linux/fs/btrfs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <crypto/hash.h>
   7#include <linux/kernel.h>
   8#include <linux/bio.h>
   9#include <linux/buffer_head.h>
  10#include <linux/file.h>
  11#include <linux/fs.h>
  12#include <linux/pagemap.h>
  13#include <linux/highmem.h>
  14#include <linux/time.h>
  15#include <linux/init.h>
  16#include <linux/string.h>
  17#include <linux/backing-dev.h>
  18#include <linux/writeback.h>
  19#include <linux/compat.h>
  20#include <linux/xattr.h>
  21#include <linux/posix_acl.h>
  22#include <linux/falloc.h>
  23#include <linux/slab.h>
  24#include <linux/ratelimit.h>
  25#include <linux/btrfs.h>
  26#include <linux/blkdev.h>
  27#include <linux/posix_acl_xattr.h>
  28#include <linux/uio.h>
  29#include <linux/magic.h>
  30#include <linux/iversion.h>
  31#include <linux/swap.h>
  32#include <linux/migrate.h>
  33#include <linux/sched/mm.h>
  34#include <asm/unaligned.h>
  35#include "misc.h"
  36#include "ctree.h"
  37#include "disk-io.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "print-tree.h"
  41#include "ordered-data.h"
  42#include "xattr.h"
  43#include "tree-log.h"
  44#include "volumes.h"
  45#include "compression.h"
  46#include "locking.h"
  47#include "free-space-cache.h"
  48#include "inode-map.h"
  49#include "props.h"
  50#include "qgroup.h"
  51#include "delalloc-space.h"
  52#include "block-group.h"
  53#include "space-info.h"
  54
  55struct btrfs_iget_args {
  56        u64 ino;
  57        struct btrfs_root *root;
  58};
  59
  60struct btrfs_dio_data {
  61        u64 reserve;
  62        u64 unsubmitted_oe_range_start;
  63        u64 unsubmitted_oe_range_end;
  64        int overwrite;
  65};
  66
  67static const struct inode_operations btrfs_dir_inode_operations;
  68static const struct inode_operations btrfs_symlink_inode_operations;
  69static const struct inode_operations btrfs_special_inode_operations;
  70static const struct inode_operations btrfs_file_inode_operations;
  71static const struct address_space_operations btrfs_aops;
  72static const struct file_operations btrfs_dir_file_operations;
  73static const struct extent_io_ops btrfs_extent_io_ops;
  74
  75static struct kmem_cache *btrfs_inode_cachep;
  76struct kmem_cache *btrfs_trans_handle_cachep;
  77struct kmem_cache *btrfs_path_cachep;
  78struct kmem_cache *btrfs_free_space_cachep;
  79struct kmem_cache *btrfs_free_space_bitmap_cachep;
  80
  81static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  82static int btrfs_truncate(struct inode *inode, bool skip_writeback);
  83static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  84static noinline int cow_file_range(struct btrfs_inode *inode,
  85                                   struct page *locked_page,
  86                                   u64 start, u64 end, int *page_started,
  87                                   unsigned long *nr_written, int unlock);
  88static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
  89                                       u64 len, u64 orig_start, u64 block_start,
  90                                       u64 block_len, u64 orig_block_len,
  91                                       u64 ram_bytes, int compress_type,
  92                                       int type);
  93
  94static void __endio_write_update_ordered(struct btrfs_inode *inode,
  95                                         const u64 offset, const u64 bytes,
  96                                         const bool uptodate);
  97
  98/*
  99 * Cleanup all submitted ordered extents in specified range to handle errors
 100 * from the btrfs_run_delalloc_range() callback.
 101 *
 102 * NOTE: caller must ensure that when an error happens, it can not call
 103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
 104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
 105 * to be released, which we want to happen only when finishing the ordered
 106 * extent (btrfs_finish_ordered_io()).
 107 */
 108static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
 109                                                 struct page *locked_page,
 110                                                 u64 offset, u64 bytes)
 111{
 112        unsigned long index = offset >> PAGE_SHIFT;
 113        unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
 114        u64 page_start = page_offset(locked_page);
 115        u64 page_end = page_start + PAGE_SIZE - 1;
 116
 117        struct page *page;
 118
 119        while (index <= end_index) {
 120                page = find_get_page(inode->vfs_inode.i_mapping, index);
 121                index++;
 122                if (!page)
 123                        continue;
 124                ClearPagePrivate2(page);
 125                put_page(page);
 126        }
 127
 128        /*
 129         * In case this page belongs to the delalloc range being instantiated
 130         * then skip it, since the first page of a range is going to be
 131         * properly cleaned up by the caller of run_delalloc_range
 132         */
 133        if (page_start >= offset && page_end <= (offset + bytes - 1)) {
 134                offset += PAGE_SIZE;
 135                bytes -= PAGE_SIZE;
 136        }
 137
 138        return __endio_write_update_ordered(inode, offset, bytes, false);
 139}
 140
 141static int btrfs_dirty_inode(struct inode *inode);
 142
 143#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 144void btrfs_test_inode_set_ops(struct inode *inode)
 145{
 146        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
 147}
 148#endif
 149
 150static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 151                                     struct inode *inode,  struct inode *dir,
 152                                     const struct qstr *qstr)
 153{
 154        int err;
 155
 156        err = btrfs_init_acl(trans, inode, dir);
 157        if (!err)
 158                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 159        return err;
 160}
 161
 162/*
 163 * this does all the hard work for inserting an inline extent into
 164 * the btree.  The caller should have done a btrfs_drop_extents so that
 165 * no overlapping inline items exist in the btree
 166 */
 167static int insert_inline_extent(struct btrfs_trans_handle *trans,
 168                                struct btrfs_path *path, int extent_inserted,
 169                                struct btrfs_root *root, struct inode *inode,
 170                                u64 start, size_t size, size_t compressed_size,
 171                                int compress_type,
 172                                struct page **compressed_pages)
 173{
 174        struct extent_buffer *leaf;
 175        struct page *page = NULL;
 176        char *kaddr;
 177        unsigned long ptr;
 178        struct btrfs_file_extent_item *ei;
 179        int ret;
 180        size_t cur_size = size;
 181        unsigned long offset;
 182
 183        ASSERT((compressed_size > 0 && compressed_pages) ||
 184               (compressed_size == 0 && !compressed_pages));
 185
 186        if (compressed_size && compressed_pages)
 187                cur_size = compressed_size;
 188
 189        inode_add_bytes(inode, size);
 190
 191        if (!extent_inserted) {
 192                struct btrfs_key key;
 193                size_t datasize;
 194
 195                key.objectid = btrfs_ino(BTRFS_I(inode));
 196                key.offset = start;
 197                key.type = BTRFS_EXTENT_DATA_KEY;
 198
 199                datasize = btrfs_file_extent_calc_inline_size(cur_size);
 200                path->leave_spinning = 1;
 201                ret = btrfs_insert_empty_item(trans, root, path, &key,
 202                                              datasize);
 203                if (ret)
 204                        goto fail;
 205        }
 206        leaf = path->nodes[0];
 207        ei = btrfs_item_ptr(leaf, path->slots[0],
 208                            struct btrfs_file_extent_item);
 209        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 210        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 211        btrfs_set_file_extent_encryption(leaf, ei, 0);
 212        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 213        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 214        ptr = btrfs_file_extent_inline_start(ei);
 215
 216        if (compress_type != BTRFS_COMPRESS_NONE) {
 217                struct page *cpage;
 218                int i = 0;
 219                while (compressed_size > 0) {
 220                        cpage = compressed_pages[i];
 221                        cur_size = min_t(unsigned long, compressed_size,
 222                                       PAGE_SIZE);
 223
 224                        kaddr = kmap_atomic(cpage);
 225                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 226                        kunmap_atomic(kaddr);
 227
 228                        i++;
 229                        ptr += cur_size;
 230                        compressed_size -= cur_size;
 231                }
 232                btrfs_set_file_extent_compression(leaf, ei,
 233                                                  compress_type);
 234        } else {
 235                page = find_get_page(inode->i_mapping,
 236                                     start >> PAGE_SHIFT);
 237                btrfs_set_file_extent_compression(leaf, ei, 0);
 238                kaddr = kmap_atomic(page);
 239                offset = offset_in_page(start);
 240                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 241                kunmap_atomic(kaddr);
 242                put_page(page);
 243        }
 244        btrfs_mark_buffer_dirty(leaf);
 245        btrfs_release_path(path);
 246
 247        /*
 248         * We align size to sectorsize for inline extents just for simplicity
 249         * sake.
 250         */
 251        size = ALIGN(size, root->fs_info->sectorsize);
 252        ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
 253        if (ret)
 254                goto fail;
 255
 256        /*
 257         * we're an inline extent, so nobody can
 258         * extend the file past i_size without locking
 259         * a page we already have locked.
 260         *
 261         * We must do any isize and inode updates
 262         * before we unlock the pages.  Otherwise we
 263         * could end up racing with unlink.
 264         */
 265        BTRFS_I(inode)->disk_i_size = inode->i_size;
 266        ret = btrfs_update_inode(trans, root, inode);
 267
 268fail:
 269        return ret;
 270}
 271
 272
 273/*
 274 * conditionally insert an inline extent into the file.  This
 275 * does the checks required to make sure the data is small enough
 276 * to fit as an inline extent.
 277 */
 278static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
 279                                          u64 end, size_t compressed_size,
 280                                          int compress_type,
 281                                          struct page **compressed_pages)
 282{
 283        struct btrfs_root *root = inode->root;
 284        struct btrfs_fs_info *fs_info = root->fs_info;
 285        struct btrfs_trans_handle *trans;
 286        u64 isize = i_size_read(&inode->vfs_inode);
 287        u64 actual_end = min(end + 1, isize);
 288        u64 inline_len = actual_end - start;
 289        u64 aligned_end = ALIGN(end, fs_info->sectorsize);
 290        u64 data_len = inline_len;
 291        int ret;
 292        struct btrfs_path *path;
 293        int extent_inserted = 0;
 294        u32 extent_item_size;
 295
 296        if (compressed_size)
 297                data_len = compressed_size;
 298
 299        if (start > 0 ||
 300            actual_end > fs_info->sectorsize ||
 301            data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
 302            (!compressed_size &&
 303            (actual_end & (fs_info->sectorsize - 1)) == 0) ||
 304            end + 1 < isize ||
 305            data_len > fs_info->max_inline) {
 306                return 1;
 307        }
 308
 309        path = btrfs_alloc_path();
 310        if (!path)
 311                return -ENOMEM;
 312
 313        trans = btrfs_join_transaction(root);
 314        if (IS_ERR(trans)) {
 315                btrfs_free_path(path);
 316                return PTR_ERR(trans);
 317        }
 318        trans->block_rsv = &inode->block_rsv;
 319
 320        if (compressed_size && compressed_pages)
 321                extent_item_size = btrfs_file_extent_calc_inline_size(
 322                   compressed_size);
 323        else
 324                extent_item_size = btrfs_file_extent_calc_inline_size(
 325                    inline_len);
 326
 327        ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
 328                                   NULL, 1, 1, extent_item_size,
 329                                   &extent_inserted);
 330        if (ret) {
 331                btrfs_abort_transaction(trans, ret);
 332                goto out;
 333        }
 334
 335        if (isize > actual_end)
 336                inline_len = min_t(u64, isize, actual_end);
 337        ret = insert_inline_extent(trans, path, extent_inserted,
 338                                   root, &inode->vfs_inode, start,
 339                                   inline_len, compressed_size,
 340                                   compress_type, compressed_pages);
 341        if (ret && ret != -ENOSPC) {
 342                btrfs_abort_transaction(trans, ret);
 343                goto out;
 344        } else if (ret == -ENOSPC) {
 345                ret = 1;
 346                goto out;
 347        }
 348
 349        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
 350        btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
 351out:
 352        /*
 353         * Don't forget to free the reserved space, as for inlined extent
 354         * it won't count as data extent, free them directly here.
 355         * And at reserve time, it's always aligned to page size, so
 356         * just free one page here.
 357         */
 358        btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
 359        btrfs_free_path(path);
 360        btrfs_end_transaction(trans);
 361        return ret;
 362}
 363
 364struct async_extent {
 365        u64 start;
 366        u64 ram_size;
 367        u64 compressed_size;
 368        struct page **pages;
 369        unsigned long nr_pages;
 370        int compress_type;
 371        struct list_head list;
 372};
 373
 374struct async_chunk {
 375        struct inode *inode;
 376        struct page *locked_page;
 377        u64 start;
 378        u64 end;
 379        unsigned int write_flags;
 380        struct list_head extents;
 381        struct cgroup_subsys_state *blkcg_css;
 382        struct btrfs_work work;
 383        atomic_t *pending;
 384};
 385
 386struct async_cow {
 387        /* Number of chunks in flight; must be first in the structure */
 388        atomic_t num_chunks;
 389        struct async_chunk chunks[];
 390};
 391
 392static noinline int add_async_extent(struct async_chunk *cow,
 393                                     u64 start, u64 ram_size,
 394                                     u64 compressed_size,
 395                                     struct page **pages,
 396                                     unsigned long nr_pages,
 397                                     int compress_type)
 398{
 399        struct async_extent *async_extent;
 400
 401        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 402        BUG_ON(!async_extent); /* -ENOMEM */
 403        async_extent->start = start;
 404        async_extent->ram_size = ram_size;
 405        async_extent->compressed_size = compressed_size;
 406        async_extent->pages = pages;
 407        async_extent->nr_pages = nr_pages;
 408        async_extent->compress_type = compress_type;
 409        list_add_tail(&async_extent->list, &cow->extents);
 410        return 0;
 411}
 412
 413/*
 414 * Check if the inode has flags compatible with compression
 415 */
 416static inline bool inode_can_compress(struct btrfs_inode *inode)
 417{
 418        if (inode->flags & BTRFS_INODE_NODATACOW ||
 419            inode->flags & BTRFS_INODE_NODATASUM)
 420                return false;
 421        return true;
 422}
 423
 424/*
 425 * Check if the inode needs to be submitted to compression, based on mount
 426 * options, defragmentation, properties or heuristics.
 427 */
 428static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
 429                                      u64 end)
 430{
 431        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 432
 433        if (!inode_can_compress(inode)) {
 434                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 435                        KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
 436                        btrfs_ino(inode));
 437                return 0;
 438        }
 439        /* force compress */
 440        if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
 441                return 1;
 442        /* defrag ioctl */
 443        if (inode->defrag_compress)
 444                return 1;
 445        /* bad compression ratios */
 446        if (inode->flags & BTRFS_INODE_NOCOMPRESS)
 447                return 0;
 448        if (btrfs_test_opt(fs_info, COMPRESS) ||
 449            inode->flags & BTRFS_INODE_COMPRESS ||
 450            inode->prop_compress)
 451                return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
 452        return 0;
 453}
 454
 455static inline void inode_should_defrag(struct btrfs_inode *inode,
 456                u64 start, u64 end, u64 num_bytes, u64 small_write)
 457{
 458        /* If this is a small write inside eof, kick off a defrag */
 459        if (num_bytes < small_write &&
 460            (start > 0 || end + 1 < inode->disk_i_size))
 461                btrfs_add_inode_defrag(NULL, inode);
 462}
 463
 464/*
 465 * we create compressed extents in two phases.  The first
 466 * phase compresses a range of pages that have already been
 467 * locked (both pages and state bits are locked).
 468 *
 469 * This is done inside an ordered work queue, and the compression
 470 * is spread across many cpus.  The actual IO submission is step
 471 * two, and the ordered work queue takes care of making sure that
 472 * happens in the same order things were put onto the queue by
 473 * writepages and friends.
 474 *
 475 * If this code finds it can't get good compression, it puts an
 476 * entry onto the work queue to write the uncompressed bytes.  This
 477 * makes sure that both compressed inodes and uncompressed inodes
 478 * are written in the same order that the flusher thread sent them
 479 * down.
 480 */
 481static noinline int compress_file_range(struct async_chunk *async_chunk)
 482{
 483        struct inode *inode = async_chunk->inode;
 484        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 485        u64 blocksize = fs_info->sectorsize;
 486        u64 start = async_chunk->start;
 487        u64 end = async_chunk->end;
 488        u64 actual_end;
 489        u64 i_size;
 490        int ret = 0;
 491        struct page **pages = NULL;
 492        unsigned long nr_pages;
 493        unsigned long total_compressed = 0;
 494        unsigned long total_in = 0;
 495        int i;
 496        int will_compress;
 497        int compress_type = fs_info->compress_type;
 498        int compressed_extents = 0;
 499        int redirty = 0;
 500
 501        inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
 502                        SZ_16K);
 503
 504        /*
 505         * We need to save i_size before now because it could change in between
 506         * us evaluating the size and assigning it.  This is because we lock and
 507         * unlock the page in truncate and fallocate, and then modify the i_size
 508         * later on.
 509         *
 510         * The barriers are to emulate READ_ONCE, remove that once i_size_read
 511         * does that for us.
 512         */
 513        barrier();
 514        i_size = i_size_read(inode);
 515        barrier();
 516        actual_end = min_t(u64, i_size, end + 1);
 517again:
 518        will_compress = 0;
 519        nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
 520        BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
 521        nr_pages = min_t(unsigned long, nr_pages,
 522                        BTRFS_MAX_COMPRESSED / PAGE_SIZE);
 523
 524        /*
 525         * we don't want to send crud past the end of i_size through
 526         * compression, that's just a waste of CPU time.  So, if the
 527         * end of the file is before the start of our current
 528         * requested range of bytes, we bail out to the uncompressed
 529         * cleanup code that can deal with all of this.
 530         *
 531         * It isn't really the fastest way to fix things, but this is a
 532         * very uncommon corner.
 533         */
 534        if (actual_end <= start)
 535                goto cleanup_and_bail_uncompressed;
 536
 537        total_compressed = actual_end - start;
 538
 539        /*
 540         * skip compression for a small file range(<=blocksize) that
 541         * isn't an inline extent, since it doesn't save disk space at all.
 542         */
 543        if (total_compressed <= blocksize &&
 544           (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 545                goto cleanup_and_bail_uncompressed;
 546
 547        total_compressed = min_t(unsigned long, total_compressed,
 548                        BTRFS_MAX_UNCOMPRESSED);
 549        total_in = 0;
 550        ret = 0;
 551
 552        /*
 553         * we do compression for mount -o compress and when the
 554         * inode has not been flagged as nocompress.  This flag can
 555         * change at any time if we discover bad compression ratios.
 556         */
 557        if (inode_need_compress(BTRFS_I(inode), start, end)) {
 558                WARN_ON(pages);
 559                pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
 560                if (!pages) {
 561                        /* just bail out to the uncompressed code */
 562                        nr_pages = 0;
 563                        goto cont;
 564                }
 565
 566                if (BTRFS_I(inode)->defrag_compress)
 567                        compress_type = BTRFS_I(inode)->defrag_compress;
 568                else if (BTRFS_I(inode)->prop_compress)
 569                        compress_type = BTRFS_I(inode)->prop_compress;
 570
 571                /*
 572                 * we need to call clear_page_dirty_for_io on each
 573                 * page in the range.  Otherwise applications with the file
 574                 * mmap'd can wander in and change the page contents while
 575                 * we are compressing them.
 576                 *
 577                 * If the compression fails for any reason, we set the pages
 578                 * dirty again later on.
 579                 *
 580                 * Note that the remaining part is redirtied, the start pointer
 581                 * has moved, the end is the original one.
 582                 */
 583                if (!redirty) {
 584                        extent_range_clear_dirty_for_io(inode, start, end);
 585                        redirty = 1;
 586                }
 587
 588                /* Compression level is applied here and only here */
 589                ret = btrfs_compress_pages(
 590                        compress_type | (fs_info->compress_level << 4),
 591                                           inode->i_mapping, start,
 592                                           pages,
 593                                           &nr_pages,
 594                                           &total_in,
 595                                           &total_compressed);
 596
 597                if (!ret) {
 598                        unsigned long offset = offset_in_page(total_compressed);
 599                        struct page *page = pages[nr_pages - 1];
 600                        char *kaddr;
 601
 602                        /* zero the tail end of the last page, we might be
 603                         * sending it down to disk
 604                         */
 605                        if (offset) {
 606                                kaddr = kmap_atomic(page);
 607                                memset(kaddr + offset, 0,
 608                                       PAGE_SIZE - offset);
 609                                kunmap_atomic(kaddr);
 610                        }
 611                        will_compress = 1;
 612                }
 613        }
 614cont:
 615        if (start == 0) {
 616                /* lets try to make an inline extent */
 617                if (ret || total_in < actual_end) {
 618                        /* we didn't compress the entire range, try
 619                         * to make an uncompressed inline extent.
 620                         */
 621                        ret = cow_file_range_inline(BTRFS_I(inode), start, end,
 622                                                    0, BTRFS_COMPRESS_NONE,
 623                                                    NULL);
 624                } else {
 625                        /* try making a compressed inline extent */
 626                        ret = cow_file_range_inline(BTRFS_I(inode), start, end,
 627                                                    total_compressed,
 628                                                    compress_type, pages);
 629                }
 630                if (ret <= 0) {
 631                        unsigned long clear_flags = EXTENT_DELALLOC |
 632                                EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
 633                                EXTENT_DO_ACCOUNTING;
 634                        unsigned long page_error_op;
 635
 636                        page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
 637
 638                        /*
 639                         * inline extent creation worked or returned error,
 640                         * we don't need to create any more async work items.
 641                         * Unlock and free up our temp pages.
 642                         *
 643                         * We use DO_ACCOUNTING here because we need the
 644                         * delalloc_release_metadata to be done _after_ we drop
 645                         * our outstanding extent for clearing delalloc for this
 646                         * range.
 647                         */
 648                        extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
 649                                                     NULL,
 650                                                     clear_flags,
 651                                                     PAGE_UNLOCK |
 652                                                     PAGE_CLEAR_DIRTY |
 653                                                     PAGE_SET_WRITEBACK |
 654                                                     page_error_op |
 655                                                     PAGE_END_WRITEBACK);
 656
 657                        /*
 658                         * Ensure we only free the compressed pages if we have
 659                         * them allocated, as we can still reach here with
 660                         * inode_need_compress() == false.
 661                         */
 662                        if (pages) {
 663                                for (i = 0; i < nr_pages; i++) {
 664                                        WARN_ON(pages[i]->mapping);
 665                                        put_page(pages[i]);
 666                                }
 667                                kfree(pages);
 668                        }
 669                        return 0;
 670                }
 671        }
 672
 673        if (will_compress) {
 674                /*
 675                 * we aren't doing an inline extent round the compressed size
 676                 * up to a block size boundary so the allocator does sane
 677                 * things
 678                 */
 679                total_compressed = ALIGN(total_compressed, blocksize);
 680
 681                /*
 682                 * one last check to make sure the compression is really a
 683                 * win, compare the page count read with the blocks on disk,
 684                 * compression must free at least one sector size
 685                 */
 686                total_in = ALIGN(total_in, PAGE_SIZE);
 687                if (total_compressed + blocksize <= total_in) {
 688                        compressed_extents++;
 689
 690                        /*
 691                         * The async work queues will take care of doing actual
 692                         * allocation on disk for these compressed pages, and
 693                         * will submit them to the elevator.
 694                         */
 695                        add_async_extent(async_chunk, start, total_in,
 696                                        total_compressed, pages, nr_pages,
 697                                        compress_type);
 698
 699                        if (start + total_in < end) {
 700                                start += total_in;
 701                                pages = NULL;
 702                                cond_resched();
 703                                goto again;
 704                        }
 705                        return compressed_extents;
 706                }
 707        }
 708        if (pages) {
 709                /*
 710                 * the compression code ran but failed to make things smaller,
 711                 * free any pages it allocated and our page pointer array
 712                 */
 713                for (i = 0; i < nr_pages; i++) {
 714                        WARN_ON(pages[i]->mapping);
 715                        put_page(pages[i]);
 716                }
 717                kfree(pages);
 718                pages = NULL;
 719                total_compressed = 0;
 720                nr_pages = 0;
 721
 722                /* flag the file so we don't compress in the future */
 723                if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
 724                    !(BTRFS_I(inode)->prop_compress)) {
 725                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 726                }
 727        }
 728cleanup_and_bail_uncompressed:
 729        /*
 730         * No compression, but we still need to write the pages in the file
 731         * we've been given so far.  redirty the locked page if it corresponds
 732         * to our extent and set things up for the async work queue to run
 733         * cow_file_range to do the normal delalloc dance.
 734         */
 735        if (async_chunk->locked_page &&
 736            (page_offset(async_chunk->locked_page) >= start &&
 737             page_offset(async_chunk->locked_page)) <= end) {
 738                __set_page_dirty_nobuffers(async_chunk->locked_page);
 739                /* unlocked later on in the async handlers */
 740        }
 741
 742        if (redirty)
 743                extent_range_redirty_for_io(inode, start, end);
 744        add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
 745                         BTRFS_COMPRESS_NONE);
 746        compressed_extents++;
 747
 748        return compressed_extents;
 749}
 750
 751static void free_async_extent_pages(struct async_extent *async_extent)
 752{
 753        int i;
 754
 755        if (!async_extent->pages)
 756                return;
 757
 758        for (i = 0; i < async_extent->nr_pages; i++) {
 759                WARN_ON(async_extent->pages[i]->mapping);
 760                put_page(async_extent->pages[i]);
 761        }
 762        kfree(async_extent->pages);
 763        async_extent->nr_pages = 0;
 764        async_extent->pages = NULL;
 765}
 766
 767/*
 768 * phase two of compressed writeback.  This is the ordered portion
 769 * of the code, which only gets called in the order the work was
 770 * queued.  We walk all the async extents created by compress_file_range
 771 * and send them down to the disk.
 772 */
 773static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
 774{
 775        struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
 776        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 777        struct async_extent *async_extent;
 778        u64 alloc_hint = 0;
 779        struct btrfs_key ins;
 780        struct extent_map *em;
 781        struct btrfs_root *root = inode->root;
 782        struct extent_io_tree *io_tree = &inode->io_tree;
 783        int ret = 0;
 784
 785again:
 786        while (!list_empty(&async_chunk->extents)) {
 787                async_extent = list_entry(async_chunk->extents.next,
 788                                          struct async_extent, list);
 789                list_del(&async_extent->list);
 790
 791retry:
 792                lock_extent(io_tree, async_extent->start,
 793                            async_extent->start + async_extent->ram_size - 1);
 794                /* did the compression code fall back to uncompressed IO? */
 795                if (!async_extent->pages) {
 796                        int page_started = 0;
 797                        unsigned long nr_written = 0;
 798
 799                        /* allocate blocks */
 800                        ret = cow_file_range(inode, async_chunk->locked_page,
 801                                             async_extent->start,
 802                                             async_extent->start +
 803                                             async_extent->ram_size - 1,
 804                                             &page_started, &nr_written, 0);
 805
 806                        /* JDM XXX */
 807
 808                        /*
 809                         * if page_started, cow_file_range inserted an
 810                         * inline extent and took care of all the unlocking
 811                         * and IO for us.  Otherwise, we need to submit
 812                         * all those pages down to the drive.
 813                         */
 814                        if (!page_started && !ret)
 815                                extent_write_locked_range(&inode->vfs_inode,
 816                                                  async_extent->start,
 817                                                  async_extent->start +
 818                                                  async_extent->ram_size - 1,
 819                                                  WB_SYNC_ALL);
 820                        else if (ret && async_chunk->locked_page)
 821                                unlock_page(async_chunk->locked_page);
 822                        kfree(async_extent);
 823                        cond_resched();
 824                        continue;
 825                }
 826
 827                ret = btrfs_reserve_extent(root, async_extent->ram_size,
 828                                           async_extent->compressed_size,
 829                                           async_extent->compressed_size,
 830                                           0, alloc_hint, &ins, 1, 1);
 831                if (ret) {
 832                        free_async_extent_pages(async_extent);
 833
 834                        if (ret == -ENOSPC) {
 835                                unlock_extent(io_tree, async_extent->start,
 836                                              async_extent->start +
 837                                              async_extent->ram_size - 1);
 838
 839                                /*
 840                                 * we need to redirty the pages if we decide to
 841                                 * fallback to uncompressed IO, otherwise we
 842                                 * will not submit these pages down to lower
 843                                 * layers.
 844                                 */
 845                                extent_range_redirty_for_io(&inode->vfs_inode,
 846                                                async_extent->start,
 847                                                async_extent->start +
 848                                                async_extent->ram_size - 1);
 849
 850                                goto retry;
 851                        }
 852                        goto out_free;
 853                }
 854                /*
 855                 * here we're doing allocation and writeback of the
 856                 * compressed pages
 857                 */
 858                em = create_io_em(inode, async_extent->start,
 859                                  async_extent->ram_size, /* len */
 860                                  async_extent->start, /* orig_start */
 861                                  ins.objectid, /* block_start */
 862                                  ins.offset, /* block_len */
 863                                  ins.offset, /* orig_block_len */
 864                                  async_extent->ram_size, /* ram_bytes */
 865                                  async_extent->compress_type,
 866                                  BTRFS_ORDERED_COMPRESSED);
 867                if (IS_ERR(em))
 868                        /* ret value is not necessary due to void function */
 869                        goto out_free_reserve;
 870                free_extent_map(em);
 871
 872                ret = btrfs_add_ordered_extent_compress(inode,
 873                                                async_extent->start,
 874                                                ins.objectid,
 875                                                async_extent->ram_size,
 876                                                ins.offset,
 877                                                BTRFS_ORDERED_COMPRESSED,
 878                                                async_extent->compress_type);
 879                if (ret) {
 880                        btrfs_drop_extent_cache(inode, async_extent->start,
 881                                                async_extent->start +
 882                                                async_extent->ram_size - 1, 0);
 883                        goto out_free_reserve;
 884                }
 885                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 886
 887                /*
 888                 * clear dirty, set writeback and unlock the pages.
 889                 */
 890                extent_clear_unlock_delalloc(inode, async_extent->start,
 891                                async_extent->start +
 892                                async_extent->ram_size - 1,
 893                                NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
 894                                PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 895                                PAGE_SET_WRITEBACK);
 896                if (btrfs_submit_compressed_write(inode, async_extent->start,
 897                                    async_extent->ram_size,
 898                                    ins.objectid,
 899                                    ins.offset, async_extent->pages,
 900                                    async_extent->nr_pages,
 901                                    async_chunk->write_flags,
 902                                    async_chunk->blkcg_css)) {
 903                        struct page *p = async_extent->pages[0];
 904                        const u64 start = async_extent->start;
 905                        const u64 end = start + async_extent->ram_size - 1;
 906
 907                        p->mapping = inode->vfs_inode.i_mapping;
 908                        btrfs_writepage_endio_finish_ordered(p, start, end, 0);
 909
 910                        p->mapping = NULL;
 911                        extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
 912                                                     PAGE_END_WRITEBACK |
 913                                                     PAGE_SET_ERROR);
 914                        free_async_extent_pages(async_extent);
 915                }
 916                alloc_hint = ins.objectid + ins.offset;
 917                kfree(async_extent);
 918                cond_resched();
 919        }
 920        return;
 921out_free_reserve:
 922        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 923        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
 924out_free:
 925        extent_clear_unlock_delalloc(inode, async_extent->start,
 926                                     async_extent->start +
 927                                     async_extent->ram_size - 1,
 928                                     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
 929                                     EXTENT_DELALLOC_NEW |
 930                                     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
 931                                     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 932                                     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
 933                                     PAGE_SET_ERROR);
 934        free_async_extent_pages(async_extent);
 935        kfree(async_extent);
 936        goto again;
 937}
 938
 939static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
 940                                      u64 num_bytes)
 941{
 942        struct extent_map_tree *em_tree = &inode->extent_tree;
 943        struct extent_map *em;
 944        u64 alloc_hint = 0;
 945
 946        read_lock(&em_tree->lock);
 947        em = search_extent_mapping(em_tree, start, num_bytes);
 948        if (em) {
 949                /*
 950                 * if block start isn't an actual block number then find the
 951                 * first block in this inode and use that as a hint.  If that
 952                 * block is also bogus then just don't worry about it.
 953                 */
 954                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 955                        free_extent_map(em);
 956                        em = search_extent_mapping(em_tree, 0, 0);
 957                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 958                                alloc_hint = em->block_start;
 959                        if (em)
 960                                free_extent_map(em);
 961                } else {
 962                        alloc_hint = em->block_start;
 963                        free_extent_map(em);
 964                }
 965        }
 966        read_unlock(&em_tree->lock);
 967
 968        return alloc_hint;
 969}
 970
 971/*
 972 * when extent_io.c finds a delayed allocation range in the file,
 973 * the call backs end up in this code.  The basic idea is to
 974 * allocate extents on disk for the range, and create ordered data structs
 975 * in ram to track those extents.
 976 *
 977 * locked_page is the page that writepage had locked already.  We use
 978 * it to make sure we don't do extra locks or unlocks.
 979 *
 980 * *page_started is set to one if we unlock locked_page and do everything
 981 * required to start IO on it.  It may be clean and already done with
 982 * IO when we return.
 983 */
 984static noinline int cow_file_range(struct btrfs_inode *inode,
 985                                   struct page *locked_page,
 986                                   u64 start, u64 end, int *page_started,
 987                                   unsigned long *nr_written, int unlock)
 988{
 989        struct btrfs_root *root = inode->root;
 990        struct btrfs_fs_info *fs_info = root->fs_info;
 991        u64 alloc_hint = 0;
 992        u64 num_bytes;
 993        unsigned long ram_size;
 994        u64 cur_alloc_size = 0;
 995        u64 min_alloc_size;
 996        u64 blocksize = fs_info->sectorsize;
 997        struct btrfs_key ins;
 998        struct extent_map *em;
 999        unsigned clear_bits;
1000        unsigned long page_ops;
1001        bool extent_reserved = false;
1002        int ret = 0;
1003
1004        if (btrfs_is_free_space_inode(inode)) {
1005                WARN_ON_ONCE(1);
1006                ret = -EINVAL;
1007                goto out_unlock;
1008        }
1009
1010        num_bytes = ALIGN(end - start + 1, blocksize);
1011        num_bytes = max(blocksize,  num_bytes);
1012        ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1013
1014        inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1015
1016        if (start == 0) {
1017                /* lets try to make an inline extent */
1018                ret = cow_file_range_inline(inode, start, end, 0,
1019                                            BTRFS_COMPRESS_NONE, NULL);
1020                if (ret == 0) {
1021                        /*
1022                         * We use DO_ACCOUNTING here because we need the
1023                         * delalloc_release_metadata to be run _after_ we drop
1024                         * our outstanding extent for clearing delalloc for this
1025                         * range.
1026                         */
1027                        extent_clear_unlock_delalloc(inode, start, end, NULL,
1028                                     EXTENT_LOCKED | EXTENT_DELALLOC |
1029                                     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1030                                     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1031                                     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1032                                     PAGE_END_WRITEBACK);
1033                        *nr_written = *nr_written +
1034                             (end - start + PAGE_SIZE) / PAGE_SIZE;
1035                        *page_started = 1;
1036                        goto out;
1037                } else if (ret < 0) {
1038                        goto out_unlock;
1039                }
1040        }
1041
1042        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1043        btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1044
1045        /*
1046         * Relocation relies on the relocated extents to have exactly the same
1047         * size as the original extents. Normally writeback for relocation data
1048         * extents follows a NOCOW path because relocation preallocates the
1049         * extents. However, due to an operation such as scrub turning a block
1050         * group to RO mode, it may fallback to COW mode, so we must make sure
1051         * an extent allocated during COW has exactly the requested size and can
1052         * not be split into smaller extents, otherwise relocation breaks and
1053         * fails during the stage where it updates the bytenr of file extent
1054         * items.
1055         */
1056        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1057                min_alloc_size = num_bytes;
1058        else
1059                min_alloc_size = fs_info->sectorsize;
1060
1061        while (num_bytes > 0) {
1062                cur_alloc_size = num_bytes;
1063                ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1064                                           min_alloc_size, 0, alloc_hint,
1065                                           &ins, 1, 1);
1066                if (ret < 0)
1067                        goto out_unlock;
1068                cur_alloc_size = ins.offset;
1069                extent_reserved = true;
1070
1071                ram_size = ins.offset;
1072                em = create_io_em(inode, start, ins.offset, /* len */
1073                                  start, /* orig_start */
1074                                  ins.objectid, /* block_start */
1075                                  ins.offset, /* block_len */
1076                                  ins.offset, /* orig_block_len */
1077                                  ram_size, /* ram_bytes */
1078                                  BTRFS_COMPRESS_NONE, /* compress_type */
1079                                  BTRFS_ORDERED_REGULAR /* type */);
1080                if (IS_ERR(em)) {
1081                        ret = PTR_ERR(em);
1082                        goto out_reserve;
1083                }
1084                free_extent_map(em);
1085
1086                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1087                                               ram_size, cur_alloc_size, 0);
1088                if (ret)
1089                        goto out_drop_extent_cache;
1090
1091                if (root->root_key.objectid ==
1092                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1093                        ret = btrfs_reloc_clone_csums(inode, start,
1094                                                      cur_alloc_size);
1095                        /*
1096                         * Only drop cache here, and process as normal.
1097                         *
1098                         * We must not allow extent_clear_unlock_delalloc()
1099                         * at out_unlock label to free meta of this ordered
1100                         * extent, as its meta should be freed by
1101                         * btrfs_finish_ordered_io().
1102                         *
1103                         * So we must continue until @start is increased to
1104                         * skip current ordered extent.
1105                         */
1106                        if (ret)
1107                                btrfs_drop_extent_cache(inode, start,
1108                                                start + ram_size - 1, 0);
1109                }
1110
1111                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1112
1113                /* we're not doing compressed IO, don't unlock the first
1114                 * page (which the caller expects to stay locked), don't
1115                 * clear any dirty bits and don't set any writeback bits
1116                 *
1117                 * Do set the Private2 bit so we know this page was properly
1118                 * setup for writepage
1119                 */
1120                page_ops = unlock ? PAGE_UNLOCK : 0;
1121                page_ops |= PAGE_SET_PRIVATE2;
1122
1123                extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1124                                             locked_page,
1125                                             EXTENT_LOCKED | EXTENT_DELALLOC,
1126                                             page_ops);
1127                if (num_bytes < cur_alloc_size)
1128                        num_bytes = 0;
1129                else
1130                        num_bytes -= cur_alloc_size;
1131                alloc_hint = ins.objectid + ins.offset;
1132                start += cur_alloc_size;
1133                extent_reserved = false;
1134
1135                /*
1136                 * btrfs_reloc_clone_csums() error, since start is increased
1137                 * extent_clear_unlock_delalloc() at out_unlock label won't
1138                 * free metadata of current ordered extent, we're OK to exit.
1139                 */
1140                if (ret)
1141                        goto out_unlock;
1142        }
1143out:
1144        return ret;
1145
1146out_drop_extent_cache:
1147        btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1148out_reserve:
1149        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1150        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1151out_unlock:
1152        clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1153                EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1154        page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1155                PAGE_END_WRITEBACK;
1156        /*
1157         * If we reserved an extent for our delalloc range (or a subrange) and
1158         * failed to create the respective ordered extent, then it means that
1159         * when we reserved the extent we decremented the extent's size from
1160         * the data space_info's bytes_may_use counter and incremented the
1161         * space_info's bytes_reserved counter by the same amount. We must make
1162         * sure extent_clear_unlock_delalloc() does not try to decrement again
1163         * the data space_info's bytes_may_use counter, therefore we do not pass
1164         * it the flag EXTENT_CLEAR_DATA_RESV.
1165         */
1166        if (extent_reserved) {
1167                extent_clear_unlock_delalloc(inode, start,
1168                                             start + cur_alloc_size - 1,
1169                                             locked_page,
1170                                             clear_bits,
1171                                             page_ops);
1172                start += cur_alloc_size;
1173                if (start >= end)
1174                        goto out;
1175        }
1176        extent_clear_unlock_delalloc(inode, start, end, locked_page,
1177                                     clear_bits | EXTENT_CLEAR_DATA_RESV,
1178                                     page_ops);
1179        goto out;
1180}
1181
1182/*
1183 * work queue call back to started compression on a file and pages
1184 */
1185static noinline void async_cow_start(struct btrfs_work *work)
1186{
1187        struct async_chunk *async_chunk;
1188        int compressed_extents;
1189
1190        async_chunk = container_of(work, struct async_chunk, work);
1191
1192        compressed_extents = compress_file_range(async_chunk);
1193        if (compressed_extents == 0) {
1194                btrfs_add_delayed_iput(async_chunk->inode);
1195                async_chunk->inode = NULL;
1196        }
1197}
1198
1199/*
1200 * work queue call back to submit previously compressed pages
1201 */
1202static noinline void async_cow_submit(struct btrfs_work *work)
1203{
1204        struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1205                                                     work);
1206        struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1207        unsigned long nr_pages;
1208
1209        nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1210                PAGE_SHIFT;
1211
1212        /* atomic_sub_return implies a barrier */
1213        if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1214            5 * SZ_1M)
1215                cond_wake_up_nomb(&fs_info->async_submit_wait);
1216
1217        /*
1218         * ->inode could be NULL if async_chunk_start has failed to compress,
1219         * in which case we don't have anything to submit, yet we need to
1220         * always adjust ->async_delalloc_pages as its paired with the init
1221         * happening in cow_file_range_async
1222         */
1223        if (async_chunk->inode)
1224                submit_compressed_extents(async_chunk);
1225}
1226
1227static noinline void async_cow_free(struct btrfs_work *work)
1228{
1229        struct async_chunk *async_chunk;
1230
1231        async_chunk = container_of(work, struct async_chunk, work);
1232        if (async_chunk->inode)
1233                btrfs_add_delayed_iput(async_chunk->inode);
1234        if (async_chunk->blkcg_css)
1235                css_put(async_chunk->blkcg_css);
1236        /*
1237         * Since the pointer to 'pending' is at the beginning of the array of
1238         * async_chunk's, freeing it ensures the whole array has been freed.
