linux/fs/crypto/inline_crypt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Inline encryption support for fscrypt
   4 *
   5 * Copyright 2019 Google LLC
   6 */
   7
   8/*
   9 * With "inline encryption", the block layer handles the decryption/encryption
  10 * as part of the bio, instead of the filesystem doing the crypto itself via
  11 * crypto API.  See Documentation/block/inline-encryption.rst.  fscrypt still
  12 * provides the key and IV to use.
  13 */
  14
  15#include <linux/blk-crypto.h>
  16#include <linux/blkdev.h>
  17#include <linux/buffer_head.h>
  18#include <linux/sched/mm.h>
  19#include <linux/slab.h>
  20
  21#include "fscrypt_private.h"
  22
  23struct fscrypt_blk_crypto_key {
  24        struct blk_crypto_key base;
  25        int num_devs;
  26        struct request_queue *devs[];
  27};
  28
  29static int fscrypt_get_num_devices(struct super_block *sb)
  30{
  31        if (sb->s_cop->get_num_devices)
  32                return sb->s_cop->get_num_devices(sb);
  33        return 1;
  34}
  35
  36static void fscrypt_get_devices(struct super_block *sb, int num_devs,
  37                                struct request_queue **devs)
  38{
  39        if (num_devs == 1)
  40                devs[0] = bdev_get_queue(sb->s_bdev);
  41        else
  42                sb->s_cop->get_devices(sb, devs);
  43}
  44
  45static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
  46{
  47        struct super_block *sb = ci->ci_inode->i_sb;
  48        unsigned int flags = fscrypt_policy_flags(&ci->ci_policy);
  49        int ino_bits = 64, lblk_bits = 64;
  50
  51        if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
  52                return offsetofend(union fscrypt_iv, nonce);
  53
  54        if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64)
  55                return sizeof(__le64);
  56
  57        if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)
  58                return sizeof(__le32);
  59
  60        /* Default case: IVs are just the file logical block number */
  61        if (sb->s_cop->get_ino_and_lblk_bits)
  62                sb->s_cop->get_ino_and_lblk_bits(sb, &ino_bits, &lblk_bits);
  63        return DIV_ROUND_UP(lblk_bits, 8);
  64}
  65
  66/* Enable inline encryption for this file if supported. */
  67int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
  68{
  69        const struct inode *inode = ci->ci_inode;
  70        struct super_block *sb = inode->i_sb;
  71        struct blk_crypto_config crypto_cfg;
  72        int num_devs;
  73        struct request_queue **devs;
  74        int i;
  75
  76        /* The file must need contents encryption, not filenames encryption */
  77        if (!fscrypt_needs_contents_encryption(inode))
  78                return 0;
  79
  80        /* The crypto mode must have a blk-crypto counterpart */
  81        if (ci->ci_mode->blk_crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
  82                return 0;
  83
  84        /* The filesystem must be mounted with -o inlinecrypt */
  85        if (!(sb->s_flags & SB_INLINECRYPT))
  86                return 0;
  87
  88        /*
  89         * When a page contains multiple logically contiguous filesystem blocks,
  90         * some filesystem code only calls fscrypt_mergeable_bio() for the first
  91         * block in the page. This is fine for most of fscrypt's IV generation
  92         * strategies, where contiguous blocks imply contiguous IVs. But it
  93         * doesn't work with IV_INO_LBLK_32. For now, simply exclude
  94         * IV_INO_LBLK_32 with blocksize != PAGE_SIZE from inline encryption.
  95         */
  96        if ((fscrypt_policy_flags(&ci->ci_policy) &
  97             FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) &&
  98            sb->s_blocksize != PAGE_SIZE)
  99                return 0;
 100
 101        /*
 102         * On all the filesystem's devices, blk-crypto must support the crypto
 103         * configuration that the file would use.
