linux/fs/mpage.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/mpage.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 *
   7 * Contains functions related to preparing and submitting BIOs which contain
   8 * multiple pagecache pages.
   9 *
  10 * 15May2002    Andrew Morton
  11 *              Initial version
  12 * 27Jun2002    axboe@suse.de
  13 *              use bio_add_page() to build bio's just the right size
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/mm.h>
  19#include <linux/kdev_t.h>
  20#include <linux/gfp.h>
  21#include <linux/bio.h>
  22#include <linux/fs.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/highmem.h>
  26#include <linux/prefetch.h>
  27#include <linux/mpage.h>
  28#include <linux/mm_inline.h>
  29#include <linux/writeback.h>
  30#include <linux/backing-dev.h>
  31#include <linux/pagevec.h>
  32#include <linux/cleancache.h>
  33#include "internal.h"
  34
  35/*
  36 * I/O completion handler for multipage BIOs.
  37 *
  38 * The mpage code never puts partial pages into a BIO (except for end-of-file).
  39 * If a page does not map to a contiguous run of blocks then it simply falls
  40 * back to block_read_full_page().
  41 *
  42 * Why is this?  If a page's completion depends on a number of different BIOs
  43 * which can complete in any order (or at the same time) then determining the
  44 * status of that page is hard.  See end_buffer_async_read() for the details.
  45 * There is no point in duplicating all that complexity.
  46 */
  47static void mpage_end_io(struct bio *bio)
  48{
  49        struct bio_vec *bv;
  50        struct bvec_iter_all iter_all;
  51
  52        bio_for_each_segment_all(bv, bio, iter_all) {
  53                struct page *page = bv->bv_page;
  54                page_endio(page, bio_op(bio),
  55                           blk_status_to_errno(bio->bi_status));
  56        }
  57
  58        bio_put(bio);
  59}
  60
  61static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
  62{
  63        bio->bi_end_io = mpage_end_io;
  64        bio_set_op_attrs(bio, op, op_flags);
  65        guard_bio_eod(bio);
  66        submit_bio(bio);
  67        return NULL;
  68}
  69
  70static struct bio *
  71mpage_alloc(struct block_device *bdev,
  72                sector_t first_sector, int nr_vecs,
  73                gfp_t gfp_flags)
  74{
  75        struct bio *bio;
  76
  77        /* Restrict the given (page cache) mask for slab allocations */
  78        gfp_flags &= GFP_KERNEL;
  79        bio = bio_alloc(gfp_flags, nr_vecs);
  80
  81        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
  82                while (!bio && (nr_vecs /= 2))
  83                        bio = bio_alloc(gfp_flags, nr_vecs);
  84        }
  85
  86        if (bio) {
  87                bio_set_dev(bio, bdev);
  88                bio->bi_iter.bi_sector = first_sector;
  89        }
  90        return bio;
  91}
  92
  93/*
  94 * support function for mpage_readahead.  The fs supplied get_block might
  95 * return an up to date buffer.  This is used to map that buffer into
  96 * the page, which allows readpage to avoid triggering a duplicate call
  97 * to get_block.
  98 *
  99 * The idea is to avoid adding buffers to pages that don't already have
 100 * them.  So when the buffer is up to date and the page size == block size,
 101 * this marks the page up to date instead of adding new buffers.
 102 */
 103static void 
 104map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
 105{
 106        struct inode *inode = page->mapping->host;
 107        struct buffer_head *page_bh, *head;
 108        int block = 0;
 109
 110        if (!page_has_buffers(page)) {
 111                /*
 112                 * don't make any buffers if there is only one buffer on
 113                 * the page and the page just needs to be set up to date
 114                 */
 115                if (inode->i_blkbits == PAGE_SHIFT &&
 116                    buffer_uptodate(bh)) {
 117                        SetPageUptodate(page);    
 118                        return;
 119                }
 120                create_empty_buffers(page, i_blocksize(inode), 0);
 121        }
 122        head = page_buffers(page);
 123        page_bh = head;
 124        do {
 125                if (block == page_block) {
 126                        page_bh->b_state = bh->b_state;
 127                        page_bh->b_bdev = bh->b_bdev;
 128                        page_bh->b_blocknr = bh->b_blocknr;
 129                        break;
 130                }
 131                page_bh = page_bh->b_this_page;
 132                block++;
 133        } while (page_bh != head);
 134}
 135
 136struct mpage_readpage_args {
 137        struct bio *bio;
 138        struct page *page;
 139        unsigned int nr_pages;
 140        bool is_readahead;
 141        sector_t last_block_in_bio;
 142        struct buffer_head map_bh;
 143        unsigned long first_logical_block;
 144        get_block_t *get_block;
 145};
 146
 147/*
 148 * This is the worker routine which does all the work of mapping the disk
 149 * blocks and constructs largest possible bios, submits them for IO if the
 150 * blocks are not contiguous on the disk.