1239         */
1240        if (atomic_dec_and_test(async_chunk->pending))
1241                kvfree(async_chunk->pending);
1242}
1243
1244static int cow_file_range_async(struct btrfs_inode *inode,
1245                                struct writeback_control *wbc,
1246                                struct page *locked_page,
1247                                u64 start, u64 end, int *page_started,
1248                                unsigned long *nr_written)
1249{
1250        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1251        struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1252        struct async_cow *ctx;
1253        struct async_chunk *async_chunk;
1254        unsigned long nr_pages;
1255        u64 cur_end;
1256        u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1257        int i;
1258        bool should_compress;
1259        unsigned nofs_flag;
1260        const unsigned int write_flags = wbc_to_write_flags(wbc);
1261
1262        unlock_extent(&inode->io_tree, start, end);
1263
1264        if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1265            !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1266                num_chunks = 1;
1267                should_compress = false;
1268        } else {
1269                should_compress = true;
1270        }
1271
1272        nofs_flag = memalloc_nofs_save();
1273        ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1274        memalloc_nofs_restore(nofs_flag);
1275
1276        if (!ctx) {
1277                unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1278                        EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1279                        EXTENT_DO_ACCOUNTING;
1280                unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1281                        PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1282                        PAGE_SET_ERROR;
1283
1284                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1285                                             clear_bits, page_ops);
1286                return -ENOMEM;
1287        }
1288
1289        async_chunk = ctx->chunks;
1290        atomic_set(&ctx->num_chunks, num_chunks);
1291
1292        for (i = 0; i < num_chunks; i++) {
1293                if (should_compress)
1294                        cur_end = min(end, start + SZ_512K - 1);
1295                else
1296                        cur_end = end;
1297
1298                /*
1299                 * igrab is called higher up in the call chain, take only the
1300                 * lightweight reference for the callback lifetime
1301                 */
1302                ihold(&inode->vfs_inode);
1303                async_chunk[i].pending = &ctx->num_chunks;
1304                async_chunk[i].inode = &inode->vfs_inode;
1305                async_chunk[i].start = start;
1306                async_chunk[i].end = cur_end;
1307                async_chunk[i].write_flags = write_flags;
1308                INIT_LIST_HEAD(&async_chunk[i].extents);
1309
1310                /*
1311                 * The locked_page comes all the way from writepage and its
1312                 * the original page we were actually given.  As we spread
1313                 * this large delalloc region across multiple async_chunk
1314                 * structs, only the first struct needs a pointer to locked_page
1315                 *
1316                 * This way we don't need racey decisions about who is supposed
1317                 * to unlock it.
1318                 */
1319                if (locked_page) {
1320                        /*
1321                         * Depending on the compressibility, the pages might or
1322                         * might not go through async.  We want all of them to
1323                         * be accounted against wbc once.  Let's do it here
1324                         * before the paths diverge.  wbc accounting is used
1325                         * only for foreign writeback detection and doesn't
1326                         * need full accuracy.  Just account the whole thing
1327                         * against the first page.
1328                         */
1329                        wbc_account_cgroup_owner(wbc, locked_page,
1330                                                 cur_end - start);
1331                        async_chunk[i].locked_page = locked_page;
1332                        locked_page = NULL;
1333                } else {
1334                        async_chunk[i].locked_page = NULL;
1335                }
1336
1337                if (blkcg_css != blkcg_root_css) {
1338                        css_get(blkcg_css);
1339                        async_chunk[i].blkcg_css = blkcg_css;
1340                } else {
1341                        async_chunk[i].blkcg_css = NULL;
1342                }
1343
1344                btrfs_init_work(&async_chunk[i].work, async_cow_start,
1345                                async_cow_submit, async_cow_free);
1346
1347                nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1348                atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1349
1350                btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1351
1352                *nr_written += nr_pages;
1353                start = cur_end + 1;
1354        }
1355        *page_started = 1;
1356        return 0;
1357}
1358
1359static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1360                                        u64 bytenr, u64 num_bytes)
1361{
1362        int ret;
1363        struct btrfs_ordered_sum *sums;
1364        LIST_HEAD(list);
1365
1366        ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1367                                       bytenr + num_bytes - 1, &list, 0);
1368        if (ret == 0 && list_empty(&list))
1369                return 0;
1370
1371        while (!list_empty(&list)) {
1372                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1373                list_del(&sums->list);
1374                kfree(sums);
1375        }
1376        if (ret < 0)
1377                return ret;
1378        return 1;
1379}
1380
1381static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1382                           const u64 start, const u64 end,
1383                           int *page_started, unsigned long *nr_written)
1384{
1385        const bool is_space_ino = btrfs_is_free_space_inode(inode);
1386        const bool is_reloc_ino = (inode->root->root_key.objectid ==
1387                                   BTRFS_DATA_RELOC_TREE_OBJECTID);
1388        const u64 range_bytes = end + 1 - start;
1389        struct extent_io_tree *io_tree = &inode->io_tree;
1390        u64 range_start = start;
1391        u64 count;
1392
1393        /*
1394         * If EXTENT_NORESERVE is set it means that when the buffered write was
1395         * made we had not enough available data space and therefore we did not
1396         * reserve data space for it, since we though we could do NOCOW for the
1397         * respective file range (either there is prealloc extent or the inode
1398         * has the NOCOW bit set).
1399         *
1400         * However when we need to fallback to COW mode (because for example the
1401         * block group for the corresponding extent was turned to RO mode by a
1402         * scrub or relocation) we need to do the following:
1403         *
1404         * 1) We increment the bytes_may_use counter of the data space info.
1405         *    If COW succeeds, it allocates a new data extent and after doing
1406         *    that it decrements the space info's bytes_may_use counter and
1407         *    increments its bytes_reserved counter by the same amount (we do
1408         *    this at btrfs_add_reserved_bytes()). So we need to increment the
1409         *    bytes_may_use counter to compensate (when space is reserved at
1410         *    buffered write time, the bytes_may_use counter is incremented);
1411         *
1412         * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1413         *    that if the COW path fails for any reason, it decrements (through
1414         *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1415         *    data space info, which we incremented in the step above.
1416         *
1417         * If we need to fallback to cow and the inode corresponds to a free
1418         * space cache inode or an inode of the data relocation tree, we must
1419         * also increment bytes_may_use of the data space_info for the same
1420         * reason. Space caches and relocated data extents always get a prealloc
1421         * extent for them, however scrub or balance may have set the block
1422         * group that contains that extent to RO mode and therefore force COW
1423         * when starting writeback.
1424         */
1425        count = count_range_bits(io_tree, &range_start, end, range_bytes,
1426                                 EXTENT_NORESERVE, 0);
1427        if (count > 0 || is_space_ino || is_reloc_ino) {
1428                u64 bytes = count;
1429                struct btrfs_fs_info *fs_info = inode->root->fs_info;
1430                struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1431
1432                if (is_space_ino || is_reloc_ino)
1433                        bytes = range_bytes;
1434
1435                spin_lock(&sinfo->lock);
1436                btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1437                spin_unlock(&sinfo->lock);
1438
1439                if (count > 0)
1440                        clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1441                                         0, 0, NULL);
1442        }
1443
1444        return cow_file_range(inode, locked_page, start, end, page_started,
1445                              nr_written, 1);
1446}
1447
1448/*
1449 * when nowcow writeback call back.  This checks for snapshots or COW copies
1450 * of the extents that exist in the file, and COWs the file as required.
1451 *
1452 * If no cow copies or snapshots exist, we write directly to the existing
1453 * blocks on disk
1454 */
1455static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1456                                       struct page *locked_page,
1457                                       const u64 start, const u64 end,
1458                                       int *page_started, int force,
1459                                       unsigned long *nr_written)
1460{
1461        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1462        struct btrfs_root *root = inode->root;
1463        struct btrfs_path *path;
1464        u64 cow_start = (u64)-1;
1465        u64 cur_offset = start;
1466        int ret;
1467        bool check_prev = true;
1468        const bool freespace_inode = btrfs_is_free_space_inode(inode);
1469        u64 ino = btrfs_ino(inode);
1470        bool nocow = false;
1471        u64 disk_bytenr = 0;
1472
1473        path = btrfs_alloc_path();
1474        if (!path) {
1475                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1476                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1477                                             EXTENT_DO_ACCOUNTING |
1478                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1479                                             PAGE_CLEAR_DIRTY |
1480                                             PAGE_SET_WRITEBACK |
1481                                             PAGE_END_WRITEBACK);
1482                return -ENOMEM;
1483        }
1484
1485        while (1) {
1486                struct btrfs_key found_key;
1487                struct btrfs_file_extent_item *fi;
1488                struct extent_buffer *leaf;
1489                u64 extent_end;
1490                u64 extent_offset;
1491                u64 num_bytes = 0;
1492                u64 disk_num_bytes;
1493                u64 ram_bytes;
1494                int extent_type;
1495
1496                nocow = false;
1497
1498                ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1499                                               cur_offset, 0);
1500                if (ret < 0)
1501                        goto error;
1502
1503                /*
1504                 * If there is no extent for our range when doing the initial
1505                 * search, then go back to the previous slot as it will be the
1506                 * one containing the search offset
1507                 */
1508                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1509                        leaf = path->nodes[0];
1510                        btrfs_item_key_to_cpu(leaf, &found_key,
1511                                              path->slots[0] - 1);
1512                        if (found_key.objectid == ino &&
1513                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1514                                path->slots[0]--;
1515                }
1516                check_prev = false;
1517next_slot:
1518                /* Go to next leaf if we have exhausted the current one */
1519                leaf = path->nodes[0];
1520                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1521                        ret = btrfs_next_leaf(root, path);
1522                        if (ret < 0) {
1523                                if (cow_start != (u64)-1)
1524                                        cur_offset = cow_start;
1525                                goto error;
1526                        }
1527                        if (ret > 0)
1528                                break;
1529                        leaf = path->nodes[0];
1530                }
1531
1532                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1533
1534                /* Didn't find anything for our INO */
1535                if (found_key.objectid > ino)
1536                        break;
1537                /*
1538                 * Keep searching until we find an EXTENT_ITEM or there are no
1539                 * more extents for this inode
1540                 */
1541                if (WARN_ON_ONCE(found_key.objectid < ino) ||
1542                    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1543                        path->slots[0]++;
1544                        goto next_slot;
1545                }
1546
1547                /* Found key is not EXTENT_DATA_KEY or starts after req range */
1548                if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1549                    found_key.offset > end)
1550                        break;
1551
1552                /*
1553                 * If the found extent starts after requested offset, then
1554                 * adjust extent_end to be right before this extent begins
1555                 */
1556                if (found_key.offset > cur_offset) {
1557                        extent_end = found_key.offset;
1558                        extent_type = 0;
1559                        goto out_check;
1560                }
1561
1562                /*
1563                 * Found extent which begins before our range and potentially
1564                 * intersect it
1565                 */
1566                fi = btrfs_item_ptr(leaf, path->slots[0],
1567                                    struct btrfs_file_extent_item);
1568                extent_type = btrfs_file_extent_type(leaf, fi);
1569
1570                ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1571                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1572                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1573                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1574                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1575                        extent_end = found_key.offset +
1576                                btrfs_file_extent_num_bytes(leaf, fi);
1577                        disk_num_bytes =
1578                                btrfs_file_extent_disk_num_bytes(leaf, fi);
1579                        /*
1580                         * If the extent we got ends before our current offset,
1581                         * skip to the next extent.
1582                         */
1583                        if (extent_end <= cur_offset) {
1584                                path->slots[0]++;
1585                                goto next_slot;
1586                        }
1587                        /* Skip holes */
1588                        if (disk_bytenr == 0)
1589                                goto out_check;
1590                        /* Skip compressed/encrypted/encoded extents */
1591                        if (btrfs_file_extent_compression(leaf, fi) ||
1592                            btrfs_file_extent_encryption(leaf, fi) ||
1593                            btrfs_file_extent_other_encoding(leaf, fi))
1594                                goto out_check;
1595                        /*
1596                         * If extent is created before the last volume's snapshot
1597                         * this implies the extent is shared, hence we can't do
1598                         * nocow. This is the same check as in
1599                         * btrfs_cross_ref_exist but without calling
1600                         * btrfs_search_slot.
1601                         */
1602                        if (!freespace_inode &&
1603                            btrfs_file_extent_generation(leaf, fi) <=
1604                            btrfs_root_last_snapshot(&root->root_item))
1605                                goto out_check;
1606                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1607                                goto out_check;
1608                        /* If extent is RO, we must COW it */
1609                        if (btrfs_extent_readonly(fs_info, disk_bytenr))
1610                                goto out_check;
1611                        ret = btrfs_cross_ref_exist(root, ino,
1612                                                    found_key.offset -
1613                                                    extent_offset, disk_bytenr, false);
1614                        if (ret) {
1615                                /*
1616                                 * ret could be -EIO if the above fails to read
1617                                 * metadata.
1618                                 */
1619                                if (ret < 0) {
1620                                        if (cow_start != (u64)-1)
1621                                                cur_offset = cow_start;
1622                                        goto error;
1623                                }
1624
1625                                WARN_ON_ONCE(freespace_inode);
1626                                goto out_check;
1627                        }
1628                        disk_bytenr += extent_offset;
1629                        disk_bytenr += cur_offset - found_key.offset;
1630                        num_bytes = min(end + 1, extent_end) - cur_offset;
1631                        /*
1632                         * If there are pending snapshots for this root, we
1633                         * fall into common COW way
1634                         */
1635                        if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1636                                goto out_check;
1637                        /*
1638                         * force cow if csum exists in the range.
1639                         * this ensure that csum for a given extent are
1640                         * either valid or do not exist.
1641                         */
1642                        ret = csum_exist_in_range(fs_info, disk_bytenr,
1643                                                  num_bytes);
1644                        if (ret) {
1645                                /*
1646                                 * ret could be -EIO if the above fails to read
1647                                 * metadata.
1648                                 */
1649                                if (ret < 0) {
1650                                        if (cow_start != (u64)-1)
1651                                                cur_offset = cow_start;
1652                                        goto error;
1653                                }
1654                                WARN_ON_ONCE(freespace_inode);
1655                                goto out_check;
1656                        }
1657                        if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1658                                goto out_check;
1659                        nocow = true;
1660                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1661                        extent_end = found_key.offset + ram_bytes;
1662                        extent_end = ALIGN(extent_end, fs_info->sectorsize);
1663                        /* Skip extents outside of our requested range */
1664                        if (extent_end <= start) {
1665                                path->slots[0]++;
1666                                goto next_slot;
1667                        }
1668                } else {
1669                        /* If this triggers then we have a memory corruption */
1670                        BUG();
1671                }
1672out_check:
1673                /*
1674                 * If nocow is false then record the beginning of the range
1675                 * that needs to be COWed
1676                 */
1677                if (!nocow) {
1678                        if (cow_start == (u64)-1)
1679                                cow_start = cur_offset;
1680                        cur_offset = extent_end;
1681                        if (cur_offset > end)
1682                                break;
1683                        path->slots[0]++;
1684                        goto next_slot;
1685                }
1686
1687                btrfs_release_path(path);
1688
1689                /*
1690                 * COW range from cow_start to found_key.offset - 1. As the key
1691                 * will contain the beginning of the first extent that can be
1692                 * NOCOW, following one which needs to be COW'ed
1693                 */
1694                if (cow_start != (u64)-1) {
1695                        ret = fallback_to_cow(inode, locked_page,
1696                                              cow_start, found_key.offset - 1,
1697                                              page_started, nr_written);
1698                        if (ret)
1699                                goto error;
1700                        cow_start = (u64)-1;
1701                }
1702
1703                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1704                        u64 orig_start = found_key.offset - extent_offset;
1705                        struct extent_map *em;
1706
1707                        em = create_io_em(inode, cur_offset, num_bytes,
1708                                          orig_start,
1709                                          disk_bytenr, /* block_start */
1710                                          num_bytes, /* block_len */
1711                                          disk_num_bytes, /* orig_block_len */
1712                                          ram_bytes, BTRFS_COMPRESS_NONE,
1713                                          BTRFS_ORDERED_PREALLOC);
1714                        if (IS_ERR(em)) {
1715                                ret = PTR_ERR(em);
1716                                goto error;
1717                        }
1718                        free_extent_map(em);
1719                        ret = btrfs_add_ordered_extent(inode, cur_offset,
1720                                                       disk_bytenr, num_bytes,
1721                                                       num_bytes,
1722                                                       BTRFS_ORDERED_PREALLOC);
1723                        if (ret) {
1724                                btrfs_drop_extent_cache(inode, cur_offset,
1725                                                        cur_offset + num_bytes - 1,
1726                                                        0);
1727                                goto error;
1728                        }
1729                } else {
1730                        ret = btrfs_add_ordered_extent(inode, cur_offset,
1731                                                       disk_bytenr, num_bytes,
1732                                                       num_bytes,
1733                                                       BTRFS_ORDERED_NOCOW);
1734                        if (ret)
1735                                goto error;
1736                }
1737
1738                if (nocow)
1739                        btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1740                nocow = false;
1741
1742                if (root->root_key.objectid ==
1743                    BTRFS_DATA_RELOC_TREE_OBJECTID)
1744                        /*
1745                         * Error handled later, as we must prevent
1746                         * extent_clear_unlock_delalloc() in error handler
1747                         * from freeing metadata of created ordered extent.
1748                         */
1749                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1750                                                      num_bytes);
1751
1752                extent_clear_unlock_delalloc(inode, cur_offset,
1753                                             cur_offset + num_bytes - 1,
1754                                             locked_page, EXTENT_LOCKED |
1755                                             EXTENT_DELALLOC |
1756                                             EXTENT_CLEAR_DATA_RESV,
1757                                             PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1758
1759                cur_offset = extent_end;
1760
1761                /*
1762                 * btrfs_reloc_clone_csums() error, now we're OK to call error
1763                 * handler, as metadata for created ordered extent will only
1764                 * be freed by btrfs_finish_ordered_io().
1765                 */
1766                if (ret)
1767                        goto error;
1768                if (cur_offset > end)
1769                        break;
1770        }
1771        btrfs_release_path(path);
1772
1773        if (cur_offset <= end && cow_start == (u64)-1)
1774                cow_start = cur_offset;
1775
1776        if (cow_start != (u64)-1) {
1777                cur_offset = end;
1778                ret = fallback_to_cow(inode, locked_page, cow_start, end,
1779                                      page_started, nr_written);
1780                if (ret)
1781                        goto error;
1782        }
1783
1784error:
1785        if (nocow)
1786                btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1787
1788        if (ret && cur_offset < end)
1789                extent_clear_unlock_delalloc(inode, cur_offset, end,
1790                                             locked_page, EXTENT_LOCKED |
1791                                             EXTENT_DELALLOC | EXTENT_DEFRAG |
1792                                             EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1793                                             PAGE_CLEAR_DIRTY |
1794                                             PAGE_SET_WRITEBACK |
1795                                             PAGE_END_WRITEBACK);
1796        btrfs_free_path(path);
1797        return ret;
1798}
1799
1800static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1801{
1802
1803        if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1804            !(inode->flags & BTRFS_INODE_PREALLOC))
1805                return 0;
1806
1807        /*
1808         * @defrag_bytes is a hint value, no spinlock held here,
1809         * if is not zero, it means the file is defragging.
1810         * Force cow if given extent needs to be defragged.
1811         */
1812        if (inode->defrag_bytes &&
1813            test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1814                return 1;
1815
1816        return 0;
1817}
1818
1819/*
1820 * Function to process delayed allocation (create CoW) for ranges which are
1821 * being touched for the first time.
1822 */
1823int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1824                u64 start, u64 end, int *page_started, unsigned long *nr_written,
1825                struct writeback_control *wbc)
1826{
1827        int ret;
1828        int force_cow = need_force_cow(inode, start, end);
1829
1830        if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1831                ret = run_delalloc_nocow(inode, locked_page, start, end,
1832                                         page_started, 1, nr_written);
1833        } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1834                ret = run_delalloc_nocow(inode, locked_page, start, end,
1835                                         page_started, 0, nr_written);
1836        } else if (!inode_can_compress(inode) ||
1837                   !inode_need_compress(inode, start, end)) {
1838                ret = cow_file_range(inode, locked_page, start, end,
1839                                     page_started, nr_written, 1);
1840        } else {
1841                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1842                ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1843                                           page_started, nr_written);
1844        }
1845        if (ret)
1846                btrfs_cleanup_ordered_extents(inode, locked_page, start,
1847                                              end - start + 1);
1848        return ret;
1849}
1850
1851void btrfs_split_delalloc_extent(struct inode *inode,
1852                                 struct extent_state *orig, u64 split)
1853{
1854        u64 size;
1855
1856        /* not delalloc, ignore it */
1857        if (!(orig->state & EXTENT_DELALLOC))
1858                return;
1859
1860        size = orig->end - orig->start + 1;
1861        if (size > BTRFS_MAX_EXTENT_SIZE) {
1862                u32 num_extents;
1863                u64 new_size;
1864
1865                /*
1866                 * See the explanation in btrfs_merge_delalloc_extent, the same
1867                 * applies here, just in reverse.
1868                 */
1869                new_size = orig->end - split + 1;
1870                num_extents = count_max_extents(new_size);
1871                new_size = split - orig->start;
1872                num_extents += count_max_extents(new_size);
1873                if (count_max_extents(size) >= num_extents)
1874                        return;
1875        }
1876
1877        spin_lock(&BTRFS_I(inode)->lock);
1878        btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1879        spin_unlock(&BTRFS_I(inode)->lock);
1880}
1881
1882/*
1883 * Handle merged delayed allocation extents so we can keep track of new extents
1884 * that are just merged onto old extents, such as when we are doing sequential
1885 * writes, so we can properly account for the metadata space we'll need.
1886 */
1887void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1888                                 struct extent_state *other)
1889{
1890        u64 new_size, old_size;
1891        u32 num_extents;
1892
1893        /* not delalloc, ignore it */
1894        if (!(other->state & EXTENT_DELALLOC))
1895                return;
1896
1897        if (new->start > other->start)
1898                new_size = new->end - other->start + 1;
1899        else
1900                new_size = other->end - new->start + 1;
1901
1902        /* we're not bigger than the max, unreserve the space and go */
1903        if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1904                spin_lock(&BTRFS_I(inode)->lock);
1905                btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1906                spin_unlock(&BTRFS_I(inode)->lock);
1907                return;
1908        }
1909
1910        /*
1911         * We have to add up either side to figure out how many extents were
1912         * accounted for before we merged into one big extent.  If the number of
1913         * extents we accounted for is <= the amount we need for the new range
1914         * then we can return, otherwise drop.  Think of it like this
1915         *
1916         * [ 4k][MAX_SIZE]
1917         *
1918         * So we've grown the extent by a MAX_SIZE extent, this would mean we
1919         * need 2 outstanding extents, on one side we have 1 and the other side
1920         * we have 1 so they are == and we can return.  But in this case
1921         *
1922         * [MAX_SIZE+4k][MAX_SIZE+4k]
1923         *
1924         * Each range on their own accounts for 2 extents, but merged together
1925         * they are only 3 extents worth of accounting, so we need to drop in
1926         * this case.
1927         */
1928        old_size = other->end - other->start + 1;
1929        num_extents = count_max_extents(old_size);
1930        old_size = new->end - new->start + 1;
1931        num_extents += count_max_extents(old_size);
1932        if (count_max_extents(new_size) >= num_extents)
1933                return;
1934
1935        spin_lock(&BTRFS_I(inode)->lock);
1936        btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1937        spin_unlock(&BTRFS_I(inode)->lock);
1938}
1939
1940static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1941                                      struct inode *inode)
1942{
1943        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1944
1945        spin_lock(&root->delalloc_lock);
1946        if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1947                list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1948                              &root->delalloc_inodes);
1949                set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1950                        &BTRFS_I(inode)->runtime_flags);
1951                root->nr_delalloc_inodes++;
1952                if (root->nr_delalloc_inodes == 1) {
1953                        spin_lock(&fs_info->delalloc_root_lock);
1954                        BUG_ON(!list_empty(&root->delalloc_root));
1955                        list_add_tail(&root->delalloc_root,
1956                                      &fs_info->delalloc_roots);
1957                        spin_unlock(&fs_info->delalloc_root_lock);
1958                }
1959        }
1960        spin_unlock(&root->delalloc_lock);
1961}
1962
1963
1964void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1965                                struct btrfs_inode *inode)
1966{
1967        struct btrfs_fs_info *fs_info = root->fs_info;
1968
1969        if (!list_empty(&inode->delalloc_inodes)) {
1970                list_del_init(&inode->delalloc_inodes);
1971                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1972                          &inode->runtime_flags);
1973                root->nr_delalloc_inodes--;
1974                if (!root->nr_delalloc_inodes) {
1975                        ASSERT(list_empty(&root->delalloc_inodes));
1976                        spin_lock(&fs_info->delalloc_root_lock);
1977                        BUG_ON(list_empty(&root->delalloc_root));
1978                        list_del_init(&root->delalloc_root);
1979                        spin_unlock(&fs_info->delalloc_root_lock);
1980                }
1981        }
1982}
1983
1984static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1985                                     struct btrfs_inode *inode)
1986{
1987        spin_lock(&root->delalloc_lock);
1988        __btrfs_del_delalloc_inode(root, inode);
1989        spin_unlock(&root->delalloc_lock);
1990}
1991
1992/*
1993 * Properly track delayed allocation bytes in the inode and to maintain the
1994 * list of inodes that have pending delalloc work to be done.
1995 */
1996void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1997                               unsigned *bits)
1998{
1999        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2000
2001        if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2002                WARN_ON(1);
2003        /*
2004         * set_bit and clear bit hooks normally require _irqsave/restore
2005         * but in this case, we are only testing for the DELALLOC
2006         * bit, which is only set or cleared with irqs on
2007         */
2008        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2009                struct btrfs_root *root = BTRFS_I(inode)->root;
2010                u64 len = state->end + 1 - state->start;
2011                u32 num_extents = count_max_extents(len);
2012                bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2013
2014                spin_lock(&BTRFS_I(inode)->lock);
2015                btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2016                spin_unlock(&BTRFS_I(inode)->lock);
2017
2018                /* For sanity tests */
2019                if (btrfs_is_testing(fs_info))
2020                        return;
2021
2022                percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2023                                         fs_info->delalloc_batch);
2024                spin_lock(&BTRFS_I(inode)->lock);
2025                BTRFS_I(inode)->delalloc_bytes += len;
2026                if (*bits & EXTENT_DEFRAG)
2027                        BTRFS_I(inode)->defrag_bytes += len;
2028                if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2029                                         &BTRFS_I(inode)->runtime_flags))
2030                        btrfs_add_delalloc_inodes(root, inode);
2031                spin_unlock(&BTRFS_I(inode)->lock);
2032        }
2033
2034        if (!(state->state & EXTENT_DELALLOC_NEW) &&
2035            (*bits & EXTENT_DELALLOC_NEW)) {
2036                spin_lock(&BTRFS_I(inode)->lock);
2037                BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2038                        state->start;
2039                spin_unlock(&BTRFS_I(inode)->lock);
2040        }
2041}
2042
2043/*
2044 * Once a range is no longer delalloc this function ensures that proper
2045 * accounting happens.
2046 */
2047void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2048                                 struct extent_state *state, unsigned *bits)
2049{
2050        struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2051        struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2052        u64 len = state->end + 1 - state->start;
2053        u32 num_extents = count_max_extents(len);
2054
2055        if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2056                spin_lock(&inode->lock);
2057                inode->defrag_bytes -= len;
2058                spin_unlock(&inode->lock);
2059        }
2060
2061        /*
2062         * set_bit and clear bit hooks normally require _irqsave/restore
2063         * but in this case, we are only testing for the DELALLOC
2064         * bit, which is only set or cleared with irqs on
2065         */
2066        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2067                struct btrfs_root *root = inode->root;
2068                bool do_list = !btrfs_is_free_space_inode(inode);
2069
2070                spin_lock(&inode->lock);
2071                btrfs_mod_outstanding_extents(inode, -num_extents);
2072                spin_unlock(&inode->lock);
2073
2074                /*
2075                 * We don't reserve metadata space for space cache inodes so we
2076                 * don't need to call delalloc_release_metadata if there is an
2077                 * error.
2078                 */
2079                if (*bits & EXTENT_CLEAR_META_RESV &&
2080                    root != fs_info->tree_root)
2081                        btrfs_delalloc_release_metadata(inode, len, false);
2082
2083                /* For sanity tests. */
2084                if (btrfs_is_testing(fs_info))
2085                        return;
2086
2087                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2088                    do_list && !(state->state & EXTENT_NORESERVE) &&
2089                    (*bits & EXTENT_CLEAR_DATA_RESV))
2090                        btrfs_free_reserved_data_space_noquota(fs_info, len);
2091
2092                percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2093                                         fs_info->delalloc_batch);
2094                spin_lock(&inode->lock);
2095                inode->delalloc_bytes -= len;
2096                if (do_list && inode->delalloc_bytes == 0 &&
2097                    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2098                                        &inode->runtime_flags))
2099                        btrfs_del_delalloc_inode(root, inode);
2100                spin_unlock(&inode->lock);
2101        }
2102
2103        if ((state->state & EXTENT_DELALLOC_NEW) &&
2104            (*bits & EXTENT_DELALLOC_NEW)) {
2105                spin_lock(&inode->lock);
2106                ASSERT(inode->new_delalloc_bytes >= len);
2107                inode->new_delalloc_bytes -= len;
2108                spin_unlock(&inode->lock);
2109        }
2110}
2111
2112/*
2113 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2114 * in a chunk's stripe. This function ensures that bios do not span a
2115 * stripe/chunk
2116 *
2117 * @page - The page we are about to add to the bio
2118 * @size - size we want to add to the bio
2119 * @bio - bio we want to ensure is smaller than a stripe
2120 * @bio_flags - flags of the bio
2121 *
2122 * return 1 if page cannot be added to the bio
2123 * return 0 if page can be added to the bio
2124 * return error otherwise
2125 */
2126int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2127                             unsigned long bio_flags)
2128{
2129        struct inode *inode = page->mapping->host;
2130        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2131        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2132        u64 length = 0;
2133        u64 map_length;
2134        int ret;
2135        struct btrfs_io_geometry geom;
2136
2137        if (bio_flags & EXTENT_BIO_COMPRESSED)
2138                return 0;
2139
2140        length = bio->bi_iter.bi_size;
2141        map_length = length;
2142        ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2143                                    &geom);
2144        if (ret < 0)
2145                return ret;
2146
2147        if (geom.len < length + size)
2148                return 1;
2149        return 0;
2150}
2151
2152/*
2153 * in order to insert checksums into the metadata in large chunks,
2154 * we wait until bio submission time.   All the pages in the bio are
2155 * checksummed and sums are attached onto the ordered extent record.
2156 *
2157 * At IO completion time the cums attached on the ordered extent record
2158 * are inserted into the btree
2159 */
2160static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2161                                    u64 bio_offset)
2162{
2163        struct inode *inode = private_data;
2164
2165        return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2166}
2167
2168/*
2169 * extent_io.c submission hook. This does the right thing for csum calculation
2170 * on write, or reading the csums from the tree before a read.
2171 *
2172 * Rules about async/sync submit,
2173 * a) read:                             sync submit
2174 *
2175 * b) write without checksum:           sync submit
2176 *
2177 * c) write with checksum:
2178 *    c-1) if bio is issued by fsync:   sync submit
2179 *         (sync_writers != 0)
2180 *
2181 *    c-2) if root is reloc root:       sync submit
2182 *         (only in case of buffered IO)
2183 *
2184 *    c-3) otherwise:                   async submit
2185 */
2186static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2187                                          int mirror_num,
2188                                          unsigned long bio_flags)
2189
2190{
2191        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2192        struct btrfs_root *root = BTRFS_I(inode)->root;
2193        enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2194        blk_status_t ret = 0;
2195        int skip_sum;
2196        int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2197
2198        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2199
2200        if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2201                metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2202
2203        if (bio_op(bio) != REQ_OP_WRITE) {
2204                ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2205                if (ret)
2206                        goto out;
2207
2208                if (bio_flags & EXTENT_BIO_COMPRESSED) {
2209                        ret = btrfs_submit_compressed_read(inode, bio,
2210                                                           mirror_num,
2211                                                           bio_flags);
2212                        goto out;
2213                } else if (!skip_sum) {
2214                        ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2215                        if (ret)
2216                                goto out;
2217                }
2218                goto mapit;
2219        } else if (async && !skip_sum) {
2220                /* csum items have already been cloned */
2221                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2222                        goto mapit;
2223                /* we're doing a write, do the async checksumming */
2224                ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2225                                          0, inode, btrfs_submit_bio_start);
2226                goto out;
2227        } else if (!skip_sum) {
2228                ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2229                if (ret)
2230                        goto out;
2231        }
2232
2233mapit:
2234        ret = btrfs_map_bio(fs_info, bio, mirror_num);
2235
2236out:
2237        if (ret) {
2238                bio->bi_status = ret;
2239                bio_endio(bio);
2240        }
2241        return ret;
2242}
2243
2244/*
2245 * given a list of ordered sums record them in the inode.  This happens
2246 * at IO completion time based on sums calculated at bio submission time.
2247 */
2248static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2249                             struct inode *inode, struct list_head *list)
2250{
2251        struct btrfs_ordered_sum *sum;
2252        int ret;
2253
2254        list_for_each_entry(sum, list, list) {
2255                trans->adding_csums = true;
2256                ret = btrfs_csum_file_blocks(trans,
2257                       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2258                trans->adding_csums = false;
2259                if (ret)
2260                        return ret;
2261        }
2262        return 0;
2263}
2264
2265int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2266                              unsigned int extra_bits,
2267                              struct extent_state **cached_state)
2268{
2269        WARN_ON(PAGE_ALIGNED(end));
2270        return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2271                                   cached_state);
2272}
2273
2274/* see btrfs_writepage_start_hook for details on why this is required */
2275struct btrfs_writepage_fixup {
2276        struct page *page;
2277        struct inode *inode;
2278        struct btrfs_work work;
2279};
2280
2281static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2282{
2283        struct btrfs_writepage_fixup *fixup;
2284        struct btrfs_ordered_extent *ordered;
2285        struct extent_state *cached_state = NULL;
2286        struct extent_changeset *data_reserved = NULL;
2287        struct page *page;
2288        struct btrfs_inode *inode;
2289        u64 page_start;
2290        u64 page_end;
2291        int ret = 0;
2292        bool free_delalloc_space = true;
2293
2294        fixup = container_of(work, struct btrfs_writepage_fixup, work);
2295        page = fixup->page;
2296        inode = BTRFS_I(fixup->inode);
2297        page_start = page_offset(page);
2298        page_end = page_offset(page) + PAGE_SIZE - 1;
2299
2300        /*
2301         * This is similar to page_mkwrite, we need to reserve the space before
2302         * we take the page lock.
2303         */
2304        ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2305                                           PAGE_SIZE);
2306again:
2307        lock_page(page);
2308
2309        /*
2310         * Before we queued this fixup, we took a reference on the page.
2311         * page->mapping may go NULL, but it shouldn't be moved to a different
2312         * address space.
2313         */
2314        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2315                /*
2316                 * Unfortunately this is a little tricky, either
2317                 *
2318                 * 1) We got here and our page had already been dealt with and
2319                 *    we reserved our space, thus ret == 0, so we need to just
2320                 *    drop our space reservation and bail.  This can happen the
2321                 *    first time we come into the fixup worker, or could happen
2322                 *    while waiting for the ordered extent.
2323                 * 2) Our page was already dealt with, but we happened to get an
2324                 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2325                 *    this case we obviously don't have anything to release, but
2326                 *    because the page was already dealt with we don't want to
2327                 *    mark the page with an error, so make sure we're resetting
2328                 *    ret to 0.  This is why we have this check _before_ the ret
2329                 *    check, because we do not want to have a surprise ENOSPC
2330                 *    when the page was already properly dealt with.
2331                 */
2332                if (!ret) {
2333                        btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2334                        btrfs_delalloc_release_space(inode, data_reserved,
2335                                                     page_start, PAGE_SIZE,
2336                                                     true);
2337                }
2338                ret = 0;
2339                goto out_page;
2340        }
2341
2342        /*
2343         * We can't mess with the page state unless it is locked, so now that
2344         * it is locked bail if we failed to make our space reservation.
2345         */
2346        if (ret)
2347                goto out_page;
2348
2349        lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2350
2351        /* already ordered? We're done */
2352        if (PagePrivate2(page))
2353                goto out_reserved;
2354
2355        ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2356        if (ordered) {
2357                unlock_extent_cached(&inode->io_tree, page_start, page_end,
2358                                     &cached_state);
2359                unlock_page(page);
2360                btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
2361                btrfs_put_ordered_extent(ordered);
2362                goto again;
2363        }
2364
2365        ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2366                                        &cached_state);
2367        if (ret)
2368                goto out_reserved;
2369
2370        /*
2371         * Everything went as planned, we're now the owner of a dirty page with
2372         * delayed allocation bits set and space reserved for our COW
2373         * destination.
2374         *
2375         * The page was dirty when we started, nothing should have cleaned it.
2376         */
2377        BUG_ON(!PageDirty(page));
2378        free_delalloc_space = false;
2379out_reserved:
2380        btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2381        if (free_delalloc_space)
2382                btrfs_delalloc_release_space(inode, data_reserved, page_start,
2383                                             PAGE_SIZE, true);
2384        unlock_extent_cached(&inode->io_tree, page_start, page_end,
2385                             &cached_state);
2386out_page:
2387        if (ret) {
2388                /*
2389                 * We hit ENOSPC or other errors.  Update the mapping and page
2390                 * to reflect the errors and clean the page.
2391                 */
2392                mapping_set_error(page->mapping, ret);
2393                end_extent_writepage(page, ret, page_start, page_end);
2394                clear_page_dirty_for_io(page);
2395                SetPageError(page);
2396        }
2397        ClearPageChecked(page);
2398        unlock_page(page);
2399        put_page(page);
2400        kfree(fixup);
2401        extent_changeset_free(data_reserved);
2402        /*
2403         * As a precaution, do a delayed iput in case it would be the last iput
2404         * that could need flushing space. Recursing back to fixup worker would
2405         * deadlock.
2406         */
2407        btrfs_add_delayed_iput(&inode->vfs_inode);
2408}
2409
2410/*
2411 * There are a few paths in the higher layers of the kernel that directly
2412 * set the page dirty bit without asking the filesystem if it is a
2413 * good idea.  This causes problems because we want to make sure COW
2414 * properly happens and the data=ordered rules are followed.
2415 *
2416 * In our case any range that doesn't have the ORDERED bit set
2417 * hasn't been properly setup for IO.  We kick off an async process
2418 * to fix it up.  The async helper will wait for ordered extents, set
2419 * the delalloc bit and make it safe to write the page.
2420 */
2421int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2422{
2423        struct inode *inode = page->mapping->host;
2424        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2425        struct btrfs_writepage_fixup *fixup;
2426
2427        /* this page is properly in the ordered list */
2428        if (TestClearPagePrivate2(page))
2429                return 0;
2430
2431        /*
2432         * PageChecked is set below when we create a fixup worker for this page,
2433         * don't try to create another one if we're already PageChecked()
2434         *
2435         * The extent_io writepage code will redirty the page if we send back
2436         * EAGAIN.
2437         */
2438        if (PageChecked(page))
2439                return -EAGAIN;
2440
2441        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2442        if (!fixup)
2443                return -EAGAIN;
2444
2445        /*
2446         * We are already holding a reference to this inode from
2447         * write_cache_pages.  We need to hold it because the space reservation
2448         * takes place outside of the page lock, and we can't trust
2449         * page->mapping outside of the page lock.
2450         */
2451        ihold(inode);
2452        SetPageChecked(page);
2453        get_page(page);
2454        btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2455        fixup->page = page;
2456        fixup->inode = inode;
2457        btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2458
2459        return -EAGAIN;
2460}
2461
2462static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2463                                       struct btrfs_inode *inode, u64 file_pos,
2464                                       struct btrfs_file_extent_item *stack_fi,
2465                                       u64 qgroup_reserved)
2466{
2467        struct btrfs_root *root = inode->root;
2468        struct btrfs_path *path;
2469        struct extent_buffer *leaf;
2470        struct btrfs_key ins;
2471        u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2472        u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2473        u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2474        u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2475        int extent_inserted = 0;
2476        int ret;
2477
2478        path = btrfs_alloc_path();
2479        if (!path)
2480                return -ENOMEM;
2481
2482        /*
2483         * we may be replacing one extent in the tree with another.
