linux/fs/ext2/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext2/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Goal-directed block allocation by Stephen Tweedie
  17 *      (sct@dcs.ed.ac.uk), 1993, 1998
  18 *  Big-endian to little-endian byte-swapping/bitmaps by
  19 *        David S. Miller (davem@caip.rutgers.edu), 1995
  20 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  21 *      (jj@sunsite.ms.mff.cuni.cz)
  22 *
  23 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  24 */
  25
  26#include <linux/time.h>
  27#include <linux/highuid.h>
  28#include <linux/pagemap.h>
  29#include <linux/dax.h>
  30#include <linux/blkdev.h>
  31#include <linux/quotaops.h>
  32#include <linux/writeback.h>
  33#include <linux/buffer_head.h>
  34#include <linux/mpage.h>
  35#include <linux/fiemap.h>
  36#include <linux/iomap.h>
  37#include <linux/namei.h>
  38#include <linux/uio.h>
  39#include <linux/fiemap.h>
  40#include "ext2.h"
  41#include "acl.h"
  42#include "xattr.h"
  43
  44static int __ext2_write_inode(struct inode *inode, int do_sync);
  45
  46/*
  47 * Test whether an inode is a fast symlink.
  48 */
  49static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  50{
  51        int ea_blocks = EXT2_I(inode)->i_file_acl ?
  52                (inode->i_sb->s_blocksize >> 9) : 0;
  53
  54        return (S_ISLNK(inode->i_mode) &&
  55                inode->i_blocks - ea_blocks == 0);
  56}
  57
  58static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
  59
  60static void ext2_write_failed(struct address_space *mapping, loff_t to)
  61{
  62        struct inode *inode = mapping->host;
  63
  64        if (to > inode->i_size) {
  65                truncate_pagecache(inode, inode->i_size);
  66                ext2_truncate_blocks(inode, inode->i_size);
  67        }
  68}
  69
  70/*
  71 * Called at the last iput() if i_nlink is zero.
  72 */
  73void ext2_evict_inode(struct inode * inode)
  74{
  75        struct ext2_block_alloc_info *rsv;
  76        int want_delete = 0;
  77
  78        if (!inode->i_nlink && !is_bad_inode(inode)) {
  79                want_delete = 1;
  80                dquot_initialize(inode);
  81        } else {
  82                dquot_drop(inode);
  83        }
  84
  85        truncate_inode_pages_final(&inode->i_data);
  86
  87        if (want_delete) {
  88                sb_start_intwrite(inode->i_sb);
  89                /* set dtime */
  90                EXT2_I(inode)->i_dtime  = ktime_get_real_seconds();
  91                mark_inode_dirty(inode);
  92                __ext2_write_inode(inode, inode_needs_sync(inode));
  93                /* truncate to 0 */
  94                inode->i_size = 0;
  95                if (inode->i_blocks)
  96                        ext2_truncate_blocks(inode, 0);
  97                ext2_xattr_delete_inode(inode);
  98        }
  99
 100        invalidate_inode_buffers(inode);
 101        clear_inode(inode);
 102
 103        ext2_discard_reservation(inode);
 104        rsv = EXT2_I(inode)->i_block_alloc_info;
 105        EXT2_I(inode)->i_block_alloc_info = NULL;
 106        if (unlikely(rsv))
 107                kfree(rsv);
 108
 109        if (want_delete) {
 110                ext2_free_inode(inode);
 111                sb_end_intwrite(inode->i_sb);
 112        }
 113}
 114
 115typedef struct {
 116        __le32  *p;
 117        __le32  key;
 118        struct buffer_head *bh;
 119} Indirect;
 120
 121static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 122{
 123        p->key = *(p->p = v);
 124        p->bh = bh;
 125}
 126
 127static inline int verify_chain(Indirect *from, Indirect *to)
 128{
 129        while (from <= to && from->key == *from->p)
 130                from++;
 131        return (from > to);
 132}
 133
 134/**
 135 *      ext2_block_to_path - parse the block number into array of offsets
 136 *      @inode: inode in question (we are only interested in its superblock)
 137 *      @i_block: block number to be parsed
 138 *      @offsets: array to store the offsets in
 139 *      @boundary: set this non-zero if the referred-to block is likely to be
 140 *             followed (on disk) by an indirect block.
 141 *      To store the locations of file's data ext2 uses a data structure common
 142 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 143 *      data blocks at leaves and indirect blocks in intermediate nodes.
 144 *      This function translates the block number into path in that tree -
 145 *      return value is the path length and @offsets[n] is the offset of
 146 *      pointer to (n+1)th node in the nth one. If @block is out of range
 147 *      (negative or too large) warning is printed and zero returned.
 148 *
 149 *      Note: function doesn't find node addresses, so no IO is needed. All
 150 *      we need to know is the capacity of indirect blocks (taken from the
 151 *      inode->i_sb).
 152 */
 153
 154/*
 155 * Portability note: the last comparison (check that we fit into triple
 156 * indirect block) is spelled differently, because otherwise on an
 157 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 158 * if our filesystem had 8Kb blocks. We might use long long, but that would
 159 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 160 * i_block would have to be negative in the very beginning, so we would not
 161 * get there at all.
 162 */
 163
 164static int ext2_block_to_path(struct inode *inode,
 165                        long i_block, int offsets[4], int *boundary)
 166{
 167        int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 168        int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 169        const long direct_blocks = EXT2_NDIR_BLOCKS,
 170                indirect_blocks = ptrs,
 171                double_blocks = (1 << (ptrs_bits * 2));
 172        int n = 0;
 173        int final = 0;
 174
 175        if (i_block < 0) {
 176                ext2_msg(inode->i_sb, KERN_WARNING,
 177                        "warning: %s: block < 0", __func__);
 178        } else if (i_block < direct_blocks) {
 179                offsets[n++] = i_block;
 180                final = direct_blocks;
 181        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 182                offsets[n++] = EXT2_IND_BLOCK;
 183                offsets[n++] = i_block;
 184                final = ptrs;
 185        } else if ((i_block -= indirect_blocks) < double_blocks) {
 186                offsets[n++] = EXT2_DIND_BLOCK;
 187                offsets[n++] = i_block >> ptrs_bits;
 188                offsets[n++] = i_block & (ptrs - 1);
 189                final = ptrs;
 190        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 191                offsets[n++] = EXT2_TIND_BLOCK;
 192                offsets[n++] = i_block >> (ptrs_bits * 2);
 193                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 194                offsets[n++] = i_block & (ptrs - 1);
 195                final = ptrs;
 196        } else {
 197                ext2_msg(inode->i_sb, KERN_WARNING,
 198                        "warning: %s: block is too big", __func__);
 199        }
 200        if (boundary)
 201                *boundary = final - 1 - (i_block & (ptrs - 1));
 202
 203        return n;
 204}
 205
 206/**
 207 *      ext2_get_branch - read the chain of indirect blocks leading to data
 208 *      @inode: inode in question
 209 *      @depth: depth of the chain (1 - direct pointer, etc.)