 151 *
 152 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
 153 * represent the validity of its disk mapping and to decide when to do the next
 154 * get_block() call.
 155 */
 156static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
 157{
 158        struct page *page = args->page;
 159        struct inode *inode = page->mapping->host;
 160        const unsigned blkbits = inode->i_blkbits;
 161        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 162        const unsigned blocksize = 1 << blkbits;
 163        struct buffer_head *map_bh = &args->map_bh;
 164        sector_t block_in_file;
 165        sector_t last_block;
 166        sector_t last_block_in_file;
 167        sector_t blocks[MAX_BUF_PER_PAGE];
 168        unsigned page_block;
 169        unsigned first_hole = blocks_per_page;
 170        struct block_device *bdev = NULL;
 171        int length;
 172        int fully_mapped = 1;
 173        int op_flags;
 174        unsigned nblocks;
 175        unsigned relative_block;
 176        gfp_t gfp;
 177
 178        if (args->is_readahead) {
 179                op_flags = REQ_RAHEAD;
 180                gfp = readahead_gfp_mask(page->mapping);
 181        } else {
 182                op_flags = 0;
 183                gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
 184        }
 185
 186        if (page_has_buffers(page))
 187                goto confused;
 188
 189        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 190        last_block = block_in_file + args->nr_pages * blocks_per_page;
 191        last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
 192        if (last_block > last_block_in_file)
 193                last_block = last_block_in_file;
 194        page_block = 0;
 195
 196        /*
 197         * Map blocks using the result from the previous get_blocks call first.
 198         */
 199        nblocks = map_bh->b_size >> blkbits;
 200        if (buffer_mapped(map_bh) &&
 201                        block_in_file > args->first_logical_block &&
 202                        block_in_file < (args->first_logical_block + nblocks)) {
 203                unsigned map_offset = block_in_file - args->first_logical_block;
 204                unsigned last = nblocks - map_offset;
 205
 206                for (relative_block = 0; ; relative_block++) {
 207                        if (relative_block == last) {
 208                                clear_buffer_mapped(map_bh);
 209                                break;
 210                        }
 211                        if (page_block == blocks_per_page)
 212                                break;
 213                        blocks[page_block] = map_bh->b_blocknr + map_offset +
 214                                                relative_block;
 215                        page_block++;
 216                        block_in_file++;
 217                }
 218                bdev = map_bh->b_bdev;
 219        }
 220
 221        /*
 222         * Then do more get_blocks calls until we are done with this page.