2484         * The new extent is pinned in the extent map, and we don't want
2485         * to drop it from the cache until it is completely in the btree.
2486         *
2487         * So, tell btrfs_drop_extents to leave this extent in the cache.
2488         * the caller is expected to unpin it and allow it to be merged
2489         * with the others.
2490         */
2491        ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2492                                   file_pos + num_bytes, NULL, 0,
2493                                   1, sizeof(*stack_fi), &extent_inserted);
2494        if (ret)
2495                goto out;
2496
2497        if (!extent_inserted) {
2498                ins.objectid = btrfs_ino(inode);
2499                ins.offset = file_pos;
2500                ins.type = BTRFS_EXTENT_DATA_KEY;
2501
2502                path->leave_spinning = 1;
2503                ret = btrfs_insert_empty_item(trans, root, path, &ins,
2504                                              sizeof(*stack_fi));
2505                if (ret)
2506                        goto out;
2507        }
2508        leaf = path->nodes[0];
2509        btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2510        write_extent_buffer(leaf, stack_fi,
2511                        btrfs_item_ptr_offset(leaf, path->slots[0]),
2512                        sizeof(struct btrfs_file_extent_item));
2513
2514        btrfs_mark_buffer_dirty(leaf);
2515        btrfs_release_path(path);
2516
2517        inode_add_bytes(&inode->vfs_inode, num_bytes);
2518
2519        ins.objectid = disk_bytenr;
2520        ins.offset = disk_num_bytes;
2521        ins.type = BTRFS_EXTENT_ITEM_KEY;
2522
2523        ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2524        if (ret)
2525                goto out;
2526
2527        ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2528                                               file_pos, qgroup_reserved, &ins);
2529out:
2530        btrfs_free_path(path);
2531
2532        return ret;
2533}
2534
2535static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2536                                         u64 start, u64 len)
2537{
2538        struct btrfs_block_group *cache;
2539
2540        cache = btrfs_lookup_block_group(fs_info, start);
2541        ASSERT(cache);
2542
2543        spin_lock(&cache->lock);
2544        cache->delalloc_bytes -= len;
2545        spin_unlock(&cache->lock);
2546
2547        btrfs_put_block_group(cache);
2548}
2549
2550static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2551                                             struct inode *inode,
2552                                             struct btrfs_ordered_extent *oe)
2553{
2554        struct btrfs_file_extent_item stack_fi;
2555        u64 logical_len;
2556
2557        memset(&stack_fi, 0, sizeof(stack_fi));
2558        btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2559        btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2560        btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2561                                                   oe->disk_num_bytes);
2562        if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2563                logical_len = oe->truncated_len;
2564        else
2565                logical_len = oe->num_bytes;
2566        btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2567        btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2568        btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2569        /* Encryption and other encoding is reserved and all 0 */
2570
2571        return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset,
2572                                           &stack_fi, oe->qgroup_rsv);
2573}
2574
2575/*
2576 * As ordered data IO finishes, this gets called so we can finish
2577 * an ordered extent if the range of bytes in the file it covers are
2578 * fully written.
2579 */
2580static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2581{
2582        struct inode *inode = ordered_extent->inode;
2583        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2584        struct btrfs_root *root = BTRFS_I(inode)->root;
2585        struct btrfs_trans_handle *trans = NULL;
2586        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2587        struct extent_state *cached_state = NULL;
2588        u64 start, end;
2589        int compress_type = 0;
2590        int ret = 0;
2591        u64 logical_len = ordered_extent->num_bytes;
2592        bool freespace_inode;
2593        bool truncated = false;
2594        bool range_locked = false;
2595        bool clear_new_delalloc_bytes = false;
2596        bool clear_reserved_extent = true;
2597        unsigned int clear_bits;
2598
2599        start = ordered_extent->file_offset;
2600        end = start + ordered_extent->num_bytes - 1;
2601
2602        if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2603            !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2604            !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2605                clear_new_delalloc_bytes = true;
2606
2607        freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2608
2609        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2610                ret = -EIO;
2611                goto out;
2612        }
2613
2614        btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2615
2616        if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2617                truncated = true;
2618                logical_len = ordered_extent->truncated_len;
2619                /* Truncated the entire extent, don't bother adding */
2620                if (!logical_len)
2621                        goto out;
2622        }
2623
2624        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2625                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2626
2627                btrfs_inode_safe_disk_i_size_write(inode, 0);
2628                if (freespace_inode)
2629                        trans = btrfs_join_transaction_spacecache(root);
2630                else
2631                        trans = btrfs_join_transaction(root);
2632                if (IS_ERR(trans)) {
2633                        ret = PTR_ERR(trans);
2634                        trans = NULL;
2635                        goto out;
2636                }
2637                trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2638                ret = btrfs_update_inode_fallback(trans, root, inode);
2639                if (ret) /* -ENOMEM or corruption */
2640                        btrfs_abort_transaction(trans, ret);
2641                goto out;
2642        }
2643
2644        range_locked = true;
2645        lock_extent_bits(io_tree, start, end, &cached_state);
2646
2647        if (freespace_inode)
2648                trans = btrfs_join_transaction_spacecache(root);
2649        else
2650                trans = btrfs_join_transaction(root);
2651        if (IS_ERR(trans)) {
2652                ret = PTR_ERR(trans);
2653                trans = NULL;
2654                goto out;
2655        }
2656
2657        trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2658
2659        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2660                compress_type = ordered_extent->compress_type;
2661        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2662                BUG_ON(compress_type);
2663                ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2664                                                ordered_extent->file_offset,
2665                                                ordered_extent->file_offset +
2666                                                logical_len);
2667        } else {
2668                BUG_ON(root == fs_info->tree_root);
2669                ret = insert_ordered_extent_file_extent(trans, inode,
2670                                                        ordered_extent);
2671                if (!ret) {
2672                        clear_reserved_extent = false;
2673                        btrfs_release_delalloc_bytes(fs_info,
2674                                                ordered_extent->disk_bytenr,
2675                                                ordered_extent->disk_num_bytes);
2676                }
2677        }
2678        unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2679                           ordered_extent->file_offset,
2680                           ordered_extent->num_bytes, trans->transid);
2681        if (ret < 0) {
2682                btrfs_abort_transaction(trans, ret);
2683                goto out;
2684        }
2685
2686        ret = add_pending_csums(trans, inode, &ordered_extent->list);
2687        if (ret) {
2688                btrfs_abort_transaction(trans, ret);
2689                goto out;
2690        }
2691
2692        btrfs_inode_safe_disk_i_size_write(inode, 0);
2693        ret = btrfs_update_inode_fallback(trans, root, inode);
2694        if (ret) { /* -ENOMEM or corruption */
2695                btrfs_abort_transaction(trans, ret);
2696                goto out;
2697        }
2698        ret = 0;
2699out:
2700        clear_bits = EXTENT_DEFRAG;
2701        if (range_locked)
2702                clear_bits |= EXTENT_LOCKED;
2703        if (clear_new_delalloc_bytes)
2704                clear_bits |= EXTENT_DELALLOC_NEW;
2705        clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2706                         (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2707                         &cached_state);
2708
2709        if (trans)
2710                btrfs_end_transaction(trans);
2711
2712        if (ret || truncated) {
2713                u64 unwritten_start = start;
2714
2715                if (truncated)
2716                        unwritten_start += logical_len;
2717                clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2718
2719                /* Drop the cache for the part of the extent we didn't write. */
2720                btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2721
2722                /*
2723                 * If the ordered extent had an IOERR or something else went
2724                 * wrong we need to return the space for this ordered extent
2725                 * back to the allocator.  We only free the extent in the
2726                 * truncated case if we didn't write out the extent at all.
2727                 *
2728                 * If we made it past insert_reserved_file_extent before we
2729                 * errored out then we don't need to do this as the accounting
2730                 * has already been done.
2731                 */
2732                if ((ret || !logical_len) &&
2733                    clear_reserved_extent &&
2734                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2735                    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2736                        /*
2737                         * Discard the range before returning it back to the
2738                         * free space pool
2739                         */
2740                        if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2741                                btrfs_discard_extent(fs_info,
2742                                                ordered_extent->disk_bytenr,
2743                                                ordered_extent->disk_num_bytes,
2744                                                NULL);
2745                        btrfs_free_reserved_extent(fs_info,
2746                                        ordered_extent->disk_bytenr,
2747                                        ordered_extent->disk_num_bytes, 1);
2748                }
2749        }
2750
2751        /*
2752         * This needs to be done to make sure anybody waiting knows we are done
2753         * updating everything for this ordered extent.
2754         */
2755        btrfs_remove_ordered_extent(inode, ordered_extent);
2756
2757        /* once for us */
2758        btrfs_put_ordered_extent(ordered_extent);
2759        /* once for the tree */
2760        btrfs_put_ordered_extent(ordered_extent);
2761
2762        return ret;
2763}
2764
2765static void finish_ordered_fn(struct btrfs_work *work)
2766{
2767        struct btrfs_ordered_extent *ordered_extent;
2768        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2769        btrfs_finish_ordered_io(ordered_extent);
2770}
2771
2772void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2773                                          u64 end, int uptodate)
2774{
2775        struct inode *inode = page->mapping->host;
2776        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2777        struct btrfs_ordered_extent *ordered_extent = NULL;
2778        struct btrfs_workqueue *wq;
2779
2780        trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2781
2782        ClearPagePrivate2(page);
2783        if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2784                                            end - start + 1, uptodate))
2785                return;
2786
2787        if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2788                wq = fs_info->endio_freespace_worker;
2789        else
2790                wq = fs_info->endio_write_workers;
2791
2792        btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2793        btrfs_queue_work(wq, &ordered_extent->work);
2794}
2795
2796static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2797                           int icsum, struct page *page, int pgoff, u64 start,
2798                           size_t len)
2799{
2800        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2801        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2802        char *kaddr;
2803        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2804        u8 *csum_expected;
2805        u8 csum[BTRFS_CSUM_SIZE];
2806
2807        csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2808
2809        kaddr = kmap_atomic(page);
2810        shash->tfm = fs_info->csum_shash;
2811
2812        crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2813
2814        if (memcmp(csum, csum_expected, csum_size))
2815                goto zeroit;
2816
2817        kunmap_atomic(kaddr);
2818        return 0;
2819zeroit:
2820        btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2821                                    io_bio->mirror_num);
2822        if (io_bio->device)
2823                btrfs_dev_stat_inc_and_print(io_bio->device,
2824                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
2825        memset(kaddr + pgoff, 1, len);
2826        flush_dcache_page(page);
2827        kunmap_atomic(kaddr);
2828        return -EIO;
2829}
2830
2831/*
2832 * when reads are done, we need to check csums to verify the data is correct
2833 * if there's a match, we allow the bio to finish.  If not, the code in
2834 * extent_io.c will try to find good copies for us.
2835 */
2836static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2837                                      u64 phy_offset, struct page *page,
2838                                      u64 start, u64 end, int mirror)
2839{
2840        size_t offset = start - page_offset(page);
2841        struct inode *inode = page->mapping->host;
2842        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2843        struct btrfs_root *root = BTRFS_I(inode)->root;
2844
2845        if (PageChecked(page)) {
2846                ClearPageChecked(page);
2847                return 0;
2848        }
2849
2850        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2851                return 0;
2852
2853        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2854            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2855                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2856                return 0;
2857        }
2858
2859        phy_offset >>= inode->i_sb->s_blocksize_bits;
2860        return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2861                               (size_t)(end - start + 1));
2862}
2863
2864/*
2865 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2866 *
2867 * @inode: The inode we want to perform iput on
2868 *
2869 * This function uses the generic vfs_inode::i_count to track whether we should
2870 * just decrement it (in case it's > 1) or if this is the last iput then link
2871 * the inode to the delayed iput machinery. Delayed iputs are processed at
2872 * transaction commit time/superblock commit/cleaner kthread.
2873 */
2874void btrfs_add_delayed_iput(struct inode *inode)
2875{
2876        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2877        struct btrfs_inode *binode = BTRFS_I(inode);
2878
2879        if (atomic_add_unless(&inode->i_count, -1, 1))
2880                return;
2881
2882        atomic_inc(&fs_info->nr_delayed_iputs);
2883        spin_lock(&fs_info->delayed_iput_lock);
2884        ASSERT(list_empty(&binode->delayed_iput));
2885        list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2886        spin_unlock(&fs_info->delayed_iput_lock);
2887        if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2888                wake_up_process(fs_info->cleaner_kthread);
2889}
2890
2891static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2892                                    struct btrfs_inode *inode)
2893{
2894        list_del_init(&inode->delayed_iput);
2895        spin_unlock(&fs_info->delayed_iput_lock);
2896        iput(&inode->vfs_inode);
2897        if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2898                wake_up(&fs_info->delayed_iputs_wait);
2899        spin_lock(&fs_info->delayed_iput_lock);
2900}
2901
2902static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2903                                   struct btrfs_inode *inode)
2904{
2905        if (!list_empty(&inode->delayed_iput)) {
2906                spin_lock(&fs_info->delayed_iput_lock);
2907                if (!list_empty(&inode->delayed_iput))
2908                        run_delayed_iput_locked(fs_info, inode);
2909                spin_unlock(&fs_info->delayed_iput_lock);
2910        }
2911}
2912
2913void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2914{
2915
2916        spin_lock(&fs_info->delayed_iput_lock);
2917        while (!list_empty(&fs_info->delayed_iputs)) {
2918                struct btrfs_inode *inode;
2919
2920                inode = list_first_entry(&fs_info->delayed_iputs,
2921                                struct btrfs_inode, delayed_iput);
2922                run_delayed_iput_locked(fs_info, inode);
2923        }
2924        spin_unlock(&fs_info->delayed_iput_lock);
2925}
2926
2927/**
2928 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2929 * @fs_info - the fs_info for this fs
2930 * @return - EINTR if we were killed, 0 if nothing's pending
2931 *
2932 * This will wait on any delayed iputs that are currently running with KILLABLE
2933 * set.  Once they are all done running we will return, unless we are killed in
2934 * which case we return EINTR. This helps in user operations like fallocate etc
2935 * that might get blocked on the iputs.
2936 */
2937int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2938{
2939        int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2940                        atomic_read(&fs_info->nr_delayed_iputs) == 0);
2941        if (ret)
2942                return -EINTR;
2943        return 0;
2944}
2945
2946/*
2947 * This creates an orphan entry for the given inode in case something goes wrong
2948 * in the middle of an unlink.
2949 */
2950int btrfs_orphan_add(struct btrfs_trans_handle *trans,
2951                     struct btrfs_inode *inode)
2952{
2953        int ret;
2954
2955        ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2956        if (ret && ret != -EEXIST) {
2957                btrfs_abort_transaction(trans, ret);
2958                return ret;
2959        }
2960
2961        return 0;
2962}
2963
2964/*
2965 * We have done the delete so we can go ahead and remove the orphan item for
2966 * this particular inode.
2967 */
2968static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
2969                            struct btrfs_inode *inode)
2970{
2971        return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
2972}
2973
2974/*
2975 * this cleans up any orphans that may be left on the list from the last use
2976 * of this root.
2977 */
2978int btrfs_orphan_cleanup(struct btrfs_root *root)
2979{
2980        struct btrfs_fs_info *fs_info = root->fs_info;
2981        struct btrfs_path *path;
2982        struct extent_buffer *leaf;
2983        struct btrfs_key key, found_key;
2984        struct btrfs_trans_handle *trans;
2985        struct inode *inode;
2986        u64 last_objectid = 0;
2987        int ret = 0, nr_unlink = 0;
2988
2989        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2990                return 0;
2991
2992        path = btrfs_alloc_path();
2993        if (!path) {
2994                ret = -ENOMEM;
2995                goto out;
2996        }
2997        path->reada = READA_BACK;
2998
2999        key.objectid = BTRFS_ORPHAN_OBJECTID;
3000        key.type = BTRFS_ORPHAN_ITEM_KEY;
3001        key.offset = (u64)-1;
3002
3003        while (1) {
3004                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3005                if (ret < 0)
3006                        goto out;
3007
3008                /*
3009                 * if ret == 0 means we found what we were searching for, which
3010                 * is weird, but possible, so only screw with path if we didn't
3011                 * find the key and see if we have stuff that matches
3012                 */
3013                if (ret > 0) {
3014                        ret = 0;
3015                        if (path->slots[0] == 0)
3016                                break;
3017                        path->slots[0]--;
3018                }
3019
3020                /* pull out the item */
3021                leaf = path->nodes[0];
3022                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3023
3024                /* make sure the item matches what we want */
3025                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3026                        break;
3027                if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3028                        break;
3029
3030                /* release the path since we're done with it */
3031                btrfs_release_path(path);
3032
3033                /*
3034                 * this is where we are basically btrfs_lookup, without the
3035                 * crossing root thing.  we store the inode number in the
3036                 * offset of the orphan item.
3037                 */
3038
3039                if (found_key.offset == last_objectid) {
3040                        btrfs_err(fs_info,
3041                                  "Error removing orphan entry, stopping orphan cleanup");
3042                        ret = -EINVAL;
3043                        goto out;
3044                }
3045
3046                last_objectid = found_key.offset;
3047
3048                found_key.objectid = found_key.offset;
3049                found_key.type = BTRFS_INODE_ITEM_KEY;
3050                found_key.offset = 0;
3051                inode = btrfs_iget(fs_info->sb, last_objectid, root);
3052                ret = PTR_ERR_OR_ZERO(inode);
3053                if (ret && ret != -ENOENT)
3054                        goto out;
3055
3056                if (ret == -ENOENT && root == fs_info->tree_root) {
3057                        struct btrfs_root *dead_root;
3058                        struct btrfs_fs_info *fs_info = root->fs_info;
3059                        int is_dead_root = 0;
3060
3061                        /*
3062                         * this is an orphan in the tree root. Currently these
3063                         * could come from 2 sources:
3064                         *  a) a snapshot deletion in progress
3065                         *  b) a free space cache inode
3066                         * We need to distinguish those two, as the snapshot
3067                         * orphan must not get deleted.
3068                         * find_dead_roots already ran before us, so if this
3069                         * is a snapshot deletion, we should find the root
3070                         * in the fs_roots radix tree.
3071                         */
3072
3073                        spin_lock(&fs_info->fs_roots_radix_lock);
3074                        dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3075                                                         (unsigned long)found_key.objectid);
3076                        if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3077                                is_dead_root = 1;
3078                        spin_unlock(&fs_info->fs_roots_radix_lock);
3079
3080                        if (is_dead_root) {
3081                                /* prevent this orphan from being found again */
3082                                key.offset = found_key.objectid - 1;
3083                                continue;
3084                        }
3085
3086                }
3087
3088                /*
3089                 * If we have an inode with links, there are a couple of
3090                 * possibilities. Old kernels (before v3.12) used to create an
3091                 * orphan item for truncate indicating that there were possibly
3092                 * extent items past i_size that needed to be deleted. In v3.12,
3093                 * truncate was changed to update i_size in sync with the extent
3094                 * items, but the (useless) orphan item was still created. Since
3095                 * v4.18, we don't create the orphan item for truncate at all.
3096                 *
3097                 * So, this item could mean that we need to do a truncate, but
3098                 * only if this filesystem was last used on a pre-v3.12 kernel
3099                 * and was not cleanly unmounted. The odds of that are quite
3100                 * slim, and it's a pain to do the truncate now, so just delete
3101                 * the orphan item.
3102                 *
3103                 * It's also possible that this orphan item was supposed to be
3104                 * deleted but wasn't. The inode number may have been reused,
3105                 * but either way, we can delete the orphan item.
3106                 */
3107                if (ret == -ENOENT || inode->i_nlink) {
3108                        if (!ret)
3109                                iput(inode);
3110                        trans = btrfs_start_transaction(root, 1);
3111                        if (IS_ERR(trans)) {
3112                                ret = PTR_ERR(trans);
3113                                goto out;
3114                        }
3115                        btrfs_debug(fs_info, "auto deleting %Lu",
3116                                    found_key.objectid);
3117                        ret = btrfs_del_orphan_item(trans, root,
3118                                                    found_key.objectid);
3119                        btrfs_end_transaction(trans);
3120                        if (ret)
3121                                goto out;
3122                        continue;
3123                }
3124
3125                nr_unlink++;
3126
3127                /* this will do delete_inode and everything for us */
3128                iput(inode);
3129        }
3130        /* release the path since we're done with it */
3131        btrfs_release_path(path);
3132
3133        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3134
3135        if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3136                trans = btrfs_join_transaction(root);
3137                if (!IS_ERR(trans))
3138                        btrfs_end_transaction(trans);
3139        }
3140
3141        if (nr_unlink)
3142                btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3143
3144out:
3145        if (ret)
3146                btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3147        btrfs_free_path(path);
3148        return ret;
3149}
3150
3151/*
3152 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3153 * don't find any xattrs, we know there can't be any acls.
3154 *
3155 * slot is the slot the inode is in, objectid is the objectid of the inode
3156 */
3157static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3158                                          int slot, u64 objectid,
3159                                          int *first_xattr_slot)
3160{
3161        u32 nritems = btrfs_header_nritems(leaf);
3162        struct btrfs_key found_key;
3163        static u64 xattr_access = 0;
3164        static u64 xattr_default = 0;
3165        int scanned = 0;
3166
3167        if (!xattr_access) {
3168                xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3169                                        strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3170                xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3171                                        strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3172        }
3173
3174        slot++;
3175        *first_xattr_slot = -1;
3176        while (slot < nritems) {
3177                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3178
3179                /* we found a different objectid, there must not be acls */
3180                if (found_key.objectid != objectid)
3181                        return 0;
3182
3183                /* we found an xattr, assume we've got an acl */
3184                if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3185                        if (*first_xattr_slot == -1)
3186                                *first_xattr_slot = slot;
3187                        if (found_key.offset == xattr_access ||
3188                            found_key.offset == xattr_default)
3189                                return 1;
3190                }
3191
3192                /*
3193                 * we found a key greater than an xattr key, there can't
3194                 * be any acls later on
3195                 */
3196                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3197                        return 0;
3198
3199                slot++;
3200                scanned++;
3201
3202                /*
3203                 * it goes inode, inode backrefs, xattrs, extents,
3204                 * so if there are a ton of hard links to an inode there can
3205                 * be a lot of backrefs.  Don't waste time searching too hard,
3206                 * this is just an optimization
3207                 */
3208                if (scanned >= 8)
3209                        break;
3210        }
3211        /* we hit the end of the leaf before we found an xattr or
3212         * something larger than an xattr.  We have to assume the inode
3213         * has acls
3214         */
3215        if (*first_xattr_slot == -1)
3216                *first_xattr_slot = slot;
3217        return 1;
3218}
3219
3220/*
3221 * read an inode from the btree into the in-memory inode
3222 */
3223static int btrfs_read_locked_inode(struct inode *inode,
3224                                   struct btrfs_path *in_path)
3225{
3226        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3227        struct btrfs_path *path = in_path;
3228        struct extent_buffer *leaf;
3229        struct btrfs_inode_item *inode_item;
3230        struct btrfs_root *root = BTRFS_I(inode)->root;
3231        struct btrfs_key location;
3232        unsigned long ptr;
3233        int maybe_acls;
3234        u32 rdev;
3235        int ret;
3236        bool filled = false;
3237        int first_xattr_slot;
3238
3239        ret = btrfs_fill_inode(inode, &rdev);
3240        if (!ret)
3241                filled = true;
3242
3243        if (!path) {
3244                path = btrfs_alloc_path();
3245                if (!path)
3246                        return -ENOMEM;
3247        }
3248
3249        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3250
3251        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3252        if (ret) {
3253                if (path != in_path)
3254                        btrfs_free_path(path);
3255                return ret;
3256        }
3257
3258        leaf = path->nodes[0];
3259
3260        if (filled)
3261                goto cache_index;
3262
3263        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3264                                    struct btrfs_inode_item);
3265        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3266        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3267        i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3268        i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3269        btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3270        btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3271                        round_up(i_size_read(inode), fs_info->sectorsize));
3272
3273        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3274        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3275
3276        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3277        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3278
3279        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3280        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3281
3282        BTRFS_I(inode)->i_otime.tv_sec =
3283                btrfs_timespec_sec(leaf, &inode_item->otime);
3284        BTRFS_I(inode)->i_otime.tv_nsec =
3285                btrfs_timespec_nsec(leaf, &inode_item->otime);
3286
3287        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3288        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3289        BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3290
3291        inode_set_iversion_queried(inode,
3292                                   btrfs_inode_sequence(leaf, inode_item));
3293        inode->i_generation = BTRFS_I(inode)->generation;
3294        inode->i_rdev = 0;
3295        rdev = btrfs_inode_rdev(leaf, inode_item);
3296
3297        BTRFS_I(inode)->index_cnt = (u64)-1;
3298        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3299
3300cache_index:
3301        /*
3302         * If we were modified in the current generation and evicted from memory
3303         * and then re-read we need to do a full sync since we don't have any
3304         * idea about which extents were modified before we were evicted from
3305         * cache.
3306         *
3307         * This is required for both inode re-read from disk and delayed inode
3308         * in delayed_nodes_tree.
3309         */
3310        if (BTRFS_I(inode)->last_trans == fs_info->generation)
3311                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3312                        &BTRFS_I(inode)->runtime_flags);
3313
3314        /*
3315         * We don't persist the id of the transaction where an unlink operation
3316         * against the inode was last made. So here we assume the inode might
3317         * have been evicted, and therefore the exact value of last_unlink_trans
3318         * lost, and set it to last_trans to avoid metadata inconsistencies
3319         * between the inode and its parent if the inode is fsync'ed and the log
3320         * replayed. For example, in the scenario:
3321         *
3322         * touch mydir/foo
3323         * ln mydir/foo mydir/bar
3324         * sync
3325         * unlink mydir/bar
3326         * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3327         * xfs_io -c fsync mydir/foo
3328         * <power failure>
3329         * mount fs, triggers fsync log replay
3330         *
3331         * We must make sure that when we fsync our inode foo we also log its
3332         * parent inode, otherwise after log replay the parent still has the
3333         * dentry with the "bar" name but our inode foo has a link count of 1
3334         * and doesn't have an inode ref with the name "bar" anymore.
3335         *
3336         * Setting last_unlink_trans to last_trans is a pessimistic approach,
3337         * but it guarantees correctness at the expense of occasional full
3338         * transaction commits on fsync if our inode is a directory, or if our
3339         * inode is not a directory, logging its parent unnecessarily.
3340         */
3341        BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3342
3343        /*
3344         * Same logic as for last_unlink_trans. We don't persist the generation
3345         * of the last transaction where this inode was used for a reflink
3346         * operation, so after eviction and reloading the inode we must be
3347         * pessimistic and assume the last transaction that modified the inode.
3348         */
3349        BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3350
3351        path->slots[0]++;
3352        if (inode->i_nlink != 1 ||
3353            path->slots[0] >= btrfs_header_nritems(leaf))
3354                goto cache_acl;
3355
3356        btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3357        if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3358                goto cache_acl;
3359
3360        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3361        if (location.type == BTRFS_INODE_REF_KEY) {
3362                struct btrfs_inode_ref *ref;
3363
3364                ref = (struct btrfs_inode_ref *)ptr;
3365                BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3366        } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3367                struct btrfs_inode_extref *extref;
3368
3369                extref = (struct btrfs_inode_extref *)ptr;
3370                BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3371                                                                     extref);
3372        }
3373cache_acl:
3374        /*
3375         * try to precache a NULL acl entry for files that don't have
3376         * any xattrs or acls
3377         */
3378        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3379                        btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3380        if (first_xattr_slot != -1) {
3381                path->slots[0] = first_xattr_slot;
3382                ret = btrfs_load_inode_props(inode, path);
3383                if (ret)
3384                        btrfs_err(fs_info,
3385                                  "error loading props for ino %llu (root %llu): %d",
3386                                  btrfs_ino(BTRFS_I(inode)),
3387                                  root->root_key.objectid, ret);
3388        }
3389        if (path != in_path)
3390                btrfs_free_path(path);
3391
3392        if (!maybe_acls)
3393                cache_no_acl(inode);
3394
3395        switch (inode->i_mode & S_IFMT) {
3396        case S_IFREG:
3397                inode->i_mapping->a_ops = &btrfs_aops;
3398                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3399                inode->i_fop = &btrfs_file_operations;
3400                inode->i_op = &btrfs_file_inode_operations;
3401                break;
3402        case S_IFDIR:
3403                inode->i_fop = &btrfs_dir_file_operations;
3404                inode->i_op = &btrfs_dir_inode_operations;
3405                break;
3406        case S_IFLNK:
3407                inode->i_op = &btrfs_symlink_inode_operations;
3408                inode_nohighmem(inode);
3409                inode->i_mapping->a_ops = &btrfs_aops;
3410                break;
3411        default:
3412                inode->i_op = &btrfs_special_inode_operations;
3413                init_special_inode(inode, inode->i_mode, rdev);
3414                break;
3415        }
3416
3417        btrfs_sync_inode_flags_to_i_flags(inode);
3418        return 0;
3419}
3420
3421/*
3422 * given a leaf and an inode, copy the inode fields into the leaf
3423 */
3424static void fill_inode_item(struct btrfs_trans_handle *trans,
3425                            struct extent_buffer *leaf,
3426                            struct btrfs_inode_item *item,
3427                            struct inode *inode)
3428{
3429        struct btrfs_map_token token;
3430
3431        btrfs_init_map_token(&token, leaf);
3432
3433        btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3434        btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3435        btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3436        btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3437        btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3438
3439        btrfs_set_token_timespec_sec(&token, &item->atime,
3440                                     inode->i_atime.tv_sec);
3441        btrfs_set_token_timespec_nsec(&token, &item->atime,
3442                                      inode->i_atime.tv_nsec);
3443
3444        btrfs_set_token_timespec_sec(&token, &item->mtime,
3445                                     inode->i_mtime.tv_sec);
3446        btrfs_set_token_timespec_nsec(&token, &item->mtime,
3447                                      inode->i_mtime.tv_nsec);
3448
3449        btrfs_set_token_timespec_sec(&token, &item->ctime,
3450                                     inode->i_ctime.tv_sec);
3451        btrfs_set_token_timespec_nsec(&token, &item->ctime,
3452                                      inode->i_ctime.tv_nsec);
3453
3454        btrfs_set_token_timespec_sec(&token, &item->otime,
3455                                     BTRFS_I(inode)->i_otime.tv_sec);
3456        btrfs_set_token_timespec_nsec(&token, &item->otime,
3457                                      BTRFS_I(inode)->i_otime.tv_nsec);
3458
3459        btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3460        btrfs_set_token_inode_generation(&token, item,
3461                                         BTRFS_I(inode)->generation);
3462        btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3463        btrfs_set_token_inode_transid(&token, item, trans->transid);
3464        btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3465        btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3466        btrfs_set_token_inode_block_group(&token, item, 0);
3467}
3468
3469/*
3470 * copy everything in the in-memory inode into the btree.
3471 */
3472static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3473                                struct btrfs_root *root, struct inode *inode)
3474{
3475        struct btrfs_inode_item *inode_item;
3476        struct btrfs_path *path;
3477        struct extent_buffer *leaf;
3478        int ret;
3479
3480        path = btrfs_alloc_path();
3481        if (!path)
3482                return -ENOMEM;
3483
3484        path->leave_spinning = 1;
3485        ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3486                                 1);
3487        if (ret) {
3488                if (ret > 0)
3489                        ret = -ENOENT;
3490                goto failed;
3491        }
3492
3493        leaf = path->nodes[0];
3494        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3495                                    struct btrfs_inode_item);
3496
3497        fill_inode_item(trans, leaf, inode_item, inode);
3498        btrfs_mark_buffer_dirty(leaf);
3499        btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3500        ret = 0;
3501failed:
3502        btrfs_free_path(path);
3503        return ret;
3504}
3505
3506/*
3507 * copy everything in the in-memory inode into the btree.
3508 */
3509noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3510                                struct btrfs_root *root, struct inode *inode)
3511{
3512        struct btrfs_fs_info *fs_info = root->fs_info;
3513        int ret;
3514
3515        /*
3516         * If the inode is a free space inode, we can deadlock during commit
3517         * if we put it into the delayed code.
3518         *
3519         * The data relocation inode should also be directly updated
3520         * without delay
3521         */
3522        if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3523            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3524            && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3525                btrfs_update_root_times(trans, root);
3526
3527                ret = btrfs_delayed_update_inode(trans, root, inode);
3528                if (!ret)
3529                        btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3530                return ret;
3531        }
3532
3533        return btrfs_update_inode_item(trans, root, inode);
3534}
3535
3536noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3537                                         struct btrfs_root *root,
3538                                         struct inode *inode)
3539{
3540        int ret;
3541
3542        ret = btrfs_update_inode(trans, root, inode);
3543        if (ret == -ENOSPC)
3544                return btrfs_update_inode_item(trans, root, inode);
3545        return ret;
3546}
3547
3548/*
3549 * unlink helper that gets used here in inode.c and in the tree logging
3550 * recovery code.  It remove a link in a directory with a given name, and
3551 * also drops the back refs in the inode to the directory
3552 */
3553static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3554                                struct btrfs_root *root,
3555                                struct btrfs_inode *dir,
3556                                struct btrfs_inode *inode,
3557                                const char *name, int name_len)
3558{
3559        struct btrfs_fs_info *fs_info = root->fs_info;
3560        struct btrfs_path *path;
3561        int ret = 0;
3562        struct btrfs_dir_item *di;
3563        u64 index;
3564        u64 ino = btrfs_ino(inode);
3565        u64 dir_ino = btrfs_ino(dir);
3566
3567        path = btrfs_alloc_path();
3568        if (!path) {
3569                ret = -ENOMEM;
3570                goto out;
3571        }
3572
3573        path->leave_spinning = 1;
3574        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3575                                    name, name_len, -1);
3576        if (IS_ERR_OR_NULL(di)) {
3577                ret = di ? PTR_ERR(di) : -ENOENT;
3578                goto err;
3579        }
3580        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3581        if (ret)
3582                goto err;
3583        btrfs_release_path(path);
3584
3585        /*
3586         * If we don't have dir index, we have to get it by looking up
3587         * the inode ref, since we get the inode ref, remove it directly,
3588         * it is unnecessary to do delayed deletion.
3589         *
3590         * But if we have dir index, needn't search inode ref to get it.
3591         * Since the inode ref is close to the inode item, it is better
3592         * that we delay to delete it, and just do this deletion when
3593         * we update the inode item.
3594         */
3595        if (inode->dir_index) {
3596                ret = btrfs_delayed_delete_inode_ref(inode);
3597                if (!ret) {
3598                        index = inode->dir_index;
3599                        goto skip_backref;
3600                }
3601        }
3602
3603        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3604                                  dir_ino, &index);
3605        if (ret) {
3606                btrfs_info(fs_info,
3607                        "failed to delete reference to %.*s, inode %llu parent %llu",
3608                        name_len, name, ino, dir_ino);
3609                btrfs_abort_transaction(trans, ret);
3610                goto err;
3611        }
3612skip_backref:
3613        ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3614        if (ret) {
3615                btrfs_abort_transaction(trans, ret);
3616                goto err;
3617        }
3618
3619        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3620                        dir_ino);
3621        if (ret != 0 && ret != -ENOENT) {
3622                btrfs_abort_transaction(trans, ret);
3623                goto err;
3624        }
3625
3626        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3627                        index);
3628        if (ret == -ENOENT)
3629                ret = 0;
3630        else if (ret)
3631                btrfs_abort_transaction(trans, ret);
3632
3633        /*
3634         * If we have a pending delayed iput we could end up with the final iput
3635         * being run in btrfs-cleaner context.  If we have enough of these built
3636         * up we can end up burning a lot of time in btrfs-cleaner without any
3637         * way to throttle the unlinks.  Since we're currently holding a ref on
3638         * the inode we can run the delayed iput here without any issues as the
3639         * final iput won't be done until after we drop the ref we're currently
3640         * holding.
3641         */
3642        btrfs_run_delayed_iput(fs_info, inode);
3643err:
3644        btrfs_free_path(path);
3645        if (ret)
3646                goto out;
3647
3648        btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3649        inode_inc_iversion(&inode->vfs_inode);
3650        inode_inc_iversion(&dir->vfs_inode);
3651        inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3652                dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3653        ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3654out:
3655        return ret;
3656}
3657
3658int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3659                       struct btrfs_root *root,
3660                       struct btrfs_inode *dir, struct btrfs_inode *inode,
3661                       const char *name, int name_len)
3662{
3663        int ret;
3664        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3665        if (!ret) {
3666                drop_nlink(&inode->vfs_inode);
3667                ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3668        }
3669        return ret;
3670}
3671
3672/*
3673 * helper to start transaction for unlink and rmdir.
3674 *
3675 * unlink and rmdir are special in btrfs, they do not always free space, so
3676 * if we cannot make our reservations the normal way try and see if there is
3677 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3678 * allow the unlink to occur.
3679 */
3680static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3681{
3682        struct btrfs_root *root = BTRFS_I(dir)->root;
3683
3684        /*
3685         * 1 for the possible orphan item
3686         * 1 for the dir item
3687         * 1 for the dir index
3688         * 1 for the inode ref
3689         * 1 for the inode
3690         */
3691        return btrfs_start_transaction_fallback_global_rsv(root, 5);
3692}
3693
3694static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3695{
3696        struct btrfs_root *root = BTRFS_I(dir)->root;
3697        struct btrfs_trans_handle *trans;
3698        struct inode *inode = d_inode(dentry);
3699        int ret;
3700
3701        trans = __unlink_start_trans(dir);
3702        if (IS_ERR(trans))
3703                return PTR_ERR(trans);
3704
3705        btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3706                        0);
3707
3708        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3709                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3710                        dentry->d_name.len);
3711        if (ret)
3712                goto out;
3713
3714        if (inode->i_nlink == 0) {
3715                ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3716                if (ret)
3717                        goto out;
3718        }
3719
3720out:
3721        btrfs_end_transaction(trans);
3722        btrfs_btree_balance_dirty(root->fs_info);
3723        return ret;
3724}
3725
3726static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3727                               struct inode *dir, struct dentry *dentry)
3728{
3729        struct btrfs_root *root = BTRFS_I(dir)->root;
3730        struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3731        struct btrfs_path *path;
3732        struct extent_buffer *leaf;
3733        struct btrfs_dir_item *di;
3734        struct btrfs_key key;
3735        const char *name = dentry->d_name.name;
3736        int name_len = dentry->d_name.len;
3737        u64 index;
3738        int ret;
3739        u64 objectid;
3740        u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3741
3742        if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3743                objectid = inode->root->root_key.objectid;
3744        } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3745                objectid = inode->location.objectid;
3746        } else {
3747                WARN_ON(1);
3748                return -EINVAL;
3749        }
3750
3751        path = btrfs_alloc_path();
3752        if (!path)
3753                return -ENOMEM;
3754
3755        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3756                                   name, name_len, -1);
3757        if (IS_ERR_OR_NULL(di)) {
3758                ret = di ? PTR_ERR(di) : -ENOENT;
3759                goto out;
3760        }
3761
3762        leaf = path->nodes[0];
3763        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3764        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3765        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3766        if (ret) {
3767                btrfs_abort_transaction(trans, ret);
3768                goto out;
3769        }
3770        btrfs_release_path(path);
3771
3772        /*
3773         * This is a placeholder inode for a subvolume we didn't have a
3774         * reference to at the time of the snapshot creation.  In the meantime
3775         * we could have renamed the real subvol link into our snapshot, so
3776         * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3777         * Instead simply lookup the dir_index_item for this entry so we can
3778         * remove it.  Otherwise we know we have a ref to the root and we can
3779         * call btrfs_del_root_ref, and it _shouldn't_ fail.
3780         */
3781        if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3782                di = btrfs_search_dir_index_item(root, path, dir_ino,
3783                                                 name, name_len);
3784                if (IS_ERR_OR_NULL(di)) {
3785                        if (!di)
3786                                ret = -ENOENT;
3787                        else
3788                                ret = PTR_ERR(di);
3789                        btrfs_abort_transaction(trans, ret);
3790                        goto out;
3791                }
3792
3793                leaf = path->nodes[0];
3794                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3795                index = key.offset;
3796                btrfs_release_path(path);
3797        } else {
3798                ret = btrfs_del_root_ref(trans, objectid,
3799                                         root->root_key.objectid, dir_ino,
3800                                         &index, name, name_len);
3801                if (ret) {
3802                        btrfs_abort_transaction(trans, ret);
3803                        goto out;
3804                }
3805        }
3806
3807        ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3808        if (ret) {
3809                btrfs_abort_transaction(trans, ret);
3810                goto out;
3811        }
3812
3813        btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3814        inode_inc_iversion(dir);
3815        dir->i_mtime = dir->i_ctime = current_time(dir);
3816        ret = btrfs_update_inode_fallback(trans, root, dir);
3817        if (ret)
3818                btrfs_abort_transaction(trans, ret);
3819out:
3820        btrfs_free_path(path);
3821        return ret;
3822}
3823
3824/*
3825 * Helper to check if the subvolume references other subvolumes or if it's
3826 * default.
