linux/fs/dcache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dcache.c
   4 *
   5 * Complete reimplementation
   6 * (C) 1997 Thomas Schoebel-Theuer,
   7 * with heavy changes by Linus Torvalds
   8 */
   9
  10/*
  11 * Notes on the allocation strategy:
  12 *
  13 * The dcache is a master of the icache - whenever a dcache entry
  14 * exists, the inode will always exist. "iput()" is done either when
  15 * the dcache entry is deleted or garbage collected.
  16 */
  17
  18#include <linux/ratelimit.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/fs.h>
  22#include <linux/fscrypt.h>
  23#include <linux/fsnotify.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/hash.h>
  27#include <linux/cache.h>
  28#include <linux/export.h>
  29#include <linux/security.h>
  30#include <linux/seqlock.h>
  31#include <linux/memblock.h>
  32#include <linux/bit_spinlock.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/list_lru.h>
  35#include "internal.h"
  36#include "mount.h"
  37
  38/*
  39 * Usage:
  40 * dcache->d_inode->i_lock protects:
  41 *   - i_dentry, d_u.d_alias, d_inode of aliases
  42 * dcache_hash_bucket lock protects:
  43 *   - the dcache hash table
  44 * s_roots bl list spinlock protects:
  45 *   - the s_roots list (see __d_drop)
  46 * dentry->d_sb->s_dentry_lru_lock protects:
  47 *   - the dcache lru lists and counters
  48 * d_lock protects:
  49 *   - d_flags
  50 *   - d_name
  51 *   - d_lru
  52 *   - d_count
  53 *   - d_unhashed()
  54 *   - d_parent and d_subdirs
  55 *   - childrens' d_child and d_parent
  56 *   - d_u.d_alias, d_inode
  57 *
  58 * Ordering:
  59 * dentry->d_inode->i_lock
  60 *   dentry->d_lock
  61 *     dentry->d_sb->s_dentry_lru_lock
  62 *     dcache_hash_bucket lock
  63 *     s_roots lock
  64 *
  65 * If there is an ancestor relationship:
  66 * dentry->d_parent->...->d_parent->d_lock
  67 *   ...
  68 *     dentry->d_parent->d_lock
  69 *       dentry->d_lock
  70 *
  71 * If no ancestor relationship:
  72 * arbitrary, since it's serialized on rename_lock
  73 */
  74int sysctl_vfs_cache_pressure __read_mostly = 100;
  75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  76
  77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  78
  79EXPORT_SYMBOL(rename_lock);
  80
  81static struct kmem_cache *dentry_cache __read_mostly;
  82
  83const struct qstr empty_name = QSTR_INIT("", 0);
  84EXPORT_SYMBOL(empty_name);
  85const struct qstr slash_name = QSTR_INIT("/", 1);
  86EXPORT_SYMBOL(slash_name);
  87
  88/*
  89 * This is the single most critical data structure when it comes
  90 * to the dcache: the hashtable for lookups. Somebody should try
  91 * to make this good - I've just made it work.
  92 *
  93 * This hash-function tries to avoid losing too many bits of hash
  94 * information, yet avoid using a prime hash-size or similar.
  95 */
  96
  97static unsigned int d_hash_shift __read_mostly;
  98
  99static struct hlist_bl_head *dentry_hashtable __read_mostly;
 100
 101static inline struct hlist_bl_head *d_hash(unsigned int hash)
 102{
 103        return dentry_hashtable + (hash >> d_hash_shift);
 104}
 105
 106#define IN_LOOKUP_SHIFT 10
 107static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
 108
 109static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
 110                                        unsigned int hash)
 111{
 112        hash += (unsigned long) parent / L1_CACHE_BYTES;
 113        return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
 114}
 115
 116
 117/* Statistics gathering. */
 118struct dentry_stat_t dentry_stat = {
 119        .age_limit = 45,
 120};
 121
 122static DEFINE_PER_CPU(long, nr_dentry);
 123static DEFINE_PER_CPU(long, nr_dentry_unused);
 124static DEFINE_PER_CPU(long, nr_dentry_negative);
 125
 126#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 127
 128/*
 129 * Here we resort to our own counters instead of using generic per-cpu counters
 130 * for consistency with what the vfs inode code does. We are expected to harvest
 131 * better code and performance by having our own specialized counters.
 132 *
 133 * Please note that the loop is done over all possible CPUs, not over all online
 134 * CPUs. The reason for this is that we don't want to play games with CPUs going
 135 * on and off. If one of them goes off, we will just keep their counters.
 136 *
 137 * glommer: See cffbc8a for details, and if you ever intend to change this,
 138 * please update all vfs counters to match.
 139 */
 140static long get_nr_dentry(void)
 141{
 142        int i;
 143        long sum = 0;
 144        for_each_possible_cpu(i)
 145                sum += per_cpu(nr_dentry, i);
 146        return sum < 0 ? 0 : sum;
 147}
 148
 149static long get_nr_dentry_unused(void)
 150{
 151        int i;
 152        long sum = 0;
 153        for_each_possible_cpu(i)
 154                sum += per_cpu(nr_dentry_unused, i);
 155        return sum < 0 ? 0 : sum;
 156}
 157
 158static long get_nr_dentry_negative(void)
 159{
 160        int i;
 161        long sum = 0;
 162
 163        for_each_possible_cpu(i)
 164                sum += per_cpu(nr_dentry_negative, i);
 165        return sum < 0 ? 0 : sum;
 166}
 167
 168int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
 169                   size_t *lenp, loff_t *ppos)
 170{
 171        dentry_stat.nr_dentry = get_nr_dentry();
 172        dentry_stat.nr_unused = get_nr_dentry_unused();
 173        dentry_stat.nr_negative = get_nr_dentry_negative();
 174        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 175}
 176#endif
 177
 178/*
 179 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 180 * The strings are both count bytes long, and count is non-zero.
 181 */
 182#ifdef CONFIG_DCACHE_WORD_ACCESS
 183
 184#include <asm/word-at-a-time.h>
 185/*
 186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 187 * aligned allocation for this particular component. We don't
 188 * strictly need the load_unaligned_zeropad() safety, but it
 189 * doesn't hurt either.
 190 *
 191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 192 * need the careful unaligned handling.
 193 */
 194static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 195{
 196        unsigned long a,b,mask;
 197
 198        for (;;) {
 199                a = read_word_at_a_time(cs);
 200                b = load_unaligned_zeropad(ct);
 201                if (tcount < sizeof(unsigned long))
 202                        break;
 203                if (unlikely(a != b))
 204                        return 1;
 205                cs += sizeof(unsigned long);
 206                ct += sizeof(unsigned long);
 207                tcount -= sizeof(unsigned long);
 208                if (!tcount)
 209                        return 0;
 210        }
 211        mask = bytemask_from_count(tcount);
 212        return unlikely(!!((a ^ b) & mask));
 213}
 214
 215#else
 216
 217static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 218{
 219        do {
 220                if (*cs != *ct)
 221                        return 1;
 222                cs++;
 223                ct++;
 224                tcount--;
 225        } while (tcount);
 226        return 0;
 227}
 228
 229#endif
 230
 231static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 232{
 233        /*
 234         * Be careful about RCU walk racing with rename:
 235         * use 'READ_ONCE' to fetch the name pointer.
 236         *
 237         * NOTE! Even if a rename will mean that the length
 238         * was not loaded atomically, we don't care. The
 239         * RCU walk will check the sequence count eventually,
 240         * and catch it. And we won't overrun the buffer,
 241         * because we're reading the name pointer atomically,
 242         * and a dentry name is guaranteed to be properly
 243         * terminated with a NUL byte.
 244         *
 245         * End result: even if 'len' is wrong, we'll exit
 246         * early because the data cannot match (there can
 247         * be no NUL in the ct/tcount data)
 248         */
 249        const unsigned char *cs = READ_ONCE(dentry->d_name.name);
 250
 251        return dentry_string_cmp(cs, ct, tcount);
 252}
 253
 254struct external_name {
 255        union {
 256                atomic_t count;
 257                struct rcu_head head;
 258        } u;
 259        unsigned char name[];
 260};
 261
 262static inline struct external_name *external_name(struct dentry *dentry)
 263{
 264        return container_of(dentry->d_name.name, struct external_name, name[0]);
 265}
 266
 267static void __d_free(struct rcu_head *head)
 268{
 269        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 270
 271        kmem_cache_free(dentry_cache, dentry); 
 272}
 273
 274static void __d_free_external(struct rcu_head *head)
 275{
 276        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 277        kfree(external_name(dentry));
 278        kmem_cache_free(dentry_cache, dentry);
 279}
 280
 281static inline int dname_external(const struct dentry *dentry)
 282{
 283        return dentry->d_name.name != dentry->d_iname;
 284}
 285
 286void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
 287{
 288        spin_lock(&dentry->d_lock);
 289        name->name = dentry->d_name;
 290        if (unlikely(dname_external(dentry))) {
 291                atomic_inc(&external_name(dentry)->u.count);
 292        } else {
 293                memcpy(name->inline_name, dentry->d_iname,
 294                       dentry->d_name.len + 1);
 295                name->name.name = name->inline_name;
 296        }
 297        spin_unlock(&dentry->d_lock);
 298}
 299EXPORT_SYMBOL(take_dentry_name_snapshot);
 300
 301void release_dentry_name_snapshot(struct name_snapshot *name)
 302{
 303        if (unlikely(name->name.name != name->inline_name)) {
 304                struct external_name *p;
 305                p = container_of(name->name.name, struct external_name, name[0]);
 306                if (unlikely(atomic_dec_and_test(&p->u.count)))
 307                        kfree_rcu(p, u.head);
 308        }
 309}
 310EXPORT_SYMBOL(release_dentry_name_snapshot);
 311
 312static inline void __d_set_inode_and_type(struct dentry *dentry,
 313                                          struct inode *inode,
 314                                          unsigned type_flags)
 315{
 316        unsigned flags;
 317
 318        dentry->d_inode = inode;
 319        flags = READ_ONCE(dentry->d_flags);
 320        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 321        flags |= type_flags;
 322        smp_store_release(&dentry->d_flags, flags);
 323}
 324
 325static inline void __d_clear_type_and_inode(struct dentry *dentry)
 326{
 327        unsigned flags = READ_ONCE(dentry->d_flags);
 328
 329        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 330        WRITE_ONCE(dentry->d_flags, flags);
 331        dentry->d_inode = NULL;
 332        if (dentry->d_flags & DCACHE_LRU_LIST)
 333                this_cpu_inc(nr_dentry_negative);
 334}
 335
 336static void dentry_free(struct dentry *dentry)
 337{
 338        WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 339        if (unlikely(dname_external(dentry))) {
 340                struct external_name *p = external_name(dentry);
 341                if (likely(atomic_dec_and_test(&p->u.count))) {
 342                        call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 343                        return;
 344                }
 345        }
 346        /* if dentry was never visible to RCU, immediate free is OK */
 347        if (dentry->d_flags & DCACHE_NORCU)
 348                __d_free(&dentry->d_u.d_rcu);
 349        else
 350                call_rcu(&dentry->d_u.d_rcu, __d_free);
 351}
 352
 353/*
 354 * Release the dentry's inode, using the filesystem
 355 * d_iput() operation if defined.
 356 */
 357static void dentry_unlink_inode(struct dentry * dentry)
 358        __releases(dentry->d_lock)
 359        __releases(dentry->d_inode->i_lock)
 360{
 361        struct inode *inode = dentry->d_inode;
 362
 363        raw_write_seqcount_begin(&dentry->d_seq);
 364        __d_clear_type_and_inode(dentry);
 365        hlist_del_init(&dentry->d_u.d_alias);
 366        raw_write_seqcount_end(&dentry->d_seq);
 367        spin_unlock(&dentry->d_lock);
 368        spin_unlock(&inode->i_lock);
 369        if (!inode->i_nlink)
 370                fsnotify_inoderemove(inode);
 371        if (dentry->d_op && dentry->d_op->d_iput)
 372                dentry->d_op->d_iput(dentry, inode);
 373        else
 374                iput(inode);
 375}
 376
 377/*
 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 379 * is in use - which includes both the "real" per-superblock
 380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
 381 *
 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 383 * on the shrink list (ie not on the superblock LRU list).
 384 *
 385 * The per-cpu "nr_dentry_unused" counters are updated with
 386 * the DCACHE_LRU_LIST bit.
 387 *
 388 * The per-cpu "nr_dentry_negative" counters are only updated
 389 * when deleted from or added to the per-superblock LRU list, not
 390 * from/to the shrink list. That is to avoid an unneeded dec/inc
 391 * pair when moving from LRU to shrink list in select_collect().
 392 *
 393 * These helper functions make sure we always follow the
 394 * rules. d_lock must be held by the caller.
