linux/fs/iomap/buffered-io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Red Hat, Inc.
   4 * Copyright (C) 2016-2019 Christoph Hellwig.
   5 */
   6#include <linux/module.h>
   7#include <linux/compiler.h>
   8#include <linux/fs.h>
   9#include <linux/iomap.h>
  10#include <linux/pagemap.h>
  11#include <linux/uio.h>
  12#include <linux/buffer_head.h>
  13#include <linux/dax.h>
  14#include <linux/writeback.h>
  15#include <linux/list_sort.h>
  16#include <linux/swap.h>
  17#include <linux/bio.h>
  18#include <linux/sched/signal.h>
  19#include <linux/migrate.h>
  20#include "trace.h"
  21
  22#include "../internal.h"
  23
  24/*
  25 * Structure allocated for each page when block size < PAGE_SIZE to track
  26 * sub-page uptodate status and I/O completions.
  27 */
  28struct iomap_page {
  29        atomic_t                read_count;
  30        atomic_t                write_count;
  31        spinlock_t              uptodate_lock;
  32        DECLARE_BITMAP(uptodate, PAGE_SIZE / 512);
  33};
  34
  35static inline struct iomap_page *to_iomap_page(struct page *page)
  36{
  37        if (page_has_private(page))
  38                return (struct iomap_page *)page_private(page);
  39        return NULL;
  40}
  41
  42static struct bio_set iomap_ioend_bioset;
  43
  44static struct iomap_page *
  45iomap_page_create(struct inode *inode, struct page *page)
  46{
  47        struct iomap_page *iop = to_iomap_page(page);
  48
  49        if (iop || i_blocksize(inode) == PAGE_SIZE)
  50                return iop;
  51
  52        iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
  53        atomic_set(&iop->read_count, 0);
  54        atomic_set(&iop->write_count, 0);
  55        spin_lock_init(&iop->uptodate_lock);
  56        bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
  57
  58        /*
  59         * migrate_page_move_mapping() assumes that pages with private data have
  60         * their count elevated by 1.
  61         */
  62        attach_page_private(page, iop);
  63        return iop;
  64}
  65
  66static void
  67iomap_page_release(struct page *page)
  68{
  69        struct iomap_page *iop = detach_page_private(page);
  70
  71        if (!iop)
  72                return;
  73        WARN_ON_ONCE(atomic_read(&iop->read_count));
  74        WARN_ON_ONCE(atomic_read(&iop->write_count));
  75        kfree(iop);
  76}
  77
  78/*
  79 * Calculate the range inside the page that we actually need to read.
  80 */
  81static void
  82iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
  83                loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
  84{
  85        loff_t orig_pos = *pos;
  86        loff_t isize = i_size_read(inode);
  87        unsigned block_bits = inode->i_blkbits;
  88        unsigned block_size = (1 << block_bits);
  89        unsigned poff = offset_in_page(*pos);
  90        unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
  91        unsigned first = poff >> block_bits;
  92        unsigned last = (poff + plen - 1) >> block_bits;
  93
  94        /*
  95         * If the block size is smaller than the page size we need to check the
  96         * per-block uptodate status and adjust the offset and length if needed
  97         * to avoid reading in already uptodate ranges.
  98         */
  99        if (iop) {
 100                unsigned int i;
 101
 102                /* move forward for each leading block marked uptodate */
 103                for (i = first; i <= last; i++) {
 104                        if (!test_bit(i, iop->uptodate))
 105                                break;
 106                        *pos += block_size;
 107                        poff += block_size;
 108                        plen -= block_size;
 109                        first++;
 110                }
 111
 112                /* truncate len if we find any trailing uptodate block(s) */
 113                for ( ; i <= last; i++) {
 114                        if (test_bit(i, iop->uptodate)) {
 115                                plen -= (last - i + 1) * block_size;
 116                                last = i - 1;
 117                                break;
 118                        }
 119                }
 120        }
 121
 122        /*
 123         * If the extent spans the block that contains the i_size we need to
 124         * handle both halves separately so that we properly zero data in the
 125         * page cache for blocks that are entirely outside of i_size.
 126         */
 127        if (orig_pos <= isize && orig_pos + length > isize) {
 128                unsigned end = offset_in_page(isize - 1) >> block_bits;
 129
 130                if (first <= end && last > end)
 131                        plen -= (last - end) * block_size;
 132        }
 133
 134        *offp = poff;
 135        *lenp = plen;
 136}
 137
 138static void
 139iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
 140{
 141        struct iomap_page *iop = to_iomap_page(page);
 142        struct inode *inode = page->mapping->host;
 143        unsigned first = off >> inode->i_blkbits;
 144        unsigned last = (off + len - 1) >> inode->i_blkbits;
 145        bool uptodate = true;
 146        unsigned long flags;
 147        unsigned int i;
 148
 149        spin_lock_irqsave(&iop->uptodate_lock, flags);
 150        for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
 151                if (i >= first && i <= last)
 152                        set_bit(i, iop->uptodate);
 153                else if (!test_bit(i, iop->uptodate))
 154                        uptodate = false;
 155        }
 156
 157        if (uptodate)
 158                SetPageUptodate(page);
 159        spin_unlock_irqrestore(&iop->uptodate_lock, flags);
 160}
 161
 162static void
 163iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
 164{
 165        if (PageError(page))
 166                return;
 167
 168        if (page_has_private(page))
 169                iomap_iop_set_range_uptodate(page, off, len);
 170        else
 171                SetPageUptodate(page);
 172}
 173
 174static void
 175iomap_read_finish(struct iomap_page *iop, struct page *page)
 176{
 177        if (!iop || atomic_dec_and_test(&iop->read_count))
 178                unlock_page(page);
 179}
 180
 181static void
 182iomap_read_page_end_io(struct bio_vec *bvec, int error)
 183{
 184        struct page *page = bvec->bv_page;
 185        struct iomap_page *iop = to_iomap_page(page);
 186
 187        if (unlikely(error)) {
 188                ClearPageUptodate(page);
 189                SetPageError(page);
 190        } else {
 191                iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
 192        }
 193
 194        iomap_read_finish(iop, page);
 195}
 196
 197static void
 198iomap_read_end_io(struct bio *bio)
 199{
 200        int error = blk_status_to_errno(bio->bi_status);
 201        struct bio_vec *bvec;
 202        struct bvec_iter_all iter_all;
 203
 204        bio_for_each_segment_all(bvec, bio, iter_all)
 205                iomap_read_page_end_io(bvec, error);
 206        bio_put(bio);
 207}
 208
 209struct iomap_readpage_ctx {