 210 *      @offsets: offsets of pointers in inode/indirect blocks
 211 *      @chain: place to store the result
 212 *      @err: here we store the error value
 213 *
 214 *      Function fills the array of triples <key, p, bh> and returns %NULL
 215 *      if everything went OK or the pointer to the last filled triple
 216 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 217 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 218 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 219 *      number (it points into struct inode for i==0 and into the bh->b_data
 220 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 221 *      block for i>0 and NULL for i==0. In other words, it holds the block
 222 *      numbers of the chain, addresses they were taken from (and where we can
 223 *      verify that chain did not change) and buffer_heads hosting these
 224 *      numbers.
 225 *
 226 *      Function stops when it stumbles upon zero pointer (absent block)
 227 *              (pointer to last triple returned, *@err == 0)
 228 *      or when it gets an IO error reading an indirect block
 229 *              (ditto, *@err == -EIO)
 230 *      or when it notices that chain had been changed while it was reading
 231 *              (ditto, *@err == -EAGAIN)
 232 *      or when it reads all @depth-1 indirect blocks successfully and finds
 233 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 234 */
 235static Indirect *ext2_get_branch(struct inode *inode,
 236                                 int depth,
 237                                 int *offsets,
 238                                 Indirect chain[4],
 239                                 int *err)
 240{
 241        struct super_block *sb = inode->i_sb;
 242        Indirect *p = chain;
 243        struct buffer_head *bh;
 244
 245        *err = 0;
 246        /* i_data is not going away, no lock needed */
 247        add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 248        if (!p->key)
 249                goto no_block;
 250        while (--depth) {
 251                bh = sb_bread(sb, le32_to_cpu(p->key));
 252                if (!bh)
 253                        goto failure;
 254                read_lock(&EXT2_I(inode)->i_meta_lock);
 255                if (!verify_chain(chain, p))
 256                        goto changed;
 257                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 258                read_unlock(&EXT2_I(inode)->i_meta_lock);
 259                if (!p->key)
 260                        goto no_block;
 261        }
 262        return NULL;
 263
 264changed:
 265        read_unlock(&EXT2_I(inode)->i_meta_lock);
 266        brelse(bh);
 267        *err = -EAGAIN;
 268        goto no_block;
 269failure:
 270        *err = -EIO;
 271no_block:
 272        return p;
 273}
 274
 275/**
 276 *      ext2_find_near - find a place for allocation with sufficient locality
 277 *      @inode: owner
 278 *      @ind: descriptor of indirect block.
 279 *
 280 *      This function returns the preferred place for block allocation.
 281 *      It is used when heuristic for sequential allocation fails.
 282 *      Rules are:
 283 *        + if there is a block to the left of our position - allocate near it.
 284 *        + if pointer will live in indirect block - allocate near that block.
 285 *        + if pointer will live in inode - allocate in the same cylinder group.
 286 *
 287 * In the latter case we colour the starting block by the callers PID to
 288 * prevent it from clashing with concurrent allocations for a different inode
 289 * in the same block group.   The PID is used here so that functionally related
 290 * files will be close-by on-disk.
 291 *
 292 *      Caller must make sure that @ind is valid and will stay that way.
 293 */
 294
 295static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 296{
 297        struct ext2_inode_info *ei = EXT2_I(inode);
 298        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 299        __le32 *p;
 300        ext2_fsblk_t bg_start;
 301        ext2_fsblk_t colour;
 302
 303        /* Try to find previous block */
 304        for (p = ind->p - 1; p >= start; p--)
 305                if (*p)
 306                        return le32_to_cpu(*p);
 307
 308        /* No such thing, so let's try location of indirect block */
 309        if (ind->bh)
 310                return ind->bh->b_blocknr;
 311
 312        /*
 313         * It is going to be referred from inode itself? OK, just put it into
 314         * the same cylinder group then.
 315         */
 316        bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 317        colour = (current->pid % 16) *
 318                        (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 319        return bg_start + colour;
 320}
 321
 322/**
 323 *      ext2_find_goal - find a preferred place for allocation.
 324 *      @inode: owner
 325 *      @block:  block we want
 326 *      @partial: pointer to the last triple within a chain
 327 *
 328 *      Returns preferred place for a block (the goal).
 329 */
 330
 331static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 332                                          Indirect *partial)
 333{
 334        struct ext2_block_alloc_info *block_i;
 335
 336        block_i = EXT2_I(inode)->i_block_alloc_info;
 337
 338        /*
 339         * try the heuristic for sequential allocation,
 340         * failing that at least try to get decent locality.
 341         */
 342        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 343                && (block_i->last_alloc_physical_block != 0)) {
 344                return block_i->last_alloc_physical_block + 1;
 345        }
 346
 347        return ext2_find_near(inode, partial);
 348}
 349
 350/**
 351 *      ext2_blks_to_allocate: Look up the block map and count the number
 352 *      of direct blocks need to be allocated for the given branch.
 353 *
 354 *      @branch: chain of indirect blocks
 355 *      @k: number of blocks need for indirect blocks
 356 *      @blks: number of data blocks to be mapped.
 357 *      @blocks_to_boundary:  the offset in the indirect block
 358 *
 359 *      return the number of direct blocks to allocate.
 360 */
 361static int
 362ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 363                int blocks_to_boundary)
 364{
 365        unsigned long count = 0;
 366
 367        /*
 368         * Simple case, [t,d]Indirect block(s) has not allocated yet
 369         * then it's clear blocks on that path have not allocated
 370         */
 371        if (k > 0) {
 372                /* right now don't hanel cross boundary allocation */
 373                if (blks < blocks_to_boundary + 1)
 374                        count += blks;
 375                else
 376                        count += blocks_to_boundary + 1;
 377                return count;
 378        }
 379
 380        count++;
 381        while (count < blks && count <= blocks_to_boundary
 382                && le32_to_cpu(*(branch[0].p + count)) == 0) {
 383                count++;
 384        }
 385        return count;
 386}
 387
 388/**
 389 *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
 390 *      @indirect_blks: the number of blocks need to allocate for indirect
 391 *                      blocks
 392 *      @blks: the number of blocks need to allocate for direct blocks
 393 *      @new_blocks: on return it will store the new block numbers for
 394 *      the indirect blocks(if needed) and the first direct block,
 395 */
 396static int ext2_alloc_blocks(struct inode *inode,
 397                        ext2_fsblk_t goal, int indirect_blks, int blks,
 398                        ext2_fsblk_t new_blocks[4], int *err)
 399{
 400        int target, i;
 401        unsigned long count = 0;
 402        int index = 0;
 403        ext2_fsblk_t current_block = 0;
 404        int ret = 0;
 405
 406        /*
 407         * Here we try to allocate the requested multiple blocks at once,
 408         * on a best-effort basis.