 104         */
 105        crypto_cfg.crypto_mode = ci->ci_mode->blk_crypto_mode;
 106        crypto_cfg.data_unit_size = sb->s_blocksize;
 107        crypto_cfg.dun_bytes = fscrypt_get_dun_bytes(ci);
 108        num_devs = fscrypt_get_num_devices(sb);
 109        devs = kmalloc_array(num_devs, sizeof(*devs), GFP_NOFS);
 110        if (!devs)
 111                return -ENOMEM;
 112        fscrypt_get_devices(sb, num_devs, devs);
 113
 114        for (i = 0; i < num_devs; i++) {
 115                if (!blk_crypto_config_supported(devs[i], &crypto_cfg))
 116                        goto out_free_devs;
 117        }
 118
 119        ci->ci_inlinecrypt = true;
 120out_free_devs:
 121        kfree(devs);
 122
 123        return 0;
 124}
 125
 126int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
 127                                     const u8 *raw_key,
 128                                     const struct fscrypt_info *ci)
 129{
 130        const struct inode *inode = ci->ci_inode;
 131        struct super_block *sb = inode->i_sb;
 132        enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode;
 133        int num_devs = fscrypt_get_num_devices(sb);
 134        int queue_refs = 0;
 135        struct fscrypt_blk_crypto_key *blk_key;
 136        int err;
 137        int i;
 138        unsigned int flags;
 139
 140        blk_key = kzalloc(struct_size(blk_key, devs, num_devs), GFP_NOFS);
 141        if (!blk_key)
 142                return -ENOMEM;
 143
 144        blk_key->num_devs = num_devs;
 145        fscrypt_get_devices(sb, num_devs, blk_key->devs);
 146
 147        err = blk_crypto_init_key(&blk_key->base, raw_key, crypto_mode,
 148                                  fscrypt_get_dun_bytes(ci), sb->s_blocksize);
 149        if (err) {
 150                fscrypt_err(inode, "error %d initializing blk-crypto key", err);
 151                goto fail;
 152        }
 153
 154        /*
 155         * We have to start using blk-crypto on all the filesystem's devices.
 156         * We also have to save all the request_queue's for later so that the
 157         * key can be evicted from them.  This is needed because some keys
 158         * aren't destroyed until after the filesystem was already unmounted
 159         * (namely, the per-mode keys in struct fscrypt_master_key).
 160         */
 161        for (i = 0; i < num_devs; i++) {
 162                if (!blk_get_queue(blk_key->devs[i])) {
 163                        fscrypt_err(inode, "couldn't get request_queue");
 164                        err = -EAGAIN;
 165                        goto fail;
 166                }
 167                queue_refs++;
 168
 169                flags = memalloc_nofs_save();
 170                err = blk_crypto_start_using_key(&blk_key->base,
 171                                                 blk_key->devs[i]);
 172                memalloc_nofs_restore(flags);
 173                if (err) {
 174                        fscrypt_err(inode,
 175                                    "error %d starting to use blk-crypto", err);
 176                        goto fail;
 177                }
 178        }
 179        /*
 180         * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
 181         * I.e., here we publish ->blk_key with a RELEASE barrier so that
 182         * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
 183         * possible for per-mode keys, not for per-file keys.
 184         */
 185        smp_store_release(&prep_key->blk_key, blk_key);
 186        return 0;
 187
 188fail:
 189        for (i = 0; i < queue_refs; i++)
 190                blk_put_queue(blk_key->devs[i]);
 191        kfree_sensitive(blk_key);
 192        return err;
 193}
 194
 195void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
 196{
 197        struct fscrypt_blk_crypto_key *blk_key = prep_key->blk_key;
 198        int i;
 199
 200        if (blk_key) {
 201                for (i = 0; i < blk_key->num_devs; i++) {
 202                        blk_crypto_evict_key(blk_key->devs[i], &blk_key->base);
 203                        blk_put_queue(blk_key->devs[i]);
 204                }
 205                kfree_sensitive(blk_key);
 206        }
 207}
 208
 209bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
 210{
 211        return inode->i_crypt_info->ci_inlinecrypt;
 212}
 213EXPORT_SYMBOL_GPL(__fscrypt_inode_uses_inline_crypto);
 214
 215static void fscrypt_generate_dun(const struct fscrypt_info *ci, u64 lblk_num,
 216                                 u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
 217{
 218        union fscrypt_iv iv;
 219        int i;
 220
 221        fscrypt_generate_iv(&iv, lblk_num, ci);
 222
 223        BUILD_BUG_ON(FSCRYPT_MAX_IV_SIZE > BLK_CRYPTO_MAX_IV_SIZE);
 224        memset(dun, 0, BLK_CRYPTO_MAX_IV_SIZE);
 225        for (i = 0; i < ci->ci_mode->ivsize/sizeof(dun[0]); i++)
 226                dun[i] = le64_to_cpu(iv.dun[i]);
 227}
 228
 229/**
 230 * fscrypt_set_bio_crypt_ctx() - prepare a file contents bio for inline crypto
 231 * @bio: a bio which will eventually be submitted to the file
 232 * @inode: the file's inode
 233 * @first_lblk: the first file logical block number in the I/O
 234 * @gfp_mask: memory allocation flags - these must be a waiting mask so that
 235 *                                      bio_crypt_set_ctx can't fail.
 236 *
 237 * If the contents of the file should be encrypted (or decrypted) with inline
 238 * encryption, then assign the appropriate encryption context to the bio.
 239 *
 240 * Normally the bio should be newly allocated (i.e. no pages added yet), as
 241 * otherwise fscrypt_mergeable_bio() won't work as intended.
 242 *
 243 * The encryption context will be freed automatically when the bio is freed.
