linux/fs/f2fs/node.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/backing-dev.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "trace.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35        if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36                set_sbi_flag(sbi, SBI_NEED_FSCK);
  37                f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38                          __func__, nid);
  39                return -EFSCORRUPTED;
  40        }
  41        return 0;
  42}
  43
  44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  45{
  46        struct f2fs_nm_info *nm_i = NM_I(sbi);
  47        struct sysinfo val;
  48        unsigned long avail_ram;
  49        unsigned long mem_size = 0;
  50        bool res = false;
  51
  52        si_meminfo(&val);
  53
  54        /* only uses low memory */
  55        avail_ram = val.totalram - val.totalhigh;
  56
  57        /*
  58         * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  59         */
  60        if (type == FREE_NIDS) {
  61                mem_size = (nm_i->nid_cnt[FREE_NID] *
  62                                sizeof(struct free_nid)) >> PAGE_SHIFT;
  63                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  64        } else if (type == NAT_ENTRIES) {
  65                mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  66                                                        PAGE_SHIFT;
  67                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  68                if (excess_cached_nats(sbi))
  69                        res = false;
  70        } else if (type == DIRTY_DENTS) {
  71                if (sbi->sb->s_bdi->wb.dirty_exceeded)
  72                        return false;
  73                mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  74                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  75        } else if (type == INO_ENTRIES) {
  76                int i;
  77
  78                for (i = 0; i < MAX_INO_ENTRY; i++)
  79                        mem_size += sbi->im[i].ino_num *
  80                                                sizeof(struct ino_entry);
  81                mem_size >>= PAGE_SHIFT;
  82                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  83        } else if (type == EXTENT_CACHE) {
  84                mem_size = (atomic_read(&sbi->total_ext_tree) *
  85                                sizeof(struct extent_tree) +
  86                                atomic_read(&sbi->total_ext_node) *
  87                                sizeof(struct extent_node)) >> PAGE_SHIFT;
  88                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  89        } else if (type == INMEM_PAGES) {
  90                /* it allows 20% / total_ram for inmemory pages */
  91                mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  92                res = mem_size < (val.totalram / 5);
  93        } else {
  94                if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  95                        return true;
  96        }
  97        return res;
  98}
  99
 100static void clear_node_page_dirty(struct page *page)
 101{
 102        if (PageDirty(page)) {
 103                f2fs_clear_page_cache_dirty_tag(page);
 104                clear_page_dirty_for_io(page);
 105                dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 106        }
 107        ClearPageUptodate(page);
 108}
 109
 110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 111{
 112        return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
 113}
 114
 115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 116{
 117        struct page *src_page;
 118        struct page *dst_page;
 119        pgoff_t dst_off;
 120        void *src_addr;
 121        void *dst_addr;
 122        struct f2fs_nm_info *nm_i = NM_I(sbi);
 123
 124        dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 125
 126        /* get current nat block page with lock */
 127        src_page = get_current_nat_page(sbi, nid);
 128        if (IS_ERR(src_page))
 129                return src_page;
 130        dst_page = f2fs_grab_meta_page(sbi, dst_off);
 131        f2fs_bug_on(sbi, PageDirty(src_page));
 132
 133        src_addr = page_address(src_page);
 134        dst_addr = page_address(dst_page);
 135        memcpy(dst_addr, src_addr, PAGE_SIZE);
 136        set_page_dirty(dst_page);
 137        f2fs_put_page(src_page, 1);
 138
 139        set_to_next_nat(nm_i, nid);
 140
 141        return dst_page;
 142}
 143
 144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
 145{
 146        struct nat_entry *new;
 147
 148        if (no_fail)
 149                new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 150        else
 151                new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
 152        if (new) {
 153                nat_set_nid(new, nid);
 154                nat_reset_flag(new);
 155        }
 156        return new;
 157}
 158
 159static void __free_nat_entry(struct nat_entry *e)
 160{
 161        kmem_cache_free(nat_entry_slab, e);
 162}
 163
 164/* must be locked by nat_tree_lock */
 165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 166        struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 167{
 168        if (no_fail)
 169                f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 170        else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 171                return NULL;
 172
 173        if (raw_ne)
 174                node_info_from_raw_nat(&ne->ni, raw_ne);
 175
 176        spin_lock(&nm_i->nat_list_lock);
 177        list_add_tail(&ne->list, &nm_i->nat_entries);
 178        spin_unlock(&nm_i->nat_list_lock);
 179
 180        nm_i->nat_cnt++;
 181        return ne;
 182}
 183
 184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 185{
 186        struct nat_entry *ne;
 187
 188        ne = radix_tree_lookup(&nm_i->nat_root, n);
 189
 190        /* for recent accessed nat entry, move it to tail of lru list */
 191        if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 192                spin_lock(&nm_i->nat_list_lock);
 193                if (!list_empty(&ne->list))
 194                        list_move_tail(&ne->list, &nm_i->nat_entries);
 195                spin_unlock(&nm_i->nat_list_lock);
 196        }
 197
 198        return ne;
 199}
 200
 201static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 202                nid_t start, unsigned int nr, struct nat_entry **ep)
 203{
 204        return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 205}
 206
 207static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 208{
 209        radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 210        nm_i->nat_cnt--;
 211        __free_nat_entry(e);
 212}
 213
 214static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 215                                                        struct nat_entry *ne)
 216{
 217        nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 218        struct nat_entry_set *head;
 219
 220        head = radix_tree_lookup(&nm_i->nat_set_root, set);
 221        if (!head) {
 222                head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 223
 224                INIT_LIST_HEAD(&head->entry_list);
 225                INIT_LIST_HEAD(&head->set_list);
 226                head->set = set;
 227                head->entry_cnt = 0;
 228                f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 229        }
 230        return head;
 231}
 232
 233static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 234                                                struct nat_entry *ne)
 235{
 236        struct nat_entry_set *head;
 237        bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 238
 239        if (!new_ne)
 240                head = __grab_nat_entry_set(nm_i, ne);
 241
 242        /*
 243         * update entry_cnt in below condition:
 244         * 1. update NEW_ADDR to valid block address;
 245         * 2. update old block address to new one;
 246         */
 247        if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 248                                !get_nat_flag(ne, IS_DIRTY)))
 249                head->entry_cnt++;
 250
 251        set_nat_flag(ne, IS_PREALLOC, new_ne);
 252
 253        if (get_nat_flag(ne, IS_DIRTY))
 254                goto refresh_list;
 255
 256        nm_i->dirty_nat_cnt++;
 257        set_nat_flag(ne, IS_DIRTY, true);
 258refresh_list:
 259        spin_lock(&nm_i->nat_list_lock);
 260        if (new_ne)
 261                list_del_init(&ne->list);
 262        else
 263                list_move_tail(&ne->list, &head->entry_list);
 264        spin_unlock(&nm_i->nat_list_lock);
 265}
 266
 267static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 268                struct nat_entry_set *set, struct nat_entry *ne)
 269{
 270        spin_lock(&nm_i->nat_list_lock);
 271        list_move_tail(&ne->list, &nm_i->nat_entries);
 272        spin_unlock(&nm_i->nat_list_lock);
 273
 274        set_nat_flag(ne, IS_DIRTY, false);
 275        set->entry_cnt--;
 276        nm_i->dirty_nat_cnt--;
 277}
 278
 279static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 280                nid_t start, unsigned int nr, struct nat_entry_set **ep)
 281{
 282        return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 283                                                        start, nr);
 284}
 285
 286bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 287{
 288        return NODE_MAPPING(sbi) == page->mapping &&
 289                        IS_DNODE(page) && is_cold_node(page);
 290}
 291
 292void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 293{
 294        spin_lock_init(&sbi->fsync_node_lock);
 295        INIT_LIST_HEAD(&sbi->fsync_node_list);
 296        sbi->fsync_seg_id = 0;
 297        sbi->fsync_node_num = 0;
 298}
 299
 300static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 301                                                        struct page *page)
 302{
 303        struct fsync_node_entry *fn;
 304        unsigned long flags;
 305        unsigned int seq_id;
 306
 307        fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
 308
 309        get_page(page);
 310        fn->page = page;
 311        INIT_LIST_HEAD(&fn->list);
 312
 313        spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 314        list_add_tail(&fn->list, &sbi->fsync_node_list);
 315        fn->seq_id = sbi->fsync_seg_id++;
 316        seq_id = fn->seq_id;
 317        sbi->fsync_node_num++;
 318        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 319
 320        return seq_id;
 321}
 322
 323void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 324{
 325        struct fsync_node_entry *fn;
 326        unsigned long flags;
 327
 328        spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 329        list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 330                if (fn->page == page) {
 331                        list_del(&fn->list);
 332                        sbi->fsync_node_num--;
 333                        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 334                        kmem_cache_free(fsync_node_entry_slab, fn);
 335                        put_page(page);
 336                        return;
 337                }
 338        }
 339        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 340        f2fs_bug_on(sbi, 1);
 341}
 342
 343void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 344{
 345        unsigned long flags;
 346
 347        spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 348        sbi->fsync_seg_id = 0;
 349        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 350}
 351
 352int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 353{
 354        struct f2fs_nm_info *nm_i = NM_I(sbi);
 355        struct nat_entry *e;
 356        bool need = false;
 357
 358        down_read(&nm_i->nat_tree_lock);
 359        e = __lookup_nat_cache(nm_i, nid);
 360        if (e) {
 361                if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 362                                !get_nat_flag(e, HAS_FSYNCED_INODE))
 363                        need = true;
 364        }
 365        up_read(&nm_i->nat_tree_lock);
 366        return need;
 367}
 368
 369bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 370{
 371        struct f2fs_nm_info *nm_i = NM_I(sbi);
 372        struct nat_entry *e;
 373        bool is_cp = true;
 374
 375        down_read(&nm_i->nat_tree_lock);
 376        e = __lookup_nat_cache(nm_i, nid);
 377        if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 378                is_cp = false;
 379        up_read(&nm_i->nat_tree_lock);
 380        return is_cp;
 381}
 382
 383bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 384{
 385        struct f2fs_nm_info *nm_i = NM_I(sbi);
 386        struct nat_entry *e;
 387        bool need_update = true;
 388
 389        down_read(&nm_i->nat_tree_lock);
 390        e = __lookup_nat_cache(nm_i, ino);
 391        if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 392                        (get_nat_flag(e, IS_CHECKPOINTED) ||
 393                         get_nat_flag(e, HAS_FSYNCED_INODE)))
 394                need_update = false;
 395        up_read(&nm_i->nat_tree_lock);
 396        return need_update;
 397}
 398
 399/* must be locked by nat_tree_lock */
 400static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 401                                                struct f2fs_nat_entry *ne)
 402{
 403        struct f2fs_nm_info *nm_i = NM_I(sbi);
 404        struct nat_entry *new, *e;
 405
 406        new = __alloc_nat_entry(nid, false);
 407        if (!new)
 408                return;
 409
 410        down_write(&nm_i->nat_tree_lock);
 411        e = __lookup_nat_cache(nm_i, nid);
 412        if (!e)
 413                e = __init_nat_entry(nm_i, new, ne, false);
 414        else
 415                f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 416                                nat_get_blkaddr(e) !=
 417                                        le32_to_cpu(ne->block_addr) ||
 418                                nat_get_version(e) != ne->version);
 419        up_write(&nm_i->nat_tree_lock);
 420        if (e != new)
 421                __free_nat_entry(new);
 422}
 423
 424static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 425                        block_t new_blkaddr, bool fsync_done)
 426{
 427        struct f2fs_nm_info *nm_i = NM_I(sbi);
 428        struct nat_entry *e;
 429        struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
 430
 431        down_write(&nm_i->nat_tree_lock);
 432        e = __lookup_nat_cache(nm_i, ni->nid);
 433        if (!e) {
 434                e = __init_nat_entry(nm_i, new, NULL, true);
 435                copy_node_info(&e->ni, ni);
 436                f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 437        } else if (new_blkaddr == NEW_ADDR) {
 438                /*
 439                 * when nid is reallocated,
 440                 * previous nat entry can be remained in nat cache.
 441                 * So, reinitialize it with new information.