 409         * To build a branch, we should allocate blocks for
 410         * the indirect blocks(if not allocated yet), and at least
 411         * the first direct block of this branch.  That's the
 412         * minimum number of blocks need to allocate(required)
 413         */
 414        target = blks + indirect_blks;
 415
 416        while (1) {
 417                count = target;
 418                /* allocating blocks for indirect blocks and direct blocks */
 419                current_block = ext2_new_blocks(inode,goal,&count,err);
 420                if (*err)
 421                        goto failed_out;
 422
 423                target -= count;
 424                /* allocate blocks for indirect blocks */
 425                while (index < indirect_blks && count) {
 426                        new_blocks[index++] = current_block++;
 427                        count--;
 428                }
 429
 430                if (count > 0)
 431                        break;
 432        }
 433
 434        /* save the new block number for the first direct block */
 435        new_blocks[index] = current_block;
 436
 437        /* total number of blocks allocated for direct blocks */
 438        ret = count;
 439        *err = 0;
 440        return ret;
 441failed_out:
 442        for (i = 0; i <index; i++)
 443                ext2_free_blocks(inode, new_blocks[i], 1);
 444        if (index)
 445                mark_inode_dirty(inode);
 446        return ret;
 447}
 448
 449/**
 450 *      ext2_alloc_branch - allocate and set up a chain of blocks.
 451 *      @inode: owner
 452 *      @indirect_blks: depth of the chain (number of blocks to allocate)
 453 *      @blks: number of allocated direct blocks
 454 *      @goal: preferred place for allocation
 455 *      @offsets: offsets (in the blocks) to store the pointers to next.
 456 *      @branch: place to store the chain in.
 457 *
 458 *      This function allocates @num blocks, zeroes out all but the last one,
 459 *      links them into chain and (if we are synchronous) writes them to disk.
 460 *      In other words, it prepares a branch that can be spliced onto the
 461 *      inode. It stores the information about that chain in the branch[], in
 462 *      the same format as ext2_get_branch() would do. We are calling it after
 463 *      we had read the existing part of chain and partial points to the last
 464 *      triple of that (one with zero ->key). Upon the exit we have the same
 465 *      picture as after the successful ext2_get_block(), except that in one
 466 *      place chain is disconnected - *branch->p is still zero (we did not
 467 *      set the last link), but branch->key contains the number that should
 468 *      be placed into *branch->p to fill that gap.
 469 *
 470 *      If allocation fails we free all blocks we've allocated (and forget
 471 *      their buffer_heads) and return the error value the from failed
 472 *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 473 *      as described above and return 0.
 474 */
 475
 476static int ext2_alloc_branch(struct inode *inode,
 477                        int indirect_blks, int *blks, ext2_fsblk_t goal,
 478                        int *offsets, Indirect *branch)
 479{
 480        int blocksize = inode->i_sb->s_blocksize;
 481        int i, n = 0;
 482        int err = 0;
 483        struct buffer_head *bh;
 484        int num;
 485        ext2_fsblk_t new_blocks[4];
 486        ext2_fsblk_t current_block;
 487
 488        num = ext2_alloc_blocks(inode, goal, indirect_blks,
 489                                *blks, new_blocks, &err);
 490        if (err)
 491                return err;
 492
 493        branch[0].key = cpu_to_le32(new_blocks[0]);
 494        /*
 495         * metadata blocks and data blocks are allocated.
 496         */
 497        for (n = 1; n <= indirect_blks;  n++) {
 498                /*
 499                 * Get buffer_head for parent block, zero it out
 500                 * and set the pointer to new one, then send
 501                 * parent to disk.
 502                 */
 503                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 504                if (unlikely(!bh)) {
 505                        err = -ENOMEM;
 506                        goto failed;
 507                }
 508                branch[n].bh = bh;
 509                lock_buffer(bh);
 510                memset(bh->b_data, 0, blocksize);
 511                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 512                branch[n].key = cpu_to_le32(new_blocks[n]);
 513                *branch[n].p = branch[n].key;
 514                if ( n == indirect_blks) {
 515                        current_block = new_blocks[n];
 516                        /*
 517                         * End of chain, update the last new metablock of
 518                         * the chain to point to the new allocated
 519                         * data blocks numbers
 520                         */
 521                        for (i=1; i < num; i++)
 522                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 523                }
 524                set_buffer_uptodate(bh);
 525                unlock_buffer(bh);
 526                mark_buffer_dirty_inode(bh, inode);
 527                /* We used to sync bh here if IS_SYNC(inode).
 528                 * But we now rely upon generic_write_sync()
 529                 * and b_inode_buffers.  But not for directories.
 530                 */
 531                if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 532                        sync_dirty_buffer(bh);
 533        }
 534        *blks = num;
 535        return err;
 536
 537failed:
 538        for (i = 1; i < n; i++)
 539                bforget(branch[i].bh);
 540        for (i = 0; i < indirect_blks; i++)
 541                ext2_free_blocks(inode, new_blocks[i], 1);
 542        ext2_free_blocks(inode, new_blocks[i], num);
 543        return err;
 544}
 545
 546/**
 547 * ext2_splice_branch - splice the allocated branch onto inode.
 548 * @inode: owner
 549 * @block: (logical) number of block we are adding
 550 * @where: location of missing link
 551 * @num:   number of indirect blocks we are adding
 552 * @blks:  number of direct blocks we are adding
 553 *
 554 * This function fills the missing link and does all housekeeping needed in
 555 * inode (->i_blocks, etc.). In case of success we end up with the full
 556 * chain to new block and return 0.
 557 */
 558static void ext2_splice_branch(struct inode *inode,
 559                        long block, Indirect *where, int num, int blks)
 560{
 561        int i;
 562        struct ext2_block_alloc_info *block_i;
 563        ext2_fsblk_t current_block;
 564
 565        block_i = EXT2_I(inode)->i_block_alloc_info;
 566
 567        /* XXX LOCKING probably should have i_meta_lock ?*/
 568        /* That's it */
 569
 570        *where->p = where->key;
 571
 572        /*
 573         * Update the host buffer_head or inode to point to more just allocated
 574         * direct blocks blocks
 575         */
 576        if (num == 0 && blks > 1) {
 577                current_block = le32_to_cpu(where->key) + 1;
 578                for (i = 1; i < blks; i++)
 579                        *(where->p + i ) = cpu_to_le32(current_block++);
 580        }
 581
 582        /*
 583         * update the most recently allocated logical & physical block
 584         * in i_block_alloc_info, to assist find the proper goal block for next
 585         * allocation
 586         */
 587        if (block_i) {
 588                block_i->last_alloc_logical_block = block + blks - 1;
 589                block_i->last_alloc_physical_block =
 590                                le32_to_cpu(where[num].key) + blks - 1;
 591        }
 592
 593        /* We are done with atomic stuff, now do the rest of housekeeping */
 594
 595        /* had we spliced it onto indirect block? */
 596        if (where->bh)
 597                mark_buffer_dirty_inode(where->bh, inode);
 598
 599        inode->i_ctime = current_time(inode);
 600        mark_inode_dirty(inode);
 601}
 602
 603/*
 604 * Allocation strategy is simple: if we have to allocate something, we will
 605 * have to go the whole way to leaf. So let's do it before attaching anything
 606 * to tree, set linkage between the newborn blocks, write them if sync is
 607 * required, recheck the path, free and repeat if check fails, otherwise
 608 * set the last missing link (that will protect us from any truncate-generated
 609 * removals - all blocks on the path are immune now) and possibly force the
 610 * write on the parent block.
 611 * That has a nice additional property: no special recovery from the failed
 612 * allocations is needed - we simply release blocks and do not touch anything
 613 * reachable from inode.
 614 *
 615 * `handle' can be NULL if create == 0.
 616 *
 617 * return > 0, # of blocks mapped or allocated.