 395 */
 396#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 397static void d_lru_add(struct dentry *dentry)
 398{
 399        D_FLAG_VERIFY(dentry, 0);
 400        dentry->d_flags |= DCACHE_LRU_LIST;
 401        this_cpu_inc(nr_dentry_unused);
 402        if (d_is_negative(dentry))
 403                this_cpu_inc(nr_dentry_negative);
 404        WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 405}
 406
 407static void d_lru_del(struct dentry *dentry)
 408{
 409        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 410        dentry->d_flags &= ~DCACHE_LRU_LIST;
 411        this_cpu_dec(nr_dentry_unused);
 412        if (d_is_negative(dentry))
 413                this_cpu_dec(nr_dentry_negative);
 414        WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 415}
 416
 417static void d_shrink_del(struct dentry *dentry)
 418{
 419        D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 420        list_del_init(&dentry->d_lru);
 421        dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 422        this_cpu_dec(nr_dentry_unused);
 423}
 424
 425static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 426{
 427        D_FLAG_VERIFY(dentry, 0);
 428        list_add(&dentry->d_lru, list);
 429        dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 430        this_cpu_inc(nr_dentry_unused);
 431}
 432
 433/*
 434 * These can only be called under the global LRU lock, ie during the
 435 * callback for freeing the LRU list. "isolate" removes it from the
 436 * LRU lists entirely, while shrink_move moves it to the indicated
 437 * private list.
 438 */
 439static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 440{
 441        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 442        dentry->d_flags &= ~DCACHE_LRU_LIST;
 443        this_cpu_dec(nr_dentry_unused);
 444        if (d_is_negative(dentry))
 445                this_cpu_dec(nr_dentry_negative);
 446        list_lru_isolate(lru, &dentry->d_lru);
 447}
 448
 449static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 450                              struct list_head *list)
 451{
 452        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 453        dentry->d_flags |= DCACHE_SHRINK_LIST;
 454        if (d_is_negative(dentry))
 455                this_cpu_dec(nr_dentry_negative);
 456        list_lru_isolate_move(lru, &dentry->d_lru, list);
 457}
 458
 459/**
 460 * d_drop - drop a dentry
 461 * @dentry: dentry to drop
 462 *
 463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 464 * be found through a VFS lookup any more. Note that this is different from
 465 * deleting the dentry - d_delete will try to mark the dentry negative if
 466 * possible, giving a successful _negative_ lookup, while d_drop will
 467 * just make the cache lookup fail.
 468 *
 469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 470 * reason (NFS timeouts or autofs deletes).
 471 *
 472 * __d_drop requires dentry->d_lock
 473 * ___d_drop doesn't mark dentry as "unhashed"
 474 *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
 475 */
 476static void ___d_drop(struct dentry *dentry)
 477{
 478        struct hlist_bl_head *b;
 479        /*
 480         * Hashed dentries are normally on the dentry hashtable,
 481         * with the exception of those newly allocated by
 482         * d_obtain_root, which are always IS_ROOT:
 483         */
 484        if (unlikely(IS_ROOT(dentry)))
 485                b = &dentry->d_sb->s_roots;
 486        else
 487                b = d_hash(dentry->d_name.hash);
 488
 489        hlist_bl_lock(b);
 490        __hlist_bl_del(&dentry->d_hash);
 491        hlist_bl_unlock(b);
 492}
 493
 494void __d_drop(struct dentry *dentry)
 495{
 496        if (!d_unhashed(dentry)) {
 497                ___d_drop(dentry);
 498                dentry->d_hash.pprev = NULL;
 499                write_seqcount_invalidate(&dentry->d_seq);
 500        }
 501}
 502EXPORT_SYMBOL(__d_drop);
 503
 504void d_drop(struct dentry *dentry)
 505{
 506        spin_lock(&dentry->d_lock);
 507        __d_drop(dentry);
 508        spin_unlock(&dentry->d_lock);
 509}
 510EXPORT_SYMBOL(d_drop);
 511
 512static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
 513{
 514        struct dentry *next;
 515        /*
 516         * Inform d_walk() and shrink_dentry_list() that we are no longer
 517         * attached to the dentry tree
 518         */
 519        dentry->d_flags |= DCACHE_DENTRY_KILLED;
 520        if (unlikely(list_empty(&dentry->d_child)))
 521                return;
 522        __list_del_entry(&dentry->d_child);
 523        /*
 524         * Cursors can move around the list of children.  While we'd been
 525         * a normal list member, it didn't matter - ->d_child.next would've
 526         * been updated.  However, from now on it won't be and for the
 527         * things like d_walk() it might end up with a nasty surprise.
 528         * Normally d_walk() doesn't care about cursors moving around -
 529         * ->d_lock on parent prevents that and since a cursor has no children
 530         * of its own, we get through it without ever unlocking the parent.
 531         * There is one exception, though - if we ascend from a child that
 532         * gets killed as soon as we unlock it, the next sibling is found
 533         * using the value left in its ->d_child.next.  And if _that_
 534         * pointed to a cursor, and cursor got moved (e.g. by lseek())
 535         * before d_walk() regains parent->d_lock, we'll end up skipping
 536         * everything the cursor had been moved past.
 537         *
 538         * Solution: make sure that the pointer left behind in ->d_child.next
 539         * points to something that won't be moving around.  I.e. skip the
 540         * cursors.
 541         */
 542        while (dentry->d_child.next != &parent->d_subdirs) {
 543                next = list_entry(dentry->d_child.next, struct dentry, d_child);
 544                if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
 545                        break;
 546                dentry->d_child.next = next->d_child.next;
 547        }
 548}
 549
 550static void __dentry_kill(struct dentry *dentry)
 551{
 552        struct dentry *parent = NULL;
 553        bool can_free = true;
 554        if (!IS_ROOT(dentry))
 555                parent = dentry->d_parent;
 556
 557        /*
 558         * The dentry is now unrecoverably dead to the world.
 559         */
 560        lockref_mark_dead(&dentry->d_lockref);
 561
 562        /*
 563         * inform the fs via d_prune that this dentry is about to be
 564         * unhashed and destroyed.
 565         */
 566        if (dentry->d_flags & DCACHE_OP_PRUNE)
 567                dentry->d_op->d_prune(dentry);
 568
 569        if (dentry->d_flags & DCACHE_LRU_LIST) {
 570                if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 571                        d_lru_del(dentry);
 572        }
 573        /* if it was on the hash then remove it */
 574        __d_drop(dentry);
 575        dentry_unlist(dentry, parent);
 576        if (parent)
 577                spin_unlock(&parent->d_lock);
 578        if (dentry->d_inode)
 579                dentry_unlink_inode(dentry);
 580        else
 581                spin_unlock(&dentry->d_lock);
 582        this_cpu_dec(nr_dentry);
 583        if (dentry->d_op && dentry->d_op->d_release)
 584                dentry->d_op->d_release(dentry);
 585
 586        spin_lock(&dentry->d_lock);
 587        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 588                dentry->d_flags |= DCACHE_MAY_FREE;
 589                can_free = false;
 590        }
 591        spin_unlock(&dentry->d_lock);
 592        if (likely(can_free))
 593                dentry_free(dentry);
 594        cond_resched();
 595}
 596
 597static struct dentry *__lock_parent(struct dentry *dentry)
 598{
 599        struct dentry *parent;
 600        rcu_read_lock();
 601        spin_unlock(&dentry->d_lock);
 602again:
 603        parent = READ_ONCE(dentry->d_parent);
 604        spin_lock(&parent->d_lock);
 605        /*
 606         * We can't blindly lock dentry until we are sure
 607         * that we won't violate the locking order.
 608         * Any changes of dentry->d_parent must have
 609         * been done with parent->d_lock held, so
 610         * spin_lock() above is enough of a barrier
 611         * for checking if it's still our child.
 612         */
 613        if (unlikely(parent != dentry->d_parent)) {
 614                spin_unlock(&parent->d_lock);
 615                goto again;
 616        }
 617        rcu_read_unlock();
 618        if (parent != dentry)
 619                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 620        else
 621                parent = NULL;
 622        return parent;
 623}
 624
 625static inline struct dentry *lock_parent(struct dentry *dentry)
 626{
 627        struct dentry *parent = dentry->d_parent;
 628        if (IS_ROOT(dentry))
 629                return NULL;
 630        if (likely(spin_trylock(&parent->d_lock)))
 631                return parent;
 632        return __lock_parent(dentry);
 633}
 634
 635static inline bool retain_dentry(struct dentry *dentry)
 636{
 637        WARN_ON(d_in_lookup(dentry));
 638
 639        /* Unreachable? Get rid of it */
 640        if (unlikely(d_unhashed(dentry)))
 641                return false;
 642
 643        if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
 644                return false;
 645
 646        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
 647                if (dentry->d_op->d_delete(dentry))
 648                        return false;
 649        }
 650
 651        if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
 652                return false;
 653
 654        /* retain; LRU fodder */
 655        dentry->d_lockref.count--;
 656        if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
 657                d_lru_add(dentry);
 658        else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
 659                dentry->d_flags |= DCACHE_REFERENCED;
 660        return true;
 661}
 662
 663void d_mark_dontcache(struct inode *inode)
 664{
 665        struct dentry *de;
 666
 667        spin_lock(&inode->i_lock);
 668        hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
 669                spin_lock(&de->d_lock);
 670                de->d_flags |= DCACHE_DONTCACHE;
 671                spin_unlock(&de->d_lock);
 672        }
 673        inode->i_state |= I_DONTCACHE;
 674        spin_unlock(&inode->i_lock);
 675}
 676EXPORT_SYMBOL(d_mark_dontcache);
 677
 678/*
 679 * Finish off a dentry we've decided to kill.
 680 * dentry->d_lock must be held, returns with it unlocked.
 681 * Returns dentry requiring refcount drop, or NULL if we're done.
 682 */
 683static struct dentry *dentry_kill(struct dentry *dentry)
 684        __releases(dentry->d_lock)
 685{
 686        struct inode *inode = dentry->d_inode;
 687        struct dentry *parent = NULL;
 688
 689        if (inode && unlikely(!spin_trylock(&inode->i_lock)))
 690                goto slow_positive;
 691
 692        if (!IS_ROOT(dentry)) {
 693                parent = dentry->d_parent;
 694                if (unlikely(!spin_trylock(&parent->d_lock))) {
 695                        parent = __lock_parent(dentry);
 696                        if (likely(inode || !dentry->d_inode))
 697                                goto got_locks;
 698                        /* negative that became positive */
 699                        if (parent)
 700                                spin_unlock(&parent->d_lock);
 701                        inode = dentry->d_inode;
 702                        goto slow_positive;
 703                }
 704        }
 705        __dentry_kill(dentry);
 706        return parent;
 707
 708slow_positive:
 709        spin_unlock(&dentry->d_lock);
 710        spin_lock(&inode->i_lock);
 711        spin_lock(&dentry->d_lock);
 712        parent = lock_parent(dentry);
 713got_locks:
 714        if (unlikely(dentry->d_lockref.count != 1)) {
 715                dentry->d_lockref.count--;
 716        } else if (likely(!retain_dentry(dentry))) {
 717                __dentry_kill(dentry);
 718                return parent;
 719        }
 720        /* we are keeping it, after all */
 721        if (inode)
 722                spin_unlock(&inode->i_lock);
 723        if (parent)
 724                spin_unlock(&parent->d_lock);
 725        spin_unlock(&dentry->d_lock);
 726        return NULL;
 727}
 728
 729/*
 730 * Try to do a lockless dput(), and return whether that was successful.
 731 *
 732 * If unsuccessful, we return false, having already taken the dentry lock.
 733 *
 734 * The caller needs to hold the RCU read lock, so that the dentry is
 735 * guaranteed to stay around even if the refcount goes down to zero!
 736 */
 737static inline bool fast_dput(struct dentry *dentry)
 738{
 739        int ret;
 740        unsigned int d_flags;
 741
 742        /*
 743         * If we have a d_op->d_delete() operation, we sould not
 744         * let the dentry count go to zero, so use "put_or_lock".
 745         */
 746        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
 747                return lockref_put_or_lock(&dentry->d_lockref);
 748
 749        /*
 750         * .. otherwise, we can try to just decrement the
 751         * lockref optimistically.
 752         */
 753        ret = lockref_put_return(&dentry->d_lockref);
 754
 755        /*
 756         * If the lockref_put_return() failed due to the lock being held
 757         * by somebody else, the fast path has failed. We will need to
 758         * get the lock, and then check the count again.
 759         */
 760        if (unlikely(ret < 0)) {
 761                spin_lock(&dentry->d_lock);
 762                if (dentry->d_lockref.count > 1) {
 763                        dentry->d_lockref.count--;
 764                        spin_unlock(&dentry->d_lock);
 765                        return true;
 766                }
 767                return false;
 768        }
 769
 770        /*
 771         * If we weren't the last ref, we're done.
 772         */
 773        if (ret)
 774                return true;
 775
 776        /*
 777         * Careful, careful. The reference count went down
 778         * to zero, but we don't hold the dentry lock, so
 779         * somebody else could get it again, and do another
 780         * dput(), and we need to not race with that.
 781         *
 782         * However, there is a very special and common case
 783         * where we don't care, because there is nothing to
 784         * do: the dentry is still hashed, it does not have
 785         * a 'delete' op, and it's referenced and already on
 786         * the LRU list.
 787         *
 788         * NOTE! Since we aren't locked, these values are
 789         * not "stable". However, it is sufficient that at
 790         * some point after we dropped the reference the
 791         * dentry was hashed and the flags had the proper
 792         * value. Other dentry users may have re-gotten
 793         * a reference to the dentry and change that, but
 794         * our work is done - we can leave the dentry
 795         * around with a zero refcount.