3827 */
3828static noinline int may_destroy_subvol(struct btrfs_root *root)
3829{
3830        struct btrfs_fs_info *fs_info = root->fs_info;
3831        struct btrfs_path *path;
3832        struct btrfs_dir_item *di;
3833        struct btrfs_key key;
3834        u64 dir_id;
3835        int ret;
3836
3837        path = btrfs_alloc_path();
3838        if (!path)
3839                return -ENOMEM;
3840
3841        /* Make sure this root isn't set as the default subvol */
3842        dir_id = btrfs_super_root_dir(fs_info->super_copy);
3843        di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3844                                   dir_id, "default", 7, 0);
3845        if (di && !IS_ERR(di)) {
3846                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3847                if (key.objectid == root->root_key.objectid) {
3848                        ret = -EPERM;
3849                        btrfs_err(fs_info,
3850                                  "deleting default subvolume %llu is not allowed",
3851                                  key.objectid);
3852                        goto out;
3853                }
3854                btrfs_release_path(path);
3855        }
3856
3857        key.objectid = root->root_key.objectid;
3858        key.type = BTRFS_ROOT_REF_KEY;
3859        key.offset = (u64)-1;
3860
3861        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3862        if (ret < 0)
3863                goto out;
3864        BUG_ON(ret == 0);
3865
3866        ret = 0;
3867        if (path->slots[0] > 0) {
3868                path->slots[0]--;
3869                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3870                if (key.objectid == root->root_key.objectid &&
3871                    key.type == BTRFS_ROOT_REF_KEY)
3872                        ret = -ENOTEMPTY;
3873        }
3874out:
3875        btrfs_free_path(path);
3876        return ret;
3877}
3878
3879/* Delete all dentries for inodes belonging to the root */
3880static void btrfs_prune_dentries(struct btrfs_root *root)
3881{
3882        struct btrfs_fs_info *fs_info = root->fs_info;
3883        struct rb_node *node;
3884        struct rb_node *prev;
3885        struct btrfs_inode *entry;
3886        struct inode *inode;
3887        u64 objectid = 0;
3888
3889        if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3890                WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3891
3892        spin_lock(&root->inode_lock);
3893again:
3894        node = root->inode_tree.rb_node;
3895        prev = NULL;
3896        while (node) {
3897                prev = node;
3898                entry = rb_entry(node, struct btrfs_inode, rb_node);
3899
3900                if (objectid < btrfs_ino(entry))
3901                        node = node->rb_left;
3902                else if (objectid > btrfs_ino(entry))
3903                        node = node->rb_right;
3904                else
3905                        break;
3906        }
3907        if (!node) {
3908                while (prev) {
3909                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
3910                        if (objectid <= btrfs_ino(entry)) {
3911                                node = prev;
3912                                break;
3913                        }
3914                        prev = rb_next(prev);
3915                }
3916        }
3917        while (node) {
3918                entry = rb_entry(node, struct btrfs_inode, rb_node);
3919                objectid = btrfs_ino(entry) + 1;
3920                inode = igrab(&entry->vfs_inode);
3921                if (inode) {
3922                        spin_unlock(&root->inode_lock);
3923                        if (atomic_read(&inode->i_count) > 1)
3924                                d_prune_aliases(inode);
3925                        /*
3926                         * btrfs_drop_inode will have it removed from the inode
3927                         * cache when its usage count hits zero.
3928                         */
3929                        iput(inode);
3930                        cond_resched();
3931                        spin_lock(&root->inode_lock);
3932                        goto again;
3933                }
3934
3935                if (cond_resched_lock(&root->inode_lock))
3936                        goto again;
3937
3938                node = rb_next(node);
3939        }
3940        spin_unlock(&root->inode_lock);
3941}
3942
3943int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3944{
3945        struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3946        struct btrfs_root *root = BTRFS_I(dir)->root;
3947        struct inode *inode = d_inode(dentry);
3948        struct btrfs_root *dest = BTRFS_I(inode)->root;
3949        struct btrfs_trans_handle *trans;
3950        struct btrfs_block_rsv block_rsv;
3951        u64 root_flags;
3952        int ret;
3953        int err;
3954
3955        /*
3956         * Don't allow to delete a subvolume with send in progress. This is
3957         * inside the inode lock so the error handling that has to drop the bit
3958         * again is not run concurrently.
3959         */
3960        spin_lock(&dest->root_item_lock);
3961        if (dest->send_in_progress) {
3962                spin_unlock(&dest->root_item_lock);
3963                btrfs_warn(fs_info,
3964                           "attempt to delete subvolume %llu during send",
3965                           dest->root_key.objectid);
3966                return -EPERM;
3967        }
3968        root_flags = btrfs_root_flags(&dest->root_item);
3969        btrfs_set_root_flags(&dest->root_item,
3970                             root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3971        spin_unlock(&dest->root_item_lock);
3972
3973        down_write(&fs_info->subvol_sem);
3974
3975        err = may_destroy_subvol(dest);
3976        if (err)
3977                goto out_up_write;
3978
3979        btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3980        /*
3981         * One for dir inode,
3982         * two for dir entries,
3983         * two for root ref/backref.
3984         */
3985        err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
3986        if (err)
3987                goto out_up_write;
3988
3989        trans = btrfs_start_transaction(root, 0);
3990        if (IS_ERR(trans)) {
3991                err = PTR_ERR(trans);
3992                goto out_release;
3993        }
3994        trans->block_rsv = &block_rsv;
3995        trans->bytes_reserved = block_rsv.size;
3996
3997        btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3998
3999        ret = btrfs_unlink_subvol(trans, dir, dentry);
4000        if (ret) {
4001                err = ret;
4002                btrfs_abort_transaction(trans, ret);
4003                goto out_end_trans;
4004        }
4005
4006        btrfs_record_root_in_trans(trans, dest);
4007
4008        memset(&dest->root_item.drop_progress, 0,
4009                sizeof(dest->root_item.drop_progress));
4010        dest->root_item.drop_level = 0;
4011        btrfs_set_root_refs(&dest->root_item, 0);
4012
4013        if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4014                ret = btrfs_insert_orphan_item(trans,
4015                                        fs_info->tree_root,
4016                                        dest->root_key.objectid);
4017                if (ret) {
4018                        btrfs_abort_transaction(trans, ret);
4019                        err = ret;
4020                        goto out_end_trans;
4021                }
4022        }
4023
4024        ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4025                                  BTRFS_UUID_KEY_SUBVOL,
4026                                  dest->root_key.objectid);
4027        if (ret && ret != -ENOENT) {
4028                btrfs_abort_transaction(trans, ret);
4029                err = ret;
4030                goto out_end_trans;
4031        }
4032        if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4033                ret = btrfs_uuid_tree_remove(trans,
4034                                          dest->root_item.received_uuid,
4035                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4036                                          dest->root_key.objectid);
4037                if (ret && ret != -ENOENT) {
4038                        btrfs_abort_transaction(trans, ret);
4039                        err = ret;
4040                        goto out_end_trans;
4041                }
4042        }
4043
4044        free_anon_bdev(dest->anon_dev);
4045        dest->anon_dev = 0;
4046out_end_trans:
4047        trans->block_rsv = NULL;
4048        trans->bytes_reserved = 0;
4049        ret = btrfs_end_transaction(trans);
4050        if (ret && !err)
4051                err = ret;
4052        inode->i_flags |= S_DEAD;
4053out_release:
4054        btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4055out_up_write:
4056        up_write(&fs_info->subvol_sem);
4057        if (err) {
4058                spin_lock(&dest->root_item_lock);
4059                root_flags = btrfs_root_flags(&dest->root_item);
4060                btrfs_set_root_flags(&dest->root_item,
4061                                root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4062                spin_unlock(&dest->root_item_lock);
4063        } else {
4064                d_invalidate(dentry);
4065                btrfs_prune_dentries(dest);
4066                ASSERT(dest->send_in_progress == 0);
4067
4068                /* the last ref */
4069                if (dest->ino_cache_inode) {
4070                        iput(dest->ino_cache_inode);
4071                        dest->ino_cache_inode = NULL;
4072                }
4073        }
4074
4075        return err;
4076}
4077
4078static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4079{
4080        struct inode *inode = d_inode(dentry);
4081        int err = 0;
4082        struct btrfs_root *root = BTRFS_I(dir)->root;
4083        struct btrfs_trans_handle *trans;
4084        u64 last_unlink_trans;
4085
4086        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4087                return -ENOTEMPTY;
4088        if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4089                return btrfs_delete_subvolume(dir, dentry);
4090
4091        trans = __unlink_start_trans(dir);
4092        if (IS_ERR(trans))
4093                return PTR_ERR(trans);
4094
4095        if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4096                err = btrfs_unlink_subvol(trans, dir, dentry);
4097                goto out;
4098        }
4099
4100        err = btrfs_orphan_add(trans, BTRFS_I(inode));
4101        if (err)
4102                goto out;
4103
4104        last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4105
4106        /* now the directory is empty */
4107        err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4108                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4109                        dentry->d_name.len);
4110        if (!err) {
4111                btrfs_i_size_write(BTRFS_I(inode), 0);
4112                /*
4113                 * Propagate the last_unlink_trans value of the deleted dir to
4114                 * its parent directory. This is to prevent an unrecoverable
4115                 * log tree in the case we do something like this:
4116                 * 1) create dir foo
4117                 * 2) create snapshot under dir foo
4118                 * 3) delete the snapshot
4119                 * 4) rmdir foo
4120                 * 5) mkdir foo
4121                 * 6) fsync foo or some file inside foo
4122                 */
4123                if (last_unlink_trans >= trans->transid)
4124                        BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4125        }
4126out:
4127        btrfs_end_transaction(trans);
4128        btrfs_btree_balance_dirty(root->fs_info);
4129
4130        return err;
4131}
4132
4133/*
4134 * Return this if we need to call truncate_block for the last bit of the
4135 * truncate.
4136 */
4137#define NEED_TRUNCATE_BLOCK 1
4138
4139/*
4140 * this can truncate away extent items, csum items and directory items.
4141 * It starts at a high offset and removes keys until it can't find
4142 * any higher than new_size
4143 *
4144 * csum items that cross the new i_size are truncated to the new size
4145 * as well.
4146 *
4147 * min_type is the minimum key type to truncate down to.  If set to 0, this
4148 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4149 */
4150int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4151                               struct btrfs_root *root,
4152                               struct inode *inode,
4153                               u64 new_size, u32 min_type)
4154{
4155        struct btrfs_fs_info *fs_info = root->fs_info;
4156        struct btrfs_path *path;
4157        struct extent_buffer *leaf;
4158        struct btrfs_file_extent_item *fi;
4159        struct btrfs_key key;
4160        struct btrfs_key found_key;
4161        u64 extent_start = 0;
4162        u64 extent_num_bytes = 0;
4163        u64 extent_offset = 0;
4164        u64 item_end = 0;
4165        u64 last_size = new_size;
4166        u32 found_type = (u8)-1;
4167        int found_extent;
4168        int del_item;
4169        int pending_del_nr = 0;
4170        int pending_del_slot = 0;
4171        int extent_type = -1;
4172        int ret;
4173        u64 ino = btrfs_ino(BTRFS_I(inode));
4174        u64 bytes_deleted = 0;
4175        bool be_nice = false;
4176        bool should_throttle = false;
4177        const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4178        struct extent_state *cached_state = NULL;
4179
4180        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4181
4182        /*
4183         * For non-free space inodes and non-shareable roots, we want to back
4184         * off from time to time.  This means all inodes in subvolume roots,
4185         * reloc roots, and data reloc roots.
4186         */
4187        if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4188            test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4189                be_nice = true;
4190
4191        path = btrfs_alloc_path();
4192        if (!path)
4193                return -ENOMEM;
4194        path->reada = READA_BACK;
4195
4196        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4197                lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4198                                 &cached_state);
4199
4200                /*
4201                 * We want to drop from the next block forward in case this
4202                 * new size is not block aligned since we will be keeping the
4203                 * last block of the extent just the way it is.
4204                 */
4205                btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4206                                        fs_info->sectorsize),
4207                                        (u64)-1, 0);
4208        }
4209
4210        /*
4211         * This function is also used to drop the items in the log tree before
4212         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4213         * it is used to drop the logged items. So we shouldn't kill the delayed
4214         * items.
4215         */
4216        if (min_type == 0 && root == BTRFS_I(inode)->root)
4217                btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4218
4219        key.objectid = ino;
4220        key.offset = (u64)-1;
4221        key.type = (u8)-1;
4222
4223search_again:
4224        /*
4225         * with a 16K leaf size and 128MB extents, you can actually queue
4226         * up a huge file in a single leaf.  Most of the time that
4227         * bytes_deleted is > 0, it will be huge by the time we get here
4228         */
4229        if (be_nice && bytes_deleted > SZ_32M &&
4230            btrfs_should_end_transaction(trans)) {
4231                ret = -EAGAIN;
4232                goto out;
4233        }
4234
4235        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4236        if (ret < 0)
4237                goto out;
4238
4239        if (ret > 0) {
4240                ret = 0;
4241                /* there are no items in the tree for us to truncate, we're
4242                 * done
4243                 */
4244                if (path->slots[0] == 0)
4245                        goto out;
4246                path->slots[0]--;
4247        }
4248
4249        while (1) {
4250                u64 clear_start = 0, clear_len = 0;
4251
4252                fi = NULL;
4253                leaf = path->nodes[0];
4254                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4255                found_type = found_key.type;
4256
4257                if (found_key.objectid != ino)
4258                        break;
4259
4260                if (found_type < min_type)
4261                        break;
4262
4263                item_end = found_key.offset;
4264                if (found_type == BTRFS_EXTENT_DATA_KEY) {
4265                        fi = btrfs_item_ptr(leaf, path->slots[0],
4266                                            struct btrfs_file_extent_item);
4267                        extent_type = btrfs_file_extent_type(leaf, fi);
4268                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4269                                item_end +=
4270                                    btrfs_file_extent_num_bytes(leaf, fi);
4271
4272                                trace_btrfs_truncate_show_fi_regular(
4273                                        BTRFS_I(inode), leaf, fi,
4274                                        found_key.offset);
4275                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4276                                item_end += btrfs_file_extent_ram_bytes(leaf,
4277                                                                        fi);
4278
4279                                trace_btrfs_truncate_show_fi_inline(
4280                                        BTRFS_I(inode), leaf, fi, path->slots[0],
4281                                        found_key.offset);
4282                        }
4283                        item_end--;
4284                }
4285                if (found_type > min_type) {
4286                        del_item = 1;
4287                } else {
4288                        if (item_end < new_size)
4289                                break;
4290                        if (found_key.offset >= new_size)
4291                                del_item = 1;
4292                        else
4293                                del_item = 0;
4294                }
4295                found_extent = 0;
4296                /* FIXME, shrink the extent if the ref count is only 1 */
4297                if (found_type != BTRFS_EXTENT_DATA_KEY)
4298                        goto delete;
4299
4300                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4301                        u64 num_dec;
4302
4303                        clear_start = found_key.offset;
4304                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4305                        if (!del_item) {
4306                                u64 orig_num_bytes =
4307                                        btrfs_file_extent_num_bytes(leaf, fi);
4308                                extent_num_bytes = ALIGN(new_size -
4309                                                found_key.offset,
4310                                                fs_info->sectorsize);
4311                                clear_start = ALIGN(new_size, fs_info->sectorsize);
4312                                btrfs_set_file_extent_num_bytes(leaf, fi,
4313                                                         extent_num_bytes);
4314                                num_dec = (orig_num_bytes -
4315                                           extent_num_bytes);
4316                                if (test_bit(BTRFS_ROOT_SHAREABLE,
4317                                             &root->state) &&
4318                                    extent_start != 0)
4319                                        inode_sub_bytes(inode, num_dec);
4320                                btrfs_mark_buffer_dirty(leaf);
4321                        } else {
4322                                extent_num_bytes =
4323                                        btrfs_file_extent_disk_num_bytes(leaf,
4324                                                                         fi);
4325                                extent_offset = found_key.offset -
4326                                        btrfs_file_extent_offset(leaf, fi);
4327
4328                                /* FIXME blocksize != 4096 */
4329                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4330                                if (extent_start != 0) {
4331                                        found_extent = 1;
4332                                        if (test_bit(BTRFS_ROOT_SHAREABLE,
4333                                                     &root->state))
4334                                                inode_sub_bytes(inode, num_dec);
4335                                }
4336                        }
4337                        clear_len = num_dec;
4338                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4339                        /*
4340                         * we can't truncate inline items that have had
4341                         * special encodings
4342                         */
4343                        if (!del_item &&
4344                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
4345                            btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4346                            btrfs_file_extent_compression(leaf, fi) == 0) {
4347                                u32 size = (u32)(new_size - found_key.offset);
4348
4349                                btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4350                                size = btrfs_file_extent_calc_inline_size(size);
4351                                btrfs_truncate_item(path, size, 1);
4352                        } else if (!del_item) {
4353                                /*
4354                                 * We have to bail so the last_size is set to
4355                                 * just before this extent.
4356                                 */
4357                                ret = NEED_TRUNCATE_BLOCK;
4358                                break;
4359                        } else {
4360                                /*
4361                                 * Inline extents are special, we just treat
4362                                 * them as a full sector worth in the file
4363                                 * extent tree just for simplicity sake.
4364                                 */
4365                                clear_len = fs_info->sectorsize;
4366                        }
4367
4368                        if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4369                                inode_sub_bytes(inode, item_end + 1 - new_size);
4370                }
4371delete:
4372                /*
4373                 * We use btrfs_truncate_inode_items() to clean up log trees for
4374                 * multiple fsyncs, and in this case we don't want to clear the
4375                 * file extent range because it's just the log.
4376                 */
4377                if (root == BTRFS_I(inode)->root) {
4378                        ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4379                                                  clear_start, clear_len);
4380                        if (ret) {
4381                                btrfs_abort_transaction(trans, ret);
4382                                break;
4383                        }
4384                }
4385
4386                if (del_item)
4387                        last_size = found_key.offset;
4388                else
4389                        last_size = new_size;
4390                if (del_item) {
4391                        if (!pending_del_nr) {
4392                                /* no pending yet, add ourselves */
4393                                pending_del_slot = path->slots[0];
4394                                pending_del_nr = 1;
4395                        } else if (pending_del_nr &&
4396                                   path->slots[0] + 1 == pending_del_slot) {
4397                                /* hop on the pending chunk */
4398                                pending_del_nr++;
4399                                pending_del_slot = path->slots[0];
4400                        } else {
4401                                BUG();
4402                        }
4403                } else {
4404                        break;
4405                }
4406                should_throttle = false;
4407
4408                if (found_extent &&
4409                    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4410                        struct btrfs_ref ref = { 0 };
4411
4412                        bytes_deleted += extent_num_bytes;
4413
4414                        btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4415                                        extent_start, extent_num_bytes, 0);
4416                        ref.real_root = root->root_key.objectid;
4417                        btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4418                                        ino, extent_offset);
4419                        ret = btrfs_free_extent(trans, &ref);
4420                        if (ret) {
4421                                btrfs_abort_transaction(trans, ret);
4422                                break;
4423                        }
4424                        if (be_nice) {
4425                                if (btrfs_should_throttle_delayed_refs(trans))
4426                                        should_throttle = true;
4427                        }
4428                }
4429
4430                if (found_type == BTRFS_INODE_ITEM_KEY)
4431                        break;
4432
4433                if (path->slots[0] == 0 ||
4434                    path->slots[0] != pending_del_slot ||
4435                    should_throttle) {
4436                        if (pending_del_nr) {
4437                                ret = btrfs_del_items(trans, root, path,
4438                                                pending_del_slot,
4439                                                pending_del_nr);
4440                                if (ret) {
4441                                        btrfs_abort_transaction(trans, ret);
4442                                        break;
4443                                }
4444                                pending_del_nr = 0;
4445                        }
4446                        btrfs_release_path(path);
4447
4448                        /*
4449                         * We can generate a lot of delayed refs, so we need to
4450                         * throttle every once and a while and make sure we're
4451                         * adding enough space to keep up with the work we are
4452                         * generating.  Since we hold a transaction here we
4453                         * can't flush, and we don't want to FLUSH_LIMIT because
4454                         * we could have generated too many delayed refs to
4455                         * actually allocate, so just bail if we're short and
4456                         * let the normal reservation dance happen higher up.
4457                         */
4458                        if (should_throttle) {
4459                                ret = btrfs_delayed_refs_rsv_refill(fs_info,
4460                                                        BTRFS_RESERVE_NO_FLUSH);
4461                                if (ret) {
4462                                        ret = -EAGAIN;
4463                                        break;
4464                                }
4465                        }
4466                        goto search_again;
4467                } else {
4468                        path->slots[0]--;
4469                }
4470        }
4471out:
4472        if (ret >= 0 && pending_del_nr) {
4473                int err;
4474
4475                err = btrfs_del_items(trans, root, path, pending_del_slot,
4476                                      pending_del_nr);
4477                if (err) {
4478                        btrfs_abort_transaction(trans, err);
4479                        ret = err;
4480                }
4481        }
4482        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4483                ASSERT(last_size >= new_size);
4484                if (!ret && last_size > new_size)
4485                        last_size = new_size;
4486                btrfs_inode_safe_disk_i_size_write(inode, last_size);
4487                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4488                                     (u64)-1, &cached_state);
4489        }
4490
4491        btrfs_free_path(path);
4492        return ret;
4493}
4494
4495/*
4496 * btrfs_truncate_block - read, zero a chunk and write a block
4497 * @inode - inode that we're zeroing
4498 * @from - the offset to start zeroing
4499 * @len - the length to zero, 0 to zero the entire range respective to the
4500 *      offset
4501 * @front - zero up to the offset instead of from the offset on
4502 *
4503 * This will find the block for the "from" offset and cow the block and zero the
4504 * part we want to zero.  This is used with truncate and hole punching.
4505 */
4506int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4507                        int front)
4508{
4509        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4510        struct address_space *mapping = inode->i_mapping;
4511        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4512        struct btrfs_ordered_extent *ordered;
4513        struct extent_state *cached_state = NULL;
4514        struct extent_changeset *data_reserved = NULL;
4515        char *kaddr;
4516        bool only_release_metadata = false;
4517        u32 blocksize = fs_info->sectorsize;
4518        pgoff_t index = from >> PAGE_SHIFT;
4519        unsigned offset = from & (blocksize - 1);
4520        struct page *page;
4521        gfp_t mask = btrfs_alloc_write_mask(mapping);
4522        size_t write_bytes = blocksize;
4523        int ret = 0;
4524        u64 block_start;
4525        u64 block_end;
4526
4527        if (IS_ALIGNED(offset, blocksize) &&
4528            (!len || IS_ALIGNED(len, blocksize)))
4529                goto out;
4530
4531        block_start = round_down(from, blocksize);
4532        block_end = block_start + blocksize - 1;
4533
4534        ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4535                                          block_start, blocksize);
4536        if (ret < 0) {
4537                if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4538                                           &write_bytes) > 0) {
4539                        /* For nocow case, no need to reserve data space */
4540                        only_release_metadata = true;
4541                } else {
4542                        goto out;
4543                }
4544        }
4545        ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4546        if (ret < 0) {
4547                if (!only_release_metadata)
4548                        btrfs_free_reserved_data_space(BTRFS_I(inode),
4549                                        data_reserved, block_start, blocksize);
4550                goto out;
4551        }
4552again:
4553        page = find_or_create_page(mapping, index, mask);
4554        if (!page) {
4555                btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4556                                             block_start, blocksize, true);
4557                btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4558                ret = -ENOMEM;
4559                goto out;
4560        }
4561
4562        if (!PageUptodate(page)) {
4563                ret = btrfs_readpage(NULL, page);
4564                lock_page(page);
4565                if (page->mapping != mapping) {
4566                        unlock_page(page);
4567                        put_page(page);
4568                        goto again;
4569                }
4570                if (!PageUptodate(page)) {
4571                        ret = -EIO;
4572                        goto out_unlock;
4573                }
4574        }
4575        wait_on_page_writeback(page);
4576
4577        lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4578        set_page_extent_mapped(page);
4579
4580        ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
4581        if (ordered) {
4582                unlock_extent_cached(io_tree, block_start, block_end,
4583                                     &cached_state);
4584                unlock_page(page);
4585                put_page(page);
4586                btrfs_start_ordered_extent(inode, ordered, 1);
4587                btrfs_put_ordered_extent(ordered);
4588                goto again;
4589        }
4590
4591        clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4592                         EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4593                         0, 0, &cached_state);
4594
4595        ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
4596                                        &cached_state);
4597        if (ret) {
4598                unlock_extent_cached(io_tree, block_start, block_end,
4599                                     &cached_state);
4600                goto out_unlock;
4601        }
4602
4603        if (offset != blocksize) {
4604                if (!len)
4605                        len = blocksize - offset;
4606                kaddr = kmap(page);
4607                if (front)
4608                        memset(kaddr + (block_start - page_offset(page)),
4609                                0, offset);
4610                else
4611                        memset(kaddr + (block_start - page_offset(page)) +  offset,
4612                                0, len);
4613                flush_dcache_page(page);
4614                kunmap(page);
4615        }
4616        ClearPageChecked(page);
4617        set_page_dirty(page);
4618        unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4619
4620        if (only_release_metadata)
4621                set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4622                                block_end, EXTENT_NORESERVE, NULL, NULL,
4623                                GFP_NOFS);
4624
4625out_unlock:
4626        if (ret) {
4627                if (only_release_metadata)
4628                        btrfs_delalloc_release_metadata(BTRFS_I(inode),
4629                                        blocksize, true);
4630                else
4631                        btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4632                                        block_start, blocksize, true);
4633        }
4634        btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4635        unlock_page(page);
4636        put_page(page);
4637out:
4638        if (only_release_metadata)
4639                btrfs_check_nocow_unlock(BTRFS_I(inode));
4640        extent_changeset_free(data_reserved);
4641        return ret;
4642}
4643
4644static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4645                             u64 offset, u64 len)
4646{
4647        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4648        struct btrfs_trans_handle *trans;
4649        int ret;
4650
4651        /*
4652         * Still need to make sure the inode looks like it's been updated so
4653         * that any holes get logged if we fsync.
4654         */
4655        if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4656                BTRFS_I(inode)->last_trans = fs_info->generation;
4657                BTRFS_I(inode)->last_sub_trans = root->log_transid;
4658                BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4659                return 0;
4660        }
4661
4662        /*
4663         * 1 - for the one we're dropping
4664         * 1 - for the one we're adding
4665         * 1 - for updating the inode.
4666         */
4667        trans = btrfs_start_transaction(root, 3);
4668        if (IS_ERR(trans))
4669                return PTR_ERR(trans);
4670
4671        ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4672        if (ret) {
4673                btrfs_abort_transaction(trans, ret);
4674                btrfs_end_transaction(trans);
4675                return ret;
4676        }
4677
4678        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4679                        offset, 0, 0, len, 0, len, 0, 0, 0);
4680        if (ret)
4681                btrfs_abort_transaction(trans, ret);
4682        else
4683                btrfs_update_inode(trans, root, inode);
4684        btrfs_end_transaction(trans);
4685        return ret;
4686}
4687
4688/*
4689 * This function puts in dummy file extents for the area we're creating a hole
4690 * for.  So if we are truncating this file to a larger size we need to insert
4691 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4692 * the range between oldsize and size
4693 */
4694int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4695{
4696        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4697        struct btrfs_root *root = BTRFS_I(inode)->root;
4698        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4699        struct extent_map *em = NULL;
4700        struct extent_state *cached_state = NULL;
4701        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4702        u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4703        u64 block_end = ALIGN(size, fs_info->sectorsize);
4704        u64 last_byte;
4705        u64 cur_offset;
4706        u64 hole_size;
4707        int err = 0;
4708
4709        /*
4710         * If our size started in the middle of a block we need to zero out the
4711         * rest of the block before we expand the i_size, otherwise we could
4712         * expose stale data.
4713         */
4714        err = btrfs_truncate_block(inode, oldsize, 0, 0);
4715        if (err)
4716                return err;
4717
4718        if (size <= hole_start)
4719                return 0;
4720
4721        btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
4722                                           block_end - 1, &cached_state);
4723        cur_offset = hole_start;
4724        while (1) {
4725                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4726                                      block_end - cur_offset);
4727                if (IS_ERR(em)) {
4728                        err = PTR_ERR(em);
4729                        em = NULL;
4730                        break;
4731                }
4732                last_byte = min(extent_map_end(em), block_end);
4733                last_byte = ALIGN(last_byte, fs_info->sectorsize);
4734                hole_size = last_byte - cur_offset;
4735
4736                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4737                        struct extent_map *hole_em;
4738
4739                        err = maybe_insert_hole(root, inode, cur_offset,
4740                                                hole_size);
4741                        if (err)
4742                                break;
4743
4744                        err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4745                                                        cur_offset, hole_size);
4746                        if (err)
4747                                break;
4748
4749                        btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4750                                                cur_offset + hole_size - 1, 0);
4751                        hole_em = alloc_extent_map();
4752                        if (!hole_em) {
4753                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4754                                        &BTRFS_I(inode)->runtime_flags);
4755                                goto next;
4756                        }
4757                        hole_em->start = cur_offset;
4758                        hole_em->len = hole_size;
4759                        hole_em->orig_start = cur_offset;
4760
4761                        hole_em->block_start = EXTENT_MAP_HOLE;
4762                        hole_em->block_len = 0;
4763                        hole_em->orig_block_len = 0;
4764                        hole_em->ram_bytes = hole_size;
4765                        hole_em->compress_type = BTRFS_COMPRESS_NONE;
4766                        hole_em->generation = fs_info->generation;
4767
4768                        while (1) {
4769                                write_lock(&em_tree->lock);
4770                                err = add_extent_mapping(em_tree, hole_em, 1);
4771                                write_unlock(&em_tree->lock);
4772                                if (err != -EEXIST)
4773                                        break;
4774                                btrfs_drop_extent_cache(BTRFS_I(inode),
4775                                                        cur_offset,
4776                                                        cur_offset +
4777                                                        hole_size - 1, 0);
4778                        }
4779                        free_extent_map(hole_em);
4780                } else {
4781                        err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4782                                                        cur_offset, hole_size);
4783                        if (err)
4784                                break;
4785                }
4786next:
4787                free_extent_map(em);
4788                em = NULL;
4789                cur_offset = last_byte;
4790                if (cur_offset >= block_end)
4791                        break;
4792        }
4793        free_extent_map(em);
4794        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4795        return err;
4796}
4797
4798static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4799{
4800        struct btrfs_root *root = BTRFS_I(inode)->root;
4801        struct btrfs_trans_handle *trans;
4802        loff_t oldsize = i_size_read(inode);
4803        loff_t newsize = attr->ia_size;
4804        int mask = attr->ia_valid;
4805        int ret;
4806
4807        /*
4808         * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4809         * special case where we need to update the times despite not having
4810         * these flags set.  For all other operations the VFS set these flags
4811         * explicitly if it wants a timestamp update.
4812         */
4813        if (newsize != oldsize) {
4814                inode_inc_iversion(inode);
4815                if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4816                        inode->i_ctime = inode->i_mtime =
4817                                current_time(inode);
4818        }
4819
4820        if (newsize > oldsize) {
4821                /*
4822                 * Don't do an expanding truncate while snapshotting is ongoing.
4823                 * This is to ensure the snapshot captures a fully consistent
4824                 * state of this file - if the snapshot captures this expanding
4825                 * truncation, it must capture all writes that happened before
4826                 * this truncation.
4827                 */
4828                btrfs_drew_write_lock(&root->snapshot_lock);
4829                ret = btrfs_cont_expand(inode, oldsize, newsize);
4830                if (ret) {
4831                        btrfs_drew_write_unlock(&root->snapshot_lock);
4832                        return ret;
4833                }
4834
4835                trans = btrfs_start_transaction(root, 1);
4836                if (IS_ERR(trans)) {
4837                        btrfs_drew_write_unlock(&root->snapshot_lock);
4838                        return PTR_ERR(trans);
4839                }
4840
4841                i_size_write(inode, newsize);
4842                btrfs_inode_safe_disk_i_size_write(inode, 0);
4843                pagecache_isize_extended(inode, oldsize, newsize);
4844                ret = btrfs_update_inode(trans, root, inode);
4845                btrfs_drew_write_unlock(&root->snapshot_lock);
4846                btrfs_end_transaction(trans);
4847        } else {
4848
4849                /*
4850                 * We're truncating a file that used to have good data down to
4851                 * zero. Make sure it gets into the ordered flush list so that
4852                 * any new writes get down to disk quickly.
4853                 */
4854                if (newsize == 0)
4855                        set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4856                                &BTRFS_I(inode)->runtime_flags);
4857
4858                truncate_setsize(inode, newsize);
4859
4860                /* Disable nonlocked read DIO to avoid the endless truncate */
4861                btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
4862                inode_dio_wait(inode);
4863                btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
4864
4865                ret = btrfs_truncate(inode, newsize == oldsize);
4866                if (ret && inode->i_nlink) {
4867                        int err;
4868
4869                        /*
4870                         * Truncate failed, so fix up the in-memory size. We
4871                         * adjusted disk_i_size down as we removed extents, so
4872                         * wait for disk_i_size to be stable and then update the
4873                         * in-memory size to match.
4874                         */
4875                        err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4876                        if (err)
4877                                return err;
4878                        i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4879                }
4880        }
4881
4882        return ret;
4883}
4884
4885static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4886{
4887        struct inode *inode = d_inode(dentry);
4888        struct btrfs_root *root = BTRFS_I(inode)->root;
4889        int err;
4890
4891        if (btrfs_root_readonly(root))
4892                return -EROFS;
4893
4894        err = setattr_prepare(dentry, attr);
4895        if (err)
4896                return err;
4897
4898        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4899                err = btrfs_setsize(inode, attr);
4900                if (err)
4901                        return err;
4902        }
4903
4904        if (attr->ia_valid) {
4905                setattr_copy(inode, attr);
4906                inode_inc_iversion(inode);
4907                err = btrfs_dirty_inode(inode);
4908
4909                if (!err && attr->ia_valid & ATTR_MODE)
4910                        err = posix_acl_chmod(inode, inode->i_mode);
4911        }
4912
4913        return err;
4914}
4915
4916/*
4917 * While truncating the inode pages during eviction, we get the VFS calling
4918 * btrfs_invalidatepage() against each page of the inode. This is slow because
4919 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4920 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4921 * extent_state structures over and over, wasting lots of time.
4922 *
4923 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4924 * those expensive operations on a per page basis and do only the ordered io
4925 * finishing, while we release here the extent_map and extent_state structures,
4926 * without the excessive merging and splitting.
4927 */
4928static void evict_inode_truncate_pages(struct inode *inode)
4929{
4930        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4931        struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4932        struct rb_node *node;
4933
4934        ASSERT(inode->i_state & I_FREEING);
4935        truncate_inode_pages_final(&inode->i_data);
4936
4937        write_lock(&map_tree->lock);
4938        while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
4939                struct extent_map *em;
4940
4941                node = rb_first_cached(&map_tree->map);
4942                em = rb_entry(node, struct extent_map, rb_node);
4943                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4944                clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4945                remove_extent_mapping(map_tree, em);
4946                free_extent_map(em);
4947                if (need_resched()) {
4948                        write_unlock(&map_tree->lock);
4949                        cond_resched();
4950                        write_lock(&map_tree->lock);
4951                }
4952        }
4953        write_unlock(&map_tree->lock);
4954
4955        /*
4956         * Keep looping until we have no more ranges in the io tree.
4957         * We can have ongoing bios started by readahead that have
4958         * their endio callback (extent_io.c:end_bio_extent_readpage)
4959         * still in progress (unlocked the pages in the bio but did not yet
4960         * unlocked the ranges in the io tree). Therefore this means some
4961         * ranges can still be locked and eviction started because before
4962         * submitting those bios, which are executed by a separate task (work
4963         * queue kthread), inode references (inode->i_count) were not taken
4964         * (which would be dropped in the end io callback of each bio).
4965         * Therefore here we effectively end up waiting for those bios and
4966         * anyone else holding locked ranges without having bumped the inode's
4967         * reference count - if we don't do it, when they access the inode's
4968         * io_tree to unlock a range it may be too late, leading to an
4969         * use-after-free issue.
4970         */
4971        spin_lock(&io_tree->lock);
4972        while (!RB_EMPTY_ROOT(&io_tree->state)) {
4973                struct extent_state *state;
4974                struct extent_state *cached_state = NULL;
4975                u64 start;
4976                u64 end;
4977                unsigned state_flags;
4978
4979                node = rb_first(&io_tree->state);
4980                state = rb_entry(node, struct extent_state, rb_node);
4981                start = state->start;
4982                end = state->end;
4983                state_flags = state->state;
4984                spin_unlock(&io_tree->lock);
4985
4986                lock_extent_bits(io_tree, start, end, &cached_state);
4987
4988                /*
4989                 * If still has DELALLOC flag, the extent didn't reach disk,
4990                 * and its reserved space won't be freed by delayed_ref.
4991                 * So we need to free its reserved space here.
4992                 * (Refer to comment in btrfs_invalidatepage, case 2)
4993                 *
4994                 * Note, end is the bytenr of last byte, so we need + 1 here.
4995                 */
4996                if (state_flags & EXTENT_DELALLOC)
4997                        btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
4998                                               end - start + 1);
4999
5000                clear_extent_bit(io_tree, start, end,
5001                                 EXTENT_LOCKED | EXTENT_DELALLOC |
5002                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5003                                 &cached_state);
5004
5005                cond_resched();
5006                spin_lock(&io_tree->lock);
5007        }
5008        spin_unlock(&io_tree->lock);
5009}
5010
5011static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5012                                                        struct btrfs_block_rsv *rsv)
5013{
5014        struct btrfs_fs_info *fs_info = root->fs_info;
5015        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5016        struct btrfs_trans_handle *trans;
5017        u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5018        int ret;
5019
5020        /*
5021         * Eviction should be taking place at some place safe because of our
5022         * delayed iputs.  However the normal flushing code will run delayed
5023         * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5024         *
5025         * We reserve the delayed_refs_extra here again because we can't use
5026         * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5027         * above.  We reserve our extra bit here because we generate a ton of
5028         * delayed refs activity by truncating.
5029         *
5030         * If we cannot make our reservation we'll attempt to steal from the
5031         * global reserve, because we really want to be able to free up space.
5032         */
5033        ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5034                                     BTRFS_RESERVE_FLUSH_EVICT);
5035        if (ret) {
5036                /*
5037                 * Try to steal from the global reserve if there is space for
5038                 * it.
5039                 */
5040                if (btrfs_check_space_for_delayed_refs(fs_info) ||
5041                    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5042                        btrfs_warn(fs_info,
5043                                   "could not allocate space for delete; will truncate on mount");
5044                        return ERR_PTR(-ENOSPC);
5045                }
5046                delayed_refs_extra = 0;
5047        }
5048
5049        trans = btrfs_join_transaction(root);
5050        if (IS_ERR(trans))
5051                return trans;
5052
5053        if (delayed_refs_extra) {
5054                trans->block_rsv = &fs_info->trans_block_rsv;
5055                trans->bytes_reserved = delayed_refs_extra;
5056                btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5057                                        delayed_refs_extra, 1);
5058        }
5059        return trans;
5060}
5061
5062void btrfs_evict_inode(struct inode *inode)
5063{
5064        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5065        struct btrfs_trans_handle *trans;
5066        struct btrfs_root *root = BTRFS_I(inode)->root;
5067        struct btrfs_block_rsv *rsv;
5068        int ret;
5069
5070        trace_btrfs_inode_evict(inode);
5071
5072        if (!root) {
5073                clear_inode(inode);
5074                return;
5075        }
5076
5077        evict_inode_truncate_pages(inode);
5078
5079        if (inode->i_nlink &&
5080            ((btrfs_root_refs(&root->root_item) != 0 &&
5081              root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5082             btrfs_is_free_space_inode(BTRFS_I(inode))))
5083                goto no_delete;
5084
5085        if (is_bad_inode(inode))
5086                goto no_delete;
5087
5088        btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5089
5090        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5091                goto no_delete;
5092
5093        if (inode->i_nlink > 0) {
5094                BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5095                       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5096                goto no_delete;
5097        }
5098
5099        ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5100        if (ret)
5101                goto no_delete;
5102
5103        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5104        if (!rsv)
5105                goto no_delete;
5106        rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5107        rsv->failfast = 1;
5108
5109        btrfs_i_size_write(BTRFS_I(inode), 0);
5110
5111        while (1) {
5112                trans = evict_refill_and_join(root, rsv);
5113                if (IS_ERR(trans))
5114                        goto free_rsv;
5115
5116                trans->block_rsv = rsv;
5117
5118                ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5119                trans->block_rsv = &fs_info->trans_block_rsv;
5120                btrfs_end_transaction(trans);
5121                btrfs_btree_balance_dirty(fs_info);
5122                if (ret && ret != -ENOSPC && ret != -EAGAIN)
5123                        goto free_rsv;
5124                else if (!ret)
5125                        break;
5126        }
5127
5128        /*
5129         * Errors here aren't a big deal, it just means we leave orphan items in
5130         * the tree. They will be cleaned up on the next mount. If the inode
5131         * number gets reused, cleanup deletes the orphan item without doing
5132         * anything, and unlink reuses the existing orphan item.