 618 * return = 0, if plain lookup failed.
 619 * return < 0, error case.
 620 */
 621static int ext2_get_blocks(struct inode *inode,
 622                           sector_t iblock, unsigned long maxblocks,
 623                           u32 *bno, bool *new, bool *boundary,
 624                           int create)
 625{
 626        int err;
 627        int offsets[4];
 628        Indirect chain[4];
 629        Indirect *partial;
 630        ext2_fsblk_t goal;
 631        int indirect_blks;
 632        int blocks_to_boundary = 0;
 633        int depth;
 634        struct ext2_inode_info *ei = EXT2_I(inode);
 635        int count = 0;
 636        ext2_fsblk_t first_block = 0;
 637
 638        BUG_ON(maxblocks == 0);
 639
 640        depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 641
 642        if (depth == 0)
 643                return -EIO;
 644
 645        partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 646        /* Simplest case - block found, no allocation needed */
 647        if (!partial) {
 648                first_block = le32_to_cpu(chain[depth - 1].key);
 649                count++;
 650                /*map more blocks*/
 651                while (count < maxblocks && count <= blocks_to_boundary) {
 652                        ext2_fsblk_t blk;
 653
 654                        if (!verify_chain(chain, chain + depth - 1)) {
 655                                /*
 656                                 * Indirect block might be removed by
 657                                 * truncate while we were reading it.
 658                                 * Handling of that case: forget what we've
 659                                 * got now, go to reread.
 660                                 */
 661                                err = -EAGAIN;
 662                                count = 0;
 663                                partial = chain + depth - 1;
 664                                break;
 665                        }
 666                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 667                        if (blk == first_block + count)
 668                                count++;
 669                        else
 670                                break;
 671                }
 672                if (err != -EAGAIN)
 673                        goto got_it;
 674        }
 675
 676        /* Next simple case - plain lookup or failed read of indirect block */
 677        if (!create || err == -EIO)
 678                goto cleanup;
 679
 680        mutex_lock(&ei->truncate_mutex);
 681        /*
 682         * If the indirect block is missing while we are reading
 683         * the chain(ext2_get_branch() returns -EAGAIN err), or
 684         * if the chain has been changed after we grab the semaphore,
 685         * (either because another process truncated this branch, or
 686         * another get_block allocated this branch) re-grab the chain to see if
 687         * the request block has been allocated or not.
 688         *
 689         * Since we already block the truncate/other get_block
 690         * at this point, we will have the current copy of the chain when we
 691         * splice the branch into the tree.
 692         */
 693        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 694                while (partial > chain) {
 695                        brelse(partial->bh);
 696                        partial--;
 697                }
 698                partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 699                if (!partial) {
 700                        count++;
 701                        mutex_unlock(&ei->truncate_mutex);
 702                        goto got_it;
 703                }
 704
 705                if (err) {
 706                        mutex_unlock(&ei->truncate_mutex);
 707                        goto cleanup;
 708                }
 709        }
 710
 711        /*
 712         * Okay, we need to do block allocation.  Lazily initialize the block
 713         * allocation info here if necessary
 714        */
 715        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 716                ext2_init_block_alloc_info(inode);
 717
 718        goal = ext2_find_goal(inode, iblock, partial);
 719
 720        /* the number of blocks need to allocate for [d,t]indirect blocks */
 721        indirect_blks = (chain + depth) - partial - 1;
 722        /*
 723         * Next look up the indirect map to count the total number of
 724         * direct blocks to allocate for this branch.
 725         */
 726        count = ext2_blks_to_allocate(partial, indirect_blks,
 727                                        maxblocks, blocks_to_boundary);
 728        /*
 729         * XXX ???? Block out ext2_truncate while we alter the tree
 730         */
 731        err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 732                                offsets + (partial - chain), partial);
 733
 734        if (err) {
 735                mutex_unlock(&ei->truncate_mutex);
 736                goto cleanup;
 737        }
 738
 739        if (IS_DAX(inode)) {
 740                /*
 741                 * We must unmap blocks before zeroing so that writeback cannot
 742                 * overwrite zeros with stale data from block device page cache.
 743                 */
 744                clean_bdev_aliases(inode->i_sb->s_bdev,
 745                                   le32_to_cpu(chain[depth-1].key),
 746                                   count);
 747                /*
 748                 * block must be initialised before we put it in the tree
 749                 * so that it's not found by another thread before it's
 750                 * initialised
 751                 */
 752                err = sb_issue_zeroout(inode->i_sb,
 753                                le32_to_cpu(chain[depth-1].key), count,
 754                                GFP_NOFS);
 755                if (err) {
 756                        mutex_unlock(&ei->truncate_mutex);
 757                        goto cleanup;
 758                }
 759        }
 760        *new = true;
 761
 762        ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 763        mutex_unlock(&ei->truncate_mutex);
 764got_it:
 765        if (count > blocks_to_boundary)
 766                *boundary = true;
 767        err = count;
 768        /* Clean up and exit */
 769        partial = chain + depth - 1;    /* the whole chain */
 770cleanup:
 771        while (partial > chain) {
 772                brelse(partial->bh);
 773                partial--;
 774        }
 775        if (err > 0)
 776                *bno = le32_to_cpu(chain[depth-1].key);
 777        return err;
 778}
 779
 780int ext2_get_block(struct inode *inode, sector_t iblock,
 781                struct buffer_head *bh_result, int create)
 782{
 783        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 784        bool new = false, boundary = false;
 785        u32 bno;
 786        int ret;
 787
 788        ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
 789                        create);
 790        if (ret <= 0)
 791                return ret;
 792
 793        map_bh(bh_result, inode->i_sb, bno);
 794        bh_result->b_size = (ret << inode->i_blkbits);
 795        if (new)
 796                set_buffer_new(bh_result);
 797        if (boundary)
 798                set_buffer_boundary(bh_result);
 799        return 0;
 800
 801}
 802
 803#ifdef CONFIG_FS_DAX
 804static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
 805                unsigned flags, struct iomap *iomap, struct iomap *srcmap)
 806{
 807        unsigned int blkbits = inode->i_blkbits;
 808        unsigned long first_block = offset >> blkbits;
 809        unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
 810        struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
 811        bool new = false, boundary = false;
 812        u32 bno;
 813        int ret;
 814
 815        ret = ext2_get_blocks(inode, first_block, max_blocks,
 816                        &bno, &new, &boundary, flags & IOMAP_WRITE);
 817        if (ret < 0)
 818                return ret;
 819
 820        iomap->flags = 0;
 821        iomap->bdev = inode->i_sb->s_bdev;
 822        iomap->offset = (u64)first_block << blkbits;
 823        iomap->dax_dev = sbi->s_daxdev;
 824
 825        if (ret == 0) {
 826                iomap->type = IOMAP_HOLE;