 796         */
 797        smp_rmb();
 798        d_flags = READ_ONCE(dentry->d_flags);
 799        d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
 800
 801        /* Nothing to do? Dropping the reference was all we needed? */
 802        if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
 803                return true;
 804
 805        /*
 806         * Not the fast normal case? Get the lock. We've already decremented
 807         * the refcount, but we'll need to re-check the situation after
 808         * getting the lock.
 809         */
 810        spin_lock(&dentry->d_lock);
 811
 812        /*
 813         * Did somebody else grab a reference to it in the meantime, and
 814         * we're no longer the last user after all? Alternatively, somebody
 815         * else could have killed it and marked it dead. Either way, we
 816         * don't need to do anything else.
 817         */
 818        if (dentry->d_lockref.count) {
 819                spin_unlock(&dentry->d_lock);
 820                return true;
 821        }
 822
 823        /*
 824         * Re-get the reference we optimistically dropped. We hold the
 825         * lock, and we just tested that it was zero, so we can just
 826         * set it to 1.
 827         */
 828        dentry->d_lockref.count = 1;
 829        return false;
 830}
 831
 832
 833/* 
 834 * This is dput
 835 *
 836 * This is complicated by the fact that we do not want to put
 837 * dentries that are no longer on any hash chain on the unused
 838 * list: we'd much rather just get rid of them immediately.
 839 *
 840 * However, that implies that we have to traverse the dentry
 841 * tree upwards to the parents which might _also_ now be
 842 * scheduled for deletion (it may have been only waiting for
 843 * its last child to go away).
 844 *
 845 * This tail recursion is done by hand as we don't want to depend
 846 * on the compiler to always get this right (gcc generally doesn't).
 847 * Real recursion would eat up our stack space.
 848 */
 849
 850/*
 851 * dput - release a dentry
 852 * @dentry: dentry to release 
 853 *
 854 * Release a dentry. This will drop the usage count and if appropriate
 855 * call the dentry unlink method as well as removing it from the queues and
 856 * releasing its resources. If the parent dentries were scheduled for release
 857 * they too may now get deleted.
 858 */
 859void dput(struct dentry *dentry)
 860{
 861        while (dentry) {
 862                might_sleep();
 863
 864                rcu_read_lock();
 865                if (likely(fast_dput(dentry))) {
 866                        rcu_read_unlock();
 867                        return;
 868                }
 869
 870                /* Slow case: now with the dentry lock held */
 871                rcu_read_unlock();
 872
 873                if (likely(retain_dentry(dentry))) {
 874                        spin_unlock(&dentry->d_lock);
 875                        return;
 876                }
 877
 878                dentry = dentry_kill(dentry);
 879        }
 880}
 881EXPORT_SYMBOL(dput);
 882
 883static void __dput_to_list(struct dentry *dentry, struct list_head *list)
 884__must_hold(&dentry->d_lock)
 885{
 886        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 887                /* let the owner of the list it's on deal with it */
 888                --dentry->d_lockref.count;
 889        } else {
 890                if (dentry->d_flags & DCACHE_LRU_LIST)
 891                        d_lru_del(dentry);
 892                if (!--dentry->d_lockref.count)
 893                        d_shrink_add(dentry, list);
 894        }
 895}
 896
 897void dput_to_list(struct dentry *dentry, struct list_head *list)
 898{
 899        rcu_read_lock();
 900        if (likely(fast_dput(dentry))) {
 901                rcu_read_unlock();
 902                return;
 903        }
 904        rcu_read_unlock();
 905        if (!retain_dentry(dentry))
 906                __dput_to_list(dentry, list);
 907        spin_unlock(&dentry->d_lock);
 908}
 909
 910/* This must be called with d_lock held */
 911static inline void __dget_dlock(struct dentry *dentry)
 912{
 913        dentry->d_lockref.count++;
 914}
 915
 916static inline void __dget(struct dentry *dentry)
 917{
 918        lockref_get(&dentry->d_lockref);
 919}
 920
 921struct dentry *dget_parent(struct dentry *dentry)
 922{
 923        int gotref;
 924        struct dentry *ret;
 925        unsigned seq;
 926
 927        /*
 928         * Do optimistic parent lookup without any
 929         * locking.
 930         */
 931        rcu_read_lock();
 932        seq = raw_seqcount_begin(&dentry->d_seq);
 933        ret = READ_ONCE(dentry->d_parent);
 934        gotref = lockref_get_not_zero(&ret->d_lockref);
 935        rcu_read_unlock();
 936        if (likely(gotref)) {
 937                if (!read_seqcount_retry(&dentry->d_seq, seq))
 938                        return ret;
 939                dput(ret);
 940        }
 941
 942repeat:
 943        /*
 944         * Don't need rcu_dereference because we re-check it was correct under
 945         * the lock.
 946         */
 947        rcu_read_lock();
 948        ret = dentry->d_parent;
 949        spin_lock(&ret->d_lock);
 950        if (unlikely(ret != dentry->d_parent)) {
 951                spin_unlock(&ret->d_lock);
 952                rcu_read_unlock();
 953                goto repeat;
 954        }
 955        rcu_read_unlock();
 956        BUG_ON(!ret->d_lockref.count);
 957        ret->d_lockref.count++;
 958        spin_unlock(&ret->d_lock);
 959        return ret;
 960}
 961EXPORT_SYMBOL(dget_parent);
 962
 963static struct dentry * __d_find_any_alias(struct inode *inode)
 964{
 965        struct dentry *alias;
 966
 967        if (hlist_empty(&inode->i_dentry))
 968                return NULL;
 969        alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
 970        __dget(alias);
 971        return alias;
 972}
 973
 974/**
 975 * d_find_any_alias - find any alias for a given inode
 976 * @inode: inode to find an alias for
 977 *
 978 * If any aliases exist for the given inode, take and return a
 979 * reference for one of them.  If no aliases exist, return %NULL.
 980 */
 981struct dentry *d_find_any_alias(struct inode *inode)
 982{
 983        struct dentry *de;
 984
 985        spin_lock(&inode->i_lock);
 986        de = __d_find_any_alias(inode);
 987        spin_unlock(&inode->i_lock);
 988        return de;
 989}
 990EXPORT_SYMBOL(d_find_any_alias);
 991
 992/**
 993 * d_find_alias - grab a hashed alias of inode
 994 * @inode: inode in question
 995 *
 996 * If inode has a hashed alias, or is a directory and has any alias,
 997 * acquire the reference to alias and return it. Otherwise return NULL.
 998 * Notice that if inode is a directory there can be only one alias and
 999 * it can be unhashed only if it has no children, or if it is the root
1000 * of a filesystem, or if the directory was renamed and d_revalidate
1001 * was the first vfs operation to notice.
1002 *
1003 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1004 * any other hashed alias over that one.
1005 */
1006static struct dentry *__d_find_alias(struct inode *inode)
1007{
1008        struct dentry *alias;
1009
1010        if (S_ISDIR(inode->i_mode))
1011                return __d_find_any_alias(inode);
1012
1013        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1014                spin_lock(&alias->d_lock);
1015                if (!d_unhashed(alias)) {
1016                        __dget_dlock(alias);
1017                        spin_unlock(&alias->d_lock);
1018                        return alias;
1019                }
1020                spin_unlock(&alias->d_lock);
1021        }
1022        return NULL;
1023}
1024
1025struct dentry *d_find_alias(struct inode *inode)
1026{
1027        struct dentry *de = NULL;
1028
1029        if (!hlist_empty(&inode->i_dentry)) {
1030                spin_lock(&inode->i_lock);
1031                de = __d_find_alias(inode);
1032                spin_unlock(&inode->i_lock);
1033        }
1034        return de;
1035}
1036EXPORT_SYMBOL(d_find_alias);
1037
1038/*
1039 *      Try to kill dentries associated with this inode.
1040 * WARNING: you must own a reference to inode.
1041 */
1042void d_prune_aliases(struct inode *inode)
1043{
1044        struct dentry *dentry;
1045restart:
1046        spin_lock(&inode->i_lock);
1047        hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1048                spin_lock(&dentry->d_lock);
1049                if (!dentry->d_lockref.count) {
1050                        struct dentry *parent = lock_parent(dentry);
1051                        if (likely(!dentry->d_lockref.count)) {
1052                                __dentry_kill(dentry);
1053                                dput(parent);
1054                                goto restart;
1055                        }
1056                        if (parent)
1057                                spin_unlock(&parent->d_lock);
1058                }
1059                spin_unlock(&dentry->d_lock);
1060        }
1061        spin_unlock(&inode->i_lock);
1062}
1063EXPORT_SYMBOL(d_prune_aliases);
1064
1065/*
1066 * Lock a dentry from shrink list.
1067 * Called under rcu_read_lock() and dentry->d_lock; the former
1068 * guarantees that nothing we access will be freed under us.
1069 * Note that dentry is *not* protected from concurrent dentry_kill(),
1070 * d_delete(), etc.
1071 *
1072 * Return false if dentry has been disrupted or grabbed, leaving
1073 * the caller to kick it off-list.  Otherwise, return true and have
1074 * that dentry's inode and parent both locked.
1075 */
1076static bool shrink_lock_dentry(struct dentry *dentry)
1077{
1078        struct inode *inode;
1079        struct dentry *parent;
1080
1081        if (dentry->d_lockref.count)
1082                return false;
1083
1084        inode = dentry->d_inode;
1085        if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1086                spin_unlock(&dentry->d_lock);
1087                spin_lock(&inode->i_lock);
1088                spin_lock(&dentry->d_lock);
1089                if (unlikely(dentry->d_lockref.count))
1090                        goto out;
1091                /* changed inode means that somebody had grabbed it */
1092                if (unlikely(inode != dentry->d_inode))
1093                        goto out;
1094        }
1095
1096        parent = dentry->d_parent;
1097        if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1098                return true;
1099
1100        spin_unlock(&dentry->d_lock);
1101        spin_lock(&parent->d_lock);
1102        if (unlikely(parent != dentry->d_parent)) {
1103                spin_unlock(&parent->d_lock);
1104                spin_lock(&dentry->d_lock);
1105                goto out;
1106        }
1107        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1108        if (likely(!dentry->d_lockref.count))
1109                return true;
1110        spin_unlock(&parent->d_lock);
1111out:
1112        if (inode)
1113                spin_unlock(&inode->i_lock);
1114        return false;
1115}
1116
1117void shrink_dentry_list(struct list_head *list)
1118{
1119        while (!list_empty(list)) {
1120                struct dentry *dentry, *parent;
1121
1122                dentry = list_entry(list->prev, struct dentry, d_lru);
1123                spin_lock(&dentry->d_lock);
1124                rcu_read_lock();
1125                if (!shrink_lock_dentry(dentry)) {
1126                        bool can_free = false;
1127                        rcu_read_unlock();
1128                        d_shrink_del(dentry);
1129                        if (dentry->d_lockref.count < 0)
1130                                can_free = dentry->d_flags & DCACHE_MAY_FREE;
1131                        spin_unlock(&dentry->d_lock);
1132                        if (can_free)
1133                                dentry_free(dentry);
1134                        continue;
1135                }
1136                rcu_read_unlock();
1137                d_shrink_del(dentry);
1138                parent = dentry->d_parent;
1139                if (parent != dentry)
1140                        __dput_to_list(parent, list);
1141                __dentry_kill(dentry);
1142        }
1143}
1144
1145static enum lru_status dentry_lru_isolate(struct list_head *item,
1146                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1147{
1148        struct list_head *freeable = arg;
1149        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1150
1151
1152        /*
1153         * we are inverting the lru lock/dentry->d_lock here,
1154         * so use a trylock. If we fail to get the lock, just skip
1155         * it
1156         */
1157        if (!spin_trylock(&dentry->d_lock))
1158                return LRU_SKIP;
1159
1160        /*
1161         * Referenced dentries are still in use. If they have active
1162         * counts, just remove them from the LRU. Otherwise give them
1163         * another pass through the LRU.
1164         */
1165        if (dentry->d_lockref.count) {
1166                d_lru_isolate(lru, dentry);
1167                spin_unlock(&dentry->d_lock);
1168                return LRU_REMOVED;
1169        }
1170
1171        if (dentry->d_flags & DCACHE_REFERENCED) {
1172                dentry->d_flags &= ~DCACHE_REFERENCED;
1173                spin_unlock(&dentry->d_lock);
1174
1175                /*
1176                 * The list move itself will be made by the common LRU code. At
1177                 * this point, we've dropped the dentry->d_lock but keep the
1178                 * lru lock. This is safe to do, since every list movement is
1179                 * protected by the lru lock even if both locks are held.
1180                 *
1181                 * This is guaranteed by the fact that all LRU management
1182                 * functions are intermediated by the LRU API calls like
1183                 * list_lru_add and list_lru_del. List movement in this file
1184                 * only ever occur through this functions or through callbacks
1185                 * like this one, that are called from the LRU API.
1186                 *
1187                 * The only exceptions to this are functions like
1188                 * shrink_dentry_list, and code that first checks for the
1189                 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1190                 * operating only with stack provided lists after they are
1191                 * properly isolated from the main list.  It is thus, always a
1192                 * local access.
