linux/fs/ecryptfs/messaging.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/**
   3 * eCryptfs: Linux filesystem encryption layer
   4 *
   5 * Copyright (C) 2004-2008 International Business Machines Corp.
   6 *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
   7 *              Tyler Hicks <code@tyhicks.com>
   8 */
   9#include <linux/sched.h>
  10#include <linux/slab.h>
  11#include <linux/user_namespace.h>
  12#include <linux/nsproxy.h>
  13#include "ecryptfs_kernel.h"
  14
  15static LIST_HEAD(ecryptfs_msg_ctx_free_list);
  16static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
  17static struct mutex ecryptfs_msg_ctx_lists_mux;
  18
  19static struct hlist_head *ecryptfs_daemon_hash;
  20struct mutex ecryptfs_daemon_hash_mux;
  21static int ecryptfs_hash_bits;
  22#define ecryptfs_current_euid_hash(uid) \
  23        hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits)
  24
  25static u32 ecryptfs_msg_counter;
  26static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
  27
  28/**
  29 * ecryptfs_acquire_free_msg_ctx
  30 * @msg_ctx: The context that was acquired from the free list
  31 *
  32 * Acquires a context element from the free list and locks the mutex
  33 * on the context.  Sets the msg_ctx task to current.  Returns zero on
  34 * success; non-zero on error or upon failure to acquire a free
  35 * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
  36 * held.
  37 */
  38static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
  39{
  40        struct list_head *p;
  41        int rc;
  42
  43        if (list_empty(&ecryptfs_msg_ctx_free_list)) {
  44                printk(KERN_WARNING "%s: The eCryptfs free "
  45                       "context list is empty.  It may be helpful to "
  46                       "specify the ecryptfs_message_buf_len "
  47                       "parameter to be greater than the current "
  48                       "value of [%d]\n", __func__, ecryptfs_message_buf_len);
  49                rc = -ENOMEM;
  50                goto out;
  51        }
  52        list_for_each(p, &ecryptfs_msg_ctx_free_list) {
  53                *msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
  54                if (mutex_trylock(&(*msg_ctx)->mux)) {
  55                        (*msg_ctx)->task = current;
  56                        rc = 0;
  57                        goto out;
  58                }
  59        }
  60        rc = -ENOMEM;
  61out:
  62        return rc;
  63}
  64
  65/**
  66 * ecryptfs_msg_ctx_free_to_alloc
  67 * @msg_ctx: The context to move from the free list to the alloc list
  68 *
  69 * Must be called with ecryptfs_msg_ctx_lists_mux held.
  70 */
  71static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
  72{
  73        list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
  74        msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
  75        msg_ctx->counter = ++ecryptfs_msg_counter;
  76}
  77
  78/**
  79 * ecryptfs_msg_ctx_alloc_to_free
  80 * @msg_ctx: The context to move from the alloc list to the free list
  81 *
  82 * Must be called with ecryptfs_msg_ctx_lists_mux held.
  83 */
  84void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
  85{
  86        list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
  87        kfree(msg_ctx->msg);
  88        msg_ctx->msg = NULL;
  89        msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
  90}
  91
  92/**
  93 * ecryptfs_find_daemon_by_euid
  94 * @daemon: If return value is zero, points to the desired daemon pointer
  95 *
  96 * Must be called with ecryptfs_daemon_hash_mux held.
  97 *
  98 * Search the hash list for the current effective user id.
  99 *
 100 * Returns zero if the user id exists in the list; non-zero otherwise.
