linux/fs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
   8#include <linux/mm.h>
   9#include <linux/backing-dev.h>
  10#include <linux/hash.h>
  11#include <linux/swap.h>
  12#include <linux/security.h>
  13#include <linux/cdev.h>
  14#include <linux/memblock.h>
  15#include <linux/fscrypt.h>
  16#include <linux/fsnotify.h>
  17#include <linux/mount.h>
  18#include <linux/posix_acl.h>
  19#include <linux/prefetch.h>
  20#include <linux/buffer_head.h> /* for inode_has_buffers */
  21#include <linux/ratelimit.h>
  22#include <linux/list_lru.h>
  23#include <linux/iversion.h>
  24#include <trace/events/writeback.h>
  25#include "internal.h"
  26
  27/*
  28 * Inode locking rules:
  29 *
  30 * inode->i_lock protects:
  31 *   inode->i_state, inode->i_hash, __iget()
  32 * Inode LRU list locks protect:
  33 *   inode->i_sb->s_inode_lru, inode->i_lru
  34 * inode->i_sb->s_inode_list_lock protects:
  35 *   inode->i_sb->s_inodes, inode->i_sb_list
  36 * bdi->wb.list_lock protects:
  37 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  38 * inode_hash_lock protects:
  39 *   inode_hashtable, inode->i_hash
  40 *
  41 * Lock ordering:
  42 *
  43 * inode->i_sb->s_inode_list_lock
  44 *   inode->i_lock
  45 *     Inode LRU list locks
  46 *
  47 * bdi->wb.list_lock
  48 *   inode->i_lock
  49 *
  50 * inode_hash_lock
  51 *   inode->i_sb->s_inode_list_lock
  52 *   inode->i_lock
  53 *
  54 * iunique_lock
  55 *   inode_hash_lock
  56 */
  57
  58static unsigned int i_hash_mask __read_mostly;
  59static unsigned int i_hash_shift __read_mostly;
  60static struct hlist_head *inode_hashtable __read_mostly;
  61static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  62
  63/*
  64 * Empty aops. Can be used for the cases where the user does not
  65 * define any of the address_space operations.
  66 */
  67const struct address_space_operations empty_aops = {
  68};
  69EXPORT_SYMBOL(empty_aops);
  70
  71/*
  72 * Statistics gathering..
  73 */
  74struct inodes_stat_t inodes_stat;
  75
  76static DEFINE_PER_CPU(unsigned long, nr_inodes);
  77static DEFINE_PER_CPU(unsigned long, nr_unused);
  78
  79static struct kmem_cache *inode_cachep __read_mostly;
  80
  81static long get_nr_inodes(void)
  82{
  83        int i;
  84        long sum = 0;
  85        for_each_possible_cpu(i)
  86                sum += per_cpu(nr_inodes, i);
  87        return sum < 0 ? 0 : sum;
  88}
  89
  90static inline long get_nr_inodes_unused(void)
  91{
  92        int i;
  93        long sum = 0;
  94        for_each_possible_cpu(i)
  95                sum += per_cpu(nr_unused, i);
  96        return sum < 0 ? 0 : sum;
  97}
  98
  99long get_nr_dirty_inodes(void)
 100{
 101        /* not actually dirty inodes, but a wild approximation */
 102        long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 103        return nr_dirty > 0 ? nr_dirty : 0;
 104}
 105
 106/*
 107 * Handle nr_inode sysctl
 108 */
 109#ifdef CONFIG_SYSCTL
 110int proc_nr_inodes(struct ctl_table *table, int write,
 111                   void *buffer, size_t *lenp, loff_t *ppos)
 112{
 113        inodes_stat.nr_inodes = get_nr_inodes();
 114        inodes_stat.nr_unused = get_nr_inodes_unused();
 115        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 116}
 117#endif
 118
 119static int no_open(struct inode *inode, struct file *file)
 120{
 121        return -ENXIO;
 122}
 123
 124/**
 125 * inode_init_always - perform inode structure initialisation
 126 * @sb: superblock inode belongs to
 127 * @inode: inode to initialise
 128 *
 129 * These are initializations that need to be done on every inode
 130 * allocation as the fields are not initialised by slab allocation.
 131 */
 132int inode_init_always(struct super_block *sb, struct inode *inode)
 133{
 134        static const struct inode_operations empty_iops;
 135        static const struct file_operations no_open_fops = {.open = no_open};
 136        struct address_space *const mapping = &inode->i_data;
 137
 138        inode->i_sb = sb;
 139        inode->i_blkbits = sb->s_blocksize_bits;
 140        inode->i_flags = 0;
 141        atomic64_set(&inode->i_sequence, 0);
 142        atomic_set(&inode->i_count, 1);
 143        inode->i_op = &empty_iops;
 144        inode->i_fop = &no_open_fops;
 145        inode->__i_nlink = 1;
 146        inode->i_opflags = 0;
 147        if (sb->s_xattr)
 148                inode->i_opflags |= IOP_XATTR;
 149        i_uid_write(inode, 0);
 150        i_gid_write(inode, 0);
 151        atomic_set(&inode->i_writecount, 0);
 152        inode->i_size = 0;
 153        inode->i_write_hint = WRITE_LIFE_NOT_SET;
 154        inode->i_blocks = 0;
 155        inode->i_bytes = 0;
 156        inode->i_generation = 0;
 157        inode->i_pipe = NULL;
 158        inode->i_bdev = NULL;
 159        inode->i_cdev = NULL;
 160        inode->i_link = NULL;
 161        inode->i_dir_seq = 0;
 162        inode->i_rdev = 0;
 163        inode->dirtied_when = 0;
 164
 165#ifdef CONFIG_CGROUP_WRITEBACK
 166        inode->i_wb_frn_winner = 0;
 167        inode->i_wb_frn_avg_time = 0;
 168        inode->i_wb_frn_history = 0;
 169#endif
 170
 171        if (security_inode_alloc(inode))
 172                goto out;
 173        spin_lock_init(&inode->i_lock);
 174        lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 175
 176        init_rwsem(&inode->i_rwsem);
 177        lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 178
 179        atomic_set(&inode->i_dio_count, 0);
 180
 181        mapping->a_ops = &empty_aops;
 182        mapping->host = inode;
 183        mapping->flags = 0;
 184        mapping->wb_err = 0;
 185        atomic_set(&mapping->i_mmap_writable, 0);
 186#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 187        atomic_set(&mapping->nr_thps, 0);
 188#endif
 189        mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 190        mapping->private_data = NULL;
 191        mapping->writeback_index = 0;
 192        inode->i_private = NULL;
 193        inode->i_mapping = mapping;
 194        INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
 195#ifdef CONFIG_FS_POSIX_ACL
 196        inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 197#endif
 198
 199#ifdef CONFIG_FSNOTIFY
 200        inode->i_fsnotify_mask = 0;
 201#endif
 202        inode->i_flctx = NULL;
 203        this_cpu_inc(nr_inodes);
 204
 205        return 0;
 206out:
 207        return -ENOMEM;
 208}
 209EXPORT_SYMBOL(inode_init_always);
 210
 211void free_inode_nonrcu(struct inode *inode)
 212{
 213        kmem_cache_free(inode_cachep, inode);
 214}
 215EXPORT_SYMBOL(free_inode_nonrcu);
 216
 217static void i_callback(struct rcu_head *head)
 218{
 219        struct inode *inode = container_of(head, struct inode, i_rcu);
 220        if (inode->free_inode)
 221                inode->free_inode(inode);
 222        else
 223                free_inode_nonrcu(inode);
 224}
 225
 226static struct inode *alloc_inode(struct super_block *sb)
 227{
 228        const struct super_operations *ops = sb->s_op;
 229        struct inode *inode;
 230
 231        if (ops->alloc_inode)
 232                inode = ops->alloc_inode(sb);
 233        else
 234                inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 235
 236        if (!inode)
 237                return NULL;
 238
 239        if (unlikely(inode_init_always(sb, inode))) {
 240                if (ops->destroy_inode) {
 241                        ops->destroy_inode(inode);
 242                        if (!ops->free_inode)
 243                                return NULL;
 244                }
 245                inode->free_inode = ops->free_inode;
 246                i_callback(&inode->i_rcu);
 247                return NULL;
 248        }
 249
 250        return inode;
 251}
 252
 253void __destroy_inode(struct inode *inode)
 254{
 255        BUG_ON(inode_has_buffers(inode));
 256        inode_detach_wb(inode);
 257        security_inode_free(inode);
 258        fsnotify_inode_delete(inode);
 259        locks_free_lock_context(inode);
 260        if (!inode->i_nlink) {
 261                WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 262                atomic_long_dec(&inode->i_sb->s_remove_count);
 263        }
 264
 265#ifdef CONFIG_FS_POSIX_ACL
 266        if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 267                posix_acl_release(inode->i_acl);
 268        if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 269                posix_acl_release(inode->i_default_acl);
 270#endif
 271        this_cpu_dec(nr_inodes);
 272}
 273EXPORT_SYMBOL(__destroy_inode);
 274
 275static void destroy_inode(struct inode *inode)
 276{
 277        const struct super_operations *ops = inode->i_sb->s_op;
 278
 279        BUG_ON(!list_empty(&inode->i_lru));
 280        __destroy_inode(inode);
 281        if (ops->destroy_inode) {
 282                ops->destroy_inode(inode);
 283                if (!ops->free_inode)
 284                        return;
 285        }
 286        inode->free_inode = ops->free_inode;
 287        call_rcu(&inode->i_rcu, i_callback);
 288}
 289
 290/**
 291 * drop_nlink - directly drop an inode's link count
 292 * @inode: inode
 293 *
 294 * This is a low-level filesystem helper to replace any
 295 * direct filesystem manipulation of i_nlink.  In cases
 296 * where we are attempting to track writes to the
 297 * filesystem, a decrement to zero means an imminent
 298 * write when the file is truncated and actually unlinked
 299 * on the filesystem.