5133         *
5134         * If it turns out that we are dropping too many of these, we might want
5135         * to add a mechanism for retrying these after a commit.
5136         */
5137        trans = evict_refill_and_join(root, rsv);
5138        if (!IS_ERR(trans)) {
5139                trans->block_rsv = rsv;
5140                btrfs_orphan_del(trans, BTRFS_I(inode));
5141                trans->block_rsv = &fs_info->trans_block_rsv;
5142                btrfs_end_transaction(trans);
5143        }
5144
5145        if (!(root == fs_info->tree_root ||
5146              root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5147                btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5148
5149free_rsv:
5150        btrfs_free_block_rsv(fs_info, rsv);
5151no_delete:
5152        /*
5153         * If we didn't successfully delete, the orphan item will still be in
5154         * the tree and we'll retry on the next mount. Again, we might also want
5155         * to retry these periodically in the future.
5156         */
5157        btrfs_remove_delayed_node(BTRFS_I(inode));
5158        clear_inode(inode);
5159}
5160
5161/*
5162 * Return the key found in the dir entry in the location pointer, fill @type
5163 * with BTRFS_FT_*, and return 0.
5164 *
5165 * If no dir entries were found, returns -ENOENT.
5166 * If found a corrupted location in dir entry, returns -EUCLEAN.
5167 */
5168static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5169                               struct btrfs_key *location, u8 *type)
5170{
5171        const char *name = dentry->d_name.name;
5172        int namelen = dentry->d_name.len;
5173        struct btrfs_dir_item *di;
5174        struct btrfs_path *path;
5175        struct btrfs_root *root = BTRFS_I(dir)->root;
5176        int ret = 0;
5177
5178        path = btrfs_alloc_path();
5179        if (!path)
5180                return -ENOMEM;
5181
5182        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5183                        name, namelen, 0);
5184        if (IS_ERR_OR_NULL(di)) {
5185                ret = di ? PTR_ERR(di) : -ENOENT;
5186                goto out;
5187        }
5188
5189        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5190        if (location->type != BTRFS_INODE_ITEM_KEY &&
5191            location->type != BTRFS_ROOT_ITEM_KEY) {
5192                ret = -EUCLEAN;
5193                btrfs_warn(root->fs_info,
5194"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5195                           __func__, name, btrfs_ino(BTRFS_I(dir)),
5196                           location->objectid, location->type, location->offset);
5197        }
5198        if (!ret)
5199                *type = btrfs_dir_type(path->nodes[0], di);
5200out:
5201        btrfs_free_path(path);
5202        return ret;
5203}
5204
5205/*
5206 * when we hit a tree root in a directory, the btrfs part of the inode
5207 * needs to be changed to reflect the root directory of the tree root.  This
5208 * is kind of like crossing a mount point.
5209 */
5210static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5211                                    struct inode *dir,
5212                                    struct dentry *dentry,
5213                                    struct btrfs_key *location,
5214                                    struct btrfs_root **sub_root)
5215{
5216        struct btrfs_path *path;
5217        struct btrfs_root *new_root;
5218        struct btrfs_root_ref *ref;
5219        struct extent_buffer *leaf;
5220        struct btrfs_key key;
5221        int ret;
5222        int err = 0;
5223
5224        path = btrfs_alloc_path();
5225        if (!path) {
5226                err = -ENOMEM;
5227                goto out;
5228        }
5229
5230        err = -ENOENT;
5231        key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5232        key.type = BTRFS_ROOT_REF_KEY;
5233        key.offset = location->objectid;
5234
5235        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5236        if (ret) {
5237                if (ret < 0)
5238                        err = ret;
5239                goto out;
5240        }
5241
5242        leaf = path->nodes[0];
5243        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5244        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5245            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5246                goto out;
5247
5248        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5249                                   (unsigned long)(ref + 1),
5250                                   dentry->d_name.len);
5251        if (ret)
5252                goto out;
5253
5254        btrfs_release_path(path);
5255
5256        new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5257        if (IS_ERR(new_root)) {
5258                err = PTR_ERR(new_root);
5259                goto out;
5260        }
5261
5262        *sub_root = new_root;
5263        location->objectid = btrfs_root_dirid(&new_root->root_item);
5264        location->type = BTRFS_INODE_ITEM_KEY;
5265        location->offset = 0;
5266        err = 0;
5267out:
5268        btrfs_free_path(path);
5269        return err;
5270}
5271
5272static void inode_tree_add(struct inode *inode)
5273{
5274        struct btrfs_root *root = BTRFS_I(inode)->root;
5275        struct btrfs_inode *entry;
5276        struct rb_node **p;
5277        struct rb_node *parent;
5278        struct rb_node *new = &BTRFS_I(inode)->rb_node;
5279        u64 ino = btrfs_ino(BTRFS_I(inode));
5280
5281        if (inode_unhashed(inode))
5282                return;
5283        parent = NULL;
5284        spin_lock(&root->inode_lock);
5285        p = &root->inode_tree.rb_node;
5286        while (*p) {
5287                parent = *p;
5288                entry = rb_entry(parent, struct btrfs_inode, rb_node);
5289
5290                if (ino < btrfs_ino(entry))
5291                        p = &parent->rb_left;
5292                else if (ino > btrfs_ino(entry))
5293                        p = &parent->rb_right;
5294                else {
5295                        WARN_ON(!(entry->vfs_inode.i_state &
5296                                  (I_WILL_FREE | I_FREEING)));
5297                        rb_replace_node(parent, new, &root->inode_tree);
5298                        RB_CLEAR_NODE(parent);
5299                        spin_unlock(&root->inode_lock);
5300                        return;
5301                }
5302        }
5303        rb_link_node(new, parent, p);
5304        rb_insert_color(new, &root->inode_tree);
5305        spin_unlock(&root->inode_lock);
5306}
5307
5308static void inode_tree_del(struct inode *inode)
5309{
5310        struct btrfs_root *root = BTRFS_I(inode)->root;
5311        int empty = 0;
5312
5313        spin_lock(&root->inode_lock);
5314        if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5315                rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5316                RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5317                empty = RB_EMPTY_ROOT(&root->inode_tree);
5318        }
5319        spin_unlock(&root->inode_lock);
5320
5321        if (empty && btrfs_root_refs(&root->root_item) == 0) {
5322                spin_lock(&root->inode_lock);
5323                empty = RB_EMPTY_ROOT(&root->inode_tree);
5324                spin_unlock(&root->inode_lock);
5325                if (empty)
5326                        btrfs_add_dead_root(root);
5327        }
5328}
5329
5330
5331static int btrfs_init_locked_inode(struct inode *inode, void *p)
5332{
5333        struct btrfs_iget_args *args = p;
5334
5335        inode->i_ino = args->ino;
5336        BTRFS_I(inode)->location.objectid = args->ino;
5337        BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5338        BTRFS_I(inode)->location.offset = 0;
5339        BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5340        BUG_ON(args->root && !BTRFS_I(inode)->root);
5341        return 0;
5342}
5343
5344static int btrfs_find_actor(struct inode *inode, void *opaque)
5345{
5346        struct btrfs_iget_args *args = opaque;
5347
5348        return args->ino == BTRFS_I(inode)->location.objectid &&
5349                args->root == BTRFS_I(inode)->root;
5350}
5351
5352static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5353                                       struct btrfs_root *root)
5354{
5355        struct inode *inode;
5356        struct btrfs_iget_args args;
5357        unsigned long hashval = btrfs_inode_hash(ino, root);
5358
5359        args.ino = ino;
5360        args.root = root;
5361
5362        inode = iget5_locked(s, hashval, btrfs_find_actor,
5363                             btrfs_init_locked_inode,
5364                             (void *)&args);
5365        return inode;
5366}
5367
5368/*
5369 * Get an inode object given its inode number and corresponding root.
5370 * Path can be preallocated to prevent recursing back to iget through
5371 * allocator. NULL is also valid but may require an additional allocation
5372 * later.
5373 */
5374struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5375                              struct btrfs_root *root, struct btrfs_path *path)
5376{
5377        struct inode *inode;
5378
5379        inode = btrfs_iget_locked(s, ino, root);
5380        if (!inode)
5381                return ERR_PTR(-ENOMEM);
5382
5383        if (inode->i_state & I_NEW) {
5384                int ret;
5385
5386                ret = btrfs_read_locked_inode(inode, path);
5387                if (!ret) {
5388                        inode_tree_add(inode);
5389                        unlock_new_inode(inode);
5390                } else {
5391                        iget_failed(inode);
5392                        /*
5393                         * ret > 0 can come from btrfs_search_slot called by
5394                         * btrfs_read_locked_inode, this means the inode item
5395                         * was not found.
5396                         */
5397                        if (ret > 0)
5398                                ret = -ENOENT;
5399                        inode = ERR_PTR(ret);
5400                }
5401        }
5402
5403        return inode;
5404}
5405
5406struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5407{
5408        return btrfs_iget_path(s, ino, root, NULL);
5409}
5410
5411static struct inode *new_simple_dir(struct super_block *s,
5412                                    struct btrfs_key *key,
5413                                    struct btrfs_root *root)
5414{
5415        struct inode *inode = new_inode(s);
5416
5417        if (!inode)
5418                return ERR_PTR(-ENOMEM);
5419
5420        BTRFS_I(inode)->root = btrfs_grab_root(root);
5421        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5422        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5423
5424        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5425        /*
5426         * We only need lookup, the rest is read-only and there's no inode
5427         * associated with the dentry
5428         */
5429        inode->i_op = &simple_dir_inode_operations;
5430        inode->i_opflags &= ~IOP_XATTR;
5431        inode->i_fop = &simple_dir_operations;
5432        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5433        inode->i_mtime = current_time(inode);
5434        inode->i_atime = inode->i_mtime;
5435        inode->i_ctime = inode->i_mtime;
5436        BTRFS_I(inode)->i_otime = inode->i_mtime;
5437
5438        return inode;
5439}
5440
5441static inline u8 btrfs_inode_type(struct inode *inode)
5442{
5443        /*
5444         * Compile-time asserts that generic FT_* types still match
5445         * BTRFS_FT_* types
5446         */
5447        BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5448        BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5449        BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5450        BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5451        BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5452        BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5453        BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5454        BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5455
5456        return fs_umode_to_ftype(inode->i_mode);
5457}
5458
5459struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5460{
5461        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5462        struct inode *inode;
5463        struct btrfs_root *root = BTRFS_I(dir)->root;
5464        struct btrfs_root *sub_root = root;
5465        struct btrfs_key location;
5466        u8 di_type = 0;
5467        int ret = 0;
5468
5469        if (dentry->d_name.len > BTRFS_NAME_LEN)
5470                return ERR_PTR(-ENAMETOOLONG);
5471
5472        ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5473        if (ret < 0)
5474                return ERR_PTR(ret);
5475
5476        if (location.type == BTRFS_INODE_ITEM_KEY) {
5477                inode = btrfs_iget(dir->i_sb, location.objectid, root);
5478                if (IS_ERR(inode))
5479                        return inode;
5480
5481                /* Do extra check against inode mode with di_type */
5482                if (btrfs_inode_type(inode) != di_type) {
5483                        btrfs_crit(fs_info,
5484"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5485                                  inode->i_mode, btrfs_inode_type(inode),
5486                                  di_type);
5487                        iput(inode);
5488                        return ERR_PTR(-EUCLEAN);
5489                }
5490                return inode;
5491        }
5492
5493        ret = fixup_tree_root_location(fs_info, dir, dentry,
5494                                       &location, &sub_root);
5495        if (ret < 0) {
5496                if (ret != -ENOENT)
5497                        inode = ERR_PTR(ret);
5498                else
5499                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
5500        } else {
5501                inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5502        }
5503        if (root != sub_root)
5504                btrfs_put_root(sub_root);
5505
5506        if (!IS_ERR(inode) && root != sub_root) {
5507                down_read(&fs_info->cleanup_work_sem);
5508                if (!sb_rdonly(inode->i_sb))
5509                        ret = btrfs_orphan_cleanup(sub_root);
5510                up_read(&fs_info->cleanup_work_sem);
5511                if (ret) {
5512                        iput(inode);
5513                        inode = ERR_PTR(ret);
5514                }
5515        }
5516
5517        return inode;
5518}
5519
5520static int btrfs_dentry_delete(const struct dentry *dentry)
5521{
5522        struct btrfs_root *root;
5523        struct inode *inode = d_inode(dentry);
5524
5525        if (!inode && !IS_ROOT(dentry))
5526                inode = d_inode(dentry->d_parent);
5527
5528        if (inode) {
5529                root = BTRFS_I(inode)->root;
5530                if (btrfs_root_refs(&root->root_item) == 0)
5531                        return 1;
5532
5533                if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5534                        return 1;
5535        }
5536        return 0;
5537}
5538
5539static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5540                                   unsigned int flags)
5541{
5542        struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5543
5544        if (inode == ERR_PTR(-ENOENT))
5545                inode = NULL;
5546        return d_splice_alias(inode, dentry);
5547}
5548
5549/*
5550 * All this infrastructure exists because dir_emit can fault, and we are holding
5551 * the tree lock when doing readdir.  For now just allocate a buffer and copy
5552 * our information into that, and then dir_emit from the buffer.  This is
5553 * similar to what NFS does, only we don't keep the buffer around in pagecache
5554 * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5555 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5556 * tree lock.
5557 */
5558static int btrfs_opendir(struct inode *inode, struct file *file)
5559{
5560        struct btrfs_file_private *private;
5561
5562        private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5563        if (!private)
5564                return -ENOMEM;
5565        private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5566        if (!private->filldir_buf) {
5567                kfree(private);
5568                return -ENOMEM;
5569        }
5570        file->private_data = private;
5571        return 0;
5572}
5573
5574struct dir_entry {
5575        u64 ino;
5576        u64 offset;
5577        unsigned type;
5578        int name_len;
5579};
5580
5581static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5582{
5583        while (entries--) {
5584                struct dir_entry *entry = addr;
5585                char *name = (char *)(entry + 1);
5586
5587                ctx->pos = get_unaligned(&entry->offset);
5588                if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5589                                         get_unaligned(&entry->ino),
5590                                         get_unaligned(&entry->type)))
5591                        return 1;
5592                addr += sizeof(struct dir_entry) +
5593                        get_unaligned(&entry->name_len);
5594                ctx->pos++;
5595        }
5596        return 0;
5597}
5598
5599static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5600{
5601        struct inode *inode = file_inode(file);
5602        struct btrfs_root *root = BTRFS_I(inode)->root;
5603        struct btrfs_file_private *private = file->private_data;
5604        struct btrfs_dir_item *di;
5605        struct btrfs_key key;
5606        struct btrfs_key found_key;
5607        struct btrfs_path *path;
5608        void *addr;
5609        struct list_head ins_list;
5610        struct list_head del_list;
5611        int ret;
5612        struct extent_buffer *leaf;
5613        int slot;
5614        char *name_ptr;
5615        int name_len;
5616        int entries = 0;
5617        int total_len = 0;
5618        bool put = false;
5619        struct btrfs_key location;
5620
5621        if (!dir_emit_dots(file, ctx))
5622                return 0;
5623
5624        path = btrfs_alloc_path();
5625        if (!path)
5626                return -ENOMEM;
5627
5628        addr = private->filldir_buf;
5629        path->reada = READA_FORWARD;
5630
5631        INIT_LIST_HEAD(&ins_list);
5632        INIT_LIST_HEAD(&del_list);
5633        put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5634
5635again:
5636        key.type = BTRFS_DIR_INDEX_KEY;
5637        key.offset = ctx->pos;
5638        key.objectid = btrfs_ino(BTRFS_I(inode));
5639
5640        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5641        if (ret < 0)
5642                goto err;
5643
5644        while (1) {
5645                struct dir_entry *entry;
5646
5647                leaf = path->nodes[0];
5648                slot = path->slots[0];
5649                if (slot >= btrfs_header_nritems(leaf)) {
5650                        ret = btrfs_next_leaf(root, path);
5651                        if (ret < 0)
5652                                goto err;
5653                        else if (ret > 0)
5654                                break;
5655                        continue;
5656                }
5657
5658                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5659
5660                if (found_key.objectid != key.objectid)
5661                        break;
5662                if (found_key.type != BTRFS_DIR_INDEX_KEY)
5663                        break;
5664                if (found_key.offset < ctx->pos)
5665                        goto next;
5666                if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5667                        goto next;
5668                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5669                name_len = btrfs_dir_name_len(leaf, di);
5670                if ((total_len + sizeof(struct dir_entry) + name_len) >=
5671                    PAGE_SIZE) {
5672                        btrfs_release_path(path);
5673                        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5674                        if (ret)
5675                                goto nopos;
5676                        addr = private->filldir_buf;
5677                        entries = 0;
5678                        total_len = 0;
5679                        goto again;
5680                }
5681
5682                entry = addr;
5683                put_unaligned(name_len, &entry->name_len);
5684                name_ptr = (char *)(entry + 1);
5685                read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5686                                   name_len);
5687                put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5688                                &entry->type);
5689                btrfs_dir_item_key_to_cpu(leaf, di, &location);
5690                put_unaligned(location.objectid, &entry->ino);
5691                put_unaligned(found_key.offset, &entry->offset);
5692                entries++;
5693                addr += sizeof(struct dir_entry) + name_len;
5694                total_len += sizeof(struct dir_entry) + name_len;
5695next:
5696                path->slots[0]++;
5697        }
5698        btrfs_release_path(path);
5699
5700        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5701        if (ret)
5702                goto nopos;
5703
5704        ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5705        if (ret)
5706                goto nopos;
5707
5708        /*
5709         * Stop new entries from being returned after we return the last
5710         * entry.
5711         *
5712         * New directory entries are assigned a strictly increasing
5713         * offset.  This means that new entries created during readdir
5714         * are *guaranteed* to be seen in the future by that readdir.
5715         * This has broken buggy programs which operate on names as
5716         * they're returned by readdir.  Until we re-use freed offsets
5717         * we have this hack to stop new entries from being returned
5718         * under the assumption that they'll never reach this huge
5719         * offset.
5720         *
5721         * This is being careful not to overflow 32bit loff_t unless the
5722         * last entry requires it because doing so has broken 32bit apps
5723         * in the past.
5724         */
5725        if (ctx->pos >= INT_MAX)
5726                ctx->pos = LLONG_MAX;
5727        else
5728                ctx->pos = INT_MAX;
5729nopos:
5730        ret = 0;
5731err:
5732        if (put)
5733                btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5734        btrfs_free_path(path);
5735        return ret;
5736}
5737
5738/*
5739 * This is somewhat expensive, updating the tree every time the
5740 * inode changes.  But, it is most likely to find the inode in cache.
5741 * FIXME, needs more benchmarking...there are no reasons other than performance
5742 * to keep or drop this code.
5743 */
5744static int btrfs_dirty_inode(struct inode *inode)
5745{
5746        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5747        struct btrfs_root *root = BTRFS_I(inode)->root;
5748        struct btrfs_trans_handle *trans;
5749        int ret;
5750
5751        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5752                return 0;
5753
5754        trans = btrfs_join_transaction(root);
5755        if (IS_ERR(trans))
5756                return PTR_ERR(trans);
5757
5758        ret = btrfs_update_inode(trans, root, inode);
5759        if (ret && ret == -ENOSPC) {
5760                /* whoops, lets try again with the full transaction */
5761                btrfs_end_transaction(trans);
5762                trans = btrfs_start_transaction(root, 1);
5763                if (IS_ERR(trans))
5764                        return PTR_ERR(trans);
5765
5766                ret = btrfs_update_inode(trans, root, inode);
5767        }
5768        btrfs_end_transaction(trans);
5769        if (BTRFS_I(inode)->delayed_node)
5770                btrfs_balance_delayed_items(fs_info);
5771
5772        return ret;
5773}
5774
5775/*
5776 * This is a copy of file_update_time.  We need this so we can return error on
5777 * ENOSPC for updating the inode in the case of file write and mmap writes.
5778 */
5779static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5780                             int flags)
5781{
5782        struct btrfs_root *root = BTRFS_I(inode)->root;
5783        bool dirty = flags & ~S_VERSION;
5784
5785        if (btrfs_root_readonly(root))
5786                return -EROFS;
5787
5788        if (flags & S_VERSION)
5789                dirty |= inode_maybe_inc_iversion(inode, dirty);
5790        if (flags & S_CTIME)
5791                inode->i_ctime = *now;
5792        if (flags & S_MTIME)
5793                inode->i_mtime = *now;
5794        if (flags & S_ATIME)
5795                inode->i_atime = *now;
5796        return dirty ? btrfs_dirty_inode(inode) : 0;
5797}
5798
5799/*
5800 * find the highest existing sequence number in a directory
5801 * and then set the in-memory index_cnt variable to reflect
5802 * free sequence numbers
5803 */
5804static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5805{
5806        struct btrfs_root *root = inode->root;
5807        struct btrfs_key key, found_key;
5808        struct btrfs_path *path;
5809        struct extent_buffer *leaf;
5810        int ret;
5811
5812        key.objectid = btrfs_ino(inode);
5813        key.type = BTRFS_DIR_INDEX_KEY;
5814        key.offset = (u64)-1;
5815
5816        path = btrfs_alloc_path();
5817        if (!path)
5818                return -ENOMEM;
5819
5820        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5821        if (ret < 0)
5822                goto out;
5823        /* FIXME: we should be able to handle this */
5824        if (ret == 0)
5825                goto out;
5826        ret = 0;
5827
5828        /*
5829         * MAGIC NUMBER EXPLANATION:
5830         * since we search a directory based on f_pos we have to start at 2
5831         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5832         * else has to start at 2
5833         */
5834        if (path->slots[0] == 0) {
5835                inode->index_cnt = 2;
5836                goto out;
5837        }
5838
5839        path->slots[0]--;
5840
5841        leaf = path->nodes[0];
5842        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5843
5844        if (found_key.objectid != btrfs_ino(inode) ||
5845            found_key.type != BTRFS_DIR_INDEX_KEY) {
5846                inode->index_cnt = 2;
5847                goto out;
5848        }
5849
5850        inode->index_cnt = found_key.offset + 1;
5851out:
5852        btrfs_free_path(path);
5853        return ret;
5854}
5855
5856/*
5857 * helper to find a free sequence number in a given directory.  This current
5858 * code is very simple, later versions will do smarter things in the btree
5859 */
5860int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5861{
5862        int ret = 0;
5863
5864        if (dir->index_cnt == (u64)-1) {
5865                ret = btrfs_inode_delayed_dir_index_count(dir);
5866                if (ret) {
5867                        ret = btrfs_set_inode_index_count(dir);
5868                        if (ret)
5869                                return ret;
5870                }
5871        }
5872
5873        *index = dir->index_cnt;
5874        dir->index_cnt++;
5875
5876        return ret;
5877}
5878
5879static int btrfs_insert_inode_locked(struct inode *inode)
5880{
5881        struct btrfs_iget_args args;
5882
5883        args.ino = BTRFS_I(inode)->location.objectid;
5884        args.root = BTRFS_I(inode)->root;
5885
5886        return insert_inode_locked4(inode,
5887                   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5888                   btrfs_find_actor, &args);
5889}
5890
5891/*
5892 * Inherit flags from the parent inode.
5893 *
5894 * Currently only the compression flags and the cow flags are inherited.
5895 */
5896static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5897{
5898        unsigned int flags;
5899
5900        if (!dir)
5901                return;
5902
5903        flags = BTRFS_I(dir)->flags;
5904
5905        if (flags & BTRFS_INODE_NOCOMPRESS) {
5906                BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5907                BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5908        } else if (flags & BTRFS_INODE_COMPRESS) {
5909                BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5910                BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5911        }
5912
5913        if (flags & BTRFS_INODE_NODATACOW) {
5914                BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5915                if (S_ISREG(inode->i_mode))
5916                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5917        }
5918
5919        btrfs_sync_inode_flags_to_i_flags(inode);
5920}
5921
5922static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5923                                     struct btrfs_root *root,
5924                                     struct inode *dir,
5925                                     const char *name, int name_len,
5926                                     u64 ref_objectid, u64 objectid,
5927                                     umode_t mode, u64 *index)
5928{
5929        struct btrfs_fs_info *fs_info = root->fs_info;
5930        struct inode *inode;
5931        struct btrfs_inode_item *inode_item;
5932        struct btrfs_key *location;
5933        struct btrfs_path *path;
5934        struct btrfs_inode_ref *ref;
5935        struct btrfs_key key[2];
5936        u32 sizes[2];
5937        int nitems = name ? 2 : 1;
5938        unsigned long ptr;
5939        unsigned int nofs_flag;
5940        int ret;
5941
5942        path = btrfs_alloc_path();
5943        if (!path)
5944                return ERR_PTR(-ENOMEM);
5945
5946        nofs_flag = memalloc_nofs_save();
5947        inode = new_inode(fs_info->sb);
5948        memalloc_nofs_restore(nofs_flag);
5949        if (!inode) {
5950                btrfs_free_path(path);
5951                return ERR_PTR(-ENOMEM);
5952        }
5953
5954        /*
5955         * O_TMPFILE, set link count to 0, so that after this point,
5956         * we fill in an inode item with the correct link count.
5957         */
5958        if (!name)
5959                set_nlink(inode, 0);
5960
5961        /*
5962         * we have to initialize this early, so we can reclaim the inode
5963         * number if we fail afterwards in this function.
5964         */
5965        inode->i_ino = objectid;
5966
5967        if (dir && name) {
5968                trace_btrfs_inode_request(dir);
5969
5970                ret = btrfs_set_inode_index(BTRFS_I(dir), index);
5971                if (ret) {
5972                        btrfs_free_path(path);
5973                        iput(inode);
5974                        return ERR_PTR(ret);
5975                }
5976        } else if (dir) {
5977                *index = 0;
5978        }
5979        /*
5980         * index_cnt is ignored for everything but a dir,
5981         * btrfs_set_inode_index_count has an explanation for the magic
5982         * number
5983         */
5984        BTRFS_I(inode)->index_cnt = 2;
5985        BTRFS_I(inode)->dir_index = *index;
5986        BTRFS_I(inode)->root = btrfs_grab_root(root);
5987        BTRFS_I(inode)->generation = trans->transid;
5988        inode->i_generation = BTRFS_I(inode)->generation;
5989
5990        /*
5991         * We could have gotten an inode number from somebody who was fsynced
5992         * and then removed in this same transaction, so let's just set full
5993         * sync since it will be a full sync anyway and this will blow away the
5994         * old info in the log.
5995         */
5996        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5997
5998        key[0].objectid = objectid;
5999        key[0].type = BTRFS_INODE_ITEM_KEY;
6000        key[0].offset = 0;
6001
6002        sizes[0] = sizeof(struct btrfs_inode_item);
6003
6004        if (name) {
6005                /*
6006                 * Start new inodes with an inode_ref. This is slightly more
6007                 * efficient for small numbers of hard links since they will
6008                 * be packed into one item. Extended refs will kick in if we
6009                 * add more hard links than can fit in the ref item.
6010                 */
6011                key[1].objectid = objectid;
6012                key[1].type = BTRFS_INODE_REF_KEY;
6013                key[1].offset = ref_objectid;
6014
6015                sizes[1] = name_len + sizeof(*ref);
6016        }
6017
6018        location = &BTRFS_I(inode)->location;
6019        location->objectid = objectid;
6020        location->offset = 0;
6021        location->type = BTRFS_INODE_ITEM_KEY;
6022
6023        ret = btrfs_insert_inode_locked(inode);
6024        if (ret < 0) {
6025                iput(inode);
6026                goto fail;
6027        }
6028
6029        path->leave_spinning = 1;
6030        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6031        if (ret != 0)
6032                goto fail_unlock;
6033
6034        inode_init_owner(inode, dir, mode);
6035        inode_set_bytes(inode, 0);
6036
6037        inode->i_mtime = current_time(inode);
6038        inode->i_atime = inode->i_mtime;
6039        inode->i_ctime = inode->i_mtime;
6040        BTRFS_I(inode)->i_otime = inode->i_mtime;
6041
6042        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6043                                  struct btrfs_inode_item);
6044        memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6045                             sizeof(*inode_item));
6046        fill_inode_item(trans, path->nodes[0], inode_item, inode);
6047
6048        if (name) {
6049                ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6050                                     struct btrfs_inode_ref);
6051                btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6052                btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6053                ptr = (unsigned long)(ref + 1);
6054                write_extent_buffer(path->nodes[0], name, ptr, name_len);
6055        }
6056
6057        btrfs_mark_buffer_dirty(path->nodes[0]);
6058        btrfs_free_path(path);
6059
6060        btrfs_inherit_iflags(inode, dir);
6061
6062        if (S_ISREG(mode)) {
6063                if (btrfs_test_opt(fs_info, NODATASUM))
6064                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6065                if (btrfs_test_opt(fs_info, NODATACOW))
6066                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6067                                BTRFS_INODE_NODATASUM;
6068        }
6069
6070        inode_tree_add(inode);
6071
6072        trace_btrfs_inode_new(inode);
6073        btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6074
6075        btrfs_update_root_times(trans, root);
6076
6077        ret = btrfs_inode_inherit_props(trans, inode, dir);
6078        if (ret)
6079                btrfs_err(fs_info,
6080                          "error inheriting props for ino %llu (root %llu): %d",
6081                        btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6082
6083        return inode;
6084
6085fail_unlock:
6086        discard_new_inode(inode);
6087fail:
6088        if (dir && name)
6089                BTRFS_I(dir)->index_cnt--;
6090        btrfs_free_path(path);
6091        return ERR_PTR(ret);
6092}
6093
6094/*
6095 * utility function to add 'inode' into 'parent_inode' with
6096 * a give name and a given sequence number.
6097 * if 'add_backref' is true, also insert a backref from the
6098 * inode to the parent directory.
6099 */
6100int btrfs_add_link(struct btrfs_trans_handle *trans,
6101                   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6102                   const char *name, int name_len, int add_backref, u64 index)
6103{
6104        int ret = 0;
6105        struct btrfs_key key;
6106        struct btrfs_root *root = parent_inode->root;
6107        u64 ino = btrfs_ino(inode);
6108        u64 parent_ino = btrfs_ino(parent_inode);
6109
6110        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6111                memcpy(&key, &inode->root->root_key, sizeof(key));
6112        } else {
6113                key.objectid = ino;
6114                key.type = BTRFS_INODE_ITEM_KEY;
6115                key.offset = 0;
6116        }
6117
6118        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6119                ret = btrfs_add_root_ref(trans, key.objectid,
6120                                         root->root_key.objectid, parent_ino,
6121                                         index, name, name_len);
6122        } else if (add_backref) {
6123                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6124                                             parent_ino, index);
6125        }
6126
6127        /* Nothing to clean up yet */
6128        if (ret)
6129                return ret;
6130
6131        ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6132                                    btrfs_inode_type(&inode->vfs_inode), index);
6133        if (ret == -EEXIST || ret == -EOVERFLOW)
6134                goto fail_dir_item;
6135        else if (ret) {
6136                btrfs_abort_transaction(trans, ret);
6137                return ret;
6138        }
6139
6140        btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6141                           name_len * 2);
6142        inode_inc_iversion(&parent_inode->vfs_inode);
6143        /*
6144         * If we are replaying a log tree, we do not want to update the mtime
6145         * and ctime of the parent directory with the current time, since the
6146         * log replay procedure is responsible for setting them to their correct
6147         * values (the ones it had when the fsync was done).
6148         */
6149        if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6150                struct timespec64 now = current_time(&parent_inode->vfs_inode);
6151
6152                parent_inode->vfs_inode.i_mtime = now;
6153                parent_inode->vfs_inode.i_ctime = now;
6154        }
6155        ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6156        if (ret)
6157                btrfs_abort_transaction(trans, ret);
6158        return ret;
6159
6160fail_dir_item:
6161        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6162                u64 local_index;
6163                int err;
6164                err = btrfs_del_root_ref(trans, key.objectid,
6165                                         root->root_key.objectid, parent_ino,
6166                                         &local_index, name, name_len);
6167                if (err)
6168                        btrfs_abort_transaction(trans, err);
6169        } else if (add_backref) {
6170                u64 local_index;
6171                int err;
6172
6173                err = btrfs_del_inode_ref(trans, root, name, name_len,
6174                                          ino, parent_ino, &local_index);
6175                if (err)
6176                        btrfs_abort_transaction(trans, err);
6177        }
6178
6179        /* Return the original error code */
6180        return ret;
6181}
6182
6183static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6184                            struct btrfs_inode *dir, struct dentry *dentry,
6185                            struct btrfs_inode *inode, int backref, u64 index)
6186{
6187        int err = btrfs_add_link(trans, dir, inode,
6188                                 dentry->d_name.name, dentry->d_name.len,
6189                                 backref, index);
6190        if (err > 0)
6191                err = -EEXIST;
6192        return err;
6193}
6194
6195static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6196                        umode_t mode, dev_t rdev)
6197{
6198        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6199        struct btrfs_trans_handle *trans;
6200        struct btrfs_root *root = BTRFS_I(dir)->root;
6201        struct inode *inode = NULL;
6202        int err;
6203        u64 objectid;
6204        u64 index = 0;
6205
6206        /*
6207         * 2 for inode item and ref
6208         * 2 for dir items
6209         * 1 for xattr if selinux is on
6210         */
6211        trans = btrfs_start_transaction(root, 5);
6212        if (IS_ERR(trans))
6213                return PTR_ERR(trans);
6214
6215        err = btrfs_find_free_ino(root, &objectid);
6216        if (err)
6217                goto out_unlock;
6218
6219        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6220                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6221                        mode, &index);
6222        if (IS_ERR(inode)) {
6223                err = PTR_ERR(inode);
6224                inode = NULL;
6225                goto out_unlock;
6226        }
6227
6228        /*
6229        * If the active LSM wants to access the inode during
6230        * d_instantiate it needs these. Smack checks to see
6231        * if the filesystem supports xattrs by looking at the
6232        * ops vector.
6233        */
6234        inode->i_op = &btrfs_special_inode_operations;
6235        init_special_inode(inode, inode->i_mode, rdev);
6236
6237        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6238        if (err)
6239                goto out_unlock;
6240
6241        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6242                        0, index);
6243        if (err)
6244                goto out_unlock;
6245
6246        btrfs_update_inode(trans, root, inode);
6247        d_instantiate_new(dentry, inode);
6248
6249out_unlock:
6250        btrfs_end_transaction(trans);
6251        btrfs_btree_balance_dirty(fs_info);
6252        if (err && inode) {
6253                inode_dec_link_count(inode);
6254                discard_new_inode(inode);
6255        }
6256        return err;
6257}
6258
6259static int btrfs_create(struct inode *dir, struct dentry *dentry,
6260                        umode_t mode, bool excl)
6261{
6262        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6263        struct btrfs_trans_handle *trans;
6264        struct btrfs_root *root = BTRFS_I(dir)->root;
6265        struct inode *inode = NULL;
6266        int err;
6267        u64 objectid;
6268        u64 index = 0;
6269
6270        /*
6271         * 2 for inode item and ref
6272         * 2 for dir items
6273         * 1 for xattr if selinux is on
6274         */
6275        trans = btrfs_start_transaction(root, 5);
6276        if (IS_ERR(trans))
6277                return PTR_ERR(trans);
6278
6279        err = btrfs_find_free_ino(root, &objectid);
6280        if (err)
6281                goto out_unlock;
6282
6283        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6284                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6285                        mode, &index);
6286        if (IS_ERR(inode)) {
6287                err = PTR_ERR(inode);
6288                inode = NULL;
6289                goto out_unlock;
6290        }
6291        /*
6292        * If the active LSM wants to access the inode during
6293        * d_instantiate it needs these. Smack checks to see
6294        * if the filesystem supports xattrs by looking at the
6295        * ops vector.
6296        */
6297        inode->i_fop = &btrfs_file_operations;
6298        inode->i_op = &btrfs_file_inode_operations;
6299        inode->i_mapping->a_ops = &btrfs_aops;
6300
6301        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6302        if (err)
6303                goto out_unlock;
6304
6305        err = btrfs_update_inode(trans, root, inode);
6306        if (err)
6307                goto out_unlock;
6308
6309        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6310                        0, index);
6311        if (err)
6312                goto out_unlock;
6313
6314        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6315        d_instantiate_new(dentry, inode);
6316
6317out_unlock:
6318        btrfs_end_transaction(trans);
6319        if (err && inode) {
6320                inode_dec_link_count(inode);
6321                discard_new_inode(inode);
6322        }
6323        btrfs_btree_balance_dirty(fs_info);
6324        return err;
6325}
6326
6327static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6328                      struct dentry *dentry)
6329{
6330        struct btrfs_trans_handle *trans = NULL;
6331        struct btrfs_root *root = BTRFS_I(dir)->root;
6332        struct inode *inode = d_inode(old_dentry);
6333        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6334        u64 index;
6335        int err;
6336        int drop_inode = 0;
6337
6338        /* do not allow sys_link's with other subvols of the same device */
6339        if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6340                return -EXDEV;
6341
6342        if (inode->i_nlink >= BTRFS_LINK_MAX)
6343                return -EMLINK;
6344
6345        err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6346        if (err)
6347                goto fail;
6348
6349        /*
6350         * 2 items for inode and inode ref
6351         * 2 items for dir items
6352         * 1 item for parent inode
6353         * 1 item for orphan item deletion if O_TMPFILE
6354         */
6355        trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6356        if (IS_ERR(trans)) {
6357                err = PTR_ERR(trans);
6358                trans = NULL;
6359                goto fail;
6360        }
6361
6362        /* There are several dir indexes for this inode, clear the cache. */
6363        BTRFS_I(inode)->dir_index = 0ULL;
6364        inc_nlink(inode);
6365        inode_inc_iversion(inode);
6366        inode->i_ctime = current_time(inode);
6367        ihold(inode);
6368        set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6369
6370        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6371                        1, index);
6372
6373        if (err) {
6374                drop_inode = 1;
6375        } else {
6376                struct dentry *parent = dentry->d_parent;
6377                int ret;
6378
6379                err = btrfs_update_inode(trans, root, inode);
6380                if (err)
6381                        goto fail;
6382                if (inode->i_nlink == 1) {
6383                        /*
6384                         * If new hard link count is 1, it's a file created
6385                         * with open(2) O_TMPFILE flag.
6386                         */
6387                        err = btrfs_orphan_del(trans, BTRFS_I(inode));
6388                        if (err)
6389                                goto fail;
6390                }
6391                d_instantiate(dentry, inode);
6392                ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6393                                         true, NULL);
6394                if (ret == BTRFS_NEED_TRANS_COMMIT) {
6395                        err = btrfs_commit_transaction(trans);
6396                        trans = NULL;
6397                }
6398        }
6399
6400fail:
6401        if (trans)
6402                btrfs_end_transaction(trans);
6403        if (drop_inode) {
6404                inode_dec_link_count(inode);
6405                iput(inode);
6406        }
6407        btrfs_btree_balance_dirty(fs_info);
6408        return err;
6409}
6410
6411static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6412{
6413        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6414        struct inode *inode = NULL;
6415        struct btrfs_trans_handle *trans;
6416        struct btrfs_root *root = BTRFS_I(dir)->root;
6417        int err = 0;
6418        u64 objectid = 0;
6419        u64 index = 0;
6420
6421        /*
6422         * 2 items for inode and ref
6423         * 2 items for dir items
6424         * 1 for xattr if selinux is on
6425         */
6426        trans = btrfs_start_transaction(root, 5);
6427        if (IS_ERR(trans))
6428                return PTR_ERR(trans);
6429
6430        err = btrfs_find_free_ino(root, &objectid);
6431        if (err)
6432                goto out_fail;
6433
6434        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6435                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6436                        S_IFDIR | mode, &index);
6437        if (IS_ERR(inode)) {
6438                err = PTR_ERR(inode);
6439                inode = NULL;
6440                goto out_fail;
6441        }
6442
6443        /* these must be set before we unlock the inode */
6444        inode->i_op = &btrfs_dir_inode_operations;
6445        inode->i_fop = &btrfs_dir_file_operations;
6446
6447        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6448        if (err)
6449                goto out_fail;
6450
6451        btrfs_i_size_write(BTRFS_I(inode), 0);
6452        err = btrfs_update_inode(trans, root, inode);
6453        if (err)
6454                goto out_fail;
6455
6456        err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6457                        dentry->d_name.name,
6458                        dentry->d_name.len, 0, index);
6459        if (err)
6460                goto out_fail;
6461
6462        d_instantiate_new(dentry, inode);
6463
6464out_fail:
6465        btrfs_end_transaction(trans);
6466        if (err && inode) {
6467                inode_dec_link_count(inode);
6468                discard_new_inode(inode);
6469        }
6470        btrfs_btree_balance_dirty(fs_info);
6471        return err;
6472}
6473
6474static noinline int uncompress_inline(struct btrfs_path *path,
6475                                      struct page *page,
6476                                      size_t pg_offset, u64 extent_offset,
6477                                      struct btrfs_file_extent_item *item)
6478{
6479        int ret;
6480        struct extent_buffer *leaf = path->nodes[0];
6481        char *tmp;
6482        size_t max_size;
6483        unsigned long inline_size;
6484        unsigned long ptr;
6485        int compress_type;
6486
6487        WARN_ON(pg_offset != 0);
6488        compress_type = btrfs_file_extent_compression(leaf, item);
6489        max_size = btrfs_file_extent_ram_bytes(leaf, item);
6490        inline_size = btrfs_file_extent_inline_item_len(leaf,
6491                                        btrfs_item_nr(path->slots[0]));
6492        tmp = kmalloc(inline_size, GFP_NOFS);
6493        if (!tmp)
6494                return -ENOMEM;
6495        ptr = btrfs_file_extent_inline_start(item);
6496
6497        read_extent_buffer(leaf, tmp, ptr, inline_size);
6498
6499        max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6500        ret = btrfs_decompress(compress_type, tmp, page,
6501                               extent_offset, inline_size, max_size);
6502
6503        /*
6504         * decompression code contains a memset to fill in any space between the end
6505         * of the uncompressed data and the end of max_size in case the decompressed
6506         * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6507         * the end of an inline extent and the beginning of the next block, so we
6508         * cover that region here.