 223         */
 224        map_bh->b_page = page;
 225        while (page_block < blocks_per_page) {
 226                map_bh->b_state = 0;
 227                map_bh->b_size = 0;
 228
 229                if (block_in_file < last_block) {
 230                        map_bh->b_size = (last_block-block_in_file) << blkbits;
 231                        if (args->get_block(inode, block_in_file, map_bh, 0))
 232                                goto confused;
 233                        args->first_logical_block = block_in_file;
 234                }
 235
 236                if (!buffer_mapped(map_bh)) {
 237                        fully_mapped = 0;
 238                        if (first_hole == blocks_per_page)
 239                                first_hole = page_block;
 240                        page_block++;
 241                        block_in_file++;
 242                        continue;
 243                }
 244
 245                /* some filesystems will copy data into the page during
 246                 * the get_block call, in which case we don't want to
 247                 * read it again.  map_buffer_to_page copies the data
 248                 * we just collected from get_block into the page's buffers
 249                 * so readpage doesn't have to repeat the get_block call
 250                 */
 251                if (buffer_uptodate(map_bh)) {
 252                        map_buffer_to_page(page, map_bh, page_block);
 253                        goto confused;
 254                }
 255        
 256                if (first_hole != blocks_per_page)
 257                        goto confused;          /* hole -> non-hole */
 258
 259                /* Contiguous blocks? */
 260                if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
 261                        goto confused;
 262                nblocks = map_bh->b_size >> blkbits;
 263                for (relative_block = 0; ; relative_block++) {
 264                        if (relative_block == nblocks) {
 265                                clear_buffer_mapped(map_bh);
 266                                break;
 267                        } else if (page_block == blocks_per_page)
 268                                break;
 269                        blocks[page_block] = map_bh->b_blocknr+relative_block;
 270                        page_block++;
 271                        block_in_file++;
 272                }
 273                bdev = map_bh->b_bdev;
 274        }
 275
 276        if (first_hole != blocks_per_page) {
 277                zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
 278                if (first_hole == 0) {
 279                        SetPageUptodate(page);
 280                        unlock_page(page);
 281                        goto out;
 282                }
 283        } else if (fully_mapped) {
 284                SetPageMappedToDisk(page);
 285        }
 286
 287        if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
 288            cleancache_get_page(page) == 0) {
 289                SetPageUptodate(page);
 290                goto confused;
 291        }
 292
 293        /*
 294         * This page will go to BIO.  Do we need to send this BIO off first?
 295         */
 296        if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
 297                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 298
 299alloc_new:
 300        if (args->bio == NULL) {
 301                if (first_hole == blocks_per_page) {
 302                        if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
 303                                                                page))
 304                                goto out;
 305                }
 306                args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 307                                        min_t(int, args->nr_pages,
 308                                              BIO_MAX_PAGES),
 309                                        gfp);
 310                if (args->bio == NULL)
 311                        goto confused;
 312        }
 313
 314        length = first_hole << blkbits;
 315        if (bio_add_page(args->bio, page, length, 0) < length) {
 316                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 317                goto alloc_new;
 318        }
 319
 320        relative_block = block_in_file - args->first_logical_block;
 321        nblocks = map_bh->b_size >> blkbits;
 322        if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
 323            (first_hole != blocks_per_page))
 324                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 325        else
 326                args->last_block_in_bio = blocks[blocks_per_page - 1];
 327out:
 328        return args->bio;
 329
 330confused:
 331        if (args->bio)
 332                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 333        if (!PageUptodate(page))
 334                block_read_full_page(page, args->get_block);
 335        else
 336                unlock_page(page);
 337        goto out;
 338}
 339
 340/**
 341 * mpage_readahead - start reads against pages
 342 * @rac: Describes which pages to read.
 343 * @get_block: The filesystem's block mapper function.
 344 *
 345 * This function walks the pages and the blocks within each page, building and
 346 * emitting large BIOs.
 347 *
 348 * If anything unusual happens, such as:
 349 *
 350 * - encountering a page which has buffers
 351 * - encountering a page which has a non-hole after a hole
 352 * - encountering a page with non-contiguous blocks
 353 *
 354 * then this code just gives up and calls the buffer_head-based read function.
 355 * It does handle a page which has holes at the end - that is a common case:
 356 * the end-of-file on blocksize < PAGE_SIZE setups.
 357 *
 358 * BH_Boundary explanation:
 359 *
 360 * There is a problem.  The mpage read code assembles several pages, gets all
 361 * their disk mappings, and then submits them all.  That's fine, but obtaining
 362 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
 363 *
 364 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
 365 * submitted in the following order:
 366 *
 367 *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
 368 *
 369 * because the indirect block has to be read to get the mappings of blocks
 370 * 13,14,15,16.  Obviously, this impacts performance.
 371 *
 372 * So what we do it to allow the filesystem's get_block() function to set
 373 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
 374 * after this one will require I/O against a block which is probably close to
 375 * this one.  So you should push what I/O you have currently accumulated.