 300 */
 301void drop_nlink(struct inode *inode)
 302{
 303        WARN_ON(inode->i_nlink == 0);
 304        inode->__i_nlink--;
 305        if (!inode->i_nlink)
 306                atomic_long_inc(&inode->i_sb->s_remove_count);
 307}
 308EXPORT_SYMBOL(drop_nlink);
 309
 310/**
 311 * clear_nlink - directly zero an inode's link count
 312 * @inode: inode
 313 *
 314 * This is a low-level filesystem helper to replace any
 315 * direct filesystem manipulation of i_nlink.  See
 316 * drop_nlink() for why we care about i_nlink hitting zero.
 317 */
 318void clear_nlink(struct inode *inode)
 319{
 320        if (inode->i_nlink) {
 321                inode->__i_nlink = 0;
 322                atomic_long_inc(&inode->i_sb->s_remove_count);
 323        }
 324}
 325EXPORT_SYMBOL(clear_nlink);
 326
 327/**
 328 * set_nlink - directly set an inode's link count
 329 * @inode: inode
 330 * @nlink: new nlink (should be non-zero)
 331 *
 332 * This is a low-level filesystem helper to replace any
 333 * direct filesystem manipulation of i_nlink.
 334 */
 335void set_nlink(struct inode *inode, unsigned int nlink)
 336{
 337        if (!nlink) {
 338                clear_nlink(inode);
 339        } else {
 340                /* Yes, some filesystems do change nlink from zero to one */
 341                if (inode->i_nlink == 0)
 342                        atomic_long_dec(&inode->i_sb->s_remove_count);
 343
 344                inode->__i_nlink = nlink;
 345        }
 346}
 347EXPORT_SYMBOL(set_nlink);
 348
 349/**
 350 * inc_nlink - directly increment an inode's link count
 351 * @inode: inode
 352 *
 353 * This is a low-level filesystem helper to replace any
 354 * direct filesystem manipulation of i_nlink.  Currently,
 355 * it is only here for parity with dec_nlink().
 356 */
 357void inc_nlink(struct inode *inode)
 358{
 359        if (unlikely(inode->i_nlink == 0)) {
 360                WARN_ON(!(inode->i_state & I_LINKABLE));
 361                atomic_long_dec(&inode->i_sb->s_remove_count);
 362        }
 363
 364        inode->__i_nlink++;
 365}
 366EXPORT_SYMBOL(inc_nlink);
 367
 368static void __address_space_init_once(struct address_space *mapping)
 369{
 370        xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 371        init_rwsem(&mapping->i_mmap_rwsem);
 372        INIT_LIST_HEAD(&mapping->private_list);
 373        spin_lock_init(&mapping->private_lock);
 374        mapping->i_mmap = RB_ROOT_CACHED;
 375}
 376
 377void address_space_init_once(struct address_space *mapping)
 378{
 379        memset(mapping, 0, sizeof(*mapping));
 380        __address_space_init_once(mapping);
 381}
 382EXPORT_SYMBOL(address_space_init_once);
 383
 384/*
 385 * These are initializations that only need to be done
 386 * once, because the fields are idempotent across use
 387 * of the inode, so let the slab aware of that.
 388 */
 389void inode_init_once(struct inode *inode)
 390{
 391        memset(inode, 0, sizeof(*inode));
 392        INIT_HLIST_NODE(&inode->i_hash);
 393        INIT_LIST_HEAD(&inode->i_devices);
 394        INIT_LIST_HEAD(&inode->i_io_list);
 395        INIT_LIST_HEAD(&inode->i_wb_list);
 396        INIT_LIST_HEAD(&inode->i_lru);
 397        __address_space_init_once(&inode->i_data);
 398        i_size_ordered_init(inode);
 399}
 400EXPORT_SYMBOL(inode_init_once);
 401
 402static void init_once(void *foo)
 403{
 404        struct inode *inode = (struct inode *) foo;
 405
 406        inode_init_once(inode);
 407}
 408
 409/*
 410 * inode->i_lock must be held
 411 */
 412void __iget(struct inode *inode)
 413{
 414        atomic_inc(&inode->i_count);
 415}
 416
 417/*
 418 * get additional reference to inode; caller must already hold one.
 419 */
 420void ihold(struct inode *inode)
 421{
 422        WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 423}
 424EXPORT_SYMBOL(ihold);
 425
 426static void inode_lru_list_add(struct inode *inode)
 427{
 428        if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 429                this_cpu_inc(nr_unused);
 430        else
 431                inode->i_state |= I_REFERENCED;
 432}
 433
 434/*
 435 * Add inode to LRU if needed (inode is unused and clean).
 436 *
 437 * Needs inode->i_lock held.
 438 */
 439void inode_add_lru(struct inode *inode)
 440{
 441        if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 442                                I_FREEING | I_WILL_FREE)) &&
 443            !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
 444                inode_lru_list_add(inode);
 445}
 446
 447
 448static void inode_lru_list_del(struct inode *inode)
 449{
 450
 451        if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 452                this_cpu_dec(nr_unused);
 453}
 454
 455/**
 456 * inode_sb_list_add - add inode to the superblock list of inodes
 457 * @inode: inode to add
 458 */
 459void inode_sb_list_add(struct inode *inode)
 460{
 461        spin_lock(&inode->i_sb->s_inode_list_lock);
 462        list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 463        spin_unlock(&inode->i_sb->s_inode_list_lock);
 464}
 465EXPORT_SYMBOL_GPL(inode_sb_list_add);
 466
 467static inline void inode_sb_list_del(struct inode *inode)
 468{
 469        if (!list_empty(&inode->i_sb_list)) {
 470                spin_lock(&inode->i_sb->s_inode_list_lock);
 471                list_del_init(&inode->i_sb_list);
 472                spin_unlock(&inode->i_sb->s_inode_list_lock);
 473        }
 474}
 475
 476static unsigned long hash(struct super_block *sb, unsigned long hashval)
 477{
 478        unsigned long tmp;
 479
 480        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 481                        L1_CACHE_BYTES;
 482        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 483        return tmp & i_hash_mask;
 484}
 485
 486/**
 487 *      __insert_inode_hash - hash an inode
 488 *      @inode: unhashed inode
 489 *      @hashval: unsigned long value used to locate this object in the
 490 *              inode_hashtable.
 491 *
 492 *      Add an inode to the inode hash for this superblock.
 493 */
 494void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 495{
 496        struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 497
 498        spin_lock(&inode_hash_lock);
 499        spin_lock(&inode->i_lock);
 500        hlist_add_head_rcu(&inode->i_hash, b);
 501        spin_unlock(&inode->i_lock);
 502        spin_unlock(&inode_hash_lock);
 503}
 504EXPORT_SYMBOL(__insert_inode_hash);
 505
 506/**
 507 *      __remove_inode_hash - remove an inode from the hash
 508 *      @inode: inode to unhash
 509 *
 510 *      Remove an inode from the superblock.
 511 */
 512void __remove_inode_hash(struct inode *inode)
 513{
 514        spin_lock(&inode_hash_lock);
 515        spin_lock(&inode->i_lock);
 516        hlist_del_init_rcu(&inode->i_hash);
 517        spin_unlock(&inode->i_lock);
 518        spin_unlock(&inode_hash_lock);
 519}
 520EXPORT_SYMBOL(__remove_inode_hash);
 521
 522void clear_inode(struct inode *inode)
 523{
 524        /*
 525         * We have to cycle the i_pages lock here because reclaim can be in the
 526         * process of removing the last page (in __delete_from_page_cache())
 527         * and we must not free the mapping under it.
 528         */
 529        xa_lock_irq(&inode->i_data.i_pages);
 530        BUG_ON(inode->i_data.nrpages);
 531        BUG_ON(inode->i_data.nrexceptional);
 532        xa_unlock_irq(&inode->i_data.i_pages);
 533        BUG_ON(!list_empty(&inode->i_data.private_list));
 534        BUG_ON(!(inode->i_state & I_FREEING));
 535        BUG_ON(inode->i_state & I_CLEAR);
 536        BUG_ON(!list_empty(&inode->i_wb_list));
 537        /* don't need i_lock here, no concurrent mods to i_state */
 538        inode->i_state = I_FREEING | I_CLEAR;
 539}
 540EXPORT_SYMBOL(clear_inode);
 541
 542/*
 543 * Free the inode passed in, removing it from the lists it is still connected
 544 * to. We remove any pages still attached to the inode and wait for any IO that
 545 * is still in progress before finally destroying the inode.
 546 *
 547 * An inode must already be marked I_FREEING so that we avoid the inode being
 548 * moved back onto lists if we race with other code that manipulates the lists
 549 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 550 *
 551 * An inode must already be removed from the LRU list before being evicted from
 552 * the cache. This should occur atomically with setting the I_FREEING state
 553 * flag, so no inodes here should ever be on the LRU when being evicted.
 554 */
 555static void evict(struct inode *inode)
 556{
 557        const struct super_operations *op = inode->i_sb->s_op;
 558
 559        BUG_ON(!(inode->i_state & I_FREEING));
 560        BUG_ON(!list_empty(&inode->i_lru));
 561
 562        if (!list_empty(&inode->i_io_list))
 563                inode_io_list_del(inode);
 564
 565        inode_sb_list_del(inode);
 566
 567        /*
 568         * Wait for flusher thread to be done with the inode so that filesystem
 569         * does not start destroying it while writeback is still running. Since
 570         * the inode has I_FREEING set, flusher thread won't start new work on
 571         * the inode.  We just have to wait for running writeback to finish.
