linux/fs/namei.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/fs.h>
  23#include <linux/namei.h>
  24#include <linux/pagemap.h>
  25#include <linux/fsnotify.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/ima.h>
  29#include <linux/syscalls.h>
  30#include <linux/mount.h>
  31#include <linux/audit.h>
  32#include <linux/capability.h>
  33#include <linux/file.h>
  34#include <linux/fcntl.h>
  35#include <linux/device_cgroup.h>
  36#include <linux/fs_struct.h>
  37#include <linux/posix_acl.h>
  38#include <linux/hash.h>
  39#include <linux/bitops.h>
  40#include <linux/init_task.h>
  41#include <linux/uaccess.h>
  42
  43#include "internal.h"
  44#include "mount.h"
  45
  46/* [Feb-1997 T. Schoebel-Theuer]
  47 * Fundamental changes in the pathname lookup mechanisms (namei)
  48 * were necessary because of omirr.  The reason is that omirr needs
  49 * to know the _real_ pathname, not the user-supplied one, in case
  50 * of symlinks (and also when transname replacements occur).
  51 *
  52 * The new code replaces the old recursive symlink resolution with
  53 * an iterative one (in case of non-nested symlink chains).  It does
  54 * this with calls to <fs>_follow_link().
  55 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  56 * replaced with a single function lookup_dentry() that can handle all 
  57 * the special cases of the former code.
  58 *
  59 * With the new dcache, the pathname is stored at each inode, at least as
  60 * long as the refcount of the inode is positive.  As a side effect, the
  61 * size of the dcache depends on the inode cache and thus is dynamic.
  62 *
  63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  64 * resolution to correspond with current state of the code.
  65 *
  66 * Note that the symlink resolution is not *completely* iterative.
  67 * There is still a significant amount of tail- and mid- recursion in
  68 * the algorithm.  Also, note that <fs>_readlink() is not used in
  69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  70 * may return different results than <fs>_follow_link().  Many virtual
  71 * filesystems (including /proc) exhibit this behavior.
  72 */
  73
  74/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  76 * and the name already exists in form of a symlink, try to create the new
  77 * name indicated by the symlink. The old code always complained that the
  78 * name already exists, due to not following the symlink even if its target
  79 * is nonexistent.  The new semantics affects also mknod() and link() when
  80 * the name is a symlink pointing to a non-existent name.
  81 *
  82 * I don't know which semantics is the right one, since I have no access
  83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  85 * "old" one. Personally, I think the new semantics is much more logical.
  86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  87 * file does succeed in both HP-UX and SunOs, but not in Solaris
  88 * and in the old Linux semantics.
  89 */
  90
  91/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  92 * semantics.  See the comments in "open_namei" and "do_link" below.
  93 *
  94 * [10-Sep-98 Alan Modra] Another symlink change.
  95 */
  96
  97/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  98 *      inside the path - always follow.
  99 *      in the last component in creation/removal/renaming - never follow.
 100 *      if LOOKUP_FOLLOW passed - follow.
 101 *      if the pathname has trailing slashes - follow.
 102 *      otherwise - don't follow.
 103 * (applied in that order).
 104 *
 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 107 * During the 2.4 we need to fix the userland stuff depending on it -
 108 * hopefully we will be able to get rid of that wart in 2.5. So far only
 109 * XEmacs seems to be relying on it...
 110 */
 111/*
 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 113 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 114 * any extra contention...
 115 */
 116
 117/* In order to reduce some races, while at the same time doing additional
 118 * checking and hopefully speeding things up, we copy filenames to the
 119 * kernel data space before using them..
 120 *
 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 122 * PATH_MAX includes the nul terminator --RR.
 123 */
 124
 125#define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
 126
 127struct filename *
 128getname_flags(const char __user *filename, int flags, int *empty)
 129{
 130        struct filename *result;
 131        char *kname;
 132        int len;
 133
 134        result = audit_reusename(filename);
 135        if (result)
 136                return result;
 137
 138        result = __getname();
 139        if (unlikely(!result))
 140                return ERR_PTR(-ENOMEM);
 141
 142        /*
 143         * First, try to embed the struct filename inside the names_cache
 144         * allocation
 145         */
 146        kname = (char *)result->iname;
 147        result->name = kname;
 148
 149        len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 150        if (unlikely(len < 0)) {
 151                __putname(result);
 152                return ERR_PTR(len);
 153        }
 154
 155        /*
 156         * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 157         * separate struct filename so we can dedicate the entire
 158         * names_cache allocation for the pathname, and re-do the copy from
 159         * userland.
 160         */
 161        if (unlikely(len == EMBEDDED_NAME_MAX)) {
 162                const size_t size = offsetof(struct filename, iname[1]);
 163                kname = (char *)result;
 164
 165                /*
 166                 * size is chosen that way we to guarantee that
 167                 * result->iname[0] is within the same object and that
 168                 * kname can't be equal to result->iname, no matter what.
 169                 */
 170                result = kzalloc(size, GFP_KERNEL);
 171                if (unlikely(!result)) {
 172                        __putname(kname);
 173                        return ERR_PTR(-ENOMEM);
 174                }
 175                result->name = kname;
 176                len = strncpy_from_user(kname, filename, PATH_MAX);
 177                if (unlikely(len < 0)) {
 178                        __putname(kname);
 179                        kfree(result);
 180                        return ERR_PTR(len);
 181                }
 182                if (unlikely(len == PATH_MAX)) {
 183                        __putname(kname);
 184                        kfree(result);
 185                        return ERR_PTR(-ENAMETOOLONG);
 186                }
 187        }
 188
 189        result->refcnt = 1;
 190        /* The empty path is special. */
 191        if (unlikely(!len)) {
 192                if (empty)
 193                        *empty = 1;
 194                if (!(flags & LOOKUP_EMPTY)) {
 195                        putname(result);
 196                        return ERR_PTR(-ENOENT);
 197                }
 198        }
 199
 200        result->uptr = filename;
 201        result->aname = NULL;
 202        audit_getname(result);
 203        return result;
 204}
 205
 206struct filename *
 207getname(const char __user * filename)
 208{
 209        return getname_flags(filename, 0, NULL);
 210}
 211
 212struct filename *
 213getname_kernel(const char * filename)
 214{
 215        struct filename *result;
 216        int len = strlen(filename) + 1;
 217
 218        result = __getname();
 219        if (unlikely(!result))
 220                return ERR_PTR(-ENOMEM);
 221
 222        if (len <= EMBEDDED_NAME_MAX) {
 223                result->name = (char *)result->iname;
 224        } else if (len <= PATH_MAX) {
 225                const size_t size = offsetof(struct filename, iname[1]);
 226                struct filename *tmp;
 227
 228                tmp = kmalloc(size, GFP_KERNEL);
 229                if (unlikely(!tmp)) {
 230                        __putname(result);
 231                        return ERR_PTR(-ENOMEM);
 232                }
 233                tmp->name = (char *)result;
 234                result = tmp;
 235        } else {
 236                __putname(result);
 237                return ERR_PTR(-ENAMETOOLONG);
 238        }
 239        memcpy((char *)result->name, filename, len);
 240        result->uptr = NULL;
 241        result->aname = NULL;
 242        result->refcnt = 1;
 243        audit_getname(result);
 244
 245        return result;
 246}
 247
 248void putname(struct filename *name)
 249{
 250        BUG_ON(name->refcnt <= 0);
 251
 252        if (--name->refcnt > 0)
 253                return;
 254
 255        if (name->name != name->iname) {
 256                __putname(name->name);
 257                kfree(name);
 258        } else
 259                __putname(name);
 260}
 261
 262static int check_acl(struct inode *inode, int mask)
 263{
 264#ifdef CONFIG_FS_POSIX_ACL
 265        struct posix_acl *acl;
 266
 267        if (mask & MAY_NOT_BLOCK) {
 268                acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 269                if (!acl)
 270                        return -EAGAIN;
 271                /* no ->get_acl() calls in RCU mode... */
 272                if (is_uncached_acl(acl))
 273                        return -ECHILD;
 274                return posix_acl_permission(inode, acl, mask);
 275        }
 276
 277        acl = get_acl(inode, ACL_TYPE_ACCESS);
 278        if (IS_ERR(acl))
 279                return PTR_ERR(acl);
 280        if (acl) {
 281                int error = posix_acl_permission(inode, acl, mask);
 282                posix_acl_release(acl);
 283                return error;
 284        }
 285#endif
 286
 287        return -EAGAIN;
 288}
 289
 290/*
 291 * This does the basic UNIX permission checking.
 292 *
 293 * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
 294 * for RCU walking.
 295 */
 296static int acl_permission_check(struct inode *inode, int mask)
 297{
 298        unsigned int mode = inode->i_mode;
 299
 300        /* Are we the owner? If so, ACL's don't matter */
 301        if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
 302                mask &= 7;
 303                mode >>= 6;
 304                return (mask & ~mode) ? -EACCES : 0;
 305        }
 306
 307        /* Do we have ACL's? */
 308        if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 309                int error = check_acl(inode, mask);
 310                if (error != -EAGAIN)
 311                        return error;
 312        }
 313
 314        /* Only RWX matters for group/other mode bits */
 315        mask &= 7;
 316
 317        /*
 318         * Are the group permissions different from
 319         * the other permissions in the bits we care
 320         * about? Need to check group ownership if so.
 321         */
 322        if (mask & (mode ^ (mode >> 3))) {
 323                if (in_group_p(inode->i_gid))
 324                        mode >>= 3;
 325        }
 326
 327        /* Bits in 'mode' clear that we require? */
 328        return (mask & ~mode) ? -EACCES : 0;
 329}
 330
 331/**
 332 * generic_permission -  check for access rights on a Posix-like filesystem
 333 * @inode:      inode to check access rights for
 334 * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
 335 *              %MAY_NOT_BLOCK ...)
 336 *
 337 * Used to check for read/write/execute permissions on a file.
 338 * We use "fsuid" for this, letting us set arbitrary permissions
 339 * for filesystem access without changing the "normal" uids which
 340 * are used for other things.
 341 *
 342 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 343 * request cannot be satisfied (eg. requires blocking or too much complexity).
 344 * It would then be called again in ref-walk mode.
 345 */
 346int generic_permission(struct inode *inode, int mask)
 347{
 348        int ret;
 349
 350        /*
 351         * Do the basic permission checks.
 352         */
 353        ret = acl_permission_check(inode, mask);
 354        if (ret != -EACCES)
 355                return ret;
 356
 357        if (S_ISDIR(inode->i_mode)) {
 358                /* DACs are overridable for directories */
 359                if (!(mask & MAY_WRITE))
 360                        if (capable_wrt_inode_uidgid(inode,
 361                                                     CAP_DAC_READ_SEARCH))
 362                                return 0;
 363                if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 364                        return 0;
 365                return -EACCES;
 366        }
 367
 368        /*
 369         * Searching includes executable on directories, else just read.
 370         */
 371        mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 372        if (mask == MAY_READ)
 373                if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
 374                        return 0;
 375        /*
 376         * Read/write DACs are always overridable.
 377         * Executable DACs are overridable when there is
 378         * at least one exec bit set.
 379         */
 380        if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 381                if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 382                        return 0;
 383
 384        return -EACCES;
 385}
 386EXPORT_SYMBOL(generic_permission);
 387
 388/*
 389 * We _really_ want to just do "generic_permission()" without
 390 * even looking at the inode->i_op values. So we keep a cache
 391 * flag in inode->i_opflags, that says "this has not special
 392 * permission function, use the fast case".
 393 */
 394static inline int do_inode_permission(struct inode *inode, int mask)
 395{
 396        if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 397                if (likely(inode->i_op->permission))
 398                        return inode->i_op->permission(inode, mask);
 399
 400                /* This gets set once for the inode lifetime */
 401                spin_lock(&inode->i_lock);
 402                inode->i_opflags |= IOP_FASTPERM;
 403                spin_unlock(&inode->i_lock);
 404        }
 405        return generic_permission(inode, mask);
 406}
 407
 408/**
 409 * sb_permission - Check superblock-level permissions
 410 * @sb: Superblock of inode to check permission on
 411 * @inode: Inode to check permission on
 412 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 413 *
 414 * Separate out file-system wide checks from inode-specific permission checks.
 415 */
 416static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 417{
 418        if (unlikely(mask & MAY_WRITE)) {
 419                umode_t mode = inode->i_mode;
 420
 421                /* Nobody gets write access to a read-only fs. */
 422                if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 423                        return -EROFS;
 424        }
 425        return 0;
 426}
 427
 428/**
 429 * inode_permission - Check for access rights to a given inode
 430 * @inode: Inode to check permission on
 431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 432 *
 433 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 434 * this, letting us set arbitrary permissions for filesystem access without
 435 * changing the "normal" UIDs which are used for other things.
 436 *
 437 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 438 */
 439int inode_permission(struct inode *inode, int mask)
 440{
 441        int retval;
 442
 443        retval = sb_permission(inode->i_sb, inode, mask);
 444        if (retval)
 445                return retval;
 446
 447        if (unlikely(mask & MAY_WRITE)) {
 448                /*
 449                 * Nobody gets write access to an immutable file.
 450                 */
 451                if (IS_IMMUTABLE(inode))
 452                        return -EPERM;
 453
 454                /*
 455                 * Updating mtime will likely cause i_uid and i_gid to be
 456                 * written back improperly if their true value is unknown
 457                 * to the vfs.
 458                 */
 459                if (HAS_UNMAPPED_ID(inode))
 460                        return -EACCES;
 461        }
 462
 463        retval = do_inode_permission(inode, mask);
 464        if (retval)
 465                return retval;
 466
 467        retval = devcgroup_inode_permission(inode, mask);
 468        if (retval)
 469                return retval;
 470
 471        return security_inode_permission(inode, mask);
 472}
 473EXPORT_SYMBOL(inode_permission);
 474
 475/**
 476 * path_get - get a reference to a path
 477 * @path: path to get the reference to
 478 *
 479 * Given a path increment the reference count to the dentry and the vfsmount.
 480 */
 481void path_get(const struct path *path)
 482{
 483        mntget(path->mnt);
 484        dget(path->dentry);
 485}
 486EXPORT_SYMBOL(path_get);
 487
 488/**
 489 * path_put - put a reference to a path
 490 * @path: path to put the reference to
 491 *
 492 * Given a path decrement the reference count to the dentry and the vfsmount.