6509         */
6510
6511        if (max_size + pg_offset < PAGE_SIZE) {
6512                char *map = kmap(page);
6513                memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6514                kunmap(page);
6515        }
6516        kfree(tmp);
6517        return ret;
6518}
6519
6520/**
6521 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6522 * @inode:      file to search in
6523 * @page:       page to read extent data into if the extent is inline
6524 * @pg_offset:  offset into @page to copy to
6525 * @start:      file offset
6526 * @len:        length of range starting at @start
6527 *
6528 * This returns the first &struct extent_map which overlaps with the given
6529 * range, reading it from the B-tree and caching it if necessary. Note that
6530 * there may be more extents which overlap the given range after the returned
6531 * extent_map.
6532 *
6533 * If @page is not NULL and the extent is inline, this also reads the extent
6534 * data directly into the page and marks the extent up to date in the io_tree.
6535 *
6536 * Return: ERR_PTR on error, non-NULL extent_map on success.
6537 */
6538struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6539                                    struct page *page, size_t pg_offset,
6540                                    u64 start, u64 len)
6541{
6542        struct btrfs_fs_info *fs_info = inode->root->fs_info;
6543        int ret;
6544        int err = 0;
6545        u64 extent_start = 0;
6546        u64 extent_end = 0;
6547        u64 objectid = btrfs_ino(inode);
6548        int extent_type = -1;
6549        struct btrfs_path *path = NULL;
6550        struct btrfs_root *root = inode->root;
6551        struct btrfs_file_extent_item *item;
6552        struct extent_buffer *leaf;
6553        struct btrfs_key found_key;
6554        struct extent_map *em = NULL;
6555        struct extent_map_tree *em_tree = &inode->extent_tree;
6556        struct extent_io_tree *io_tree = &inode->io_tree;
6557
6558        read_lock(&em_tree->lock);
6559        em = lookup_extent_mapping(em_tree, start, len);
6560        read_unlock(&em_tree->lock);
6561
6562        if (em) {
6563                if (em->start > start || em->start + em->len <= start)
6564                        free_extent_map(em);
6565                else if (em->block_start == EXTENT_MAP_INLINE && page)
6566                        free_extent_map(em);
6567                else
6568                        goto out;
6569        }
6570        em = alloc_extent_map();
6571        if (!em) {
6572                err = -ENOMEM;
6573                goto out;
6574        }
6575        em->start = EXTENT_MAP_HOLE;
6576        em->orig_start = EXTENT_MAP_HOLE;
6577        em->len = (u64)-1;
6578        em->block_len = (u64)-1;
6579
6580        path = btrfs_alloc_path();
6581        if (!path) {
6582                err = -ENOMEM;
6583                goto out;
6584        }
6585
6586        /* Chances are we'll be called again, so go ahead and do readahead */
6587        path->reada = READA_FORWARD;
6588
6589        /*
6590         * Unless we're going to uncompress the inline extent, no sleep would
6591         * happen.
6592         */
6593        path->leave_spinning = 1;
6594
6595        ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6596        if (ret < 0) {
6597                err = ret;
6598                goto out;
6599        } else if (ret > 0) {
6600                if (path->slots[0] == 0)
6601                        goto not_found;
6602                path->slots[0]--;
6603        }
6604
6605        leaf = path->nodes[0];
6606        item = btrfs_item_ptr(leaf, path->slots[0],
6607                              struct btrfs_file_extent_item);
6608        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6609        if (found_key.objectid != objectid ||
6610            found_key.type != BTRFS_EXTENT_DATA_KEY) {
6611                /*
6612                 * If we backup past the first extent we want to move forward
6613                 * and see if there is an extent in front of us, otherwise we'll
6614                 * say there is a hole for our whole search range which can
6615                 * cause problems.
6616                 */
6617                extent_end = start;
6618                goto next;
6619        }
6620
6621        extent_type = btrfs_file_extent_type(leaf, item);
6622        extent_start = found_key.offset;
6623        extent_end = btrfs_file_extent_end(path);
6624        if (extent_type == BTRFS_FILE_EXTENT_REG ||
6625            extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6626                /* Only regular file could have regular/prealloc extent */
6627                if (!S_ISREG(inode->vfs_inode.i_mode)) {
6628                        err = -EUCLEAN;
6629                        btrfs_crit(fs_info,
6630                "regular/prealloc extent found for non-regular inode %llu",
6631                                   btrfs_ino(inode));
6632                        goto out;
6633                }
6634                trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6635                                                       extent_start);
6636        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6637                trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6638                                                      path->slots[0],
6639                                                      extent_start);
6640        }
6641next:
6642        if (start >= extent_end) {
6643                path->slots[0]++;
6644                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6645                        ret = btrfs_next_leaf(root, path);
6646                        if (ret < 0) {
6647                                err = ret;
6648                                goto out;
6649                        } else if (ret > 0) {
6650                                goto not_found;
6651                        }
6652                        leaf = path->nodes[0];
6653                }
6654                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6655                if (found_key.objectid != objectid ||
6656                    found_key.type != BTRFS_EXTENT_DATA_KEY)
6657                        goto not_found;
6658                if (start + len <= found_key.offset)
6659                        goto not_found;
6660                if (start > found_key.offset)
6661                        goto next;
6662
6663                /* New extent overlaps with existing one */
6664                em->start = start;
6665                em->orig_start = start;
6666                em->len = found_key.offset - start;
6667                em->block_start = EXTENT_MAP_HOLE;
6668                goto insert;
6669        }
6670
6671        btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6672
6673        if (extent_type == BTRFS_FILE_EXTENT_REG ||
6674            extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6675                goto insert;
6676        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6677                unsigned long ptr;
6678                char *map;
6679                size_t size;
6680                size_t extent_offset;
6681                size_t copy_size;
6682
6683                if (!page)
6684                        goto out;
6685
6686                size = btrfs_file_extent_ram_bytes(leaf, item);
6687                extent_offset = page_offset(page) + pg_offset - extent_start;
6688                copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6689                                  size - extent_offset);
6690                em->start = extent_start + extent_offset;
6691                em->len = ALIGN(copy_size, fs_info->sectorsize);
6692                em->orig_block_len = em->len;
6693                em->orig_start = em->start;
6694                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6695
6696                btrfs_set_path_blocking(path);
6697                if (!PageUptodate(page)) {
6698                        if (btrfs_file_extent_compression(leaf, item) !=
6699                            BTRFS_COMPRESS_NONE) {
6700                                ret = uncompress_inline(path, page, pg_offset,
6701                                                        extent_offset, item);
6702                                if (ret) {
6703                                        err = ret;
6704                                        goto out;
6705                                }
6706                        } else {
6707                                map = kmap(page);
6708                                read_extent_buffer(leaf, map + pg_offset, ptr,
6709                                                   copy_size);
6710                                if (pg_offset + copy_size < PAGE_SIZE) {
6711                                        memset(map + pg_offset + copy_size, 0,
6712                                               PAGE_SIZE - pg_offset -
6713                                               copy_size);
6714                                }
6715                                kunmap(page);
6716                        }
6717                        flush_dcache_page(page);
6718                }
6719                set_extent_uptodate(io_tree, em->start,
6720                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
6721                goto insert;
6722        }
6723not_found:
6724        em->start = start;
6725        em->orig_start = start;
6726        em->len = len;
6727        em->block_start = EXTENT_MAP_HOLE;
6728insert:
6729        btrfs_release_path(path);
6730        if (em->start > start || extent_map_end(em) <= start) {
6731                btrfs_err(fs_info,
6732                          "bad extent! em: [%llu %llu] passed [%llu %llu]",
6733                          em->start, em->len, start, len);
6734                err = -EIO;
6735                goto out;
6736        }
6737
6738        err = 0;
6739        write_lock(&em_tree->lock);
6740        err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6741        write_unlock(&em_tree->lock);
6742out:
6743        btrfs_free_path(path);
6744
6745        trace_btrfs_get_extent(root, inode, em);
6746
6747        if (err) {
6748                free_extent_map(em);
6749                return ERR_PTR(err);
6750        }
6751        BUG_ON(!em); /* Error is always set */
6752        return em;
6753}
6754
6755struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6756                                           u64 start, u64 len)
6757{
6758        struct extent_map *em;
6759        struct extent_map *hole_em = NULL;
6760        u64 delalloc_start = start;
6761        u64 end;
6762        u64 delalloc_len;
6763        u64 delalloc_end;
6764        int err = 0;
6765
6766        em = btrfs_get_extent(inode, NULL, 0, start, len);
6767        if (IS_ERR(em))
6768                return em;
6769        /*
6770         * If our em maps to:
6771         * - a hole or
6772         * - a pre-alloc extent,
6773         * there might actually be delalloc bytes behind it.
6774         */
6775        if (em->block_start != EXTENT_MAP_HOLE &&
6776            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6777                return em;
6778        else
6779                hole_em = em;
6780
6781        /* check to see if we've wrapped (len == -1 or similar) */
6782        end = start + len;
6783        if (end < start)
6784                end = (u64)-1;
6785        else
6786                end -= 1;
6787
6788        em = NULL;
6789
6790        /* ok, we didn't find anything, lets look for delalloc */
6791        delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6792                                 end, len, EXTENT_DELALLOC, 1);
6793        delalloc_end = delalloc_start + delalloc_len;
6794        if (delalloc_end < delalloc_start)
6795                delalloc_end = (u64)-1;
6796
6797        /*
6798         * We didn't find anything useful, return the original results from
6799         * get_extent()
6800         */
6801        if (delalloc_start > end || delalloc_end <= start) {
6802                em = hole_em;
6803                hole_em = NULL;
6804                goto out;
6805        }
6806
6807        /*
6808         * Adjust the delalloc_start to make sure it doesn't go backwards from
6809         * the start they passed in
6810         */
6811        delalloc_start = max(start, delalloc_start);
6812        delalloc_len = delalloc_end - delalloc_start;
6813
6814        if (delalloc_len > 0) {
6815                u64 hole_start;
6816                u64 hole_len;
6817                const u64 hole_end = extent_map_end(hole_em);
6818
6819                em = alloc_extent_map();
6820                if (!em) {
6821                        err = -ENOMEM;
6822                        goto out;
6823                }
6824
6825                ASSERT(hole_em);
6826                /*
6827                 * When btrfs_get_extent can't find anything it returns one
6828                 * huge hole
6829                 *
6830                 * Make sure what it found really fits our range, and adjust to
6831                 * make sure it is based on the start from the caller
6832                 */
6833                if (hole_end <= start || hole_em->start > end) {
6834                       free_extent_map(hole_em);
6835                       hole_em = NULL;
6836                } else {
6837                       hole_start = max(hole_em->start, start);
6838                       hole_len = hole_end - hole_start;
6839                }
6840
6841                if (hole_em && delalloc_start > hole_start) {
6842                        /*
6843                         * Our hole starts before our delalloc, so we have to
6844                         * return just the parts of the hole that go until the
6845                         * delalloc starts
6846                         */
6847                        em->len = min(hole_len, delalloc_start - hole_start);
6848                        em->start = hole_start;
6849                        em->orig_start = hole_start;
6850                        /*
6851                         * Don't adjust block start at all, it is fixed at
6852                         * EXTENT_MAP_HOLE
6853                         */
6854                        em->block_start = hole_em->block_start;
6855                        em->block_len = hole_len;
6856                        if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6857                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6858                } else {
6859                        /*
6860                         * Hole is out of passed range or it starts after
6861                         * delalloc range
6862                         */
6863                        em->start = delalloc_start;
6864                        em->len = delalloc_len;
6865                        em->orig_start = delalloc_start;
6866                        em->block_start = EXTENT_MAP_DELALLOC;
6867                        em->block_len = delalloc_len;
6868                }
6869        } else {
6870                return hole_em;
6871        }
6872out:
6873
6874        free_extent_map(hole_em);
6875        if (err) {
6876                free_extent_map(em);
6877                return ERR_PTR(err);
6878        }
6879        return em;
6880}
6881
6882static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6883                                                  const u64 start,
6884                                                  const u64 len,
6885                                                  const u64 orig_start,
6886                                                  const u64 block_start,
6887                                                  const u64 block_len,
6888                                                  const u64 orig_block_len,
6889                                                  const u64 ram_bytes,
6890                                                  const int type)
6891{
6892        struct extent_map *em = NULL;
6893        int ret;
6894
6895        if (type != BTRFS_ORDERED_NOCOW) {
6896                em = create_io_em(inode, start, len, orig_start, block_start,
6897                                  block_len, orig_block_len, ram_bytes,
6898                                  BTRFS_COMPRESS_NONE, /* compress_type */
6899                                  type);
6900                if (IS_ERR(em))
6901                        goto out;
6902        }
6903        ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6904                                           block_len, type);
6905        if (ret) {
6906                if (em) {
6907                        free_extent_map(em);
6908                        btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
6909                }
6910                em = ERR_PTR(ret);
6911        }
6912 out:
6913
6914        return em;
6915}
6916
6917static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6918                                                  u64 start, u64 len)
6919{
6920        struct btrfs_root *root = inode->root;
6921        struct btrfs_fs_info *fs_info = root->fs_info;
6922        struct extent_map *em;
6923        struct btrfs_key ins;
6924        u64 alloc_hint;
6925        int ret;
6926
6927        alloc_hint = get_extent_allocation_hint(inode, start, len);
6928        ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6929                                   0, alloc_hint, &ins, 1, 1);
6930        if (ret)
6931                return ERR_PTR(ret);
6932
6933        em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6934                                     ins.objectid, ins.offset, ins.offset,
6935                                     ins.offset, BTRFS_ORDERED_REGULAR);
6936        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6937        if (IS_ERR(em))
6938                btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6939                                           1);
6940
6941        return em;
6942}
6943
6944/*
6945 * Check if we can do nocow write into the range [@offset, @offset + @len)
6946 *
6947 * @offset:     File offset
6948 * @len:        The length to write, will be updated to the nocow writeable
6949 *              range
6950 * @orig_start: (optional) Return the original file offset of the file extent
6951 * @orig_len:   (optional) Return the original on-disk length of the file extent
6952 * @ram_bytes:  (optional) Return the ram_bytes of the file extent
6953 * @strict:     if true, omit optimizations that might force us into unnecessary
6954 *              cow. e.g., don't trust generation number.
6955 *
6956 * This function will flush ordered extents in the range to ensure proper
6957 * nocow checks for (nowait == false) case.
6958 *
6959 * Return:
6960 * >0   and update @len if we can do nocow write
6961 *  0   if we can't do nocow write
6962 * <0   if error happened
6963 *
6964 * NOTE: This only checks the file extents, caller is responsible to wait for
6965 *       any ordered extents.
6966 */
6967noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6968                              u64 *orig_start, u64 *orig_block_len,
6969                              u64 *ram_bytes, bool strict)
6970{
6971        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6972        struct btrfs_path *path;
6973        int ret;
6974        struct extent_buffer *leaf;
6975        struct btrfs_root *root = BTRFS_I(inode)->root;
6976        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6977        struct btrfs_file_extent_item *fi;
6978        struct btrfs_key key;
6979        u64 disk_bytenr;
6980        u64 backref_offset;
6981        u64 extent_end;
6982        u64 num_bytes;
6983        int slot;
6984        int found_type;
6985        bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6986
6987        path = btrfs_alloc_path();
6988        if (!path)
6989                return -ENOMEM;
6990
6991        ret = btrfs_lookup_file_extent(NULL, root, path,
6992                        btrfs_ino(BTRFS_I(inode)), offset, 0);
6993        if (ret < 0)
6994                goto out;
6995
6996        slot = path->slots[0];
6997        if (ret == 1) {
6998                if (slot == 0) {
6999                        /* can't find the item, must cow */
7000                        ret = 0;
7001                        goto out;
7002                }
7003                slot--;
7004        }
7005        ret = 0;
7006        leaf = path->nodes[0];
7007        btrfs_item_key_to_cpu(leaf, &key, slot);
7008        if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7009            key.type != BTRFS_EXTENT_DATA_KEY) {
7010                /* not our file or wrong item type, must cow */
7011                goto out;
7012        }
7013
7014        if (key.offset > offset) {
7015                /* Wrong offset, must cow */
7016                goto out;
7017        }
7018
7019        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7020        found_type = btrfs_file_extent_type(leaf, fi);
7021        if (found_type != BTRFS_FILE_EXTENT_REG &&
7022            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7023                /* not a regular extent, must cow */
7024                goto out;
7025        }
7026
7027        if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7028                goto out;
7029
7030        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7031        if (extent_end <= offset)
7032                goto out;
7033
7034        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7035        if (disk_bytenr == 0)
7036                goto out;
7037
7038        if (btrfs_file_extent_compression(leaf, fi) ||
7039            btrfs_file_extent_encryption(leaf, fi) ||
7040            btrfs_file_extent_other_encoding(leaf, fi))
7041                goto out;
7042
7043        /*
7044         * Do the same check as in btrfs_cross_ref_exist but without the
7045         * unnecessary search.
7046         */
7047        if (!strict &&
7048            (btrfs_file_extent_generation(leaf, fi) <=
7049             btrfs_root_last_snapshot(&root->root_item)))
7050                goto out;
7051
7052        backref_offset = btrfs_file_extent_offset(leaf, fi);
7053
7054        if (orig_start) {
7055                *orig_start = key.offset - backref_offset;
7056                *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7057                *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7058        }
7059
7060        if (btrfs_extent_readonly(fs_info, disk_bytenr))
7061                goto out;
7062
7063        num_bytes = min(offset + *len, extent_end) - offset;
7064        if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7065                u64 range_end;
7066
7067                range_end = round_up(offset + num_bytes,
7068                                     root->fs_info->sectorsize) - 1;
7069                ret = test_range_bit(io_tree, offset, range_end,
7070                                     EXTENT_DELALLOC, 0, NULL);
7071                if (ret) {
7072                        ret = -EAGAIN;
7073                        goto out;
7074                }
7075        }
7076
7077        btrfs_release_path(path);
7078
7079        /*
7080         * look for other files referencing this extent, if we
7081         * find any we must cow
7082         */
7083
7084        ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7085                                    key.offset - backref_offset, disk_bytenr,
7086                                    strict);
7087        if (ret) {
7088                ret = 0;
7089                goto out;
7090        }
7091
7092        /*
7093         * adjust disk_bytenr and num_bytes to cover just the bytes
7094         * in this extent we are about to write.  If there
7095         * are any csums in that range we have to cow in order
7096         * to keep the csums correct
7097         */
7098        disk_bytenr += backref_offset;
7099        disk_bytenr += offset - key.offset;
7100        if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7101                goto out;
7102        /*
7103         * all of the above have passed, it is safe to overwrite this extent
7104         * without cow
7105         */
7106        *len = num_bytes;
7107        ret = 1;
7108out:
7109        btrfs_free_path(path);
7110        return ret;
7111}
7112
7113static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7114                              struct extent_state **cached_state, int writing)
7115{
7116        struct btrfs_ordered_extent *ordered;
7117        int ret = 0;
7118
7119        while (1) {
7120                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7121                                 cached_state);
7122                /*
7123                 * We're concerned with the entire range that we're going to be
7124                 * doing DIO to, so we need to make sure there's no ordered
7125                 * extents in this range.
7126                 */
7127                ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7128                                                     lockend - lockstart + 1);
7129
7130                /*
7131                 * We need to make sure there are no buffered pages in this
7132                 * range either, we could have raced between the invalidate in
7133                 * generic_file_direct_write and locking the extent.  The
7134                 * invalidate needs to happen so that reads after a write do not
7135                 * get stale data.
7136                 */
7137                if (!ordered &&
7138                    (!writing || !filemap_range_has_page(inode->i_mapping,
7139                                                         lockstart, lockend)))
7140                        break;
7141
7142                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7143                                     cached_state);
7144
7145                if (ordered) {
7146                        /*
7147                         * If we are doing a DIO read and the ordered extent we
7148                         * found is for a buffered write, we can not wait for it
7149                         * to complete and retry, because if we do so we can
7150                         * deadlock with concurrent buffered writes on page
7151                         * locks. This happens only if our DIO read covers more
7152                         * than one extent map, if at this point has already
7153                         * created an ordered extent for a previous extent map
7154                         * and locked its range in the inode's io tree, and a
7155                         * concurrent write against that previous extent map's
7156                         * range and this range started (we unlock the ranges
7157                         * in the io tree only when the bios complete and
7158                         * buffered writes always lock pages before attempting
7159                         * to lock range in the io tree).
7160                         */
7161                        if (writing ||
7162                            test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7163                                btrfs_start_ordered_extent(inode, ordered, 1);
7164                        else
7165                                ret = -ENOTBLK;
7166                        btrfs_put_ordered_extent(ordered);
7167                } else {
7168                        /*
7169                         * We could trigger writeback for this range (and wait
7170                         * for it to complete) and then invalidate the pages for
7171                         * this range (through invalidate_inode_pages2_range()),
7172                         * but that can lead us to a deadlock with a concurrent
7173                         * call to readahead (a buffered read or a defrag call
7174                         * triggered a readahead) on a page lock due to an
7175                         * ordered dio extent we created before but did not have
7176                         * yet a corresponding bio submitted (whence it can not
7177                         * complete), which makes readahead wait for that
7178                         * ordered extent to complete while holding a lock on
7179                         * that page.
7180                         */
7181                        ret = -ENOTBLK;
7182                }
7183
7184                if (ret)
7185                        break;
7186
7187                cond_resched();
7188        }
7189
7190        return ret;
7191}
7192
7193/* The callers of this must take lock_extent() */
7194static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7195                                       u64 len, u64 orig_start, u64 block_start,
7196                                       u64 block_len, u64 orig_block_len,
7197                                       u64 ram_bytes, int compress_type,
7198                                       int type)
7199{
7200        struct extent_map_tree *em_tree;
7201        struct extent_map *em;
7202        int ret;
7203
7204        ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7205               type == BTRFS_ORDERED_COMPRESSED ||
7206               type == BTRFS_ORDERED_NOCOW ||
7207               type == BTRFS_ORDERED_REGULAR);
7208
7209        em_tree = &inode->extent_tree;
7210        em = alloc_extent_map();
7211        if (!em)
7212                return ERR_PTR(-ENOMEM);
7213
7214        em->start = start;
7215        em->orig_start = orig_start;
7216        em->len = len;
7217        em->block_len = block_len;
7218        em->block_start = block_start;
7219        em->orig_block_len = orig_block_len;
7220        em->ram_bytes = ram_bytes;
7221        em->generation = -1;
7222        set_bit(EXTENT_FLAG_PINNED, &em->flags);
7223        if (type == BTRFS_ORDERED_PREALLOC) {
7224                set_bit(EXTENT_FLAG_FILLING, &em->flags);
7225        } else if (type == BTRFS_ORDERED_COMPRESSED) {
7226                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7227                em->compress_type = compress_type;
7228        }
7229
7230        do {
7231                btrfs_drop_extent_cache(inode, em->start,
7232                                        em->start + em->len - 1, 0);
7233                write_lock(&em_tree->lock);
7234                ret = add_extent_mapping(em_tree, em, 1);
7235                write_unlock(&em_tree->lock);
7236                /*
7237                 * The caller has taken lock_extent(), who could race with us
7238                 * to add em?
7239                 */
7240        } while (ret == -EEXIST);
7241
7242        if (ret) {
7243                free_extent_map(em);
7244                return ERR_PTR(ret);
7245        }
7246
7247        /* em got 2 refs now, callers needs to do free_extent_map once. */
7248        return em;
7249}
7250
7251
7252static int btrfs_get_blocks_direct_read(struct extent_map *em,
7253                                        struct buffer_head *bh_result,
7254                                        struct inode *inode,
7255                                        u64 start, u64 len)
7256{
7257        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7258
7259        if (em->block_start == EXTENT_MAP_HOLE ||
7260                        test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7261                return -ENOENT;
7262
7263        len = min(len, em->len - (start - em->start));
7264
7265        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7266                inode->i_blkbits;
7267        bh_result->b_size = len;
7268        bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7269        set_buffer_mapped(bh_result);
7270
7271        return 0;
7272}
7273
7274static int btrfs_get_blocks_direct_write(struct extent_map **map,
7275                                         struct buffer_head *bh_result,
7276                                         struct inode *inode,
7277                                         struct btrfs_dio_data *dio_data,
7278                                         u64 start, u64 len)
7279{
7280        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7281        struct extent_map *em = *map;
7282        int ret = 0;
7283
7284        /*
7285         * We don't allocate a new extent in the following cases
7286         *
7287         * 1) The inode is marked as NODATACOW. In this case we'll just use the
7288         * existing extent.
7289         * 2) The extent is marked as PREALLOC. We're good to go here and can
7290         * just use the extent.
7291         *
7292         */
7293        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7294            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7295             em->block_start != EXTENT_MAP_HOLE)) {
7296                int type;
7297                u64 block_start, orig_start, orig_block_len, ram_bytes;
7298
7299                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7300                        type = BTRFS_ORDERED_PREALLOC;
7301                else
7302                        type = BTRFS_ORDERED_NOCOW;
7303                len = min(len, em->len - (start - em->start));
7304                block_start = em->block_start + (start - em->start);
7305
7306                if (can_nocow_extent(inode, start, &len, &orig_start,
7307                                     &orig_block_len, &ram_bytes, false) == 1 &&
7308                    btrfs_inc_nocow_writers(fs_info, block_start)) {
7309                        struct extent_map *em2;
7310
7311                        em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7312                                                      orig_start, block_start,
7313                                                      len, orig_block_len,
7314                                                      ram_bytes, type);
7315                        btrfs_dec_nocow_writers(fs_info, block_start);
7316                        if (type == BTRFS_ORDERED_PREALLOC) {
7317                                free_extent_map(em);
7318                                *map = em = em2;
7319                        }
7320
7321                        if (em2 && IS_ERR(em2)) {
7322                                ret = PTR_ERR(em2);
7323                                goto out;
7324                        }
7325                        /*
7326                         * For inode marked NODATACOW or extent marked PREALLOC,
7327                         * use the existing or preallocated extent, so does not
7328                         * need to adjust btrfs_space_info's bytes_may_use.
7329                         */
7330                        btrfs_free_reserved_data_space_noquota(fs_info, len);
7331                        goto skip_cow;
7332                }
7333        }
7334
7335        /* this will cow the extent */
7336        len = bh_result->b_size;
7337        free_extent_map(em);
7338        *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7339        if (IS_ERR(em)) {
7340                ret = PTR_ERR(em);
7341                goto out;
7342        }
7343
7344        len = min(len, em->len - (start - em->start));
7345
7346skip_cow:
7347        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7348                inode->i_blkbits;
7349        bh_result->b_size = len;
7350        bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7351        set_buffer_mapped(bh_result);
7352
7353        if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7354                set_buffer_new(bh_result);
7355
7356        /*
7357         * Need to update the i_size under the extent lock so buffered
7358         * readers will get the updated i_size when we unlock.
7359         */
7360        if (!dio_data->overwrite && start + len > i_size_read(inode))
7361                i_size_write(inode, start + len);
7362
7363        WARN_ON(dio_data->reserve < len);
7364        dio_data->reserve -= len;
7365        dio_data->unsubmitted_oe_range_end = start + len;
7366        current->journal_info = dio_data;
7367out:
7368        return ret;
7369}
7370
7371static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7372                                   struct buffer_head *bh_result, int create)
7373{
7374        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7375        struct extent_map *em;
7376        struct extent_state *cached_state = NULL;
7377        struct btrfs_dio_data *dio_data = NULL;
7378        u64 start = iblock << inode->i_blkbits;
7379        u64 lockstart, lockend;
7380        u64 len = bh_result->b_size;
7381        int ret = 0;
7382
7383        if (!create)
7384                len = min_t(u64, len, fs_info->sectorsize);
7385
7386        lockstart = start;
7387        lockend = start + len - 1;
7388
7389        if (current->journal_info) {
7390                /*
7391                 * Need to pull our outstanding extents and set journal_info to NULL so
7392                 * that anything that needs to check if there's a transaction doesn't get
7393                 * confused.
7394                 */
7395                dio_data = current->journal_info;
7396                current->journal_info = NULL;
7397        }
7398
7399        /*
7400         * If this errors out it's because we couldn't invalidate pagecache for
7401         * this range and we need to fallback to buffered.
7402         */
7403        if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7404                               create)) {
7405                ret = -ENOTBLK;
7406                goto err;
7407        }
7408
7409        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7410        if (IS_ERR(em)) {
7411                ret = PTR_ERR(em);
7412                goto unlock_err;
7413        }
7414
7415        /*
7416         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7417         * io.  INLINE is special, and we could probably kludge it in here, but
7418         * it's still buffered so for safety lets just fall back to the generic
7419         * buffered path.
7420         *
7421         * For COMPRESSED we _have_ to read the entire extent in so we can
7422         * decompress it, so there will be buffering required no matter what we
7423         * do, so go ahead and fallback to buffered.
7424         *
7425         * We return -ENOTBLK because that's what makes DIO go ahead and go back
7426         * to buffered IO.  Don't blame me, this is the price we pay for using
7427         * the generic code.
7428         */
7429        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7430            em->block_start == EXTENT_MAP_INLINE) {
7431                free_extent_map(em);
7432                ret = -ENOTBLK;
7433                goto unlock_err;
7434        }
7435
7436        if (create) {
7437                ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7438                                                    dio_data, start, len);
7439                if (ret < 0)
7440                        goto unlock_err;
7441
7442                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7443                                     lockend, &cached_state);
7444        } else {
7445                ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7446                                                   start, len);
7447                /* Can be negative only if we read from a hole */
7448                if (ret < 0) {
7449                        ret = 0;
7450                        free_extent_map(em);
7451                        goto unlock_err;
7452                }
7453                /*
7454                 * We need to unlock only the end area that we aren't using.
7455                 * The rest is going to be unlocked by the endio routine.
7456                 */
7457                lockstart = start + bh_result->b_size;
7458                if (lockstart < lockend) {
7459                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7460                                             lockstart, lockend, &cached_state);
7461                } else {
7462                        free_extent_state(cached_state);
7463                }
7464        }
7465
7466        free_extent_map(em);
7467
7468        return 0;
7469
7470unlock_err:
7471        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7472                             &cached_state);
7473err:
7474        if (dio_data)
7475                current->journal_info = dio_data;
7476        return ret;
7477}
7478
7479static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7480{
7481        /*
7482         * This implies a barrier so that stores to dio_bio->bi_status before
7483         * this and loads of dio_bio->bi_status after this are fully ordered.
7484         */
7485        if (!refcount_dec_and_test(&dip->refs))
7486                return;
7487
7488        if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7489                __endio_write_update_ordered(BTRFS_I(dip->inode),
7490                                             dip->logical_offset,
7491                                             dip->bytes,
7492                                             !dip->dio_bio->bi_status);
7493        } else {
7494                unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7495                              dip->logical_offset,
7496                              dip->logical_offset + dip->bytes - 1);
7497        }
7498
7499        dio_end_io(dip->dio_bio);
7500        kfree(dip);
7501}
7502
7503static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7504                                          int mirror_num,
7505                                          unsigned long bio_flags)
7506{
7507        struct btrfs_dio_private *dip = bio->bi_private;
7508        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7509        blk_status_t ret;
7510
7511        BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7512
7513        ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7514        if (ret)
7515                return ret;
7516
7517        refcount_inc(&dip->refs);
7518        ret = btrfs_map_bio(fs_info, bio, mirror_num);
7519        if (ret)
7520                refcount_dec(&dip->refs);
7521        return ret;
7522}
7523
7524static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7525                                             struct btrfs_io_bio *io_bio,
7526                                             const bool uptodate)
7527{
7528        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7529        const u32 sectorsize = fs_info->sectorsize;
7530        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7531        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7532        const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7533        struct bio_vec bvec;
7534        struct bvec_iter iter;
7535        u64 start = io_bio->logical;
7536        int icsum = 0;
7537        blk_status_t err = BLK_STS_OK;
7538
7539        __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7540                unsigned int i, nr_sectors, pgoff;
7541
7542                nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7543                pgoff = bvec.bv_offset;
7544                for (i = 0; i < nr_sectors; i++) {
7545                        ASSERT(pgoff < PAGE_SIZE);
7546                        if (uptodate &&
7547                            (!csum || !check_data_csum(inode, io_bio, icsum,
7548                                                       bvec.bv_page, pgoff,
7549                                                       start, sectorsize))) {
7550                                clean_io_failure(fs_info, failure_tree, io_tree,
7551                                                 start, bvec.bv_page,
7552                                                 btrfs_ino(BTRFS_I(inode)),
7553                                                 pgoff);
7554                        } else {
7555                                blk_status_t status;
7556
7557                                status = btrfs_submit_read_repair(inode,
7558                                                        &io_bio->bio,
7559                                                        start - io_bio->logical,
7560                                                        bvec.bv_page, pgoff,
7561                                                        start,
7562                                                        start + sectorsize - 1,
7563                                                        io_bio->mirror_num,
7564                                                        submit_dio_repair_bio);
7565                                if (status)
7566                                        err = status;
7567                        }
7568                        start += sectorsize;
7569                        icsum++;
7570                        pgoff += sectorsize;
7571                }
7572        }
7573        return err;
7574}
7575
7576static void __endio_write_update_ordered(struct btrfs_inode *inode,
7577                                         const u64 offset, const u64 bytes,
7578                                         const bool uptodate)
7579{
7580        struct btrfs_fs_info *fs_info = inode->root->fs_info;
7581        struct btrfs_ordered_extent *ordered = NULL;
7582        struct btrfs_workqueue *wq;
7583        u64 ordered_offset = offset;
7584        u64 ordered_bytes = bytes;
7585        u64 last_offset;
7586
7587        if (btrfs_is_free_space_inode(inode))
7588                wq = fs_info->endio_freespace_worker;
7589        else
7590                wq = fs_info->endio_write_workers;
7591
7592        while (ordered_offset < offset + bytes) {
7593                last_offset = ordered_offset;
7594                if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7595                                                         &ordered_offset,
7596                                                         ordered_bytes,
7597                                                         uptodate)) {
7598                        btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7599                                        NULL);
7600                        btrfs_queue_work(wq, &ordered->work);
7601                }
7602                /*
7603                 * If btrfs_dec_test_ordered_pending does not find any ordered
7604                 * extent in the range, we can exit.
7605                 */
7606                if (ordered_offset == last_offset)
7607                        return;
7608                /*
7609                 * Our bio might span multiple ordered extents. In this case
7610                 * we keep going until we have accounted the whole dio.
7611                 */
7612                if (ordered_offset < offset + bytes) {
7613                        ordered_bytes = offset + bytes - ordered_offset;
7614                        ordered = NULL;
7615                }
7616        }
7617}
7618
7619static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7620                                    struct bio *bio, u64 offset)
7621{
7622        struct inode *inode = private_data;
7623
7624        return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
7625}
7626
7627static void btrfs_end_dio_bio(struct bio *bio)
7628{
7629        struct btrfs_dio_private *dip = bio->bi_private;
7630        blk_status_t err = bio->bi_status;
7631
7632        if (err)
7633                btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7634                           "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7635                           btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7636                           bio->bi_opf,
7637                           (unsigned long long)bio->bi_iter.bi_sector,
7638                           bio->bi_iter.bi_size, err);
7639
7640        if (bio_op(bio) == REQ_OP_READ) {
7641                err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7642                                               !err);
7643        }
7644
7645        if (err)
7646                dip->dio_bio->bi_status = err;
7647
7648        bio_put(bio);
7649        btrfs_dio_private_put(dip);
7650}
7651
7652static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7653                struct inode *inode, u64 file_offset, int async_submit)
7654{
7655        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7656        struct btrfs_dio_private *dip = bio->bi_private;
7657        bool write = bio_op(bio) == REQ_OP_WRITE;
7658        blk_status_t ret;
7659
7660        /* Check btrfs_submit_bio_hook() for rules about async submit. */
7661        if (async_submit)
7662                async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7663
7664        if (!write) {
7665                ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7666                if (ret)
7667                        goto err;
7668        }
7669
7670        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7671                goto map;
7672
7673        if (write && async_submit) {
7674                ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7675                                          file_offset, inode,
7676                                          btrfs_submit_bio_start_direct_io);
7677                goto err;
7678        } else if (write) {
7679                /*
7680                 * If we aren't doing async submit, calculate the csum of the
7681                 * bio now.
7682                 */
7683                ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7684                if (ret)
7685                        goto err;
7686        } else {
7687                u64 csum_offset;
7688
7689                csum_offset = file_offset - dip->logical_offset;
7690                csum_offset >>= inode->i_sb->s_blocksize_bits;
7691                csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7692                btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7693        }
7694map:
7695        ret = btrfs_map_bio(fs_info, bio, 0);
7696err:
7697        return ret;
7698}
7699
7700/*
7701 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7702 * or ordered extents whether or not we submit any bios.
7703 */
7704static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7705                                                          struct inode *inode,
7706                                                          loff_t file_offset)
7707{
7708        const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7709        const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7710        size_t dip_size;
7711        struct btrfs_dio_private *dip;
7712
7713        dip_size = sizeof(*dip);
7714        if (!write && csum) {
7715                struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7716                const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7717                size_t nblocks;
7718
7719                nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7720                dip_size += csum_size * nblocks;
7721        }
7722
7723        dip = kzalloc(dip_size, GFP_NOFS);
7724        if (!dip)
7725                return NULL;
7726
7727        dip->inode = inode;
7728        dip->logical_offset = file_offset;
7729        dip->bytes = dio_bio->bi_iter.bi_size;
7730        dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7731        dip->dio_bio = dio_bio;
7732        refcount_set(&dip->refs, 1);
7733
7734        if (write) {
7735                struct btrfs_dio_data *dio_data = current->journal_info;
7736
7737                /*
7738                 * Setting range start and end to the same value means that
7739                 * no cleanup will happen in btrfs_direct_IO
7740                 */
7741                dio_data->unsubmitted_oe_range_end = dip->logical_offset +
7742                        dip->bytes;
7743                dio_data->unsubmitted_oe_range_start =
7744                        dio_data->unsubmitted_oe_range_end;
7745        }
7746        return dip;
7747}
7748
7749static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7750                                loff_t file_offset)
7751{
7752        const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7753        const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7754        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7755        const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7756                             BTRFS_BLOCK_GROUP_RAID56_MASK);
7757        struct btrfs_dio_private *dip;
7758        struct bio *bio;
7759        u64 start_sector;
7760        int async_submit = 0;
7761        u64 submit_len;
7762        int clone_offset = 0;
7763        int clone_len;
7764        int ret;
7765        blk_status_t status;
7766        struct btrfs_io_geometry geom;
7767
7768        dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7769        if (!dip) {
7770                if (!write) {
7771                        unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7772                                file_offset + dio_bio->bi_iter.bi_size - 1);
7773                }
7774                dio_bio->bi_status = BLK_STS_RESOURCE;
7775                dio_end_io(dio_bio);
7776                return;
7777        }
7778
7779        if (!write && csum) {
7780                /*
7781                 * Load the csums up front to reduce csum tree searches and
7782                 * contention when submitting bios.
7783                 */
7784                status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7785                                               dip->csums);
7786                if (status != BLK_STS_OK)
7787                        goto out_err;
7788        }
7789
7790        start_sector = dio_bio->bi_iter.bi_sector;
7791        submit_len = dio_bio->bi_iter.bi_size;
7792
7793        do {
7794                ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7795                                            start_sector << 9, submit_len,
7796                                            &geom);
7797                if (ret) {
7798                        status = errno_to_blk_status(ret);
7799                        goto out_err;
7800                }
7801                ASSERT(geom.len <= INT_MAX);
7802
7803                clone_len = min_t(int, submit_len, geom.len);
7804
7805                /*
7806                 * This will never fail as it's passing GPF_NOFS and
7807                 * the allocation is backed by btrfs_bioset.
7808                 */
7809                bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7810                bio->bi_private = dip;
7811                bio->bi_end_io = btrfs_end_dio_bio;
7812                btrfs_io_bio(bio)->logical = file_offset;
7813
7814                ASSERT(submit_len >= clone_len);
7815                submit_len -= clone_len;
7816
7817                /*
7818                 * Increase the count before we submit the bio so we know
7819                 * the end IO handler won't happen before we increase the
7820                 * count. Otherwise, the dip might get freed before we're
7821                 * done setting it up.
7822                 *
7823                 * We transfer the initial reference to the last bio, so we
7824                 * don't need to increment the reference count for the last one.