 210        struct page             *cur_page;
 211        bool                    cur_page_in_bio;
 212        struct bio              *bio;
 213        struct readahead_control *rac;
 214};
 215
 216static void
 217iomap_read_inline_data(struct inode *inode, struct page *page,
 218                struct iomap *iomap)
 219{
 220        size_t size = i_size_read(inode);
 221        void *addr;
 222
 223        if (PageUptodate(page))
 224                return;
 225
 226        BUG_ON(page->index);
 227        BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
 228
 229        addr = kmap_atomic(page);
 230        memcpy(addr, iomap->inline_data, size);
 231        memset(addr + size, 0, PAGE_SIZE - size);
 232        kunmap_atomic(addr);
 233        SetPageUptodate(page);
 234}
 235
 236static inline bool iomap_block_needs_zeroing(struct inode *inode,
 237                struct iomap *iomap, loff_t pos)
 238{
 239        return iomap->type != IOMAP_MAPPED ||
 240                (iomap->flags & IOMAP_F_NEW) ||
 241                pos >= i_size_read(inode);
 242}
 243
 244static loff_t
 245iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
 246                struct iomap *iomap, struct iomap *srcmap)
 247{
 248        struct iomap_readpage_ctx *ctx = data;
 249        struct page *page = ctx->cur_page;
 250        struct iomap_page *iop = iomap_page_create(inode, page);
 251        bool same_page = false, is_contig = false;
 252        loff_t orig_pos = pos;
 253        unsigned poff, plen;
 254        sector_t sector;
 255
 256        if (iomap->type == IOMAP_INLINE) {
 257                WARN_ON_ONCE(pos);
 258                iomap_read_inline_data(inode, page, iomap);
 259                return PAGE_SIZE;
 260        }
 261
 262        /* zero post-eof blocks as the page may be mapped */
 263        iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
 264        if (plen == 0)
 265                goto done;
 266
 267        if (iomap_block_needs_zeroing(inode, iomap, pos)) {
 268                zero_user(page, poff, plen);
 269                iomap_set_range_uptodate(page, poff, plen);
 270                goto done;
 271        }
 272
 273        ctx->cur_page_in_bio = true;
 274
 275        /*
 276         * Try to merge into a previous segment if we can.
 277         */
 278        sector = iomap_sector(iomap, pos);
 279        if (ctx->bio && bio_end_sector(ctx->bio) == sector)
 280                is_contig = true;
 281
 282        if (is_contig &&
 283            __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
 284                if (!same_page && iop)
 285                        atomic_inc(&iop->read_count);
 286                goto done;
 287        }
 288
 289        /*
 290         * If we start a new segment we need to increase the read count, and we
 291         * need to do so before submitting any previous full bio to make sure
 292         * that we don't prematurely unlock the page.
 293         */
 294        if (iop)
 295                atomic_inc(&iop->read_count);
 296
 297        if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
 298                gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
 299                gfp_t orig_gfp = gfp;
 300                int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
 301
 302                if (ctx->bio)
 303                        submit_bio(ctx->bio);
 304
 305                if (ctx->rac) /* same as readahead_gfp_mask */
 306                        gfp |= __GFP_NORETRY | __GFP_NOWARN;
 307                ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
 308                /*
 309                 * If the bio_alloc fails, try it again for a single page to
 310                 * avoid having to deal with partial page reads.  This emulates
 311                 * what do_mpage_readpage does.
 312                 */
 313                if (!ctx->bio)
 314                        ctx->bio = bio_alloc(orig_gfp, 1);
 315                ctx->bio->bi_opf = REQ_OP_READ;
 316                if (ctx->rac)
 317                        ctx->bio->bi_opf |= REQ_RAHEAD;
 318                ctx->bio->bi_iter.bi_sector = sector;
 319                bio_set_dev(ctx->bio, iomap->bdev);
 320                ctx->bio->bi_end_io = iomap_read_end_io;
 321        }
 322
 323        bio_add_page(ctx->bio, page, plen, poff);
 324done:
 325        /*
 326         * Move the caller beyond our range so that it keeps making progress.
 327         * For that we have to include any leading non-uptodate ranges, but
 328         * we can skip trailing ones as they will be handled in the next
 329         * iteration.
 330         */
 331        return pos - orig_pos + plen;
 332}
 333
 334int
 335iomap_readpage(struct page *page, const struct iomap_ops *ops)
 336{
 337        struct iomap_readpage_ctx ctx = { .cur_page = page };
 338        struct inode *inode = page->mapping->host;
 339        unsigned poff;
 340        loff_t ret;
 341
 342        trace_iomap_readpage(page->mapping->host, 1);
 343
 344        for (poff = 0; poff < PAGE_SIZE; poff += ret) {
 345                ret = iomap_apply(inode, page_offset(page) + poff,
 346                                PAGE_SIZE - poff, 0, ops, &ctx,
 347                                iomap_readpage_actor);
 348                if (ret <= 0) {
 349                        WARN_ON_ONCE(ret == 0);
 350                        SetPageError(page);
 351                        break;
 352                }
 353        }
 354
 355        if (ctx.bio) {
 356                submit_bio(ctx.bio);
 357                WARN_ON_ONCE(!ctx.cur_page_in_bio);
 358        } else {
 359                WARN_ON_ONCE(ctx.cur_page_in_bio);
 360                unlock_page(page);
 361        }
 362
 363        /*
 364         * Just like mpage_readahead and block_read_full_page we always
 365         * return 0 and just mark the page as PageError on errors.  This
 366         * should be cleaned up all through the stack eventually.
 367         */
 368        return 0;
 369}
 370EXPORT_SYMBOL_GPL(iomap_readpage);
 371
 372static loff_t
 373iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length,
 374                void *data, struct iomap *iomap, struct iomap *srcmap)
 375{
 376        struct iomap_readpage_ctx *ctx = data;
 377        loff_t done, ret;
 378
 379        for (done = 0; done < length; done += ret) {
 380                if (ctx->cur_page && offset_in_page(pos + done) == 0) {
 381                        if (!ctx->cur_page_in_bio)
 382                                unlock_page(ctx->cur_page);
 383                        put_page(ctx->cur_page);
 384                        ctx->cur_page = NULL;
 385                }
 386                if (!ctx->cur_page) {
 387                        ctx->cur_page = readahead_page(ctx->rac);
 388                        ctx->cur_page_in_bio = false;
 389                }
 390                ret = iomap_readpage_actor(inode, pos + done, length - done,
 391                                ctx, iomap, srcmap);
 392        }
 393
 394        return done;
 395}
 396
 397/**
 398 * iomap_readahead - Attempt to read pages from a file.