 101 */
 102int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon)
 103{
 104        int rc;
 105
 106        hlist_for_each_entry(*daemon,
 107                            &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()],
 108                            euid_chain) {
 109                if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) {
 110                        rc = 0;
 111                        goto out;
 112                }
 113        }
 114        rc = -EINVAL;
 115out:
 116        return rc;
 117}
 118
 119/**
 120 * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
 121 * @daemon: Pointer to set to newly allocated daemon struct
 122 * @file: File used when opening /dev/ecryptfs
 123 *
 124 * Must be called ceremoniously while in possession of
 125 * ecryptfs_sacred_daemon_hash_mux
 126 *
 127 * Returns zero on success; non-zero otherwise
 128 */
 129int
 130ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file)
 131{
 132        int rc = 0;
 133
 134        (*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
 135        if (!(*daemon)) {
 136                rc = -ENOMEM;
 137                goto out;
 138        }
 139        (*daemon)->file = file;
 140        mutex_init(&(*daemon)->mux);
 141        INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
 142        init_waitqueue_head(&(*daemon)->wait);
 143        (*daemon)->num_queued_msg_ctx = 0;
 144        hlist_add_head(&(*daemon)->euid_chain,
 145                       &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]);
 146out:
 147        return rc;
 148}
 149
 150/**
 151 * ecryptfs_exorcise_daemon - Destroy the daemon struct
 152 *
 153 * Must be called ceremoniously while in possession of
 154 * ecryptfs_daemon_hash_mux and the daemon's own mux.
 155 */
 156int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
 157{
 158        struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
 159        int rc = 0;
 160
 161        mutex_lock(&daemon->mux);
 162        if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
 163            || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
 164                rc = -EBUSY;
 165                mutex_unlock(&daemon->mux);
 166                goto out;
 167        }
 168        list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
 169                                 &daemon->msg_ctx_out_queue, daemon_out_list) {
 170                list_del(&msg_ctx->daemon_out_list);
 171                daemon->num_queued_msg_ctx--;
 172                printk(KERN_WARNING "%s: Warning: dropping message that is in "
 173                       "the out queue of a dying daemon\n", __func__);
 174                ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
 175        }
 176        hlist_del(&daemon->euid_chain);
 177        mutex_unlock(&daemon->mux);
 178        kfree_sensitive(daemon);
 179out:
 180        return rc;
 181}
 182
 183/**
 184 * ecryptfs_process_reponse
 185 * @msg: The ecryptfs message received; the caller should sanity check
 186 *       msg->data_len and free the memory
 187 * @seq: The sequence number of the message; must match the sequence
 188 *       number for the existing message context waiting for this
 189 *       response
 190 *
 191 * Processes a response message after sending an operation request to
 192 * userspace. Some other process is awaiting this response. Before
 193 * sending out its first communications, the other process allocated a
 194 * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
 195 * response message contains this index so that we can copy over the
 196 * response message into the msg_ctx that the process holds a
 197 * reference to. The other process is going to wake up, check to see
 198 * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
 199 * proceed to read off and process the response message. Returns zero
 200 * upon delivery to desired context element; non-zero upon delivery
 201 * failure or error.
 202 *
 203 * Returns zero on success; non-zero otherwise
 204 */
 205int ecryptfs_process_response(struct ecryptfs_daemon *daemon,
 206                              struct ecryptfs_message *msg, u32 seq)
 207{
 208        struct ecryptfs_msg_ctx *msg_ctx;
 209        size_t msg_size;
 210        int rc;
 211
 212        if (msg->index >= ecryptfs_message_buf_len) {
 213                rc = -EINVAL;
 214                printk(KERN_ERR "%s: Attempt to reference "
 215                       "context buffer at index [%d]; maximum "
 216                       "allowable is [%d]\n", __func__, msg->index,
 217                       (ecryptfs_message_buf_len - 1));
 218                goto out;
 219        }
 220        msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
 221        mutex_lock(&msg_ctx->mux);
 222        if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
 223                rc = -EINVAL;
 224                printk(KERN_WARNING "%s: Desired context element is not "
 225                       "pending a response\n", __func__);
 226                goto unlock;
 227        } else if (msg_ctx->counter != seq) {
 228                rc = -EINVAL;
 229                printk(KERN_WARNING "%s: Invalid message sequence; "
 230                       "expected [%d]; received [%d]\n", __func__,
 231                       msg_ctx->counter, seq);
 232                goto unlock;
 233        }
 234        msg_size = (sizeof(*msg) + msg->data_len);
 235        msg_ctx->msg = kmemdup(msg, msg_size, GFP_KERNEL);
 236        if (!msg_ctx->msg) {
 237                rc = -ENOMEM;
 238                goto unlock;
 239        }
 240        msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
 241        wake_up_process(msg_ctx->task);
 242        rc = 0;
 243unlock:
 244        mutex_unlock(&msg_ctx->mux);
 245out:
 246        return rc;
 247}
 248
 249/**
 250 * ecryptfs_send_message_locked
 251 * @data: The data to send
 252 * @data_len: The length of data
 253 * @msg_ctx: The message context allocated for the send
 254 *
 255 * Must be called with ecryptfs_daemon_hash_mux held.