 442                 */
 443                copy_node_info(&e->ni, ni);
 444                f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 445        }
 446        /* let's free early to reduce memory consumption */
 447        if (e != new)
 448                __free_nat_entry(new);
 449
 450        /* sanity check */
 451        f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 452        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 453                        new_blkaddr == NULL_ADDR);
 454        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 455                        new_blkaddr == NEW_ADDR);
 456        f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 457                        new_blkaddr == NEW_ADDR);
 458
 459        /* increment version no as node is removed */
 460        if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 461                unsigned char version = nat_get_version(e);
 462                nat_set_version(e, inc_node_version(version));
 463        }
 464
 465        /* change address */
 466        nat_set_blkaddr(e, new_blkaddr);
 467        if (!__is_valid_data_blkaddr(new_blkaddr))
 468                set_nat_flag(e, IS_CHECKPOINTED, false);
 469        __set_nat_cache_dirty(nm_i, e);
 470
 471        /* update fsync_mark if its inode nat entry is still alive */
 472        if (ni->nid != ni->ino)
 473                e = __lookup_nat_cache(nm_i, ni->ino);
 474        if (e) {
 475                if (fsync_done && ni->nid == ni->ino)
 476                        set_nat_flag(e, HAS_FSYNCED_INODE, true);
 477                set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 478        }
 479        up_write(&nm_i->nat_tree_lock);
 480}
 481
 482int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 483{
 484        struct f2fs_nm_info *nm_i = NM_I(sbi);
 485        int nr = nr_shrink;
 486
 487        if (!down_write_trylock(&nm_i->nat_tree_lock))
 488                return 0;
 489
 490        spin_lock(&nm_i->nat_list_lock);
 491        while (nr_shrink) {
 492                struct nat_entry *ne;
 493
 494                if (list_empty(&nm_i->nat_entries))
 495                        break;
 496
 497                ne = list_first_entry(&nm_i->nat_entries,
 498                                        struct nat_entry, list);
 499                list_del(&ne->list);
 500                spin_unlock(&nm_i->nat_list_lock);
 501
 502                __del_from_nat_cache(nm_i, ne);
 503                nr_shrink--;
 504
 505                spin_lock(&nm_i->nat_list_lock);
 506        }
 507        spin_unlock(&nm_i->nat_list_lock);
 508
 509        up_write(&nm_i->nat_tree_lock);
 510        return nr - nr_shrink;
 511}
 512
 513int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 514                                                struct node_info *ni)
 515{
 516        struct f2fs_nm_info *nm_i = NM_I(sbi);
 517        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 518        struct f2fs_journal *journal = curseg->journal;
 519        nid_t start_nid = START_NID(nid);
 520        struct f2fs_nat_block *nat_blk;
 521        struct page *page = NULL;
 522        struct f2fs_nat_entry ne;
 523        struct nat_entry *e;
 524        pgoff_t index;
 525        block_t blkaddr;
 526        int i;
 527
 528        ni->nid = nid;
 529
 530        /* Check nat cache */
 531        down_read(&nm_i->nat_tree_lock);
 532        e = __lookup_nat_cache(nm_i, nid);
 533        if (e) {
 534                ni->ino = nat_get_ino(e);
 535                ni->blk_addr = nat_get_blkaddr(e);
 536                ni->version = nat_get_version(e);
 537                up_read(&nm_i->nat_tree_lock);
 538                return 0;
 539        }
 540
 541        memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 542
 543        /* Check current segment summary */
 544        down_read(&curseg->journal_rwsem);
 545        i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 546        if (i >= 0) {
 547                ne = nat_in_journal(journal, i);
 548                node_info_from_raw_nat(ni, &ne);
 549        }
 550        up_read(&curseg->journal_rwsem);
 551        if (i >= 0) {
 552                up_read(&nm_i->nat_tree_lock);
 553                goto cache;
 554        }
 555
 556        /* Fill node_info from nat page */
 557        index = current_nat_addr(sbi, nid);
 558        up_read(&nm_i->nat_tree_lock);
 559
 560        page = f2fs_get_meta_page(sbi, index);
 561        if (IS_ERR(page))
 562                return PTR_ERR(page);
 563
 564        nat_blk = (struct f2fs_nat_block *)page_address(page);
 565        ne = nat_blk->entries[nid - start_nid];
 566        node_info_from_raw_nat(ni, &ne);
 567        f2fs_put_page(page, 1);
 568cache:
 569        blkaddr = le32_to_cpu(ne.block_addr);
 570        if (__is_valid_data_blkaddr(blkaddr) &&
 571                !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 572                return -EFAULT;
 573
 574        /* cache nat entry */
 575        cache_nat_entry(sbi, nid, &ne);
 576        return 0;
 577}
 578
 579/*
 580 * readahead MAX_RA_NODE number of node pages.
 581 */
 582static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 583{
 584        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 585        struct blk_plug plug;
 586        int i, end;
 587        nid_t nid;
 588
 589        blk_start_plug(&plug);
 590
 591        /* Then, try readahead for siblings of the desired node */
 592        end = start + n;
 593        end = min(end, NIDS_PER_BLOCK);
 594        for (i = start; i < end; i++) {
 595                nid = get_nid(parent, i, false);
 596                f2fs_ra_node_page(sbi, nid);
 597        }
 598
 599        blk_finish_plug(&plug);
 600}
 601
 602pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 603{
 604        const long direct_index = ADDRS_PER_INODE(dn->inode);
 605        const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 606        const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 607        unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 608        int cur_level = dn->cur_level;
 609        int max_level = dn->max_level;
 610        pgoff_t base = 0;
 611
 612        if (!dn->max_level)
 613                return pgofs + 1;
 614
 615        while (max_level-- > cur_level)
 616                skipped_unit *= NIDS_PER_BLOCK;
 617
 618        switch (dn->max_level) {
 619        case 3:
 620                base += 2 * indirect_blks;
 621                fallthrough;
 622        case 2:
 623                base += 2 * direct_blks;
 624                fallthrough;
 625        case 1:
 626                base += direct_index;
 627                break;
 628        default:
 629                f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 630        }
 631
 632        return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 633}
 634
 635/*
 636 * The maximum depth is four.
 637 * Offset[0] will have raw inode offset.
 638 */
 639static int get_node_path(struct inode *inode, long block,
 640                                int offset[4], unsigned int noffset[4])
 641{
 642        const long direct_index = ADDRS_PER_INODE(inode);
 643        const long direct_blks = ADDRS_PER_BLOCK(inode);
 644        const long dptrs_per_blk = NIDS_PER_BLOCK;
 645        const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 646        const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 647        int n = 0;
 648        int level = 0;
 649
 650        noffset[0] = 0;
 651
 652        if (block < direct_index) {
 653                offset[n] = block;
 654                goto got;
 655        }
 656        block -= direct_index;
 657        if (block < direct_blks) {
 658                offset[n++] = NODE_DIR1_BLOCK;
 659                noffset[n] = 1;
 660                offset[n] = block;
 661                level = 1;
 662                goto got;
 663        }
 664        block -= direct_blks;
 665        if (block < direct_blks) {
 666                offset[n++] = NODE_DIR2_BLOCK;
 667                noffset[n] = 2;
 668                offset[n] = block;
 669                level = 1;
 670                goto got;
 671        }
 672        block -= direct_blks;
 673        if (block < indirect_blks) {
 674                offset[n++] = NODE_IND1_BLOCK;
 675                noffset[n] = 3;
 676                offset[n++] = block / direct_blks;
 677                noffset[n] = 4 + offset[n - 1];
 678                offset[n] = block % direct_blks;
 679                level = 2;
 680                goto got;
 681        }
 682        block -= indirect_blks;
 683        if (block < indirect_blks) {
 684                offset[n++] = NODE_IND2_BLOCK;
 685                noffset[n] = 4 + dptrs_per_blk;
 686                offset[n++] = block / direct_blks;
 687                noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 688                offset[n] = block % direct_blks;
 689                level = 2;
 690                goto got;
 691        }
 692        block -= indirect_blks;
 693        if (block < dindirect_blks) {
 694                offset[n++] = NODE_DIND_BLOCK;
 695                noffset[n] = 5 + (dptrs_per_blk * 2);
 696                offset[n++] = block / indirect_blks;
 697                noffset[n] = 6 + (dptrs_per_blk * 2) +
 698                              offset[n - 1] * (dptrs_per_blk + 1);
 699                offset[n++] = (block / direct_blks) % dptrs_per_blk;
 700                noffset[n] = 7 + (dptrs_per_blk * 2) +
 701                              offset[n - 2] * (dptrs_per_blk + 1) +
 702                              offset[n - 1];
 703                offset[n] = block % direct_blks;
 704                level = 3;
 705                goto got;
 706        } else {
 707                return -E2BIG;
 708        }
 709got:
 710        return level;
 711}
 712
 713/*
 714 * Caller should call f2fs_put_dnode(dn).
 715 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 716 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
 717 */
 718int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 719{
 720        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 721        struct page *npage[4];
 722        struct page *parent = NULL;
 723        int offset[4];
 724        unsigned int noffset[4];
 725        nid_t nids[4];
 726        int level, i = 0;
 727        int err = 0;
 728
 729        level = get_node_path(dn->inode, index, offset, noffset);
 730        if (level < 0)
 731                return level;
 732
 733        nids[0] = dn->inode->i_ino;
 734        npage[0] = dn->inode_page;
 735
 736        if (!npage[0]) {
 737                npage[0] = f2fs_get_node_page(sbi, nids[0]);
 738                if (IS_ERR(npage[0]))
 739                        return PTR_ERR(npage[0]);
 740        }
 741
 742        /* if inline_data is set, should not report any block indices */
 743        if (f2fs_has_inline_data(dn->inode) && index) {
 744                err = -ENOENT;
 745                f2fs_put_page(npage[0], 1);
 746                goto release_out;
 747        }
 748
 749        parent = npage[0];
 750        if (level != 0)
 751                nids[1] = get_nid(parent, offset[0], true);
 752        dn->inode_page = npage[0];
 753        dn->inode_page_locked = true;
 754
 755        /* get indirect or direct nodes */
 756        for (i = 1; i <= level; i++) {
 757                bool done = false;
 758
 759                if (!nids[i] && mode == ALLOC_NODE) {
 760                        /* alloc new node */
 761                        if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 762                                err = -ENOSPC;
 763                                goto release_pages;
 764                        }
 765
 766                        dn->nid = nids[i];
 767                        npage[i] = f2fs_new_node_page(dn, noffset[i]);
 768                        if (IS_ERR(npage[i])) {
 769                                f2fs_alloc_nid_failed(sbi, nids[i]);
 770                                err = PTR_ERR(npage[i]);
 771                                goto release_pages;
 772                        }
 773
 774                        set_nid(parent, offset[i - 1], nids[i], i == 1);
 775                        f2fs_alloc_nid_done(sbi, nids[i]);
 776                        done = true;
 777                } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 778                        npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 779                        if (IS_ERR(npage[i])) {
 780                                err = PTR_ERR(npage[i]);
 781                                goto release_pages;
 782                        }
 783                        done = true;
 784                }
 785                if (i == 1) {
 786                        dn->inode_page_locked = false;
 787                        unlock_page(parent);
 788                } else {
 789                        f2fs_put_page(parent, 1);
 790                }
 791
 792                if (!done) {
 793                        npage[i] = f2fs_get_node_page(sbi, nids[i]);
 794                        if (IS_ERR(npage[i])) {
 795                                err = PTR_ERR(npage[i]);
 796                                f2fs_put_page(npage[0], 0);
 797                                goto release_out;
 798                        }
 799                }
 800                if (i < level) {
 801                        parent = npage[i];
 802                        nids[i + 1] = get_nid(parent, offset[i], false);
 803                }
 804        }
 805        dn->nid = nids[level];
 806        dn->ofs_in_node = offset[level];
 807        dn->node_page = npage[level];
 808        dn->data_blkaddr = f2fs_data_blkaddr(dn);
 809        return 0;
 810
 811release_pages:
 812        f2fs_put_page(parent, 1);
 813        if (i > 1)
 814                f2fs_put_page(npage[0], 0);
 815release_out:
 816        dn->inode_page = NULL;
 817        dn->node_page = NULL;
 818        if (err == -ENOENT) {
 819                dn->cur_level = i;
 820                dn->max_level = level;
 821                dn->ofs_in_node = offset[level];
 822        }
 823        return err;
 824}
 825
 826static int truncate_node(struct dnode_of_data *dn)
 827{
 828        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 829        struct node_info ni;
 830        int err;
 831        pgoff_t index;
 832
 833        err = f2fs_get_node_info(sbi, dn->nid, &ni);
 834        if (err)
 835                return err;
 836
 837        /* Deallocate node address */
 838        f2fs_invalidate_blocks(sbi, ni.blk_addr);
 839        dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 840        set_node_addr(sbi, &ni, NULL_ADDR, false);
 841
 842        if (dn->nid == dn->inode->i_ino) {
 843                f2fs_remove_orphan_inode(sbi, dn->nid);