 399 * @rac: Describes the pages to be read.
 400 * @ops: The operations vector for the filesystem.
 401 *
 402 * This function is for filesystems to call to implement their readahead
 403 * address_space operation.
 404 *
 405 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
 406 * blocks from disc), and may wait for it.  The caller may be trying to
 407 * access a different page, and so sleeping excessively should be avoided.
 408 * It may allocate memory, but should avoid costly allocations.  This
 409 * function is called with memalloc_nofs set, so allocations will not cause
 410 * the filesystem to be reentered.
 411 */
 412void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
 413{
 414        struct inode *inode = rac->mapping->host;
 415        loff_t pos = readahead_pos(rac);
 416        loff_t length = readahead_length(rac);
 417        struct iomap_readpage_ctx ctx = {
 418                .rac    = rac,
 419        };
 420
 421        trace_iomap_readahead(inode, readahead_count(rac));
 422
 423        while (length > 0) {
 424                loff_t ret = iomap_apply(inode, pos, length, 0, ops,
 425                                &ctx, iomap_readahead_actor);
 426                if (ret <= 0) {
 427                        WARN_ON_ONCE(ret == 0);
 428                        break;
 429                }
 430                pos += ret;
 431                length -= ret;
 432        }
 433
 434        if (ctx.bio)
 435                submit_bio(ctx.bio);
 436        if (ctx.cur_page) {
 437                if (!ctx.cur_page_in_bio)
 438                        unlock_page(ctx.cur_page);
 439                put_page(ctx.cur_page);
 440        }
 441}
 442EXPORT_SYMBOL_GPL(iomap_readahead);
 443
 444/*
 445 * iomap_is_partially_uptodate checks whether blocks within a page are
 446 * uptodate or not.
 447 *
 448 * Returns true if all blocks which correspond to a file portion
 449 * we want to read within the page are uptodate.
 450 */
 451int
 452iomap_is_partially_uptodate(struct page *page, unsigned long from,
 453                unsigned long count)
 454{
 455        struct iomap_page *iop = to_iomap_page(page);
 456        struct inode *inode = page->mapping->host;
 457        unsigned len, first, last;
 458        unsigned i;
 459
 460        /* Limit range to one page */
 461        len = min_t(unsigned, PAGE_SIZE - from, count);
 462
 463        /* First and last blocks in range within page */
 464        first = from >> inode->i_blkbits;
 465        last = (from + len - 1) >> inode->i_blkbits;
 466
 467        if (iop) {
 468                for (i = first; i <= last; i++)
 469                        if (!test_bit(i, iop->uptodate))
 470                                return 0;
 471                return 1;
 472        }
 473
 474        return 0;
 475}
 476EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
 477
 478int
 479iomap_releasepage(struct page *page, gfp_t gfp_mask)
 480{
 481        trace_iomap_releasepage(page->mapping->host, page_offset(page),
 482                        PAGE_SIZE);
 483
 484        /*
 485         * mm accommodates an old ext3 case where clean pages might not have had
 486         * the dirty bit cleared. Thus, it can send actual dirty pages to
 487         * ->releasepage() via shrink_active_list(), skip those here.
 488         */
 489        if (PageDirty(page) || PageWriteback(page))
 490                return 0;
 491        iomap_page_release(page);
 492        return 1;
 493}
 494EXPORT_SYMBOL_GPL(iomap_releasepage);
 495
 496void
 497iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
 498{
 499        trace_iomap_invalidatepage(page->mapping->host, offset, len);
 500
 501        /*
 502         * If we are invalidating the entire page, clear the dirty state from it
 503         * and release it to avoid unnecessary buildup of the LRU.
 504         */
 505        if (offset == 0 && len == PAGE_SIZE) {
 506                WARN_ON_ONCE(PageWriteback(page));
 507                cancel_dirty_page(page);
 508                iomap_page_release(page);
 509        }
 510}
 511EXPORT_SYMBOL_GPL(iomap_invalidatepage);
 512
 513#ifdef CONFIG_MIGRATION
 514int
 515iomap_migrate_page(struct address_space *mapping, struct page *newpage,
 516                struct page *page, enum migrate_mode mode)
 517{
 518        int ret;
 519
 520        ret = migrate_page_move_mapping(mapping, newpage, page, 0);
 521        if (ret != MIGRATEPAGE_SUCCESS)
 522                return ret;
 523
 524        if (page_has_private(page))
 525                attach_page_private(newpage, detach_page_private(page));
 526
 527        if (mode != MIGRATE_SYNC_NO_COPY)
 528                migrate_page_copy(newpage, page);
 529        else
 530                migrate_page_states(newpage, page);
 531        return MIGRATEPAGE_SUCCESS;
 532}
 533EXPORT_SYMBOL_GPL(iomap_migrate_page);
 534#endif /* CONFIG_MIGRATION */
 535
 536enum {
 537        IOMAP_WRITE_F_UNSHARE           = (1 << 0),
 538};
 539
 540static void
 541iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
 542{
 543        loff_t i_size = i_size_read(inode);
 544
 545        /*
 546         * Only truncate newly allocated pages beyoned EOF, even if the
 547         * write started inside the existing inode size.