 493 */
 494void path_put(const struct path *path)
 495{
 496        dput(path->dentry);
 497        mntput(path->mnt);
 498}
 499EXPORT_SYMBOL(path_put);
 500
 501#define EMBEDDED_LEVELS 2
 502struct nameidata {
 503        struct path     path;
 504        struct qstr     last;
 505        struct path     root;
 506        struct inode    *inode; /* path.dentry.d_inode */
 507        unsigned int    flags;
 508        unsigned        seq, m_seq, r_seq;
 509        int             last_type;
 510        unsigned        depth;
 511        int             total_link_count;
 512        struct saved {
 513                struct path link;
 514                struct delayed_call done;
 515                const char *name;
 516                unsigned seq;
 517        } *stack, internal[EMBEDDED_LEVELS];
 518        struct filename *name;
 519        struct nameidata *saved;
 520        unsigned        root_seq;
 521        int             dfd;
 522        kuid_t          dir_uid;
 523        umode_t         dir_mode;
 524} __randomize_layout;
 525
 526static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 527{
 528        struct nameidata *old = current->nameidata;
 529        p->stack = p->internal;
 530        p->dfd = dfd;
 531        p->name = name;
 532        p->total_link_count = old ? old->total_link_count : 0;
 533        p->saved = old;
 534        current->nameidata = p;
 535}
 536
 537static void restore_nameidata(void)
 538{
 539        struct nameidata *now = current->nameidata, *old = now->saved;
 540
 541        current->nameidata = old;
 542        if (old)
 543                old->total_link_count = now->total_link_count;
 544        if (now->stack != now->internal)
 545                kfree(now->stack);
 546}
 547
 548static bool nd_alloc_stack(struct nameidata *nd)
 549{
 550        struct saved *p;
 551
 552        p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 553                         nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
 554        if (unlikely(!p))
 555                return false;
 556        memcpy(p, nd->internal, sizeof(nd->internal));
 557        nd->stack = p;
 558        return true;
 559}
 560
 561/**
 562 * path_connected - Verify that a dentry is below mnt.mnt_root
 563 *
 564 * Rename can sometimes move a file or directory outside of a bind
 565 * mount, path_connected allows those cases to be detected.
 566 */
 567static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
 568{
 569        struct super_block *sb = mnt->mnt_sb;
 570
 571        /* Bind mounts and multi-root filesystems can have disconnected paths */
 572        if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
 573                return true;
 574
 575        return is_subdir(dentry, mnt->mnt_root);
 576}
 577
 578static void drop_links(struct nameidata *nd)
 579{
 580        int i = nd->depth;
 581        while (i--) {
 582                struct saved *last = nd->stack + i;
 583                do_delayed_call(&last->done);
 584                clear_delayed_call(&last->done);
 585        }
 586}
 587
 588static void terminate_walk(struct nameidata *nd)
 589{
 590        drop_links(nd);
 591        if (!(nd->flags & LOOKUP_RCU)) {
 592                int i;
 593                path_put(&nd->path);
 594                for (i = 0; i < nd->depth; i++)
 595                        path_put(&nd->stack[i].link);
 596                if (nd->flags & LOOKUP_ROOT_GRABBED) {
 597                        path_put(&nd->root);
 598                        nd->flags &= ~LOOKUP_ROOT_GRABBED;
 599                }
 600        } else {
 601                nd->flags &= ~LOOKUP_RCU;
 602                rcu_read_unlock();
 603        }
 604        nd->depth = 0;
 605}
 606
 607/* path_put is needed afterwards regardless of success or failure */
 608static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
 609{
 610        int res = __legitimize_mnt(path->mnt, mseq);
 611        if (unlikely(res)) {
 612                if (res > 0)
 613                        path->mnt = NULL;
 614                path->dentry = NULL;
 615                return false;
 616        }
 617        if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 618                path->dentry = NULL;
 619                return false;
 620        }
 621        return !read_seqcount_retry(&path->dentry->d_seq, seq);
 622}
 623
 624static inline bool legitimize_path(struct nameidata *nd,
 625                            struct path *path, unsigned seq)
 626{
 627        return __legitimize_path(path, seq, nd->m_seq);
 628}
 629
 630static bool legitimize_links(struct nameidata *nd)
 631{
 632        int i;
 633        for (i = 0; i < nd->depth; i++) {
 634                struct saved *last = nd->stack + i;
 635                if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 636                        drop_links(nd);
 637                        nd->depth = i + 1;
 638                        return false;
 639                }
 640        }
 641        return true;
 642}
 643
 644static bool legitimize_root(struct nameidata *nd)
 645{
 646        /*
 647         * For scoped-lookups (where nd->root has been zeroed), we need to
 648         * restart the whole lookup from scratch -- because set_root() is wrong
 649         * for these lookups (nd->dfd is the root, not the filesystem root).
 650         */
 651        if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
 652                return false;
 653        /* Nothing to do if nd->root is zero or is managed by the VFS user. */
 654        if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
 655                return true;
 656        nd->flags |= LOOKUP_ROOT_GRABBED;
 657        return legitimize_path(nd, &nd->root, nd->root_seq);
 658}
 659
 660/*
 661 * Path walking has 2 modes, rcu-walk and ref-walk (see
 662 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 664 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 665 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 666 * got stuck, so ref-walk may continue from there. If this is not successful
 667 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 668 * to restart the path walk from the beginning in ref-walk mode.
 669 */
 670
 671/**
 672 * unlazy_walk - try to switch to ref-walk mode.
 673 * @nd: nameidata pathwalk data
 674 * Returns: 0 on success, -ECHILD on failure
 675 *
 676 * unlazy_walk attempts to legitimize the current nd->path and nd->root
 677 * for ref-walk mode.
 678 * Must be called from rcu-walk context.
 679 * Nothing should touch nameidata between unlazy_walk() failure and
 680 * terminate_walk().
 681 */
 682static int unlazy_walk(struct nameidata *nd)
 683{
 684        struct dentry *parent = nd->path.dentry;
 685
 686        BUG_ON(!(nd->flags & LOOKUP_RCU));
 687
 688        nd->flags &= ~LOOKUP_RCU;
 689        if (unlikely(!legitimize_links(nd)))
 690                goto out1;
 691        if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 692                goto out;
 693        if (unlikely(!legitimize_root(nd)))
 694                goto out;
 695        rcu_read_unlock();
 696        BUG_ON(nd->inode != parent->d_inode);
 697        return 0;
 698
 699out1:
 700        nd->path.mnt = NULL;
 701        nd->path.dentry = NULL;
 702out:
 703        rcu_read_unlock();
 704        return -ECHILD;
 705}
 706
 707/**
 708 * unlazy_child - try to switch to ref-walk mode.
 709 * @nd: nameidata pathwalk data
 710 * @dentry: child of nd->path.dentry
 711 * @seq: seq number to check dentry against
 712 * Returns: 0 on success, -ECHILD on failure
 713 *
 714 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
 715 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
 716 * @nd.  Must be called from rcu-walk context.
 717 * Nothing should touch nameidata between unlazy_child() failure and
 718 * terminate_walk().
 719 */
 720static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
 721{
 722        BUG_ON(!(nd->flags & LOOKUP_RCU));
 723
 724        nd->flags &= ~LOOKUP_RCU;
 725        if (unlikely(!legitimize_links(nd)))
 726                goto out2;
 727        if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
 728                goto out2;
 729        if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 730                goto out1;
 731
 732        /*
 733         * We need to move both the parent and the dentry from the RCU domain
 734         * to be properly refcounted. And the sequence number in the dentry
 735         * validates *both* dentry counters, since we checked the sequence
 736         * number of the parent after we got the child sequence number. So we
 737         * know the parent must still be valid if the child sequence number is
 738         */
 739        if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 740                goto out;
 741        if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
 742                goto out_dput;
 743        /*
 744         * Sequence counts matched. Now make sure that the root is
 745         * still valid and get it if required.
 746         */
 747        if (unlikely(!legitimize_root(nd)))
 748                goto out_dput;
 749        rcu_read_unlock();
 750        return 0;
 751
 752out2:
 753        nd->path.mnt = NULL;
 754out1:
 755        nd->path.dentry = NULL;
 756out:
 757        rcu_read_unlock();
 758        return -ECHILD;
 759out_dput:
 760        rcu_read_unlock();
 761        dput(dentry);
 762        return -ECHILD;
 763}
 764
 765static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 766{
 767        if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 768                return dentry->d_op->d_revalidate(dentry, flags);
 769        else
 770                return 1;
 771}
 772
 773/**
 774 * complete_walk - successful completion of path walk
 775 * @nd:  pointer nameidata
 776 *
 777 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 778 * Revalidate the final result, unless we'd already done that during
 779 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 780 * success, -error on failure.  In case of failure caller does not
 781 * need to drop nd->path.
 782 */
 783static int complete_walk(struct nameidata *nd)
 784{
 785        struct dentry *dentry = nd->path.dentry;
 786        int status;
 787
 788        if (nd->flags & LOOKUP_RCU) {
 789                /*
 790                 * We don't want to zero nd->root for scoped-lookups or
 791                 * externally-managed nd->root.
 792                 */
 793                if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
 794                        nd->root.mnt = NULL;
 795                if (unlikely(unlazy_walk(nd)))
 796                        return -ECHILD;
 797        }
 798
 799        if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
 800                /*
 801                 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
 802                 * ever step outside the root during lookup" and should already
 803                 * be guaranteed by the rest of namei, we want to avoid a namei
 804                 * BUG resulting in userspace being given a path that was not
 805                 * scoped within the root at some point during the lookup.
 806                 *
 807                 * So, do a final sanity-check to make sure that in the
 808                 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
 809                 * we won't silently return an fd completely outside of the
 810                 * requested root to userspace.
 811                 *
 812                 * Userspace could move the path outside the root after this
 813                 * check, but as discussed elsewhere this is not a concern (the
 814                 * resolved file was inside the root at some point).
 815                 */
 816                if (!path_is_under(&nd->path, &nd->root))
 817                        return -EXDEV;
 818        }
 819
 820        if (likely(!(nd->flags & LOOKUP_JUMPED)))
 821                return 0;
 822
 823        if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 824                return 0;
 825
 826        status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 827        if (status > 0)
 828                return 0;
 829
 830        if (!status)
 831                status = -ESTALE;
 832
 833        return status;
 834}
 835
 836static int set_root(struct nameidata *nd)
 837{
 838        struct fs_struct *fs = current->fs;
 839
 840        /*
 841         * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
 842         * still have to ensure it doesn't happen because it will cause a breakout
 843         * from the dirfd.
 844         */
 845        if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
 846                return -ENOTRECOVERABLE;
 847
 848        if (nd->flags & LOOKUP_RCU) {
 849                unsigned seq;
 850
 851                do {
 852                        seq = read_seqcount_begin(&fs->seq);
 853                        nd->root = fs->root;
 854                        nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 855                } while (read_seqcount_retry(&fs->seq, seq));
 856        } else {
 857                get_fs_root(fs, &nd->root);
 858                nd->flags |= LOOKUP_ROOT_GRABBED;
 859        }
 860        return 0;
 861}
 862
 863static int nd_jump_root(struct nameidata *nd)
 864{
 865        if (unlikely(nd->flags & LOOKUP_BENEATH))
 866                return -EXDEV;
 867        if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
 868                /* Absolute path arguments to path_init() are allowed. */
 869                if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
 870                        return -EXDEV;
 871        }
 872        if (!nd->root.mnt) {
 873                int error = set_root(nd);
 874                if (error)
 875                        return error;
 876        }
 877        if (nd->flags & LOOKUP_RCU) {
 878                struct dentry *d;
 879                nd->path = nd->root;
 880                d = nd->path.dentry;
 881                nd->inode = d->d_inode;
 882                nd->seq = nd->root_seq;
 883                if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
 884                        return -ECHILD;
 885        } else {
 886                path_put(&nd->path);
 887                nd->path = nd->root;
 888                path_get(&nd->path);
 889                nd->inode = nd->path.dentry->d_inode;
 890        }
 891        nd->flags |= LOOKUP_JUMPED;
 892        return 0;
 893}
 894
 895/*
 896 * Helper to directly jump to a known parsed path from ->get_link,
 897 * caller must have taken a reference to path beforehand.
 898 */
 899int nd_jump_link(struct path *path)
 900{
 901        int error = -ELOOP;
 902        struct nameidata *nd = current->nameidata;
 903
 904        if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
 905                goto err;
 906
 907        error = -EXDEV;
 908        if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
 909                if (nd->path.mnt != path->mnt)
 910                        goto err;
 911        }
 912        /* Not currently safe for scoped-lookups. */
 913        if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
 914                goto err;
 915
 916        path_put(&nd->path);
 917        nd->path = *path;
 918        nd->inode = nd->path.dentry->d_inode;
 919        nd->flags |= LOOKUP_JUMPED;
 920        return 0;
 921
 922err:
 923        path_put(path);
 924        return error;
 925}
 926
 927static inline void put_link(struct nameidata *nd)
 928{
 929        struct saved *last = nd->stack + --nd->depth;
 930        do_delayed_call(&last->done);
 931        if (!(nd->flags & LOOKUP_RCU))
 932                path_put(&last->link);
 933}
 934
 935int sysctl_protected_symlinks __read_mostly = 0;
 936int sysctl_protected_hardlinks __read_mostly = 0;
 937int sysctl_protected_fifos __read_mostly;
 938int sysctl_protected_regular __read_mostly;
 939
 940/**
 941 * may_follow_link - Check symlink following for unsafe situations
 942 * @nd: nameidata pathwalk data
 943 *
 944 * In the case of the sysctl_protected_symlinks sysctl being enabled,
 945 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
 946 * in a sticky world-writable directory. This is to protect privileged
 947 * processes from failing races against path names that may change out
 948 * from under them by way of other users creating malicious symlinks.
 949 * It will permit symlinks to be followed only when outside a sticky
 950 * world-writable directory, or when the uid of the symlink and follower
 951 * match, or when the directory owner matches the symlink's owner.
 952 *
 953 * Returns 0 if following the symlink is allowed, -ve on error.
 954 */
 955static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
 956{
 957        if (!sysctl_protected_symlinks)
 958                return 0;
 959
 960        /* Allowed if owner and follower match. */
 961        if (uid_eq(current_cred()->fsuid, inode->i_uid))
 962                return 0;
 963
 964        /* Allowed if parent directory not sticky and world-writable. */
 965        if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 966                return 0;
 967
 968        /* Allowed if parent directory and link owner match. */
 969        if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
 970                return 0;
 971
 972        if (nd->flags & LOOKUP_RCU)
 973                return -ECHILD;
 974
 975        audit_inode(nd->name, nd->stack[0].link.dentry, 0);
 976        audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
 977        return -EACCES;
 978}
 979
 980/**
 981 * safe_hardlink_source - Check for safe hardlink conditions
 982 * @inode: the source inode to hardlink from
 983 *
 984 * Return false if at least one of the following conditions:
 985 *    - inode is not a regular file
 986 *    - inode is setuid
 987 *    - inode is setgid and group-exec
 988 *    - access failure for read and write
 989 *
 990 * Otherwise returns true.