 572         */
 573        inode_wait_for_writeback(inode);
 574
 575        if (op->evict_inode) {
 576                op->evict_inode(inode);
 577        } else {
 578                truncate_inode_pages_final(&inode->i_data);
 579                clear_inode(inode);
 580        }
 581        if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 582                bd_forget(inode);
 583        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 584                cd_forget(inode);
 585
 586        remove_inode_hash(inode);
 587
 588        spin_lock(&inode->i_lock);
 589        wake_up_bit(&inode->i_state, __I_NEW);
 590        BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 591        spin_unlock(&inode->i_lock);
 592
 593        destroy_inode(inode);
 594}
 595
 596/*
 597 * dispose_list - dispose of the contents of a local list
 598 * @head: the head of the list to free
 599 *
 600 * Dispose-list gets a local list with local inodes in it, so it doesn't
 601 * need to worry about list corruption and SMP locks.
 602 */
 603static void dispose_list(struct list_head *head)
 604{
 605        while (!list_empty(head)) {
 606                struct inode *inode;
 607
 608                inode = list_first_entry(head, struct inode, i_lru);
 609                list_del_init(&inode->i_lru);
 610
 611                evict(inode);
 612                cond_resched();
 613        }
 614}
 615
 616/**
 617 * evict_inodes - evict all evictable inodes for a superblock
 618 * @sb:         superblock to operate on
 619 *
 620 * Make sure that no inodes with zero refcount are retained.  This is
 621 * called by superblock shutdown after having SB_ACTIVE flag removed,
 622 * so any inode reaching zero refcount during or after that call will
 623 * be immediately evicted.
 624 */
 625void evict_inodes(struct super_block *sb)
 626{
 627        struct inode *inode, *next;
 628        LIST_HEAD(dispose);
 629
 630again:
 631        spin_lock(&sb->s_inode_list_lock);
 632        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 633                if (atomic_read(&inode->i_count))
 634                        continue;
 635
 636                spin_lock(&inode->i_lock);
 637                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 638                        spin_unlock(&inode->i_lock);
 639                        continue;
 640                }
 641
 642                inode->i_state |= I_FREEING;
 643                inode_lru_list_del(inode);
 644                spin_unlock(&inode->i_lock);
 645                list_add(&inode->i_lru, &dispose);
 646
 647                /*
 648                 * We can have a ton of inodes to evict at unmount time given
 649                 * enough memory, check to see if we need to go to sleep for a
 650                 * bit so we don't livelock.
 651                 */
 652                if (need_resched()) {
 653                        spin_unlock(&sb->s_inode_list_lock);
 654                        cond_resched();
 655                        dispose_list(&dispose);
 656                        goto again;
 657                }
 658        }
 659        spin_unlock(&sb->s_inode_list_lock);
 660
 661        dispose_list(&dispose);
 662}
 663EXPORT_SYMBOL_GPL(evict_inodes);
 664
 665/**
 666 * invalidate_inodes    - attempt to free all inodes on a superblock
 667 * @sb:         superblock to operate on
 668 * @kill_dirty: flag to guide handling of dirty inodes
 669 *
 670 * Attempts to free all inodes for a given superblock.  If there were any
 671 * busy inodes return a non-zero value, else zero.
 672 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 673 * them as busy.
 674 */
 675int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 676{
 677        int busy = 0;
 678        struct inode *inode, *next;
 679        LIST_HEAD(dispose);
 680
 681again:
 682        spin_lock(&sb->s_inode_list_lock);
 683        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 684                spin_lock(&inode->i_lock);
 685                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 686                        spin_unlock(&inode->i_lock);
 687                        continue;
 688                }
 689                if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 690                        spin_unlock(&inode->i_lock);
 691                        busy = 1;
 692                        continue;
 693                }
 694                if (atomic_read(&inode->i_count)) {
 695                        spin_unlock(&inode->i_lock);
 696                        busy = 1;
 697                        continue;
 698                }
 699
 700                inode->i_state |= I_FREEING;
 701                inode_lru_list_del(inode);
 702                spin_unlock(&inode->i_lock);
 703                list_add(&inode->i_lru, &dispose);
 704                if (need_resched()) {
 705                        spin_unlock(&sb->s_inode_list_lock);
 706                        cond_resched();
 707                        dispose_list(&dispose);
 708                        goto again;
 709                }
 710        }
 711        spin_unlock(&sb->s_inode_list_lock);
 712
 713        dispose_list(&dispose);
 714
 715        return busy;
 716}
 717
 718/*
 719 * Isolate the inode from the LRU in preparation for freeing it.
 720 *
 721 * Any inodes which are pinned purely because of attached pagecache have their
 722 * pagecache removed.  If the inode has metadata buffers attached to
 723 * mapping->private_list then try to remove them.
 724 *
 725 * If the inode has the I_REFERENCED flag set, then it means that it has been
 726 * used recently - the flag is set in iput_final(). When we encounter such an
 727 * inode, clear the flag and move it to the back of the LRU so it gets another
 728 * pass through the LRU before it gets reclaimed. This is necessary because of
 729 * the fact we are doing lazy LRU updates to minimise lock contention so the
 730 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 731 * with this flag set because they are the inodes that are out of order.
 732 */
 733static enum lru_status inode_lru_isolate(struct list_head *item,
 734                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 735{
 736        struct list_head *freeable = arg;
 737        struct inode    *inode = container_of(item, struct inode, i_lru);
 738
 739        /*
 740         * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 741         * If we fail to get the lock, just skip it.
 742         */
 743        if (!spin_trylock(&inode->i_lock))
 744                return LRU_SKIP;
 745
 746        /*
 747         * Referenced or dirty inodes are still in use. Give them another pass
 748         * through the LRU as we canot reclaim them now.
 749         */
 750        if (atomic_read(&inode->i_count) ||
 751            (inode->i_state & ~I_REFERENCED)) {
 752                list_lru_isolate(lru, &inode->i_lru);
 753                spin_unlock(&inode->i_lock);
 754                this_cpu_dec(nr_unused);
 755                return LRU_REMOVED;
 756        }
 757
 758        /* recently referenced inodes get one more pass */
 759        if (inode->i_state & I_REFERENCED) {
 760                inode->i_state &= ~I_REFERENCED;
 761                spin_unlock(&inode->i_lock);
 762                return LRU_ROTATE;
 763        }
 764
 765        if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 766                __iget(inode);
 767                spin_unlock(&inode->i_lock);
 768                spin_unlock(lru_lock);
 769                if (remove_inode_buffers(inode)) {
 770                        unsigned long reap;
 771                        reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 772                        if (current_is_kswapd())
 773                                __count_vm_events(KSWAPD_INODESTEAL, reap);
 774                        else
 775                                __count_vm_events(PGINODESTEAL, reap);
 776                        if (current->reclaim_state)
 777                                current->reclaim_state->reclaimed_slab += reap;
 778                }
 779                iput(inode);
 780                spin_lock(lru_lock);
 781                return LRU_RETRY;
 782        }
 783
 784        WARN_ON(inode->i_state & I_NEW);
 785        inode->i_state |= I_FREEING;
 786        list_lru_isolate_move(lru, &inode->i_lru, freeable);
 787        spin_unlock(&inode->i_lock);
 788
 789        this_cpu_dec(nr_unused);
 790        return LRU_REMOVED;
 791}
 792
 793/*
 794 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 795 * This is called from the superblock shrinker function with a number of inodes
 796 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 797 * then are freed outside inode_lock by dispose_list().
 798 */
 799long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 800{
 801        LIST_HEAD(freeable);
 802        long freed;
 803
 804        freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 805                                     inode_lru_isolate, &freeable);
 806        dispose_list(&freeable);
 807        return freed;
 808}
 809
 810static void __wait_on_freeing_inode(struct inode *inode);
 811/*
 812 * Called with the inode lock held.
 813 */
 814static struct inode *find_inode(struct super_block *sb,
 815                                struct hlist_head *head,
 816                                int (*test)(struct inode *, void *),
 817                                void *data)
 818{
 819        struct inode *inode = NULL;
 820
 821repeat:
 822        hlist_for_each_entry(inode, head, i_hash) {
 823                if (inode->i_sb != sb)
 824                        continue;
 825                if (!test(inode, data))
 826                        continue;
 827                spin_lock(&inode->i_lock);
 828                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 829                        __wait_on_freeing_inode(inode);
 830                        goto repeat;
 831                }
 832                if (unlikely(inode->i_state & I_CREATING)) {
 833                        spin_unlock(&inode->i_lock);
 834                        return ERR_PTR(-ESTALE);
 835                }
 836                __iget(inode);
 837                spin_unlock(&inode->i_lock);
 838                return inode;
 839        }
 840        return NULL;
 841}
 842
 843/*
 844 * find_inode_fast is the fast path version of find_inode, see the comment at
 845 * iget_locked for details.
 846 */
 847static struct inode *find_inode_fast(struct super_block *sb,
 848                                struct hlist_head *head, unsigned long ino)
 849{
 850        struct inode *inode = NULL;
 851
 852repeat:
 853        hlist_for_each_entry(inode, head, i_hash) {
 854                if (inode->i_ino != ino)
 855                        continue;
 856                if (inode->i_sb != sb)
 857                        continue;
 858                spin_lock(&inode->i_lock);
 859                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 860                        __wait_on_freeing_inode(inode);
 861                        goto repeat;
 862                }
 863                if (unlikely(inode->i_state & I_CREATING)) {
 864                        spin_unlock(&inode->i_lock);
 865                        return ERR_PTR(-ESTALE);
 866                }
 867                __iget(inode);
 868                spin_unlock(&inode->i_lock);
 869                return inode;
 870        }
 871        return NULL;
 872}
 873
 874/*
 875 * Each cpu owns a range of LAST_INO_BATCH numbers.