 827                iomap->addr = IOMAP_NULL_ADDR;
 828                iomap->length = 1 << blkbits;
 829        } else {
 830                iomap->type = IOMAP_MAPPED;
 831                iomap->addr = (u64)bno << blkbits;
 832                iomap->length = (u64)ret << blkbits;
 833                iomap->flags |= IOMAP_F_MERGED;
 834        }
 835
 836        if (new)
 837                iomap->flags |= IOMAP_F_NEW;
 838        return 0;
 839}
 840
 841static int
 842ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
 843                ssize_t written, unsigned flags, struct iomap *iomap)
 844{
 845        if (iomap->type == IOMAP_MAPPED &&
 846            written < length &&
 847            (flags & IOMAP_WRITE))
 848                ext2_write_failed(inode->i_mapping, offset + length);
 849        return 0;
 850}
 851
 852const struct iomap_ops ext2_iomap_ops = {
 853        .iomap_begin            = ext2_iomap_begin,
 854        .iomap_end              = ext2_iomap_end,
 855};
 856#else
 857/* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
 858const struct iomap_ops ext2_iomap_ops;
 859#endif /* CONFIG_FS_DAX */
 860
 861int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 862                u64 start, u64 len)
 863{
 864        return generic_block_fiemap(inode, fieinfo, start, len,
 865                                    ext2_get_block);
 866}
 867
 868static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 869{
 870        return block_write_full_page(page, ext2_get_block, wbc);
 871}
 872
 873static int ext2_readpage(struct file *file, struct page *page)
 874{
 875        return mpage_readpage(page, ext2_get_block);
 876}
 877
 878static void ext2_readahead(struct readahead_control *rac)
 879{
 880        mpage_readahead(rac, ext2_get_block);
 881}
 882
 883static int
 884ext2_write_begin(struct file *file, struct address_space *mapping,
 885                loff_t pos, unsigned len, unsigned flags,
 886                struct page **pagep, void **fsdata)
 887{
 888        int ret;
 889
 890        ret = block_write_begin(mapping, pos, len, flags, pagep,
 891                                ext2_get_block);
 892        if (ret < 0)
 893                ext2_write_failed(mapping, pos + len);
 894        return ret;
 895}
 896
 897static int ext2_write_end(struct file *file, struct address_space *mapping,
 898                        loff_t pos, unsigned len, unsigned copied,
 899                        struct page *page, void *fsdata)
 900{
 901        int ret;
 902
 903        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 904        if (ret < len)
 905                ext2_write_failed(mapping, pos + len);
 906        return ret;
 907}
 908
 909static int
 910ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 911                loff_t pos, unsigned len, unsigned flags,
 912                struct page **pagep, void **fsdata)
 913{
 914        int ret;
 915
 916        ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
 917                               ext2_get_block);
 918        if (ret < 0)
 919                ext2_write_failed(mapping, pos + len);
 920        return ret;
 921}
 922
 923static int ext2_nobh_writepage(struct page *page,
 924                        struct writeback_control *wbc)
 925{
 926        return nobh_writepage(page, ext2_get_block, wbc);
 927}
 928
 929static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 930{
 931        return generic_block_bmap(mapping,block,ext2_get_block);
 932}
 933
 934static ssize_t
 935ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 936{
 937        struct file *file = iocb->ki_filp;
 938        struct address_space *mapping = file->f_mapping;
 939        struct inode *inode = mapping->host;
 940        size_t count = iov_iter_count(iter);
 941        loff_t offset = iocb->ki_pos;
 942        ssize_t ret;
 943
 944        ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
 945        if (ret < 0 && iov_iter_rw(iter) == WRITE)
 946                ext2_write_failed(mapping, offset + count);
 947        return ret;
 948}
 949
 950static int
 951ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 952{
 953        return mpage_writepages(mapping, wbc, ext2_get_block);
 954}
 955
 956static int
 957ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
 958{
 959        struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
 960
 961        return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
 962}
 963
 964const struct address_space_operations ext2_aops = {
 965        .readpage               = ext2_readpage,
 966        .readahead              = ext2_readahead,
 967        .writepage              = ext2_writepage,
 968        .write_begin            = ext2_write_begin,
 969        .write_end              = ext2_write_end,
 970        .bmap                   = ext2_bmap,
 971        .direct_IO              = ext2_direct_IO,
 972        .writepages             = ext2_writepages,
 973        .migratepage            = buffer_migrate_page,
 974        .is_partially_uptodate  = block_is_partially_uptodate,
 975        .error_remove_page      = generic_error_remove_page,
 976};
 977
 978const struct address_space_operations ext2_nobh_aops = {
 979        .readpage               = ext2_readpage,
 980        .readahead              = ext2_readahead,
 981        .writepage              = ext2_nobh_writepage,
 982        .write_begin            = ext2_nobh_write_begin,
 983        .write_end              = nobh_write_end,
 984        .bmap                   = ext2_bmap,
 985        .direct_IO              = ext2_direct_IO,
 986        .writepages             = ext2_writepages,
 987        .migratepage            = buffer_migrate_page,
 988        .error_remove_page      = generic_error_remove_page,
 989};
 990
 991static const struct address_space_operations ext2_dax_aops = {
 992        .writepages             = ext2_dax_writepages,
 993        .direct_IO              = noop_direct_IO,
 994        .set_page_dirty         = noop_set_page_dirty,
 995        .invalidatepage         = noop_invalidatepage,
 996};
 997
 998/*
 999 * Probably it should be a library function... search for first non-zero word
1000 * or memcmp with zero_page, whatever is better for particular architecture.
1001 * Linus?
1002 */
1003static inline int all_zeroes(__le32 *p, __le32 *q)
1004{
1005        while (p < q)
1006                if (*p++)
1007                        return 0;
1008        return 1;
1009}
1010
1011/**
1012 *      ext2_find_shared - find the indirect blocks for partial truncation.
1013 *      @inode:   inode in question
1014 *      @depth:   depth of the affected branch
1015 *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1016 *      @chain:   place to store the pointers to partial indirect blocks
1017 *      @top:     place to the (detached) top of branch
1018 *
1019 *      This is a helper function used by ext2_truncate().
1020 *
1021 *      When we do truncate() we may have to clean the ends of several indirect
1022 *      blocks but leave the blocks themselves alive. Block is partially
1023 *      truncated if some data below the new i_size is referred from it (and
1024 *      it is on the path to the first completely truncated data block, indeed).
1025 *      We have to free the top of that path along with everything to the right
1026 *      of the path. Since no allocation past the truncation point is possible
1027 *      until ext2_truncate() finishes, we may safely do the latter, but top
1028 *      of branch may require special attention - pageout below the truncation
1029 *      point might try to populate it.
1030 *
1031 *      We atomically detach the top of branch from the tree, store the block
1032 *      number of its root in *@top, pointers to buffer_heads of partially
1033 *      truncated blocks - in @chain[].bh and pointers to their last elements
1034 *      that should not be removed - in @chain[].p. Return value is the pointer
1035 *      to last filled element of @chain.
1036 *
1037 *      The work left to caller to do the actual freeing of subtrees:
1038 *              a) free the subtree starting from *@top
1039 *              b) free the subtrees whose roots are stored in
1040 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1041 *              c) free the subtrees growing from the inode past the @chain[0].p
1042 *                      (no partially truncated stuff there).