 548         */
 549        if (pos + len > i_size)
 550                truncate_pagecache_range(inode, max(pos, i_size), pos + len);
 551}
 552
 553static int
 554iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
 555                unsigned plen, struct iomap *iomap)
 556{
 557        struct bio_vec bvec;
 558        struct bio bio;
 559
 560        bio_init(&bio, &bvec, 1);
 561        bio.bi_opf = REQ_OP_READ;
 562        bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
 563        bio_set_dev(&bio, iomap->bdev);
 564        __bio_add_page(&bio, page, plen, poff);
 565        return submit_bio_wait(&bio);
 566}
 567
 568static int
 569__iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
 570                struct page *page, struct iomap *srcmap)
 571{
 572        struct iomap_page *iop = iomap_page_create(inode, page);
 573        loff_t block_size = i_blocksize(inode);
 574        loff_t block_start = pos & ~(block_size - 1);
 575        loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
 576        unsigned from = offset_in_page(pos), to = from + len, poff, plen;
 577        int status;
 578
 579        if (PageUptodate(page))
 580                return 0;
 581
 582        do {
 583                iomap_adjust_read_range(inode, iop, &block_start,
 584                                block_end - block_start, &poff, &plen);
 585                if (plen == 0)
 586                        break;
 587
 588                if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
 589                    (from <= poff || from >= poff + plen) &&
 590                    (to <= poff || to >= poff + plen))
 591                        continue;
 592
 593                if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
 594                        if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
 595                                return -EIO;
 596                        zero_user_segments(page, poff, from, to, poff + plen);
 597                        iomap_set_range_uptodate(page, poff, plen);
 598                        continue;
 599                }
 600
 601                status = iomap_read_page_sync(block_start, page, poff, plen,
 602                                srcmap);
 603                if (status)
 604                        return status;
 605        } while ((block_start += plen) < block_end);
 606
 607        return 0;
 608}
 609
 610static int
 611iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
 612                struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
 613{
 614        const struct iomap_page_ops *page_ops = iomap->page_ops;
 615        struct page *page;
 616        int status = 0;
 617
 618        BUG_ON(pos + len > iomap->offset + iomap->length);
 619        if (srcmap != iomap)
 620                BUG_ON(pos + len > srcmap->offset + srcmap->length);
 621
 622        if (fatal_signal_pending(current))
 623                return -EINTR;
 624
 625        if (page_ops && page_ops->page_prepare) {
 626                status = page_ops->page_prepare(inode, pos, len, iomap);
 627                if (status)
 628                        return status;
 629        }
 630
 631        page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
 632                        AOP_FLAG_NOFS);
 633        if (!page) {
 634                status = -ENOMEM;
 635                goto out_no_page;
 636        }
 637
 638        if (srcmap->type == IOMAP_INLINE)
 639                iomap_read_inline_data(inode, page, srcmap);
 640        else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
 641                status = __block_write_begin_int(page, pos, len, NULL, srcmap);
 642        else
 643                status = __iomap_write_begin(inode, pos, len, flags, page,
 644                                srcmap);
 645
 646        if (unlikely(status))
 647                goto out_unlock;
 648
 649        *pagep = page;
 650        return 0;
 651
 652out_unlock:
 653        unlock_page(page);
 654        put_page(page);
 655        iomap_write_failed(inode, pos, len);
 656
 657out_no_page:
 658        if (page_ops && page_ops->page_done)
 659                page_ops->page_done(inode, pos, 0, NULL, iomap);
 660        return status;
 661}
 662
 663int
 664iomap_set_page_dirty(struct page *page)
 665{
 666        struct address_space *mapping = page_mapping(page);
 667        int newly_dirty;
 668
 669        if (unlikely(!mapping))
 670                return !TestSetPageDirty(page);
 671
 672        /*
 673         * Lock out page->mem_cgroup migration to keep PageDirty
 674         * synchronized with per-memcg dirty page counters.
 675         */
 676        lock_page_memcg(page);
 677        newly_dirty = !TestSetPageDirty(page);
 678        if (newly_dirty)
 679                __set_page_dirty(page, mapping, 0);
 680        unlock_page_memcg(page);
 681
 682        if (newly_dirty)
 683                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 684        return newly_dirty;
 685}
 686EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
 687
 688static int
 689__iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
 690                unsigned copied, struct page *page)
 691{
 692        flush_dcache_page(page);
 693
 694        /*
 695         * The blocks that were entirely written will now be uptodate, so we
 696         * don't have to worry about a readpage reading them and overwriting a
 697         * partial write.  However if we have encountered a short write and only
 698         * partially written into a block, it will not be marked uptodate, so a
 699         * readpage might come in and destroy our partial write.
 700         *
 701         * Do the simplest thing, and just treat any short write to a non
 702         * uptodate page as a zero-length write, and force the caller to redo
 703         * the whole thing.
 704         */
 705        if (unlikely(copied < len && !PageUptodate(page)))
 706                return 0;
 707        iomap_set_range_uptodate(page, offset_in_page(pos), len);
 708        iomap_set_page_dirty(page);
 709        return copied;
 710}
 711
 712static int
 713iomap_write_end_inline(struct inode *inode, struct page *page,
 714                struct iomap *iomap, loff_t pos, unsigned copied)
 715{
 716        void *addr;
 717
 718        WARN_ON_ONCE(!PageUptodate(page));
 719        BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
 720
 721        addr = kmap_atomic(page);
 722        memcpy(iomap->inline_data + pos, addr + pos, copied);
 723        kunmap_atomic(addr);
 724
 725        mark_inode_dirty(inode);
 726        return copied;
 727}
 728
 729static int
 730iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied,
 731                struct page *page, struct iomap *iomap, struct iomap *srcmap)
 732{
 733        const struct iomap_page_ops *page_ops = iomap->page_ops;
 734        loff_t old_size = inode->i_size;
 735        int ret;
 736
 737        if (srcmap->type == IOMAP_INLINE) {
 738                ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
 739        } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
 740                ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
 741                                page, NULL);
 742        } else {
 743                ret = __iomap_write_end(inode, pos, len, copied, page);
 744        }
 745
 746        /*
 747         * Update the in-memory inode size after copying the data into the page
 748         * cache.  It's up to the file system to write the updated size to disk,
 749         * preferably after I/O completion so that no stale data is exposed.
 750         */
 751        if (pos + ret > old_size) {
 752                i_size_write(inode, pos + ret);
 753                iomap->flags |= IOMAP_F_SIZE_CHANGED;
 754        }
 755        unlock_page(page);
 756
 757        if (old_size < pos)
 758                pagecache_isize_extended(inode, old_size, pos);
 759        if (page_ops && page_ops->page_done)
 760                page_ops->page_done(inode, pos, ret, page, iomap);
 761        put_page(page);
 762
 763        if (ret < len)
 764                iomap_write_failed(inode, pos, len);
 765        return ret;
 766}
 767
 768static loff_t
 769iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
 770                struct iomap *iomap, struct iomap *srcmap)
 771{
 772        struct iov_iter *i = data;
 773        long status = 0;
 774        ssize_t written = 0;
 775
 776        do {
 777                struct page *page;
 778                unsigned long offset;   /* Offset into pagecache page */
 779                unsigned long bytes;    /* Bytes to write to page */
 780                size_t copied;          /* Bytes copied from user */
 781
 782                offset = offset_in_page(pos);
 783                bytes = min_t(unsigned long, PAGE_SIZE - offset,
 784                                                iov_iter_count(i));
 785again:
 786                if (bytes > length)
 787                        bytes = length;
 788
 789                /*
 790                 * Bring in the user page that we will copy from _first_.