7825                 */
7826                if (submit_len > 0) {
7827                        refcount_inc(&dip->refs);
7828                        /*
7829                         * If we are submitting more than one bio, submit them
7830                         * all asynchronously. The exception is RAID 5 or 6, as
7831                         * asynchronous checksums make it difficult to collect
7832                         * full stripe writes.
7833                         */
7834                        if (!raid56)
7835                                async_submit = 1;
7836                }
7837
7838                status = btrfs_submit_dio_bio(bio, inode, file_offset,
7839                                                async_submit);
7840                if (status) {
7841                        bio_put(bio);
7842                        if (submit_len > 0)
7843                                refcount_dec(&dip->refs);
7844                        goto out_err;
7845                }
7846
7847                clone_offset += clone_len;
7848                start_sector += clone_len >> 9;
7849                file_offset += clone_len;
7850        } while (submit_len > 0);
7851        return;
7852
7853out_err:
7854        dip->dio_bio->bi_status = status;
7855        btrfs_dio_private_put(dip);
7856}
7857
7858static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7859                               const struct iov_iter *iter, loff_t offset)
7860{
7861        int seg;
7862        int i;
7863        unsigned int blocksize_mask = fs_info->sectorsize - 1;
7864        ssize_t retval = -EINVAL;
7865
7866        if (offset & blocksize_mask)
7867                goto out;
7868
7869        if (iov_iter_alignment(iter) & blocksize_mask)
7870                goto out;
7871
7872        /* If this is a write we don't need to check anymore */
7873        if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7874                return 0;
7875        /*
7876         * Check to make sure we don't have duplicate iov_base's in this
7877         * iovec, if so return EINVAL, otherwise we'll get csum errors
7878         * when reading back.
7879         */
7880        for (seg = 0; seg < iter->nr_segs; seg++) {
7881                for (i = seg + 1; i < iter->nr_segs; i++) {
7882                        if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7883                                goto out;
7884                }
7885        }
7886        retval = 0;
7887out:
7888        return retval;
7889}
7890
7891static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
7892{
7893        struct file *file = iocb->ki_filp;
7894        struct inode *inode = file->f_mapping->host;
7895        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7896        struct btrfs_dio_data dio_data = { 0 };
7897        struct extent_changeset *data_reserved = NULL;
7898        loff_t offset = iocb->ki_pos;
7899        size_t count = 0;
7900        int flags = 0;
7901        bool wakeup = true;
7902        bool relock = false;
7903        ssize_t ret;
7904
7905        if (check_direct_IO(fs_info, iter, offset))
7906                return 0;
7907
7908        inode_dio_begin(inode);
7909
7910        /*
7911         * The generic stuff only does filemap_write_and_wait_range, which
7912         * isn't enough if we've written compressed pages to this area, so
7913         * we need to flush the dirty pages again to make absolutely sure
7914         * that any outstanding dirty pages are on disk.
7915         */
7916        count = iov_iter_count(iter);
7917        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7918                     &BTRFS_I(inode)->runtime_flags))
7919                filemap_fdatawrite_range(inode->i_mapping, offset,
7920                                         offset + count - 1);
7921
7922        if (iov_iter_rw(iter) == WRITE) {
7923                /*
7924                 * If the write DIO is beyond the EOF, we need update
7925                 * the isize, but it is protected by i_mutex. So we can
7926                 * not unlock the i_mutex at this case.
7927                 */
7928                if (offset + count <= inode->i_size) {
7929                        dio_data.overwrite = 1;
7930                        inode_unlock(inode);
7931                        relock = true;
7932                }
7933                ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
7934                                                   offset, count);
7935                if (ret)
7936                        goto out;
7937
7938                /*
7939                 * We need to know how many extents we reserved so that we can
7940                 * do the accounting properly if we go over the number we
7941                 * originally calculated.  Abuse current->journal_info for this.
7942                 */
7943                dio_data.reserve = round_up(count,
7944                                            fs_info->sectorsize);
7945                dio_data.unsubmitted_oe_range_start = (u64)offset;
7946                dio_data.unsubmitted_oe_range_end = (u64)offset;
7947                current->journal_info = &dio_data;
7948                down_read(&BTRFS_I(inode)->dio_sem);
7949        } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7950                                     &BTRFS_I(inode)->runtime_flags)) {
7951                inode_dio_end(inode);
7952                flags = DIO_LOCKING | DIO_SKIP_HOLES;
7953                wakeup = false;
7954        }
7955
7956        ret = __blockdev_direct_IO(iocb, inode,
7957                                   fs_info->fs_devices->latest_bdev,
7958                                   iter, btrfs_get_blocks_direct, NULL,
7959                                   btrfs_submit_direct, flags);
7960        if (iov_iter_rw(iter) == WRITE) {
7961                up_read(&BTRFS_I(inode)->dio_sem);
7962                current->journal_info = NULL;
7963                if (ret < 0 && ret != -EIOCBQUEUED) {
7964                        if (dio_data.reserve)
7965                                btrfs_delalloc_release_space(BTRFS_I(inode),
7966                                        data_reserved, offset, dio_data.reserve,
7967                                        true);
7968                        /*
7969                         * On error we might have left some ordered extents
7970                         * without submitting corresponding bios for them, so
7971                         * cleanup them up to avoid other tasks getting them
7972                         * and waiting for them to complete forever.
7973                         */
7974                        if (dio_data.unsubmitted_oe_range_start <
7975                            dio_data.unsubmitted_oe_range_end)
7976                                __endio_write_update_ordered(BTRFS_I(inode),
7977                                        dio_data.unsubmitted_oe_range_start,
7978                                        dio_data.unsubmitted_oe_range_end -
7979                                        dio_data.unsubmitted_oe_range_start,
7980                                        false);
7981                } else if (ret >= 0 && (size_t)ret < count)
7982                        btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
7983                                        offset, count - (size_t)ret, true);
7984                btrfs_delalloc_release_extents(BTRFS_I(inode), count);
7985        }
7986out:
7987        if (wakeup)
7988                inode_dio_end(inode);
7989        if (relock)
7990                inode_lock(inode);
7991
7992        extent_changeset_free(data_reserved);
7993        return ret;
7994}
7995
7996static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7997                        u64 start, u64 len)
7998{
7999        int     ret;
8000
8001        ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8002        if (ret)
8003                return ret;
8004
8005        return extent_fiemap(inode, fieinfo, start, len);
8006}
8007
8008int btrfs_readpage(struct file *file, struct page *page)
8009{
8010        return extent_read_full_page(page, btrfs_get_extent, 0);
8011}
8012
8013static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8014{
8015        struct inode *inode = page->mapping->host;
8016        int ret;
8017
8018        if (current->flags & PF_MEMALLOC) {
8019                redirty_page_for_writepage(wbc, page);
8020                unlock_page(page);
8021                return 0;
8022        }
8023
8024        /*
8025         * If we are under memory pressure we will call this directly from the
8026         * VM, we need to make sure we have the inode referenced for the ordered
8027         * extent.  If not just return like we didn't do anything.
8028         */
8029        if (!igrab(inode)) {
8030                redirty_page_for_writepage(wbc, page);
8031                return AOP_WRITEPAGE_ACTIVATE;
8032        }
8033        ret = extent_write_full_page(page, wbc);
8034        btrfs_add_delayed_iput(inode);
8035        return ret;
8036}
8037
8038static int btrfs_writepages(struct address_space *mapping,
8039                            struct writeback_control *wbc)
8040{
8041        return extent_writepages(mapping, wbc);
8042}
8043
8044static void btrfs_readahead(struct readahead_control *rac)
8045{
8046        extent_readahead(rac);
8047}
8048
8049static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8050{
8051        int ret = try_release_extent_mapping(page, gfp_flags);
8052        if (ret == 1)
8053                detach_page_private(page);
8054        return ret;
8055}
8056
8057static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8058{
8059        if (PageWriteback(page) || PageDirty(page))
8060                return 0;
8061        return __btrfs_releasepage(page, gfp_flags);
8062}
8063
8064#ifdef CONFIG_MIGRATION
8065static int btrfs_migratepage(struct address_space *mapping,
8066                             struct page *newpage, struct page *page,
8067                             enum migrate_mode mode)
8068{
8069        int ret;
8070
8071        ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8072        if (ret != MIGRATEPAGE_SUCCESS)
8073                return ret;
8074
8075        if (page_has_private(page))
8076                attach_page_private(newpage, detach_page_private(page));
8077
8078        if (PagePrivate2(page)) {
8079                ClearPagePrivate2(page);
8080                SetPagePrivate2(newpage);
8081        }
8082
8083        if (mode != MIGRATE_SYNC_NO_COPY)
8084                migrate_page_copy(newpage, page);
8085        else
8086                migrate_page_states(newpage, page);
8087        return MIGRATEPAGE_SUCCESS;
8088}
8089#endif
8090
8091static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8092                                 unsigned int length)
8093{
8094        struct inode *inode = page->mapping->host;
8095        struct extent_io_tree *tree;
8096        struct btrfs_ordered_extent *ordered;
8097        struct extent_state *cached_state = NULL;
8098        u64 page_start = page_offset(page);
8099        u64 page_end = page_start + PAGE_SIZE - 1;
8100        u64 start;
8101        u64 end;
8102        int inode_evicting = inode->i_state & I_FREEING;
8103
8104        /*
8105         * we have the page locked, so new writeback can't start,
8106         * and the dirty bit won't be cleared while we are here.
8107         *
8108         * Wait for IO on this page so that we can safely clear
8109         * the PagePrivate2 bit and do ordered accounting
8110         */
8111        wait_on_page_writeback(page);
8112
8113        tree = &BTRFS_I(inode)->io_tree;
8114        if (offset) {
8115                btrfs_releasepage(page, GFP_NOFS);
8116                return;
8117        }
8118
8119        if (!inode_evicting)
8120                lock_extent_bits(tree, page_start, page_end, &cached_state);
8121again:
8122        start = page_start;
8123        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8124                                        page_end - start + 1);
8125        if (ordered) {
8126                end = min(page_end,
8127                          ordered->file_offset + ordered->num_bytes - 1);
8128                /*
8129                 * IO on this page will never be started, so we need
8130                 * to account for any ordered extents now
8131                 */
8132                if (!inode_evicting)
8133                        clear_extent_bit(tree, start, end,
8134                                         EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8135                                         EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8136                                         EXTENT_DEFRAG, 1, 0, &cached_state);
8137                /*
8138                 * whoever cleared the private bit is responsible
8139                 * for the finish_ordered_io
8140                 */
8141                if (TestClearPagePrivate2(page)) {
8142                        struct btrfs_ordered_inode_tree *tree;
8143                        u64 new_len;
8144
8145                        tree = &BTRFS_I(inode)->ordered_tree;
8146
8147                        spin_lock_irq(&tree->lock);
8148                        set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8149                        new_len = start - ordered->file_offset;
8150                        if (new_len < ordered->truncated_len)
8151                                ordered->truncated_len = new_len;
8152                        spin_unlock_irq(&tree->lock);
8153
8154                        if (btrfs_dec_test_ordered_pending(inode, &ordered,
8155                                                           start,
8156                                                           end - start + 1, 1))
8157                                btrfs_finish_ordered_io(ordered);
8158                }
8159                btrfs_put_ordered_extent(ordered);
8160                if (!inode_evicting) {
8161                        cached_state = NULL;
8162                        lock_extent_bits(tree, start, end,
8163                                         &cached_state);
8164                }
8165
8166                start = end + 1;
8167                if (start < page_end)
8168                        goto again;
8169        }
8170
8171        /*
8172         * Qgroup reserved space handler
8173         * Page here will be either
8174         * 1) Already written to disk or ordered extent already submitted
8175         *    Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8176         *    Qgroup will be handled by its qgroup_record then.
8177         *    btrfs_qgroup_free_data() call will do nothing here.
8178         *
8179         * 2) Not written to disk yet
8180         *    Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8181         *    bit of its io_tree, and free the qgroup reserved data space.
8182         *    Since the IO will never happen for this page.
8183         */
8184        btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE);
8185        if (!inode_evicting) {
8186                clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8187                                 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8188                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8189                                 &cached_state);
8190
8191                __btrfs_releasepage(page, GFP_NOFS);
8192        }
8193
8194        ClearPageChecked(page);
8195        detach_page_private(page);
8196}
8197
8198/*
8199 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8200 * called from a page fault handler when a page is first dirtied. Hence we must
8201 * be careful to check for EOF conditions here. We set the page up correctly
8202 * for a written page which means we get ENOSPC checking when writing into
8203 * holes and correct delalloc and unwritten extent mapping on filesystems that
8204 * support these features.
8205 *
8206 * We are not allowed to take the i_mutex here so we have to play games to
8207 * protect against truncate races as the page could now be beyond EOF.  Because
8208 * truncate_setsize() writes the inode size before removing pages, once we have
8209 * the page lock we can determine safely if the page is beyond EOF. If it is not
8210 * beyond EOF, then the page is guaranteed safe against truncation until we
8211 * unlock the page.
8212 */
8213vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8214{
8215        struct page *page = vmf->page;
8216        struct inode *inode = file_inode(vmf->vma->vm_file);
8217        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8218        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8219        struct btrfs_ordered_extent *ordered;
8220        struct extent_state *cached_state = NULL;
8221        struct extent_changeset *data_reserved = NULL;
8222        char *kaddr;
8223        unsigned long zero_start;
8224        loff_t size;
8225        vm_fault_t ret;
8226        int ret2;
8227        int reserved = 0;
8228        u64 reserved_space;
8229        u64 page_start;
8230        u64 page_end;
8231        u64 end;
8232
8233        reserved_space = PAGE_SIZE;
8234
8235        sb_start_pagefault(inode->i_sb);
8236        page_start = page_offset(page);
8237        page_end = page_start + PAGE_SIZE - 1;
8238        end = page_end;
8239
8240        /*
8241         * Reserving delalloc space after obtaining the page lock can lead to
8242         * deadlock. For example, if a dirty page is locked by this function
8243         * and the call to btrfs_delalloc_reserve_space() ends up triggering
8244         * dirty page write out, then the btrfs_writepage() function could
8245         * end up waiting indefinitely to get a lock on the page currently
8246         * being processed by btrfs_page_mkwrite() function.
8247         */
8248        ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8249                                            page_start, reserved_space);
8250        if (!ret2) {
8251                ret2 = file_update_time(vmf->vma->vm_file);
8252                reserved = 1;
8253        }
8254        if (ret2) {
8255                ret = vmf_error(ret2);
8256                if (reserved)
8257                        goto out;
8258                goto out_noreserve;
8259        }
8260
8261        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8262again:
8263        lock_page(page);
8264        size = i_size_read(inode);
8265
8266        if ((page->mapping != inode->i_mapping) ||
8267            (page_start >= size)) {
8268                /* page got truncated out from underneath us */
8269                goto out_unlock;
8270        }
8271        wait_on_page_writeback(page);
8272
8273        lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8274        set_page_extent_mapped(page);
8275
8276        /*
8277         * we can't set the delalloc bits if there are pending ordered
8278         * extents.  Drop our locks and wait for them to finish
8279         */
8280        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8281                        PAGE_SIZE);
8282        if (ordered) {
8283                unlock_extent_cached(io_tree, page_start, page_end,
8284                                     &cached_state);
8285                unlock_page(page);
8286                btrfs_start_ordered_extent(inode, ordered, 1);
8287                btrfs_put_ordered_extent(ordered);
8288                goto again;
8289        }
8290
8291        if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8292                reserved_space = round_up(size - page_start,
8293                                          fs_info->sectorsize);
8294                if (reserved_space < PAGE_SIZE) {
8295                        end = page_start + reserved_space - 1;
8296                        btrfs_delalloc_release_space(BTRFS_I(inode),
8297                                        data_reserved, page_start,
8298                                        PAGE_SIZE - reserved_space, true);
8299                }
8300        }
8301
8302        /*
8303         * page_mkwrite gets called when the page is firstly dirtied after it's
8304         * faulted in, but write(2) could also dirty a page and set delalloc
8305         * bits, thus in this case for space account reason, we still need to
8306         * clear any delalloc bits within this page range since we have to
8307         * reserve data&meta space before lock_page() (see above comments).
8308         */
8309        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8310                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8311                          EXTENT_DEFRAG, 0, 0, &cached_state);
8312
8313        ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8314                                        &cached_state);
8315        if (ret2) {
8316                unlock_extent_cached(io_tree, page_start, page_end,
8317                                     &cached_state);
8318                ret = VM_FAULT_SIGBUS;
8319                goto out_unlock;
8320        }
8321
8322        /* page is wholly or partially inside EOF */
8323        if (page_start + PAGE_SIZE > size)
8324                zero_start = offset_in_page(size);
8325        else
8326                zero_start = PAGE_SIZE;
8327
8328        if (zero_start != PAGE_SIZE) {
8329                kaddr = kmap(page);
8330                memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8331                flush_dcache_page(page);
8332                kunmap(page);
8333        }
8334        ClearPageChecked(page);
8335        set_page_dirty(page);
8336        SetPageUptodate(page);
8337
8338        BTRFS_I(inode)->last_trans = fs_info->generation;
8339        BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8340        BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8341
8342        unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8343
8344        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8345        sb_end_pagefault(inode->i_sb);
8346        extent_changeset_free(data_reserved);
8347        return VM_FAULT_LOCKED;
8348
8349out_unlock:
8350        unlock_page(page);
8351out:
8352        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8353        btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8354                                     reserved_space, (ret != 0));
8355out_noreserve:
8356        sb_end_pagefault(inode->i_sb);
8357        extent_changeset_free(data_reserved);
8358        return ret;
8359}
8360
8361static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8362{
8363        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8364        struct btrfs_root *root = BTRFS_I(inode)->root;
8365        struct btrfs_block_rsv *rsv;
8366        int ret;
8367        struct btrfs_trans_handle *trans;
8368        u64 mask = fs_info->sectorsize - 1;
8369        u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8370
8371        if (!skip_writeback) {
8372                ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8373                                               (u64)-1);
8374                if (ret)
8375                        return ret;
8376        }
8377
8378        /*
8379         * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8380         * things going on here:
8381         *
8382         * 1) We need to reserve space to update our inode.
8383         *
8384         * 2) We need to have something to cache all the space that is going to
8385         * be free'd up by the truncate operation, but also have some slack
8386         * space reserved in case it uses space during the truncate (thank you
8387         * very much snapshotting).
8388         *
8389         * And we need these to be separate.  The fact is we can use a lot of
8390         * space doing the truncate, and we have no earthly idea how much space
8391         * we will use, so we need the truncate reservation to be separate so it
8392         * doesn't end up using space reserved for updating the inode.  We also
8393         * need to be able to stop the transaction and start a new one, which
8394         * means we need to be able to update the inode several times, and we
8395         * have no idea of knowing how many times that will be, so we can't just
8396         * reserve 1 item for the entirety of the operation, so that has to be
8397         * done separately as well.
8398         *
8399         * So that leaves us with
8400         *
8401         * 1) rsv - for the truncate reservation, which we will steal from the
8402         * transaction reservation.
8403         * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8404         * updating the inode.
8405         */
8406        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8407        if (!rsv)
8408                return -ENOMEM;
8409        rsv->size = min_size;
8410        rsv->failfast = 1;
8411
8412        /*
8413         * 1 for the truncate slack space
8414         * 1 for updating the inode.
8415         */
8416        trans = btrfs_start_transaction(root, 2);
8417        if (IS_ERR(trans)) {
8418                ret = PTR_ERR(trans);
8419                goto out;
8420        }
8421
8422        /* Migrate the slack space for the truncate to our reserve */
8423        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8424                                      min_size, false);
8425        BUG_ON(ret);
8426
8427        /*
8428         * So if we truncate and then write and fsync we normally would just
8429         * write the extents that changed, which is a problem if we need to
8430         * first truncate that entire inode.  So set this flag so we write out
8431         * all of the extents in the inode to the sync log so we're completely
8432         * safe.
8433         */
8434        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8435        trans->block_rsv = rsv;
8436
8437        while (1) {
8438                ret = btrfs_truncate_inode_items(trans, root, inode,
8439                                                 inode->i_size,
8440                                                 BTRFS_EXTENT_DATA_KEY);
8441                trans->block_rsv = &fs_info->trans_block_rsv;
8442                if (ret != -ENOSPC && ret != -EAGAIN)
8443                        break;
8444
8445                ret = btrfs_update_inode(trans, root, inode);
8446                if (ret)
8447                        break;
8448
8449                btrfs_end_transaction(trans);
8450                btrfs_btree_balance_dirty(fs_info);
8451
8452                trans = btrfs_start_transaction(root, 2);
8453                if (IS_ERR(trans)) {
8454                        ret = PTR_ERR(trans);
8455                        trans = NULL;
8456                        break;
8457                }
8458
8459                btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8460                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8461                                              rsv, min_size, false);
8462                BUG_ON(ret);    /* shouldn't happen */
8463                trans->block_rsv = rsv;
8464        }
8465
8466        /*
8467         * We can't call btrfs_truncate_block inside a trans handle as we could
8468         * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8469         * we've truncated everything except the last little bit, and can do
8470         * btrfs_truncate_block and then update the disk_i_size.
8471         */
8472        if (ret == NEED_TRUNCATE_BLOCK) {
8473                btrfs_end_transaction(trans);
8474                btrfs_btree_balance_dirty(fs_info);
8475
8476                ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8477                if (ret)
8478                        goto out;
8479                trans = btrfs_start_transaction(root, 1);
8480                if (IS_ERR(trans)) {
8481                        ret = PTR_ERR(trans);
8482                        goto out;
8483                }
8484                btrfs_inode_safe_disk_i_size_write(inode, 0);
8485        }
8486
8487        if (trans) {
8488                int ret2;
8489
8490                trans->block_rsv = &fs_info->trans_block_rsv;
8491                ret2 = btrfs_update_inode(trans, root, inode);
8492                if (ret2 && !ret)
8493                        ret = ret2;
8494
8495                ret2 = btrfs_end_transaction(trans);
8496                if (ret2 && !ret)
8497                        ret = ret2;
8498                btrfs_btree_balance_dirty(fs_info);
8499        }
8500out:
8501        btrfs_free_block_rsv(fs_info, rsv);
8502
8503        return ret;
8504}
8505
8506/*
8507 * create a new subvolume directory/inode (helper for the ioctl).
8508 */
8509int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8510                             struct btrfs_root *new_root,
8511                             struct btrfs_root *parent_root,
8512                             u64 new_dirid)
8513{
8514        struct inode *inode;
8515        int err;
8516        u64 index = 0;
8517
8518        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8519                                new_dirid, new_dirid,
8520                                S_IFDIR | (~current_umask() & S_IRWXUGO),
8521                                &index);
8522        if (IS_ERR(inode))
8523                return PTR_ERR(inode);
8524        inode->i_op = &btrfs_dir_inode_operations;
8525        inode->i_fop = &btrfs_dir_file_operations;
8526
8527        set_nlink(inode, 1);
8528        btrfs_i_size_write(BTRFS_I(inode), 0);
8529        unlock_new_inode(inode);
8530
8531        err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8532        if (err)
8533                btrfs_err(new_root->fs_info,
8534                          "error inheriting subvolume %llu properties: %d",
8535                          new_root->root_key.objectid, err);
8536
8537        err = btrfs_update_inode(trans, new_root, inode);
8538
8539        iput(inode);
8540        return err;
8541}
8542
8543struct inode *btrfs_alloc_inode(struct super_block *sb)
8544{
8545        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8546        struct btrfs_inode *ei;
8547        struct inode *inode;
8548
8549        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8550        if (!ei)
8551                return NULL;
8552
8553        ei->root = NULL;
8554        ei->generation = 0;
8555        ei->last_trans = 0;
8556        ei->last_sub_trans = 0;
8557        ei->logged_trans = 0;
8558        ei->delalloc_bytes = 0;
8559        ei->new_delalloc_bytes = 0;
8560        ei->defrag_bytes = 0;
8561        ei->disk_i_size = 0;
8562        ei->flags = 0;
8563        ei->csum_bytes = 0;
8564        ei->index_cnt = (u64)-1;
8565        ei->dir_index = 0;
8566        ei->last_unlink_trans = 0;
8567        ei->last_reflink_trans = 0;
8568        ei->last_log_commit = 0;
8569
8570        spin_lock_init(&ei->lock);
8571        ei->outstanding_extents = 0;
8572        if (sb->s_magic != BTRFS_TEST_MAGIC)
8573                btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8574                                              BTRFS_BLOCK_RSV_DELALLOC);
8575        ei->runtime_flags = 0;
8576        ei->prop_compress = BTRFS_COMPRESS_NONE;
8577        ei->defrag_compress = BTRFS_COMPRESS_NONE;
8578
8579        ei->delayed_node = NULL;
8580
8581        ei->i_otime.tv_sec = 0;
8582        ei->i_otime.tv_nsec = 0;
8583
8584        inode = &ei->vfs_inode;
8585        extent_map_tree_init(&ei->extent_tree);
8586        extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8587        extent_io_tree_init(fs_info, &ei->io_failure_tree,
8588                            IO_TREE_INODE_IO_FAILURE, inode);
8589        extent_io_tree_init(fs_info, &ei->file_extent_tree,
8590                            IO_TREE_INODE_FILE_EXTENT, inode);
8591        ei->io_tree.track_uptodate = true;
8592        ei->io_failure_tree.track_uptodate = true;
8593        atomic_set(&ei->sync_writers, 0);
8594        mutex_init(&ei->log_mutex);
8595        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8596        INIT_LIST_HEAD(&ei->delalloc_inodes);
8597        INIT_LIST_HEAD(&ei->delayed_iput);
8598        RB_CLEAR_NODE(&ei->rb_node);
8599        init_rwsem(&ei->dio_sem);
8600
8601        return inode;
8602}
8603
8604#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8605void btrfs_test_destroy_inode(struct inode *inode)
8606{
8607        btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8608        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8609}
8610#endif
8611
8612void btrfs_free_inode(struct inode *inode)
8613{
8614        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8615}
8616
8617void btrfs_destroy_inode(struct inode *inode)
8618{
8619        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8620        struct btrfs_ordered_extent *ordered;
8621        struct btrfs_root *root = BTRFS_I(inode)->root;
8622
8623        WARN_ON(!hlist_empty(&inode->i_dentry));
8624        WARN_ON(inode->i_data.nrpages);
8625        WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8626        WARN_ON(BTRFS_I(inode)->block_rsv.size);
8627        WARN_ON(BTRFS_I(inode)->outstanding_extents);
8628        WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8629        WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
8630        WARN_ON(BTRFS_I(inode)->csum_bytes);
8631        WARN_ON(BTRFS_I(inode)->defrag_bytes);
8632
8633        /*
8634         * This can happen where we create an inode, but somebody else also
8635         * created the same inode and we need to destroy the one we already
8636         * created.
8637         */
8638        if (!root)
8639                return;
8640
8641        while (1) {
8642                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8643                if (!ordered)
8644                        break;
8645                else {
8646                        btrfs_err(fs_info,
8647                                  "found ordered extent %llu %llu on inode cleanup",
8648                                  ordered->file_offset, ordered->num_bytes);
8649                        btrfs_remove_ordered_extent(inode, ordered);
8650                        btrfs_put_ordered_extent(ordered);
8651                        btrfs_put_ordered_extent(ordered);
8652                }
8653        }
8654        btrfs_qgroup_check_reserved_leak(BTRFS_I(inode));
8655        inode_tree_del(inode);
8656        btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8657        btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
8658        btrfs_put_root(BTRFS_I(inode)->root);
8659}
8660
8661int btrfs_drop_inode(struct inode *inode)
8662{
8663        struct btrfs_root *root = BTRFS_I(inode)->root;
8664
8665        if (root == NULL)
8666                return 1;
8667
8668        /* the snap/subvol tree is on deleting */
8669        if (btrfs_root_refs(&root->root_item) == 0)
8670                return 1;
8671        else
8672                return generic_drop_inode(inode);
8673}
8674
8675static void init_once(void *foo)
8676{
8677        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8678
8679        inode_init_once(&ei->vfs_inode);
8680}
8681
8682void __cold btrfs_destroy_cachep(void)
8683{
8684        /*
8685         * Make sure all delayed rcu free inodes are flushed before we
8686         * destroy cache.
8687         */
8688        rcu_barrier();
8689        kmem_cache_destroy(btrfs_inode_cachep);
8690        kmem_cache_destroy(btrfs_trans_handle_cachep);
8691        kmem_cache_destroy(btrfs_path_cachep);
8692        kmem_cache_destroy(btrfs_free_space_cachep);
8693        kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8694}
8695
8696int __init btrfs_init_cachep(void)
8697{
8698        btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8699                        sizeof(struct btrfs_inode), 0,
8700                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8701                        init_once);
8702        if (!btrfs_inode_cachep)
8703                goto fail;
8704
8705        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8706                        sizeof(struct btrfs_trans_handle), 0,
8707                        SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8708        if (!btrfs_trans_handle_cachep)
8709                goto fail;
8710
8711        btrfs_path_cachep = kmem_cache_create("btrfs_path",
8712                        sizeof(struct btrfs_path), 0,
8713                        SLAB_MEM_SPREAD, NULL);
8714        if (!btrfs_path_cachep)
8715                goto fail;
8716
8717        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8718                        sizeof(struct btrfs_free_space), 0,
8719                        SLAB_MEM_SPREAD, NULL);
8720        if (!btrfs_free_space_cachep)
8721                goto fail;
8722
8723        btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8724                                                        PAGE_SIZE, PAGE_SIZE,
8725                                                        SLAB_RED_ZONE, NULL);
8726        if (!btrfs_free_space_bitmap_cachep)
8727                goto fail;
8728
8729        return 0;
8730fail:
8731        btrfs_destroy_cachep();
8732        return -ENOMEM;
8733}
8734
8735static int btrfs_getattr(const struct path *path, struct kstat *stat,
8736                         u32 request_mask, unsigned int flags)
8737{
8738        u64 delalloc_bytes;
8739        struct inode *inode = d_inode(path->dentry);
8740        u32 blocksize = inode->i_sb->s_blocksize;
8741        u32 bi_flags = BTRFS_I(inode)->flags;
8742
8743        stat->result_mask |= STATX_BTIME;
8744        stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8745        stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8746        if (bi_flags & BTRFS_INODE_APPEND)
8747                stat->attributes |= STATX_ATTR_APPEND;
8748        if (bi_flags & BTRFS_INODE_COMPRESS)
8749                stat->attributes |= STATX_ATTR_COMPRESSED;
8750        if (bi_flags & BTRFS_INODE_IMMUTABLE)
8751                stat->attributes |= STATX_ATTR_IMMUTABLE;
8752        if (bi_flags & BTRFS_INODE_NODUMP)
8753                stat->attributes |= STATX_ATTR_NODUMP;
8754
8755        stat->attributes_mask |= (STATX_ATTR_APPEND |
8756                                  STATX_ATTR_COMPRESSED |
8757                                  STATX_ATTR_IMMUTABLE |
8758                                  STATX_ATTR_NODUMP);
8759
8760        generic_fillattr(inode, stat);
8761        stat->dev = BTRFS_I(inode)->root->anon_dev;
8762
8763        spin_lock(&BTRFS_I(inode)->lock);
8764        delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8765        spin_unlock(&BTRFS_I(inode)->lock);
8766        stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8767                        ALIGN(delalloc_bytes, blocksize)) >> 9;
8768        return 0;
8769}
8770
8771static int btrfs_rename_exchange(struct inode *old_dir,
8772                              struct dentry *old_dentry,
8773                              struct inode *new_dir,
8774                              struct dentry *new_dentry)
8775{
8776        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8777        struct btrfs_trans_handle *trans;
8778        struct btrfs_root *root = BTRFS_I(old_dir)->root;
8779        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8780        struct inode *new_inode = new_dentry->d_inode;
8781        struct inode *old_inode = old_dentry->d_inode;
8782        struct timespec64 ctime = current_time(old_inode);
8783        struct dentry *parent;
8784        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8785        u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8786        u64 old_idx = 0;
8787        u64 new_idx = 0;
8788        int ret;
8789        bool root_log_pinned = false;
8790        bool dest_log_pinned = false;
8791        struct btrfs_log_ctx ctx_root;
8792        struct btrfs_log_ctx ctx_dest;
8793        bool sync_log_root = false;
8794        bool sync_log_dest = false;
8795        bool commit_transaction = false;
8796
8797        /* we only allow rename subvolume link between subvolumes */
8798        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8799                return -EXDEV;
8800
8801        btrfs_init_log_ctx(&ctx_root, old_inode);
8802        btrfs_init_log_ctx(&ctx_dest, new_inode);
8803
8804        /* close the race window with snapshot create/destroy ioctl */
8805        if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8806            new_ino == BTRFS_FIRST_FREE_OBJECTID)
8807                down_read(&fs_info->subvol_sem);
8808
8809        /*
8810         * We want to reserve the absolute worst case amount of items.  So if
8811         * both inodes are subvols and we need to unlink them then that would
8812         * require 4 item modifications, but if they are both normal inodes it
8813         * would require 5 item modifications, so we'll assume their normal
8814         * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8815         * should cover the worst case number of items we'll modify.
8816         */
8817        trans = btrfs_start_transaction(root, 12);
8818        if (IS_ERR(trans)) {
8819                ret = PTR_ERR(trans);
8820                goto out_notrans;
8821        }
8822
8823        if (dest != root)
8824                btrfs_record_root_in_trans(trans, dest);
8825
8826        /*
8827         * We need to find a free sequence number both in the source and
8828         * in the destination directory for the exchange.
8829         */
8830        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8831        if (ret)
8832                goto out_fail;
8833        ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8834        if (ret)
8835                goto out_fail;
8836
8837        BTRFS_I(old_inode)->dir_index = 0ULL;
8838        BTRFS_I(new_inode)->dir_index = 0ULL;
8839
8840        /* Reference for the source. */
8841        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8842                /* force full log commit if subvolume involved. */
8843                btrfs_set_log_full_commit(trans);
8844        } else {
8845                btrfs_pin_log_trans(root);
8846                root_log_pinned = true;
8847                ret = btrfs_insert_inode_ref(trans, dest,
8848                                             new_dentry->d_name.name,
8849                                             new_dentry->d_name.len,
8850                                             old_ino,
8851                                             btrfs_ino(BTRFS_I(new_dir)),
8852                                             old_idx);
8853                if (ret)
8854                        goto out_fail;
8855        }
8856
8857        /* And now for the dest. */
8858        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8859                /* force full log commit if subvolume involved. */
8860                btrfs_set_log_full_commit(trans);
8861        } else {
8862                btrfs_pin_log_trans(dest);
8863                dest_log_pinned = true;
8864                ret = btrfs_insert_inode_ref(trans, root,
8865                                             old_dentry->d_name.name,
8866                                             old_dentry->d_name.len,
8867                                             new_ino,
8868                                             btrfs_ino(BTRFS_I(old_dir)),
8869                                             new_idx);
8870                if (ret)
8871                        goto out_fail;
8872        }
8873
8874        /* Update inode version and ctime/mtime. */
8875        inode_inc_iversion(old_dir);
8876        inode_inc_iversion(new_dir);
8877        inode_inc_iversion(old_inode);
8878        inode_inc_iversion(new_inode);
8879        old_dir->i_ctime = old_dir->i_mtime = ctime;
8880        new_dir->i_ctime = new_dir->i_mtime = ctime;
8881        old_inode->i_ctime = ctime;
8882        new_inode->i_ctime = ctime;
8883
8884        if (old_dentry->d_parent != new_dentry->d_parent) {
8885                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8886                                BTRFS_I(old_inode), 1);
8887                btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8888                                BTRFS_I(new_inode), 1);
8889        }
8890
8891        /* src is a subvolume */
8892        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8893                ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
8894        } else { /* src is an inode */
8895                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8896                                           BTRFS_I(old_dentry->d_inode),
8897                                           old_dentry->d_name.name,
8898                                           old_dentry->d_name.len);
8899                if (!ret)
8900                        ret = btrfs_update_inode(trans, root, old_inode);
8901        }
8902        if (ret) {
8903                btrfs_abort_transaction(trans, ret);
8904                goto out_fail;
8905        }
8906
8907        /* dest is a subvolume */
8908        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8909                ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
8910        } else { /* dest is an inode */
8911                ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8912                                           BTRFS_I(new_dentry->d_inode),
8913                                           new_dentry->d_name.name,
8914                                           new_dentry->d_name.len);
8915                if (!ret)
8916                        ret = btrfs_update_inode(trans, dest, new_inode);
8917        }
8918        if (ret) {
8919                btrfs_abort_transaction(trans, ret);
8920                goto out_fail;
8921        }
8922
8923        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8924                             new_dentry->d_name.name,
8925                             new_dentry->d_name.len, 0, old_idx);
8926        if (ret) {
8927                btrfs_abort_transaction(trans, ret);
8928                goto out_fail;
8929        }
8930
8931        ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8932                             old_dentry->d_name.name,
8933                             old_dentry->d_name.len, 0, new_idx);
8934        if (ret) {
8935                btrfs_abort_transaction(trans, ret);
8936                goto out_fail;
8937        }
8938
8939        if (old_inode->i_nlink == 1)
8940                BTRFS_I(old_inode)->dir_index = old_idx;
8941        if (new_inode->i_nlink == 1)
8942                BTRFS_I(new_inode)->dir_index = new_idx;
8943
8944        if (root_log_pinned) {
8945                parent = new_dentry->d_parent;
8946                ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
8947                                         BTRFS_I(old_dir), parent,
8948                                         false, &ctx_root);
8949                if (ret == BTRFS_NEED_LOG_SYNC)
8950                        sync_log_root = true;
8951                else if (ret == BTRFS_NEED_TRANS_COMMIT)
8952                        commit_transaction = true;
8953                ret = 0;
8954                btrfs_end_log_trans(root);
8955                root_log_pinned = false;
8956        }
8957        if (dest_log_pinned) {
8958                if (!commit_transaction) {
8959                        parent = old_dentry->d_parent;
8960                        ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
8961                                                 BTRFS_I(new_dir), parent,
8962                                                 false, &ctx_dest);
8963                        if (ret == BTRFS_NEED_LOG_SYNC)
8964                                sync_log_dest = true;
8965                        else if (ret == BTRFS_NEED_TRANS_COMMIT)
8966                                commit_transaction = true;
8967                        ret = 0;
8968                }
8969                btrfs_end_log_trans(dest);
8970                dest_log_pinned = false;
8971        }
8972out_fail:
8973        /*
8974         * If we have pinned a log and an error happened, we unpin tasks
8975         * trying to sync the log and force them to fallback to a transaction
8976         * commit if the log currently contains any of the inodes involved in
8977         * this rename operation (to ensure we do not persist a log with an
8978         * inconsistent state for any of these inodes or leading to any
8979         * inconsistencies when replayed). If the transaction was aborted, the
8980         * abortion reason is propagated to userspace when attempting to commit
8981         * the transaction. If the log does not contain any of these inodes, we
8982         * allow the tasks to sync it.
8983         */
8984        if (ret && (root_log_pinned || dest_log_pinned)) {
8985                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8986                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8987                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
8988                    (new_inode &&
8989                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
8990                        btrfs_set_log_full_commit(trans);
8991
8992                if (root_log_pinned) {
8993                        btrfs_end_log_trans(root);
8994                        root_log_pinned = false;
8995                }
8996                if (dest_log_pinned) {
8997                        btrfs_end_log_trans(dest);
8998                        dest_log_pinned = false;
8999                }
9000        }
9001        if (!ret && sync_log_root && !commit_transaction) {
9002                ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9003                                     &ctx_root);
9004                if (ret)
9005                        commit_transaction = true;
9006        }
9007        if (!ret && sync_log_dest && !commit_transaction) {
9008                ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9009                                     &ctx_dest);
9010                if (ret)
9011                        commit_transaction = true;
9012        }
9013        if (commit_transaction) {
9014                /*
9015                 * We may have set commit_transaction when logging the new name
9016                 * in the destination root, in which case we left the source
9017                 * root context in the list of log contextes. So make sure we
9018                 * remove it to avoid invalid memory accesses, since the context
9019                 * was allocated in our stack frame.