 844                dec_valid_inode_count(sbi);
 845                f2fs_inode_synced(dn->inode);
 846        }
 847
 848        clear_node_page_dirty(dn->node_page);
 849        set_sbi_flag(sbi, SBI_IS_DIRTY);
 850
 851        index = dn->node_page->index;
 852        f2fs_put_page(dn->node_page, 1);
 853
 854        invalidate_mapping_pages(NODE_MAPPING(sbi),
 855                        index, index);
 856
 857        dn->node_page = NULL;
 858        trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 859
 860        return 0;
 861}
 862
 863static int truncate_dnode(struct dnode_of_data *dn)
 864{
 865        struct page *page;
 866        int err;
 867
 868        if (dn->nid == 0)
 869                return 1;
 870
 871        /* get direct node */
 872        page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 873        if (PTR_ERR(page) == -ENOENT)
 874                return 1;
 875        else if (IS_ERR(page))
 876                return PTR_ERR(page);
 877
 878        /* Make dnode_of_data for parameter */
 879        dn->node_page = page;
 880        dn->ofs_in_node = 0;
 881        f2fs_truncate_data_blocks(dn);
 882        err = truncate_node(dn);
 883        if (err)
 884                return err;
 885
 886        return 1;
 887}
 888
 889static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 890                                                int ofs, int depth)
 891{
 892        struct dnode_of_data rdn = *dn;
 893        struct page *page;
 894        struct f2fs_node *rn;
 895        nid_t child_nid;
 896        unsigned int child_nofs;
 897        int freed = 0;
 898        int i, ret;
 899
 900        if (dn->nid == 0)
 901                return NIDS_PER_BLOCK + 1;
 902
 903        trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 904
 905        page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 906        if (IS_ERR(page)) {
 907                trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 908                return PTR_ERR(page);
 909        }
 910
 911        f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 912
 913        rn = F2FS_NODE(page);
 914        if (depth < 3) {
 915                for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 916                        child_nid = le32_to_cpu(rn->in.nid[i]);
 917                        if (child_nid == 0)
 918                                continue;
 919                        rdn.nid = child_nid;
 920                        ret = truncate_dnode(&rdn);
 921                        if (ret < 0)
 922                                goto out_err;
 923                        if (set_nid(page, i, 0, false))
 924                                dn->node_changed = true;
 925                }
 926        } else {
 927                child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 928                for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 929                        child_nid = le32_to_cpu(rn->in.nid[i]);
 930                        if (child_nid == 0) {
 931                                child_nofs += NIDS_PER_BLOCK + 1;
 932                                continue;
 933                        }
 934                        rdn.nid = child_nid;
 935                        ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 936                        if (ret == (NIDS_PER_BLOCK + 1)) {
 937                                if (set_nid(page, i, 0, false))
 938                                        dn->node_changed = true;
 939                                child_nofs += ret;
 940                        } else if (ret < 0 && ret != -ENOENT) {
 941                                goto out_err;
 942                        }
 943                }
 944                freed = child_nofs;
 945        }
 946
 947        if (!ofs) {
 948                /* remove current indirect node */
 949                dn->node_page = page;
 950                ret = truncate_node(dn);
 951                if (ret)
 952                        goto out_err;
 953                freed++;
 954        } else {
 955                f2fs_put_page(page, 1);
 956        }
 957        trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 958        return freed;
 959
 960out_err:
 961        f2fs_put_page(page, 1);
 962        trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 963        return ret;
 964}
 965
 966static int truncate_partial_nodes(struct dnode_of_data *dn,
 967                        struct f2fs_inode *ri, int *offset, int depth)
 968{
 969        struct page *pages[2];
 970        nid_t nid[3];
 971        nid_t child_nid;
 972        int err = 0;
 973        int i;
 974        int idx = depth - 2;
 975
 976        nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 977        if (!nid[0])
 978                return 0;
 979
 980        /* get indirect nodes in the path */
 981        for (i = 0; i < idx + 1; i++) {
 982                /* reference count'll be increased */
 983                pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 984                if (IS_ERR(pages[i])) {
 985                        err = PTR_ERR(pages[i]);
 986                        idx = i - 1;
 987                        goto fail;
 988                }
 989                nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 990        }
 991
 992        f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 993
 994        /* free direct nodes linked to a partial indirect node */
 995        for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 996                child_nid = get_nid(pages[idx], i, false);
 997                if (!child_nid)
 998                        continue;
 999                dn->nid = child_nid;
1000                err = truncate_dnode(dn);
1001                if (err < 0)
1002                        goto fail;
1003                if (set_nid(pages[idx], i, 0, false))
1004                        dn->node_changed = true;
1005        }
1006
1007        if (offset[idx + 1] == 0) {
1008                dn->node_page = pages[idx];
1009                dn->nid = nid[idx];
1010                err = truncate_node(dn);
1011                if (err)
1012                        goto fail;
1013        } else {
1014                f2fs_put_page(pages[idx], 1);
1015        }
1016        offset[idx]++;
1017        offset[idx + 1] = 0;
1018        idx--;
1019fail:
1020        for (i = idx; i >= 0; i--)
1021                f2fs_put_page(pages[i], 1);
1022
1023        trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1024
1025        return err;
1026}
1027
1028/*
1029 * All the block addresses of data and nodes should be nullified.
1030 */
1031int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1032{
1033        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034        int err = 0, cont = 1;
1035        int level, offset[4], noffset[4];
1036        unsigned int nofs = 0;
1037        struct f2fs_inode *ri;
1038        struct dnode_of_data dn;
1039        struct page *page;
1040
1041        trace_f2fs_truncate_inode_blocks_enter(inode, from);
1042
1043        level = get_node_path(inode, from, offset, noffset);
1044        if (level < 0) {
1045                trace_f2fs_truncate_inode_blocks_exit(inode, level);
1046                return level;
1047        }
1048
1049        page = f2fs_get_node_page(sbi, inode->i_ino);
1050        if (IS_ERR(page)) {
1051                trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1052                return PTR_ERR(page);
1053        }
1054
1055        set_new_dnode(&dn, inode, page, NULL, 0);
1056        unlock_page(page);
1057
1058        ri = F2FS_INODE(page);
1059        switch (level) {
1060        case 0:
1061        case 1:
1062                nofs = noffset[1];
1063                break;
1064        case 2:
1065                nofs = noffset[1];
1066                if (!offset[level - 1])
1067                        goto skip_partial;
1068                err = truncate_partial_nodes(&dn, ri, offset, level);
1069                if (err < 0 && err != -ENOENT)
1070                        goto fail;
1071                nofs += 1 + NIDS_PER_BLOCK;
1072                break;
1073        case 3:
1074                nofs = 5 + 2 * NIDS_PER_BLOCK;
1075                if (!offset[level - 1])
1076                        goto skip_partial;
1077                err = truncate_partial_nodes(&dn, ri, offset, level);
1078                if (err < 0 && err != -ENOENT)
1079                        goto fail;
1080                break;
1081        default:
1082                BUG();
1083        }
1084
1085skip_partial:
1086        while (cont) {
1087                dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1088                switch (offset[0]) {
1089                case NODE_DIR1_BLOCK:
1090                case NODE_DIR2_BLOCK:
1091                        err = truncate_dnode(&dn);
1092                        break;
1093
1094                case NODE_IND1_BLOCK:
1095                case NODE_IND2_BLOCK:
1096                        err = truncate_nodes(&dn, nofs, offset[1], 2);
1097                        break;
1098
1099                case NODE_DIND_BLOCK:
1100                        err = truncate_nodes(&dn, nofs, offset[1], 3);
1101                        cont = 0;
1102                        break;
1103
1104                default:
1105                        BUG();
1106                }
1107                if (err < 0 && err != -ENOENT)
1108                        goto fail;
1109                if (offset[1] == 0 &&
1110                                ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1111                        lock_page(page);
1112                        BUG_ON(page->mapping != NODE_MAPPING(sbi));
1113                        f2fs_wait_on_page_writeback(page, NODE, true, true);
1114                        ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1115                        set_page_dirty(page);
1116                        unlock_page(page);
1117                }
1118                offset[1] = 0;
1119                offset[0]++;
1120                nofs += err;
1121        }
1122fail:
1123        f2fs_put_page(page, 0);
1124        trace_f2fs_truncate_inode_blocks_exit(inode, err);
1125        return err > 0 ? 0 : err;
1126}
1127
1128/* caller must lock inode page */
1129int f2fs_truncate_xattr_node(struct inode *inode)
1130{
1131        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1132        nid_t nid = F2FS_I(inode)->i_xattr_nid;
1133        struct dnode_of_data dn;
1134        struct page *npage;
1135        int err;
1136
1137        if (!nid)
1138                return 0;
1139
1140        npage = f2fs_get_node_page(sbi, nid);
1141        if (IS_ERR(npage))
1142                return PTR_ERR(npage);
1143
1144        set_new_dnode(&dn, inode, NULL, npage, nid);
1145        err = truncate_node(&dn);
1146        if (err) {
1147                f2fs_put_page(npage, 1);
1148                return err;
1149        }
1150
1151        f2fs_i_xnid_write(inode, 0);
1152
1153        return 0;
1154}
1155
1156/*
1157 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1158 * f2fs_unlock_op().
1159 */
1160int f2fs_remove_inode_page(struct inode *inode)
1161{
1162        struct dnode_of_data dn;
1163        int err;
1164
1165        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1166        err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1167        if (err)
1168                return err;
1169
1170        err = f2fs_truncate_xattr_node(inode);
1171        if (err) {
1172                f2fs_put_dnode(&dn);
1173                return err;
1174        }
1175
1176        /* remove potential inline_data blocks */
1177        if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1178                                S_ISLNK(inode->i_mode))
1179                f2fs_truncate_data_blocks_range(&dn, 1);
1180
1181        /* 0 is possible, after f2fs_new_inode() has failed */
1182        if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1183                f2fs_put_dnode(&dn);
1184                return -EIO;
1185        }
1186
1187        if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1188                f2fs_warn(F2FS_I_SB(inode),
1189                        "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1190                        inode->i_ino, (unsigned long long)inode->i_blocks);
1191                set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1192        }
1193
1194        /* will put inode & node pages */
1195        err = truncate_node(&dn);
1196        if (err) {
1197                f2fs_put_dnode(&dn);
1198                return err;
1199        }
1200        return 0;
1201}
1202
1203struct page *f2fs_new_inode_page(struct inode *inode)
1204{
1205        struct dnode_of_data dn;
1206
1207        /* allocate inode page for new inode */
1208        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1209
1210        /* caller should f2fs_put_page(page, 1); */
1211        return f2fs_new_node_page(&dn, 0);
1212}
1213
1214struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1215{
1216        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1217        struct node_info new_ni;
1218        struct page *page;
1219        int err;
1220
1221        if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1222                return ERR_PTR(-EPERM);
1223
1224        page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1225        if (!page)
1226                return ERR_PTR(-ENOMEM);
1227
1228        if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1229                goto fail;
1230
1231#ifdef CONFIG_F2FS_CHECK_FS
1232        err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1233        if (err) {
1234                dec_valid_node_count(sbi, dn->inode, !ofs);
1235                goto fail;
1236        }
1237        f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1238#endif
1239        new_ni.nid = dn->nid;
1240        new_ni.ino = dn->inode->i_ino;
1241        new_ni.blk_addr = NULL_ADDR;
1242        new_ni.flag = 0;
1243        new_ni.version = 0;
1244        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1245
1246        f2fs_wait_on_page_writeback(page, NODE, true, true);
1247        fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1248        set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1249        if (!PageUptodate(page))
1250                SetPageUptodate(page);
1251        if (set_page_dirty(page))
1252                dn->node_changed = true;
1253
1254        if (f2fs_has_xattr_block(ofs))
1255                f2fs_i_xnid_write(dn->inode, dn->nid);
1256
1257        if (ofs == 0)
1258                inc_valid_inode_count(sbi);
1259        return page;
1260
1261fail:
1262        clear_node_page_dirty(page);
1263        f2fs_put_page(page, 1);
1264        return ERR_PTR(err);
1265}
1266
1267/*
1268 * Caller should do after getting the following values.