1193                 */
1194                return LRU_ROTATE;
1195        }
1196
1197        d_lru_shrink_move(lru, dentry, freeable);
1198        spin_unlock(&dentry->d_lock);
1199
1200        return LRU_REMOVED;
1201}
1202
1203/**
1204 * prune_dcache_sb - shrink the dcache
1205 * @sb: superblock
1206 * @sc: shrink control, passed to list_lru_shrink_walk()
1207 *
1208 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1209 * is done when we need more memory and called from the superblock shrinker
1210 * function.
1211 *
1212 * This function may fail to free any resources if all the dentries are in
1213 * use.
1214 */
1215long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1216{
1217        LIST_HEAD(dispose);
1218        long freed;
1219
1220        freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1221                                     dentry_lru_isolate, &dispose);
1222        shrink_dentry_list(&dispose);
1223        return freed;
1224}
1225
1226static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1227                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1228{
1229        struct list_head *freeable = arg;
1230        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1231
1232        /*
1233         * we are inverting the lru lock/dentry->d_lock here,
1234         * so use a trylock. If we fail to get the lock, just skip
1235         * it
1236         */
1237        if (!spin_trylock(&dentry->d_lock))
1238                return LRU_SKIP;
1239
1240        d_lru_shrink_move(lru, dentry, freeable);
1241        spin_unlock(&dentry->d_lock);
1242
1243        return LRU_REMOVED;
1244}
1245
1246
1247/**
1248 * shrink_dcache_sb - shrink dcache for a superblock
1249 * @sb: superblock
1250 *
1251 * Shrink the dcache for the specified super block. This is used to free
1252 * the dcache before unmounting a file system.
1253 */
1254void shrink_dcache_sb(struct super_block *sb)
1255{
1256        do {
1257                LIST_HEAD(dispose);
1258
1259                list_lru_walk(&sb->s_dentry_lru,
1260                        dentry_lru_isolate_shrink, &dispose, 1024);
1261                shrink_dentry_list(&dispose);
1262        } while (list_lru_count(&sb->s_dentry_lru) > 0);
1263}
1264EXPORT_SYMBOL(shrink_dcache_sb);
1265
1266/**
1267 * enum d_walk_ret - action to talke during tree walk
1268 * @D_WALK_CONTINUE:    contrinue walk
1269 * @D_WALK_QUIT:        quit walk
1270 * @D_WALK_NORETRY:     quit when retry is needed
1271 * @D_WALK_SKIP:        skip this dentry and its children
1272 */
1273enum d_walk_ret {
1274        D_WALK_CONTINUE,
1275        D_WALK_QUIT,
1276        D_WALK_NORETRY,
1277        D_WALK_SKIP,
1278};
1279
1280/**
1281 * d_walk - walk the dentry tree
1282 * @parent:     start of walk
1283 * @data:       data passed to @enter() and @finish()
1284 * @enter:      callback when first entering the dentry
1285 *
1286 * The @enter() callbacks are called with d_lock held.
1287 */
1288static void d_walk(struct dentry *parent, void *data,
1289                   enum d_walk_ret (*enter)(void *, struct dentry *))
1290{
1291        struct dentry *this_parent;
1292        struct list_head *next;
1293        unsigned seq = 0;
1294        enum d_walk_ret ret;
1295        bool retry = true;
1296
1297again:
1298        read_seqbegin_or_lock(&rename_lock, &seq);
1299        this_parent = parent;
1300        spin_lock(&this_parent->d_lock);
1301
1302        ret = enter(data, this_parent);
1303        switch (ret) {
1304        case D_WALK_CONTINUE:
1305                break;
1306        case D_WALK_QUIT:
1307        case D_WALK_SKIP:
1308                goto out_unlock;
1309        case D_WALK_NORETRY:
1310                retry = false;
1311                break;
1312        }
1313repeat:
1314        next = this_parent->d_subdirs.next;
1315resume:
1316        while (next != &this_parent->d_subdirs) {
1317                struct list_head *tmp = next;
1318                struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1319                next = tmp->next;
1320
1321                if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1322                        continue;
1323
1324                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1325
1326                ret = enter(data, dentry);
1327                switch (ret) {
1328                case D_WALK_CONTINUE:
1329                        break;
1330                case D_WALK_QUIT:
1331                        spin_unlock(&dentry->d_lock);
1332                        goto out_unlock;
1333                case D_WALK_NORETRY:
1334                        retry = false;
1335                        break;
1336                case D_WALK_SKIP:
1337                        spin_unlock(&dentry->d_lock);
1338                        continue;
1339                }
1340
1341                if (!list_empty(&dentry->d_subdirs)) {
1342                        spin_unlock(&this_parent->d_lock);
1343                        spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1344                        this_parent = dentry;
1345                        spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1346                        goto repeat;
1347                }
1348                spin_unlock(&dentry->d_lock);
1349        }
1350        /*
1351         * All done at this level ... ascend and resume the search.
1352         */
1353        rcu_read_lock();
1354ascend:
1355        if (this_parent != parent) {
1356                struct dentry *child = this_parent;
1357                this_parent = child->d_parent;
1358
1359                spin_unlock(&child->d_lock);
1360                spin_lock(&this_parent->d_lock);
1361
1362                /* might go back up the wrong parent if we have had a rename. */
1363                if (need_seqretry(&rename_lock, seq))
1364                        goto rename_retry;
1365                /* go into the first sibling still alive */
1366                do {
1367                        next = child->d_child.next;
1368                        if (next == &this_parent->d_subdirs)
1369                                goto ascend;
1370                        child = list_entry(next, struct dentry, d_child);
1371                } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1372                rcu_read_unlock();
1373                goto resume;
1374        }
1375        if (need_seqretry(&rename_lock, seq))
1376                goto rename_retry;
1377        rcu_read_unlock();
1378
1379out_unlock:
1380        spin_unlock(&this_parent->d_lock);
1381        done_seqretry(&rename_lock, seq);
1382        return;
1383
1384rename_retry:
1385        spin_unlock(&this_parent->d_lock);
1386        rcu_read_unlock();
1387        BUG_ON(seq & 1);
1388        if (!retry)
1389                return;
1390        seq = 1;
1391        goto again;
1392}
1393
1394struct check_mount {
1395        struct vfsmount *mnt;
1396        unsigned int mounted;
1397};
1398
1399static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1400{
1401        struct check_mount *info = data;
1402        struct path path = { .mnt = info->mnt, .dentry = dentry };
1403
1404        if (likely(!d_mountpoint(dentry)))
1405                return D_WALK_CONTINUE;
1406        if (__path_is_mountpoint(&path)) {
1407                info->mounted = 1;
1408                return D_WALK_QUIT;
1409        }
1410        return D_WALK_CONTINUE;
1411}
1412
1413/**
1414 * path_has_submounts - check for mounts over a dentry in the
1415 *                      current namespace.
1416 * @parent: path to check.
1417 *
1418 * Return true if the parent or its subdirectories contain
1419 * a mount point in the current namespace.
1420 */
1421int path_has_submounts(const struct path *parent)
1422{
1423        struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1424
1425        read_seqlock_excl(&mount_lock);
1426        d_walk(parent->dentry, &data, path_check_mount);
1427        read_sequnlock_excl(&mount_lock);
1428
1429        return data.mounted;
1430}
1431EXPORT_SYMBOL(path_has_submounts);
1432
1433/*
1434 * Called by mount code to set a mountpoint and check if the mountpoint is
1435 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1436 * subtree can become unreachable).
1437 *
1438 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1439 * this reason take rename_lock and d_lock on dentry and ancestors.
1440 */
1441int d_set_mounted(struct dentry *dentry)
1442{
1443        struct dentry *p;
1444        int ret = -ENOENT;
1445        write_seqlock(&rename_lock);
1446        for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1447                /* Need exclusion wrt. d_invalidate() */
1448                spin_lock(&p->d_lock);
1449                if (unlikely(d_unhashed(p))) {
1450                        spin_unlock(&p->d_lock);
1451                        goto out;
1452                }
1453                spin_unlock(&p->d_lock);
1454        }
1455        spin_lock(&dentry->d_lock);
1456        if (!d_unlinked(dentry)) {
1457                ret = -EBUSY;
1458                if (!d_mountpoint(dentry)) {
1459                        dentry->d_flags |= DCACHE_MOUNTED;
1460                        ret = 0;
1461                }
1462        }
1463        spin_unlock(&dentry->d_lock);
1464out:
1465        write_sequnlock(&rename_lock);
1466        return ret;
1467}
1468
1469/*
1470 * Search the dentry child list of the specified parent,
1471 * and move any unused dentries to the end of the unused
1472 * list for prune_dcache(). We descend to the next level
1473 * whenever the d_subdirs list is non-empty and continue
1474 * searching.
1475 *
1476 * It returns zero iff there are no unused children,
1477 * otherwise  it returns the number of children moved to
1478 * the end of the unused list. This may not be the total
1479 * number of unused children, because select_parent can
1480 * drop the lock and return early due to latency
1481 * constraints.
1482 */
1483
1484struct select_data {
1485        struct dentry *start;
1486        union {
1487                long found;
1488                struct dentry *victim;
1489        };
1490        struct list_head dispose;
1491};
1492
1493static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1494{
1495        struct select_data *data = _data;
1496        enum d_walk_ret ret = D_WALK_CONTINUE;
1497
1498        if (data->start == dentry)
1499                goto out;
1500
1501        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1502                data->found++;
1503        } else {
1504                if (dentry->d_flags & DCACHE_LRU_LIST)
1505                        d_lru_del(dentry);
1506                if (!dentry->d_lockref.count) {
1507                        d_shrink_add(dentry, &data->dispose);
1508                        data->found++;
1509                }
1510        }
1511        /*
1512         * We can return to the caller if we have found some (this
1513         * ensures forward progress). We'll be coming back to find
1514         * the rest.
1515         */
1516        if (!list_empty(&data->dispose))
1517                ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1518out:
1519        return ret;
1520}
1521
1522static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1523{
1524        struct select_data *data = _data;
1525        enum d_walk_ret ret = D_WALK_CONTINUE;
1526
1527        if (data->start == dentry)
1528                goto out;
1529
1530        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1531                if (!dentry->d_lockref.count) {
1532                        rcu_read_lock();
1533                        data->victim = dentry;
1534                        return D_WALK_QUIT;
1535                }
1536        } else {
1537                if (dentry->d_flags & DCACHE_LRU_LIST)
1538                        d_lru_del(dentry);
1539                if (!dentry->d_lockref.count)
1540                        d_shrink_add(dentry, &data->dispose);
1541        }
1542        /*
1543         * We can return to the caller if we have found some (this
1544         * ensures forward progress). We'll be coming back to find
1545         * the rest.
1546         */
1547        if (!list_empty(&data->dispose))
1548                ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1549out:
1550        return ret;
1551}
1552
1553/**
1554 * shrink_dcache_parent - prune dcache
1555 * @parent: parent of entries to prune
1556 *
1557 * Prune the dcache to remove unused children of the parent dentry.
1558 */
1559void shrink_dcache_parent(struct dentry *parent)
1560{
1561        for (;;) {
1562                struct select_data data = {.start = parent};
1563
1564                INIT_LIST_HEAD(&data.dispose);
1565                d_walk(parent, &data, select_collect);
1566
1567                if (!list_empty(&data.dispose)) {
1568                        shrink_dentry_list(&data.dispose);
1569                        continue;
1570                }
1571
1572                cond_resched();
1573                if (!data.found)
1574                        break;
1575                data.victim = NULL;
1576                d_walk(parent, &data, select_collect2);
1577                if (data.victim) {
1578                        struct dentry *parent;
1579                        spin_lock(&data.victim->d_lock);
1580                        if (!shrink_lock_dentry(data.victim)) {
1581                                spin_unlock(&data.victim->d_lock);
1582                                rcu_read_unlock();
1583                        } else {
1584                                rcu_read_unlock();
1585                                parent = data.victim->d_parent;
1586                                if (parent != data.victim)
1587                                        __dput_to_list(parent, &data.dispose);
1588                                __dentry_kill(data.victim);
1589                        }
1590                }
1591                if (!list_empty(&data.dispose))
1592                        shrink_dentry_list(&data.dispose);
1593        }
1594}
1595EXPORT_SYMBOL(shrink_dcache_parent);
1596
1597static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1598{
1599        /* it has busy descendents; complain about those instead */
1600        if (!list_empty(&dentry->d_subdirs))
1601                return D_WALK_CONTINUE;
1602
1603        /* root with refcount 1 is fine */
1604        if (dentry == _data && dentry->d_lockref.count == 1)
1605                return D_WALK_CONTINUE;
1606
1607        printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1608                        " still in use (%d) [unmount of %s %s]\n",
1609                       dentry,
1610                       dentry->d_inode ?