 876 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 877 * to renew the exhausted range.
 878 *
 879 * This does not significantly increase overflow rate because every CPU can
 880 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 881 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 882 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 883 * overflow rate by 2x, which does not seem too significant.
 884 *
 885 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 886 * error if st_ino won't fit in target struct field. Use 32bit counter
 887 * here to attempt to avoid that.
 888 */
 889#define LAST_INO_BATCH 1024
 890static DEFINE_PER_CPU(unsigned int, last_ino);
 891
 892unsigned int get_next_ino(void)
 893{
 894        unsigned int *p = &get_cpu_var(last_ino);
 895        unsigned int res = *p;
 896
 897#ifdef CONFIG_SMP
 898        if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 899                static atomic_t shared_last_ino;
 900                int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 901
 902                res = next - LAST_INO_BATCH;
 903        }
 904#endif
 905
 906        res++;
 907        /* get_next_ino should not provide a 0 inode number */
 908        if (unlikely(!res))
 909                res++;
 910        *p = res;
 911        put_cpu_var(last_ino);
 912        return res;
 913}
 914EXPORT_SYMBOL(get_next_ino);
 915
 916/**
 917 *      new_inode_pseudo        - obtain an inode
 918 *      @sb: superblock
 919 *
 920 *      Allocates a new inode for given superblock.
 921 *      Inode wont be chained in superblock s_inodes list
 922 *      This means :
 923 *      - fs can't be unmount
 924 *      - quotas, fsnotify, writeback can't work
 925 */
 926struct inode *new_inode_pseudo(struct super_block *sb)
 927{
 928        struct inode *inode = alloc_inode(sb);
 929
 930        if (inode) {
 931                spin_lock(&inode->i_lock);
 932                inode->i_state = 0;
 933                spin_unlock(&inode->i_lock);
 934                INIT_LIST_HEAD(&inode->i_sb_list);
 935        }
 936        return inode;
 937}
 938
 939/**
 940 *      new_inode       - obtain an inode
 941 *      @sb: superblock
 942 *
 943 *      Allocates a new inode for given superblock. The default gfp_mask
 944 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 945 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
 946 *      for the page cache are not reclaimable or migratable,
 947 *      mapping_set_gfp_mask() must be called with suitable flags on the
 948 *      newly created inode's mapping
 949 *
 950 */
 951struct inode *new_inode(struct super_block *sb)
 952{
 953        struct inode *inode;
 954
 955        spin_lock_prefetch(&sb->s_inode_list_lock);
 956
 957        inode = new_inode_pseudo(sb);
 958        if (inode)
 959                inode_sb_list_add(inode);
 960        return inode;
 961}
 962EXPORT_SYMBOL(new_inode);
 963
 964#ifdef CONFIG_DEBUG_LOCK_ALLOC
 965void lockdep_annotate_inode_mutex_key(struct inode *inode)
 966{
 967        if (S_ISDIR(inode->i_mode)) {
 968                struct file_system_type *type = inode->i_sb->s_type;
 969
 970                /* Set new key only if filesystem hasn't already changed it */
 971                if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 972                        /*
 973                         * ensure nobody is actually holding i_mutex
 974                         */
 975                        // mutex_destroy(&inode->i_mutex);
 976                        init_rwsem(&inode->i_rwsem);
 977                        lockdep_set_class(&inode->i_rwsem,
 978                                          &type->i_mutex_dir_key);
 979                }
 980        }
 981}
 982EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 983#endif
 984
 985/**
 986 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 987 * @inode:      new inode to unlock
 988 *
 989 * Called when the inode is fully initialised to clear the new state of the
 990 * inode and wake up anyone waiting for the inode to finish initialisation.
 991 */
 992void unlock_new_inode(struct inode *inode)
 993{
 994        lockdep_annotate_inode_mutex_key(inode);
 995        spin_lock(&inode->i_lock);
 996        WARN_ON(!(inode->i_state & I_NEW));
 997        inode->i_state &= ~I_NEW & ~I_CREATING;
 998        smp_mb();
 999        wake_up_bit(&inode->i_state, __I_NEW);
1000        spin_unlock(&inode->i_lock);
1001}
1002EXPORT_SYMBOL(unlock_new_inode);
1003
1004void discard_new_inode(struct inode *inode)
1005{
1006        lockdep_annotate_inode_mutex_key(inode);
1007        spin_lock(&inode->i_lock);
1008        WARN_ON(!(inode->i_state & I_NEW));
1009        inode->i_state &= ~I_NEW;
1010        smp_mb();
1011        wake_up_bit(&inode->i_state, __I_NEW);
1012        spin_unlock(&inode->i_lock);
1013        iput(inode);
1014}
1015EXPORT_SYMBOL(discard_new_inode);
1016
1017/**
1018 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1019 *
1020 * Lock any non-NULL argument that is not a directory.
1021 * Zero, one or two objects may be locked by this function.
1022 *
1023 * @inode1: first inode to lock
1024 * @inode2: second inode to lock
1025 */
1026void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1027{
1028        if (inode1 > inode2)
1029                swap(inode1, inode2);
1030
1031        if (inode1 && !S_ISDIR(inode1->i_mode))
1032                inode_lock(inode1);
1033        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1034                inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1035}
1036EXPORT_SYMBOL(lock_two_nondirectories);
1037
1038/**
1039 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1040 * @inode1: first inode to unlock
1041 * @inode2: second inode to unlock
1042 */
1043void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1044{
1045        if (inode1 && !S_ISDIR(inode1->i_mode))
1046                inode_unlock(inode1);
1047        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1048                inode_unlock(inode2);
1049}
1050EXPORT_SYMBOL(unlock_two_nondirectories);
1051
1052/**
1053 * inode_insert5 - obtain an inode from a mounted file system
1054 * @inode:      pre-allocated inode to use for insert to cache
1055 * @hashval:    hash value (usually inode number) to get
1056 * @test:       callback used for comparisons between inodes
1057 * @set:        callback used to initialize a new struct inode
1058 * @data:       opaque data pointer to pass to @test and @set
1059 *
1060 * Search for the inode specified by @hashval and @data in the inode cache,
1061 * and if present it is return it with an increased reference count. This is
1062 * a variant of iget5_locked() for callers that don't want to fail on memory
1063 * allocation of inode.
1064 *
1065 * If the inode is not in cache, insert the pre-allocated inode to cache and
1066 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1067 * to fill it in before unlocking it via unlock_new_inode().
1068 *
1069 * Note both @test and @set are called with the inode_hash_lock held, so can't
1070 * sleep.
1071 */
1072struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1073                            int (*test)(struct inode *, void *),
1074                            int (*set)(struct inode *, void *), void *data)
1075{
1076        struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1077        struct inode *old;
1078        bool creating = inode->i_state & I_CREATING;
1079
1080again:
1081        spin_lock(&inode_hash_lock);
1082        old = find_inode(inode->i_sb, head, test, data);
1083        if (unlikely(old)) {
1084                /*
1085                 * Uhhuh, somebody else created the same inode under us.
1086                 * Use the old inode instead of the preallocated one.
1087                 */
1088                spin_unlock(&inode_hash_lock);
1089                if (IS_ERR(old))
1090                        return NULL;
1091                wait_on_inode(old);
1092                if (unlikely(inode_unhashed(old))) {
1093                        iput(old);
1094                        goto again;
1095                }
1096                return old;
1097        }
1098
1099        if (set && unlikely(set(inode, data))) {
1100                inode = NULL;
1101                goto unlock;
1102        }
1103
1104        /*
1105         * Return the locked inode with I_NEW set, the
1106         * caller is responsible for filling in the contents
1107         */
1108        spin_lock(&inode->i_lock);
1109        inode->i_state |= I_NEW;
1110        hlist_add_head_rcu(&inode->i_hash, head);
1111        spin_unlock(&inode->i_lock);
1112        if (!creating)
1113                inode_sb_list_add(inode);
1114unlock:
1115        spin_unlock(&inode_hash_lock);
1116
1117        return inode;
1118}
1119EXPORT_SYMBOL(inode_insert5);
1120
1121/**
1122 * iget5_locked - obtain an inode from a mounted file system
1123 * @sb:         super block of file system
1124 * @hashval:    hash value (usually inode number) to get
1125 * @test:       callback used for comparisons between inodes
1126 * @set:        callback used to initialize a new struct inode
1127 * @data:       opaque data pointer to pass to @test and @set
1128 *
1129 * Search for the inode specified by @hashval and @data in the inode cache,
1130 * and if present it is return it with an increased reference count. This is
1131 * a generalized version of iget_locked() for file systems where the inode
1132 * number is not sufficient for unique identification of an inode.
1133 *
1134 * If the inode is not in cache, allocate a new inode and return it locked,
1135 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1136 * before unlocking it via unlock_new_inode().
1137 *
1138 * Note both @test and @set are called with the inode_hash_lock held, so can't
1139 * sleep.
1140 */
1141struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1142                int (*test)(struct inode *, void *),
1143                int (*set)(struct inode *, void *), void *data)
1144{
1145        struct inode *inode = ilookup5(sb, hashval, test, data);
1146
1147        if (!inode) {
1148                struct inode *new = alloc_inode(sb);
1149
1150                if (new) {
1151                        new->i_state = 0;
1152                        inode = inode_insert5(new, hashval, test, set, data);
1153                        if (unlikely(inode != new))
1154                                destroy_inode(new);
1155                }
1156        }
1157        return inode;
1158}
1159EXPORT_SYMBOL(iget5_locked);
1160
1161/**
1162 * iget_locked - obtain an inode from a mounted file system
1163 * @sb:         super block of file system
1164 * @ino:        inode number to get
1165 *
1166 * Search for the inode specified by @ino in the inode cache and if present
1167 * return it with an increased reference count. This is for file systems
1168 * where the inode number is sufficient for unique identification of an inode.