1269 * 0: f2fs_put_page(page, 0)
1270 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1271 */
1272static int read_node_page(struct page *page, int op_flags)
1273{
1274        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1275        struct node_info ni;
1276        struct f2fs_io_info fio = {
1277                .sbi = sbi,
1278                .type = NODE,
1279                .op = REQ_OP_READ,
1280                .op_flags = op_flags,
1281                .page = page,
1282                .encrypted_page = NULL,
1283        };
1284        int err;
1285
1286        if (PageUptodate(page)) {
1287                if (!f2fs_inode_chksum_verify(sbi, page)) {
1288                        ClearPageUptodate(page);
1289                        return -EFSBADCRC;
1290                }
1291                return LOCKED_PAGE;
1292        }
1293
1294        err = f2fs_get_node_info(sbi, page->index, &ni);
1295        if (err)
1296                return err;
1297
1298        if (unlikely(ni.blk_addr == NULL_ADDR) ||
1299                        is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1300                ClearPageUptodate(page);
1301                return -ENOENT;
1302        }
1303
1304        fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1305
1306        err = f2fs_submit_page_bio(&fio);
1307
1308        if (!err)
1309                f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1310
1311        return err;
1312}
1313
1314/*
1315 * Readahead a node page
1316 */
1317void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1318{
1319        struct page *apage;
1320        int err;
1321
1322        if (!nid)
1323                return;
1324        if (f2fs_check_nid_range(sbi, nid))
1325                return;
1326
1327        apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1328        if (apage)
1329                return;
1330
1331        apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1332        if (!apage)
1333                return;
1334
1335        err = read_node_page(apage, REQ_RAHEAD);
1336        f2fs_put_page(apage, err ? 1 : 0);
1337}
1338
1339static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1340                                        struct page *parent, int start)
1341{
1342        struct page *page;
1343        int err;
1344
1345        if (!nid)
1346                return ERR_PTR(-ENOENT);
1347        if (f2fs_check_nid_range(sbi, nid))
1348                return ERR_PTR(-EINVAL);
1349repeat:
1350        page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1351        if (!page)
1352                return ERR_PTR(-ENOMEM);
1353
1354        err = read_node_page(page, 0);
1355        if (err < 0) {
1356                f2fs_put_page(page, 1);
1357                return ERR_PTR(err);
1358        } else if (err == LOCKED_PAGE) {
1359                err = 0;
1360                goto page_hit;
1361        }
1362
1363        if (parent)
1364                f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1365
1366        lock_page(page);
1367
1368        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1369                f2fs_put_page(page, 1);
1370                goto repeat;
1371        }
1372
1373        if (unlikely(!PageUptodate(page))) {
1374                err = -EIO;
1375                goto out_err;
1376        }
1377
1378        if (!f2fs_inode_chksum_verify(sbi, page)) {
1379                err = -EFSBADCRC;
1380                goto out_err;
1381        }
1382page_hit:
1383        if(unlikely(nid != nid_of_node(page))) {
1384                f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1385                          nid, nid_of_node(page), ino_of_node(page),
1386                          ofs_of_node(page), cpver_of_node(page),
1387                          next_blkaddr_of_node(page));
1388                err = -EINVAL;
1389out_err:
1390                ClearPageUptodate(page);
1391                f2fs_put_page(page, 1);
1392                return ERR_PTR(err);
1393        }
1394        return page;
1395}
1396
1397struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1398{
1399        return __get_node_page(sbi, nid, NULL, 0);
1400}
1401
1402struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1403{
1404        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1405        nid_t nid = get_nid(parent, start, false);
1406
1407        return __get_node_page(sbi, nid, parent, start);
1408}
1409
1410static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1411{
1412        struct inode *inode;
1413        struct page *page;
1414        int ret;
1415
1416        /* should flush inline_data before evict_inode */
1417        inode = ilookup(sbi->sb, ino);
1418        if (!inode)
1419                return;
1420
1421        page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1422                                        FGP_LOCK|FGP_NOWAIT, 0);
1423        if (!page)
1424                goto iput_out;
1425
1426        if (!PageUptodate(page))
1427                goto page_out;
1428
1429        if (!PageDirty(page))
1430                goto page_out;
1431
1432        if (!clear_page_dirty_for_io(page))
1433                goto page_out;
1434
1435        ret = f2fs_write_inline_data(inode, page);
1436        inode_dec_dirty_pages(inode);
1437        f2fs_remove_dirty_inode(inode);
1438        if (ret)
1439                set_page_dirty(page);
1440page_out:
1441        f2fs_put_page(page, 1);
1442iput_out:
1443        iput(inode);
1444}
1445
1446static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1447{
1448        pgoff_t index;
1449        struct pagevec pvec;
1450        struct page *last_page = NULL;
1451        int nr_pages;
1452
1453        pagevec_init(&pvec);
1454        index = 0;
1455
1456        while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1457                                PAGECACHE_TAG_DIRTY))) {
1458                int i;
1459
1460                for (i = 0; i < nr_pages; i++) {
1461                        struct page *page = pvec.pages[i];
1462
1463                        if (unlikely(f2fs_cp_error(sbi))) {
1464                                f2fs_put_page(last_page, 0);
1465                                pagevec_release(&pvec);
1466                                return ERR_PTR(-EIO);
1467                        }
1468
1469                        if (!IS_DNODE(page) || !is_cold_node(page))
1470                                continue;
1471                        if (ino_of_node(page) != ino)
1472                                continue;
1473
1474                        lock_page(page);
1475
1476                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1477continue_unlock:
1478                                unlock_page(page);
1479                                continue;
1480                        }
1481                        if (ino_of_node(page) != ino)
1482                                goto continue_unlock;
1483
1484                        if (!PageDirty(page)) {
1485                                /* someone wrote it for us */
1486                                goto continue_unlock;
1487                        }
1488
1489                        if (last_page)
1490                                f2fs_put_page(last_page, 0);
1491
1492                        get_page(page);
1493                        last_page = page;
1494                        unlock_page(page);
1495                }
1496                pagevec_release(&pvec);
1497                cond_resched();
1498        }
1499        return last_page;
1500}
1501
1502static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1503                                struct writeback_control *wbc, bool do_balance,
1504                                enum iostat_type io_type, unsigned int *seq_id)
1505{
1506        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1507        nid_t nid;
1508        struct node_info ni;
1509        struct f2fs_io_info fio = {
1510                .sbi = sbi,
1511                .ino = ino_of_node(page),
1512                .type = NODE,
1513                .op = REQ_OP_WRITE,
1514                .op_flags = wbc_to_write_flags(wbc),
1515                .page = page,
1516                .encrypted_page = NULL,
1517                .submitted = false,
1518                .io_type = io_type,
1519                .io_wbc = wbc,
1520        };
1521        unsigned int seq;
1522
1523        trace_f2fs_writepage(page, NODE);
1524
1525        if (unlikely(f2fs_cp_error(sbi))) {
1526                if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1527                        ClearPageUptodate(page);
1528                        dec_page_count(sbi, F2FS_DIRTY_NODES);
1529                        unlock_page(page);
1530                        return 0;
1531                }
1532                goto redirty_out;
1533        }
1534
1535        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1536                goto redirty_out;
1537
1538        if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1539                        wbc->sync_mode == WB_SYNC_NONE &&
1540                        IS_DNODE(page) && is_cold_node(page))
1541                goto redirty_out;
1542
1543        /* get old block addr of this node page */
1544        nid = nid_of_node(page);
1545        f2fs_bug_on(sbi, page->index != nid);
1546
1547        if (f2fs_get_node_info(sbi, nid, &ni))
1548                goto redirty_out;
1549
1550        if (wbc->for_reclaim) {
1551                if (!down_read_trylock(&sbi->node_write))
1552                        goto redirty_out;
1553        } else {
1554                down_read(&sbi->node_write);
1555        }
1556
1557        /* This page is already truncated */
1558        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1559                ClearPageUptodate(page);
1560                dec_page_count(sbi, F2FS_DIRTY_NODES);
1561                up_read(&sbi->node_write);
1562                unlock_page(page);
1563                return 0;
1564        }
1565
1566        if (__is_valid_data_blkaddr(ni.blk_addr) &&
1567                !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1568                                        DATA_GENERIC_ENHANCE)) {
1569                up_read(&sbi->node_write);
1570                goto redirty_out;
1571        }
1572
1573        if (atomic && !test_opt(sbi, NOBARRIER))
1574                fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1575
1576        /* should add to global list before clearing PAGECACHE status */
1577        if (f2fs_in_warm_node_list(sbi, page)) {
1578                seq = f2fs_add_fsync_node_entry(sbi, page);
1579                if (seq_id)
1580                        *seq_id = seq;
1581        }
1582
1583        set_page_writeback(page);
1584        ClearPageError(page);
1585
1586        fio.old_blkaddr = ni.blk_addr;
1587        f2fs_do_write_node_page(nid, &fio);
1588        set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1589        dec_page_count(sbi, F2FS_DIRTY_NODES);
1590        up_read(&sbi->node_write);
1591
1592        if (wbc->for_reclaim) {
1593                f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1594                submitted = NULL;
1595        }
1596
1597        unlock_page(page);
1598
1599        if (unlikely(f2fs_cp_error(sbi))) {
1600                f2fs_submit_merged_write(sbi, NODE);
1601                submitted = NULL;
1602        }
1603        if (submitted)
1604                *submitted = fio.submitted;
1605
1606        if (do_balance)
1607                f2fs_balance_fs(sbi, false);
1608        return 0;
1609
1610redirty_out:
1611        redirty_page_for_writepage(wbc, page);
1612        return AOP_WRITEPAGE_ACTIVATE;
1613}
1614
1615int f2fs_move_node_page(struct page *node_page, int gc_type)
1616{
1617        int err = 0;
1618
1619        if (gc_type == FG_GC) {
1620                struct writeback_control wbc = {
1621                        .sync_mode = WB_SYNC_ALL,
1622                        .nr_to_write = 1,
1623                        .for_reclaim = 0,
1624                };
1625
1626                f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1627
1628                set_page_dirty(node_page);
1629
1630                if (!clear_page_dirty_for_io(node_page)) {
1631                        err = -EAGAIN;
1632                        goto out_page;
1633                }
1634
1635                if (__write_node_page(node_page, false, NULL,
1636                                        &wbc, false, FS_GC_NODE_IO, NULL)) {
1637                        err = -EAGAIN;
1638                        unlock_page(node_page);
1639                }
1640                goto release_page;
1641        } else {
1642                /* set page dirty and write it */
1643                if (!PageWriteback(node_page))
1644                        set_page_dirty(node_page);
1645        }
1646out_page:
1647        unlock_page(node_page);
1648release_page:
1649        f2fs_put_page(node_page, 0);
1650        return err;
1651}
1652
1653static int f2fs_write_node_page(struct page *page,
1654                                struct writeback_control *wbc)
1655{
1656        return __write_node_page(page, false, NULL, wbc, false,
1657                                                FS_NODE_IO, NULL);
1658}
1659
1660int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1661                        struct writeback_control *wbc, bool atomic,
1662                        unsigned int *seq_id)
1663{
1664        pgoff_t index;
1665        struct pagevec pvec;
1666        int ret = 0;
1667        struct page *last_page = NULL;
1668        bool marked = false;
1669        nid_t ino = inode->i_ino;
1670        int nr_pages;
1671        int nwritten = 0;
1672
1673        if (atomic) {
1674                last_page = last_fsync_dnode(sbi, ino);
1675                if (IS_ERR_OR_NULL(last_page))
1676                        return PTR_ERR_OR_ZERO(last_page);
1677        }
1678retry:
1679        pagevec_init(&pvec);
1680        index = 0;
1681
1682        while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1683                                PAGECACHE_TAG_DIRTY))) {
1684                int i;
1685
1686                for (i = 0; i < nr_pages; i++) {
1687                        struct page *page = pvec.pages[i];
1688                        bool submitted = false;
1689
1690                        if (unlikely(f2fs_cp_error(sbi))) {
1691                                f2fs_put_page(last_page, 0);
1692                                pagevec_release(&pvec);
1693                                ret = -EIO;
1694                                goto out;
1695                        }
1696
1697                        if (!IS_DNODE(page) || !is_cold_node(page))
1698                                continue;
1699                        if (ino_of_node(page) != ino)
1700                                continue;
1701
1702                        lock_page(page);
1703
1704                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1705continue_unlock:
1706                                unlock_page(page);
1707                                continue;
1708                        }