1611                       dentry->d_inode->i_ino : 0UL,
1612                       dentry,
1613                       dentry->d_lockref.count,
1614                       dentry->d_sb->s_type->name,
1615                       dentry->d_sb->s_id);
1616        WARN_ON(1);
1617        return D_WALK_CONTINUE;
1618}
1619
1620static void do_one_tree(struct dentry *dentry)
1621{
1622        shrink_dcache_parent(dentry);
1623        d_walk(dentry, dentry, umount_check);
1624        d_drop(dentry);
1625        dput(dentry);
1626}
1627
1628/*
1629 * destroy the dentries attached to a superblock on unmounting
1630 */
1631void shrink_dcache_for_umount(struct super_block *sb)
1632{
1633        struct dentry *dentry;
1634
1635        WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1636
1637        dentry = sb->s_root;
1638        sb->s_root = NULL;
1639        do_one_tree(dentry);
1640
1641        while (!hlist_bl_empty(&sb->s_roots)) {
1642                dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1643                do_one_tree(dentry);
1644        }
1645}
1646
1647static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1648{
1649        struct dentry **victim = _data;
1650        if (d_mountpoint(dentry)) {
1651                __dget_dlock(dentry);
1652                *victim = dentry;
1653                return D_WALK_QUIT;
1654        }
1655        return D_WALK_CONTINUE;
1656}
1657
1658/**
1659 * d_invalidate - detach submounts, prune dcache, and drop
1660 * @dentry: dentry to invalidate (aka detach, prune and drop)
1661 */
1662void d_invalidate(struct dentry *dentry)
1663{
1664        bool had_submounts = false;
1665        spin_lock(&dentry->d_lock);
1666        if (d_unhashed(dentry)) {
1667                spin_unlock(&dentry->d_lock);
1668                return;
1669        }
1670        __d_drop(dentry);
1671        spin_unlock(&dentry->d_lock);
1672
1673        /* Negative dentries can be dropped without further checks */
1674        if (!dentry->d_inode)
1675                return;
1676
1677        shrink_dcache_parent(dentry);
1678        for (;;) {
1679                struct dentry *victim = NULL;
1680                d_walk(dentry, &victim, find_submount);
1681                if (!victim) {
1682                        if (had_submounts)
1683                                shrink_dcache_parent(dentry);
1684                        return;
1685                }
1686                had_submounts = true;
1687                detach_mounts(victim);
1688                dput(victim);
1689        }
1690}
1691EXPORT_SYMBOL(d_invalidate);
1692
1693/**
1694 * __d_alloc    -       allocate a dcache entry
1695 * @sb: filesystem it will belong to
1696 * @name: qstr of the name
1697 *
1698 * Allocates a dentry. It returns %NULL if there is insufficient memory
1699 * available. On a success the dentry is returned. The name passed in is
1700 * copied and the copy passed in may be reused after this call.
1701 */
1702 
1703static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1704{
1705        struct dentry *dentry;
1706        char *dname;
1707        int err;
1708
1709        dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1710        if (!dentry)
1711                return NULL;
1712
1713        /*
1714         * We guarantee that the inline name is always NUL-terminated.
1715         * This way the memcpy() done by the name switching in rename
1716         * will still always have a NUL at the end, even if we might
1717         * be overwriting an internal NUL character
1718         */
1719        dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1720        if (unlikely(!name)) {
1721                name = &slash_name;
1722                dname = dentry->d_iname;
1723        } else if (name->len > DNAME_INLINE_LEN-1) {
1724                size_t size = offsetof(struct external_name, name[1]);
1725                struct external_name *p = kmalloc(size + name->len,
1726                                                  GFP_KERNEL_ACCOUNT |
1727                                                  __GFP_RECLAIMABLE);
1728                if (!p) {
1729                        kmem_cache_free(dentry_cache, dentry); 
1730                        return NULL;
1731                }
1732                atomic_set(&p->u.count, 1);
1733                dname = p->name;
1734        } else  {
1735                dname = dentry->d_iname;
1736        }       
1737
1738        dentry->d_name.len = name->len;
1739        dentry->d_name.hash = name->hash;
1740        memcpy(dname, name->name, name->len);
1741        dname[name->len] = 0;
1742
1743        /* Make sure we always see the terminating NUL character */
1744        smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1745
1746        dentry->d_lockref.count = 1;
1747        dentry->d_flags = 0;
1748        spin_lock_init(&dentry->d_lock);
1749        seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1750        dentry->d_inode = NULL;
1751        dentry->d_parent = dentry;
1752        dentry->d_sb = sb;
1753        dentry->d_op = NULL;
1754        dentry->d_fsdata = NULL;
1755        INIT_HLIST_BL_NODE(&dentry->d_hash);
1756        INIT_LIST_HEAD(&dentry->d_lru);
1757        INIT_LIST_HEAD(&dentry->d_subdirs);
1758        INIT_HLIST_NODE(&dentry->d_u.d_alias);
1759        INIT_LIST_HEAD(&dentry->d_child);
1760        d_set_d_op(dentry, dentry->d_sb->s_d_op);
1761
1762        if (dentry->d_op && dentry->d_op->d_init) {
1763                err = dentry->d_op->d_init(dentry);
1764                if (err) {
1765                        if (dname_external(dentry))
1766                                kfree(external_name(dentry));
1767                        kmem_cache_free(dentry_cache, dentry);
1768                        return NULL;
1769                }
1770        }
1771
1772        this_cpu_inc(nr_dentry);
1773
1774        return dentry;
1775}
1776
1777/**
1778 * d_alloc      -       allocate a dcache entry
1779 * @parent: parent of entry to allocate
1780 * @name: qstr of the name
1781 *
1782 * Allocates a dentry. It returns %NULL if there is insufficient memory
1783 * available. On a success the dentry is returned. The name passed in is
1784 * copied and the copy passed in may be reused after this call.
1785 */
1786struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1787{
1788        struct dentry *dentry = __d_alloc(parent->d_sb, name);
1789        if (!dentry)
1790                return NULL;
1791        spin_lock(&parent->d_lock);
1792        /*
1793         * don't need child lock because it is not subject
1794         * to concurrency here
1795         */
1796        __dget_dlock(parent);
1797        dentry->d_parent = parent;
1798        list_add(&dentry->d_child, &parent->d_subdirs);
1799        spin_unlock(&parent->d_lock);
1800
1801        return dentry;
1802}
1803EXPORT_SYMBOL(d_alloc);
1804
1805struct dentry *d_alloc_anon(struct super_block *sb)
1806{
1807        return __d_alloc(sb, NULL);
1808}
1809EXPORT_SYMBOL(d_alloc_anon);
1810
1811struct dentry *d_alloc_cursor(struct dentry * parent)
1812{
1813        struct dentry *dentry = d_alloc_anon(parent->d_sb);
1814        if (dentry) {
1815                dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1816                dentry->d_parent = dget(parent);
1817        }
1818        return dentry;
1819}
1820
1821/**
1822 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1823 * @sb: the superblock
1824 * @name: qstr of the name
1825 *
1826 * For a filesystem that just pins its dentries in memory and never
1827 * performs lookups at all, return an unhashed IS_ROOT dentry.
1828 * This is used for pipes, sockets et.al. - the stuff that should
1829 * never be anyone's children or parents.  Unlike all other
1830 * dentries, these will not have RCU delay between dropping the
1831 * last reference and freeing them.
1832 *
1833 * The only user is alloc_file_pseudo() and that's what should
1834 * be considered a public interface.  Don't use directly.
1835 */
1836struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1837{
1838        struct dentry *dentry = __d_alloc(sb, name);
1839        if (likely(dentry))
1840                dentry->d_flags |= DCACHE_NORCU;
1841        return dentry;
1842}
1843
1844struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1845{
1846        struct qstr q;
1847
1848        q.name = name;
1849        q.hash_len = hashlen_string(parent, name);
1850        return d_alloc(parent, &q);
1851}
1852EXPORT_SYMBOL(d_alloc_name);
1853
1854void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1855{
1856        WARN_ON_ONCE(dentry->d_op);
1857        WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1858                                DCACHE_OP_COMPARE       |
1859                                DCACHE_OP_REVALIDATE    |
1860                                DCACHE_OP_WEAK_REVALIDATE       |
1861                                DCACHE_OP_DELETE        |
1862                                DCACHE_OP_REAL));
1863        dentry->d_op = op;
1864        if (!op)
1865                return;
1866        if (op->d_hash)
1867                dentry->d_flags |= DCACHE_OP_HASH;
1868        if (op->d_compare)
1869                dentry->d_flags |= DCACHE_OP_COMPARE;
1870        if (op->d_revalidate)
1871                dentry->d_flags |= DCACHE_OP_REVALIDATE;
1872        if (op->d_weak_revalidate)
1873                dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1874        if (op->d_delete)
1875                dentry->d_flags |= DCACHE_OP_DELETE;
1876        if (op->d_prune)
1877                dentry->d_flags |= DCACHE_OP_PRUNE;
1878        if (op->d_real)
1879                dentry->d_flags |= DCACHE_OP_REAL;
1880
1881}
1882EXPORT_SYMBOL(d_set_d_op);
1883
1884
1885/*
1886 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1887 * @dentry - The dentry to mark
1888 *
1889 * Mark a dentry as falling through to the lower layer (as set with
1890 * d_pin_lower()).  This flag may be recorded on the medium.
1891 */
1892void d_set_fallthru(struct dentry *dentry)
1893{
1894        spin_lock(&dentry->d_lock);
1895        dentry->d_flags |= DCACHE_FALLTHRU;
1896        spin_unlock(&dentry->d_lock);
1897}
1898EXPORT_SYMBOL(d_set_fallthru);
1899
1900static unsigned d_flags_for_inode(struct inode *inode)
1901{
1902        unsigned add_flags = DCACHE_REGULAR_TYPE;
1903
1904        if (!inode)
1905                return DCACHE_MISS_TYPE;
1906
1907        if (S_ISDIR(inode->i_mode)) {
1908                add_flags = DCACHE_DIRECTORY_TYPE;
1909                if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1910                        if (unlikely(!inode->i_op->lookup))
1911                                add_flags = DCACHE_AUTODIR_TYPE;
1912                        else
1913                                inode->i_opflags |= IOP_LOOKUP;
1914                }
1915                goto type_determined;
1916        }
1917
1918        if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1919                if (unlikely(inode->i_op->get_link)) {
1920                        add_flags = DCACHE_SYMLINK_TYPE;
1921                        goto type_determined;
1922                }
1923                inode->i_opflags |= IOP_NOFOLLOW;
1924        }
1925
1926        if (unlikely(!S_ISREG(inode->i_mode)))
1927                add_flags = DCACHE_SPECIAL_TYPE;
1928
1929type_determined:
1930        if (unlikely(IS_AUTOMOUNT(inode)))
1931                add_flags |= DCACHE_NEED_AUTOMOUNT;
1932        return add_flags;
1933}
1934
1935static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1936{
1937        unsigned add_flags = d_flags_for_inode(inode);
1938        WARN_ON(d_in_lookup(dentry));
1939
1940        spin_lock(&dentry->d_lock);
1941        /*
1942         * Decrement negative dentry count if it was in the LRU list.
1943         */
1944        if (dentry->d_flags & DCACHE_LRU_LIST)
1945                this_cpu_dec(nr_dentry_negative);
1946        hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1947        raw_write_seqcount_begin(&dentry->d_seq);
1948        __d_set_inode_and_type(dentry, inode, add_flags);
1949        raw_write_seqcount_end(&dentry->d_seq);
1950        fsnotify_update_flags(dentry);
1951        spin_unlock(&dentry->d_lock);
1952}
1953
1954/**
1955 * d_instantiate - fill in inode information for a dentry
1956 * @entry: dentry to complete
1957 * @inode: inode to attach to this dentry
1958 *
1959 * Fill in inode information in the entry.
1960 *
1961 * This turns negative dentries into productive full members
1962 * of society.
1963 *
1964 * NOTE! This assumes that the inode count has been incremented
1965 * (or otherwise set) by the caller to indicate that it is now
1966 * in use by the dcache.
1967 */
1968 
1969void d_instantiate(struct dentry *entry, struct inode * inode)
1970{
1971        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1972        if (inode) {
1973                security_d_instantiate(entry, inode);
1974                spin_lock(&inode->i_lock);
1975                __d_instantiate(entry, inode);
1976                spin_unlock(&inode->i_lock);
1977        }
1978}
1979EXPORT_SYMBOL(d_instantiate);
1980
1981/*
1982 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1983 * with lockdep-related part of unlock_new_inode() done before
1984 * anything else.  Use that instead of open-coding d_instantiate()/
1985 * unlock_new_inode() combinations.