1169 *
1170 * If the inode is not in cache, allocate a new inode and return it locked,
1171 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1172 * before unlocking it via unlock_new_inode().
1173 */
1174struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1175{
1176        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1177        struct inode *inode;
1178again:
1179        spin_lock(&inode_hash_lock);
1180        inode = find_inode_fast(sb, head, ino);
1181        spin_unlock(&inode_hash_lock);
1182        if (inode) {
1183                if (IS_ERR(inode))
1184                        return NULL;
1185                wait_on_inode(inode);
1186                if (unlikely(inode_unhashed(inode))) {
1187                        iput(inode);
1188                        goto again;
1189                }
1190                return inode;
1191        }
1192
1193        inode = alloc_inode(sb);
1194        if (inode) {
1195                struct inode *old;
1196
1197                spin_lock(&inode_hash_lock);
1198                /* We released the lock, so.. */
1199                old = find_inode_fast(sb, head, ino);
1200                if (!old) {
1201                        inode->i_ino = ino;
1202                        spin_lock(&inode->i_lock);
1203                        inode->i_state = I_NEW;
1204                        hlist_add_head_rcu(&inode->i_hash, head);
1205                        spin_unlock(&inode->i_lock);
1206                        inode_sb_list_add(inode);
1207                        spin_unlock(&inode_hash_lock);
1208
1209                        /* Return the locked inode with I_NEW set, the
1210                         * caller is responsible for filling in the contents
1211                         */
1212                        return inode;
1213                }
1214
1215                /*
1216                 * Uhhuh, somebody else created the same inode under
1217                 * us. Use the old inode instead of the one we just
1218                 * allocated.
1219                 */
1220                spin_unlock(&inode_hash_lock);
1221                destroy_inode(inode);
1222                if (IS_ERR(old))
1223                        return NULL;
1224                inode = old;
1225                wait_on_inode(inode);
1226                if (unlikely(inode_unhashed(inode))) {
1227                        iput(inode);
1228                        goto again;
1229                }
1230        }
1231        return inode;
1232}
1233EXPORT_SYMBOL(iget_locked);
1234
1235/*
1236 * search the inode cache for a matching inode number.
1237 * If we find one, then the inode number we are trying to
1238 * allocate is not unique and so we should not use it.
1239 *
1240 * Returns 1 if the inode number is unique, 0 if it is not.
1241 */
1242static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1243{
1244        struct hlist_head *b = inode_hashtable + hash(sb, ino);
1245        struct inode *inode;
1246
1247        hlist_for_each_entry_rcu(inode, b, i_hash) {
1248                if (inode->i_ino == ino && inode->i_sb == sb)
1249                        return 0;
1250        }
1251        return 1;
1252}
1253
1254/**
1255 *      iunique - get a unique inode number
1256 *      @sb: superblock
1257 *      @max_reserved: highest reserved inode number
1258 *
1259 *      Obtain an inode number that is unique on the system for a given
1260 *      superblock. This is used by file systems that have no natural
1261 *      permanent inode numbering system. An inode number is returned that
1262 *      is higher than the reserved limit but unique.
1263 *
1264 *      BUGS:
1265 *      With a large number of inodes live on the file system this function
1266 *      currently becomes quite slow.
1267 */
1268ino_t iunique(struct super_block *sb, ino_t max_reserved)
1269{
1270        /*
1271         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1272         * error if st_ino won't fit in target struct field. Use 32bit counter
1273         * here to attempt to avoid that.
1274         */
1275        static DEFINE_SPINLOCK(iunique_lock);
1276        static unsigned int counter;
1277        ino_t res;
1278
1279        rcu_read_lock();
1280        spin_lock(&iunique_lock);
1281        do {
1282                if (counter <= max_reserved)
1283                        counter = max_reserved + 1;
1284                res = counter++;
1285        } while (!test_inode_iunique(sb, res));
1286        spin_unlock(&iunique_lock);
1287        rcu_read_unlock();
1288
1289        return res;
1290}
1291EXPORT_SYMBOL(iunique);
1292
1293struct inode *igrab(struct inode *inode)
1294{
1295        spin_lock(&inode->i_lock);
1296        if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1297                __iget(inode);
1298                spin_unlock(&inode->i_lock);
1299        } else {
1300                spin_unlock(&inode->i_lock);
1301                /*
1302                 * Handle the case where s_op->clear_inode is not been
1303                 * called yet, and somebody is calling igrab
1304                 * while the inode is getting freed.
1305                 */
1306                inode = NULL;
1307        }
1308        return inode;
1309}
1310EXPORT_SYMBOL(igrab);
1311
1312/**
1313 * ilookup5_nowait - search for an inode in the inode cache
1314 * @sb:         super block of file system to search
1315 * @hashval:    hash value (usually inode number) to search for
1316 * @test:       callback used for comparisons between inodes
1317 * @data:       opaque data pointer to pass to @test
1318 *
1319 * Search for the inode specified by @hashval and @data in the inode cache.
1320 * If the inode is in the cache, the inode is returned with an incremented
1321 * reference count.
1322 *
1323 * Note: I_NEW is not waited upon so you have to be very careful what you do
1324 * with the returned inode.  You probably should be using ilookup5() instead.
1325 *
1326 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1327 */
1328struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1329                int (*test)(struct inode *, void *), void *data)
1330{
1331        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1332        struct inode *inode;
1333
1334        spin_lock(&inode_hash_lock);
1335        inode = find_inode(sb, head, test, data);
1336        spin_unlock(&inode_hash_lock);
1337
1338        return IS_ERR(inode) ? NULL : inode;
1339}
1340EXPORT_SYMBOL(ilookup5_nowait);
1341
1342/**
1343 * ilookup5 - search for an inode in the inode cache
1344 * @sb:         super block of file system to search
1345 * @hashval:    hash value (usually inode number) to search for
1346 * @test:       callback used for comparisons between inodes
1347 * @data:       opaque data pointer to pass to @test
1348 *
1349 * Search for the inode specified by @hashval and @data in the inode cache,
1350 * and if the inode is in the cache, return the inode with an incremented
1351 * reference count.  Waits on I_NEW before returning the inode.
1352 * returned with an incremented reference count.
1353 *
1354 * This is a generalized version of ilookup() for file systems where the
1355 * inode number is not sufficient for unique identification of an inode.
1356 *
1357 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1358 */
1359struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1360                int (*test)(struct inode *, void *), void *data)
1361{
1362        struct inode *inode;
1363again:
1364        inode = ilookup5_nowait(sb, hashval, test, data);
1365        if (inode) {
1366                wait_on_inode(inode);
1367                if (unlikely(inode_unhashed(inode))) {
1368                        iput(inode);
1369                        goto again;
1370                }
1371        }
1372        return inode;
1373}
1374EXPORT_SYMBOL(ilookup5);
1375
1376/**
1377 * ilookup - search for an inode in the inode cache
1378 * @sb:         super block of file system to search
1379 * @ino:        inode number to search for
1380 *
1381 * Search for the inode @ino in the inode cache, and if the inode is in the
1382 * cache, the inode is returned with an incremented reference count.
1383 */
1384struct inode *ilookup(struct super_block *sb, unsigned long ino)
1385{
1386        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1387        struct inode *inode;
1388again:
1389        spin_lock(&inode_hash_lock);
1390        inode = find_inode_fast(sb, head, ino);
1391        spin_unlock(&inode_hash_lock);
1392
1393        if (inode) {
1394                if (IS_ERR(inode))
1395                        return NULL;
1396                wait_on_inode(inode);
1397                if (unlikely(inode_unhashed(inode))) {
1398                        iput(inode);
1399                        goto again;
1400                }
1401        }
1402        return inode;
1403}
1404EXPORT_SYMBOL(ilookup);
1405
1406/**
1407 * find_inode_nowait - find an inode in the inode cache
1408 * @sb:         super block of file system to search
1409 * @hashval:    hash value (usually inode number) to search for
1410 * @match:      callback used for comparisons between inodes
1411 * @data:       opaque data pointer to pass to @match
1412 *
1413 * Search for the inode specified by @hashval and @data in the inode
1414 * cache, where the helper function @match will return 0 if the inode
1415 * does not match, 1 if the inode does match, and -1 if the search
1416 * should be stopped.  The @match function must be responsible for
1417 * taking the i_lock spin_lock and checking i_state for an inode being
1418 * freed or being initialized, and incrementing the reference count
1419 * before returning 1.  It also must not sleep, since it is called with
1420 * the inode_hash_lock spinlock held.
1421 *
1422 * This is a even more generalized version of ilookup5() when the
1423 * function must never block --- find_inode() can block in
1424 * __wait_on_freeing_inode() --- or when the caller can not increment
1425 * the reference count because the resulting iput() might cause an
1426 * inode eviction.  The tradeoff is that the @match funtion must be
1427 * very carefully implemented.
