_radix_lock);
4277
4278                for (i = 0; i < ret; i++) {
4279                        if (!gang[i])
4280                                continue;
4281                        root_objectid = gang[i]->root_key.objectid;
4282                        btrfs_free_log(NULL, gang[i]);
4283                        btrfs_put_root(gang[i]);
4284                }
4285                root_objectid++;
4286                spin_lock(&fs_info->fs_roots_radix_lock);
4287        }
4288        spin_unlock(&fs_info->fs_roots_radix_lock);
4289        btrfs_free_log_root_tree(NULL, fs_info);
4290}
4291
4292static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4293{
4294        struct btrfs_ordered_extent *ordered;
4295
4296        spin_lock(&root->ordered_extent_lock);
4297        /*
4298         * This will just short circuit the ordered completion stuff which will
4299         * make sure the ordered extent gets properly cleaned up.
4300         */
4301        list_for_each_entry(ordered, &root->ordered_extents,
4302                            root_extent_list)
4303                set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4304        spin_unlock(&root->ordered_extent_lock);
4305}
4306
4307static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4308{
4309        struct btrfs_root *root;
4310        struct list_head splice;
4311
4312        INIT_LIST_HEAD(&splice);
4313
4314        spin_lock(&fs_info->ordered_root_lock);
4315        list_splice_init(&fs_info->ordered_roots, &splice);
4316        while (!list_empty(&splice)) {
4317                root = list_first_entry(&splice, struct btrfs_root,
4318                                        ordered_root);
4319                list_move_tail(&root->ordered_root,
4320                               &fs_info->ordered_roots);
4321
4322                spin_unlock(&fs_info->ordered_root_lock);
4323                btrfs_destroy_ordered_extents(root);
4324
4325                cond_resched();
4326                spin_lock(&fs_info->ordered_root_lock);
4327        }
4328        spin_unlock(&fs_info->ordered_root_lock);
4329
4330        /*
4331         * We need this here because if we've been flipped read-only we won't
4332         * get sync() from the umount, so we need to make sure any ordered
4333         * extents that haven't had their dirty pages IO start writeout yet
4334         * actually get run and error out properly.
4335         */
4336        btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4337}
4338
4339static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4340                                      struct btrfs_fs_info *fs_info)
4341{
4342        struct rb_node *node;
4343        struct btrfs_delayed_ref_root *delayed_refs;
4344        struct btrfs_delayed_ref_node *ref;
4345        int ret = 0;
4346
4347        delayed_refs = &trans->delayed_refs;
4348
4349        spin_lock(&delayed_refs->lock);
4350        if (atomic_read(&delayed_refs->num_entries) == 0) {
4351                spin_unlock(&delayed_refs->lock);
4352                btrfs_debug(fs_info, "delayed_refs has NO entry");
4353                return ret;
4354        }
4355
4356        while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4357                struct btrfs_delayed_ref_head *head;
4358                struct rb_node *n;
4359                bool pin_bytes = false;
4360
4361                head = rb_entry(node, struct btrfs_delayed_ref_head,
4362                                href_node);
4363                if (btrfs_delayed_ref_lock(delayed_refs, head))
4364                        continue;
4365
4366                spin_lock(&head->lock);
4367                while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4368                        ref = rb_entry(n, struct btrfs_delayed_ref_node,
4369                                       ref_node);
4370                        ref->in_tree = 0;
4371                        rb_erase_cached(&ref->ref_node, &head->ref_tree);
4372                        RB_CLEAR_NODE(&ref->ref_node);
4373                        if (!list_empty(&ref->add_list))
4374                                list_del(&ref->add_list);
4375                        atomic_dec(&delayed_refs->num_entries);
4376                        btrfs_put_delayed_ref(ref);
4377                }
4378                if (head->must_insert_reserved)
4379                        pin_bytes = true;
4380                btrfs_free_delayed_extent_op(head->extent_op);
4381                btrfs_delete_ref_head(delayed_refs, head);
4382                spin_unlock(&head->lock);
4383                spin_unlock(&delayed_refs->lock);
4384                mutex_unlock(&head->mutex);
4385
4386                if (pin_bytes) {
4387                        struct btrfs_block_group *cache;
4388
4389                        cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4390                        BUG_ON(!cache);
4391
4392                        spin_lock(&cache->space_info->lock);
4393                        spin_lock(&cache->lock);
4394                        cache->pinned += head->num_bytes;
4395                        btrfs_space_info_update_bytes_pinned(fs_info,
4396                                cache->space_info, head->num_bytes);
4397                        cache->reserved -= head->num_bytes;
4398                        cache->space_info->bytes_reserved -= head->num_bytes;
4399                        spin_unlock(&cache->lock);
4400                        spin_unlock(&cache->space_info->lock);
4401                        percpu_counter_add_batch(
4402                                &cache->space_info->total_bytes_pinned,
4403                                head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4404
4405                        btrfs_put_block_group(cache);
4406
4407                        btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4408                                head->bytenr + head->num_bytes - 1);
4409                }
4410                btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4411                btrfs_put_delayed_ref_head(head);
4412                cond_resched();
4413                spin_lock(&delayed_refs->lock);
4414        }
4415        btrfs_qgroup_destroy_extent_records(trans);
4416
4417        spin_unlock(&delayed_refs->lock);
4418
4419        return ret;
4420}
4421
4422static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4423{
4424        struct btrfs_inode *btrfs_inode;
4425        struct list_head splice;
4426
4427        INIT_LIST_HEAD(&splice);
4428
4429        spin_lock(&root->delalloc_lock);
4430        list_splice_init(&root->delalloc_inodes, &splice);
4431
4432        while (!list_empty(&splice)) {
4433                struct inode *inode = NULL;
4434                btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4435                                               delalloc_inodes);
4436                __btrfs_del_delalloc_inode(root, btrfs_inode);
4437                spin_unlock(&root->delalloc_lock);
4438
4439                /*
4440                 * Make sure we get a live inode and that it'll not disappear
4441                 * meanwhile.