 244 */
 245void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
 246                               u64 first_lblk, gfp_t gfp_mask)
 247{
 248        const struct fscrypt_info *ci;
 249        u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
 250
 251        if (!fscrypt_inode_uses_inline_crypto(inode))
 252                return;
 253        ci = inode->i_crypt_info;
 254
 255        fscrypt_generate_dun(ci, first_lblk, dun);
 256        bio_crypt_set_ctx(bio, &ci->ci_enc_key.blk_key->base, dun, gfp_mask);
 257}
 258EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx);
 259
 260/* Extract the inode and logical block number from a buffer_head. */
 261static bool bh_get_inode_and_lblk_num(const struct buffer_head *bh,
 262                                      const struct inode **inode_ret,
 263                                      u64 *lblk_num_ret)
 264{
 265        struct page *page = bh->b_page;
 266        const struct address_space *mapping;
 267        const struct inode *inode;
 268
 269        /*
 270         * The ext4 journal (jbd2) can submit a buffer_head it directly created
 271         * for a non-pagecache page.  fscrypt doesn't care about these.
 272         */
 273        mapping = page_mapping(page);
 274        if (!mapping)
 275                return false;
 276        inode = mapping->host;
 277
 278        *inode_ret = inode;
 279        *lblk_num_ret = ((u64)page->index << (PAGE_SHIFT - inode->i_blkbits)) +
 280                        (bh_offset(bh) >> inode->i_blkbits);
 281        return true;
 282}
 283
 284/**
 285 * fscrypt_set_bio_crypt_ctx_bh() - prepare a file contents bio for inline
 286 *                                  crypto
 287 * @bio: a bio which will eventually be submitted to the file
 288 * @first_bh: the first buffer_head for which I/O will be submitted
 289 * @gfp_mask: memory allocation flags
 290 *
 291 * Same as fscrypt_set_bio_crypt_ctx(), except this takes a buffer_head instead
 292 * of an inode and block number directly.
 293 */
 294void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
 295                                  const struct buffer_head *first_bh,
 296                                  gfp_t gfp_mask)
 297{
 298        const struct inode *inode;
 299        u64 first_lblk;
 300
 301        if (bh_get_inode_and_lblk_num(first_bh, &inode, &first_lblk))
 302                fscrypt_set_bio_crypt_ctx(bio, inode, first_lblk, gfp_mask);
 303}
 304EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx_bh);
 305
 306/**
 307 * fscrypt_mergeable_bio() - test whether data can be added to a bio
 308 * @bio: the bio being built up
 309 * @inode: the inode for the next part of the I/O
 310 * @next_lblk: the next file logical block number in the I/O
 311 *
 312 * When building a bio which may contain data which should undergo inline
 313 * encryption (or decryption) via fscrypt, filesystems should call this function
 314 * to ensure that the resulting bio contains only contiguous data unit numbers.
 315 * This will return false if the next part of the I/O cannot be merged with the
 316 * bio because either the encryption key would be different or the encryption
 317 * data unit numbers would be discontiguous.
 318 *
 319 * fscrypt_set_bio_crypt_ctx() must have already been called on the bio.
 320 *
 321 * Return: true iff the I/O is mergeable
 322 */
 323bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
 324                           u64 next_lblk)
 325{
 326        const struct bio_crypt_ctx *bc = bio->bi_crypt_context;
 327        u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
 328
 329        if (!!bc != fscrypt_inode_uses_inline_crypto(inode))
 330                return false;
 331        if (!bc)
 332                return true;
 333
 334        /*
 335         * Comparing the key pointers is good enough, as all I/O for each key
 336         * uses the same pointer.  I.e., there's currently no need to support
 337         * merging requests where the keys are the same but the pointers differ.
 338         */
 339        if (bc->bc_key != &inode->i_crypt_info->ci_enc_key.blk_key->base)
 340                return false;
 341
 342        fscrypt_generate_dun(inode->i_crypt_info, next_lblk, next_dun);
 343        return bio_crypt_dun_is_contiguous(bc, bio->bi_iter.bi_size, next_dun);
 344}
 345EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio);
 346
 347/**
 348 * fscrypt_mergeable_bio_bh() - test whether data can be added to a bio
 349 * @bio: the bio being built up
 350 * @next_bh: the next buffer_head for which I/O will be submitted
 351 *
 352 * Same as fscrypt_mergeable_bio(), except this takes a buffer_head instead of
 353 * an inode and block number directly.
 354 *
 355 * Return: true iff the I/O is mergeable
 356 */
 357bool fscrypt_mergeable_bio_bh(struct bio *bio,
 358                              const struct buffer_head *next_bh)
 359{
 360        const struct inode *inode;
 361        u64 next_lblk;
 362
 363        if (!bh_get_inode_and_lblk_num(next_bh, &inode, &next_lblk))
 364                return !bio->bi_crypt_context;
 365
 366        return fscrypt_mergeable_bio(bio, inode, next_lblk);
 367}
 368EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio_bh);
 369