9020                 */
9021                if (sync_log_root) {
9022                        mutex_lock(&root->log_mutex);
9023                        list_del_init(&ctx_root.list);
9024                        mutex_unlock(&root->log_mutex);
9025                }
9026                ret = btrfs_commit_transaction(trans);
9027        } else {
9028                int ret2;
9029
9030                ret2 = btrfs_end_transaction(trans);
9031                ret = ret ? ret : ret2;
9032        }
9033out_notrans:
9034        if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9035            old_ino == BTRFS_FIRST_FREE_OBJECTID)
9036                up_read(&fs_info->subvol_sem);
9037
9038        ASSERT(list_empty(&ctx_root.list));
9039        ASSERT(list_empty(&ctx_dest.list));
9040
9041        return ret;
9042}
9043
9044static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9045                                     struct btrfs_root *root,
9046                                     struct inode *dir,
9047                                     struct dentry *dentry)
9048{
9049        int ret;
9050        struct inode *inode;
9051        u64 objectid;
9052        u64 index;
9053
9054        ret = btrfs_find_free_ino(root, &objectid);
9055        if (ret)
9056                return ret;
9057
9058        inode = btrfs_new_inode(trans, root, dir,
9059                                dentry->d_name.name,
9060                                dentry->d_name.len,
9061                                btrfs_ino(BTRFS_I(dir)),
9062                                objectid,
9063                                S_IFCHR | WHITEOUT_MODE,
9064                                &index);
9065
9066        if (IS_ERR(inode)) {
9067                ret = PTR_ERR(inode);
9068                return ret;
9069        }
9070
9071        inode->i_op = &btrfs_special_inode_operations;
9072        init_special_inode(inode, inode->i_mode,
9073                WHITEOUT_DEV);
9074
9075        ret = btrfs_init_inode_security(trans, inode, dir,
9076                                &dentry->d_name);
9077        if (ret)
9078                goto out;
9079
9080        ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9081                                BTRFS_I(inode), 0, index);
9082        if (ret)
9083                goto out;
9084
9085        ret = btrfs_update_inode(trans, root, inode);
9086out:
9087        unlock_new_inode(inode);
9088        if (ret)
9089                inode_dec_link_count(inode);
9090        iput(inode);
9091
9092        return ret;
9093}
9094
9095static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9096                           struct inode *new_dir, struct dentry *new_dentry,
9097                           unsigned int flags)
9098{
9099        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9100        struct btrfs_trans_handle *trans;
9101        unsigned int trans_num_items;
9102        struct btrfs_root *root = BTRFS_I(old_dir)->root;
9103        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9104        struct inode *new_inode = d_inode(new_dentry);
9105        struct inode *old_inode = d_inode(old_dentry);
9106        u64 index = 0;
9107        int ret;
9108        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9109        bool log_pinned = false;
9110        struct btrfs_log_ctx ctx;
9111        bool sync_log = false;
9112        bool commit_transaction = false;
9113
9114        if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9115                return -EPERM;
9116
9117        /* we only allow rename subvolume link between subvolumes */
9118        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9119                return -EXDEV;
9120
9121        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9122            (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9123                return -ENOTEMPTY;
9124
9125        if (S_ISDIR(old_inode->i_mode) && new_inode &&
9126            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9127                return -ENOTEMPTY;
9128
9129
9130        /* check for collisions, even if the  name isn't there */
9131        ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9132                             new_dentry->d_name.name,
9133                             new_dentry->d_name.len);
9134
9135        if (ret) {
9136                if (ret == -EEXIST) {
9137                        /* we shouldn't get
9138                         * eexist without a new_inode */
9139                        if (WARN_ON(!new_inode)) {
9140                                return ret;
9141                        }
9142                } else {
9143                        /* maybe -EOVERFLOW */
9144                        return ret;
9145                }
9146        }
9147        ret = 0;
9148
9149        /*
9150         * we're using rename to replace one file with another.  Start IO on it
9151         * now so  we don't add too much work to the end of the transaction
9152         */
9153        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9154                filemap_flush(old_inode->i_mapping);
9155
9156        /* close the racy window with snapshot create/destroy ioctl */
9157        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9158                down_read(&fs_info->subvol_sem);
9159        /*
9160         * We want to reserve the absolute worst case amount of items.  So if
9161         * both inodes are subvols and we need to unlink them then that would
9162         * require 4 item modifications, but if they are both normal inodes it
9163         * would require 5 item modifications, so we'll assume they are normal
9164         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9165         * should cover the worst case number of items we'll modify.
9166         * If our rename has the whiteout flag, we need more 5 units for the
9167         * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9168         * when selinux is enabled).
9169         */
9170        trans_num_items = 11;
9171        if (flags & RENAME_WHITEOUT)
9172                trans_num_items += 5;
9173        trans = btrfs_start_transaction(root, trans_num_items);
9174        if (IS_ERR(trans)) {
9175                ret = PTR_ERR(trans);
9176                goto out_notrans;
9177        }
9178
9179        if (dest != root)
9180                btrfs_record_root_in_trans(trans, dest);
9181
9182        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9183        if (ret)
9184                goto out_fail;
9185
9186        BTRFS_I(old_inode)->dir_index = 0ULL;
9187        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9188                /* force full log commit if subvolume involved. */
9189                btrfs_set_log_full_commit(trans);
9190        } else {
9191                btrfs_pin_log_trans(root);
9192                log_pinned = true;
9193                ret = btrfs_insert_inode_ref(trans, dest,
9194                                             new_dentry->d_name.name,
9195                                             new_dentry->d_name.len,
9196                                             old_ino,
9197                                             btrfs_ino(BTRFS_I(new_dir)), index);
9198                if (ret)
9199                        goto out_fail;
9200        }
9201
9202        inode_inc_iversion(old_dir);
9203        inode_inc_iversion(new_dir);
9204        inode_inc_iversion(old_inode);
9205        old_dir->i_ctime = old_dir->i_mtime =
9206        new_dir->i_ctime = new_dir->i_mtime =
9207        old_inode->i_ctime = current_time(old_dir);
9208
9209        if (old_dentry->d_parent != new_dentry->d_parent)
9210                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9211                                BTRFS_I(old_inode), 1);
9212
9213        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9214                ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9215        } else {
9216                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9217                                        BTRFS_I(d_inode(old_dentry)),
9218                                        old_dentry->d_name.name,
9219                                        old_dentry->d_name.len);
9220                if (!ret)
9221                        ret = btrfs_update_inode(trans, root, old_inode);
9222        }
9223        if (ret) {
9224                btrfs_abort_transaction(trans, ret);
9225                goto out_fail;
9226        }
9227
9228        if (new_inode) {
9229                inode_inc_iversion(new_inode);
9230                new_inode->i_ctime = current_time(new_inode);
9231                if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9232                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9233                        ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9234                        BUG_ON(new_inode->i_nlink == 0);
9235                } else {
9236                        ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9237                                                 BTRFS_I(d_inode(new_dentry)),
9238                                                 new_dentry->d_name.name,
9239                                                 new_dentry->d_name.len);
9240                }
9241                if (!ret && new_inode->i_nlink == 0)
9242                        ret = btrfs_orphan_add(trans,
9243                                        BTRFS_I(d_inode(new_dentry)));
9244                if (ret) {
9245                        btrfs_abort_transaction(trans, ret);
9246                        goto out_fail;
9247                }
9248        }
9249
9250        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9251                             new_dentry->d_name.name,
9252                             new_dentry->d_name.len, 0, index);
9253        if (ret) {
9254                btrfs_abort_transaction(trans, ret);
9255                goto out_fail;
9256        }
9257
9258        if (old_inode->i_nlink == 1)
9259                BTRFS_I(old_inode)->dir_index = index;
9260
9261        if (log_pinned) {
9262                struct dentry *parent = new_dentry->d_parent;
9263
9264                btrfs_init_log_ctx(&ctx, old_inode);
9265                ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9266                                         BTRFS_I(old_dir), parent,
9267                                         false, &ctx);
9268                if (ret == BTRFS_NEED_LOG_SYNC)
9269                        sync_log = true;
9270                else if (ret == BTRFS_NEED_TRANS_COMMIT)
9271                        commit_transaction = true;
9272                ret = 0;
9273                btrfs_end_log_trans(root);
9274                log_pinned = false;
9275        }
9276
9277        if (flags & RENAME_WHITEOUT) {
9278                ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9279                                                old_dentry);
9280
9281                if (ret) {
9282                        btrfs_abort_transaction(trans, ret);
9283                        goto out_fail;
9284                }
9285        }
9286out_fail:
9287        /*
9288         * If we have pinned the log and an error happened, we unpin tasks
9289         * trying to sync the log and force them to fallback to a transaction
9290         * commit if the log currently contains any of the inodes involved in
9291         * this rename operation (to ensure we do not persist a log with an
9292         * inconsistent state for any of these inodes or leading to any
9293         * inconsistencies when replayed). If the transaction was aborted, the
9294         * abortion reason is propagated to userspace when attempting to commit
9295         * the transaction. If the log does not contain any of these inodes, we
9296         * allow the tasks to sync it.
9297         */
9298        if (ret && log_pinned) {
9299                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9300                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9301                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9302                    (new_inode &&
9303                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9304                        btrfs_set_log_full_commit(trans);
9305
9306                btrfs_end_log_trans(root);
9307                log_pinned = false;
9308        }
9309        if (!ret && sync_log) {
9310                ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9311                if (ret)
9312                        commit_transaction = true;
9313        } else if (sync_log) {
9314                mutex_lock(&root->log_mutex);
9315                list_del(&ctx.list);
9316                mutex_unlock(&root->log_mutex);
9317        }
9318        if (commit_transaction) {
9319                ret = btrfs_commit_transaction(trans);
9320        } else {
9321                int ret2;
9322
9323                ret2 = btrfs_end_transaction(trans);
9324                ret = ret ? ret : ret2;
9325        }
9326out_notrans:
9327        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9328                up_read(&fs_info->subvol_sem);
9329
9330        return ret;
9331}
9332
9333static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9334                         struct inode *new_dir, struct dentry *new_dentry,
9335                         unsigned int flags)
9336{
9337        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9338                return -EINVAL;
9339
9340        if (flags & RENAME_EXCHANGE)
9341                return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9342                                          new_dentry);
9343
9344        return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9345}
9346
9347struct btrfs_delalloc_work {
9348        struct inode *inode;
9349        struct completion completion;
9350        struct list_head list;
9351        struct btrfs_work work;
9352};
9353
9354static void btrfs_run_delalloc_work(struct btrfs_work *work)
9355{
9356        struct btrfs_delalloc_work *delalloc_work;
9357        struct inode *inode;
9358
9359        delalloc_work = container_of(work, struct btrfs_delalloc_work,
9360                                     work);
9361        inode = delalloc_work->inode;
9362        filemap_flush(inode->i_mapping);
9363        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9364                                &BTRFS_I(inode)->runtime_flags))
9365                filemap_flush(inode->i_mapping);
9366
9367        iput(inode);
9368        complete(&delalloc_work->completion);
9369}
9370
9371static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9372{
9373        struct btrfs_delalloc_work *work;
9374
9375        work = kmalloc(sizeof(*work), GFP_NOFS);
9376        if (!work)
9377                return NULL;
9378
9379        init_completion(&work->completion);
9380        INIT_LIST_HEAD(&work->list);
9381        work->inode = inode;
9382        btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9383
9384        return work;
9385}
9386
9387/*
9388 * some fairly slow code that needs optimization. This walks the list
9389 * of all the inodes with pending delalloc and forces them to disk.
9390 */
9391static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
9392{
9393        struct btrfs_inode *binode;
9394        struct inode *inode;
9395        struct btrfs_delalloc_work *work, *next;
9396        struct list_head works;
9397        struct list_head splice;
9398        int ret = 0;
9399
9400        INIT_LIST_HEAD(&works);
9401        INIT_LIST_HEAD(&splice);
9402
9403        mutex_lock(&root->delalloc_mutex);
9404        spin_lock(&root->delalloc_lock);
9405        list_splice_init(&root->delalloc_inodes, &splice);
9406        while (!list_empty(&splice)) {
9407                binode = list_entry(splice.next, struct btrfs_inode,
9408                                    delalloc_inodes);
9409
9410                list_move_tail(&binode->delalloc_inodes,
9411                               &root->delalloc_inodes);
9412                inode = igrab(&binode->vfs_inode);
9413                if (!inode) {
9414                        cond_resched_lock(&root->delalloc_lock);
9415                        continue;
9416                }
9417                spin_unlock(&root->delalloc_lock);
9418
9419                if (snapshot)
9420                        set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9421                                &binode->runtime_flags);
9422                work = btrfs_alloc_delalloc_work(inode);
9423                if (!work) {
9424                        iput(inode);
9425                        ret = -ENOMEM;
9426                        goto out;
9427                }
9428                list_add_tail(&work->list, &works);
9429                btrfs_queue_work(root->fs_info->flush_workers,
9430                                 &work->work);
9431                ret++;
9432                if (nr != -1 && ret >= nr)
9433                        goto out;
9434                cond_resched();
9435                spin_lock(&root->delalloc_lock);
9436        }
9437        spin_unlock(&root->delalloc_lock);
9438
9439out:
9440        list_for_each_entry_safe(work, next, &works, list) {
9441                list_del_init(&work->list);
9442                wait_for_completion(&work->completion);
9443                kfree(work);
9444        }
9445
9446        if (!list_empty(&splice)) {
9447                spin_lock(&root->delalloc_lock);
9448                list_splice_tail(&splice, &root->delalloc_inodes);
9449                spin_unlock(&root->delalloc_lock);
9450        }
9451        mutex_unlock(&root->delalloc_mutex);
9452        return ret;
9453}
9454
9455int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9456{
9457        struct btrfs_fs_info *fs_info = root->fs_info;
9458        int ret;
9459
9460        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9461                return -EROFS;
9462
9463        ret = start_delalloc_inodes(root, -1, true);
9464        if (ret > 0)
9465                ret = 0;
9466        return ret;
9467}
9468
9469int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
9470{
9471        struct btrfs_root *root;
9472        struct list_head splice;
9473        int ret;
9474
9475        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9476                return -EROFS;
9477
9478        INIT_LIST_HEAD(&splice);
9479
9480        mutex_lock(&fs_info->delalloc_root_mutex);
9481        spin_lock(&fs_info->delalloc_root_lock);
9482        list_splice_init(&fs_info->delalloc_roots, &splice);
9483        while (!list_empty(&splice) && nr) {
9484                root = list_first_entry(&splice, struct btrfs_root,
9485                                        delalloc_root);
9486                root = btrfs_grab_root(root);
9487                BUG_ON(!root);
9488                list_move_tail(&root->delalloc_root,
9489                               &fs_info->delalloc_roots);
9490                spin_unlock(&fs_info->delalloc_root_lock);
9491
9492                ret = start_delalloc_inodes(root, nr, false);
9493                btrfs_put_root(root);
9494                if (ret < 0)
9495                        goto out;
9496
9497                if (nr != -1) {
9498                        nr -= ret;
9499                        WARN_ON(nr < 0);
9500                }
9501                spin_lock(&fs_info->delalloc_root_lock);
9502        }
9503        spin_unlock(&fs_info->delalloc_root_lock);
9504
9505        ret = 0;
9506out:
9507        if (!list_empty(&splice)) {
9508                spin_lock(&fs_info->delalloc_root_lock);
9509                list_splice_tail(&splice, &fs_info->delalloc_roots);
9510                spin_unlock(&fs_info->delalloc_root_lock);
9511        }
9512        mutex_unlock(&fs_info->delalloc_root_mutex);
9513        return ret;
9514}
9515
9516static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9517                         const char *symname)
9518{
9519        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9520        struct btrfs_trans_handle *trans;
9521        struct btrfs_root *root = BTRFS_I(dir)->root;
9522        struct btrfs_path *path;
9523        struct btrfs_key key;
9524        struct inode *inode = NULL;
9525        int err;
9526        u64 objectid;
9527        u64 index = 0;
9528        int name_len;
9529        int datasize;
9530        unsigned long ptr;
9531        struct btrfs_file_extent_item *ei;
9532        struct extent_buffer *leaf;
9533
9534        name_len = strlen(symname);
9535        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9536                return -ENAMETOOLONG;
9537
9538        /*
9539         * 2 items for inode item and ref
9540         * 2 items for dir items
9541         * 1 item for updating parent inode item
9542         * 1 item for the inline extent item
9543         * 1 item for xattr if selinux is on
9544         */
9545        trans = btrfs_start_transaction(root, 7);
9546        if (IS_ERR(trans))
9547                return PTR_ERR(trans);
9548
9549        err = btrfs_find_free_ino(root, &objectid);
9550        if (err)
9551                goto out_unlock;
9552
9553        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9554                                dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9555                                objectid, S_IFLNK|S_IRWXUGO, &index);
9556        if (IS_ERR(inode)) {
9557                err = PTR_ERR(inode);
9558                inode = NULL;
9559                goto out_unlock;
9560        }
9561
9562        /*
9563        * If the active LSM wants to access the inode during
9564        * d_instantiate it needs these. Smack checks to see
9565        * if the filesystem supports xattrs by looking at the
9566        * ops vector.
9567        */
9568        inode->i_fop = &btrfs_file_operations;
9569        inode->i_op = &btrfs_file_inode_operations;
9570        inode->i_mapping->a_ops = &btrfs_aops;
9571        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9572
9573        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9574        if (err)
9575                goto out_unlock;
9576
9577        path = btrfs_alloc_path();
9578        if (!path) {
9579                err = -ENOMEM;
9580                goto out_unlock;
9581        }
9582        key.objectid = btrfs_ino(BTRFS_I(inode));
9583        key.offset = 0;
9584        key.type = BTRFS_EXTENT_DATA_KEY;
9585        datasize = btrfs_file_extent_calc_inline_size(name_len);
9586        err = btrfs_insert_empty_item(trans, root, path, &key,
9587                                      datasize);
9588        if (err) {
9589                btrfs_free_path(path);
9590                goto out_unlock;
9591        }
9592        leaf = path->nodes[0];
9593        ei = btrfs_item_ptr(leaf, path->slots[0],
9594                            struct btrfs_file_extent_item);
9595        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9596        btrfs_set_file_extent_type(leaf, ei,
9597                                   BTRFS_FILE_EXTENT_INLINE);
9598        btrfs_set_file_extent_encryption(leaf, ei, 0);
9599        btrfs_set_file_extent_compression(leaf, ei, 0);
9600        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9601        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9602
9603        ptr = btrfs_file_extent_inline_start(ei);
9604        write_extent_buffer(leaf, symname, ptr, name_len);
9605        btrfs_mark_buffer_dirty(leaf);
9606        btrfs_free_path(path);
9607
9608        inode->i_op = &btrfs_symlink_inode_operations;
9609        inode_nohighmem(inode);
9610        inode_set_bytes(inode, name_len);
9611        btrfs_i_size_write(BTRFS_I(inode), name_len);
9612        err = btrfs_update_inode(trans, root, inode);
9613        /*
9614         * Last step, add directory indexes for our symlink inode. This is the
9615         * last step to avoid extra cleanup of these indexes if an error happens
9616         * elsewhere above.
9617         */
9618        if (!err)
9619                err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9620                                BTRFS_I(inode), 0, index);
9621        if (err)
9622                goto out_unlock;
9623
9624        d_instantiate_new(dentry, inode);
9625
9626out_unlock:
9627        btrfs_end_transaction(trans);
9628        if (err && inode) {
9629                inode_dec_link_count(inode);
9630                discard_new_inode(inode);
9631        }
9632        btrfs_btree_balance_dirty(fs_info);
9633        return err;
9634}
9635
9636static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans,
9637                                       struct inode *inode, struct btrfs_key *ins,
9638                                       u64 file_offset)
9639{
9640        struct btrfs_file_extent_item stack_fi;
9641        u64 start = ins->objectid;
9642        u64 len = ins->offset;
9643        int ret;
9644
9645        memset(&stack_fi, 0, sizeof(stack_fi));
9646
9647        btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9648        btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9649        btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9650        btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9651        btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9652        btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9653        /* Encryption and other encoding is reserved and all 0 */
9654
9655        ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9656        if (ret < 0)
9657                return ret;
9658        return insert_reserved_file_extent(trans, BTRFS_I(inode), file_offset,
9659                                           &stack_fi, ret);
9660}
9661static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9662                                       u64 start, u64 num_bytes, u64 min_size,
9663                                       loff_t actual_len, u64 *alloc_hint,
9664                                       struct btrfs_trans_handle *trans)
9665{
9666        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9667        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9668        struct extent_map *em;
9669        struct btrfs_root *root = BTRFS_I(inode)->root;
9670        struct btrfs_key ins;
9671        u64 cur_offset = start;
9672        u64 clear_offset = start;
9673        u64 i_size;
9674        u64 cur_bytes;
9675        u64 last_alloc = (u64)-1;
9676        int ret = 0;
9677        bool own_trans = true;
9678        u64 end = start + num_bytes - 1;
9679
9680        if (trans)
9681                own_trans = false;
9682        while (num_bytes > 0) {
9683                if (own_trans) {
9684                        trans = btrfs_start_transaction(root, 3);
9685                        if (IS_ERR(trans)) {
9686                                ret = PTR_ERR(trans);
9687                                break;
9688                        }
9689                }
9690
9691                cur_bytes = min_t(u64, num_bytes, SZ_256M);
9692                cur_bytes = max(cur_bytes, min_size);
9693                /*
9694                 * If we are severely fragmented we could end up with really
9695                 * small allocations, so if the allocator is returning small
9696                 * chunks lets make its job easier by only searching for those
9697                 * sized chunks.
9698                 */
9699                cur_bytes = min(cur_bytes, last_alloc);
9700                ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9701                                min_size, 0, *alloc_hint, &ins, 1, 0);
9702                if (ret) {
9703                        if (own_trans)
9704                                btrfs_end_transaction(trans);
9705                        break;
9706                }
9707
9708                /*
9709                 * We've reserved this space, and thus converted it from
9710                 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9711                 * from here on out we will only need to clear our reservation
9712                 * for the remaining unreserved area, so advance our
9713                 * clear_offset by our extent size.
9714                 */
9715                clear_offset += ins.offset;
9716                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9717
9718                last_alloc = ins.offset;
9719                ret = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
9720                if (ret) {
9721                        btrfs_free_reserved_extent(fs_info, ins.objectid,
9722                                                   ins.offset, 0);
9723                        btrfs_abort_transaction(trans, ret);
9724                        if (own_trans)
9725                                btrfs_end_transaction(trans);
9726                        break;
9727                }
9728
9729                btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9730                                        cur_offset + ins.offset -1, 0);
9731
9732                em = alloc_extent_map();
9733                if (!em) {
9734                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9735                                &BTRFS_I(inode)->runtime_flags);
9736                        goto next;
9737                }
9738
9739                em->start = cur_offset;
9740                em->orig_start = cur_offset;
9741                em->len = ins.offset;
9742                em->block_start = ins.objectid;
9743                em->block_len = ins.offset;
9744                em->orig_block_len = ins.offset;
9745                em->ram_bytes = ins.offset;
9746                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9747                em->generation = trans->transid;
9748
9749                while (1) {
9750                        write_lock(&em_tree->lock);
9751                        ret = add_extent_mapping(em_tree, em, 1);
9752                        write_unlock(&em_tree->lock);
9753                        if (ret != -EEXIST)
9754                                break;
9755                        btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9756                                                cur_offset + ins.offset - 1,
9757                                                0);
9758                }
9759                free_extent_map(em);
9760next:
9761                num_bytes -= ins.offset;
9762                cur_offset += ins.offset;
9763                *alloc_hint = ins.objectid + ins.offset;
9764
9765                inode_inc_iversion(inode);
9766                inode->i_ctime = current_time(inode);
9767                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9768                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9769                    (actual_len > inode->i_size) &&
9770                    (cur_offset > inode->i_size)) {
9771                        if (cur_offset > actual_len)
9772                                i_size = actual_len;
9773                        else
9774                                i_size = cur_offset;
9775                        i_size_write(inode, i_size);
9776                        btrfs_inode_safe_disk_i_size_write(inode, 0);
9777                }
9778
9779                ret = btrfs_update_inode(trans, root, inode);
9780
9781                if (ret) {
9782                        btrfs_abort_transaction(trans, ret);
9783                        if (own_trans)
9784                                btrfs_end_transaction(trans);
9785                        break;
9786                }
9787
9788                if (own_trans)
9789                        btrfs_end_transaction(trans);
9790        }
9791        if (clear_offset < end)
9792                btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9793                        end - clear_offset + 1);
9794        return ret;
9795}
9796
9797int btrfs_prealloc_file_range(struct inode *inode, int mode,
9798                              u64 start, u64 num_bytes, u64 min_size,
9799                              loff_t actual_len, u64 *alloc_hint)
9800{
9801        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9802                                           min_size, actual_len, alloc_hint,
9803                                           NULL);
9804}
9805
9806int btrfs_prealloc_file_range_trans(struct inode *inode,
9807                                    struct btrfs_trans_handle *trans, int mode,
9808                                    u64 start, u64 num_bytes, u64 min_size,
9809                                    loff_t actual_len, u64 *alloc_hint)
9810{
9811        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9812                                           min_size, actual_len, alloc_hint, trans);
9813}
9814
9815static int btrfs_set_page_dirty(struct page *page)
9816{
9817        return __set_page_dirty_nobuffers(page);
9818}
9819
9820static int btrfs_permission(struct inode *inode, int mask)
9821{
9822        struct btrfs_root *root = BTRFS_I(inode)->root;
9823        umode_t mode = inode->i_mode;
9824
9825        if (mask & MAY_WRITE &&
9826            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9827                if (btrfs_root_readonly(root))
9828                        return -EROFS;
9829                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9830                        return -EACCES;
9831        }
9832        return generic_permission(inode, mask);
9833}
9834
9835static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9836{
9837        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9838        struct btrfs_trans_handle *trans;
9839        struct btrfs_root *root = BTRFS_I(dir)->root;
9840        struct inode *inode = NULL;
9841        u64 objectid;
9842        u64 index;
9843        int ret = 0;
9844
9845        /*
9846         * 5 units required for adding orphan entry
9847         */
9848        trans = btrfs_start_transaction(root, 5);
9849        if (IS_ERR(trans))
9850                return PTR_ERR(trans);
9851
9852        ret = btrfs_find_free_ino(root, &objectid);
9853        if (ret)
9854                goto out;
9855
9856        inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9857                        btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
9858        if (IS_ERR(inode)) {
9859                ret = PTR_ERR(inode);
9860                inode = NULL;
9861                goto out;
9862        }
9863
9864        inode->i_fop = &btrfs_file_operations;
9865        inode->i_op = &btrfs_file_inode_operations;
9866
9867        inode->i_mapping->a_ops = &btrfs_aops;
9868        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9869
9870        ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9871        if (ret)
9872                goto out;
9873
9874        ret = btrfs_update_inode(trans, root, inode);
9875        if (ret)
9876                goto out;
9877        ret = btrfs_orphan_add(trans, BTRFS_I(inode));
9878        if (ret)
9879                goto out;
9880
9881        /*
9882         * We set number of links to 0 in btrfs_new_inode(), and here we set
9883         * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9884         * through:
9885         *
9886         *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9887         */
9888        set_nlink(inode, 1);
9889        d_tmpfile(dentry, inode);
9890        unlock_new_inode(inode);
9891        mark_inode_dirty(inode);
9892out:
9893        btrfs_end_transaction(trans);
9894        if (ret && inode)
9895                discard_new_inode(inode);
9896        btrfs_btree_balance_dirty(fs_info);
9897        return ret;
9898}
9899
9900void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
9901{
9902        struct inode *inode = tree->private_data;
9903        unsigned long index = start >> PAGE_SHIFT;
9904        unsigned long end_index = end >> PAGE_SHIFT;
9905        struct page *page;
9906
9907        while (index <= end_index) {
9908                page = find_get_page(inode->i_mapping, index);
9909                ASSERT(page); /* Pages should be in the extent_io_tree */
9910                set_page_writeback(page);
9911                put_page(page);
9912                index++;
9913        }
9914}
9915
9916#ifdef CONFIG_SWAP
9917/*
9918 * Add an entry indicating a block group or device which is pinned by a
9919 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9920 * negative errno on failure.
9921 */
9922static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9923                                  bool is_block_group)
9924{
9925        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9926        struct btrfs_swapfile_pin *sp, *entry;
9927        struct rb_node **p;
9928        struct rb_node *parent = NULL;
9929
9930        sp = kmalloc(sizeof(*sp), GFP_NOFS);
9931        if (!sp)
9932                return -ENOMEM;
9933        sp->ptr = ptr;
9934        sp->inode = inode;
9935        sp->is_block_group = is_block_group;
9936
9937        spin_lock(&fs_info->swapfile_pins_lock);
9938        p = &fs_info->swapfile_pins.rb_node;
9939        while (*p) {
9940                parent = *p;
9941                entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9942                if (sp->ptr < entry->ptr ||
9943                    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9944                        p = &(*p)->rb_left;
9945                } else if (sp->ptr > entry->ptr ||
9946                           (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9947                        p = &(*p)->rb_right;
9948                } else {
9949                        spin_unlock(&fs_info->swapfile_pins_lock);
9950                        kfree(sp);
9951                        return 1;
9952                }
9953        }
9954        rb_link_node(&sp->node, parent, p);
9955        rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9956        spin_unlock(&fs_info->swapfile_pins_lock);
9957        return 0;
9958}
9959
9960/* Free all of the entries pinned by this swapfile. */
9961static void btrfs_free_swapfile_pins(struct inode *inode)
9962{
9963        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9964        struct btrfs_swapfile_pin *sp;
9965        struct rb_node *node, *next;
9966
9967        spin_lock(&fs_info->swapfile_pins_lock);
9968        node = rb_first(&fs_info->swapfile_pins);
9969        while (node) {
9970                next = rb_next(node);
9971                sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9972                if (sp->inode == inode) {
9973                        rb_erase(&sp->node, &fs_info->swapfile_pins);
9974                        if (sp->is_block_group)
9975                                btrfs_put_block_group(sp->ptr);
9976                        kfree(sp);
9977                }
9978                node = next;
9979        }
9980        spin_unlock(&fs_info->swapfile_pins_lock);
9981}
9982
9983struct btrfs_swap_info {
9984        u64 start;
9985        u64 block_start;
9986        u64 block_len;
9987        u64 lowest_ppage;
9988        u64 highest_ppage;
9989        unsigned long nr_pages;
9990        int nr_extents;
9991};
9992
9993static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9994                                 struct btrfs_swap_info *bsi)
9995{
9996        unsigned long nr_pages;
9997        u64 first_ppage, first_ppage_reported, next_ppage;
9998        int ret;
9999
10000        first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10001        next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10002                                PAGE_SIZE) >> PAGE_SHIFT;
10003
10004        if (first_ppage >= next_ppage)
10005                return 0;
10006        nr_pages = next_ppage - first_ppage;
10007
10008        first_ppage_reported = first_ppage;
10009        if (bsi->start == 0)
10010                first_ppage_reported++;
10011        if (bsi->lowest_ppage > first_ppage_reported)
10012                bsi->lowest_ppage = first_ppage_reported;
10013        if (bsi->highest_ppage < (next_ppage - 1))
10014                bsi->highest_ppage = next_ppage - 1;
10015
10016        ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10017        if (ret < 0)
10018                return ret;
10019        bsi->nr_extents += ret;
10020        bsi->nr_pages += nr_pages;
10021        return 0;
10022}
10023
10024static void btrfs_swap_deactivate(struct file *file)
10025{
10026        struct inode *inode = file_inode(file);
10027
10028        btrfs_free_swapfile_pins(inode);
10029        atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10030}
10031
10032static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10033                               sector_t *span)
10034{
10035        struct inode *inode = file_inode(file);
10036        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10037        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10038        struct extent_state *cached_state = NULL;
10039        struct extent_map *em = NULL;
10040        struct btrfs_device *device = NULL;
10041        struct btrfs_swap_info bsi = {
10042                .lowest_ppage = (sector_t)-1ULL,
10043        };
10044        int ret = 0;
10045        u64 isize;
10046        u64 start;
10047
10048        /*
10049         * If the swap file was just created, make sure delalloc is done. If the
10050         * file changes again after this, the user is doing something stupid and
10051         * we don't really care.
10052         */
10053        ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10054        if (ret)
10055                return ret;
10056
10057        /*
10058         * The inode is locked, so these flags won't change after we check them.
10059         */
10060        if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10061                btrfs_warn(fs_info, "swapfile must not be compressed");
10062                return -EINVAL;
10063        }
10064        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10065                btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10066                return -EINVAL;
10067        }
10068        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10069                btrfs_warn(fs_info, "swapfile must not be checksummed");
10070                return -EINVAL;
10071        }
10072
10073        /*
10074         * Balance or device remove/replace/resize can move stuff around from
10075         * under us. The EXCL_OP flag makes sure they aren't running/won't run
10076         * concurrently while we are mapping the swap extents, and
10077         * fs_info->swapfile_pins prevents them from running while the swap file
10078         * is active and moving the extents. Note that this also prevents a
10079         * concurrent device add which isn't actually necessary, but it's not
10080         * really worth the trouble to allow it.
10081         */
10082        if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10083                btrfs_warn(fs_info,
10084           "cannot activate swapfile while exclusive operation is running");
10085                return -EBUSY;
10086        }
10087        /*
10088         * Snapshots can create extents which require COW even if NODATACOW is
10089         * set. We use this counter to prevent snapshots. We must increment it
10090         * before walking the extents because we don't want a concurrent
10091         * snapshot to run after we've already checked the extents.
10092         */
10093        atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10094
10095        isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10096
10097        lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10098        start = 0;
10099        while (start < isize) {
10100                u64 logical_block_start, physical_block_start;
10101                struct btrfs_block_group *bg;
10102                u64 len = isize - start;
10103
10104                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10105                if (IS_ERR(em)) {
10106                        ret = PTR_ERR(em);
10107                        goto out;
10108                }
10109
10110                if (em->block_start == EXTENT_MAP_HOLE) {
10111                        btrfs_warn(fs_info, "swapfile must not have holes");
10112                        ret = -EINVAL;
10113                        goto out;
10114                }
10115                if (em->block_start == EXTENT_MAP_INLINE) {
10116                        /*
10117                         * It's unlikely we'll ever actually find ourselves
10118                         * here, as a file small enough to fit inline won't be
10119                         * big enough to store more than the swap header, but in
10120                         * case something changes in the future, let's catch it
10121                         * here rather than later.
10122                         */
10123                        btrfs_warn(fs_info, "swapfile must not be inline");
10124                        ret = -EINVAL;
10125                        goto out;
10126                }
10127                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10128                        btrfs_warn(fs_info, "swapfile must not be compressed");
10129                        ret = -EINVAL;
10130                        goto out;
10131                }
10132
10133                logical_block_start = em->block_start + (start - em->start);
10134                len = min(len, em->len - (start - em->start));
10135                free_extent_map(em);
10136                em = NULL;
10137
10138                ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10139                if (ret < 0) {
10140                        goto out;
10141                } else if (ret) {
10142                        ret = 0;
10143                } else {
10144                        btrfs_warn(fs_info,
10145                                   "swapfile must not be copy-on-write");
10146                        ret = -EINVAL;
10147                        goto out;
10148                }
10149
10150                em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10151                if (IS_ERR(em)) {
10152                        ret = PTR_ERR(em);
10153                        goto out;
10154                }
10155
10156                if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10157                        btrfs_warn(fs_info,
10158                                   "swapfile must have single data profile");
10159                        ret = -EINVAL;
10160                        goto out;
10161                }
10162
10163                if (device == NULL) {
10164                        device = em->map_lookup->stripes[0].dev;
10165                        ret = btrfs_add_swapfile_pin(inode, device, false);
10166                        if (ret == 1)
10167                                ret = 0;
10168                        else if (ret)
10169                                goto out;
10170                } else if (device != em->map_lookup->stripes[0].dev) {
10171                        btrfs_warn(fs_info, "swapfile must be on one device");
10172                        ret = -EINVAL;
10173                        goto out;
10174                }
10175
10176                physical_block_start = (em->map_lookup->stripes[0].physical +
10177                                        (logical_block_start - em->start));
10178                len = min(len, em->len - (logical_block_start - em->start));
10179                free_extent_map(em);
10180                em = NULL;
10181
10182                bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10183                if (!bg) {
10184                        btrfs_warn(fs_info,
10185                           "could not find block group containing swapfile");
10186                        ret = -EINVAL;
10187                        goto out;
10188                }
10189
10190                ret = btrfs_add_swapfile_pin(inode, bg, true);
10191                if (ret) {
10192                        btrfs_put_block_group(bg);
10193                        if (ret == 1)
10194                                ret = 0;
10195                        else
10196                                goto out;
10197                }
10198
10199                if (bsi.block_len &&
10200                    bsi.block_start + bsi.block_len == physical_block_start) {
10201                        bsi.block_len += len;
10202                } else {
10203                        if (bsi.block_len) {
10204                                ret = btrfs_add_swap_extent(sis, &bsi);
10205                                if (ret)
10206                                        goto out;
10207                        }
10208                        bsi.start = start;
10209                        bsi.block_start = physical_block_start;
10210                        bsi.block_len = len;
10211                }
10212
10213                start += len;
10214        }
10215
10216        if (bsi.block_len)
10217                ret = btrfs_add_swap_extent(sis, &bsi);
10218
10219out:
10220        if (!IS_ERR_OR_NULL(em))
10221                free_extent_map(em);
10222
10223        unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10224
10225        if (ret)
10226                btrfs_swap_deactivate(file);
10227
10228        clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10229
10230        if (ret)
10231                return ret;
10232
10233        if (device)
10234                sis->bdev = device->bdev;
10235        *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10236        sis->max = bsi.nr_pages;
10237        sis->pages = bsi.nr_pages - 1;
10238        sis->highest_bit = bsi.nr_pages - 1;
10239        return bsi.nr_extents;
10240}
10241#else
10242static void btrfs_swap_deactivate(struct file *file)
10243{
10244}
10245
10246static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10247                               sector_t *span)
10248{
10249        return -EOPNOTSUPP;
10250}
10251#endif
10252
10253static const struct inode_operations btrfs_dir_inode_operations = {
10254        .getattr        = btrfs_getattr,
10255        .lookup         = btrfs_lookup,
10256        .create         = btrfs_create,
10257        .unlink         = btrfs_unlink,
10258        .link           = btrfs_link,
10259        .mkdir          = btrfs_mkdir,
10260        .rmdir          = btrfs_rmdir,
10261        .rename         = btrfs_rename2,
10262        .symlink        = btrfs_symlink,
10263        .setattr        = btrfs_setattr,
10264        .mknod          = btrfs_mknod,
10265        .listxattr      = btrfs_listxattr,
10266        .permission     = btrfs_permission,
10267        .get_acl        = btrfs_get_acl,
10268        .set_acl        = btrfs_set_acl,
10269        .update_time    = btrfs_update_time,
10270        .tmpfile        = btrfs_tmpfile,
10271};
10272
10273static const struct file_operations btrfs_dir_file_operations = {
10274        .llseek         = generic_file_llseek,
10275        .read           = generic_read_dir,
10276        .iterate_shared = btrfs_real_readdir,
10277        .open           = btrfs_opendir,
10278        .unlocked_ioctl = btrfs_ioctl,
10279#ifdef CONFIG_COMPAT
10280        .compat_ioctl   = btrfs_compat_ioctl,
10281#endif
10282        .release        = btrfs_release_file,
10283        .fsync          = btrfs_sync_file,
10284};
10285
10286static const struct extent_io_ops btrfs_extent_io_ops = {
10287        /* mandatory callbacks */
10288        .submit_bio_hook = btrfs_submit_bio_hook,
10289        .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10290};
10291
10292/*
10293 * btrfs doesn't support the bmap operation because swapfiles
10294 * use bmap to make a mapping of extents in the file.  They assume
10295 * these extents won't change over the life of the file and they
10296 * use the bmap result to do IO directly to the drive.
10297 *
10298 * the btrfs bmap call would return logical addresses that aren't
10299 * suitable for IO and they also will change frequently as COW
10300 * operations happen.  So, swapfile + btrfs == corruption.
10301 *
10302 * For now we're avoiding this by dropping bmap.
10303 */
10304static const struct address_space_operations btrfs_aops = {
10305        .readpage       = btrfs_readpage,
10306        .writepage      = btrfs_writepage,
10307        .writepages     = btrfs_writepages,
10308        .readahead      = btrfs_readahead,
10309        .direct_IO      = btrfs_direct_IO,
10310        .invalidatepage = btrfs_invalidatepage,
10311        .releasepage    = btrfs_releasepage,
10312#ifdef CONFIG_MIGRATION
10313        .migratepage    = btrfs_migratepage,
10314#endif
10315        .set_page_dirty = btrfs_set_page_dirty,
10316        .error_remove_page = generic_error_remove_page,
10317        .swap_activate  = btrfs_swap_activate,
10318        .swap_deactivate = btrfs_swap_deactivate,
10319};
10320
10321static const struct inode_operations btrfs_file_inode_operations = {
10322        .getattr        = btrfs_getattr,
10323        .setattr        = btrfs_setattr,
10324        .listxattr      = btrfs_listxattr,
10325        .permission     = btrfs_permission,
10326        .fiemap         = btrfs_fiemap,
10327        .get_acl        = btrfs_get_acl,
10328        .set_acl        = btrfs_set_acl,
10329        .update_time    = btrfs_update_time,
10330};
10331static const struct inode_operations btrfs_special_inode_operations = {
10332        .getattr        = btrfs_getattr,
10333        .setattr        = btrfs_setattr,
10334        .permission     = btrfs_permission,
10335        .listxattr      = btrfs_listxattr,
10336        .get_acl        = btrfs_get_acl,
10337        .set_acl        = btrfs_set_acl,
10338        .update_time    = btrfs_update_time,
10339};
10340static const struct inode_operations btrfs_symlink_inode_operations = {
10341        .get_link       = page_get_link,
10342        .getattr        = btrfs_getattr,
10343        .setattr        = btrfs_setattr,
10344        .permission     = btrfs_permission,
10345        .listxattr      = btrfs_listxattr,
10346        .update_time    = btrfs_update_time,
10347};
10348
10349const struct dentry_operations btrfs_dentry_operations = {
10350        .d_delete       = btrfs_dentry_delete,
10351};
10352