 991 */
 992static bool safe_hardlink_source(struct inode *inode)
 993{
 994        umode_t mode = inode->i_mode;
 995
 996        /* Special files should not get pinned to the filesystem. */
 997        if (!S_ISREG(mode))
 998                return false;
 999
1000        /* Setuid files should not get pinned to the filesystem. */
1001        if (mode & S_ISUID)
1002                return false;
1003
1004        /* Executable setgid files should not get pinned to the filesystem. */
1005        if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1006                return false;
1007
1008        /* Hardlinking to unreadable or unwritable sources is dangerous. */
1009        if (inode_permission(inode, MAY_READ | MAY_WRITE))
1010                return false;
1011
1012        return true;
1013}
1014
1015/**
1016 * may_linkat - Check permissions for creating a hardlink
1017 * @link: the source to hardlink from
1018 *
1019 * Block hardlink when all of:
1020 *  - sysctl_protected_hardlinks enabled
1021 *  - fsuid does not match inode
1022 *  - hardlink source is unsafe (see safe_hardlink_source() above)
1023 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1024 *
1025 * Returns 0 if successful, -ve on error.
1026 */
1027int may_linkat(struct path *link)
1028{
1029        struct inode *inode = link->dentry->d_inode;
1030
1031        /* Inode writeback is not safe when the uid or gid are invalid. */
1032        if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1033                return -EOVERFLOW;
1034
1035        if (!sysctl_protected_hardlinks)
1036                return 0;
1037
1038        /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1039         * otherwise, it must be a safe source.
1040         */
1041        if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1042                return 0;
1043
1044        audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1045        return -EPERM;
1046}
1047
1048/**
1049 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1050 *                        should be allowed, or not, on files that already
1051 *                        exist.
1052 * @dir_mode: mode bits of directory
1053 * @dir_uid: owner of directory
1054 * @inode: the inode of the file to open
1055 *
1056 * Block an O_CREAT open of a FIFO (or a regular file) when:
1057 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1058 *   - the file already exists
1059 *   - we are in a sticky directory
1060 *   - we don't own the file
1061 *   - the owner of the directory doesn't own the file
1062 *   - the directory is world writable
1063 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1064 * the directory doesn't have to be world writable: being group writable will
1065 * be enough.
1066 *
1067 * Returns 0 if the open is allowed, -ve on error.
1068 */
1069static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1070                                struct inode * const inode)
1071{
1072        if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1073            (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1074            likely(!(dir_mode & S_ISVTX)) ||
1075            uid_eq(inode->i_uid, dir_uid) ||
1076            uid_eq(current_fsuid(), inode->i_uid))
1077                return 0;
1078
1079        if (likely(dir_mode & 0002) ||
1080            (dir_mode & 0020 &&
1081             ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1082              (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1083                const char *operation = S_ISFIFO(inode->i_mode) ?
1084                                        "sticky_create_fifo" :
1085                                        "sticky_create_regular";
1086                audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1087                return -EACCES;
1088        }
1089        return 0;
1090}
1091
1092/*
1093 * follow_up - Find the mountpoint of path's vfsmount
1094 *
1095 * Given a path, find the mountpoint of its source file system.
1096 * Replace @path with the path of the mountpoint in the parent mount.
1097 * Up is towards /.
1098 *
1099 * Return 1 if we went up a level and 0 if we were already at the
1100 * root.
1101 */
1102int follow_up(struct path *path)
1103{
1104        struct mount *mnt = real_mount(path->mnt);
1105        struct mount *parent;
1106        struct dentry *mountpoint;
1107
1108        read_seqlock_excl(&mount_lock);
1109        parent = mnt->mnt_parent;
1110        if (parent == mnt) {
1111                read_sequnlock_excl(&mount_lock);
1112                return 0;
1113        }
1114        mntget(&parent->mnt);
1115        mountpoint = dget(mnt->mnt_mountpoint);
1116        read_sequnlock_excl(&mount_lock);
1117        dput(path->dentry);
1118        path->dentry = mountpoint;
1119        mntput(path->mnt);
1120        path->mnt = &parent->mnt;
1121        return 1;
1122}
1123EXPORT_SYMBOL(follow_up);
1124
1125static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1126                                  struct path *path, unsigned *seqp)
1127{
1128        while (mnt_has_parent(m)) {
1129                struct dentry *mountpoint = m->mnt_mountpoint;
1130
1131                m = m->mnt_parent;
1132                if (unlikely(root->dentry == mountpoint &&
1133                             root->mnt == &m->mnt))
1134                        break;
1135                if (mountpoint != m->mnt.mnt_root) {
1136                        path->mnt = &m->mnt;
1137                        path->dentry = mountpoint;
1138                        *seqp = read_seqcount_begin(&mountpoint->d_seq);
1139                        return true;
1140                }
1141        }
1142        return false;
1143}
1144
1145static bool choose_mountpoint(struct mount *m, const struct path *root,
1146                              struct path *path)
1147{
1148        bool found;
1149
1150        rcu_read_lock();
1151        while (1) {
1152                unsigned seq, mseq = read_seqbegin(&mount_lock);
1153
1154                found = choose_mountpoint_rcu(m, root, path, &seq);
1155                if (unlikely(!found)) {
1156                        if (!read_seqretry(&mount_lock, mseq))
1157                                break;
1158                } else {
1159                        if (likely(__legitimize_path(path, seq, mseq)))
1160                                break;
1161                        rcu_read_unlock();
1162                        path_put(path);
1163                        rcu_read_lock();
1164                }
1165        }
1166        rcu_read_unlock();
1167        return found;
1168}
1169
1170/*
1171 * Perform an automount
1172 * - return -EISDIR to tell follow_managed() to stop and return the path we
1173 *   were called with.
1174 */
1175static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1176{
1177        struct dentry *dentry = path->dentry;
1178
1179        /* We don't want to mount if someone's just doing a stat -
1180         * unless they're stat'ing a directory and appended a '/' to
1181         * the name.
1182         *
1183         * We do, however, want to mount if someone wants to open or
1184         * create a file of any type under the mountpoint, wants to
1185         * traverse through the mountpoint or wants to open the
1186         * mounted directory.  Also, autofs may mark negative dentries
1187         * as being automount points.  These will need the attentions
1188         * of the daemon to instantiate them before they can be used.
1189         */
1190        if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1191                           LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1192            dentry->d_inode)
1193                return -EISDIR;
1194
1195        if (count && (*count)++ >= MAXSYMLINKS)
1196                return -ELOOP;
1197
1198        return finish_automount(dentry->d_op->d_automount(path), path);
1199}
1200
1201/*
1202 * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1203 * dentries are pinned but not locked here, so negative dentry can go
1204 * positive right under us.  Use of smp_load_acquire() provides a barrier
1205 * sufficient for ->d_inode and ->d_flags consistency.
1206 */
1207static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1208                             int *count, unsigned lookup_flags)
1209{
1210        struct vfsmount *mnt = path->mnt;
1211        bool need_mntput = false;
1212        int ret = 0;
1213
1214        while (flags & DCACHE_MANAGED_DENTRY) {
1215                /* Allow the filesystem to manage the transit without i_mutex
1216                 * being held. */
1217                if (flags & DCACHE_MANAGE_TRANSIT) {
1218                        ret = path->dentry->d_op->d_manage(path, false);
1219                        flags = smp_load_acquire(&path->dentry->d_flags);
1220                        if (ret < 0)
1221                                break;
1222                }
1223
1224                if (flags & DCACHE_MOUNTED) {   // something's mounted on it..
1225                        struct vfsmount *mounted = lookup_mnt(path);
1226                        if (mounted) {          // ... in our namespace
1227                                dput(path->dentry);
1228                                if (need_mntput)
1229                                        mntput(path->mnt);
1230                                path->mnt = mounted;
1231                                path->dentry = dget(mounted->mnt_root);
1232                                // here we know it's positive
1233                                flags = path->dentry->d_flags;
1234                                need_mntput = true;
1235                                continue;
1236                        }
1237                }
1238
1239                if (!(flags & DCACHE_NEED_AUTOMOUNT))
1240                        break;
1241
1242                // uncovered automount point
1243                ret = follow_automount(path, count, lookup_flags);
1244                flags = smp_load_acquire(&path->dentry->d_flags);
1245                if (ret < 0)
1246                        break;
1247        }
1248
1249        if (ret == -EISDIR)
1250                ret = 0;
1251        // possible if you race with several mount --move
1252        if (need_mntput && path->mnt == mnt)
1253                mntput(path->mnt);
1254        if (!ret && unlikely(d_flags_negative(flags)))
1255                ret = -ENOENT;
1256        *jumped = need_mntput;
1257        return ret;
1258}
1259
1260static inline int traverse_mounts(struct path *path, bool *jumped,
1261                                  int *count, unsigned lookup_flags)
1262{
1263        unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1264
1265        /* fastpath */
1266        if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1267                *jumped = false;
1268                if (unlikely(d_flags_negative(flags)))
1269                        return -ENOENT;
1270                return 0;
1271        }
1272        return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1273}
1274
1275int follow_down_one(struct path *path)
1276{
1277        struct vfsmount *mounted;
1278
1279        mounted = lookup_mnt(path);
1280        if (mounted) {
1281                dput(path->dentry);
1282                mntput(path->mnt);
1283                path->mnt = mounted;
1284                path->dentry = dget(mounted->mnt_root);
1285                return 1;
1286        }
1287        return 0;
1288}
1289EXPORT_SYMBOL(follow_down_one);
1290
1291/*
1292 * Follow down to the covering mount currently visible to userspace.  At each
1293 * point, the filesystem owning that dentry may be queried as to whether the
1294 * caller is permitted to proceed or not.
1295 */
1296int follow_down(struct path *path)
1297{
1298        struct vfsmount *mnt = path->mnt;
1299        bool jumped;
1300        int ret = traverse_mounts(path, &jumped, NULL, 0);
1301
1302        if (path->mnt != mnt)
1303                mntput(mnt);
1304        return ret;
1305}
1306EXPORT_SYMBOL(follow_down);
1307
1308/*
1309 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1310 * we meet a managed dentry that would need blocking.
1311 */
1312static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1313                               struct inode **inode, unsigned *seqp)
1314{
1315        struct dentry *dentry = path->dentry;
1316        unsigned int flags = dentry->d_flags;
1317
1318        if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1319                return true;
1320
1321        if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1322                return false;
1323
1324        for (;;) {
1325                /*
1326                 * Don't forget we might have a non-mountpoint managed dentry
1327                 * that wants to block transit.
1328                 */
1329                if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1330                        int res = dentry->d_op->d_manage(path, true);
1331                        if (res)
1332                                return res == -EISDIR;
1333                        flags = dentry->d_flags;
1334                }
1335
1336                if (flags & DCACHE_MOUNTED) {
1337                        struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1338                        if (mounted) {
1339                                path->mnt = &mounted->mnt;
1340                                dentry = path->dentry = mounted->mnt.mnt_root;
1341                                nd->flags |= LOOKUP_JUMPED;
1342                                *seqp = read_seqcount_begin(&dentry->d_seq);
1343                                *inode = dentry->d_inode;
1344                                /*
1345                                 * We don't need to re-check ->d_seq after this
1346                                 * ->d_inode read - there will be an RCU delay
1347                                 * between mount hash removal and ->mnt_root
1348                                 * becoming unpinned.
1349                                 */
1350                                flags = dentry->d_flags;
1351                                continue;
1352                        }
1353                        if (read_seqretry(&mount_lock, nd->m_seq))
1354                                return false;
1355                }
1356                return !(flags & DCACHE_NEED_AUTOMOUNT);
1357        }
1358}
1359
1360static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1361                          struct path *path, struct inode **inode,
1362                          unsigned int *seqp)
1363{
1364        bool jumped;
1365        int ret;
1366
1367        path->mnt = nd->path.mnt;
1368        path->dentry = dentry;
1369        if (nd->flags & LOOKUP_RCU) {
1370                unsigned int seq = *seqp;
1371                if (unlikely(!*inode))
1372                        return -ENOENT;
1373                if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1374                        return 0;
1375                if (unlazy_child(nd, dentry, seq))
1376                        return -ECHILD;
1377                // *path might've been clobbered by __follow_mount_rcu()
1378                path->mnt = nd->path.mnt;
1379                path->dentry = dentry;
1380        }
1381        ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1382        if (jumped) {
1383                if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1384                        ret = -EXDEV;
1385                else
1386                        nd->flags |= LOOKUP_JUMPED;
1387        }
1388        if (unlikely(ret)) {
1389                dput(path->dentry);
1390                if (path->mnt != nd->path.mnt)
1391                        mntput(path->mnt);
1392        } else {
1393                *inode = d_backing_inode(path->dentry);
1394                *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1395        }
1396        return ret;
1397}
1398
1399/*
1400 * This looks up the name in dcache and possibly revalidates the found dentry.
1401 * NULL is returned if the dentry does not exist in the cache.
1402 */
1403static struct dentry *lookup_dcache(const struct qstr *name,
1404                                    struct dentry *dir,
1405                                    unsigned int flags)
1406{
1407        struct dentry *dentry = d_lookup(dir, name);
1408        if (dentry) {
1409                int error = d_revalidate(dentry, flags);
1410                if (unlikely(error <= 0)) {
1411                        if (!error)
1412                                d_invalidate(dentry);
1413                        dput(dentry);
1414                        return ERR_PTR(error);
1415                }
1416        }
1417        return dentry;
1418}
1419
1420/*
1421 * Parent directory has inode locked exclusive.  This is one
1422 * and only case when ->lookup() gets called on non in-lookup
1423 * dentries - as the matter of fact, this only gets called
1424 * when directory is guaranteed to have no in-lookup children
1425 * at all.
1426 */
1427static struct dentry *__lookup_hash(const struct qstr *name,
1428                struct dentry *base, unsigned int flags)
1429{
1430        struct dentry *dentry = lookup_dcache(name, base, flags);
1431        struct dentry *old;
1432        struct inode *dir = base->d_inode;
1433
1434        if (dentry)
1435                return dentry;
1436
1437        /* Don't create child dentry for a dead directory. */
1438        if (unlikely(IS_DEADDIR(dir)))
1439                return ERR_PTR(-ENOENT);
1440
1441        dentry = d_alloc(base, name);
1442        if (unlikely(!dentry))
1443                return ERR_PTR(-ENOMEM);
1444
1445        old = dir->i_op->lookup(dir, dentry, flags);
1446        if (unlikely(old)) {
1447                dput(dentry);
1448                dentry = old;
1449        }
1450        return dentry;
1451}
1452
1453static struct dentry *lookup_fast(struct nameidata *nd,
1454                                  struct inode **inode,
1455                                  unsigned *seqp)
1456{
1457        struct dentry *dentry, *parent = nd->path.dentry;
1458        int status = 1;
1459
1460        /*
1461         * Rename seqlock is not required here because in the off chance
1462         * of a false negative due to a concurrent rename, the caller is
1463         * going to fall back to non-racy lookup.