1428 */
1429struct inode *find_inode_nowait(struct super_block *sb,
1430                                unsigned long hashval,
1431                                int (*match)(struct inode *, unsigned long,
1432                                             void *),
1433                                void *data)
1434{
1435        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1436        struct inode *inode, *ret_inode = NULL;
1437        int mval;
1438
1439        spin_lock(&inode_hash_lock);
1440        hlist_for_each_entry(inode, head, i_hash) {
1441                if (inode->i_sb != sb)
1442                        continue;
1443                mval = match(inode, hashval, data);
1444                if (mval == 0)
1445                        continue;
1446                if (mval == 1)
1447                        ret_inode = inode;
1448                goto out;
1449        }
1450out:
1451        spin_unlock(&inode_hash_lock);
1452        return ret_inode;
1453}
1454EXPORT_SYMBOL(find_inode_nowait);
1455
1456/**
1457 * find_inode_rcu - find an inode in the inode cache
1458 * @sb:         Super block of file system to search
1459 * @hashval:    Key to hash
1460 * @test:       Function to test match on an inode
1461 * @data:       Data for test function
1462 *
1463 * Search for the inode specified by @hashval and @data in the inode cache,
1464 * where the helper function @test will return 0 if the inode does not match
1465 * and 1 if it does.  The @test function must be responsible for taking the
1466 * i_lock spin_lock and checking i_state for an inode being freed or being
1467 * initialized.
1468 *
1469 * If successful, this will return the inode for which the @test function
1470 * returned 1 and NULL otherwise.
1471 *
1472 * The @test function is not permitted to take a ref on any inode presented.
1473 * It is also not permitted to sleep.
1474 *
1475 * The caller must hold the RCU read lock.
1476 */
1477struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1478                             int (*test)(struct inode *, void *), void *data)
1479{
1480        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1481        struct inode *inode;
1482
1483        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1484                         "suspicious find_inode_rcu() usage");
1485
1486        hlist_for_each_entry_rcu(inode, head, i_hash) {
1487                if (inode->i_sb == sb &&
1488                    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1489                    test(inode, data))
1490                        return inode;
1491        }
1492        return NULL;
1493}
1494EXPORT_SYMBOL(find_inode_rcu);
1495
1496/**
1497 * find_inode_by_rcu - Find an inode in the inode cache
1498 * @sb:         Super block of file system to search
1499 * @ino:        The inode number to match
1500 *
1501 * Search for the inode specified by @hashval and @data in the inode cache,
1502 * where the helper function @test will return 0 if the inode does not match
1503 * and 1 if it does.  The @test function must be responsible for taking the
1504 * i_lock spin_lock and checking i_state for an inode being freed or being
1505 * initialized.
1506 *
1507 * If successful, this will return the inode for which the @test function
1508 * returned 1 and NULL otherwise.
1509 *
1510 * The @test function is not permitted to take a ref on any inode presented.
1511 * It is also not permitted to sleep.
1512 *
1513 * The caller must hold the RCU read lock.
1514 */
1515struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1516                                    unsigned long ino)
1517{
1518        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1519        struct inode *inode;
1520
1521        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1522                         "suspicious find_inode_by_ino_rcu() usage");
1523
1524        hlist_for_each_entry_rcu(inode, head, i_hash) {
1525                if (inode->i_ino == ino &&
1526                    inode->i_sb == sb &&
1527                    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1528                    return inode;
1529        }
1530        return NULL;
1531}
1532EXPORT_SYMBOL(find_inode_by_ino_rcu);
1533
1534int insert_inode_locked(struct inode *inode)
1535{
1536        struct super_block *sb = inode->i_sb;
1537        ino_t ino = inode->i_ino;
1538        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1539
1540        while (1) {
1541                struct inode *old = NULL;
1542                spin_lock(&inode_hash_lock);
1543                hlist_for_each_entry(old, head, i_hash) {
1544                        if (old->i_ino != ino)
1545                                continue;
1546                        if (old->i_sb != sb)
1547                                continue;
1548                        spin_lock(&old->i_lock);
1549                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1550                                spin_unlock(&old->i_lock);
1551                                continue;
1552                        }
1553                        break;
1554                }
1555                if (likely(!old)) {
1556                        spin_lock(&inode->i_lock);
1557                        inode->i_state |= I_NEW | I_CREATING;
1558                        hlist_add_head_rcu(&inode->i_hash, head);
1559                        spin_unlock(&inode->i_lock);
1560                        spin_unlock(&inode_hash_lock);
1561                        return 0;
1562                }
1563                if (unlikely(old->i_state & I_CREATING)) {
1564                        spin_unlock(&old->i_lock);
1565                        spin_unlock(&inode_hash_lock);
1566                        return -EBUSY;
1567                }
1568                __iget(old);
1569                spin_unlock(&old->i_lock);
1570                spin_unlock(&inode_hash_lock);
1571                wait_on_inode(old);
1572                if (unlikely(!inode_unhashed(old))) {
1573                        iput(old);
1574                        return -EBUSY;
1575                }
1576                iput(old);
1577        }
1578}
1579EXPORT_SYMBOL(insert_inode_locked);
1580
1581int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1582                int (*test)(struct inode *, void *), void *data)
1583{
1584        struct inode *old;
1585
1586        inode->i_state |= I_CREATING;
1587        old = inode_insert5(inode, hashval, test, NULL, data);
1588
1589        if (old != inode) {
1590                iput(old);
1591                return -EBUSY;
1592        }
1593        return 0;
1594}
1595EXPORT_SYMBOL(insert_inode_locked4);
1596
1597
1598int generic_delete_inode(struct inode *inode)
1599{
1600        return 1;
1601}
1602EXPORT_SYMBOL(generic_delete_inode);
1603
1604/*
1605 * Called when we're dropping the last reference
1606 * to an inode.
1607 *
1608 * Call the FS "drop_inode()" function, defaulting to
1609 * the legacy UNIX filesystem behaviour.  If it tells
1610 * us to evict inode, do so.  Otherwise, retain inode
1611 * in cache if fs is alive, sync and evict if fs is
1612 * shutting down.
1613 */
1614static void iput_final(struct inode *inode)
1615{
1616        struct super_block *sb = inode->i_sb;
1617        const struct super_operations *op = inode->i_sb->s_op;
1618        unsigned long state;
1619        int drop;
1620
1621        WARN_ON(inode->i_state & I_NEW);
1622
1623        if (op->drop_inode)
1624                drop = op->drop_inode(inode);
1625        else
1626                drop = generic_drop_inode(inode);
1627
1628        if (!drop && (sb->s_flags & SB_ACTIVE)) {
1629                inode_add_lru(inode);
1630                spin_unlock(&inode->i_lock);
1631                return;
1632        }
1633
1634        state = inode->i_state;
1635        if (!drop) {
1636                WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1637                spin_unlock(&inode->i_lock);
1638
1639                write_inode_now(inode, 1);
1640
1641                spin_lock(&inode->i_lock);
1642                state = inode->i_state;
1643                WARN_ON(state & I_NEW);
1644                state &= ~I_WILL_FREE;
1645        }
1646
1647        WRITE_ONCE(inode->i_state, state | I_FREEING);
1648        if (!list_empty(&inode->i_lru))
1649                inode_lru_list_del(inode);
1650        spin_unlock(&inode->i_lock);
1651
1652        evict(inode);
1653}
1654
1655/**
1656 *      iput    - put an inode
1657 *      @inode: inode to put
1658 *
1659 *      Puts an inode, dropping its usage count. If the inode use count hits
1660 *      zero, the inode is then freed and may also be destroyed.
1661 *
1662 *      Consequently, iput() can sleep.
1663 */
1664void iput(struct inode *inode)
1665{
1666        if (!inode)
1667                return;
1668        BUG_ON(inode->i_state & I_CLEAR);
1669retry:
1670        if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1671                if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1672                        atomic_inc(&inode->i_count);
1673                        spin_unlock(&inode->i_lock);
1674                        trace_writeback_lazytime_iput(inode);
1675                        mark_inode_dirty_sync(inode);
1676                        goto retry;
1677                }
1678                iput_final(inode);
1679        }
1680}
1681EXPORT_SYMBOL(iput);
1682
1683#ifdef CONFIG_BLOCK
1684/**
1685 *      bmap    - find a block number in a file
1686 *      @inode:  inode owning the block number being requested
1687 *      @block: pointer containing the block to find
1688 *
1689 *      Replaces the value in ``*block`` with the block number on the device holding
1690 *      corresponding to the requested block number in the file.
1691 *      That is, asked for block 4 of inode 1 the function will replace the
1692 *      4 in ``*block``, with disk block relative to the disk start that holds that
1693 *      block of the file.
1694 *
1695 *      Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1696 *      hole, returns 0 and ``*block`` is also set to 0.
1697 */
1698int bmap(struct inode *inode, sector_t *block)
1699{
1700        if (!inode->i_mapping->a_ops->bmap)
1701                return -EINVAL;
1702
1703        *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1704        return 0;
1705}
1706EXPORT_SYMBOL(bmap);
1707#endif
1708
1709/*
1710 * With relative atime, only update atime if the previous atime is
1711 * earlier than either the ctime or mtime or if at least a day has
1712 * passed since the last atime update.
1713 */
1714static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1715                             struct timespec64 now)
1716{
1717
1718        if (!(mnt->mnt_flags & MNT_RELATIME))
1719                return 1;
1720        /*
1721         * Is mtime younger than atime? If yes, update atime:
1722         */
1723        if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1724                return 1;
1725        /*
1726         * Is ctime younger than atime? If yes, update atime:
1727         */
1728        if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1729                return 1;
1730
1731        /*
1732         * Is the previous atime value older than a day? If yes,
1733         * update atime:
1734         */
1735        if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1736                return 1;
1737        /*
1738         * Good, we can skip the atime update:
1739         */
1740        return 0;
1741}
1742
1743int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1744{
1745        int iflags = I_DIRTY_TIME;
1746        bool dirty = false;
1747
1748        if (flags & S_ATIME)
1749                inode->i_atime = *time;
1750        if (flags & S_VERSION)
1751                dirty = inode_maybe_inc_iversion(inode, false);
1752        if (flags & S_CTIME)
1753                inode->i_ctime = *time;
1754        if (flags & S_MTIME)
1755                inode->i_mtime = *time;
1756        if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1757            !(inode->i_sb->s_flags & SB_LAZYTIME))
1758                dirty = true;
1759
1760        if (dirty)
1761                iflags |= I_DIRTY_SYNC;
1762        __mark_inode_dirty(inode, iflags);
1763        return 0;
1764}
1765EXPORT_SYMBOL(generic_update_time);
1766
1767/*
1768 * This does the actual work of updating an inodes time or version.  Must have
1769 * had called mnt_want_write() before calling this.