1709                        if (ino_of_node(page) != ino)
1710                                goto continue_unlock;
1711
1712                        if (!PageDirty(page) && page != last_page) {
1713                                /* someone wrote it for us */
1714                                goto continue_unlock;
1715                        }
1716
1717                        f2fs_wait_on_page_writeback(page, NODE, true, true);
1718
1719                        set_fsync_mark(page, 0);
1720                        set_dentry_mark(page, 0);
1721
1722                        if (!atomic || page == last_page) {
1723                                set_fsync_mark(page, 1);
1724                                if (IS_INODE(page)) {
1725                                        if (is_inode_flag_set(inode,
1726                                                                FI_DIRTY_INODE))
1727                                                f2fs_update_inode(inode, page);
1728                                        set_dentry_mark(page,
1729                                                f2fs_need_dentry_mark(sbi, ino));
1730                                }
1731                                /* may be written by other thread */
1732                                if (!PageDirty(page))
1733                                        set_page_dirty(page);
1734                        }
1735
1736                        if (!clear_page_dirty_for_io(page))
1737                                goto continue_unlock;
1738
1739                        ret = __write_node_page(page, atomic &&
1740                                                page == last_page,
1741                                                &submitted, wbc, true,
1742                                                FS_NODE_IO, seq_id);
1743                        if (ret) {
1744                                unlock_page(page);
1745                                f2fs_put_page(last_page, 0);
1746                                break;
1747                        } else if (submitted) {
1748                                nwritten++;
1749                        }
1750
1751                        if (page == last_page) {
1752                                f2fs_put_page(page, 0);
1753                                marked = true;
1754                                break;
1755                        }
1756                }
1757                pagevec_release(&pvec);
1758                cond_resched();
1759
1760                if (ret || marked)
1761                        break;
1762        }
1763        if (!ret && atomic && !marked) {
1764                f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1765                           ino, last_page->index);
1766                lock_page(last_page);
1767                f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1768                set_page_dirty(last_page);
1769                unlock_page(last_page);
1770                goto retry;
1771        }
1772out:
1773        if (nwritten)
1774                f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1775        return ret ? -EIO: 0;
1776}
1777
1778static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1779{
1780        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781        bool clean;
1782
1783        if (inode->i_ino != ino)
1784                return 0;
1785
1786        if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1787                return 0;
1788
1789        spin_lock(&sbi->inode_lock[DIRTY_META]);
1790        clean = list_empty(&F2FS_I(inode)->gdirty_list);
1791        spin_unlock(&sbi->inode_lock[DIRTY_META]);
1792
1793        if (clean)
1794                return 0;
1795
1796        inode = igrab(inode);
1797        if (!inode)
1798                return 0;
1799        return 1;
1800}
1801
1802static bool flush_dirty_inode(struct page *page)
1803{
1804        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1805        struct inode *inode;
1806        nid_t ino = ino_of_node(page);
1807
1808        inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1809        if (!inode)
1810                return false;
1811
1812        f2fs_update_inode(inode, page);
1813        unlock_page(page);
1814
1815        iput(inode);
1816        return true;
1817}
1818
1819void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1820{
1821        pgoff_t index = 0;
1822        struct pagevec pvec;
1823        int nr_pages;
1824
1825        pagevec_init(&pvec);
1826
1827        while ((nr_pages = pagevec_lookup_tag(&pvec,
1828                        NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1829                int i;
1830
1831                for (i = 0; i < nr_pages; i++) {
1832                        struct page *page = pvec.pages[i];
1833
1834                        if (!IS_DNODE(page))
1835                                continue;
1836
1837                        lock_page(page);
1838
1839                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1840continue_unlock:
1841                                unlock_page(page);
1842                                continue;
1843                        }
1844
1845                        if (!PageDirty(page)) {
1846                                /* someone wrote it for us */
1847                                goto continue_unlock;
1848                        }
1849
1850                        /* flush inline_data, if it's async context. */
1851                        if (is_inline_node(page)) {
1852                                clear_inline_node(page);
1853                                unlock_page(page);
1854                                flush_inline_data(sbi, ino_of_node(page));
1855                                continue;
1856                        }
1857                        unlock_page(page);
1858                }
1859                pagevec_release(&pvec);
1860                cond_resched();
1861        }
1862}
1863
1864int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1865                                struct writeback_control *wbc,
1866                                bool do_balance, enum iostat_type io_type)
1867{
1868        pgoff_t index;
1869        struct pagevec pvec;
1870        int step = 0;
1871        int nwritten = 0;
1872        int ret = 0;
1873        int nr_pages, done = 0;
1874
1875        pagevec_init(&pvec);
1876
1877next_step:
1878        index = 0;
1879
1880        while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1881                        NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1882                int i;
1883
1884                for (i = 0; i < nr_pages; i++) {
1885                        struct page *page = pvec.pages[i];
1886                        bool submitted = false;
1887                        bool may_dirty = true;
1888
1889                        /* give a priority to WB_SYNC threads */
1890                        if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1891                                        wbc->sync_mode == WB_SYNC_NONE) {
1892                                done = 1;
1893                                break;
1894                        }
1895
1896                        /*
1897                         * flushing sequence with step:
1898                         * 0. indirect nodes
1899                         * 1. dentry dnodes
1900                         * 2. file dnodes
1901                         */
1902                        if (step == 0 && IS_DNODE(page))
1903                                continue;
1904                        if (step == 1 && (!IS_DNODE(page) ||
1905                                                is_cold_node(page)))
1906                                continue;
1907                        if (step == 2 && (!IS_DNODE(page) ||
1908                                                !is_cold_node(page)))
1909                                continue;
1910lock_node:
1911                        if (wbc->sync_mode == WB_SYNC_ALL)
1912                                lock_page(page);
1913                        else if (!trylock_page(page))
1914                                continue;
1915
1916                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1917continue_unlock:
1918                                unlock_page(page);
1919                                continue;
1920                        }
1921
1922                        if (!PageDirty(page)) {
1923                                /* someone wrote it for us */
1924                                goto continue_unlock;
1925                        }
1926
1927                        /* flush inline_data/inode, if it's async context. */
1928                        if (!do_balance)
1929                                goto write_node;
1930
1931                        /* flush inline_data */
1932                        if (is_inline_node(page)) {
1933                                clear_inline_node(page);
1934                                unlock_page(page);
1935                                flush_inline_data(sbi, ino_of_node(page));
1936                                goto lock_node;
1937                        }
1938
1939                        /* flush dirty inode */
1940                        if (IS_INODE(page) && may_dirty) {
1941                                may_dirty = false;
1942                                if (flush_dirty_inode(page))
1943                                        goto lock_node;
1944                        }
1945write_node:
1946                        f2fs_wait_on_page_writeback(page, NODE, true, true);
1947
1948                        if (!clear_page_dirty_for_io(page))
1949                                goto continue_unlock;
1950
1951                        set_fsync_mark(page, 0);
1952                        set_dentry_mark(page, 0);
1953
1954                        ret = __write_node_page(page, false, &submitted,
1955                                                wbc, do_balance, io_type, NULL);
1956                        if (ret)
1957                                unlock_page(page);
1958                        else if (submitted)
1959                                nwritten++;
1960
1961                        if (--wbc->nr_to_write == 0)
1962                                break;
1963                }
1964                pagevec_release(&pvec);
1965                cond_resched();
1966
1967                if (wbc->nr_to_write == 0) {
1968                        step = 2;
1969                        break;
1970                }
1971        }
1972
1973        if (step < 2) {
1974                if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1975                                wbc->sync_mode == WB_SYNC_NONE && step == 1)
1976                        goto out;
1977                step++;
1978                goto next_step;
1979        }
1980out:
1981        if (nwritten)
1982                f2fs_submit_merged_write(sbi, NODE);
1983
1984        if (unlikely(f2fs_cp_error(sbi)))
1985                return -EIO;
1986        return ret;
1987}
1988
1989int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1990                                                unsigned int seq_id)
1991{
1992        struct fsync_node_entry *fn;
1993        struct page *page;
1994        struct list_head *head = &sbi->fsync_node_list;
1995        unsigned long flags;
1996        unsigned int cur_seq_id = 0;
1997        int ret2, ret = 0;
1998
1999        while (seq_id && cur_seq_id < seq_id) {
2000                spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2001                if (list_empty(head)) {
2002                        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2003                        break;
2004                }
2005                fn = list_first_entry(head, struct fsync_node_entry, list);
2006                if (fn->seq_id > seq_id) {
2007                        spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2008                        break;
2009                }
2010                cur_seq_id = fn->seq_id;
2011                page = fn->page;
2012                get_page(page);
2013                spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2014
2015                f2fs_wait_on_page_writeback(page, NODE, true, false);
2016                if (TestClearPageError(page))
2017                        ret = -EIO;
2018
2019                put_page(page);
2020
2021                if (ret)
2022                        break;
2023        }
2024
2025        ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2026        if (!ret)
2027                ret = ret2;
2028
2029        return ret;
2030}
2031
2032static int f2fs_write_node_pages(struct address_space *mapping,
2033                            struct writeback_control *wbc)
2034{
2035        struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2036        struct blk_plug plug;
2037        long diff;
2038
2039        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2040                goto skip_write;
2041
2042        /* balancing f2fs's metadata in background */
2043        f2fs_balance_fs_bg(sbi, true);
2044
2045        /* collect a number of dirty node pages and write together */
2046        if (wbc->sync_mode != WB_SYNC_ALL &&
2047                        get_pages(sbi, F2FS_DIRTY_NODES) <
2048                                        nr_pages_to_skip(sbi, NODE))
2049                goto skip_write;
2050
2051        if (wbc->sync_mode == WB_SYNC_ALL)
2052                atomic_inc(&sbi->wb_sync_req[NODE]);
2053        else if (atomic_read(&sbi->wb_sync_req[NODE]))
2054                goto skip_write;
2055
2056        trace_f2fs_writepages(mapping->host, wbc, NODE);
2057
2058        diff = nr_pages_to_write(sbi, NODE, wbc);
2059        blk_start_plug(&plug);
2060        f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2061        blk_finish_plug(&plug);
2062        wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2063
2064        if (wbc->sync_mode == WB_SYNC_ALL)
2065                atomic_dec(&sbi->wb_sync_req[NODE]);
2066        return 0;
2067
2068skip_write:
2069        wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2070        trace_f2fs_writepages(mapping->host, wbc, NODE);
2071        return 0;
2072}
2073
2074static int f2fs_set_node_page_dirty(struct page *page)
2075{
2076        trace_f2fs_set_page_dirty(page, NODE);
2077
2078        if (!PageUptodate(page))
2079                SetPageUptodate(page);
2080#ifdef CONFIG_F2FS_CHECK_FS
2081        if (IS_INODE(page))
2082                f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2083#endif
2084        if (!PageDirty(page)) {
2085                __set_page_dirty_nobuffers(page);
2086                inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2087                f2fs_set_page_private(page, 0);
2088                f2fs_trace_pid(page);
2089                return 1;
2090        }
2091        return 0;
2092}
2093
2094/*
2095 * Structure of the f2fs node operations
2096 */
2097const struct address_space_operations f2fs_node_aops = {
2098        .writepage      = f2fs_write_node_page,
2099        .writepages     = f2fs_write_node_pages,
2100        .set_page_dirty = f2fs_set_node_page_dirty,