1464         */
1465        if (nd->flags & LOOKUP_RCU) {
1466                unsigned seq;
1467                dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1468                if (unlikely(!dentry)) {
1469                        if (unlazy_walk(nd))
1470                                return ERR_PTR(-ECHILD);
1471                        return NULL;
1472                }
1473
1474                /*
1475                 * This sequence count validates that the inode matches
1476                 * the dentry name information from lookup.
1477                 */
1478                *inode = d_backing_inode(dentry);
1479                if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1480                        return ERR_PTR(-ECHILD);
1481
1482                /*
1483                 * This sequence count validates that the parent had no
1484                 * changes while we did the lookup of the dentry above.
1485                 *
1486                 * The memory barrier in read_seqcount_begin of child is
1487                 *  enough, we can use __read_seqcount_retry here.
1488                 */
1489                if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1490                        return ERR_PTR(-ECHILD);
1491
1492                *seqp = seq;
1493                status = d_revalidate(dentry, nd->flags);
1494                if (likely(status > 0))
1495                        return dentry;
1496                if (unlazy_child(nd, dentry, seq))
1497                        return ERR_PTR(-ECHILD);
1498                if (unlikely(status == -ECHILD))
1499                        /* we'd been told to redo it in non-rcu mode */
1500                        status = d_revalidate(dentry, nd->flags);
1501        } else {
1502                dentry = __d_lookup(parent, &nd->last);
1503                if (unlikely(!dentry))
1504                        return NULL;
1505                status = d_revalidate(dentry, nd->flags);
1506        }
1507        if (unlikely(status <= 0)) {
1508                if (!status)
1509                        d_invalidate(dentry);
1510                dput(dentry);
1511                return ERR_PTR(status);
1512        }
1513        return dentry;
1514}
1515
1516/* Fast lookup failed, do it the slow way */
1517static struct dentry *__lookup_slow(const struct qstr *name,
1518                                    struct dentry *dir,
1519                                    unsigned int flags)
1520{
1521        struct dentry *dentry, *old;
1522        struct inode *inode = dir->d_inode;
1523        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1524
1525        /* Don't go there if it's already dead */
1526        if (unlikely(IS_DEADDIR(inode)))
1527                return ERR_PTR(-ENOENT);
1528again:
1529        dentry = d_alloc_parallel(dir, name, &wq);
1530        if (IS_ERR(dentry))
1531                return dentry;
1532        if (unlikely(!d_in_lookup(dentry))) {
1533                int error = d_revalidate(dentry, flags);
1534                if (unlikely(error <= 0)) {
1535                        if (!error) {
1536                                d_invalidate(dentry);
1537                                dput(dentry);
1538                                goto again;
1539                        }
1540                        dput(dentry);
1541                        dentry = ERR_PTR(error);
1542                }
1543        } else {
1544                old = inode->i_op->lookup(inode, dentry, flags);
1545                d_lookup_done(dentry);
1546                if (unlikely(old)) {
1547                        dput(dentry);
1548                        dentry = old;
1549                }
1550        }
1551        return dentry;
1552}
1553
1554static struct dentry *lookup_slow(const struct qstr *name,
1555                                  struct dentry *dir,
1556                                  unsigned int flags)
1557{
1558        struct inode *inode = dir->d_inode;
1559        struct dentry *res;
1560        inode_lock_shared(inode);
1561        res = __lookup_slow(name, dir, flags);
1562        inode_unlock_shared(inode);
1563        return res;
1564}
1565
1566static inline int may_lookup(struct nameidata *nd)
1567{
1568        if (nd->flags & LOOKUP_RCU) {
1569                int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1570                if (err != -ECHILD)
1571                        return err;
1572                if (unlazy_walk(nd))
1573                        return -ECHILD;
1574        }
1575        return inode_permission(nd->inode, MAY_EXEC);
1576}
1577
1578static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1579{
1580        if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1581                return -ELOOP;
1582
1583        if (likely(nd->depth != EMBEDDED_LEVELS))
1584                return 0;
1585        if (likely(nd->stack != nd->internal))
1586                return 0;
1587        if (likely(nd_alloc_stack(nd)))
1588                return 0;
1589
1590        if (nd->flags & LOOKUP_RCU) {
1591                // we need to grab link before we do unlazy.  And we can't skip
1592                // unlazy even if we fail to grab the link - cleanup needs it
1593                bool grabbed_link = legitimize_path(nd, link, seq);
1594
1595                if (unlazy_walk(nd) != 0 || !grabbed_link)
1596                        return -ECHILD;
1597
1598                if (nd_alloc_stack(nd))
1599                        return 0;
1600        }
1601        return -ENOMEM;
1602}
1603
1604enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1605
1606static const char *pick_link(struct nameidata *nd, struct path *link,
1607                     struct inode *inode, unsigned seq, int flags)
1608{
1609        struct saved *last;
1610        const char *res;
1611        int error = reserve_stack(nd, link, seq);
1612
1613        if (unlikely(error)) {
1614                if (!(nd->flags & LOOKUP_RCU))
1615                        path_put(link);
1616                return ERR_PTR(error);
1617        }
1618        last = nd->stack + nd->depth++;
1619        last->link = *link;
1620        clear_delayed_call(&last->done);
1621        last->seq = seq;
1622
1623        if (flags & WALK_TRAILING) {
1624                error = may_follow_link(nd, inode);
1625                if (unlikely(error))
1626                        return ERR_PTR(error);
1627        }
1628
1629        if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS))
1630                return ERR_PTR(-ELOOP);
1631
1632        if (!(nd->flags & LOOKUP_RCU)) {
1633                touch_atime(&last->link);
1634                cond_resched();
1635        } else if (atime_needs_update(&last->link, inode)) {
1636                if (unlikely(unlazy_walk(nd)))
1637                        return ERR_PTR(-ECHILD);
1638                touch_atime(&last->link);
1639        }
1640
1641        error = security_inode_follow_link(link->dentry, inode,
1642                                           nd->flags & LOOKUP_RCU);
1643        if (unlikely(error))
1644                return ERR_PTR(error);
1645
1646        res = READ_ONCE(inode->i_link);
1647        if (!res) {
1648                const char * (*get)(struct dentry *, struct inode *,
1649                                struct delayed_call *);
1650                get = inode->i_op->get_link;
1651                if (nd->flags & LOOKUP_RCU) {
1652                        res = get(NULL, inode, &last->done);
1653                        if (res == ERR_PTR(-ECHILD)) {
1654                                if (unlikely(unlazy_walk(nd)))
1655                                        return ERR_PTR(-ECHILD);
1656                                res = get(link->dentry, inode, &last->done);
1657                        }
1658                } else {
1659                        res = get(link->dentry, inode, &last->done);
1660                }
1661                if (!res)
1662                        goto all_done;
1663                if (IS_ERR(res))
1664                        return res;
1665        }
1666        if (*res == '/') {
1667                error = nd_jump_root(nd);
1668                if (unlikely(error))
1669                        return ERR_PTR(error);
1670                while (unlikely(*++res == '/'))
1671                        ;
1672        }
1673        if (*res)
1674                return res;
1675all_done: // pure jump
1676        put_link(nd);
1677        return NULL;
1678}
1679
1680/*
1681 * Do we need to follow links? We _really_ want to be able
1682 * to do this check without having to look at inode->i_op,
1683 * so we keep a cache of "no, this doesn't need follow_link"
1684 * for the common case.
1685 */
1686static const char *step_into(struct nameidata *nd, int flags,
1687                     struct dentry *dentry, struct inode *inode, unsigned seq)
1688{
1689        struct path path;
1690        int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1691
1692        if (err < 0)
1693                return ERR_PTR(err);
1694        if (likely(!d_is_symlink(path.dentry)) ||
1695           ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1696           (flags & WALK_NOFOLLOW)) {
1697                /* not a symlink or should not follow */
1698                if (!(nd->flags & LOOKUP_RCU)) {
1699                        dput(nd->path.dentry);
1700                        if (nd->path.mnt != path.mnt)
1701                                mntput(nd->path.mnt);
1702                }
1703                nd->path = path;
1704                nd->inode = inode;
1705                nd->seq = seq;
1706                return NULL;
1707        }
1708        if (nd->flags & LOOKUP_RCU) {
1709                /* make sure that d_is_symlink above matches inode */
1710                if (read_seqcount_retry(&path.dentry->d_seq, seq))
1711                        return ERR_PTR(-ECHILD);
1712        } else {
1713                if (path.mnt == nd->path.mnt)
1714                        mntget(path.mnt);
1715        }
1716        return pick_link(nd, &path, inode, seq, flags);
1717}
1718
1719static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1720                                        struct inode **inodep,
1721                                        unsigned *seqp)
1722{
1723        struct dentry *parent, *old;
1724
1725        if (path_equal(&nd->path, &nd->root))
1726                goto in_root;
1727        if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1728                struct path path;
1729                unsigned seq;
1730                if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1731                                           &nd->root, &path, &seq))
1732                        goto in_root;
1733                if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1734                        return ERR_PTR(-ECHILD);
1735                nd->path = path;
1736                nd->inode = path.dentry->d_inode;
1737                nd->seq = seq;
1738                if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1739                        return ERR_PTR(-ECHILD);
1740                /* we know that mountpoint was pinned */
1741        }
1742        old = nd->path.dentry;
1743        parent = old->d_parent;
1744        *inodep = parent->d_inode;
1745        *seqp = read_seqcount_begin(&parent->d_seq);
1746        if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1747                return ERR_PTR(-ECHILD);
1748        if (unlikely(!path_connected(nd->path.mnt, parent)))
1749                return ERR_PTR(-ECHILD);
1750        return parent;
1751in_root:
1752        if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1753                return ERR_PTR(-ECHILD);
1754        if (unlikely(nd->flags & LOOKUP_BENEATH))
1755                return ERR_PTR(-ECHILD);
1756        return NULL;
1757}
1758
1759static struct dentry *follow_dotdot(struct nameidata *nd,
1760                                 struct inode **inodep,
1761                                 unsigned *seqp)
1762{
1763        struct dentry *parent;
1764
1765        if (path_equal(&nd->path, &nd->root))
1766                goto in_root;
1767        if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1768                struct path path;
1769
1770                if (!choose_mountpoint(real_mount(nd->path.mnt),
1771                                       &nd->root, &path))
1772                        goto in_root;
1773                path_put(&nd->path);
1774                nd->path = path;
1775                nd->inode = path.dentry->d_inode;
1776                if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1777                        return ERR_PTR(-EXDEV);
1778        }
1779        /* rare case of legitimate dget_parent()... */
1780        parent = dget_parent(nd->path.dentry);
1781        if (unlikely(!path_connected(nd->path.mnt, parent))) {
1782                dput(parent);
1783                return ERR_PTR(-ENOENT);
1784        }
1785        *seqp = 0;
1786        *inodep = parent->d_inode;
1787        return parent;
1788
1789in_root:
1790        if (unlikely(nd->flags & LOOKUP_BENEATH))
1791                return ERR_PTR(-EXDEV);
1792        dget(nd->path.dentry);
1793        return NULL;
1794}
1795
1796static const char *handle_dots(struct nameidata *nd, int type)
1797{
1798        if (type == LAST_DOTDOT) {
1799                const char *error = NULL;
1800                struct dentry *parent;
1801                struct inode *inode;
1802                unsigned seq;
1803
1804                if (!nd->root.mnt) {
1805                        error = ERR_PTR(set_root(nd));
1806                        if (error)
1807                                return error;
1808                }
1809                if (nd->flags & LOOKUP_RCU)
1810                        parent = follow_dotdot_rcu(nd, &inode, &seq);
1811                else
1812                        parent = follow_dotdot(nd, &inode, &seq);
1813                if (IS_ERR(parent))
1814                        return ERR_CAST(parent);
1815                if (unlikely(!parent))
1816                        error = step_into(nd, WALK_NOFOLLOW,
1817                                         nd->path.dentry, nd->inode, nd->seq);
1818                else
1819                        error = step_into(nd, WALK_NOFOLLOW,
1820                                         parent, inode, seq);
1821                if (unlikely(error))
1822                        return error;
1823
1824                if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1825                        /*
1826                         * If there was a racing rename or mount along our
1827                         * path, then we can't be sure that ".." hasn't jumped
1828                         * above nd->root (and so userspace should retry or use
1829                         * some fallback).
1830                         */
1831                        smp_rmb();
1832                        if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1833                                return ERR_PTR(-EAGAIN);
1834                        if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1835                                return ERR_PTR(-EAGAIN);
1836                }
1837        }
1838        return NULL;
1839}
1840
1841static const char *walk_component(struct nameidata *nd, int flags)
1842{
1843        struct dentry *dentry;
1844        struct inode *inode;
1845        unsigned seq;
1846        /*
1847         * "." and ".." are special - ".." especially so because it has
1848         * to be able to know about the current root directory and
1849         * parent relationships.
1850         */
1851        if (unlikely(nd->last_type != LAST_NORM)) {
1852                if (!(flags & WALK_MORE) && nd->depth)
1853                        put_link(nd);
1854                return handle_dots(nd, nd->last_type);
1855        }
1856        dentry = lookup_fast(nd, &inode, &seq);
1857        if (IS_ERR(dentry))
1858                return ERR_CAST(dentry);
1859        if (unlikely(!dentry)) {
1860                dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1861                if (IS_ERR(dentry))
1862                        return ERR_CAST(dentry);
1863        }
1864        if (!(flags & WALK_MORE) && nd->depth)
1865                put_link(nd);
1866        return step_into(nd, flags, dentry, inode, seq);
1867}
1868
1869/*
1870 * We can do the critical dentry name comparison and hashing
1871 * operations one word at a time, but we are limited to:
1872 *
1873 * - Architectures with fast unaligned word accesses. We could
1874 *   do a "get_unaligned()" if this helps and is sufficiently
1875 *   fast.
1876 *
1877 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1878 *   do not trap on the (extremely unlikely) case of a page
1879 *   crossing operation.
1880 *
1881 * - Furthermore, we need an efficient 64-bit compile for the
1882 *   64-bit case in order to generate the "number of bytes in
1883 *   the final mask". Again, that could be replaced with a
1884 *   efficient population count instruction or similar.
1885 */
1886#ifdef CONFIG_DCACHE_WORD_ACCESS
1887
1888#include <asm/word-at-a-time.h>
1889
1890#ifdef HASH_MIX
1891
1892/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1893
1894#elif defined(CONFIG_64BIT)
1895/*
1896 * Register pressure in the mixing function is an issue, particularly
1897 * on 32-bit x86, but almost any function requires one state value and
1898 * one temporary.  Instead, use a function designed for two state values
1899 * and no temporaries.