 791                 * Otherwise there's a nasty deadlock on copying from the
 792                 * same page as we're writing to, without it being marked
 793                 * up-to-date.
 794                 *
 795                 * Not only is this an optimisation, but it is also required
 796                 * to check that the address is actually valid, when atomic
 797                 * usercopies are used, below.
 798                 */
 799                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
 800                        status = -EFAULT;
 801                        break;
 802                }
 803
 804                status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
 805                                srcmap);
 806                if (unlikely(status))
 807                        break;
 808
 809                if (mapping_writably_mapped(inode->i_mapping))
 810                        flush_dcache_page(page);
 811
 812                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
 813
 814                flush_dcache_page(page);
 815
 816                status = iomap_write_end(inode, pos, bytes, copied, page, iomap,
 817                                srcmap);
 818                if (unlikely(status < 0))
 819                        break;
 820                copied = status;
 821
 822                cond_resched();
 823
 824                iov_iter_advance(i, copied);
 825                if (unlikely(copied == 0)) {
 826                        /*
 827                         * If we were unable to copy any data at all, we must
 828                         * fall back to a single segment length write.
 829                         *
 830                         * If we didn't fallback here, we could livelock
 831                         * because not all segments in the iov can be copied at
 832                         * once without a pagefault.
 833                         */
 834                        bytes = min_t(unsigned long, PAGE_SIZE - offset,
 835                                                iov_iter_single_seg_count(i));
 836                        goto again;
 837                }
 838                pos += copied;
 839                written += copied;
 840                length -= copied;
 841
 842                balance_dirty_pages_ratelimited(inode->i_mapping);
 843        } while (iov_iter_count(i) && length);
 844
 845        return written ? written : status;
 846}
 847
 848ssize_t
 849iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
 850                const struct iomap_ops *ops)
 851{
 852        struct inode *inode = iocb->ki_filp->f_mapping->host;
 853        loff_t pos = iocb->ki_pos, ret = 0, written = 0;
 854
 855        while (iov_iter_count(iter)) {
 856                ret = iomap_apply(inode, pos, iov_iter_count(iter),
 857                                IOMAP_WRITE, ops, iter, iomap_write_actor);
 858                if (ret <= 0)
 859                        break;
 860                pos += ret;
 861                written += ret;
 862        }
 863
 864        return written ? written : ret;
 865}
 866EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
 867
 868static loff_t
 869iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
 870                struct iomap *iomap, struct iomap *srcmap)
 871{
 872        long status = 0;
 873        loff_t written = 0;
 874
 875        /* don't bother with blocks that are not shared to start with */
 876        if (!(iomap->flags & IOMAP_F_SHARED))
 877                return length;
 878        /* don't bother with holes or unwritten extents */
 879        if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
 880                return length;
 881
 882        do {
 883                unsigned long offset = offset_in_page(pos);
 884                unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
 885                struct page *page;
 886
 887                status = iomap_write_begin(inode, pos, bytes,
 888                                IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
 889                if (unlikely(status))
 890                        return status;
 891
 892                status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
 893                                srcmap);
 894                if (unlikely(status <= 0)) {
 895                        if (WARN_ON_ONCE(status == 0))
 896                                return -EIO;
 897                        return status;
 898                }
 899
 900                cond_resched();
 901
 902                pos += status;
 903                written += status;
 904                length -= status;
 905
 906                balance_dirty_pages_ratelimited(inode->i_mapping);
 907        } while (length);
 908
 909        return written;
 910}
 911
 912int
 913iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
 914                const struct iomap_ops *ops)
 915{
 916        loff_t ret;
 917
 918        while (len) {
 919                ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
 920                                iomap_unshare_actor);
 921                if (ret <= 0)
 922                        return ret;
 923                pos += ret;
 924                len -= ret;
 925        }
 926
 927        return 0;
 928}
 929EXPORT_SYMBOL_GPL(iomap_file_unshare);
 930
 931static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
 932                unsigned bytes, struct iomap *iomap, struct iomap *srcmap)
 933{
 934        struct page *page;
 935        int status;
 936
 937        status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
 938        if (status)
 939                return status;
 940
 941        zero_user(page, offset, bytes);
 942        mark_page_accessed(page);
 943
 944        return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
 945}
 946
 947static loff_t
 948iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
 949                void *data, struct iomap *iomap, struct iomap *srcmap)
 950{
 951        bool *did_zero = data;
 952        loff_t written = 0;
 953        int status;
 954
 955        /* already zeroed?  we're done. */
 956        if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
 957                return count;
 958
 959        do {
 960                unsigned offset, bytes;
 961
 962                offset = offset_in_page(pos);
 963                bytes = min_t(loff_t, PAGE_SIZE - offset, count);
 964
 965                if (IS_DAX(inode))
 966                        status = dax_iomap_zero(pos, offset, bytes, iomap);
 967                else
 968                        status = iomap_zero(inode, pos, offset, bytes, iomap,
 969                                        srcmap);
 970                if (status < 0)
 971                        return status;
 972
 973                pos += bytes;
 974                count -= bytes;
 975                written += bytes;
 976                if (did_zero)
 977                        *did_zero = true;
 978        } while (count > 0);
 979
 980        return written;
 981}
 982
 983int
 984iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
 985                const struct iomap_ops *ops)
 986{
 987        loff_t ret;
 988
 989        while (len > 0) {
 990                ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
 991                                ops, did_zero, iomap_zero_range_actor);
 992                if (ret <= 0)
 993                        return ret;
 994
 995                pos += ret;
 996                len -= ret;
 997        }
 998
 999        return 0;
1000}
1001EXPORT_SYMBOL_GPL(iomap_zero_range);
1002
1003int
1004iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1005                const struct iomap_ops *ops)
1006{
1007        unsigned int blocksize = i_blocksize(inode);
1008        unsigned int off = pos & (blocksize - 1);
1009
1010        /* Block boundary? Nothing to do */
1011        if (!off)
1012                return 0;
1013        return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1014}