 256 *
 257 * Returns zero on success; non-zero otherwise
 258 */
 259static int
 260ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
 261                             struct ecryptfs_msg_ctx **msg_ctx)
 262{
 263        struct ecryptfs_daemon *daemon;
 264        int rc;
 265
 266        rc = ecryptfs_find_daemon_by_euid(&daemon);
 267        if (rc) {
 268                rc = -ENOTCONN;
 269                goto out;
 270        }
 271        mutex_lock(&ecryptfs_msg_ctx_lists_mux);
 272        rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
 273        if (rc) {
 274                mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
 275                printk(KERN_WARNING "%s: Could not claim a free "
 276                       "context element\n", __func__);
 277                goto out;
 278        }
 279        ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
 280        mutex_unlock(&(*msg_ctx)->mux);
 281        mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
 282        rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
 283                                   daemon);
 284        if (rc)
 285                printk(KERN_ERR "%s: Error attempting to send message to "
 286                       "userspace daemon; rc = [%d]\n", __func__, rc);
 287out:
 288        return rc;
 289}
 290
 291/**
 292 * ecryptfs_send_message
 293 * @data: The data to send
 294 * @data_len: The length of data
 295 * @msg_ctx: The message context allocated for the send
 296 *
 297 * Grabs ecryptfs_daemon_hash_mux.
 298 *
 299 * Returns zero on success; non-zero otherwise
 300 */
 301int ecryptfs_send_message(char *data, int data_len,
 302                          struct ecryptfs_msg_ctx **msg_ctx)
 303{
 304        int rc;
 305
 306        mutex_lock(&ecryptfs_daemon_hash_mux);
 307        rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
 308                                          msg_ctx);
 309        mutex_unlock(&ecryptfs_daemon_hash_mux);
 310        return rc;
 311}
 312
 313/**
 314 * ecryptfs_wait_for_response
 315 * @msg_ctx: The context that was assigned when sending a message
 316 * @msg: The incoming message from userspace; not set if rc != 0
 317 *
 318 * Sleeps until awaken by ecryptfs_receive_message or until the amount
 319 * of time exceeds ecryptfs_message_wait_timeout.  If zero is
 320 * returned, msg will point to a valid message from userspace; a
 321 * non-zero value is returned upon failure to receive a message or an
 322 * error occurs. Callee must free @msg on success.