1900 *
1901 * This function cannot create a collision in only two iterations, so
1902 * we have two iterations to achieve avalanche.  In those two iterations,
1903 * we have six layers of mixing, which is enough to spread one bit's
1904 * influence out to 2^6 = 64 state bits.
1905 *
1906 * Rotate constants are scored by considering either 64 one-bit input
1907 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1908 * probability of that delta causing a change to each of the 128 output
1909 * bits, using a sample of random initial states.
1910 *
1911 * The Shannon entropy of the computed probabilities is then summed
1912 * to produce a score.  Ideally, any input change has a 50% chance of
1913 * toggling any given output bit.
1914 *
1915 * Mixing scores (in bits) for (12,45):
1916 * Input delta: 1-bit      2-bit
1917 * 1 round:     713.3    42542.6
1918 * 2 rounds:   2753.7   140389.8
1919 * 3 rounds:   5954.1   233458.2
1920 * 4 rounds:   7862.6   256672.2
1921 * Perfect:    8192     258048
1922 *            (64*128) (64*63/2 * 128)
1923 */
1924#define HASH_MIX(x, y, a)       \
1925        (       x ^= (a),       \
1926        y ^= x, x = rol64(x,12),\
1927        x += y, y = rol64(y,45),\
1928        y *= 9                  )
1929
1930/*
1931 * Fold two longs into one 32-bit hash value.  This must be fast, but
1932 * latency isn't quite as critical, as there is a fair bit of additional
1933 * work done before the hash value is used.
1934 */
1935static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1936{
1937        y ^= x * GOLDEN_RATIO_64;
1938        y *= GOLDEN_RATIO_64;
1939        return y >> 32;
1940}
1941
1942#else   /* 32-bit case */
1943
1944/*
1945 * Mixing scores (in bits) for (7,20):
1946 * Input delta: 1-bit      2-bit
1947 * 1 round:     330.3     9201.6
1948 * 2 rounds:   1246.4    25475.4
1949 * 3 rounds:   1907.1    31295.1
1950 * 4 rounds:   2042.3    31718.6
1951 * Perfect:    2048      31744
1952 *            (32*64)   (32*31/2 * 64)
1953 */
1954#define HASH_MIX(x, y, a)       \
1955        (       x ^= (a),       \
1956        y ^= x, x = rol32(x, 7),\
1957        x += y, y = rol32(y,20),\
1958        y *= 9                  )
1959
1960static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1961{
1962        /* Use arch-optimized multiply if one exists */
1963        return __hash_32(y ^ __hash_32(x));
1964}
1965
1966#endif
1967
1968/*
1969 * Return the hash of a string of known length.  This is carfully
1970 * designed to match hash_name(), which is the more critical function.
1971 * In particular, we must end by hashing a final word containing 0..7
1972 * payload bytes, to match the way that hash_name() iterates until it
1973 * finds the delimiter after the name.
1974 */
1975unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1976{
1977        unsigned long a, x = 0, y = (unsigned long)salt;
1978
1979        for (;;) {
1980                if (!len)
1981                        goto done;
1982                a = load_unaligned_zeropad(name);
1983                if (len < sizeof(unsigned long))
1984                        break;
1985                HASH_MIX(x, y, a);
1986                name += sizeof(unsigned long);
1987                len -= sizeof(unsigned long);
1988        }
1989        x ^= a & bytemask_from_count(len);
1990done:
1991        return fold_hash(x, y);
1992}
1993EXPORT_SYMBOL(full_name_hash);
1994
1995/* Return the "hash_len" (hash and length) of a null-terminated string */
1996u64 hashlen_string(const void *salt, const char *name)
1997{
1998        unsigned long a = 0, x = 0, y = (unsigned long)salt;
1999        unsigned long adata, mask, len;
2000        const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2001
2002        len = 0;
2003        goto inside;
2004
2005        do {
2006                HASH_MIX(x, y, a);
2007                len += sizeof(unsigned long);
2008inside:
2009                a = load_unaligned_zeropad(name+len);
2010        } while (!has_zero(a, &adata, &constants));
2011
2012        adata = prep_zero_mask(a, adata, &constants);
2013        mask = create_zero_mask(adata);
2014        x ^= a & zero_bytemask(mask);
2015
2016        return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2017}
2018EXPORT_SYMBOL(hashlen_string);
2019
2020/*
2021 * Calculate the length and hash of the path component, and
2022 * return the "hash_len" as the result.
2023 */
2024static inline u64 hash_name(const void *salt, const char *name)
2025{
2026        unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2027        unsigned long adata, bdata, mask, len;
2028        const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2029
2030        len = 0;
2031        goto inside;
2032
2033        do {
2034                HASH_MIX(x, y, a);
2035                len += sizeof(unsigned long);
2036inside:
2037                a = load_unaligned_zeropad(name+len);
2038                b = a ^ REPEAT_BYTE('/');
2039        } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2040
2041        adata = prep_zero_mask(a, adata, &constants);
2042        bdata = prep_zero_mask(b, bdata, &constants);
2043        mask = create_zero_mask(adata | bdata);
2044        x ^= a & zero_bytemask(mask);
2045
2046        return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2047}
2048
2049#else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2050
2051/* Return the hash of a string of known length */
2052unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2053{
2054        unsigned long hash = init_name_hash(salt);
2055        while (len--)
2056                hash = partial_name_hash((unsigned char)*name++, hash);
2057        return end_name_hash(hash);
2058}
2059EXPORT_SYMBOL(full_name_hash);
2060
2061/* Return the "hash_len" (hash and length) of a null-terminated string */
2062u64 hashlen_string(const void *salt, const char *name)
2063{
2064        unsigned long hash = init_name_hash(salt);
2065        unsigned long len = 0, c;
2066
2067        c = (unsigned char)*name;
2068        while (c) {
2069                len++;
2070                hash = partial_name_hash(c, hash);
2071                c = (unsigned char)name[len];
2072        }
2073        return hashlen_create(end_name_hash(hash), len);
2074}
2075EXPORT_SYMBOL(hashlen_string);
2076
2077/*
2078 * We know there's a real path component here of at least
2079 * one character.
2080 */
2081static inline u64 hash_name(const void *salt, const char *name)
2082{
2083        unsigned long hash = init_name_hash(salt);
2084        unsigned long len = 0, c;
2085
2086        c = (unsigned char)*name;
2087        do {
2088                len++;
2089                hash = partial_name_hash(c, hash);
2090                c = (unsigned char)name[len];
2091        } while (c && c != '/');
2092        return hashlen_create(end_name_hash(hash), len);
2093}
2094
2095#endif
2096
2097/*
2098 * Name resolution.
2099 * This is the basic name resolution function, turning a pathname into
2100 * the final dentry. We expect 'base' to be positive and a directory.
2101 *
2102 * Returns 0 and nd will have valid dentry and mnt on success.
2103 * Returns error and drops reference to input namei data on failure.
2104 */
2105static int link_path_walk(const char *name, struct nameidata *nd)
2106{
2107        int depth = 0; // depth <= nd->depth
2108        int err;
2109
2110        nd->last_type = LAST_ROOT;
2111        nd->flags |= LOOKUP_PARENT;
2112        if (IS_ERR(name))
2113                return PTR_ERR(name);
2114        while (*name=='/')
2115                name++;
2116        if (!*name)
2117                return 0;
2118
2119        /* At this point we know we have a real path component. */
2120        for(;;) {
2121                const char *link;
2122                u64 hash_len;
2123                int type;
2124
2125                err = may_lookup(nd);
2126                if (err)
2127                        return err;
2128
2129                hash_len = hash_name(nd->path.dentry, name);
2130
2131                type = LAST_NORM;
2132                if (name[0] == '.') switch (hashlen_len(hash_len)) {
2133                        case 2:
2134                                if (name[1] == '.') {
2135                                        type = LAST_DOTDOT;
2136                                        nd->flags |= LOOKUP_JUMPED;
2137                                }
2138                                break;
2139                        case 1:
2140                                type = LAST_DOT;
2141                }
2142                if (likely(type == LAST_NORM)) {
2143                        struct dentry *parent = nd->path.dentry;
2144                        nd->flags &= ~LOOKUP_JUMPED;
2145                        if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2146                                struct qstr this = { { .hash_len = hash_len }, .name = name };
2147                                err = parent->d_op->d_hash(parent, &this);
2148                                if (err < 0)
2149                                        return err;
2150                                hash_len = this.hash_len;
2151                                name = this.name;
2152                        }
2153                }
2154
2155                nd->last.hash_len = hash_len;
2156                nd->last.name = name;
2157                nd->last_type = type;
2158
2159                name += hashlen_len(hash_len);
2160                if (!*name)
2161                        goto OK;
2162                /*
2163                 * If it wasn't NUL, we know it was '/'. Skip that
2164                 * slash, and continue until no more slashes.
2165                 */
2166                do {
2167                        name++;
2168                } while (unlikely(*name == '/'));
2169                if (unlikely(!*name)) {
2170OK:
2171                        /* pathname or trailing symlink, done */
2172                        if (!depth) {
2173                                nd->dir_uid = nd->inode->i_uid;
2174                                nd->dir_mode = nd->inode->i_mode;
2175                                nd->flags &= ~LOOKUP_PARENT;
2176                                return 0;
2177                        }
2178                        /* last component of nested symlink */
2179                        name = nd->stack[--depth].name;
2180                        link = walk_component(nd, 0);
2181                } else {
2182                        /* not the last component */
2183                        link = walk_component(nd, WALK_MORE);
2184                }
2185                if (unlikely(link)) {
2186                        if (IS_ERR(link))
2187                                return PTR_ERR(link);
2188                        /* a symlink to follow */
2189                        nd->stack[depth++].name = name;
2190                        name = link;
2191                        continue;
2192                }
2193                if (unlikely(!d_can_lookup(nd->path.dentry))) {
2194                        if (nd->flags & LOOKUP_RCU) {
2195                                if (unlazy_walk(nd))
2196                                        return -ECHILD;
2197                        }
2198                        return -ENOTDIR;
2199                }
2200        }
2201}
2202
2203/* must be paired with terminate_walk() */
2204static const char *path_init(struct nameidata *nd, unsigned flags)
2205{
2206        int error;
2207        const char *s = nd->name->name;
2208
2209        if (!*s)
2210                flags &= ~LOOKUP_RCU;
2211        if (flags & LOOKUP_RCU)
2212                rcu_read_lock();
2213
2214        nd->flags = flags | LOOKUP_JUMPED;
2215        nd->depth = 0;
2216
2217        nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2218        nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2219        smp_rmb();
2220
2221        if (flags & LOOKUP_ROOT) {
2222                struct dentry *root = nd->root.dentry;
2223                struct inode *inode = root->d_inode;
2224                if (*s && unlikely(!d_can_lookup(root)))
2225                        return ERR_PTR(-ENOTDIR);
2226                nd->path = nd->root;
2227                nd->inode = inode;
2228                if (flags & LOOKUP_RCU) {
2229                        nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2230                        nd->root_seq = nd->seq;
2231                } else {
2232                        path_get(&nd->path);
2233                }
2234                return s;
2235        }
2236
2237        nd->root.mnt = NULL;
2238        nd->path.mnt = NULL;
2239        nd->path.dentry = NULL;
2240
2241        /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2242        if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2243                error = nd_jump_root(nd);
2244                if (unlikely(error))
2245                        return ERR_PTR(error);
2246                return s;
2247        }
2248
2249        /* Relative pathname -- get the starting-point it is relative to. */
2250        if (nd->dfd == AT_FDCWD) {
2251                if (flags & LOOKUP_RCU) {
2252                        struct fs_struct *fs = current->fs;
2253                        unsigned seq;
2254
2255                        do {
2256                                seq = read_seqcount_begin(&fs->seq);
2257                                nd->path = fs->pwd;
2258                                nd->inode = nd->path.dentry->d_inode;
2259                                nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2260                        } while (read_seqcount_retry(&fs->seq, seq));
2261                } else {
2262                        get_fs_pwd(current->fs, &nd->path);
2263                        nd->inode = nd->path.dentry->d_inode;
2264                }
2265        } else {
2266                /* Caller must check execute permissions on the starting path component */
2267                struct fd f = fdget_raw(nd->dfd);
2268                struct dentry *dentry;
2269
2270                if (!f.file)
2271                        return ERR_PTR(-EBADF);
2272
2273                dentry = f.file->f_path.dentry;
2274
2275                if (*s && unlikely(!d_can_lookup(dentry))) {
2276                        fdput(f);
2277                        return ERR_PTR(-ENOTDIR);
2278                }
2279
2280                nd->path = f.file->f_path;
2281                if (flags & LOOKUP_RCU) {
2282                        nd->inode = nd->path.dentry->d_inode;
2283                        nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2284                } else {
2285                        path_get(&nd->path);
2286                        nd->inode = nd->path.dentry->d_inode;
2287                }
2288                fdput(f);
2289        }
2290
2291        /* For scoped-lookups we need to set the root to the dirfd as well. */
2292        if (flags & LOOKUP_IS_SCOPED) {
2293                nd->root = nd->path;
2294                if (flags & LOOKUP_RCU) {
2295                        nd->root_seq = nd->seq;
2296                } else {
2297                        path_get(&nd->root);
2298                        nd->flags |= LOOKUP_ROOT_GRABBED;
2299                }
2300        }
2301        return s;
2302}
2303
2304static inline const char *lookup_last(struct nameidata *nd)
2305{
2306        if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2307                nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2308
2309        return walk_component(nd, WALK_TRAILING);
2310}
2311
2312static int handle_lookup_down(struct nameidata *nd)
2313{
2314        if (!(nd->flags & LOOKUP_RCU))
2315                dget(nd->path.dentry);
2316        return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2317                        nd->path.dentry, nd->inode, nd->seq));
2318}
2319
2320/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2321static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2322{
2323        const char *s = path_init(nd, flags);
2324        int err;
2325
2326        if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2327                err = handle_lookup_down(nd);
2328                if (unlikely(err < 0))
2329                        s = ERR_PTR(err);
2330        }
2331
2332        while (!(err = link_path_walk(s, nd)) &&
2333               (s = lookup_last(nd)) != NULL)
2334                ;
2335        if (!err)
2336                err = complete_walk(nd);
2337
2338        if (!err && nd->flags & LOOKUP_DIRECTORY)
2339                if (!d_can_lookup(nd->path.dentry))
2340                        err = -ENOTDIR;
2341        if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2342                err = handle_lookup_down(nd);
2343                nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2344        }
2345        if (!err) {
2346                *path = nd->path;
2347                nd->path.mnt = NULL;
2348                nd->path.dentry = NULL;
2349        }
2350        terminate_walk(nd);
2351        return err;
2352}
2353
2354int filename_lookup(int dfd, struct filename *name, unsigned flags,
2355                    struct path *path, struct path *root)
2356{
2357        int retval;
2358        struct nameidata nd;
2359        if (IS_ERR(name))
2360                return PTR_ERR(name);
2361        if (unlikely(root)) {
2362                nd.root = *root;
2363                flags |= LOOKUP_ROOT;
2364        }
2365        set_nameidata(&nd, dfd, name);
2366        retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2367        if (unlikely(retval == -ECHILD))
2368                retval = path_lookupat(&nd, flags, path);
2369        if (unlikely(retval == -ESTALE))
2370                retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2371
2372        if (likely(!retval))
2373                audit_inode(name, path->dentry,
2374                            flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2375        restore_nameidata();
2376        putname(name);
2377        return retval;
2378}
2379
2380/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2381static int path_parentat(struct nameidata *nd, unsigned flags,
2382                                struct path *parent)
2383{
2384        const char *s = path_init(nd, flags);
2385        int err = link_path_walk(s, nd);
2386        if (!err)
2387                err = complete_walk(nd);
2388        if (!err) {
2389                *parent = nd->path;
2390                nd->path.mnt = NULL;
2391                nd->path.dentry = NULL;
2392        }
2393        terminate_walk(nd);
2394        return err;
2395}
2396
2397static struct filename *filename_parentat(int dfd, struct filename *name,
2398                                unsigned int flags, struct path *parent,
2399                                struct qstr *last, int *type)
2400{
2401        int retval;
2402        struct nameidata nd;
2403
2404        if (IS_ERR(name))
2405                return name;
2406        set_nameidata(&nd, dfd, name);
2407        retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2408        if (unlikely(retval == -ECHILD))
2409                retval = path_parentat(&nd, flags, parent);
2410        if (unlikely(retval == -ESTALE))
2411                retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2412        if (likely(!retval)) {
2413                *last = nd.last;
2414                *type = nd.last_type;
2415                audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2416        } else {
2417                putname(name);
2418                name = ERR_PTR(retval);
2419        }
2420        restore_nameidata();
2421        return name;
2422}
2423
2424/* does lookup, returns the object with parent locked */
2425struct dentry *kern_path_locked(const char *name, struct path *path)
2426{
2427        struct filename *filename;
2428        struct dentry *d;
2429        struct qstr last;
2430        int type;
2431
2432        filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2433                                    &last, &type);
2434        if (IS_ERR(filename))
2435                return ERR_CAST(filename);
2436        if (unlikely(type != LAST_NORM)) {
2437                path_put(path);
2438                putname(filename);
2439                return ERR_PTR(-EINVAL);
2440        }
2441        inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2442        d = __lookup_hash(&last, path->dentry, 0);
2443        if (IS_ERR(d)) {
2444                inode_unlock(path->dentry->d_inode);
2445                path_put(path);
2446        }
2447        putname(filename);
2448        return d;
2449}
2450
2451int kern_path(const char *name, unsigned int flags, struct path *path)
2452{
2453        return filename_lookup(AT_FDCWD, getname_kernel(name),
2454                               flags, path, NULL);
2455}
2456EXPORT_SYMBOL(kern_path);
2457
2458/**
2459 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2460 * @dentry:  pointer to dentry of the base directory
2461 * @mnt: pointer to vfs mount of the base directory
2462 * @name: pointer to file name
2463 * @flags: lookup flags
2464 * @path: pointer to struct path to fill
2465 */
2466int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2467                    const char *name, unsigned int flags,
2468                    struct path *path)
2469{
2470        struct path root = {.mnt = mnt, .dentry = dentry};
2471        /* the first argument of filename_lookup() is ignored with root */
2472        return filename_lookup(AT_FDCWD, getname_kernel(name),
2473                               flags , path, &root);
2474}
2475EXPORT_SYMBOL(vfs_path_lookup);
2476
2477static int lookup_one_len_common(const char *name, struct dentry *base,
2478                                 int len, struct qstr *this)
2479{
2480        this->name = name;
2481        this->len = len;
2482        this->hash = full_name_hash(base, name, len);
2483        if (!len)
2484                return -EACCES;
2485
2486        if (unlikely(name[0] == '.')) {
2487                if (len < 2 || (len == 2 && name[1] == '.'))