1043 */
1044
1045static Indirect *ext2_find_shared(struct inode *inode,
1046                                int depth,
1047                                int offsets[4],
1048                                Indirect chain[4],
1049                                __le32 *top)
1050{
1051        Indirect *partial, *p;
1052        int k, err;
1053
1054        *top = 0;
1055        for (k = depth; k > 1 && !offsets[k-1]; k--)
1056                ;
1057        partial = ext2_get_branch(inode, k, offsets, chain, &err);
1058        if (!partial)
1059                partial = chain + k-1;
1060        /*
1061         * If the branch acquired continuation since we've looked at it -
1062         * fine, it should all survive and (new) top doesn't belong to us.
1063         */
1064        write_lock(&EXT2_I(inode)->i_meta_lock);
1065        if (!partial->key && *partial->p) {
1066                write_unlock(&EXT2_I(inode)->i_meta_lock);
1067                goto no_top;
1068        }
1069        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1070                ;
1071        /*
1072         * OK, we've found the last block that must survive. The rest of our
1073         * branch should be detached before unlocking. However, if that rest
1074         * of branch is all ours and does not grow immediately from the inode
1075         * it's easier to cheat and just decrement partial->p.
1076         */
1077        if (p == chain + k - 1 && p > chain) {
1078                p->p--;
1079        } else {
1080                *top = *p->p;
1081                *p->p = 0;
1082        }
1083        write_unlock(&EXT2_I(inode)->i_meta_lock);
1084
1085        while(partial > p)
1086        {
1087                brelse(partial->bh);
1088                partial--;
1089        }
1090no_top:
1091        return partial;
1092}
1093
1094/**
1095 *      ext2_free_data - free a list of data blocks
1096 *      @inode: inode we are dealing with
1097 *      @p:     array of block numbers
1098 *      @q:     points immediately past the end of array
1099 *
1100 *      We are freeing all blocks referred from that array (numbers are
1101 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1102 *      appropriately.
1103 */
1104static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1105{
1106        unsigned long block_to_free = 0, count = 0;
1107        unsigned long nr;
1108
1109        for ( ; p < q ; p++) {
1110                nr = le32_to_cpu(*p);
1111                if (nr) {
1112                        *p = 0;
1113                        /* accumulate blocks to free if they're contiguous */
1114                        if (count == 0)
1115                                goto free_this;
1116                        else if (block_to_free == nr - count)
1117                                count++;
1118                        else {
1119                                ext2_free_blocks (inode, block_to_free, count);
1120                                mark_inode_dirty(inode);
1121                        free_this:
1122                                block_to_free = nr;
1123                                count = 1;
1124                        }
1125                }
1126        }
1127        if (count > 0) {
1128                ext2_free_blocks (inode, block_to_free, count);
1129                mark_inode_dirty(inode);
1130        }
1131}
1132
1133/**
1134 *      ext2_free_branches - free an array of branches
1135 *      @inode: inode we are dealing with
1136 *      @p:     array of block numbers
1137 *      @q:     pointer immediately past the end of array
1138 *      @depth: depth of the branches to free
1139 *
1140 *      We are freeing all blocks referred from these branches (numbers are
1141 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1142 *      appropriately.
1143 */
1144static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1145{
1146        struct buffer_head * bh;
1147        unsigned long nr;
1148
1149        if (depth--) {
1150                int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1151                for ( ; p < q ; p++) {
1152                        nr = le32_to_cpu(*p);
1153                        if (!nr)
1154                                continue;
1155                        *p = 0;
1156                        bh = sb_bread(inode->i_sb, nr);
1157                        /*
1158                         * A read failure? Report error and clear slot
1159                         * (should be rare).
1160                         */ 
1161                        if (!bh) {
1162                                ext2_error(inode->i_sb, "ext2_free_branches",
1163                                        "Read failure, inode=%ld, block=%ld",
1164                                        inode->i_ino, nr);
1165                                continue;
1166                        }
1167                        ext2_free_branches(inode,
1168                                           (__le32*)bh->b_data,
1169                                           (__le32*)bh->b_data + addr_per_block,
1170                                           depth);
1171                        bforget(bh);
1172                        ext2_free_blocks(inode, nr, 1);
1173                        mark_inode_dirty(inode);
1174                }
1175        } else
1176                ext2_free_data(inode, p, q);
1177}
1178
1179/* dax_sem must be held when calling this function */
1180static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1181{
1182        __le32 *i_data = EXT2_I(inode)->i_data;
1183        struct ext2_inode_info *ei = EXT2_I(inode);
1184        int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1185        int offsets[4];
1186        Indirect chain[4];
1187        Indirect *partial;
1188        __le32 nr = 0;
1189        int n;
1190        long iblock;
1191        unsigned blocksize;
1192        blocksize = inode->i_sb->s_blocksize;
1193        iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1194
1195#ifdef CONFIG_FS_DAX
1196        WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1197#endif
1198
1199        n = ext2_block_to_path(inode, iblock, offsets, NULL);
1200        if (n == 0)
1201                return;
1202
1203        /*
1204         * From here we block out all ext2_get_block() callers who want to
1205         * modify the block allocation tree.
1206         */
1207        mutex_lock(&ei->truncate_mutex);
1208
1209        if (n == 1) {
1210                ext2_free_data(inode, i_data+offsets[0],
1211                                        i_data + EXT2_NDIR_BLOCKS);
1212                goto do_indirects;
1213        }
1214
1215        partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1216        /* Kill the top of shared branch (already detached) */
1217        if (nr) {
1218                if (partial == chain)
1219                        mark_inode_dirty(inode);
1220                else
1221                        mark_buffer_dirty_inode(partial->bh, inode);
1222                ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1223        }
1224        /* Clear the ends of indirect blocks on the shared branch */
1225        while (partial > chain) {
1226                ext2_free_branches(inode,
1227                                   partial->p + 1,
1228                                   (__le32*)partial->bh->b_data+addr_per_block,
1229                                   (chain+n-1) - partial);
1230                mark_buffer_dirty_inode(partial->bh, inode);
1231                brelse (partial->bh);
1232                partial--;
1233        }
1234do_indirects:
1235        /* Kill the remaining (whole) subtrees */
1236        switch (offsets[0]) {
1237                default:
1238                        nr = i_data[EXT2_IND_BLOCK];
1239                        if (nr) {
1240                                i_data[EXT2_IND_BLOCK] = 0;
1241                                mark_inode_dirty(inode);
1242                                ext2_free_branches(inode, &nr, &nr+1, 1);
1243                        }
1244                        fallthrough;
1245                case EXT2_IND_BLOCK:
1246                        nr = i_data[EXT2_DIND_BLOCK];
1247                        if (nr) {
1248                                i_data[EXT2_DIND_BLOCK] = 0;
1249                                mark_inode_dirty(inode);
1250                                ext2_free_branches(inode, &nr, &nr+1, 2);
1251                        }
1252                        fallthrough;
1253                case EXT2_DIND_BLOCK:
1254                        nr = i_data[EXT2_TIND_BLOCK];
1255                        if (nr) {
1256                                i_data[EXT2_TIND_BLOCK] = 0;
1257                                mark_inode_dirty(inode);
1258                                ext2_free_branches(inode, &nr, &nr+1, 3);
1259                        }