 376 *
 377 * This all causes the disk requests to be issued in the correct order.
 378 */
 379void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
 380{
 381        struct page *page;
 382        struct mpage_readpage_args args = {
 383                .get_block = get_block,
 384                .is_readahead = true,
 385        };
 386
 387        while ((page = readahead_page(rac))) {
 388                prefetchw(&page->flags);
 389                args.page = page;
 390                args.nr_pages = readahead_count(rac);
 391                args.bio = do_mpage_readpage(&args);
 392                put_page(page);
 393        }
 394        if (args.bio)
 395                mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
 396}
 397EXPORT_SYMBOL(mpage_readahead);
 398
 399/*
 400 * This isn't called much at all
 401 */
 402int mpage_readpage(struct page *page, get_block_t get_block)
 403{
 404        struct mpage_readpage_args args = {
 405                .page = page,
 406                .nr_pages = 1,
 407                .get_block = get_block,
 408        };
 409
 410        args.bio = do_mpage_readpage(&args);
 411        if (args.bio)
 412                mpage_bio_submit(REQ_OP_READ, 0, args.bio);
 413        return 0;
 414}
 415EXPORT_SYMBOL(mpage_readpage);
 416
 417/*
 418 * Writing is not so simple.
 419 *
 420 * If the page has buffers then they will be used for obtaining the disk
 421 * mapping.  We only support pages which are fully mapped-and-dirty, with a
 422 * special case for pages which are unmapped at the end: end-of-file.
 423 *
 424 * If the page has no buffers (preferred) then the page is mapped here.
 425 *
 426 * If all blocks are found to be contiguous then the page can go into the
 427 * BIO.  Otherwise fall back to the mapping's writepage().
 428 * 
 429 * FIXME: This code wants an estimate of how many pages are still to be
 430 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
 431 * just allocate full-size (16-page) BIOs.
 432 */
 433
 434struct mpage_data {
 435        struct bio *bio;
 436        sector_t last_block_in_bio;
 437        get_block_t *get_block;
 438        unsigned use_writepage;
 439};
 440
 441/*
 442 * We have our BIO, so we can now mark the buffers clean.  Make
 443 * sure to only clean buffers which we know we'll be writing.
 444 */
 445static void clean_buffers(struct page *page, unsigned first_unmapped)
 446{
 447        unsigned buffer_counter = 0;
 448        struct buffer_head *bh, *head;
 449        if (!page_has_buffers(page))
 450                return;
 451        head = page_buffers(page);
 452        bh = head;
 453
 454        do {
 455                if (buffer_counter++ == first_unmapped)
 456                        break;
 457                clear_buffer_dirty(bh);
 458                bh = bh->b_this_page;
 459        } while (bh != head);
 460
 461        /*
 462         * we cannot drop the bh if the page is not uptodate or a concurrent
 463         * readpage would fail to serialize with the bh and it would read from
 464         * disk before we reach the platter.
 465         */
 466        if (buffer_heads_over_limit && PageUptodate(page))
 467                try_to_free_buffers(page);
 468}
 469
 470/*
 471 * For situations where we want to clean all buffers attached to a page.
 472 * We don't need to calculate how many buffers are attached to the page,
 473 * we just need to specify a number larger than the maximum number of buffers.