1015EXPORT_SYMBOL_GPL(iomap_truncate_page);
1016
1017static loff_t
1018iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1019                void *data, struct iomap *iomap, struct iomap *srcmap)
1020{
1021        struct page *page = data;
1022        int ret;
1023
1024        if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1025                ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1026                if (ret)
1027                        return ret;
1028                block_commit_write(page, 0, length);
1029        } else {
1030                WARN_ON_ONCE(!PageUptodate(page));
1031                iomap_page_create(inode, page);
1032                set_page_dirty(page);
1033        }
1034
1035        return length;
1036}
1037
1038vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1039{
1040        struct page *page = vmf->page;
1041        struct inode *inode = file_inode(vmf->vma->vm_file);
1042        unsigned long length;
1043        loff_t offset;
1044        ssize_t ret;
1045
1046        lock_page(page);
1047        ret = page_mkwrite_check_truncate(page, inode);
1048        if (ret < 0)
1049                goto out_unlock;
1050        length = ret;
1051
1052        offset = page_offset(page);
1053        while (length > 0) {
1054                ret = iomap_apply(inode, offset, length,
1055                                IOMAP_WRITE | IOMAP_FAULT, ops, page,
1056                                iomap_page_mkwrite_actor);
1057                if (unlikely(ret <= 0))
1058                        goto out_unlock;
1059                offset += ret;
1060                length -= ret;
1061        }
1062
1063        wait_for_stable_page(page);
1064        return VM_FAULT_LOCKED;
1065out_unlock:
1066        unlock_page(page);
1067        return block_page_mkwrite_return(ret);
1068}
1069EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1070
1071static void
1072iomap_finish_page_writeback(struct inode *inode, struct page *page,
1073                int error)
1074{
1075        struct iomap_page *iop = to_iomap_page(page);
1076
1077        if (error) {
1078                SetPageError(page);
1079                mapping_set_error(inode->i_mapping, -EIO);
1080        }
1081
1082        WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1083        WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0);
1084
1085        if (!iop || atomic_dec_and_test(&iop->write_count))
1086                end_page_writeback(page);
1087}
1088
1089/*
1090 * We're now finished for good with this ioend structure.  Update the page
1091 * state, release holds on bios, and finally free up memory.  Do not use the
1092 * ioend after this.
1093 */
1094static void
1095iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1096{
1097        struct inode *inode = ioend->io_inode;
1098        struct bio *bio = &ioend->io_inline_bio;
1099        struct bio *last = ioend->io_bio, *next;
1100        u64 start = bio->bi_iter.bi_sector;
1101        loff_t offset = ioend->io_offset;
1102        bool quiet = bio_flagged(bio, BIO_QUIET);
1103
1104        for (bio = &ioend->io_inline_bio; bio; bio = next) {
1105                struct bio_vec *bv;
1106                struct bvec_iter_all iter_all;
1107
1108                /*
1109                 * For the last bio, bi_private points to the ioend, so we
1110                 * need to explicitly end the iteration here.
1111                 */
1112                if (bio == last)
1113                        next = NULL;
1114                else
1115                        next = bio->bi_private;
1116
1117                /* walk each page on bio, ending page IO on them */
1118                bio_for_each_segment_all(bv, bio, iter_all)
1119                        iomap_finish_page_writeback(inode, bv->bv_page, error);
1120                bio_put(bio);
1121        }
1122        /* The ioend has been freed by bio_put() */
1123
1124        if (unlikely(error && !quiet)) {
1125                printk_ratelimited(KERN_ERR
1126"%s: writeback error on inode %lu, offset %lld, sector %llu",
1127                        inode->i_sb->s_id, inode->i_ino, offset, start);
1128        }
1129}
1130
1131void
1132iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1133{
1134        struct list_head tmp;
1135
1136        list_replace_init(&ioend->io_list, &tmp);
1137        iomap_finish_ioend(ioend, error);
1138
1139        while (!list_empty(&tmp)) {
1140                ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1141                list_del_init(&ioend->io_list);
1142                iomap_finish_ioend(ioend, error);
1143        }
1144}
1145EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1146
1147/*
1148 * We can merge two adjacent ioends if they have the same set of work to do.
1149 */
1150static bool
1151iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1152{
1153        if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1154                return false;
1155        if ((ioend->io_flags & IOMAP_F_SHARED) ^
1156            (next->io_flags & IOMAP_F_SHARED))
1157                return false;
1158        if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1159            (next->io_type == IOMAP_UNWRITTEN))
1160                return false;
1161        if (ioend->io_offset + ioend->io_size != next->io_offset)
1162                return false;
1163        return true;
1164}
1165
1166void
1167iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1168                void (*merge_private)(struct iomap_ioend *ioend,
1169                                struct iomap_ioend *next))
1170{
1171        struct iomap_ioend *next;
1172
1173        INIT_LIST_HEAD(&ioend->io_list);
1174
1175        while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1176                        io_list))) {
1177                if (!iomap_ioend_can_merge(ioend, next))
1178                        break;
1179                list_move_tail(&next->io_list, &ioend->io_list);
1180                ioend->io_size += next->io_size;
1181                if (next->io_private && merge_private)
1182                        merge_private(ioend, next);
1183        }
1184}
1185EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1186
1187static int
1188iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
1189{
1190        struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1191        struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1192
1193        if (ia->io_offset < ib->io_offset)
1194                return -1;
1195        if (ia->io_offset > ib->io_offset)
1196                return 1;
1197        return 0;
1198}
1199
1200void
1201iomap_sort_ioends(struct list_head *ioend_list)
1202{
1203        list_sort(NULL, ioend_list, iomap_ioend_compare);
1204}
1205EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1206
1207static void iomap_writepage_end_bio(struct bio *bio)
1208{
1209        struct iomap_ioend *ioend = bio->bi_private;
1210
1211        iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1212}
1213
1214/*
1215 * Submit the final bio for an ioend.
1216 *
1217 * If @error is non-zero, it means that we have a situation where some part of
1218 * the submission process has failed after we have marked paged for writeback
1219 * and unlocked them.  In this situation, we need to fail the bio instead of
1220 * submitting it.  This typically only happens on a filesystem shutdown.
1221 */
1222static int
1223iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1224                int error)
1225{
1226        ioend->io_bio->bi_private = ioend;
1227        ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1228
1229        if (wpc->ops->prepare_ioend)
1230                error = wpc->ops->prepare_ioend(ioend, error);
1231        if (error) {
1232                /*
1233                 * If we are failing the IO now, just mark the ioend with an
1234                 * error and finish it.  This will run IO completion immediately
1235                 * as there is only one reference to the ioend at this point in
1236                 * time.