1770 */
1771static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1772{
1773        if (inode->i_op->update_time)
1774                return inode->i_op->update_time(inode, time, flags);
1775        return generic_update_time(inode, time, flags);
1776}
1777
1778/**
1779 *      touch_atime     -       update the access time
1780 *      @path: the &struct path to update
1781 *      @inode: inode to update
1782 *
1783 *      Update the accessed time on an inode and mark it for writeback.
1784 *      This function automatically handles read only file systems and media,
1785 *      as well as the "noatime" flag and inode specific "noatime" markers.
1786 */
1787bool atime_needs_update(const struct path *path, struct inode *inode)
1788{
1789        struct vfsmount *mnt = path->mnt;
1790        struct timespec64 now;
1791
1792        if (inode->i_flags & S_NOATIME)
1793                return false;
1794
1795        /* Atime updates will likely cause i_uid and i_gid to be written
1796         * back improprely if their true value is unknown to the vfs.
1797         */
1798        if (HAS_UNMAPPED_ID(inode))
1799                return false;
1800
1801        if (IS_NOATIME(inode))
1802                return false;
1803        if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1804                return false;
1805
1806        if (mnt->mnt_flags & MNT_NOATIME)
1807                return false;
1808        if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1809                return false;
1810
1811        now = current_time(inode);
1812
1813        if (!relatime_need_update(mnt, inode, now))
1814                return false;
1815
1816        if (timespec64_equal(&inode->i_atime, &now))
1817                return false;
1818
1819        return true;
1820}
1821
1822void touch_atime(const struct path *path)
1823{
1824        struct vfsmount *mnt = path->mnt;
1825        struct inode *inode = d_inode(path->dentry);
1826        struct timespec64 now;
1827
1828        if (!atime_needs_update(path, inode))
1829                return;
1830
1831        if (!sb_start_write_trylock(inode->i_sb))
1832                return;
1833
1834        if (__mnt_want_write(mnt) != 0)
1835                goto skip_update;
1836        /*
1837         * File systems can error out when updating inodes if they need to
1838         * allocate new space to modify an inode (such is the case for
1839         * Btrfs), but since we touch atime while walking down the path we
1840         * really don't care if we failed to update the atime of the file,
1841         * so just ignore the return value.
1842         * We may also fail on filesystems that have the ability to make parts
1843         * of the fs read only, e.g. subvolumes in Btrfs.
1844         */
1845        now = current_time(inode);
1846        update_time(inode, &now, S_ATIME);
1847        __mnt_drop_write(mnt);
1848skip_update:
1849        sb_end_write(inode->i_sb);
1850}
1851EXPORT_SYMBOL(touch_atime);
1852
1853/*
1854 * The logic we want is
1855 *
1856 *      if suid or (sgid and xgrp)
1857 *              remove privs
1858 */
1859int should_remove_suid(struct dentry *dentry)
1860{
1861        umode_t mode = d_inode(dentry)->i_mode;
1862        int kill = 0;
1863
1864        /* suid always must be killed */
1865        if (unlikely(mode & S_ISUID))
1866                kill = ATTR_KILL_SUID;
1867
1868        /*
1869         * sgid without any exec bits is just a mandatory locking mark; leave
1870         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1871         */
1872        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1873                kill |= ATTR_KILL_SGID;
1874
1875        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1876                return kill;
1877
1878        return 0;
1879}
1880EXPORT_SYMBOL(should_remove_suid);
1881
1882/*
1883 * Return mask of changes for notify_change() that need to be done as a
1884 * response to write or truncate. Return 0 if nothing has to be changed.
1885 * Negative value on error (change should be denied).
1886 */
1887int dentry_needs_remove_privs(struct dentry *dentry)
1888{
1889        struct inode *inode = d_inode(dentry);
1890        int mask = 0;
1891        int ret;
1892
1893        if (IS_NOSEC(inode))
1894                return 0;
1895
1896        mask = should_remove_suid(dentry);
1897        ret = security_inode_need_killpriv(dentry);
1898        if (ret < 0)
1899                return ret;
1900        if (ret)
1901                mask |= ATTR_KILL_PRIV;
1902        return mask;
1903}
1904
1905static int __remove_privs(struct dentry *dentry, int kill)
1906{
1907        struct iattr newattrs;
1908
1909        newattrs.ia_valid = ATTR_FORCE | kill;
1910        /*
1911         * Note we call this on write, so notify_change will not
1912         * encounter any conflicting delegations:
1913         */
1914        return notify_change(dentry, &newattrs, NULL);
1915}
1916
1917/*
1918 * Remove special file priviledges (suid, capabilities) when file is written
1919 * to or truncated.
1920 */
1921int file_remove_privs(struct file *file)
1922{
1923        struct dentry *dentry = file_dentry(file);
1924        struct inode *inode = file_inode(file);
1925        int kill;
1926        int error = 0;
1927
1928        /*
1929         * Fast path for nothing security related.
1930         * As well for non-regular files, e.g. blkdev inodes.
1931         * For example, blkdev_write_iter() might get here
1932         * trying to remove privs which it is not allowed to.
1933         */
1934        if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1935                return 0;
1936
1937        kill = dentry_needs_remove_privs(dentry);
1938        if (kill < 0)
1939                return kill;
1940        if (kill)
1941                error = __remove_privs(dentry, kill);
1942        if (!error)
1943                inode_has_no_xattr(inode);
1944
1945        return error;
1946}
1947EXPORT_SYMBOL(file_remove_privs);
1948
1949/**
1950 *      file_update_time        -       update mtime and ctime time
1951 *      @file: file accessed
1952 *
1953 *      Update the mtime and ctime members of an inode and mark the inode
1954 *      for writeback.  Note that this function is meant exclusively for
1955 *      usage in the file write path of filesystems, and filesystems may
1956 *      choose to explicitly ignore update via this function with the
1957 *      S_NOCMTIME inode flag, e.g. for network filesystem where these
1958 *      timestamps are handled by the server.  This can return an error for
1959 *      file systems who need to allocate space in order to update an inode.
1960 */
1961
1962int file_update_time(struct file *file)
1963{
1964        struct inode *inode = file_inode(file);
1965        struct timespec64 now;
1966        int sync_it = 0;
1967        int ret;
1968
1969        /* First try to exhaust all avenues to not sync */
1970        if (IS_NOCMTIME(inode))
1971                return 0;
1972
1973        now = current_time(inode);
1974        if (!timespec64_equal(&inode->i_mtime, &now))
1975                sync_it = S_MTIME;
1976
1977        if (!timespec64_equal(&inode->i_ctime, &now))
1978                sync_it |= S_CTIME;
1979
1980        if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1981                sync_it |= S_VERSION;
1982
1983        if (!sync_it)
1984                return 0;
1985
1986        /* Finally allowed to write? Takes lock. */
1987        if (__mnt_want_write_file(file))
1988                return 0;
1989
1990        ret = update_time(inode, &now, sync_it);
1991        __mnt_drop_write_file(file);
1992
1993        return ret;
1994}
1995EXPORT_SYMBOL(file_update_time);
1996
1997/* Caller must hold the file's inode lock */
1998int file_modified(struct file *file)
1999{
2000        int err;
2001
2002        /*
2003         * Clear the security bits if the process is not being run by root.
2004         * This keeps people from modifying setuid and setgid binaries.
2005         */
2006        err = file_remove_privs(file);
2007        if (err)
2008                return err;
2009
2010        if (unlikely(file->f_mode & FMODE_NOCMTIME))
2011                return 0;
2012
2013        return file_update_time(file);
2014}
2015EXPORT_SYMBOL(file_modified);
2016
2017int inode_needs_sync(struct inode *inode)
2018{
2019        if (IS_SYNC(inode))
2020                return 1;
2021        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2022                return 1;
2023        return 0;
2024}
2025EXPORT_SYMBOL(inode_needs_sync);
2026
2027/*
2028 * If we try to find an inode in the inode hash while it is being
2029 * deleted, we have to wait until the filesystem completes its
2030 * deletion before reporting that it isn't found.  This function waits
2031 * until the deletion _might_ have completed.  Callers are responsible
2032 * to recheck inode state.
2033 *
2034 * It doesn't matter if I_NEW is not set initially, a call to
2035 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2036 * will DTRT.
2037 */
2038static void __wait_on_freeing_inode(struct inode *inode)
2039{
2040        wait_queue_head_t *wq;
2041        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2042        wq = bit_waitqueue(&inode->i_state, __I_NEW);
2043        prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2044        spin_unlock(&inode->i_lock);
2045        spin_unlock(&inode_hash_lock);
2046        schedule();
2047        finish_wait(wq, &wait.wq_entry);
2048        spin_lock(&inode_hash_lock);
2049}
2050
2051static __initdata unsigned long ihash_entries;
2052static int __init set_ihash_entries(char *str)
2053{
2054        if (!str)
2055                return 0;
2056        ihash_entries = simple_strtoul(str, &str, 0);
2057        return 1;
2058}
2059__setup("ihash_entries=", set_ihash_entries);
2060
2061/*
2062 * Initialize the waitqueues and inode hash table.