2488                        return -EACCES;
2489        }
2490
2491        while (len--) {
2492                unsigned int c = *(const unsigned char *)name++;
2493                if (c == '/' || c == '\0')
2494                        return -EACCES;
2495        }
2496        /*
2497         * See if the low-level filesystem might want
2498         * to use its own hash..
2499         */
2500        if (base->d_flags & DCACHE_OP_HASH) {
2501                int err = base->d_op->d_hash(base, this);
2502                if (err < 0)
2503                        return err;
2504        }
2505
2506        return inode_permission(base->d_inode, MAY_EXEC);
2507}
2508
2509/**
2510 * try_lookup_one_len - filesystem helper to lookup single pathname component
2511 * @name:       pathname component to lookup
2512 * @base:       base directory to lookup from
2513 * @len:        maximum length @len should be interpreted to
2514 *
2515 * Look up a dentry by name in the dcache, returning NULL if it does not
2516 * currently exist.  The function does not try to create a dentry.
2517 *
2518 * Note that this routine is purely a helper for filesystem usage and should
2519 * not be called by generic code.
2520 *
2521 * The caller must hold base->i_mutex.
2522 */
2523struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2524{
2525        struct qstr this;
2526        int err;
2527
2528        WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2529
2530        err = lookup_one_len_common(name, base, len, &this);
2531        if (err)
2532                return ERR_PTR(err);
2533
2534        return lookup_dcache(&this, base, 0);
2535}
2536EXPORT_SYMBOL(try_lookup_one_len);
2537
2538/**
2539 * lookup_one_len - filesystem helper to lookup single pathname component
2540 * @name:       pathname component to lookup
2541 * @base:       base directory to lookup from
2542 * @len:        maximum length @len should be interpreted to
2543 *
2544 * Note that this routine is purely a helper for filesystem usage and should
2545 * not be called by generic code.
2546 *
2547 * The caller must hold base->i_mutex.
2548 */
2549struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2550{
2551        struct dentry *dentry;
2552        struct qstr this;
2553        int err;
2554
2555        WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2556
2557        err = lookup_one_len_common(name, base, len, &this);
2558        if (err)
2559                return ERR_PTR(err);
2560
2561        dentry = lookup_dcache(&this, base, 0);
2562        return dentry ? dentry : __lookup_slow(&this, base, 0);
2563}
2564EXPORT_SYMBOL(lookup_one_len);
2565
2566/**
2567 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2568 * @name:       pathname component to lookup
2569 * @base:       base directory to lookup from
2570 * @len:        maximum length @len should be interpreted to
2571 *
2572 * Note that this routine is purely a helper for filesystem usage and should
2573 * not be called by generic code.
2574 *
2575 * Unlike lookup_one_len, it should be called without the parent
2576 * i_mutex held, and will take the i_mutex itself if necessary.
2577 */
2578struct dentry *lookup_one_len_unlocked(const char *name,
2579                                       struct dentry *base, int len)
2580{
2581        struct qstr this;
2582        int err;
2583        struct dentry *ret;
2584
2585        err = lookup_one_len_common(name, base, len, &this);
2586        if (err)
2587                return ERR_PTR(err);
2588
2589        ret = lookup_dcache(&this, base, 0);
2590        if (!ret)
2591                ret = lookup_slow(&this, base, 0);
2592        return ret;
2593}
2594EXPORT_SYMBOL(lookup_one_len_unlocked);
2595
2596/*
2597 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2598 * on negatives.  Returns known positive or ERR_PTR(); that's what
2599 * most of the users want.  Note that pinned negative with unlocked parent
2600 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2601 * need to be very careful; pinned positives have ->d_inode stable, so
2602 * this one avoids such problems.
2603 */
2604struct dentry *lookup_positive_unlocked(const char *name,
2605                                       struct dentry *base, int len)
2606{
2607        struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2608        if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2609                dput(ret);
2610                ret = ERR_PTR(-ENOENT);
2611        }
2612        return ret;
2613}
2614EXPORT_SYMBOL(lookup_positive_unlocked);
2615
2616#ifdef CONFIG_UNIX98_PTYS
2617int path_pts(struct path *path)
2618{
2619        /* Find something mounted on "pts" in the same directory as
2620         * the input path.
2621         */
2622        struct dentry *parent = dget_parent(path->dentry);
2623        struct dentry *child;
2624        struct qstr this = QSTR_INIT("pts", 3);
2625
2626        if (unlikely(!path_connected(path->mnt, parent))) {
2627                dput(parent);
2628                return -ENOENT;
2629        }
2630        dput(path->dentry);
2631        path->dentry = parent;
2632        child = d_hash_and_lookup(parent, &this);
2633        if (!child)
2634                return -ENOENT;
2635
2636        path->dentry = child;
2637        dput(parent);
2638        follow_down(path);
2639        return 0;
2640}
2641#endif
2642
2643int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2644                 struct path *path, int *empty)
2645{
2646        return filename_lookup(dfd, getname_flags(name, flags, empty),
2647                               flags, path, NULL);
2648}
2649EXPORT_SYMBOL(user_path_at_empty);
2650
2651int __check_sticky(struct inode *dir, struct inode *inode)
2652{
2653        kuid_t fsuid = current_fsuid();
2654
2655        if (uid_eq(inode->i_uid, fsuid))
2656                return 0;
2657        if (uid_eq(dir->i_uid, fsuid))
2658                return 0;
2659        return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2660}
2661EXPORT_SYMBOL(__check_sticky);
2662
2663/*
2664 *      Check whether we can remove a link victim from directory dir, check
2665 *  whether the type of victim is right.
2666 *  1. We can't do it if dir is read-only (done in permission())
2667 *  2. We should have write and exec permissions on dir
2668 *  3. We can't remove anything from append-only dir
2669 *  4. We can't do anything with immutable dir (done in permission())
2670 *  5. If the sticky bit on dir is set we should either
2671 *      a. be owner of dir, or
2672 *      b. be owner of victim, or
2673 *      c. have CAP_FOWNER capability
2674 *  6. If the victim is append-only or immutable we can't do antyhing with
2675 *     links pointing to it.
2676 *  7. If the victim has an unknown uid or gid we can't change the inode.
2677 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2678 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2679 * 10. We can't remove a root or mountpoint.
2680 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2681 *     nfs_async_unlink().
2682 */
2683static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2684{
2685        struct inode *inode = d_backing_inode(victim);
2686        int error;
2687
2688        if (d_is_negative(victim))
2689                return -ENOENT;
2690        BUG_ON(!inode);
2691
2692        BUG_ON(victim->d_parent->d_inode != dir);
2693
2694        /* Inode writeback is not safe when the uid or gid are invalid. */
2695        if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2696                return -EOVERFLOW;
2697
2698        audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2699
2700        error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2701        if (error)
2702                return error;
2703        if (IS_APPEND(dir))
2704                return -EPERM;
2705
2706        if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2707            IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2708                return -EPERM;
2709        if (isdir) {
2710                if (!d_is_dir(victim))
2711                        return -ENOTDIR;
2712                if (IS_ROOT(victim))
2713                        return -EBUSY;
2714        } else if (d_is_dir(victim))
2715                return -EISDIR;
2716        if (IS_DEADDIR(dir))
2717                return -ENOENT;
2718        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2719                return -EBUSY;
2720        return 0;
2721}
2722
2723/*      Check whether we can create an object with dentry child in directory
2724 *  dir.
2725 *  1. We can't do it if child already exists (open has special treatment for
2726 *     this case, but since we are inlined it's OK)
2727 *  2. We can't do it if dir is read-only (done in permission())
2728 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2729 *  4. We should have write and exec permissions on dir
2730 *  5. We can't do it if dir is immutable (done in permission())
2731 */
2732static inline int may_create(struct inode *dir, struct dentry *child)
2733{
2734        struct user_namespace *s_user_ns;
2735        audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2736        if (child->d_inode)
2737                return -EEXIST;
2738        if (IS_DEADDIR(dir))
2739                return -ENOENT;
2740        s_user_ns = dir->i_sb->s_user_ns;
2741        if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2742            !kgid_has_mapping(s_user_ns, current_fsgid()))
2743                return -EOVERFLOW;
2744        return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2745}
2746
2747/*
2748 * p1 and p2 should be directories on the same fs.
2749 */
2750struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2751{
2752        struct dentry *p;
2753
2754        if (p1 == p2) {
2755                inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2756                return NULL;
2757        }
2758
2759        mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2760
2761        p = d_ancestor(p2, p1);
2762        if (p) {
2763                inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2764                inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2765                return p;
2766        }
2767
2768        p = d_ancestor(p1, p2);
2769        if (p) {
2770                inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2771                inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2772                return p;
2773        }
2774
2775        inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2776        inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2777        return NULL;
2778}
2779EXPORT_SYMBOL(lock_rename);
2780
2781void unlock_rename(struct dentry *p1, struct dentry *p2)
2782{
2783        inode_unlock(p1->d_inode);
2784        if (p1 != p2) {
2785                inode_unlock(p2->d_inode);
2786                mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2787        }
2788}
2789EXPORT_SYMBOL(unlock_rename);
2790
2791int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2792                bool want_excl)
2793{
2794        int error = may_create(dir, dentry);
2795        if (error)
2796                return error;
2797
2798        if (!dir->i_op->create)
2799                return -EACCES; /* shouldn't it be ENOSYS? */
2800        mode &= S_IALLUGO;
2801        mode |= S_IFREG;
2802        error = security_inode_create(dir, dentry, mode);
2803        if (error)
2804                return error;
2805        error = dir->i_op->create(dir, dentry, mode, want_excl);
2806        if (!error)
2807                fsnotify_create(dir, dentry);
2808        return error;
2809}
2810EXPORT_SYMBOL(vfs_create);
2811
2812int vfs_mkobj(struct dentry *dentry, umode_t mode,
2813                int (*f)(struct dentry *, umode_t, void *),
2814                void *arg)
2815{
2816        struct inode *dir = dentry->d_parent->d_inode;
2817        int error = may_create(dir, dentry);
2818        if (error)
2819                return error;
2820
2821        mode &= S_IALLUGO;
2822        mode |= S_IFREG;
2823        error = security_inode_create(dir, dentry, mode);
2824        if (error)
2825                return error;
2826        error = f(dentry, mode, arg);
2827        if (!error)
2828                fsnotify_create(dir, dentry);
2829        return error;
2830}
2831EXPORT_SYMBOL(vfs_mkobj);
2832
2833bool may_open_dev(const struct path *path)
2834{
2835        return !(path->mnt->mnt_flags & MNT_NODEV) &&
2836                !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2837}
2838
2839static int may_open(const struct path *path, int acc_mode, int flag)
2840{
2841        struct dentry *dentry = path->dentry;
2842        struct inode *inode = dentry->d_inode;
2843        int error;
2844
2845        if (!inode)
2846                return -ENOENT;
2847
2848        switch (inode->i_mode & S_IFMT) {
2849        case S_IFLNK:
2850                return -ELOOP;
2851        case S_IFDIR:
2852                if (acc_mode & MAY_WRITE)
2853                        return -EISDIR;
2854                if (acc_mode & MAY_EXEC)
2855                        return -EACCES;
2856                break;
2857        case S_IFBLK:
2858        case S_IFCHR:
2859                if (!may_open_dev(path))
2860                        return -EACCES;
2861                fallthrough;
2862        case S_IFIFO:
2863        case S_IFSOCK:
2864                if (acc_mode & MAY_EXEC)
2865                        return -EACCES;
2866                flag &= ~O_TRUNC;
2867                break;
2868        case S_IFREG:
2869                if ((acc_mode & MAY_EXEC) && path_noexec(path))
2870                        return -EACCES;
2871                break;
2872        }
2873
2874        error = inode_permission(inode, MAY_OPEN | acc_mode);
2875        if (error)
2876                return error;
2877
2878        /*
2879         * An append-only file must be opened in append mode for writing.