 474 */
 475void clean_page_buffers(struct page *page)
 476{
 477        clean_buffers(page, ~0U);
 478}
 479
 480static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
 481                      void *data)
 482{
 483        struct mpage_data *mpd = data;
 484        struct bio *bio = mpd->bio;
 485        struct address_space *mapping = page->mapping;
 486        struct inode *inode = page->mapping->host;
 487        const unsigned blkbits = inode->i_blkbits;
 488        unsigned long end_index;
 489        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 490        sector_t last_block;
 491        sector_t block_in_file;
 492        sector_t blocks[MAX_BUF_PER_PAGE];
 493        unsigned page_block;
 494        unsigned first_unmapped = blocks_per_page;
 495        struct block_device *bdev = NULL;
 496        int boundary = 0;
 497        sector_t boundary_block = 0;
 498        struct block_device *boundary_bdev = NULL;
 499        int length;
 500        struct buffer_head map_bh;
 501        loff_t i_size = i_size_read(inode);
 502        int ret = 0;
 503        int op_flags = wbc_to_write_flags(wbc);
 504
 505        if (page_has_buffers(page)) {
 506                struct buffer_head *head = page_buffers(page);
 507                struct buffer_head *bh = head;
 508
 509                /* If they're all mapped and dirty, do it */
 510                page_block = 0;
 511                do {
 512                        BUG_ON(buffer_locked(bh));
 513                        if (!buffer_mapped(bh)) {
 514                                /*
 515                                 * unmapped dirty buffers are created by
 516                                 * __set_page_dirty_buffers -> mmapped data
 517                                 */
 518                                if (buffer_dirty(bh))
 519                                        goto confused;
 520                                if (first_unmapped == blocks_per_page)
 521                                        first_unmapped = page_block;
 522                                continue;
 523                        }
 524
 525                        if (first_unmapped != blocks_per_page)
 526                                goto confused;  /* hole -> non-hole */
 527
 528                        if (!buffer_dirty(bh) || !buffer_uptodate(bh))
 529                                goto confused;
 530                        if (page_block) {
 531                                if (bh->b_blocknr != blocks[page_block-1] + 1)
 532                                        goto confused;
 533                        }
 534                        blocks[page_block++] = bh->b_blocknr;
 535                        boundary = buffer_boundary(bh);
 536                        if (boundary) {
 537                                boundary_block = bh->b_blocknr;
 538                                boundary_bdev = bh->b_bdev;
 539                        }
 540                        bdev = bh->b_bdev;
 541                } while ((bh = bh->b_this_page) != head);
 542
 543                if (first_unmapped)
 544                        goto page_is_mapped;
 545
 546                /*
 547                 * Page has buffers, but they are all unmapped. The page was
 548                 * created by pagein or read over a hole which was handled by
 549                 * block_read_full_page().  If this address_space is also
 550                 * using mpage_readahead then this can rarely happen.
 551                 */
 552                goto confused;
 553        }
 554
 555        /*
 556         * The page has no buffers: map it to disk
 557         */
 558        BUG_ON(!PageUptodate(page));
 559        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 560        last_block = (i_size - 1) >> blkbits;
 561        map_bh.b_page = page;
 562        for (page_block = 0; page_block < blocks_per_page; ) {
 563
 564                map_bh.b_state = 0;
 565                map_bh.b_size = 1 << blkbits;
 566                if (mpd->get_block(inode, block_in_file, &map_bh, 1))
 567                        goto confused;
 568                if (buffer_new(&map_bh))
 569                        clean_bdev_bh_alias(&map_bh);
 570                if (buffer_boundary(&map_bh)) {
 571                        boundary_block = map_bh.b_blocknr;
 572                        boundary_bdev = map_bh.b_bdev;
 573                }
 574                if (page_block) {
 575                        if (map_bh.b_blocknr != blocks[page_block-1] + 1)
 576                                goto confused;
 577                }
 578                blocks[page_block++] = map_bh.b_blocknr;
 579                boundary = buffer_boundary(&map_bh);
 580                bdev = map_bh.b_bdev;
 581                if (block_in_file == last_block)
 582                        break;
 583                block_in_file++;
 584        }
 585        BUG_ON(page_block == 0);
 586
 587        first_unmapped = page_block;
 588
 589page_is_mapped:
 590        end_index = i_size >> PAGE_SHIFT;
 591        if (page->index >= end_index) {
 592                /*
 593                 * The page straddles i_size.  It must be zeroed out on each
 594                 * and every writepage invocation because it may be mmapped.
 595                 * "A file is mapped in multiples of the page size.  For a file
 596                 * that is not a multiple of the page size, the remaining memory
 597                 * is zeroed when mapped, and writes to that region are not
 598                 * written out to the file."
 599                 */
 600                unsigned offset = i_size & (PAGE_SIZE - 1);
 601
 602                if (page->index > end_index || !offset)
 603                        goto confused;
 604                zero_user_segment(page, offset, PAGE_SIZE);
 605        }
 606
 607        /*
 608         * This page will go to BIO.  Do we need to send this BIO off first?