1260                case EXT2_TIND_BLOCK:
1261                        ;
1262        }
1263
1264        ext2_discard_reservation(inode);
1265
1266        mutex_unlock(&ei->truncate_mutex);
1267}
1268
1269static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1270{
1271        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1272            S_ISLNK(inode->i_mode)))
1273                return;
1274        if (ext2_inode_is_fast_symlink(inode))
1275                return;
1276
1277        dax_sem_down_write(EXT2_I(inode));
1278        __ext2_truncate_blocks(inode, offset);
1279        dax_sem_up_write(EXT2_I(inode));
1280}
1281
1282static int ext2_setsize(struct inode *inode, loff_t newsize)
1283{
1284        int error;
1285
1286        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1287            S_ISLNK(inode->i_mode)))
1288                return -EINVAL;
1289        if (ext2_inode_is_fast_symlink(inode))
1290                return -EINVAL;
1291        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1292                return -EPERM;
1293
1294        inode_dio_wait(inode);
1295
1296        if (IS_DAX(inode)) {
1297                error = iomap_zero_range(inode, newsize,
1298                                         PAGE_ALIGN(newsize) - newsize, NULL,
1299                                         &ext2_iomap_ops);
1300        } else if (test_opt(inode->i_sb, NOBH))
1301                error = nobh_truncate_page(inode->i_mapping,
1302                                newsize, ext2_get_block);
1303        else
1304                error = block_truncate_page(inode->i_mapping,
1305                                newsize, ext2_get_block);
1306        if (error)
1307                return error;
1308
1309        dax_sem_down_write(EXT2_I(inode));
1310        truncate_setsize(inode, newsize);
1311        __ext2_truncate_blocks(inode, newsize);
1312        dax_sem_up_write(EXT2_I(inode));
1313
1314        inode->i_mtime = inode->i_ctime = current_time(inode);
1315        if (inode_needs_sync(inode)) {
1316                sync_mapping_buffers(inode->i_mapping);
1317                sync_inode_metadata(inode, 1);
1318        } else {
1319                mark_inode_dirty(inode);
1320        }
1321
1322        return 0;
1323}
1324
1325static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1326                                        struct buffer_head **p)
1327{
1328        struct buffer_head * bh;
1329        unsigned long block_group;
1330        unsigned long block;
1331        unsigned long offset;
1332        struct ext2_group_desc * gdp;
1333
1334        *p = NULL;
1335        if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1336            ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1337                goto Einval;
1338
1339        block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1340        gdp = ext2_get_group_desc(sb, block_group, NULL);
1341        if (!gdp)
1342                goto Egdp;
1343        /*
1344         * Figure out the offset within the block group inode table
1345         */
1346        offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1347        block = le32_to_cpu(gdp->bg_inode_table) +
1348                (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1349        if (!(bh = sb_bread(sb, block)))
1350                goto Eio;
1351
1352        *p = bh;
1353        offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1354        return (struct ext2_inode *) (bh->b_data + offset);
1355
1356Einval:
1357        ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1358                   (unsigned long) ino);
1359        return ERR_PTR(-EINVAL);
1360Eio:
1361        ext2_error(sb, "ext2_get_inode",
1362                   "unable to read inode block - inode=%lu, block=%lu",
1363                   (unsigned long) ino, block);
1364Egdp:
1365        return ERR_PTR(-EIO);
1366}
1367
1368void ext2_set_inode_flags(struct inode *inode)
1369{
1370        unsigned int flags = EXT2_I(inode)->i_flags;
1371
1372        inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1373                                S_DIRSYNC | S_DAX);
1374        if (flags & EXT2_SYNC_FL)
1375                inode->i_flags |= S_SYNC;
1376        if (flags & EXT2_APPEND_FL)
1377                inode->i_flags |= S_APPEND;
1378        if (flags & EXT2_IMMUTABLE_FL)
1379                inode->i_flags |= S_IMMUTABLE;
1380        if (flags & EXT2_NOATIME_FL)
1381                inode->i_flags |= S_NOATIME;
1382        if (flags & EXT2_DIRSYNC_FL)
1383                inode->i_flags |= S_DIRSYNC;
1384        if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1385                inode->i_flags |= S_DAX;
1386}
1387
1388void ext2_set_file_ops(struct inode *inode)
1389{
1390        inode->i_op = &ext2_file_inode_operations;
1391        inode->i_fop = &ext2_file_operations;
1392        if (IS_DAX(inode))
1393                inode->i_mapping->a_ops = &ext2_dax_aops;
1394        else if (test_opt(inode->i_sb, NOBH))
1395                inode->i_mapping->a_ops = &ext2_nobh_aops;
1396        else
1397                inode->i_mapping->a_ops = &ext2_aops;
1398}
1399
1400struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1401{
1402        struct ext2_inode_info *ei;
1403        struct buffer_head * bh = NULL;
1404        struct ext2_inode *raw_inode;
1405        struct inode *inode;
1406        long ret = -EIO;
1407        int n;
1408        uid_t i_uid;
1409        gid_t i_gid;
1410
1411        inode = iget_locked(sb, ino);
1412        if (!inode)
1413                return ERR_PTR(-ENOMEM);
1414        if (!(inode->i_state & I_NEW))
1415                return inode;
1416
1417        ei = EXT2_I(inode);
1418        ei->i_block_alloc_info = NULL;
1419
1420        raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1421        if (IS_ERR(raw_inode)) {
1422                ret = PTR_ERR(raw_inode);
1423                goto bad_inode;
1424        }
1425
1426        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1427        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1428        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1429        if (!(test_opt (inode->i_sb, NO_UID32))) {
1430                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1431                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1432        }
1433        i_uid_write(inode, i_uid);
1434        i_gid_write(inode, i_gid);
1435        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1436        inode->i_size = le32_to_cpu(raw_inode->i_size);
1437        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1438        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1439        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1440        inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1441        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1442        /* We now have enough fields to check if the inode was active or not.
1443         * This is needed because nfsd might try to access dead inodes
1444         * the test is that same one that e2fsck uses
1445         * NeilBrown 1999oct15
1446         */
1447        if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1448                /* this inode is deleted */
1449                ret = -ESTALE;
1450                goto bad_inode;
1451        }
1452        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1453        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1454        ext2_set_inode_flags(inode);
1455        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1456        ei->i_frag_no = raw_inode->i_frag;
1457        ei->i_frag_size = raw_inode->i_fsize;
1458        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1459        ei->i_dir_acl = 0;
1460
1461        if (ei->i_file_acl &&
1462            !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1463                ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1464                           ei->i_file_acl);
1465                ret = -EFSCORRUPTED;
1466                goto bad_inode;
1467        }
1468
1469        if (S_ISREG(inode->i_mode))
1470                inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1471        else
1472                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1473        if (i_size_read(inode) < 0) {
1474                ret = -EFSCORRUPTED;
1475                goto bad_inode;
1476        }
1477        ei->i_dtime = 0;
1478        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1479        ei->i_state = 0;
1480        ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1481        ei->i_dir_start_lookup = 0;
1482
1483        /*
1484         * NOTE! The in-memory inode i_data array is in little-endian order
1485         * even on big-endian machines: we do NOT byteswap the block numbers!