2880         */
2881        if (IS_APPEND(inode)) {
2882                if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2883                        return -EPERM;
2884                if (flag & O_TRUNC)
2885                        return -EPERM;
2886        }
2887
2888        /* O_NOATIME can only be set by the owner or superuser */
2889        if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2890                return -EPERM;
2891
2892        return 0;
2893}
2894
2895static int handle_truncate(struct file *filp)
2896{
2897        const struct path *path = &filp->f_path;
2898        struct inode *inode = path->dentry->d_inode;
2899        int error = get_write_access(inode);
2900        if (error)
2901                return error;
2902        /*
2903         * Refuse to truncate files with mandatory locks held on them.
2904         */
2905        error = locks_verify_locked(filp);
2906        if (!error)
2907                error = security_path_truncate(path);
2908        if (!error) {
2909                error = do_truncate(path->dentry, 0,
2910                                    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2911                                    filp);
2912        }
2913        put_write_access(inode);
2914        return error;
2915}
2916
2917static inline int open_to_namei_flags(int flag)
2918{
2919        if ((flag & O_ACCMODE) == 3)
2920                flag--;
2921        return flag;
2922}
2923
2924static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2925{
2926        struct user_namespace *s_user_ns;
2927        int error = security_path_mknod(dir, dentry, mode, 0);
2928        if (error)
2929                return error;
2930
2931        s_user_ns = dir->dentry->d_sb->s_user_ns;
2932        if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2933            !kgid_has_mapping(s_user_ns, current_fsgid()))
2934                return -EOVERFLOW;
2935
2936        error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2937        if (error)
2938                return error;
2939
2940        return security_inode_create(dir->dentry->d_inode, dentry, mode);
2941}
2942
2943/*
2944 * Attempt to atomically look up, create and open a file from a negative
2945 * dentry.
2946 *
2947 * Returns 0 if successful.  The file will have been created and attached to
2948 * @file by the filesystem calling finish_open().
2949 *
2950 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2951 * be set.  The caller will need to perform the open themselves.  @path will
2952 * have been updated to point to the new dentry.  This may be negative.
2953 *
2954 * Returns an error code otherwise.
2955 */
2956static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
2957                                  struct file *file,
2958                                  int open_flag, umode_t mode)
2959{
2960        struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2961        struct inode *dir =  nd->path.dentry->d_inode;
2962        int error;
2963
2964        if (nd->flags & LOOKUP_DIRECTORY)
2965                open_flag |= O_DIRECTORY;
2966
2967        file->f_path.dentry = DENTRY_NOT_SET;
2968        file->f_path.mnt = nd->path.mnt;
2969        error = dir->i_op->atomic_open(dir, dentry, file,
2970                                       open_to_namei_flags(open_flag), mode);
2971        d_lookup_done(dentry);
2972        if (!error) {
2973                if (file->f_mode & FMODE_OPENED) {
2974                        if (unlikely(dentry != file->f_path.dentry)) {
2975                                dput(dentry);
2976                                dentry = dget(file->f_path.dentry);
2977                        }
2978                } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2979                        error = -EIO;
2980                } else {
2981                        if (file->f_path.dentry) {
2982                                dput(dentry);
2983                                dentry = file->f_path.dentry;
2984                        }
2985                        if (unlikely(d_is_negative(dentry)))
2986                                error = -ENOENT;
2987                }
2988        }
2989        if (error) {
2990                dput(dentry);
2991                dentry = ERR_PTR(error);
2992        }
2993        return dentry;
2994}
2995
2996/*
2997 * Look up and maybe create and open the last component.
2998 *
2999 * Must be called with parent locked (exclusive in O_CREAT case).
3000 *
3001 * Returns 0 on success, that is, if
3002 *  the file was successfully atomically created (if necessary) and opened, or
3003 *  the file was not completely opened at this time, though lookups and
3004 *  creations were performed.
3005 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3006 * In the latter case dentry returned in @path might be negative if O_CREAT
3007 * hadn't been specified.
3008 *
3009 * An error code is returned on failure.
3010 */
3011static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3012                                  const struct open_flags *op,
3013                                  bool got_write)
3014{
3015        struct dentry *dir = nd->path.dentry;
3016        struct inode *dir_inode = dir->d_inode;
3017        int open_flag = op->open_flag;
3018        struct dentry *dentry;
3019        int error, create_error = 0;
3020        umode_t mode = op->mode;
3021        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3022
3023        if (unlikely(IS_DEADDIR(dir_inode)))
3024                return ERR_PTR(-ENOENT);
3025
3026        file->f_mode &= ~FMODE_CREATED;
3027        dentry = d_lookup(dir, &nd->last);
3028        for (;;) {
3029                if (!dentry) {
3030                        dentry = d_alloc_parallel(dir, &nd->last, &wq);
3031                        if (IS_ERR(dentry))
3032                                return dentry;
3033                }
3034                if (d_in_lookup(dentry))
3035                        break;
3036
3037                error = d_revalidate(dentry, nd->flags);
3038                if (likely(error > 0))
3039                        break;
3040                if (error)
3041                        goto out_dput;
3042                d_invalidate(dentry);
3043                dput(dentry);
3044                dentry = NULL;
3045        }
3046        if (dentry->d_inode) {
3047                /* Cached positive dentry: will open in f_op->open */
3048                return dentry;
3049        }
3050
3051        /*
3052         * Checking write permission is tricky, bacuse we don't know if we are
3053         * going to actually need it: O_CREAT opens should work as long as the
3054         * file exists.  But checking existence breaks atomicity.  The trick is
3055         * to check access and if not granted clear O_CREAT from the flags.
3056         *
3057         * Another problem is returing the "right" error value (e.g. for an
3058         * O_EXCL open we want to return EEXIST not EROFS).
3059         */
3060        if (unlikely(!got_write))
3061                open_flag &= ~O_TRUNC;
3062        if (open_flag & O_CREAT) {
3063                if (open_flag & O_EXCL)
3064                        open_flag &= ~O_TRUNC;
3065                if (!IS_POSIXACL(dir->d_inode))
3066                        mode &= ~current_umask();
3067                if (likely(got_write))
3068                        create_error = may_o_create(&nd->path, dentry, mode);
3069                else
3070                        create_error = -EROFS;
3071        }
3072        if (create_error)
3073                open_flag &= ~O_CREAT;
3074        if (dir_inode->i_op->atomic_open) {
3075                dentry = atomic_open(nd, dentry, file, open_flag, mode);
3076                if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3077                        dentry = ERR_PTR(create_error);
3078                return dentry;
3079        }
3080
3081        if (d_in_lookup(dentry)) {
3082                struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3083                                                             nd->flags);
3084                d_lookup_done(dentry);
3085                if (unlikely(res)) {
3086                        if (IS_ERR(res)) {
3087                                error = PTR_ERR(res);
3088                                goto out_dput;
3089                        }
3090                        dput(dentry);
3091                        dentry = res;
3092                }
3093        }
3094
3095        /* Negative dentry, just create the file */
3096        if (!dentry->d_inode && (open_flag & O_CREAT)) {
3097                file->f_mode |= FMODE_CREATED;
3098                audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3099                if (!dir_inode->i_op->create) {
3100                        error = -EACCES;
3101                        goto out_dput;
3102                }
3103                error = dir_inode->i_op->create(dir_inode, dentry, mode,
3104                                                open_flag & O_EXCL);
3105                if (error)
3106                        goto out_dput;
3107        }
3108        if (unlikely(create_error) && !dentry->d_inode) {
3109                error = create_error;
3110                goto out_dput;
3111        }
3112        return dentry;
3113
3114out_dput:
3115        dput(dentry);
3116        return ERR_PTR(error);
3117}
3118
3119static const char *open_last_lookups(struct nameidata *nd,
3120                   struct file *file, const struct open_flags *op)
3121{
3122        struct dentry *dir = nd->path.dentry;
3123        int open_flag = op->open_flag;
3124        bool got_write = false;
3125        unsigned seq;
3126        struct inode *inode;
3127        struct dentry *dentry;
3128        const char *res;
3129        int error;
3130
3131        nd->flags |= op->intent;
3132
3133        if (nd->last_type != LAST_NORM) {
3134                if (nd->depth)
3135                        put_link(nd);
3136                return handle_dots(nd, nd->last_type);
3137        }
3138
3139        if (!(open_flag & O_CREAT)) {
3140                if (nd->last.name[nd->last.len])
3141                        nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3142                /* we _can_ be in RCU mode here */
3143                dentry = lookup_fast(nd, &inode, &seq);
3144                if (IS_ERR(dentry))
3145                        return ERR_CAST(dentry);
3146                if (likely(dentry))
3147                        goto finish_lookup;
3148
3149                BUG_ON(nd->flags & LOOKUP_RCU);
3150        } else {
3151                /* create side of things */
3152                if (nd->flags & LOOKUP_RCU) {
3153                        error = unlazy_walk(nd);
3154                        if (unlikely(error))
3155                                return ERR_PTR(error);
3156                }
3157                audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3158                /* trailing slashes? */
3159                if (unlikely(nd->last.name[nd->last.len]))
3160                        return ERR_PTR(-EISDIR);
3161        }
3162
3163        if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3164                error = mnt_want_write(nd->path.mnt);
3165                if (!error)
3166                        got_write = true;
3167                /*
3168                 * do _not_ fail yet - we might not need that or fail with
3169                 * a different error; let lookup_open() decide; we'll be
3170                 * dropping this one anyway.
3171                 */
3172        }
3173        if (open_flag & O_CREAT)
3174                inode_lock(dir->d_inode);
3175        else
3176                inode_lock_shared(dir->d_inode);
3177        dentry = lookup_open(nd, file, op, got_write);
3178        if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3179                fsnotify_create(dir->d_inode, dentry);
3180        if (open_flag & O_CREAT)
3181                inode_unlock(dir->d_inode);
3182        else
3183                inode_unlock_shared(dir->d_inode);
3184
3185        if (got_write)
3186                mnt_drop_write(nd->path.mnt);
3187
3188        if (IS_ERR(dentry))
3189                return ERR_CAST(dentry);
3190
3191        if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3192                dput(nd->path.dentry);
3193                nd->path.dentry = dentry;
3194                return NULL;
3195        }
3196
3197finish_lookup:
3198        if (nd->depth)
3199                put_link(nd);
3200        res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3201        if (unlikely(res))
3202                nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3203        return res;
3204}
3205
3206/*
3207 * Handle the last step of open()
3208 */
3209static int do_open(struct nameidata *nd,
3210                   struct file *file, const struct open_flags *op)
3211{
3212        int open_flag = op->open_flag;
3213        bool do_truncate;
3214        int acc_mode;
3215        int error;
3216
3217        if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3218                error = complete_walk(nd);
3219                if (error)
3220                        return error;
3221        }
3222        if (!(file->f_mode & FMODE_CREATED))
3223                audit_inode(nd->name, nd->path.dentry, 0);
3224        if (open_flag & O_CREAT) {
3225                if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3226                        return -EEXIST;
3227                if (d_is_dir(nd->path.dentry))
3228                        return -EISDIR;
3229                error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3230                                             d_backing_inode(nd->path.dentry));
3231                if (unlikely(error))
3232                        return error;
3233        }
3234        if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3235                return -ENOTDIR;
3236
3237        do_truncate = false;
3238        acc_mode = op->acc_mode;
3239        if (file->f_mode & FMODE_CREATED) {
3240                /* Don't check for write permission, don't truncate */
3241                open_flag &= ~O_TRUNC;
3242                acc_mode = 0;
3243        } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3244                error = mnt_want_write(nd->path.mnt);
3245                if (error)
3246                        return error;
3247                do_truncate = true;
3248        }
3249        error = may_open(&nd->path, acc_mode, open_flag);
3250        if (!error && !(file->f_mode & FMODE_OPENED))
3251                error = vfs_open(&nd->path, file);
3252        if (!error)
3253                error = ima_file_check(file, op->acc_mode);
3254        if (!error && do_truncate)
3255                error = handle_truncate(file);
3256        if (unlikely(error > 0)) {
3257                WARN_ON(1);
3258                error = -EINVAL;
3259        }
3260        if (do_truncate)
3261                mnt_drop_write(nd->path.mnt);
3262        return error;
3263}
3264
3265struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3266{
3267        struct dentry *child = NULL;
3268        struct inode *dir = dentry->d_inode;
3269        struct inode *inode;
3270        int error;
3271
3272        /* we want directory to be writable */
3273        error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3274        if (error)
3275                goto out_err;
3276        error = -EOPNOTSUPP;
3277        if (!dir->i_op->tmpfile)
3278                goto out_err;
3279        error = -ENOMEM;
3280        child = d_alloc(dentry, &slash_name);
3281        if (unlikely(!child))
3282                goto out_err;
3283        error = dir->i_op->tmpfile(dir, child, mode);
3284        if (error)
3285                goto out_err;
3286        error = -ENOENT;
3287        inode = child->d_inode;
3288        if (unlikely(!inode))
3289                goto out_err;
3290        if (!(open_flag & O_EXCL)) {
3291                spin_lock(&inode->i_lock);
3292                inode->i_state |= I_LINKABLE;
3293                spin_unlock(&inode->i_lock);
3294        }
3295        ima_post_create_tmpfile(inode);
3296        return child;
3297
3298out_err:
3299        dput(child);
3300        return ERR_PTR(error);
3301}
3302EXPORT_SYMBOL(vfs_tmpfile);
3303
3304static int do_tmpfile(struct nameidata *nd, unsigned flags,
3305                const struct open_flags *op,
3306                struct file *file)
3307{
3308        struct dentry *child;
3309        struct path path;
3310        int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3311        if (unlikely(error))
3312                return error;
3313        error = mnt_want_write(path.mnt);
3314        if (unlikely(error))
3315                goto out;
3316        child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3317        error = PTR_ERR(child);
3318        if (IS_ERR(child))
3319                goto out2;
3320        dput(path.dentry);
3321        path.dentry = child;
3322        audit_inode(nd->name, child, 0);
3323        /* Don't check for other permissions, the inode was just created */
3324        error = may_open(&path, 0, op->open_flag);
3325        if (error)
3326                goto out2;
3327        file->f_path.mnt = path.mnt;
3328        error = finish_open(file, child, NULL);
3329out2:
3330        mnt_drop_write(path.mnt);
3331out:
3332        path_put(&path);
3333        return error;
3334}
3335
3336static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3337{
3338        struct path path;
3339        int error = path_lookupat(nd, flags, &path);
3340        if (!error) {
3341                audit_inode(nd->name, path.dentry, 0);
3342                error = vfs_open(&path, file);
3343                path_put(&path);
3344        }
3345        return error;
3346}
3347
3348static struct file *path_openat(struct nameidata *nd,
3349                        const struct open_flags *op, unsigned flags)
3350{
3351        struct file *file;
3352        int error;
3353
3354        file = alloc_empty_file(op->open_flag, current_cred());
3355        if (IS_ERR(file))
3356                return file;
3357
3358        if (unlikely(file->f_flags & __O_TMPFILE)) {
3359                error = do_tmpfile(nd, flags, op, file);
3360        } else if (unlikely(file->f_flags & O_PATH)) {
3361                error = do_o_path(nd, flags, file);
3362        } else {
3363                const char *s = path_init(nd, flags);
3364                while (!(error = link_path_walk(s, nd)) &&
3365                       (s = open_last_lookups(nd, file, op)) != NULL)
3366                        ;
3367                if (!error)
3368                        error = do_open(nd, file, op);
3369                terminate_walk(nd);
3370        }
3371        if (likely(!error)) {
3372                if (likely(file->f_mode & FMODE_OPENED))
3373                        return file;
3374                WARN_ON(1);
3375                error = -EINVAL;
3376        }
3377        fput(file);
3378        if (error == -EOPENSTALE) {
3379                if (flags & LOOKUP_RCU)
3380                        error = -ECHILD;
3381                else
3382                        error = -ESTALE;
3383        }
3384        return ERR_PTR(error);
3385}
3386
3387struct file *do_filp_open(int dfd, struct filename *pathname,
3388                const struct open_flags *op)
3389{
3390        struct nameidata nd;
3391        int flags = op->lookup_flags;
3392        struct file *filp;
3393
3394        set_nameidata(&nd, dfd, pathname);
3395        filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3396        if (unlikely(filp == ERR_PTR(-ECHILD)))
3397                filp = path_openat(&nd, op, flags);
3398        if (unlikely(filp == ERR_PTR(-ESTALE)))
3399                filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3400        restore_nameidata();
3401        return filp;
3402}
3403
3404struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3405                const char *name, const struct open_flags *op)
3406{
3407        struct nameidata nd;
3408        struct file *file;
3409        struct filename *filename;
3410        int flags = op->lookup_flags | LOOKUP_ROOT;
3411
3412        nd.root.mnt = mnt;
3413        nd.root.dentry = dentry;
3414
3415        if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3416                return ERR_PTR(-ELOOP);
3417
3418        filename = getname_kernel(name);
3419        if (IS_ERR(filename))
3420                return ERR_CAST(filename);
3421
3422        set_nameidata(&nd, -1, filename);
3423        file = path_openat(&nd, op, flags | LOOKUP_RCU);
3424        if (unlikely(file == ERR_PTR(-ECHILD)))
3425                file = path_openat(&nd, op, flags);
3426        if (unlikely(file == ERR_PTR(-ESTALE)))
3427                file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3428        restore_nameidata();
3429        putname(filename);
3430        return file;
3431}
3432
3433static struct dentry *filename_create(int dfd, struct filename *name,
3434                                struct path *path, unsigned int lookup_flags)
3435{
3436        struct dentry *dentry = ERR_PTR(-EEXIST);
3437        struct qstr last;
3438        int type;
3439        int err2;
3440        int error;
3441        bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3442
3443        /*
3444         * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3445         * other flags passed in are ignored!