 609         */
 610        if (bio && mpd->last_block_in_bio != blocks[0] - 1)
 611                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 612
 613alloc_new:
 614        if (bio == NULL) {
 615                if (first_unmapped == blocks_per_page) {
 616                        if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
 617                                                                page, wbc))
 618                                goto out;
 619                }
 620                bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 621                                BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
 622                if (bio == NULL)
 623                        goto confused;
 624
 625                wbc_init_bio(wbc, bio);
 626                bio->bi_write_hint = inode->i_write_hint;
 627        }
 628
 629        /*
 630         * Must try to add the page before marking the buffer clean or
 631         * the confused fail path above (OOM) will be very confused when
 632         * it finds all bh marked clean (i.e. it will not write anything)
 633         */
 634        wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
 635        length = first_unmapped << blkbits;
 636        if (bio_add_page(bio, page, length, 0) < length) {
 637                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 638                goto alloc_new;
 639        }
 640
 641        clean_buffers(page, first_unmapped);
 642
 643        BUG_ON(PageWriteback(page));
 644        set_page_writeback(page);
 645        unlock_page(page);
 646        if (boundary || (first_unmapped != blocks_per_page)) {
 647                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 648                if (boundary_block) {
 649                        write_boundary_block(boundary_bdev,
 650                                        boundary_block, 1 << blkbits);
 651                }
 652        } else {
 653                mpd->last_block_in_bio = blocks[blocks_per_page - 1];
 654        }
 655        goto out;
 656
 657confused:
 658        if (bio)
 659                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 660
 661        if (mpd->use_writepage) {
 662                ret = mapping->a_ops->writepage(page, wbc);
 663        } else {
 664                ret = -EAGAIN;
 665                goto out;
 666        }
 667        /*
 668         * The caller has a ref on the inode, so *mapping is stable
 669         */
 670        mapping_set_error(mapping, ret);
 671out:
 672        mpd->bio = bio;
 673        return ret;
 674}
 675
 676/**
 677 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
 678 * @mapping: address space structure to write
 679 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 680 * @get_block: the filesystem's block mapper function.
 681 *             If this is NULL then use a_ops->writepage.  Otherwise, go
 682 *             direct-to-BIO.
 683 *
 684 * This is a library function, which implements the writepages()
 685 * address_space_operation.
 686 *
 687 * If a page is already under I/O, generic_writepages() skips it, even
 688 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 689 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 690 * and msync() need to guarantee that all the data which was dirty at the time
 691 * the call was made get new I/O started against them.  If wbc->sync_mode is
 692 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 693 * existing IO to complete.
 694 */
 695int
 696mpage_writepages(struct address_space *mapping,
 697                struct writeback_control *wbc, get_block_t get_block)
 698{
 699        struct blk_plug plug;
 700        int ret;
 701
 702        blk_start_plug(&plug);
 703
 704        if (!get_block)
 705                ret = generic_writepages(mapping, wbc);
 706        else {
 707                struct mpage_data mpd = {
 708                        .bio = NULL,
 709                        .last_block_in_bio = 0,
 710                        .get_block = get_block,
 711                        .use_writepage = 1,
 712                };
 713
 714                ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
 715                if (mpd.bio) {
 716                        int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
 717                                  REQ_SYNC : 0);
 718                        mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
 719                }
 720        }
 721        blk_finish_plug(&plug);
 722        return ret;
 723}
 724EXPORT_SYMBOL(mpage_writepages);
 725
 726int mpage_writepage(struct page *page, get_block_t get_block,
 727        struct writeback_control *wbc)
 728{
 729        struct mpage_data mpd = {
 730                .bio = NULL,
 731                .last_block_in_bio = 0,
 732                .get_block = get_block,
 733                .use_writepage = 0,
 734        };
 735        int ret = __mpage_writepage(page, wbc, &mpd);
 736        if (mpd.bio) {
 737                int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
 738                          REQ_SYNC : 0);
 739                mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
 740        }
 741        return ret;
 742}
 743EXPORT_SYMBOL(mpage_writepage);
 744