1986 */
1987void d_instantiate_new(struct dentry *entry, struct inode *inode)
1988{
1989        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1990        BUG_ON(!inode);
1991        lockdep_annotate_inode_mutex_key(inode);
1992        security_d_instantiate(entry, inode);
1993        spin_lock(&inode->i_lock);
1994        __d_instantiate(entry, inode);
1995        WARN_ON(!(inode->i_state & I_NEW));
1996        inode->i_state &= ~I_NEW & ~I_CREATING;
1997        smp_mb();
1998        wake_up_bit(&inode->i_state, __I_NEW);
1999        spin_unlock(&inode->i_lock);
2000}
2001EXPORT_SYMBOL(d_instantiate_new);
2002
2003struct dentry *d_make_root(struct inode *root_inode)
2004{
2005        struct dentry *res = NULL;
2006
2007        if (root_inode) {
2008                res = d_alloc_anon(root_inode->i_sb);
2009                if (res)
2010                        d_instantiate(res, root_inode);
2011                else
2012                        iput(root_inode);
2013        }
2014        return res;
2015}
2016EXPORT_SYMBOL(d_make_root);
2017
2018static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2019                                           struct inode *inode,
2020                                           bool disconnected)
2021{
2022        struct dentry *res;
2023        unsigned add_flags;
2024
2025        security_d_instantiate(dentry, inode);
2026        spin_lock(&inode->i_lock);
2027        res = __d_find_any_alias(inode);
2028        if (res) {
2029                spin_unlock(&inode->i_lock);
2030                dput(dentry);
2031                goto out_iput;
2032        }
2033
2034        /* attach a disconnected dentry */
2035        add_flags = d_flags_for_inode(inode);
2036
2037        if (disconnected)
2038                add_flags |= DCACHE_DISCONNECTED;
2039
2040        spin_lock(&dentry->d_lock);
2041        __d_set_inode_and_type(dentry, inode, add_flags);
2042        hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2043        if (!disconnected) {
2044                hlist_bl_lock(&dentry->d_sb->s_roots);
2045                hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2046                hlist_bl_unlock(&dentry->d_sb->s_roots);
2047        }
2048        spin_unlock(&dentry->d_lock);
2049        spin_unlock(&inode->i_lock);
2050
2051        return dentry;
2052
2053 out_iput:
2054        iput(inode);
2055        return res;
2056}
2057
2058struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2059{
2060        return __d_instantiate_anon(dentry, inode, true);
2061}
2062EXPORT_SYMBOL(d_instantiate_anon);
2063
2064static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2065{
2066        struct dentry *tmp;
2067        struct dentry *res;
2068
2069        if (!inode)
2070                return ERR_PTR(-ESTALE);
2071        if (IS_ERR(inode))
2072                return ERR_CAST(inode);
2073
2074        res = d_find_any_alias(inode);
2075        if (res)
2076                goto out_iput;
2077
2078        tmp = d_alloc_anon(inode->i_sb);
2079        if (!tmp) {
2080                res = ERR_PTR(-ENOMEM);
2081                goto out_iput;
2082        }
2083
2084        return __d_instantiate_anon(tmp, inode, disconnected);
2085
2086out_iput:
2087        iput(inode);
2088        return res;
2089}
2090
2091/**
2092 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2093 * @inode: inode to allocate the dentry for
2094 *
2095 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2096 * similar open by handle operations.  The returned dentry may be anonymous,
2097 * or may have a full name (if the inode was already in the cache).
2098 *
2099 * When called on a directory inode, we must ensure that the inode only ever
2100 * has one dentry.  If a dentry is found, that is returned instead of
2101 * allocating a new one.
2102 *
2103 * On successful return, the reference to the inode has been transferred
2104 * to the dentry.  In case of an error the reference on the inode is released.
2105 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2106 * be passed in and the error will be propagated to the return value,
2107 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2108 */
2109struct dentry *d_obtain_alias(struct inode *inode)
2110{
2111        return __d_obtain_alias(inode, true);
2112}
2113EXPORT_SYMBOL(d_obtain_alias);
2114
2115/**
2116 * d_obtain_root - find or allocate a dentry for a given inode
2117 * @inode: inode to allocate the dentry for
2118 *
2119 * Obtain an IS_ROOT dentry for the root of a filesystem.
2120 *
2121 * We must ensure that directory inodes only ever have one dentry.  If a
2122 * dentry is found, that is returned instead of allocating a new one.
2123 *
2124 * On successful return, the reference to the inode has been transferred
2125 * to the dentry.  In case of an error the reference on the inode is
2126 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2127 * error will be propagate to the return value, with a %NULL @inode
2128 * replaced by ERR_PTR(-ESTALE).
2129 */
2130struct dentry *d_obtain_root(struct inode *inode)
2131{
2132        return __d_obtain_alias(inode, false);
2133}
2134EXPORT_SYMBOL(d_obtain_root);
2135
2136/**
2137 * d_add_ci - lookup or allocate new dentry with case-exact name
2138 * @inode:  the inode case-insensitive lookup has found
2139 * @dentry: the negative dentry that was passed to the parent's lookup func
2140 * @name:   the case-exact name to be associated with the returned dentry
2141 *
2142 * This is to avoid filling the dcache with case-insensitive names to the
2143 * same inode, only the actual correct case is stored in the dcache for
2144 * case-insensitive filesystems.
2145 *
2146 * For a case-insensitive lookup match and if the the case-exact dentry
2147 * already exists in in the dcache, use it and return it.
2148 *
2149 * If no entry exists with the exact case name, allocate new dentry with
2150 * the exact case, and return the spliced entry.
2151 */
2152struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2153                        struct qstr *name)
2154{
2155        struct dentry *found, *res;
2156
2157        /*
2158         * First check if a dentry matching the name already exists,
2159         * if not go ahead and create it now.
2160         */
2161        found = d_hash_and_lookup(dentry->d_parent, name);
2162        if (found) {
2163                iput(inode);
2164                return found;
2165        }
2166        if (d_in_lookup(dentry)) {
2167                found = d_alloc_parallel(dentry->d_parent, name,
2168                                        dentry->d_wait);
2169                if (IS_ERR(found) || !d_in_lookup(found)) {
2170                        iput(inode);
2171                        return found;
2172                }
2173        } else {
2174                found = d_alloc(dentry->d_parent, name);
2175                if (!found) {
2176                        iput(inode);
2177                        return ERR_PTR(-ENOMEM);
2178                } 
2179        }
2180        res = d_splice_alias(inode, found);
2181        if (res) {
2182                dput(found);
2183                return res;
2184        }
2185        return found;
2186}
2187EXPORT_SYMBOL(d_add_ci);
2188
2189
2190static inline bool d_same_name(const struct dentry *dentry,
2191                                const struct dentry *parent,
2192                                const struct qstr *name)
2193{
2194        if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2195                if (dentry->d_name.len != name->len)
2196                        return false;
2197                return dentry_cmp(dentry, name->name, name->len) == 0;
2198        }
2199        return parent->d_op->d_compare(dentry,
2200                                       dentry->d_name.len, dentry->d_name.name,
2201                                       name) == 0;
2202}
2203
2204/**
2205 * __d_lookup_rcu - search for a dentry (racy, store-free)
2206 * @parent: parent dentry
2207 * @name: qstr of name we wish to find
2208 * @seqp: returns d_seq value at the point where the dentry was found
2209 * Returns: dentry, or NULL
2210 *
2211 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2212 * resolution (store-free path walking) design described in
2213 * Documentation/filesystems/path-lookup.txt.
2214 *
2215 * This is not to be used outside core vfs.
2216 *
2217 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2218 * held, and rcu_read_lock held. The returned dentry must not be stored into
2219 * without taking d_lock and checking d_seq sequence count against @seq
2220 * returned here.
2221 *
2222 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2223 * function.
2224 *
2225 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2226 * the returned dentry, so long as its parent's seqlock is checked after the
2227 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2228 * is formed, giving integrity down the path walk.
2229 *
2230 * NOTE! The caller *has* to check the resulting dentry against the sequence
2231 * number we've returned before using any of the resulting dentry state!
2232 */
2233struct dentry *__d_lookup_rcu(const struct dentry *parent,
2234                                const struct qstr *name,
2235                                unsigned *seqp)
2236{
2237        u64 hashlen = name->hash_len;
2238        const unsigned char *str = name->name;
2239        struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2240        struct hlist_bl_node *node;
2241        struct dentry *dentry;
2242
2243        /*
2244         * Note: There is significant duplication with __d_lookup_rcu which is
2245         * required to prevent single threaded performance regressions
2246         * especially on architectures where smp_rmb (in seqcounts) are costly.
2247         * Keep the two functions in sync.
2248         */
2249
2250        /*
2251         * The hash list is protected using RCU.
2252         *
2253         * Carefully use d_seq when comparing a candidate dentry, to avoid
2254         * races with d_move().
2255         *
2256         * It is possible that concurrent renames can mess up our list
2257         * walk here and result in missing our dentry, resulting in the
2258         * false-negative result. d_lookup() protects against concurrent
2259         * renames using rename_lock seqlock.
2260         *
2261         * See Documentation/filesystems/path-lookup.txt for more details.
2262         */
2263        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2264                unsigned seq;
2265
2266seqretry:
2267                /*
2268                 * The dentry sequence count protects us from concurrent
2269                 * renames, and thus protects parent and name fields.
2270                 *
2271                 * The caller must perform a seqcount check in order
2272                 * to do anything useful with the returned dentry.
2273                 *
2274                 * NOTE! We do a "raw" seqcount_begin here. That means that
2275                 * we don't wait for the sequence count to stabilize if it
2276                 * is in the middle of a sequence change. If we do the slow
2277                 * dentry compare, we will do seqretries until it is stable,
2278                 * and if we end up with a successful lookup, we actually
2279                 * want to exit RCU lookup anyway.
2280                 *
2281                 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2282                 * we are still guaranteed NUL-termination of ->d_name.name.
2283                 */
2284                seq = raw_seqcount_begin(&dentry->d_seq);
2285                if (dentry->d_parent != parent)
2286                        continue;
2287                if (d_unhashed(dentry))
2288                        continue;
2289
2290                if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2291                        int tlen;
2292                        const char *tname;
2293                        if (dentry->d_name.hash != hashlen_hash(hashlen))
2294                                continue;
2295                        tlen = dentry->d_name.len;
2296                        tname = dentry->d_name.name;
2297                        /* we want a consistent (name,len) pair */
2298                        if (read_seqcount_retry(&dentry->d_seq, seq)) {
2299                                cpu_relax();
2300                                goto seqretry;
2301                        }
2302                        if (parent->d_op->d_compare(dentry,
2303                                                    tlen, tname, name) != 0)
2304                                continue;
2305                } else {
2306                        if (dentry->d_name.hash_len != hashlen)
2307                                continue;
2308                        if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2309                                continue;
2310                }
2311                *seqp = seq;
2312                return dentry;
2313        }
2314        return NULL;
2315}
2316
2317/**
2318 * d_lookup - search for a dentry
2319 * @parent: parent dentry
2320 * @name: qstr of name we wish to find
2321 * Returns: dentry, or NULL
2322 *
2323 * d_lookup searches the children of the parent dentry for the name in
2324 * question. If the dentry is found its reference count is incremented and the
2325 * dentry is returned. The caller must use dput to free the entry when it has
2326 * finished using it. %NULL is returned if the dentry does not exist.
2327 */
2328struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2329{
2330        struct dentry *dentry;
2331        unsigned seq;
2332
2333        do {
2334                seq = read_seqbegin(&rename_lock);
2335                dentry = __d_lookup(parent, name);
2336                if (dentry)
2337                        break;
2338        } while (read_seqretry(&rename_lock, seq));
2339        return dentry;
2340}
2341EXPORT_SYMBOL(d_lookup);
2342
2343/**
2344 * __d_lookup - search for a dentry (racy)
2345 * @parent: parent dentry
2346 * @name: qstr of name we wish to find
2347 * Returns: dentry, or NULL
2348 *
2349 * __d_lookup is like d_lookup, however it may (rarely) return a
2350 * false-negative result due to unrelated rename activity.
2351 *
2352 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2353 * however it must be used carefully, eg. with a following d_lookup in
2354 * the case of failure.
2355 *
2356 * __d_lookup callers must be commented.
2357 */
2358struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2359{
2360        unsigned int hash = name->hash;
2361        struct hlist_bl_head *b = d_hash(hash);
2362        struct hlist_bl_node *node;
2363        struct dentry *found = NULL;
2364        struct dentry *dentry;
2365
2366        /*
2367         * Note: There is significant duplication with __d_lookup_rcu which is
2368         * required to prevent single threaded performance regressions
2369         * especially on architectures where smp_rmb (in seqcounts) are costly.
2370         * Keep the two functions in sync.
2371         */
2372
2373        /*
2374         * The hash list is protected using RCU.
2375         *
2376         * Take d_lock when comparing a candidate dentry, to avoid races
2377         * with d_move().
2378         *
2379         * It is possible that concurrent renames can mess up our list
2380         * walk here and result in missing our dentry, resulting in the
2381         * false-negative result. d_lookup() protects against concurrent
2382         * renames using rename_lock seqlock.
2383         *
2384         * See Documentation/filesystems/path-lookup.txt for more details.
2385         */
2386        rcu_read_lock();
2387        
2388        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2389
2390                if (dentry->d_name.hash != hash)
2391                        continue;
2392
2393                spin_lock(&dentry->d_lock);
2394                if (dentry->d_parent != parent)
2395                        goto next;
2396                if (d_unhashed(dentry))
2397                        goto next;
2398
2399                if (!d_same_name(dentry, parent, name))
2400                        goto next;
2401
2402                dentry->d_lockref.count++;
2403                found = dentry;
2404                spin_unlock(&dentry->d_lock);
2405                break;
2406next:
2407                spin_unlock(&dentry->d_lock);
2408        }
2409        rcu_read_unlock();
2410
2411        return found;
2412}
2413
2414/**
2415 * d_hash_and_lookup - hash the qstr then search for a dentry
2416 * @dir: Directory to search in
2417 * @name: qstr of name we wish to find
2418 *
2419 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2420 */
2421struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2422{
2423        /*
2424         * Check for a fs-specific hash function. Note that we must
2425         * calculate the standard hash first, as the d_op->d_hash()
2426         * routine may choose to leave the hash value unchanged.