1237                 */
1238                ioend->io_bio->bi_status = errno_to_blk_status(error);
1239                bio_endio(ioend->io_bio);
1240                return error;
1241        }
1242
1243        submit_bio(ioend->io_bio);
1244        return 0;
1245}
1246
1247static struct iomap_ioend *
1248iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1249                loff_t offset, sector_t sector, struct writeback_control *wbc)
1250{
1251        struct iomap_ioend *ioend;
1252        struct bio *bio;
1253
1254        bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1255        bio_set_dev(bio, wpc->iomap.bdev);
1256        bio->bi_iter.bi_sector = sector;
1257        bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1258        bio->bi_write_hint = inode->i_write_hint;
1259        wbc_init_bio(wbc, bio);
1260
1261        ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1262        INIT_LIST_HEAD(&ioend->io_list);
1263        ioend->io_type = wpc->iomap.type;
1264        ioend->io_flags = wpc->iomap.flags;
1265        ioend->io_inode = inode;
1266        ioend->io_size = 0;
1267        ioend->io_offset = offset;
1268        ioend->io_private = NULL;
1269        ioend->io_bio = bio;
1270        return ioend;
1271}
1272
1273/*
1274 * Allocate a new bio, and chain the old bio to the new one.
1275 *
1276 * Note that we have to do perform the chaining in this unintuitive order
1277 * so that the bi_private linkage is set up in the right direction for the
1278 * traversal in iomap_finish_ioend().
1279 */
1280static struct bio *
1281iomap_chain_bio(struct bio *prev)
1282{
1283        struct bio *new;
1284
1285        new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1286        bio_copy_dev(new, prev);/* also copies over blkcg information */
1287        new->bi_iter.bi_sector = bio_end_sector(prev);
1288        new->bi_opf = prev->bi_opf;
1289        new->bi_write_hint = prev->bi_write_hint;
1290
1291        bio_chain(prev, new);
1292        bio_get(prev);          /* for iomap_finish_ioend */
1293        submit_bio(prev);
1294        return new;
1295}
1296
1297static bool
1298iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1299                sector_t sector)
1300{
1301        if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1302            (wpc->ioend->io_flags & IOMAP_F_SHARED))
1303                return false;
1304        if (wpc->iomap.type != wpc->ioend->io_type)
1305                return false;
1306        if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1307                return false;
1308        if (sector != bio_end_sector(wpc->ioend->io_bio))
1309                return false;
1310        return true;
1311}
1312
1313/*
1314 * Test to see if we have an existing ioend structure that we could append to
1315 * first, otherwise finish off the current ioend and start another.
1316 */
1317static void
1318iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1319                struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1320                struct writeback_control *wbc, struct list_head *iolist)
1321{
1322        sector_t sector = iomap_sector(&wpc->iomap, offset);
1323        unsigned len = i_blocksize(inode);
1324        unsigned poff = offset & (PAGE_SIZE - 1);
1325        bool merged, same_page = false;
1326
1327        if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1328                if (wpc->ioend)
1329                        list_add(&wpc->ioend->io_list, iolist);
1330                wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1331        }
1332
1333        merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1334                        &same_page);
1335        if (iop && !same_page)
1336                atomic_inc(&iop->write_count);
1337
1338        if (!merged) {
1339                if (bio_full(wpc->ioend->io_bio, len)) {
1340                        wpc->ioend->io_bio =
1341                                iomap_chain_bio(wpc->ioend->io_bio);
1342                }
1343                bio_add_page(wpc->ioend->io_bio, page, len, poff);
1344        }
1345
1346        wpc->ioend->io_size += len;
1347        wbc_account_cgroup_owner(wbc, page, len);
1348}
1349
1350/*
1351 * We implement an immediate ioend submission policy here to avoid needing to
1352 * chain multiple ioends and hence nest mempool allocations which can violate
1353 * forward progress guarantees we need to provide. The current ioend we are
1354 * adding blocks to is cached on the writepage context, and if the new block
1355 * does not append to the cached ioend it will create a new ioend and cache that
1356 * instead.
1357 *
1358 * If a new ioend is created and cached, the old ioend is returned and queued
1359 * locally for submission once the entire page is processed or an error has been
1360 * detected.  While ioends are submitted immediately after they are completed,
1361 * batching optimisations are provided by higher level block plugging.
1362 *
1363 * At the end of a writeback pass, there will be a cached ioend remaining on the
1364 * writepage context that the caller will need to submit.
1365 */
1366static int
1367iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1368                struct writeback_control *wbc, struct inode *inode,
1369                struct page *page, u64 end_offset)
1370{
1371        struct iomap_page *iop = to_iomap_page(page);
1372        struct iomap_ioend *ioend, *next;
1373        unsigned len = i_blocksize(inode);
1374        u64 file_offset; /* file offset of page */
1375        int error = 0, count = 0, i;
1376        LIST_HEAD(submit_list);
1377
1378        WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1379        WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0);
1380
1381        /*
1382         * Walk through the page to find areas to write back. If we run off the
1383         * end of the current map or find the current map invalid, grab a new
1384         * one.
1385         */
1386        for (i = 0, file_offset = page_offset(page);
1387             i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1388             i++, file_offset += len) {
1389                if (iop && !test_bit(i, iop->uptodate))
1390                        continue;
1391
1392                error = wpc->ops->map_blocks(wpc, inode, file_offset);
1393                if (error)
1394                        break;
1395                if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1396                        continue;
1397                if (wpc->iomap.type == IOMAP_HOLE)
1398                        continue;
1399                iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1400                                 &submit_list);
1401                count++;
1402        }
1403
1404        WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1405        WARN_ON_ONCE(!PageLocked(page));
1406        WARN_ON_ONCE(PageWriteback(page));
1407
1408        /*
1409         * We cannot cancel the ioend directly here on error.  We may have
1410         * already set other pages under writeback and hence we have to run I/O
1411         * completion to mark the error state of the pages under writeback
1412         * appropriately.
1413         */
1414        if (unlikely(error)) {
1415                if (!count) {
1416                        /*
1417                         * If the current page hasn't been added to ioend, it
1418                         * won't be affected by I/O completions and we must
1419                         * discard and unlock it right here.