2063 */
2064void __init inode_init_early(void)
2065{
2066        /* If hashes are distributed across NUMA nodes, defer
2067         * hash allocation until vmalloc space is available.
2068         */
2069        if (hashdist)
2070                return;
2071
2072        inode_hashtable =
2073                alloc_large_system_hash("Inode-cache",
2074                                        sizeof(struct hlist_head),
2075                                        ihash_entries,
2076                                        14,
2077                                        HASH_EARLY | HASH_ZERO,
2078                                        &i_hash_shift,
2079                                        &i_hash_mask,
2080                                        0,
2081                                        0);
2082}
2083
2084void __init inode_init(void)
2085{
2086        /* inode slab cache */
2087        inode_cachep = kmem_cache_create("inode_cache",
2088                                         sizeof(struct inode),
2089                                         0,
2090                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2091                                         SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2092                                         init_once);
2093
2094        /* Hash may have been set up in inode_init_early */
2095        if (!hashdist)
2096                return;
2097
2098        inode_hashtable =
2099                alloc_large_system_hash("Inode-cache",
2100                                        sizeof(struct hlist_head),
2101                                        ihash_entries,
2102                                        14,
2103                                        HASH_ZERO,
2104                                        &i_hash_shift,
2105                                        &i_hash_mask,
2106                                        0,
2107                                        0);
2108}
2109
2110void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2111{
2112        inode->i_mode = mode;
2113        if (S_ISCHR(mode)) {
2114                inode->i_fop = &def_chr_fops;
2115                inode->i_rdev = rdev;
2116        } else if (S_ISBLK(mode)) {
2117                inode->i_fop = &def_blk_fops;
2118                inode->i_rdev = rdev;
2119        } else if (S_ISFIFO(mode))
2120                inode->i_fop = &pipefifo_fops;
2121        else if (S_ISSOCK(mode))
2122                ;       /* leave it no_open_fops */
2123        else
2124                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2125                                  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2126                                  inode->i_ino);
2127}
2128EXPORT_SYMBOL(init_special_inode);
2129
2130/**
2131 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2132 * @inode: New inode
2133 * @dir: Directory inode
2134 * @mode: mode of the new inode
2135 */
2136void inode_init_owner(struct inode *inode, const struct inode *dir,
2137                        umode_t mode)
2138{
2139        inode->i_uid = current_fsuid();
2140        if (dir && dir->i_mode & S_ISGID) {
2141                inode->i_gid = dir->i_gid;
2142
2143                /* Directories are special, and always inherit S_ISGID */
2144                if (S_ISDIR(mode))
2145                        mode |= S_ISGID;
2146                else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2147                         !in_group_p(inode->i_gid) &&
2148                         !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2149                        mode &= ~S_ISGID;
2150        } else
2151                inode->i_gid = current_fsgid();
2152        inode->i_mode = mode;
2153}
2154EXPORT_SYMBOL(inode_init_owner);
2155
2156/**
2157 * inode_owner_or_capable - check current task permissions to inode
2158 * @inode: inode being checked
2159 *
2160 * Return true if current either has CAP_FOWNER in a namespace with the
2161 * inode owner uid mapped, or owns the file.
2162 */
2163bool inode_owner_or_capable(const struct inode *inode)
2164{
2165        struct user_namespace *ns;
2166
2167        if (uid_eq(current_fsuid(), inode->i_uid))
2168                return true;
2169
2170        ns = current_user_ns();
2171        if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2172                return true;
2173        return false;
2174}
2175EXPORT_SYMBOL(inode_owner_or_capable);
2176
2177/*
2178 * Direct i/o helper functions
2179 */
2180static void __inode_dio_wait(struct inode *inode)
2181{
2182        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2183        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2184
2185        do {
2186                prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2187                if (atomic_read(&inode->i_dio_count))
2188                        schedule();
2189        } while (atomic_read(&inode->i_dio_count));
2190        finish_wait(wq, &q.wq_entry);
2191}
2192
2193/**
2194 * inode_dio_wait - wait for outstanding DIO requests to finish
2195 * @inode: inode to wait for
2196 *
2197 * Waits for all pending direct I/O requests to finish so that we can
2198 * proceed with a truncate or equivalent operation.
2199 *
2200 * Must be called under a lock that serializes taking new references
2201 * to i_dio_count, usually by inode->i_mutex.
2202 */
2203void inode_dio_wait(struct inode *inode)
2204{
2205        if (atomic_read(&inode->i_dio_count))
2206                __inode_dio_wait(inode);
2207}
2208EXPORT_SYMBOL(inode_dio_wait);
2209
2210/*
2211 * inode_set_flags - atomically set some inode flags
2212 *
2213 * Note: the caller should be holding i_mutex, or else be sure that
2214 * they have exclusive access to the inode structure (i.e., while the
2215 * inode is being instantiated).  The reason for the cmpxchg() loop
2216 * --- which wouldn't be necessary if all code paths which modify
2217 * i_flags actually followed this rule, is that there is at least one
2218 * code path which doesn't today so we use cmpxchg() out of an abundance
2219 * of caution.
2220 *
2221 * In the long run, i_mutex is overkill, and we should probably look
2222 * at using the i_lock spinlock to protect i_flags, and then make sure
2223 * it is so documented in include/linux/fs.h and that all code follows
2224 * the locking convention!!
2225 */
2226void inode_set_flags(struct inode *inode, unsigned int flags,
2227                     unsigned int mask)
2228{
2229        WARN_ON_ONCE(flags & ~mask);
2230        set_mask_bits(&inode->i_flags, mask, flags);
2231}
2232EXPORT_SYMBOL(inode_set_flags);
2233
2234void inode_nohighmem(struct inode *inode)
2235{
2236        mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2237}
2238EXPORT_SYMBOL(inode_nohighmem);
2239
2240/**
2241 * timestamp_truncate - Truncate timespec to a granularity
2242 * @t: Timespec
2243 * @inode: inode being updated
2244 *
2245 * Truncate a timespec to the granularity supported by the fs
2246 * containing the inode. Always rounds down. gran must
2247 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2248 */
2249struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2250{
2251        struct super_block *sb = inode->i_sb;
2252        unsigned int gran = sb->s_time_gran;
2253
2254        t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2255        if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2256                t.tv_nsec = 0;
2257
2258        /* Avoid division in the common cases 1 ns and 1 s. */
2259        if (gran == 1)
2260                ; /* nothing */
2261        else if (gran == NSEC_PER_SEC)
2262                t.tv_nsec = 0;
2263        else if (gran > 1 && gran < NSEC_PER_SEC)
2264                t.tv_nsec -= t.tv_nsec % gran;
2265        else
2266                WARN(1, "invalid file time granularity: %u", gran);
2267        return t;
2268}
2269EXPORT_SYMBOL(timestamp_truncate);
2270
2271/**
2272 * current_time - Return FS time
2273 * @inode: inode.
2274 *
2275 * Return the current time truncated to the time granularity supported by
2276 * the fs.
2277 *
2278 * Note that inode and inode->sb cannot be NULL.
2279 * Otherwise, the function warns and returns time without truncation.
2280 */
2281struct timespec64 current_time(struct inode *inode)
2282{
2283        struct timespec64 now;
2284
2285        ktime_get_coarse_real_ts64(&now);
2286
2287        if (unlikely(!inode->i_sb)) {
2288                WARN(1, "current_time() called with uninitialized super_block in the inode");
2289                return now;
2290        }
2291
2292        return timestamp_truncate(now, inode);
2293}
2294EXPORT_SYMBOL(current_time);
2295
2296/*
2297 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2298 * configurations.
2299 *
2300 * Note: the caller should be holding i_mutex, or else be sure that they have
2301 * exclusive access to the inode structure.
2302 */
2303int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2304                             unsigned int flags)
2305{
2306        /*
2307         * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2308         * the relevant capability.
2309         *
2310         * This test looks nicer. Thanks to Pauline Middelink
2311         */
2312        if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2313            !capable(CAP_LINUX_IMMUTABLE))
2314                return -EPERM;
2315
2316        return fscrypt_prepare_setflags(inode, oldflags, flags);
2317}
2318EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2319
2320/*
2321 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2322 * configurations.
2323 *
2324 * Note: the caller should be holding i_mutex, or else be sure that they have
2325 * exclusive access to the inode structure.
2326 */
2327int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2328                             struct fsxattr *fa)
2329{
2330        /*
2331         * Can't modify an immutable/append-only file unless we have
2332         * appropriate permission.
2333         */
2334        if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2335                        (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2336            !capable(CAP_LINUX_IMMUTABLE))
2337                return -EPERM;
2338
2339        /*
2340         * Project Quota ID state is only allowed to change from within the init
2341         * namespace. Enforce that restriction only if we are trying to change
2342         * the quota ID state. Everything else is allowed in user namespaces.
2343         */
2344        if (current_user_ns() != &init_user_ns) {
2345                if (old_fa->fsx_projid != fa->fsx_projid)
2346                        return -EINVAL;
2347                if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2348                                FS_XFLAG_PROJINHERIT)
2349                        return -EINVAL;
2350        }
2351
2352        /* Check extent size hints. */
2353        if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2354                return -EINVAL;
2355
2356        if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2357                        !S_ISDIR(inode->i_mode))
2358                return -EINVAL;
2359
2360        if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2361            !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2362                return -EINVAL;
2363
2364        /*
2365         * It is only valid to set the DAX flag on regular files and
2366         * directories on filesystems.
2367         */
2368        if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2369            !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2370                return -EINVAL;
2371
2372        /* Extent size hints of zero turn off the flags. */
2373        if (fa->fsx_extsize == 0)
2374                fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2375        if (fa->fsx_cowextsize == 0)
2376                fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2377
2378        return 0;
2379}
2380EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2381