2101        .invalidatepage = f2fs_invalidate_page,
2102        .releasepage    = f2fs_release_page,
2103#ifdef CONFIG_MIGRATION
2104        .migratepage    = f2fs_migrate_page,
2105#endif
2106};
2107
2108static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2109                                                nid_t n)
2110{
2111        return radix_tree_lookup(&nm_i->free_nid_root, n);
2112}
2113
2114static int __insert_free_nid(struct f2fs_sb_info *sbi,
2115                                struct free_nid *i)
2116{
2117        struct f2fs_nm_info *nm_i = NM_I(sbi);
2118
2119        int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2120        if (err)
2121                return err;
2122
2123        nm_i->nid_cnt[FREE_NID]++;
2124        list_add_tail(&i->list, &nm_i->free_nid_list);
2125        return 0;
2126}
2127
2128static void __remove_free_nid(struct f2fs_sb_info *sbi,
2129                        struct free_nid *i, enum nid_state state)
2130{
2131        struct f2fs_nm_info *nm_i = NM_I(sbi);
2132
2133        f2fs_bug_on(sbi, state != i->state);
2134        nm_i->nid_cnt[state]--;
2135        if (state == FREE_NID)
2136                list_del(&i->list);
2137        radix_tree_delete(&nm_i->free_nid_root, i->nid);
2138}
2139
2140static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2141                        enum nid_state org_state, enum nid_state dst_state)
2142{
2143        struct f2fs_nm_info *nm_i = NM_I(sbi);
2144
2145        f2fs_bug_on(sbi, org_state != i->state);
2146        i->state = dst_state;
2147        nm_i->nid_cnt[org_state]--;
2148        nm_i->nid_cnt[dst_state]++;
2149
2150        switch (dst_state) {
2151        case PREALLOC_NID:
2152                list_del(&i->list);
2153                break;
2154        case FREE_NID:
2155                list_add_tail(&i->list, &nm_i->free_nid_list);
2156                break;
2157        default:
2158                BUG_ON(1);
2159        }
2160}
2161
2162static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2163                                                        bool set, bool build)
2164{
2165        struct f2fs_nm_info *nm_i = NM_I(sbi);
2166        unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2167        unsigned int nid_ofs = nid - START_NID(nid);
2168
2169        if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2170                return;
2171
2172        if (set) {
2173                if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2174                        return;
2175                __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2176                nm_i->free_nid_count[nat_ofs]++;
2177        } else {
2178                if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2179                        return;
2180                __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2181                if (!build)
2182                        nm_i->free_nid_count[nat_ofs]--;
2183        }
2184}
2185
2186/* return if the nid is recognized as free */
2187static bool add_free_nid(struct f2fs_sb_info *sbi,
2188                                nid_t nid, bool build, bool update)
2189{
2190        struct f2fs_nm_info *nm_i = NM_I(sbi);
2191        struct free_nid *i, *e;
2192        struct nat_entry *ne;
2193        int err = -EINVAL;
2194        bool ret = false;
2195
2196        /* 0 nid should not be used */
2197        if (unlikely(nid == 0))
2198                return false;
2199
2200        if (unlikely(f2fs_check_nid_range(sbi, nid)))
2201                return false;
2202
2203        i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2204        i->nid = nid;
2205        i->state = FREE_NID;
2206
2207        radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2208
2209        spin_lock(&nm_i->nid_list_lock);
2210
2211        if (build) {
2212                /*
2213                 *   Thread A             Thread B
2214                 *  - f2fs_create
2215                 *   - f2fs_new_inode
2216                 *    - f2fs_alloc_nid
2217                 *     - __insert_nid_to_list(PREALLOC_NID)
2218                 *                     - f2fs_balance_fs_bg
2219                 *                      - f2fs_build_free_nids
2220                 *                       - __f2fs_build_free_nids
2221                 *                        - scan_nat_page
2222                 *                         - add_free_nid
2223                 *                          - __lookup_nat_cache
2224                 *  - f2fs_add_link
2225                 *   - f2fs_init_inode_metadata
2226                 *    - f2fs_new_inode_page
2227                 *     - f2fs_new_node_page
2228                 *      - set_node_addr
2229                 *  - f2fs_alloc_nid_done
2230                 *   - __remove_nid_from_list(PREALLOC_NID)
2231                 *                         - __insert_nid_to_list(FREE_NID)
2232                 */
2233                ne = __lookup_nat_cache(nm_i, nid);
2234                if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2235                                nat_get_blkaddr(ne) != NULL_ADDR))
2236                        goto err_out;
2237
2238                e = __lookup_free_nid_list(nm_i, nid);
2239                if (e) {
2240                        if (e->state == FREE_NID)
2241                                ret = true;
2242                        goto err_out;
2243                }
2244        }
2245        ret = true;
2246        err = __insert_free_nid(sbi, i);
2247err_out:
2248        if (update) {
2249                update_free_nid_bitmap(sbi, nid, ret, build);
2250                if (!build)
2251                        nm_i->available_nids++;
2252        }
2253        spin_unlock(&nm_i->nid_list_lock);
2254        radix_tree_preload_end();
2255
2256        if (err)
2257                kmem_cache_free(free_nid_slab, i);
2258        return ret;
2259}
2260
2261static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2262{
2263        struct f2fs_nm_info *nm_i = NM_I(sbi);
2264        struct free_nid *i;
2265        bool need_free = false;
2266
2267        spin_lock(&nm_i->nid_list_lock);
2268        i = __lookup_free_nid_list(nm_i, nid);
2269        if (i && i->state == FREE_NID) {
2270                __remove_free_nid(sbi, i, FREE_NID);
2271                need_free = true;
2272        }
2273        spin_unlock(&nm_i->nid_list_lock);
2274
2275        if (need_free)
2276                kmem_cache_free(free_nid_slab, i);
2277}
2278
2279static int scan_nat_page(struct f2fs_sb_info *sbi,
2280                        struct page *nat_page, nid_t start_nid)
2281{
2282        struct f2fs_nm_info *nm_i = NM_I(sbi);
2283        struct f2fs_nat_block *nat_blk = page_address(nat_page);
2284        block_t blk_addr;
2285        unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2286        int i;
2287
2288        __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2289
2290        i = start_nid % NAT_ENTRY_PER_BLOCK;
2291
2292        for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2293                if (unlikely(start_nid >= nm_i->max_nid))
2294                        break;
2295
2296                blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2297
2298                if (blk_addr == NEW_ADDR)
2299                        return -EINVAL;
2300
2301                if (blk_addr == NULL_ADDR) {
2302                        add_free_nid(sbi, start_nid, true, true);
2303                } else {
2304                        spin_lock(&NM_I(sbi)->nid_list_lock);
2305                        update_free_nid_bitmap(sbi, start_nid, false, true);
2306                        spin_unlock(&NM_I(sbi)->nid_list_lock);
2307                }
2308        }
2309
2310        return 0;
2311}
2312
2313static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2314{
2315        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2316        struct f2fs_journal *journal = curseg->journal;
2317        int i;
2318
2319        down_read(&curseg->journal_rwsem);
2320        for (i = 0; i < nats_in_cursum(journal); i++) {
2321                block_t addr;
2322                nid_t nid;
2323
2324                addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2325                nid = le32_to_cpu(nid_in_journal(journal, i));
2326                if (addr == NULL_ADDR)
2327                        add_free_nid(sbi, nid, true, false);
2328                else
2329                        remove_free_nid(sbi, nid);
2330        }
2331        up_read(&curseg->journal_rwsem);
2332}
2333
2334static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2335{
2336        struct f2fs_nm_info *nm_i = NM_I(sbi);
2337        unsigned int i, idx;
2338        nid_t nid;
2339
2340        down_read(&nm_i->nat_tree_lock);
2341
2342        for (i = 0; i < nm_i->nat_blocks; i++) {
2343                if (!test_bit_le(i, nm_i->nat_block_bitmap))
2344                        continue;
2345                if (!nm_i->free_nid_count[i])
2346                        continue;
2347                for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2348                        idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2349                                                NAT_ENTRY_PER_BLOCK, idx);
2350                        if (idx >= NAT_ENTRY_PER_BLOCK)
2351                                break;
2352
2353                        nid = i * NAT_ENTRY_PER_BLOCK + idx;
2354                        add_free_nid(sbi, nid, true, false);
2355
2356                        if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2357                                goto out;
2358                }
2359        }
2360out:
2361        scan_curseg_cache(sbi);
2362
2363        up_read(&nm_i->nat_tree_lock);
2364}
2365
2366static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2367                                                bool sync, bool mount)
2368{
2369        struct f2fs_nm_info *nm_i = NM_I(sbi);
2370        int i = 0, ret;
2371        nid_t nid = nm_i->next_scan_nid;
2372
2373        if (unlikely(nid >= nm_i->max_nid))
2374                nid = 0;
2375
2376        if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2377                nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2378
2379        /* Enough entries */
2380        if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2381                return 0;
2382
2383        if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2384                return 0;
2385
2386        if (!mount) {
2387                /* try to find free nids in free_nid_bitmap */
2388                scan_free_nid_bits(sbi);
2389
2390                if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2391                        return 0;
2392        }
2393
2394        /* readahead nat pages to be scanned */
2395        f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2396                                                        META_NAT, true);
2397
2398        down_read(&nm_i->nat_tree_lock);
2399
2400        while (1) {
2401                if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2402                                                nm_i->nat_block_bitmap)) {
2403                        struct page *page = get_current_nat_page(sbi, nid);
2404
2405                        if (IS_ERR(page)) {
2406                                ret = PTR_ERR(page);
2407                        } else {
2408                                ret = scan_nat_page(sbi, page, nid);
2409                                f2fs_put_page(page, 1);
2410                        }
2411
2412                        if (ret) {
2413                                up_read(&nm_i->nat_tree_lock);
2414                                f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2415                                return ret;
2416                        }
2417                }
2418
2419                nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2420                if (unlikely(nid >= nm_i->max_nid))
2421                        nid = 0;
2422
2423                if (++i >= FREE_NID_PAGES)
2424                        break;
2425        }
2426
2427        /* go to the next free nat pages to find free nids abundantly */
2428        nm_i->next_scan_nid = nid;
2429
2430        /* find free nids from current sum_pages */
2431        scan_curseg_cache(sbi);
2432
2433        up_read(&nm_i->nat_tree_lock);
2434
2435        f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2436                                        nm_i->ra_nid_pages, META_NAT, false);
2437
2438        return 0;
2439}
2440
2441int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2442{
2443        int ret;
2444
2445        mutex_lock(&NM_I(sbi)->build_lock);
2446        ret = __f2fs_build_free_nids(sbi, sync, mount);
2447        mutex_unlock(&NM_I(sbi)->build_lock);
2448
2449        return ret;
2450}
2451
2452/*
2453 * If this function returns success, caller can obtain a new nid
2454 * from second parameter of this function.
2455 * The returned nid could be used ino as well as nid when inode is created.
2456 */
2457bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2458{
2459        struct f2fs_nm_info *nm_i = NM_I(sbi);
2460        struct free_nid *i = NULL;
2461retry:
2462        if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2463                f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2464                return false;
2465        }
2466
2467        spin_lock(&nm_i->nid_list_lock);
2468
2469        if (unlikely(nm_i->available_nids == 0)) {
2470                spin_unlock(&nm_i->nid_list_lock);
2471                return false;
2472        }
2473
2474        /* We should not use stale free nids created by f2fs_build_free_nids */
2475        if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2476                f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2477                i = list_first_entry(&nm_i->free_nid_list,
2478                                        struct free_nid, list);
2479                *nid = i->nid;
2480
2481                __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2482                nm_i->available_nids--;
2483
2484                update_free_nid_bitmap(sbi, *nid, false, false);
2485
2486                spin_unlock(&nm_i->nid_list_lock);
2487                return true;
2488        }
2489        spin_unlock(&nm_i->nid_list_lock);
2490
2491        /* Let's scan nat pages and its caches to get free nids */
2492        if (!f2fs_build_free_nids(sbi, true, false))
2493                goto retry;
2494        return false;
2495}
2496
2497/*
2498 * f2fs_alloc_nid() should be called prior to this function.
2499 */
2500void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2501{
2502        struct f2fs_nm_info *nm_i = NM_I(sbi);
2503        struct free_nid *i;
2504
2505        spin_lock(&nm_i->nid_list_lock);
2506        i = __lookup_free_nid_list(nm_i, nid);
2507        f2fs_bug_on(sbi, !i);
2508        __remove_free_nid(sbi, i, PREALLOC_NID);
2509        spin_unlock(&nm_i->nid_list_lock);
2510
2511        kmem_cache_free(free_nid_slab, i);
2512}
2513
2514/*
2515 * f2fs_alloc_nid() should be called prior to this function.