1420                         */
1421                        if (wpc->ops->discard_page)
1422                                wpc->ops->discard_page(page);
1423                        ClearPageUptodate(page);
1424                        unlock_page(page);
1425                        goto done;
1426                }
1427
1428                /*
1429                 * If the page was not fully cleaned, we need to ensure that the
1430                 * higher layers come back to it correctly.  That means we need
1431                 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
1432                 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
1433                 * so another attempt to write this page in this writeback sweep
1434                 * will be made.
1435                 */
1436                set_page_writeback_keepwrite(page);
1437        } else {
1438                clear_page_dirty_for_io(page);
1439                set_page_writeback(page);
1440        }
1441
1442        unlock_page(page);
1443
1444        /*
1445         * Preserve the original error if there was one, otherwise catch
1446         * submission errors here and propagate into subsequent ioend
1447         * submissions.
1448         */
1449        list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1450                int error2;
1451
1452                list_del_init(&ioend->io_list);
1453                error2 = iomap_submit_ioend(wpc, ioend, error);
1454                if (error2 && !error)
1455                        error = error2;
1456        }
1457
1458        /*
1459         * We can end up here with no error and nothing to write only if we race
1460         * with a partial page truncate on a sub-page block sized filesystem.
1461         */
1462        if (!count)
1463                end_page_writeback(page);
1464done:
1465        mapping_set_error(page->mapping, error);
1466        return error;
1467}
1468
1469/*
1470 * Write out a dirty page.
1471 *
1472 * For delalloc space on the page we need to allocate space and flush it.
1473 * For unwritten space on the page we need to start the conversion to
1474 * regular allocated space.
1475 */
1476static int
1477iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1478{
1479        struct iomap_writepage_ctx *wpc = data;
1480        struct inode *inode = page->mapping->host;
1481        pgoff_t end_index;
1482        u64 end_offset;
1483        loff_t offset;
1484
1485        trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1486
1487        /*
1488         * Refuse to write the page out if we are called from reclaim context.
1489         *
1490         * This avoids stack overflows when called from deeply used stacks in
1491         * random callers for direct reclaim or memcg reclaim.  We explicitly
1492         * allow reclaim from kswapd as the stack usage there is relatively low.
1493         *
1494         * This should never happen except in the case of a VM regression so
1495         * warn about it.
1496         */
1497        if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1498                        PF_MEMALLOC))
1499                goto redirty;
1500
1501        /*
1502         * Given that we do not allow direct reclaim to call us, we should
1503         * never be called in a recursive filesystem reclaim context.
1504         */
1505        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1506                goto redirty;
1507
1508        /*
1509         * Is this page beyond the end of the file?
1510         *
1511         * The page index is less than the end_index, adjust the end_offset
1512         * to the highest offset that this page should represent.
1513         * -----------------------------------------------------
1514         * |                    file mapping           | <EOF> |
1515         * -----------------------------------------------------
1516         * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1517         * ^--------------------------------^----------|--------
1518         * |     desired writeback range    |      see else    |
1519         * ---------------------------------^------------------|
1520         */
1521        offset = i_size_read(inode);
1522        end_index = offset >> PAGE_SHIFT;
1523        if (page->index < end_index)
1524                end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1525        else {
1526                /*
1527                 * Check whether the page to write out is beyond or straddles
1528                 * i_size or not.
1529                 * -------------------------------------------------------
1530                 * |            file mapping                    | <EOF>  |
1531                 * -------------------------------------------------------
1532                 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1533                 * ^--------------------------------^-----------|---------
1534                 * |                                |      Straddles     |
1535                 * ---------------------------------^-----------|--------|
1536                 */
1537                unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1538
1539                /*
1540                 * Skip the page if it is fully outside i_size, e.g. due to a
1541                 * truncate operation that is in progress. We must redirty the
1542                 * page so that reclaim stops reclaiming it. Otherwise
1543                 * iomap_vm_releasepage() is called on it and gets confused.
1544                 *
1545                 * Note that the end_index is unsigned long, it would overflow
1546                 * if the given offset is greater than 16TB on 32-bit system
1547                 * and if we do check the page is fully outside i_size or not
1548                 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1549                 * will be evaluated to 0.  Hence this page will be redirtied
1550                 * and be written out repeatedly which would result in an
1551                 * infinite loop, the user program that perform this operation
1552                 * will hang.  Instead, we can verify this situation by checking
1553                 * if the page to write is totally beyond the i_size or if it's
1554                 * offset is just equal to the EOF.
1555                 */
1556                if (page->index > end_index ||
1557                    (page->index == end_index && offset_into_page == 0))
1558                        goto redirty;
1559
1560                /*
1561                 * The page straddles i_size.  It must be zeroed out on each
1562                 * and every writepage invocation because it may be mmapped.
1563                 * "A file is mapped in multiples of the page size.  For a file
1564                 * that is not a multiple of the page size, the remaining
1565                 * memory is zeroed when mapped, and writes to that region are
1566                 * not written out to the file."
1567                 */
1568                zero_user_segment(page, offset_into_page, PAGE_SIZE);
1569
1570                /* Adjust the end_offset to the end of file */
1571                end_offset = offset;
1572        }
1573
1574        return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1575
1576redirty:
1577        redirty_page_for_writepage(wbc, page);
1578        unlock_page(page);
1579        return 0;
1580}
1581
1582int
1583iomap_writepage(struct page *page, struct writeback_control *wbc,
1584                struct iomap_writepage_ctx *wpc,
1585                const struct iomap_writeback_ops *ops)
1586{
1587        int ret;
1588
1589        wpc->ops = ops;
1590        ret = iomap_do_writepage(page, wbc, wpc);
1591        if (!wpc->ioend)
1592                return ret;
1593        return iomap_submit_ioend(wpc, wpc->ioend, ret);
1594}
1595EXPORT_SYMBOL_GPL(iomap_writepage);
1596
1597int
1598iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1599                struct iomap_writepage_ctx *wpc,
1600                const struct iomap_writeback_ops *ops)
1601{
1602        int                     ret;
1603
1604        wpc->ops = ops;
1605        ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1606        if (!wpc->ioend)
1607                return ret;
1608        return iomap_submit_ioend(wpc, wpc->ioend, ret);
1609}
1610EXPORT_SYMBOL_GPL(iomap_writepages);
1611
1612static int __init iomap_init(void)
1613{
1614        return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1615                           offsetof(struct iomap_ioend, io_inline_bio),
1616                           BIOSET_NEED_BVECS);
1617}
1618fs_initcall(iomap_init);
1619