2427         */
2428        name->hash = full_name_hash(dir, name->name, name->len);
2429        if (dir->d_flags & DCACHE_OP_HASH) {
2430                int err = dir->d_op->d_hash(dir, name);
2431                if (unlikely(err < 0))
2432                        return ERR_PTR(err);
2433        }
2434        return d_lookup(dir, name);
2435}
2436EXPORT_SYMBOL(d_hash_and_lookup);
2437
2438/*
2439 * When a file is deleted, we have two options:
2440 * - turn this dentry into a negative dentry
2441 * - unhash this dentry and free it.
2442 *
2443 * Usually, we want to just turn this into
2444 * a negative dentry, but if anybody else is
2445 * currently using the dentry or the inode
2446 * we can't do that and we fall back on removing
2447 * it from the hash queues and waiting for
2448 * it to be deleted later when it has no users
2449 */
2450 
2451/**
2452 * d_delete - delete a dentry
2453 * @dentry: The dentry to delete
2454 *
2455 * Turn the dentry into a negative dentry if possible, otherwise
2456 * remove it from the hash queues so it can be deleted later
2457 */
2458 
2459void d_delete(struct dentry * dentry)
2460{
2461        struct inode *inode = dentry->d_inode;
2462
2463        spin_lock(&inode->i_lock);
2464        spin_lock(&dentry->d_lock);
2465        /*
2466         * Are we the only user?
2467         */
2468        if (dentry->d_lockref.count == 1) {
2469                dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2470                dentry_unlink_inode(dentry);
2471        } else {
2472                __d_drop(dentry);
2473                spin_unlock(&dentry->d_lock);
2474                spin_unlock(&inode->i_lock);
2475        }
2476}
2477EXPORT_SYMBOL(d_delete);
2478
2479static void __d_rehash(struct dentry *entry)
2480{
2481        struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2482
2483        hlist_bl_lock(b);
2484        hlist_bl_add_head_rcu(&entry->d_hash, b);
2485        hlist_bl_unlock(b);
2486}
2487
2488/**
2489 * d_rehash     - add an entry back to the hash
2490 * @entry: dentry to add to the hash
2491 *
2492 * Adds a dentry to the hash according to its name.
2493 */
2494 
2495void d_rehash(struct dentry * entry)
2496{
2497        spin_lock(&entry->d_lock);
2498        __d_rehash(entry);
2499        spin_unlock(&entry->d_lock);
2500}
2501EXPORT_SYMBOL(d_rehash);
2502
2503static inline unsigned start_dir_add(struct inode *dir)
2504{
2505
2506        for (;;) {
2507                unsigned n = dir->i_dir_seq;
2508                if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2509                        return n;
2510                cpu_relax();
2511        }
2512}
2513
2514static inline void end_dir_add(struct inode *dir, unsigned n)
2515{
2516        smp_store_release(&dir->i_dir_seq, n + 2);
2517}
2518
2519static void d_wait_lookup(struct dentry *dentry)
2520{
2521        if (d_in_lookup(dentry)) {
2522                DECLARE_WAITQUEUE(wait, current);
2523                add_wait_queue(dentry->d_wait, &wait);
2524                do {
2525                        set_current_state(TASK_UNINTERRUPTIBLE);
2526                        spin_unlock(&dentry->d_lock);
2527                        schedule();
2528                        spin_lock(&dentry->d_lock);
2529                } while (d_in_lookup(dentry));
2530        }
2531}
2532
2533struct dentry *d_alloc_parallel(struct dentry *parent,
2534                                const struct qstr *name,
2535                                wait_queue_head_t *wq)
2536{
2537        unsigned int hash = name->hash;
2538        struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2539        struct hlist_bl_node *node;
2540        struct dentry *new = d_alloc(parent, name);
2541        struct dentry *dentry;
2542        unsigned seq, r_seq, d_seq;
2543
2544        if (unlikely(!new))
2545                return ERR_PTR(-ENOMEM);
2546
2547retry:
2548        rcu_read_lock();
2549        seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2550        r_seq = read_seqbegin(&rename_lock);
2551        dentry = __d_lookup_rcu(parent, name, &d_seq);
2552        if (unlikely(dentry)) {
2553                if (!lockref_get_not_dead(&dentry->d_lockref)) {
2554                        rcu_read_unlock();
2555                        goto retry;
2556                }
2557                if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2558                        rcu_read_unlock();
2559                        dput(dentry);
2560                        goto retry;
2561                }
2562                rcu_read_unlock();
2563                dput(new);
2564                return dentry;
2565        }
2566        if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2567                rcu_read_unlock();
2568                goto retry;
2569        }
2570
2571        if (unlikely(seq & 1)) {
2572                rcu_read_unlock();
2573                goto retry;
2574        }
2575
2576        hlist_bl_lock(b);
2577        if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2578                hlist_bl_unlock(b);
2579                rcu_read_unlock();
2580                goto retry;
2581        }
2582        /*
2583         * No changes for the parent since the beginning of d_lookup().
2584         * Since all removals from the chain happen with hlist_bl_lock(),
2585         * any potential in-lookup matches are going to stay here until
2586         * we unlock the chain.  All fields are stable in everything
2587         * we encounter.
2588         */
2589        hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2590                if (dentry->d_name.hash != hash)
2591                        continue;
2592                if (dentry->d_parent != parent)
2593                        continue;
2594                if (!d_same_name(dentry, parent, name))
2595                        continue;
2596                hlist_bl_unlock(b);
2597                /* now we can try to grab a reference */
2598                if (!lockref_get_not_dead(&dentry->d_lockref)) {
2599                        rcu_read_unlock();
2600                        goto retry;
2601                }
2602
2603                rcu_read_unlock();
2604                /*
2605                 * somebody is likely to be still doing lookup for it;
2606                 * wait for them to finish
2607                 */
2608                spin_lock(&dentry->d_lock);
2609                d_wait_lookup(dentry);
2610                /*
2611                 * it's not in-lookup anymore; in principle we should repeat
2612                 * everything from dcache lookup, but it's likely to be what
2613                 * d_lookup() would've found anyway.  If it is, just return it;
2614                 * otherwise we really have to repeat the whole thing.
2615                 */
2616                if (unlikely(dentry->d_name.hash != hash))
2617                        goto mismatch;
2618                if (unlikely(dentry->d_parent != parent))
2619                        goto mismatch;
2620                if (unlikely(d_unhashed(dentry)))
2621                        goto mismatch;
2622                if (unlikely(!d_same_name(dentry, parent, name)))
2623                        goto mismatch;
2624                /* OK, it *is* a hashed match; return it */
2625                spin_unlock(&dentry->d_lock);
2626                dput(new);
2627                return dentry;
2628        }
2629        rcu_read_unlock();
2630        /* we can't take ->d_lock here; it's OK, though. */
2631        new->d_flags |= DCACHE_PAR_LOOKUP;
2632        new->d_wait = wq;
2633        hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2634        hlist_bl_unlock(b);
2635        return new;
2636mismatch:
2637        spin_unlock(&dentry->d_lock);
2638        dput(dentry);
2639        goto retry;
2640}
2641EXPORT_SYMBOL(d_alloc_parallel);
2642
2643void __d_lookup_done(struct dentry *dentry)
2644{
2645        struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2646                                                 dentry->d_name.hash);
2647        hlist_bl_lock(b);
2648        dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2649        __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2650        wake_up_all(dentry->d_wait);
2651        dentry->d_wait = NULL;
2652        hlist_bl_unlock(b);
2653        INIT_HLIST_NODE(&dentry->d_u.d_alias);
2654        INIT_LIST_HEAD(&dentry->d_lru);
2655}
2656EXPORT_SYMBOL(__d_lookup_done);
2657
2658/* inode->i_lock held if inode is non-NULL */
2659
2660static inline void __d_add(struct dentry *dentry, struct inode *inode)
2661{
2662        struct inode *dir = NULL;
2663        unsigned n;
2664        spin_lock(&dentry->d_lock);
2665        if (unlikely(d_in_lookup(dentry))) {
2666                dir = dentry->d_parent->d_inode;
2667                n = start_dir_add(dir);
2668                __d_lookup_done(dentry);
2669        }
2670        if (inode) {
2671                unsigned add_flags = d_flags_for_inode(inode);
2672                hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2673                raw_write_seqcount_begin(&dentry->d_seq);
2674                __d_set_inode_and_type(dentry, inode, add_flags);
2675                raw_write_seqcount_end(&dentry->d_seq);
2676                fsnotify_update_flags(dentry);
2677        }
2678        __d_rehash(dentry);
2679        if (dir)
2680                end_dir_add(dir, n);
2681        spin_unlock(&dentry->d_lock);
2682        if (inode)
2683                spin_unlock(&inode->i_lock);
2684}
2685
2686/**
2687 * d_add - add dentry to hash queues
2688 * @entry: dentry to add
2689 * @inode: The inode to attach to this dentry
2690 *
2691 * This adds the entry to the hash queues and initializes @inode.
2692 * The entry was actually filled in earlier during d_alloc().
2693 */
2694
2695void d_add(struct dentry *entry, struct inode *inode)
2696{
2697        if (inode) {
2698                security_d_instantiate(entry, inode);
2699                spin_lock(&inode->i_lock);
2700        }
2701        __d_add(entry, inode);
2702}
2703EXPORT_SYMBOL(d_add);
2704
2705/**
2706 * d_exact_alias - find and hash an exact unhashed alias
2707 * @entry: dentry to add
2708 * @inode: The inode to go with this dentry
2709 *
2710 * If an unhashed dentry with the same name/parent and desired
2711 * inode already exists, hash and return it.  Otherwise, return
2712 * NULL.
2713 *
2714 * Parent directory should be locked.
2715 */
2716struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2717{
2718        struct dentry *alias;
2719        unsigned int hash = entry->d_name.hash;
2720
2721        spin_lock(&inode->i_lock);
2722        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2723                /*
2724                 * Don't need alias->d_lock here, because aliases with
2725                 * d_parent == entry->d_parent are not subject to name or
2726                 * parent changes, because the parent inode i_mutex is held.
2727                 */
2728                if (alias->d_name.hash != hash)
2729                        continue;
2730                if (alias->d_parent != entry->d_parent)
2731                        continue;
2732                if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2733                        continue;
2734                spin_lock(&alias->d_lock);
2735                if (!d_unhashed(alias)) {
2736                        spin_unlock(&alias->d_lock);
2737                        alias = NULL;
2738                } else {
2739                        __dget_dlock(alias);
2740                        __d_rehash(alias);
2741                        spin_unlock(&alias->d_lock);
2742                }
2743                spin_unlock(&inode->i_lock);
2744                return alias;
2745        }
2746        spin_unlock(&inode->i_lock);
2747        return NULL;
2748}
2749EXPORT_SYMBOL(d_exact_alias);
2750
2751static void swap_names(struct dentry *dentry, struct dentry *target)
2752{
2753        if (unlikely(dname_external(target))) {
2754                if (unlikely(dname_external(dentry))) {
2755                        /*
2756                         * Both external: swap the pointers
2757                         */
2758                        swap(target->d_name.name, dentry->d_name.name);
2759                } else {
2760                        /*
2761                         * dentry:internal, target:external.  Steal target's
2762                         * storage and make target internal.
2763                         */
2764                        memcpy(target->d_iname, dentry->d_name.name,
2765                                        dentry->d_name.len + 1);
2766                        dentry->d_name.name = target->d_name.name;
2767                        target->d_name.name = target->d_iname;
2768                }
2769        } else {
2770                if (unlikely(dname_external(dentry))) {
2771                        /*
2772                         * dentry:external, target:internal.  Give dentry's
2773                         * storage to target and make dentry internal
2774                         */
2775                        memcpy(dentry->d_iname, target->d_name.name,
2776                                        target->d_name.len + 1);
2777                        target->d_name.name = dentry->d_name.name;
2778                        dentry->d_name.name = dentry->d_iname;
2779                } else {
2780                        /*
2781                         * Both are internal.