4442                 */
4443                inode = igrab(&btrfs_inode->vfs_inode);
4444                if (inode) {
4445                        invalidate_inode_pages2(inode->i_mapping);
4446                        iput(inode);
4447                }
4448                spin_lock(&root->delalloc_lock);
4449        }
4450        spin_unlock(&root->delalloc_lock);
4451}
4452
4453static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4454{
4455        struct btrfs_root *root;
4456        struct list_head splice;
4457
4458        INIT_LIST_HEAD(&splice);
4459
4460        spin_lock(&fs_info->delalloc_root_lock);
4461        list_splice_init(&fs_info->delalloc_roots, &splice);
4462        while (!list_empty(&splice)) {
4463                root = list_first_entry(&splice, struct btrfs_root,
4464                                         delalloc_root);
4465                root = btrfs_grab_root(root);
4466                BUG_ON(!root);
4467                spin_unlock(&fs_info->delalloc_root_lock);
4468
4469                btrfs_destroy_delalloc_inodes(root);
4470                btrfs_put_root(root);
4471
4472                spin_lock(&fs_info->delalloc_root_lock);
4473        }
4474        spin_unlock(&fs_info->delalloc_root_lock);
4475}
4476
4477static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4478                                        struct extent_io_tree *dirty_pages,
4479                                        int mark)
4480{
4481        int ret;
4482        struct extent_buffer *eb;
4483        u64 start = 0;
4484        u64 end;
4485
4486        while (1) {
4487                ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4488                                            mark, NULL);
4489                if (ret)
4490                        break;
4491
4492                clear_extent_bits(dirty_pages, start, end, mark);
4493                while (start <= end) {
4494                        eb = find_extent_buffer(fs_info, start);
4495                        start += fs_info->nodesize;
4496                        if (!eb)
4497                                continue;
4498                        wait_on_extent_buffer_writeback(eb);
4499
4500                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4501                                               &eb->bflags))
4502                                clear_extent_buffer_dirty(eb);
4503                        free_extent_buffer_stale(eb);
4504                }
4505        }
4506
4507        return ret;
4508}
4509
4510static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4511                                       struct extent_io_tree *unpin)
4512{
4513        u64 start;
4514        u64 end;
4515        int ret;
4516
4517        while (1) {
4518                struct extent_state *cached_state = NULL;
4519
4520                /*
4521                 * The btrfs_finish_extent_commit() may get the same range as
4522                 * ours between find_first_extent_bit and clear_extent_dirty.
4523                 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4524                 * the same extent range.
4525                 */
4526                mutex_lock(&fs_info->unused_bg_unpin_mutex);
4527                ret = find_first_extent_bit(unpin, 0, &start, &end,
4528                                            EXTENT_DIRTY, &cached_state);
4529                if (ret) {
4530                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4531                        break;
4532                }
4533
4534                clear_extent_dirty(unpin, start, end, &cached_state);
4535                free_extent_state(cached_state);
4536                btrfs_error_unpin_extent_range(fs_info, start, end);
4537                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4538                cond_resched();
4539        }
4540
4541        return 0;
4542}
4543
4544static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4545{
4546        struct inode *inode;
4547
4548        inode = cache->io_ctl.inode;
4549        if (inode) {
4550                invalidate_inode_pages2(inode->i_mapping);
4551                BTRFS_I(inode)->generation = 0;
4552                cache->io_ctl.inode = NULL;
4553                iput(inode);
4554        }
4555        ASSERT(cache->io_ctl.pages == NULL);
4556        btrfs_put_block_group(cache);
4557}
4558
4559void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4560                             struct btrfs_fs_info *fs_info)
4561{
4562        struct btrfs_block_group *cache;
4563
4564        spin_lock(&cur_trans->dirty_bgs_lock);
4565        while (!list_empty(&cur_trans->dirty_bgs)) {
4566                cache = list_first_entry(&cur_trans->dirty_bgs,
4567                                         struct btrfs_block_group,
4568                                         dirty_list);
4569
4570                if (!list_empty(&cache->io_list)) {
4571                        spin_unlock(&cur_trans->dirty_bgs_lock);
4572                        list_del_init(&cache->io_list);
4573                        btrfs_cleanup_bg_io(cache);
4574                        spin_lock(&cur_trans->dirty_bgs_lock);