2516 */
2517void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2518{
2519        struct f2fs_nm_info *nm_i = NM_I(sbi);
2520        struct free_nid *i;
2521        bool need_free = false;
2522
2523        if (!nid)
2524                return;
2525
2526        spin_lock(&nm_i->nid_list_lock);
2527        i = __lookup_free_nid_list(nm_i, nid);
2528        f2fs_bug_on(sbi, !i);
2529
2530        if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2531                __remove_free_nid(sbi, i, PREALLOC_NID);
2532                need_free = true;
2533        } else {
2534                __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2535        }
2536
2537        nm_i->available_nids++;
2538
2539        update_free_nid_bitmap(sbi, nid, true, false);
2540
2541        spin_unlock(&nm_i->nid_list_lock);
2542
2543        if (need_free)
2544                kmem_cache_free(free_nid_slab, i);
2545}
2546
2547int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2548{
2549        struct f2fs_nm_info *nm_i = NM_I(sbi);
2550        int nr = nr_shrink;
2551
2552        if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2553                return 0;
2554
2555        if (!mutex_trylock(&nm_i->build_lock))
2556                return 0;
2557
2558        while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2559                struct free_nid *i, *next;
2560                unsigned int batch = SHRINK_NID_BATCH_SIZE;
2561
2562                spin_lock(&nm_i->nid_list_lock);
2563                list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2564                        if (!nr_shrink || !batch ||
2565                                nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2566                                break;
2567                        __remove_free_nid(sbi, i, FREE_NID);
2568                        kmem_cache_free(free_nid_slab, i);
2569                        nr_shrink--;
2570                        batch--;
2571                }
2572                spin_unlock(&nm_i->nid_list_lock);
2573        }
2574
2575        mutex_unlock(&nm_i->build_lock);
2576
2577        return nr - nr_shrink;
2578}
2579
2580int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2581{
2582        void *src_addr, *dst_addr;
2583        size_t inline_size;
2584        struct page *ipage;
2585        struct f2fs_inode *ri;
2586
2587        ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2588        if (IS_ERR(ipage))
2589                return PTR_ERR(ipage);
2590
2591        ri = F2FS_INODE(page);
2592        if (ri->i_inline & F2FS_INLINE_XATTR) {
2593                set_inode_flag(inode, FI_INLINE_XATTR);
2594        } else {
2595                clear_inode_flag(inode, FI_INLINE_XATTR);
2596                goto update_inode;
2597        }
2598
2599        dst_addr = inline_xattr_addr(inode, ipage);
2600        src_addr = inline_xattr_addr(inode, page);
2601        inline_size = inline_xattr_size(inode);
2602
2603        f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2604        memcpy(dst_addr, src_addr, inline_size);
2605update_inode:
2606        f2fs_update_inode(inode, ipage);
2607        f2fs_put_page(ipage, 1);
2608        return 0;
2609}
2610
2611int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2612{
2613        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2614        nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2615        nid_t new_xnid;
2616        struct dnode_of_data dn;
2617        struct node_info ni;
2618        struct page *xpage;
2619        int err;
2620
2621        if (!prev_xnid)
2622                goto recover_xnid;
2623
2624        /* 1: invalidate the previous xattr nid */
2625        err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2626        if (err)
2627                return err;
2628
2629        f2fs_invalidate_blocks(sbi, ni.blk_addr);
2630        dec_valid_node_count(sbi, inode, false);
2631        set_node_addr(sbi, &ni, NULL_ADDR, false);
2632
2633recover_xnid:
2634        /* 2: update xattr nid in inode */
2635        if (!f2fs_alloc_nid(sbi, &new_xnid))
2636                return -ENOSPC;
2637
2638        set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2639        xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2640        if (IS_ERR(xpage)) {
2641                f2fs_alloc_nid_failed(sbi, new_xnid);
2642                return PTR_ERR(xpage);
2643        }
2644
2645        f2fs_alloc_nid_done(sbi, new_xnid);
2646        f2fs_update_inode_page(inode);
2647
2648        /* 3: update and set xattr node page dirty */
2649        memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2650
2651        set_page_dirty(xpage);
2652        f2fs_put_page(xpage, 1);
2653
2654        return 0;
2655}
2656
2657int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2658{
2659        struct f2fs_inode *src, *dst;
2660        nid_t ino = ino_of_node(page);
2661        struct node_info old_ni, new_ni;
2662        struct page *ipage;
2663        int err;
2664
2665        err = f2fs_get_node_info(sbi, ino, &old_ni);
2666        if (err)
2667                return err;
2668
2669        if (unlikely(old_ni.blk_addr != NULL_ADDR))
2670                return -EINVAL;
2671retry:
2672        ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2673        if (!ipage) {
2674                congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2675                goto retry;
2676        }
2677
2678        /* Should not use this inode from free nid list */
2679        remove_free_nid(sbi, ino);
2680
2681        if (!PageUptodate(ipage))
2682                SetPageUptodate(ipage);
2683        fill_node_footer(ipage, ino, ino, 0, true);
2684        set_cold_node(ipage, false);
2685
2686        src = F2FS_INODE(page);
2687        dst = F2FS_INODE(ipage);
2688
2689        memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2690        dst->i_size = 0;
2691        dst->i_blocks = cpu_to_le64(1);
2692        dst->i_links = cpu_to_le32(1);
2693        dst->i_xattr_nid = 0;
2694        dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2695        if (dst->i_inline & F2FS_EXTRA_ATTR) {
2696                dst->i_extra_isize = src->i_extra_isize;
2697
2698                if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2699                        F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2700                                                        i_inline_xattr_size))
2701                        dst->i_inline_xattr_size = src->i_inline_xattr_size;
2702
2703                if (f2fs_sb_has_project_quota(sbi) &&
2704                        F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2705                                                                i_projid))
2706                        dst->i_projid = src->i_projid;
2707
2708                if (f2fs_sb_has_inode_crtime(sbi) &&
2709                        F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2710                                                        i_crtime_nsec)) {
2711                        dst->i_crtime = src->i_crtime;
2712                        dst->i_crtime_nsec = src->i_crtime_nsec;
2713                }
2714        }
2715
2716        new_ni = old_ni;
2717        new_ni.ino = ino;
2718
2719        if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2720                WARN_ON(1);
2721        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2722        inc_valid_inode_count(sbi);
2723        set_page_dirty(ipage);
2724        f2fs_put_page(ipage, 1);
2725        return 0;
2726}
2727
2728int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2729                        unsigned int segno, struct f2fs_summary_block *sum)
2730{
2731        struct f2fs_node *rn;
2732        struct f2fs_summary *sum_entry;
2733        block_t addr;
2734        int i, idx, last_offset, nrpages;
2735
2736        /* scan the node segment */
2737        last_offset = sbi->blocks_per_seg;
2738        addr = START_BLOCK(sbi, segno);
2739        sum_entry = &sum->entries[0];
2740
2741        for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2742                nrpages = min(last_offset - i, BIO_MAX_PAGES);
2743
2744                /* readahead node pages */
2745                f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2746
2747                for (idx = addr; idx < addr + nrpages; idx++) {
2748                        struct page *page = f2fs_get_tmp_page(sbi, idx);
2749
2750                        if (IS_ERR(page))
2751                                return PTR_ERR(page);
2752
2753                        rn = F2FS_NODE(page);
2754                        sum_entry->nid = rn->footer.nid;
2755                        sum_entry->version = 0;
2756                        sum_entry->ofs_in_node = 0;
2757                        sum_entry++;
2758                        f2fs_put_page(page, 1);
2759                }
2760
2761                invalidate_mapping_pages(META_MAPPING(sbi), addr,
2762                                                        addr + nrpages);
2763        }
2764        return 0;
2765}
2766
2767static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2768{
2769        struct f2fs_nm_info *nm_i = NM_I(sbi);
2770        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2771        struct f2fs_journal *journal = curseg->journal;
2772        int i;
2773
2774        down_write(&curseg->journal_rwsem);
2775        for (i = 0; i < nats_in_cursum(journal); i++) {
2776                struct nat_entry *ne;
2777                struct f2fs_nat_entry raw_ne;
2778                nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2779
2780                raw_ne = nat_in_journal(journal, i);
2781
2782                ne = __lookup_nat_cache(nm_i, nid);
2783                if (!ne) {
2784                        ne = __alloc_nat_entry(nid, true);
2785                        __init_nat_entry(nm_i, ne, &raw_ne, true);
2786                }
2787
2788                /*
2789                 * if a free nat in journal has not been used after last
2790                 * checkpoint, we should remove it from available nids,
2791                 * since later we will add it again.
2792                 */
2793                if (!get_nat_flag(ne, IS_DIRTY) &&
2794                                le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2795                        spin_lock(&nm_i->nid_list_lock);
2796                        nm_i->available_nids--;
2797                        spin_unlock(&nm_i->nid_list_lock);
2798                }
2799
2800                __set_nat_cache_dirty(nm_i, ne);
2801        }
2802        update_nats_in_cursum(journal, -i);
2803        up_write(&curseg->journal_rwsem);
2804}
2805
2806static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2807                                                struct list_head *head, int max)
2808{
2809        struct nat_entry_set *cur;
2810
2811        if (nes->entry_cnt >= max)
2812                goto add_out;
2813
2814        list_for_each_entry(cur, head, set_list) {
2815                if (cur->entry_cnt >= nes->entry_cnt) {
2816                        list_add(&nes->set_list, cur->set_list.prev);
2817                        return;
2818                }
2819        }
2820add_out:
2821        list_add_tail(&nes->set_list, head);
2822}
2823
2824static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2825                                                struct page *page)
2826{
2827        struct f2fs_nm_info *nm_i = NM_I(sbi);
2828        unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2829        struct f2fs_nat_block *nat_blk = page_address(page);
2830        int valid = 0;
2831        int i = 0;
2832
2833        if (!enabled_nat_bits(sbi, NULL))
2834                return;
2835
2836        if (nat_index == 0) {
2837                valid = 1;
2838                i = 1;
2839        }
2840        for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2841                if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2842                        valid++;
2843        }
2844        if (valid == 0) {
2845                __set_bit_le(nat_index, nm_i->empty_nat_bits);
2846                __clear_bit_le(nat_index, nm_i->full_nat_bits);
2847                return;
2848        }
2849
2850        __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2851        if (valid == NAT_ENTRY_PER_BLOCK)
2852                __set_bit_le(nat_index, nm_i->full_nat_bits);
2853        else
2854                __clear_bit_le(nat_index, nm_i->full_nat_bits);
2855}
2856
2857static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2858                struct nat_entry_set *set, struct cp_control *cpc)
2859{
2860        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2861        struct f2fs_journal *journal = curseg->journal;
2862        nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2863        bool to_journal = true;
2864        struct f2fs_nat_block *nat_blk;
2865        struct nat_entry *ne, *cur;
2866        struct page *page = NULL;
2867
2868        /*
2869         * there are two steps to flush nat entries:
2870         * #1, flush nat entries to journal in current hot data summary block.
2871         * #2, flush nat entries to nat page.
2872         */
2873        if (enabled_nat_bits(sbi, cpc) ||
2874                !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2875                to_journal = false;
2876
2877        if (to_journal) {
2878                down_write(&curseg->journal_rwsem);
2879        } else {
2880                page = get_next_nat_page(sbi, start_nid);
2881                if (IS_ERR(page))
2882                        return PTR_ERR(page);
2883
2884                nat_blk = page_address(page);
2885                f2fs_bug_on(sbi, !nat_blk);
2886        }
2887
2888        /* flush dirty nats in nat entry set */
2889        list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2890                struct f2fs_nat_entry *raw_ne;
2891                nid_t nid = nat_get_nid(ne);
2892                int offset;
2893
2894                f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2895
2896                if (to_journal) {
2897                        offset = f2fs_lookup_journal_in_cursum(journal,
2898                                                        NAT_JOURNAL, nid, 1);
2899                        f2fs_bug_on(sbi, offset < 0);
2900                        raw_ne = &nat_in_journal(journal, offset);
2901                        nid_in_journal(journal, offset) = cpu_to_le32(nid);
2902                } else {
2903                        raw_ne = &nat_blk->entries[nid - start_nid];
2904                }
2905                raw_nat_from_node_info(raw_ne, &ne->ni);
2906                nat_reset_flag(ne);
2907                __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2908                if (nat_get_blkaddr(ne) == NULL_ADDR) {
2909                        add_free_nid(sbi, nid, false, true);
2910                } else {
2911                        spin_lock(&NM_I(sbi)->nid_list_lock);
2912                        update_free_nid_bitmap(sbi, nid, false, false);
2913                        spin_unlock(&NM_I(sbi)->nid_list_lock);
2914                }
2915        }
2916
2917        if (to_journal) {
2918                up_write(&curseg->journal_rwsem);
2919        } else {
2920                __update_nat_bits(sbi, start_nid, page);
2921                f2fs_put_page(page, 1);
2922        }
2923
2924        /* Allow dirty nats by node block allocation in write_begin */
2925        if (!set->entry_cnt) {
2926                radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2927                kmem_cache_free(nat_entry_set_slab, set);
2928        }
2929        return 0;
2930}
2931
2932/*
2933 * This function is called during the checkpointing process.