1486         */
1487        for (n = 0; n < EXT2_N_BLOCKS; n++)
1488                ei->i_data[n] = raw_inode->i_block[n];
1489
1490        if (S_ISREG(inode->i_mode)) {
1491                ext2_set_file_ops(inode);
1492        } else if (S_ISDIR(inode->i_mode)) {
1493                inode->i_op = &ext2_dir_inode_operations;
1494                inode->i_fop = &ext2_dir_operations;
1495                if (test_opt(inode->i_sb, NOBH))
1496                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1497                else
1498                        inode->i_mapping->a_ops = &ext2_aops;
1499        } else if (S_ISLNK(inode->i_mode)) {
1500                if (ext2_inode_is_fast_symlink(inode)) {
1501                        inode->i_link = (char *)ei->i_data;
1502                        inode->i_op = &ext2_fast_symlink_inode_operations;
1503                        nd_terminate_link(ei->i_data, inode->i_size,
1504                                sizeof(ei->i_data) - 1);
1505                } else {
1506                        inode->i_op = &ext2_symlink_inode_operations;
1507                        inode_nohighmem(inode);
1508                        if (test_opt(inode->i_sb, NOBH))
1509                                inode->i_mapping->a_ops = &ext2_nobh_aops;
1510                        else
1511                                inode->i_mapping->a_ops = &ext2_aops;
1512                }
1513        } else {
1514                inode->i_op = &ext2_special_inode_operations;
1515                if (raw_inode->i_block[0])
1516                        init_special_inode(inode, inode->i_mode,
1517                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1518                else 
1519                        init_special_inode(inode, inode->i_mode,
1520                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1521        }
1522        brelse (bh);
1523        unlock_new_inode(inode);
1524        return inode;
1525        
1526bad_inode:
1527        brelse(bh);
1528        iget_failed(inode);
1529        return ERR_PTR(ret);
1530}
1531
1532static int __ext2_write_inode(struct inode *inode, int do_sync)
1533{
1534        struct ext2_inode_info *ei = EXT2_I(inode);
1535        struct super_block *sb = inode->i_sb;
1536        ino_t ino = inode->i_ino;
1537        uid_t uid = i_uid_read(inode);
1538        gid_t gid = i_gid_read(inode);
1539        struct buffer_head * bh;
1540        struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1541        int n;
1542        int err = 0;
1543
1544        if (IS_ERR(raw_inode))
1545                return -EIO;
1546
1547        /* For fields not not tracking in the in-memory inode,
1548         * initialise them to zero for new inodes. */
1549        if (ei->i_state & EXT2_STATE_NEW)
1550                memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1551
1552        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1553        if (!(test_opt(sb, NO_UID32))) {
1554                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1555                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1556/*
1557 * Fix up interoperability with old kernels. Otherwise, old inodes get
1558 * re-used with the upper 16 bits of the uid/gid intact
1559 */
1560                if (!ei->i_dtime) {
1561                        raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1562                        raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1563                } else {
1564                        raw_inode->i_uid_high = 0;
1565                        raw_inode->i_gid_high = 0;
1566                }
1567        } else {
1568                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1569                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1570                raw_inode->i_uid_high = 0;
1571                raw_inode->i_gid_high = 0;
1572        }
1573        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1574        raw_inode->i_size = cpu_to_le32(inode->i_size);
1575        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1576        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1577        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1578
1579        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1580        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1581        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1582        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1583        raw_inode->i_frag = ei->i_frag_no;
1584        raw_inode->i_fsize = ei->i_frag_size;
1585        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1586        if (!S_ISREG(inode->i_mode))
1587                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1588        else {
1589                raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1590                if (inode->i_size > 0x7fffffffULL) {
1591                        if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1592                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1593                            EXT2_SB(sb)->s_es->s_rev_level ==
1594                                        cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1595                               /* If this is the first large file
1596                                * created, add a flag to the superblock.
1597                                */
1598                                spin_lock(&EXT2_SB(sb)->s_lock);
1599                                ext2_update_dynamic_rev(sb);
1600                                EXT2_SET_RO_COMPAT_FEATURE(sb,
1601                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1602                                spin_unlock(&EXT2_SB(sb)->s_lock);
1603                                ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1604                        }
1605                }
1606        }
1607        
1608        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1609        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1610                if (old_valid_dev(inode->i_rdev)) {
1611                        raw_inode->i_block[0] =
1612                                cpu_to_le32(old_encode_dev(inode->i_rdev));
1613                        raw_inode->i_block[1] = 0;
1614                } else {
1615                        raw_inode->i_block[0] = 0;
1616                        raw_inode->i_block[1] =
1617                                cpu_to_le32(new_encode_dev(inode->i_rdev));
1618                        raw_inode->i_block[2] = 0;
1619                }
1620        } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1621                raw_inode->i_block[n] = ei->i_data[n];
1622        mark_buffer_dirty(bh);
1623        if (do_sync) {
1624                sync_dirty_buffer(bh);
1625                if (buffer_req(bh) && !buffer_uptodate(bh)) {
1626                        printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1627                                sb->s_id, (unsigned long) ino);
1628                        err = -EIO;
1629                }
1630        }
1631        ei->i_state &= ~EXT2_STATE_NEW;
1632        brelse (bh);
1633        return err;
1634}
1635
1636int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1637{
1638        return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1639}
1640
1641int ext2_getattr(const struct path *path, struct kstat *stat,
1642                u32 request_mask, unsigned int query_flags)
1643{
1644        struct inode *inode = d_inode(path->dentry);
1645        struct ext2_inode_info *ei = EXT2_I(inode);
1646        unsigned int flags;
1647
1648        flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1649        if (flags & EXT2_APPEND_FL)
1650                stat->attributes |= STATX_ATTR_APPEND;
1651        if (flags & EXT2_COMPR_FL)
1652                stat->attributes |= STATX_ATTR_COMPRESSED;
1653        if (flags & EXT2_IMMUTABLE_FL)
1654                stat->attributes |= STATX_ATTR_IMMUTABLE;
1655        if (flags & EXT2_NODUMP_FL)
1656                stat->attributes |= STATX_ATTR_NODUMP;
1657        stat->attributes_mask |= (STATX_ATTR_APPEND |
1658                        STATX_ATTR_COMPRESSED |
1659                        STATX_ATTR_ENCRYPTED |
1660                        STATX_ATTR_IMMUTABLE |
1661                        STATX_ATTR_NODUMP);
1662
1663        generic_fillattr(inode, stat);
1664        return 0;
1665}
1666
1667int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1668{
1669        struct inode *inode = d_inode(dentry);
1670        int error;
1671
1672        error = setattr_prepare(dentry, iattr);
1673        if (error)
1674                return error;
1675
1676        if (is_quota_modification(inode, iattr)) {
1677                error = dquot_initialize(inode);
1678                if (error)
1679                        return error;
1680        }
1681        if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1682            (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1683                error = dquot_transfer(inode, iattr);
1684                if (error)
1685                        return error;
1686        }
1687        if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1688                error = ext2_setsize(inode, iattr->ia_size);
1689                if (error)
1690                        return error;
1691        }
1692        setattr_copy(inode, iattr);
1693        if (iattr->ia_valid & ATTR_MODE)
1694                error = posix_acl_chmod(inode, inode->i_mode);
1695        mark_inode_dirty(inode);
1696
1697        return error;
1698}
1699