4575                }
4576
4577                list_del_init(&cache->dirty_list);
4578                spin_lock(&cache->lock);
4579                cache->disk_cache_state = BTRFS_DC_ERROR;
4580                spin_unlock(&cache->lock);
4581
4582                spin_unlock(&cur_trans->dirty_bgs_lock);
4583                btrfs_put_block_group(cache);
4584                btrfs_delayed_refs_rsv_release(fs_info, 1);
4585                spin_lock(&cur_trans->dirty_bgs_lock);
4586        }
4587        spin_unlock(&cur_trans->dirty_bgs_lock);
4588
4589        /*
4590         * Refer to the definition of io_bgs member for details why it's safe
4591         * to use it without any locking
4592         */
4593        while (!list_empty(&cur_trans->io_bgs)) {
4594                cache = list_first_entry(&cur_trans->io_bgs,
4595                                         struct btrfs_block_group,
4596                                         io_list);
4597
4598                list_del_init(&cache->io_list);
4599                spin_lock(&cache->lock);
4600                cache->disk_cache_state = BTRFS_DC_ERROR;
4601                spin_unlock(&cache->lock);
4602                btrfs_cleanup_bg_io(cache);
4603        }
4604}
4605
4606void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4607                                   struct btrfs_fs_info *fs_info)
4608{
4609        struct btrfs_device *dev, *tmp;
4610
4611        btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4612        ASSERT(list_empty(&cur_trans->dirty_bgs));
4613        ASSERT(list_empty(&cur_trans->io_bgs));
4614
4615        list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4616                                 post_commit_list) {
4617                list_del_init(&dev->post_commit_list);
4618        }
4619
4620        btrfs_destroy_delayed_refs(cur_trans, fs_info);
4621
4622        cur_trans->state = TRANS_STATE_COMMIT_START;
4623        wake_up(&fs_info->transaction_blocked_wait);
4624
4625        cur_trans->state = TRANS_STATE_UNBLOCKED;
4626        wake_up(&fs_info->transaction_wait);
4627
4628        btrfs_destroy_delayed_inodes(fs_info);
4629
4630        btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4631                                     EXTENT_DIRTY);
4632        btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4633
4634        cur_trans->state =TRANS_STATE_COMPLETED;
4635        wake_up(&cur_trans->commit_wait);
4636}
4637
4638static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4639{
4640        struct btrfs_transaction *t;
4641
4642        mutex_lock(&fs_info->transaction_kthread_mutex);
4643
4644        spin_lock(&fs_info->trans_lock);
4645        while (!list_empty(&fs_info->trans_list)) {
4646                t = list_first_entry(&fs_info->trans_list,
4647                                     struct btrfs_transaction, list);
4648                if (t->state >= TRANS_STATE_COMMIT_START) {
4649                        refcount_inc(&t->use_count);
4650                        spin_unlock(&fs_info->trans_lock);
4651                        btrfs_wait_for_commit(fs_info, t->transid);
4652                        btrfs_put_transaction(t);
4653                        spin_lock(&fs_info->trans_lock);
4654                        continue;
4655                }
4656                if (t == fs_info->running_transaction) {
4657                        t->state = TRANS_STATE_COMMIT_DOING;
4658                        spin_unlock(&fs_info->trans_lock);
4659                        /*
4660                         * We wait for 0 num_writers since we don't hold a trans
4661                         * handle open currently for this transaction.
4662                         */
4663                        wait_event(t->writer_wait,
4664                                   atomic_read(&t->num_writers) == 0);
4665                } else {
4666                        spin_unlock(&fs_info->trans_lock);
4667                }
4668                btrfs_cleanup_one_transaction(t, fs_info);
4669
4670                spin_lock(&fs_info->trans_lock);
4671                if (t == fs_info->running_transaction)
4672                        fs_info->running_transaction = NULL;
4673                list_del_init(&t->list);
4674                spin_unlock(&fs_info->trans_lock);
4675
4676                btrfs_put_transaction(t);
4677                trace_btrfs_transaction_commit(fs_info->tree_root);
4678                spin_lock(&fs_info->trans_lock);
4679        }
4680        spin_unlock(&fs_info->trans_lock);
4681        btrfs_destroy_all_ordered_extents(fs_info);
4682        btrfs_destroy_delayed_inodes(fs_info);
4683        btrfs_assert_delayed_root_empty(fs_info);
4684        btrfs_destroy_all_delalloc_inodes(fs_info);
4685        btrfs_drop_all_logs(fs_info);
4686        mutex_unlock(&fs_info->transaction_kthread_mutex);
4687
4688        return 0;
4689}
4690
4691static const struct extent_io_ops btree_extent_io_ops = {
4692        /* mandatory callbacks */
4693        .submit_bio_hook = btree_submit_bio_hook,
4694        .readpage_end_io_hook = btree_readpage_end_io_hook,
4695};
4696