2782                         */
2783                        unsigned int i;
2784                        BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2785                        for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2786                                swap(((long *) &dentry->d_iname)[i],
2787                                     ((long *) &target->d_iname)[i]);
2788                        }
2789                }
2790        }
2791        swap(dentry->d_name.hash_len, target->d_name.hash_len);
2792}
2793
2794static void copy_name(struct dentry *dentry, struct dentry *target)
2795{
2796        struct external_name *old_name = NULL;
2797        if (unlikely(dname_external(dentry)))
2798                old_name = external_name(dentry);
2799        if (unlikely(dname_external(target))) {
2800                atomic_inc(&external_name(target)->u.count);
2801                dentry->d_name = target->d_name;
2802        } else {
2803                memcpy(dentry->d_iname, target->d_name.name,
2804                                target->d_name.len + 1);
2805                dentry->d_name.name = dentry->d_iname;
2806                dentry->d_name.hash_len = target->d_name.hash_len;
2807        }
2808        if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2809                kfree_rcu(old_name, u.head);
2810}
2811
2812/*
2813 * __d_move - move a dentry
2814 * @dentry: entry to move
2815 * @target: new dentry
2816 * @exchange: exchange the two dentries
2817 *
2818 * Update the dcache to reflect the move of a file name. Negative
2819 * dcache entries should not be moved in this way. Caller must hold
2820 * rename_lock, the i_mutex of the source and target directories,
2821 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2822 */
2823static void __d_move(struct dentry *dentry, struct dentry *target,
2824                     bool exchange)
2825{
2826        struct dentry *old_parent, *p;
2827        struct inode *dir = NULL;
2828        unsigned n;
2829
2830        WARN_ON(!dentry->d_inode);
2831        if (WARN_ON(dentry == target))
2832                return;
2833
2834        BUG_ON(d_ancestor(target, dentry));
2835        old_parent = dentry->d_parent;
2836        p = d_ancestor(old_parent, target);
2837        if (IS_ROOT(dentry)) {
2838                BUG_ON(p);
2839                spin_lock(&target->d_parent->d_lock);
2840        } else if (!p) {
2841                /* target is not a descendent of dentry->d_parent */
2842                spin_lock(&target->d_parent->d_lock);
2843                spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2844        } else {
2845                BUG_ON(p == dentry);
2846                spin_lock(&old_parent->d_lock);
2847                if (p != target)
2848                        spin_lock_nested(&target->d_parent->d_lock,
2849                                        DENTRY_D_LOCK_NESTED);
2850        }
2851        spin_lock_nested(&dentry->d_lock, 2);
2852        spin_lock_nested(&target->d_lock, 3);
2853
2854        if (unlikely(d_in_lookup(target))) {
2855                dir = target->d_parent->d_inode;
2856                n = start_dir_add(dir);
2857                __d_lookup_done(target);
2858        }
2859
2860        write_seqcount_begin(&dentry->d_seq);
2861        write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2862
2863        /* unhash both */
2864        if (!d_unhashed(dentry))
2865                ___d_drop(dentry);
2866        if (!d_unhashed(target))
2867                ___d_drop(target);
2868
2869        /* ... and switch them in the tree */
2870        dentry->d_parent = target->d_parent;
2871        if (!exchange) {
2872                copy_name(dentry, target);
2873                target->d_hash.pprev = NULL;
2874                dentry->d_parent->d_lockref.count++;
2875                if (dentry != old_parent) /* wasn't IS_ROOT */
2876                        WARN_ON(!--old_parent->d_lockref.count);
2877        } else {
2878                target->d_parent = old_parent;
2879                swap_names(dentry, target);
2880                list_move(&target->d_child, &target->d_parent->d_subdirs);
2881                __d_rehash(target);
2882                fsnotify_update_flags(target);
2883        }
2884        list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2885        __d_rehash(dentry);
2886        fsnotify_update_flags(dentry);
2887        fscrypt_handle_d_move(dentry);
2888
2889        write_seqcount_end(&target->d_seq);
2890        write_seqcount_end(&dentry->d_seq);
2891
2892        if (dir)
2893                end_dir_add(dir, n);
2894
2895        if (dentry->d_parent != old_parent)
2896                spin_unlock(&dentry->d_parent->d_lock);
2897        if (dentry != old_parent)
2898                spin_unlock(&old_parent->d_lock);
2899        spin_unlock(&target->d_lock);
2900        spin_unlock(&dentry->d_lock);
2901}
2902
2903/*
2904 * d_move - move a dentry
2905 * @dentry: entry to move
2906 * @target: new dentry
2907 *
2908 * Update the dcache to reflect the move of a file name. Negative
2909 * dcache entries should not be moved in this way. See the locking
2910 * requirements for __d_move.
2911 */
2912void d_move(struct dentry *dentry, struct dentry *target)
2913{
2914        write_seqlock(&rename_lock);
2915        __d_move(dentry, target, false);
2916        write_sequnlock(&rename_lock);
2917}
2918EXPORT_SYMBOL(d_move);
2919
2920/*
2921 * d_exchange - exchange two dentries
2922 * @dentry1: first dentry
2923 * @dentry2: second dentry
2924 */
2925void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2926{
2927        write_seqlock(&rename_lock);
2928
2929        WARN_ON(!dentry1->d_inode);
2930        WARN_ON(!dentry2->d_inode);
2931        WARN_ON(IS_ROOT(dentry1));
2932        WARN_ON(IS_ROOT(dentry2));
2933
2934        __d_move(dentry1, dentry2, true);
2935
2936        write_sequnlock(&rename_lock);
2937}
2938
2939/**
2940 * d_ancestor - search for an ancestor
2941 * @p1: ancestor dentry
2942 * @p2: child dentry
2943 *
2944 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2945 * an ancestor of p2, else NULL.
2946 */
2947struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2948{
2949        struct dentry *p;
2950
2951        for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2952                if (p->d_parent == p1)
2953                        return p;
2954        }
2955        return NULL;
2956}
2957
2958/*
2959 * This helper attempts to cope with remotely renamed directories
2960 *
2961 * It assumes that the caller is already holding
2962 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2963 *
2964 * Note: If ever the locking in lock_rename() changes, then please
2965 * remember to update this too...
2966 */
2967static int __d_unalias(struct inode *inode,
2968                struct dentry *dentry, struct dentry *alias)
2969{
2970        struct mutex *m1 = NULL;
2971        struct rw_semaphore *m2 = NULL;
2972        int ret = -ESTALE;
2973
2974        /* If alias and dentry share a parent, then no extra locks required */
2975        if (alias->d_parent == dentry->d_parent)
2976                goto out_unalias;
2977
2978        /* See lock_rename() */
2979        if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2980                goto out_err;
2981        m1 = &dentry->d_sb->s_vfs_rename_mutex;
2982        if (!inode_trylock_shared(alias->d_parent->d_inode))
2983                goto out_err;
2984        m2 = &alias->d_parent->d_inode->i_rwsem;
2985out_unalias:
2986        __d_move(alias, dentry, false);
2987        ret = 0;
2988out_err:
2989        if (m2)
2990                up_read(m2);
2991        if (m1)
2992                mutex_unlock(m1);
2993        return ret;
2994}
2995
2996/**
2997 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2998 * @inode:  the inode which may have a disconnected dentry
2999 * @dentry: a negative dentry which we want to point to the inode.
3000 *
3001 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3002 * place of the given dentry and return it, else simply d_add the inode
3003 * to the dentry and return NULL.
3004 *
3005 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3006 * we should error out: directories can't have multiple aliases.
3007 *
3008 * This is needed in the lookup routine of any filesystem that is exportable
3009 * (via knfsd) so that we can build dcache paths to directories effectively.
3010 *
3011 * If a dentry was found and moved, then it is returned.  Otherwise NULL
3012 * is returned.  This matches the expected return value of ->lookup.
3013 *
3014 * Cluster filesystems may call this function with a negative, hashed dentry.
3015 * In that case, we know that the inode will be a regular file, and also this
3016 * will only occur during atomic_open. So we need to check for the dentry
3017 * being already hashed only in the final case.
3018 */
3019struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3020{
3021        if (IS_ERR(inode))
3022                return ERR_CAST(inode);
3023
3024        BUG_ON(!d_unhashed(dentry));
3025
3026        if (!inode)
3027                goto out;
3028
3029        security_d_instantiate(dentry, inode);
3030        spin_lock(&inode->i_lock);
3031        if (S_ISDIR(inode->i_mode)) {
3032                struct dentry *new = __d_find_any_alias(inode);
3033                if (unlikely(new)) {
3034                        /* The reference to new ensures it remains an alias */
3035                        spin_unlock(&inode->i_lock);
3036                        write_seqlock(&rename_lock);
3037                        if (unlikely(d_ancestor(new, dentry))) {
3038                                write_sequnlock(&rename_lock);
3039                                dput(new);
3040                                new = ERR_PTR(-ELOOP);
3041                                pr_warn_ratelimited(
3042                                        "VFS: Lookup of '%s' in %s %s"
3043                                        " would have caused loop\n",
3044                                        dentry->d_name.name,
3045                                        inode->i_sb->s_type->name,
3046                                        inode->i_sb->s_id);
3047                        } else if (!IS_ROOT(new)) {
3048                                struct dentry *old_parent = dget(new->d_parent);
3049                                int err = __d_unalias(inode, dentry, new);
3050                                write_sequnlock(&rename_lock);
3051                                if (err) {
3052                                        dput(new);
3053                                        new = ERR_PTR(err);
3054                                }
3055                                dput(old_parent);
3056                        } else {
3057                                __d_move(new, dentry, false);
3058                                write_sequnlock(&rename_lock);
3059                        }
3060                        iput(inode);
3061                        return new;
3062                }
3063        }
3064out:
3065        __d_add(dentry, inode);
3066        return NULL;
3067}
3068EXPORT_SYMBOL(d_splice_alias);
3069
3070/*
3071 * Test whether new_dentry is a subdirectory of old_dentry.
3072 *
3073 * Trivially implemented using the dcache structure
3074 */
3075
3076/**
3077 * is_subdir - is new dentry a subdirectory of old_dentry
3078 * @new_dentry: new dentry
3079 * @old_dentry: old dentry
3080 *
3081 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3082 * Returns false otherwise.
3083 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3084 */
3085  
3086bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3087{
3088        bool result;
3089        unsigned seq;
3090
3091        if (new_dentry == old_dentry)
3092                return true;
3093
3094        do {
3095                /* for restarting inner loop in case of seq retry */
3096                seq = read_seqbegin(&rename_lock);
3097                /*
3098                 * Need rcu_readlock to protect against the d_parent trashing
3099                 * due to d_move
3100                 */
3101                rcu_read_lock();
3102                if (d_ancestor(old_dentry, new_dentry))
3103                        result = true;
3104                else
3105                        result = false;
3106                rcu_read_unlock();
3107        } while (read_seqretry(&rename_lock, seq));
3108
3109        return result;
3110}
3111EXPORT_SYMBOL(is_subdir);
3112
3113static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3114{
3115        struct dentry *root = data;
3116        if (dentry != root) {
3117                if (d_unhashed(dentry) || !dentry->d_inode)
3118                        return D_WALK_SKIP;
3119
3120                if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3121                        dentry->d_flags |= DCACHE_GENOCIDE;
3122                        dentry->d_lockref.count--;
3123                }
3124        }
3125        return D_WALK_CONTINUE;
3126}
3127
3128void d_genocide(struct dentry *parent)
3129{
3130        d_walk(parent, parent, d_genocide_kill);
3131}
3132
3133EXPORT_SYMBOL(d_genocide);
3134
3135void d_tmpfile(struct dentry *dentry, struct inode *inode)
3136{
3137        inode_dec_link_count(inode);
3138        BUG_ON(dentry->d_name.name != dentry->d_iname ||
3139                !hlist_unhashed(&dentry->d_u.d_alias) ||
3140                !d_unlinked(dentry));
3141        spin_lock(&dentry->d_parent->d_lock);
3142        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3143        dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3144                                (unsigned long long)inode->i_ino);
3145        spin_unlock(&dentry->d_lock);
3146        spin_unlock(&dentry->d_parent->d_lock);
3147        d_instantiate(dentry, inode);
3148}
3149EXPORT_SYMBOL(d_tmpfile);
3150
3151static __initdata unsigned long dhash_entries;
3152static int __init set_dhash_entries(char *str)
3153{
3154        if (!str)
3155                return 0;
3156        dhash_entries = simple_strtoul(str, &str, 0);
3157        return 1;
3158}
3159__setup("dhash_entries=", set_dhash_entries);
3160
3161static void __init dcache_init_early(void)
3162{
3163        /* If hashes are distributed across NUMA nodes, defer
3164         * hash allocation until vmalloc space is available.
3165         */
3166        if (hashdist)
3167                return;
3168
3169        dentry_hashtable =
3170                alloc_large_system_hash("Dentry cache",
3171                                        sizeof(struct hlist_bl_head),
3172                                        dhash_entries,
3173                                        13,
3174                                        HASH_EARLY | HASH_ZERO,
3175                                        &d_hash_shift,
3176                                        NULL,
3177                                        0,
3178                                        0);
3179        d_hash_shift = 32 - d_hash_shift;
3180}
3181
3182static void __init dcache_init(void)
3183{
3184        /*
3185         * A constructor could be added for stable state like the lists,
3186         * but it is probably not worth it because of the cache nature
3187         * of the dcache.
3188         */
3189        dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3190                SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3191                d_iname);
3192
3193        /* Hash may have been set up in dcache_init_early */
3194        if (!hashdist)
3195                return;
3196
3197        dentry_hashtable =
3198                alloc_large_system_hash("Dentry cache",
3199                                        sizeof(struct hlist_bl_head),
3200                                        dhash_entries,
3201                                        13,
3202                                        HASH_ZERO,
3203                                        &d_hash_shift,
3204                                        NULL,
3205                                        0,
3206                                        0);
3207        d_hash_shift = 32 - d_hash_shift;
3208}
3209
3210/* SLAB cache for __getname() consumers */
3211struct kmem_cache *names_cachep __read_mostly;
3212EXPORT_SYMBOL(names_cachep);
3213
3214void __init vfs_caches_init_early(void)
3215{
3216        int i;
3217
3218        for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3219                INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3220
3221        dcache_init_early();
3222        inode_init_early();
3223}
3224
3225void __init vfs_caches_init(void)
3226{
3227        names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3228                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3229
3230        dcache_init();
3231        inode_init();
3232        files_init();
3233        files_maxfiles_init();
3234        mnt_init();
3235        bdev_cache_init();
3236        chrdev_init();
3237}
3238