 323 */
 324int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
 325                               struct ecryptfs_message **msg)
 326{
 327        signed long timeout = ecryptfs_message_wait_timeout * HZ;
 328        int rc = 0;
 329
 330sleep:
 331        timeout = schedule_timeout_interruptible(timeout);
 332        mutex_lock(&ecryptfs_msg_ctx_lists_mux);
 333        mutex_lock(&msg_ctx->mux);
 334        if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
 335                if (timeout) {
 336                        mutex_unlock(&msg_ctx->mux);
 337                        mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
 338                        goto sleep;
 339                }
 340                rc = -ENOMSG;
 341        } else {
 342                *msg = msg_ctx->msg;
 343                msg_ctx->msg = NULL;
 344        }
 345        ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
 346        mutex_unlock(&msg_ctx->mux);
 347        mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
 348        return rc;
 349}
 350
 351int __init ecryptfs_init_messaging(void)
 352{
 353        int i;
 354        int rc = 0;
 355
 356        if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
 357                ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
 358                printk(KERN_WARNING "%s: Specified number of users is "
 359                       "too large, defaulting to [%d] users\n", __func__,
 360                       ecryptfs_number_of_users);
 361        }
 362        mutex_init(&ecryptfs_daemon_hash_mux);
 363        mutex_lock(&ecryptfs_daemon_hash_mux);
 364        ecryptfs_hash_bits = 1;
 365        while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
 366                ecryptfs_hash_bits++;
 367        ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
 368                                        * (1 << ecryptfs_hash_bits)),
 369                                       GFP_KERNEL);
 370        if (!ecryptfs_daemon_hash) {
 371                rc = -ENOMEM;
 372                mutex_unlock(&ecryptfs_daemon_hash_mux);
 373                goto out;
 374        }
 375        for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
 376                INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
 377        mutex_unlock(&ecryptfs_daemon_hash_mux);
 378        ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
 379                                        * ecryptfs_message_buf_len),
 380                                       GFP_KERNEL);
 381        if (!ecryptfs_msg_ctx_arr) {
 382                kfree(ecryptfs_daemon_hash);
 383                rc = -ENOMEM;
 384                goto out;
 385        }
 386        mutex_init(&ecryptfs_msg_ctx_lists_mux);
 387        mutex_lock(&ecryptfs_msg_ctx_lists_mux);
 388        ecryptfs_msg_counter = 0;
 389        for (i = 0; i < ecryptfs_message_buf_len; i++) {
 390                INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
 391                INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
 392                mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
 393                mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
 394                ecryptfs_msg_ctx_arr[i].index = i;
 395                ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
 396                ecryptfs_msg_ctx_arr[i].counter = 0;
 397                ecryptfs_msg_ctx_arr[i].task = NULL;
 398                ecryptfs_msg_ctx_arr[i].msg = NULL;
 399                list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
 400                              &ecryptfs_msg_ctx_free_list);
 401                mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
 402        }
 403        mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
 404        rc = ecryptfs_init_ecryptfs_miscdev();
 405        if (rc)
 406                ecryptfs_release_messaging();
 407out:
 408        return rc;
 409}
 410
 411void ecryptfs_release_messaging(void)
 412{
 413        if (ecryptfs_msg_ctx_arr) {
 414                int i;
 415
 416                mutex_lock(&ecryptfs_msg_ctx_lists_mux);
 417                for (i = 0; i < ecryptfs_message_buf_len; i++) {
 418                        mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
 419                        kfree(ecryptfs_msg_ctx_arr[i].msg);
 420                        mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
 421                }
 422                kfree(ecryptfs_msg_ctx_arr);
 423                mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
 424        }
 425        if (ecryptfs_daemon_hash) {
 426                struct ecryptfs_daemon *daemon;
 427                struct hlist_node *n;
 428                int i;
 429
 430                mutex_lock(&ecryptfs_daemon_hash_mux);
 431                for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
 432                        int rc;
 433
 434                        hlist_for_each_entry_safe(daemon, n,
 435                                                  &ecryptfs_daemon_hash[i],
 436                                                  euid_chain) {
 437                                rc = ecryptfs_exorcise_daemon(daemon);
 438                                if (rc)
 439                                        printk(KERN_ERR "%s: Error whilst "
 440                                               "attempting to destroy daemon; "
 441                                               "rc = [%d]. Dazed and confused, "
 442                                               "but trying to continue.\n",
 443                                               __func__, rc);
 444                        }
 445                }
 446                kfree(ecryptfs_daemon_hash);
 447                mutex_unlock(&ecryptfs_daemon_hash_mux);
 448        }
 449        ecryptfs_destroy_ecryptfs_miscdev();
 450        return;
 451}
 452