2934 */
2935int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2936{
2937        struct f2fs_nm_info *nm_i = NM_I(sbi);
2938        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2939        struct f2fs_journal *journal = curseg->journal;
2940        struct nat_entry_set *setvec[SETVEC_SIZE];
2941        struct nat_entry_set *set, *tmp;
2942        unsigned int found;
2943        nid_t set_idx = 0;
2944        LIST_HEAD(sets);
2945        int err = 0;
2946
2947        /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2948        if (enabled_nat_bits(sbi, cpc)) {
2949                down_write(&nm_i->nat_tree_lock);
2950                remove_nats_in_journal(sbi);
2951                up_write(&nm_i->nat_tree_lock);
2952        }
2953
2954        if (!nm_i->dirty_nat_cnt)
2955                return 0;
2956
2957        down_write(&nm_i->nat_tree_lock);
2958
2959        /*
2960         * if there are no enough space in journal to store dirty nat
2961         * entries, remove all entries from journal and merge them
2962         * into nat entry set.
2963         */
2964        if (enabled_nat_bits(sbi, cpc) ||
2965                !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2966                remove_nats_in_journal(sbi);
2967
2968        while ((found = __gang_lookup_nat_set(nm_i,
2969                                        set_idx, SETVEC_SIZE, setvec))) {
2970                unsigned idx;
2971                set_idx = setvec[found - 1]->set + 1;
2972                for (idx = 0; idx < found; idx++)
2973                        __adjust_nat_entry_set(setvec[idx], &sets,
2974                                                MAX_NAT_JENTRIES(journal));
2975        }
2976
2977        /* flush dirty nats in nat entry set */
2978        list_for_each_entry_safe(set, tmp, &sets, set_list) {
2979                err = __flush_nat_entry_set(sbi, set, cpc);
2980                if (err)
2981                        break;
2982        }
2983
2984        up_write(&nm_i->nat_tree_lock);
2985        /* Allow dirty nats by node block allocation in write_begin */
2986
2987        return err;
2988}
2989
2990static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2991{
2992        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2993        struct f2fs_nm_info *nm_i = NM_I(sbi);
2994        unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2995        unsigned int i;
2996        __u64 cp_ver = cur_cp_version(ckpt);
2997        block_t nat_bits_addr;
2998
2999        if (!enabled_nat_bits(sbi, NULL))
3000                return 0;
3001
3002        nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3003        nm_i->nat_bits = f2fs_kvzalloc(sbi,
3004                        nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3005        if (!nm_i->nat_bits)
3006                return -ENOMEM;
3007
3008        nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3009                                                nm_i->nat_bits_blocks;
3010        for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3011                struct page *page;
3012
3013                page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3014                if (IS_ERR(page))
3015                        return PTR_ERR(page);
3016
3017                memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3018                                        page_address(page), F2FS_BLKSIZE);
3019                f2fs_put_page(page, 1);
3020        }
3021
3022        cp_ver |= (cur_cp_crc(ckpt) << 32);
3023        if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3024                disable_nat_bits(sbi, true);
3025                return 0;
3026        }
3027
3028        nm_i->full_nat_bits = nm_i->nat_bits + 8;
3029        nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3030
3031        f2fs_notice(sbi, "Found nat_bits in checkpoint");
3032        return 0;
3033}
3034
3035static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3036{
3037        struct f2fs_nm_info *nm_i = NM_I(sbi);
3038        unsigned int i = 0;
3039        nid_t nid, last_nid;
3040
3041        if (!enabled_nat_bits(sbi, NULL))
3042                return;
3043
3044        for (i = 0; i < nm_i->nat_blocks; i++) {
3045                i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3046                if (i >= nm_i->nat_blocks)
3047                        break;
3048
3049                __set_bit_le(i, nm_i->nat_block_bitmap);
3050
3051                nid = i * NAT_ENTRY_PER_BLOCK;
3052                last_nid = nid + NAT_ENTRY_PER_BLOCK;
3053
3054                spin_lock(&NM_I(sbi)->nid_list_lock);
3055                for (; nid < last_nid; nid++)
3056                        update_free_nid_bitmap(sbi, nid, true, true);
3057                spin_unlock(&NM_I(sbi)->nid_list_lock);
3058        }
3059
3060        for (i = 0; i < nm_i->nat_blocks; i++) {
3061                i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3062                if (i >= nm_i->nat_blocks)
3063                        break;
3064
3065                __set_bit_le(i, nm_i->nat_block_bitmap);
3066        }
3067}
3068
3069static int init_node_manager(struct f2fs_sb_info *sbi)
3070{
3071        struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3072        struct f2fs_nm_info *nm_i = NM_I(sbi);
3073        unsigned char *version_bitmap;
3074        unsigned int nat_segs;
3075        int err;
3076
3077        nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3078
3079        /* segment_count_nat includes pair segment so divide to 2. */
3080        nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3081        nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3082        nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3083
3084        /* not used nids: 0, node, meta, (and root counted as valid node) */
3085        nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3086                                                F2FS_RESERVED_NODE_NUM;
3087        nm_i->nid_cnt[FREE_NID] = 0;
3088        nm_i->nid_cnt[PREALLOC_NID] = 0;
3089        nm_i->nat_cnt = 0;
3090        nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3091        nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3092        nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3093
3094        INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3095        INIT_LIST_HEAD(&nm_i->free_nid_list);
3096        INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3097        INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3098        INIT_LIST_HEAD(&nm_i->nat_entries);
3099        spin_lock_init(&nm_i->nat_list_lock);
3100
3101        mutex_init(&nm_i->build_lock);
3102        spin_lock_init(&nm_i->nid_list_lock);
3103        init_rwsem(&nm_i->nat_tree_lock);
3104
3105        nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3106        nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3107        version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3108        if (!version_bitmap)
3109                return -EFAULT;
3110
3111        nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3112                                        GFP_KERNEL);
3113        if (!nm_i->nat_bitmap)
3114                return -ENOMEM;
3115
3116        err = __get_nat_bitmaps(sbi);
3117        if (err)
3118                return err;
3119
3120#ifdef CONFIG_F2FS_CHECK_FS
3121        nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3122                                        GFP_KERNEL);
3123        if (!nm_i->nat_bitmap_mir)
3124                return -ENOMEM;
3125#endif
3126
3127        return 0;
3128}
3129
3130static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3131{
3132        struct f2fs_nm_info *nm_i = NM_I(sbi);
3133        int i;
3134
3135        nm_i->free_nid_bitmap =
3136                f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3137                                              nm_i->nat_blocks),
3138                              GFP_KERNEL);
3139        if (!nm_i->free_nid_bitmap)
3140                return -ENOMEM;
3141
3142        for (i = 0; i < nm_i->nat_blocks; i++) {
3143                nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3144                        f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3145                if (!nm_i->free_nid_bitmap[i])
3146                        return -ENOMEM;
3147        }
3148
3149        nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3150                                                                GFP_KERNEL);
3151        if (!nm_i->nat_block_bitmap)
3152                return -ENOMEM;
3153
3154        nm_i->free_nid_count =
3155                f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3156                                              nm_i->nat_blocks),
3157                              GFP_KERNEL);
3158        if (!nm_i->free_nid_count)
3159                return -ENOMEM;
3160        return 0;
3161}
3162
3163int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3164{
3165        int err;
3166
3167        sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3168                                                        GFP_KERNEL);
3169        if (!sbi->nm_info)
3170                return -ENOMEM;
3171
3172        err = init_node_manager(sbi);
3173        if (err)
3174                return err;
3175
3176        err = init_free_nid_cache(sbi);
3177        if (err)
3178                return err;
3179
3180        /* load free nid status from nat_bits table */
3181        load_free_nid_bitmap(sbi);
3182
3183        return f2fs_build_free_nids(sbi, true, true);
3184}
3185
3186void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3187{
3188        struct f2fs_nm_info *nm_i = NM_I(sbi);
3189        struct free_nid *i, *next_i;
3190        struct nat_entry *natvec[NATVEC_SIZE];
3191        struct nat_entry_set *setvec[SETVEC_SIZE];
3192        nid_t nid = 0;
3193        unsigned int found;
3194
3195        if (!nm_i)
3196                return;
3197
3198        /* destroy free nid list */
3199        spin_lock(&nm_i->nid_list_lock);
3200        list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3201                __remove_free_nid(sbi, i, FREE_NID);
3202                spin_unlock(&nm_i->nid_list_lock);
3203                kmem_cache_free(free_nid_slab, i);
3204                spin_lock(&nm_i->nid_list_lock);
3205        }
3206        f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3207        f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3208        f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3209        spin_unlock(&nm_i->nid_list_lock);
3210
3211        /* destroy nat cache */
3212        down_write(&nm_i->nat_tree_lock);
3213        while ((found = __gang_lookup_nat_cache(nm_i,
3214                                        nid, NATVEC_SIZE, natvec))) {
3215                unsigned idx;
3216
3217                nid = nat_get_nid(natvec[found - 1]) + 1;
3218                for (idx = 0; idx < found; idx++) {
3219                        spin_lock(&nm_i->nat_list_lock);
3220                        list_del(&natvec[idx]->list);
3221                        spin_unlock(&nm_i->nat_list_lock);
3222
3223                        __del_from_nat_cache(nm_i, natvec[idx]);
3224                }
3225        }
3226        f2fs_bug_on(sbi, nm_i->nat_cnt);
3227
3228        /* destroy nat set cache */
3229        nid = 0;
3230        while ((found = __gang_lookup_nat_set(nm_i,
3231                                        nid, SETVEC_SIZE, setvec))) {
3232                unsigned idx;
3233
3234                nid = setvec[found - 1]->set + 1;
3235                for (idx = 0; idx < found; idx++) {
3236                        /* entry_cnt is not zero, when cp_error was occurred */
3237                        f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3238                        radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3239                        kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3240                }
3241        }
3242        up_write(&nm_i->nat_tree_lock);
3243
3244        kvfree(nm_i->nat_block_bitmap);
3245        if (nm_i->free_nid_bitmap) {
3246                int i;
3247
3248                for (i = 0; i < nm_i->nat_blocks; i++)
3249                        kvfree(nm_i->free_nid_bitmap[i]);
3250                kvfree(nm_i->free_nid_bitmap);
3251        }
3252        kvfree(nm_i->free_nid_count);
3253
3254        kvfree(nm_i->nat_bitmap);
3255        kvfree(nm_i->nat_bits);
3256#ifdef CONFIG_F2FS_CHECK_FS
3257        kvfree(nm_i->nat_bitmap_mir);
3258#endif
3259        sbi->nm_info = NULL;
3260        kvfree(nm_i);
3261}
3262
3263int __init f2fs_create_node_manager_caches(void)
3264{
3265        nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3266                        sizeof(struct nat_entry));
3267        if (!nat_entry_slab)
3268                goto fail;
3269
3270        free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3271                        sizeof(struct free_nid));
3272        if (!free_nid_slab)
3273                goto destroy_nat_entry;
3274
3275        nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3276                        sizeof(struct nat_entry_set));
3277        if (!nat_entry_set_slab)
3278                goto destroy_free_nid;
3279
3280        fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3281                        sizeof(struct fsync_node_entry));
3282        if (!fsync_node_entry_slab)
3283                goto destroy_nat_entry_set;
3284        return 0;
3285
3286destroy_nat_entry_set:
3287        kmem_cache_destroy(nat_entry_set_slab);
3288destroy_free_nid:
3289        kmem_cache_destroy(free_nid_slab);
3290destroy_nat_entry:
3291        kmem_cache_destroy(nat_entry_slab);
3292fail:
3293        return -ENOMEM;
3294}
3295
3296void f2fs_destroy_node_manager_caches(void)
3297{
3298        kmem_cache_destroy(fsync_node_entry_slab);
3299        kmem_cache_destroy(nat_entry_set_slab);
3300        kmem_cache_destroy(free_nid_slab);
3301        kmem_cache_destroy(nat_entry_slab);
3302}
3303