3446         */
3447        lookup_flags &= LOOKUP_REVAL;
3448
3449        name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3450        if (IS_ERR(name))
3451                return ERR_CAST(name);
3452
3453        /*
3454         * Yucky last component or no last component at all?
3455         * (foo/., foo/.., /////)
3456         */
3457        if (unlikely(type != LAST_NORM))
3458                goto out;
3459
3460        /* don't fail immediately if it's r/o, at least try to report other errors */
3461        err2 = mnt_want_write(path->mnt);
3462        /*
3463         * Do the final lookup.
3464         */
3465        lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3466        inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3467        dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3468        if (IS_ERR(dentry))
3469                goto unlock;
3470
3471        error = -EEXIST;
3472        if (d_is_positive(dentry))
3473                goto fail;
3474
3475        /*
3476         * Special case - lookup gave negative, but... we had foo/bar/
3477         * From the vfs_mknod() POV we just have a negative dentry -
3478         * all is fine. Let's be bastards - you had / on the end, you've
3479         * been asking for (non-existent) directory. -ENOENT for you.
3480         */
3481        if (unlikely(!is_dir && last.name[last.len])) {
3482                error = -ENOENT;
3483                goto fail;
3484        }
3485        if (unlikely(err2)) {
3486                error = err2;
3487                goto fail;
3488        }
3489        putname(name);
3490        return dentry;
3491fail:
3492        dput(dentry);
3493        dentry = ERR_PTR(error);
3494unlock:
3495        inode_unlock(path->dentry->d_inode);
3496        if (!err2)
3497                mnt_drop_write(path->mnt);
3498out:
3499        path_put(path);
3500        putname(name);
3501        return dentry;
3502}
3503
3504struct dentry *kern_path_create(int dfd, const char *pathname,
3505                                struct path *path, unsigned int lookup_flags)
3506{
3507        return filename_create(dfd, getname_kernel(pathname),
3508                                path, lookup_flags);
3509}
3510EXPORT_SYMBOL(kern_path_create);
3511
3512void done_path_create(struct path *path, struct dentry *dentry)
3513{
3514        dput(dentry);
3515        inode_unlock(path->dentry->d_inode);
3516        mnt_drop_write(path->mnt);
3517        path_put(path);
3518}
3519EXPORT_SYMBOL(done_path_create);
3520
3521inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3522                                struct path *path, unsigned int lookup_flags)
3523{
3524        return filename_create(dfd, getname(pathname), path, lookup_flags);
3525}
3526EXPORT_SYMBOL(user_path_create);
3527
3528int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3529{
3530        bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3531        int error = may_create(dir, dentry);
3532
3533        if (error)
3534                return error;
3535
3536        if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3537            !capable(CAP_MKNOD))
3538                return -EPERM;
3539
3540        if (!dir->i_op->mknod)
3541                return -EPERM;
3542
3543        error = devcgroup_inode_mknod(mode, dev);
3544        if (error)
3545                return error;
3546
3547        error = security_inode_mknod(dir, dentry, mode, dev);
3548        if (error)
3549                return error;
3550
3551        error = dir->i_op->mknod(dir, dentry, mode, dev);
3552        if (!error)
3553                fsnotify_create(dir, dentry);
3554        return error;
3555}
3556EXPORT_SYMBOL(vfs_mknod);
3557
3558static int may_mknod(umode_t mode)
3559{
3560        switch (mode & S_IFMT) {
3561        case S_IFREG:
3562        case S_IFCHR:
3563        case S_IFBLK:
3564        case S_IFIFO:
3565        case S_IFSOCK:
3566        case 0: /* zero mode translates to S_IFREG */
3567                return 0;
3568        case S_IFDIR:
3569                return -EPERM;
3570        default:
3571                return -EINVAL;
3572        }
3573}
3574
3575static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3576                unsigned int dev)
3577{
3578        struct dentry *dentry;
3579        struct path path;
3580        int error;
3581        unsigned int lookup_flags = 0;
3582
3583        error = may_mknod(mode);
3584        if (error)
3585                return error;
3586retry:
3587        dentry = user_path_create(dfd, filename, &path, lookup_flags);
3588        if (IS_ERR(dentry))
3589                return PTR_ERR(dentry);
3590
3591        if (!IS_POSIXACL(path.dentry->d_inode))
3592                mode &= ~current_umask();
3593        error = security_path_mknod(&path, dentry, mode, dev);
3594        if (error)
3595                goto out;
3596        switch (mode & S_IFMT) {
3597                case 0: case S_IFREG:
3598                        error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3599                        if (!error)
3600                                ima_post_path_mknod(dentry);
3601                        break;
3602                case S_IFCHR: case S_IFBLK:
3603                        error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3604                                        new_decode_dev(dev));
3605                        break;
3606                case S_IFIFO: case S_IFSOCK:
3607                        error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3608                        break;
3609        }
3610out:
3611        done_path_create(&path, dentry);
3612        if (retry_estale(error, lookup_flags)) {
3613                lookup_flags |= LOOKUP_REVAL;
3614                goto retry;
3615        }
3616        return error;
3617}
3618
3619SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3620                unsigned int, dev)
3621{
3622        return do_mknodat(dfd, filename, mode, dev);
3623}
3624
3625SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3626{
3627        return do_mknodat(AT_FDCWD, filename, mode, dev);
3628}
3629
3630int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3631{
3632        int error = may_create(dir, dentry);
3633        unsigned max_links = dir->i_sb->s_max_links;
3634
3635        if (error)
3636                return error;
3637
3638        if (!dir->i_op->mkdir)
3639                return -EPERM;
3640
3641        mode &= (S_IRWXUGO|S_ISVTX);
3642        error = security_inode_mkdir(dir, dentry, mode);
3643        if (error)
3644                return error;
3645
3646        if (max_links && dir->i_nlink >= max_links)
3647                return -EMLINK;
3648
3649        error = dir->i_op->mkdir(dir, dentry, mode);
3650        if (!error)
3651                fsnotify_mkdir(dir, dentry);
3652        return error;
3653}
3654EXPORT_SYMBOL(vfs_mkdir);
3655
3656static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3657{
3658        struct dentry *dentry;
3659        struct path path;
3660        int error;
3661        unsigned int lookup_flags = LOOKUP_DIRECTORY;
3662
3663retry:
3664        dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3665        if (IS_ERR(dentry))
3666                return PTR_ERR(dentry);
3667
3668        if (!IS_POSIXACL(path.dentry->d_inode))
3669                mode &= ~current_umask();
3670        error = security_path_mkdir(&path, dentry, mode);
3671        if (!error)
3672                error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3673        done_path_create(&path, dentry);
3674        if (retry_estale(error, lookup_flags)) {
3675                lookup_flags |= LOOKUP_REVAL;
3676                goto retry;
3677        }
3678        return error;
3679}
3680
3681SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3682{
3683        return do_mkdirat(dfd, pathname, mode);
3684}
3685
3686SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3687{
3688        return do_mkdirat(AT_FDCWD, pathname, mode);
3689}
3690
3691int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3692{
3693        int error = may_delete(dir, dentry, 1);
3694
3695        if (error)
3696                return error;
3697
3698        if (!dir->i_op->rmdir)
3699                return -EPERM;
3700
3701        dget(dentry);
3702        inode_lock(dentry->d_inode);
3703
3704        error = -EBUSY;
3705        if (is_local_mountpoint(dentry))
3706                goto out;
3707
3708        error = security_inode_rmdir(dir, dentry);
3709        if (error)
3710                goto out;
3711
3712        error = dir->i_op->rmdir(dir, dentry);
3713        if (error)
3714                goto out;
3715
3716        shrink_dcache_parent(dentry);
3717        dentry->d_inode->i_flags |= S_DEAD;
3718        dont_mount(dentry);
3719        detach_mounts(dentry);
3720        fsnotify_rmdir(dir, dentry);
3721
3722out:
3723        inode_unlock(dentry->d_inode);
3724        dput(dentry);
3725        if (!error)
3726                d_delete(dentry);
3727        return error;
3728}
3729EXPORT_SYMBOL(vfs_rmdir);
3730
3731long do_rmdir(int dfd, struct filename *name)
3732{
3733        int error = 0;
3734        struct dentry *dentry;
3735        struct path path;
3736        struct qstr last;
3737        int type;
3738        unsigned int lookup_flags = 0;
3739retry:
3740        name = filename_parentat(dfd, name, lookup_flags,
3741                                &path, &last, &type);
3742        if (IS_ERR(name))
3743                return PTR_ERR(name);
3744
3745        switch (type) {
3746        case LAST_DOTDOT:
3747                error = -ENOTEMPTY;
3748                goto exit1;
3749        case LAST_DOT:
3750                error = -EINVAL;
3751                goto exit1;
3752        case LAST_ROOT:
3753                error = -EBUSY;
3754                goto exit1;
3755        }
3756
3757        error = mnt_want_write(path.mnt);
3758        if (error)
3759                goto exit1;
3760
3761        inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3762        dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3763        error = PTR_ERR(dentry);
3764        if (IS_ERR(dentry))
3765                goto exit2;
3766        if (!dentry->d_inode) {
3767                error = -ENOENT;
3768                goto exit3;
3769        }
3770        error = security_path_rmdir(&path, dentry);
3771        if (error)
3772                goto exit3;
3773        error = vfs_rmdir(path.dentry->d_inode, dentry);
3774exit3:
3775        dput(dentry);
3776exit2:
3777        inode_unlock(path.dentry->d_inode);
3778        mnt_drop_write(path.mnt);
3779exit1:
3780        path_put(&path);
3781        if (retry_estale(error, lookup_flags)) {
3782                lookup_flags |= LOOKUP_REVAL;
3783                goto retry;
3784        }
3785        putname(name);
3786        return error;
3787}
3788
3789SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3790{
3791        return do_rmdir(AT_FDCWD, getname(pathname));
3792}
3793
3794/**
3795 * vfs_unlink - unlink a filesystem object
3796 * @dir:        parent directory
3797 * @dentry:     victim
3798 * @delegated_inode: returns victim inode, if the inode is delegated.
3799 *
3800 * The caller must hold dir->i_mutex.
3801 *
3802 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3803 * return a reference to the inode in delegated_inode.  The caller
3804 * should then break the delegation on that inode and retry.  Because
3805 * breaking a delegation may take a long time, the caller should drop
3806 * dir->i_mutex before doing so.
3807 *
3808 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3809 * be appropriate for callers that expect the underlying filesystem not
3810 * to be NFS exported.
3811 */
3812int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3813{
3814        struct inode *target = dentry->d_inode;
3815        int error = may_delete(dir, dentry, 0);
3816
3817        if (error)
3818                return error;
3819
3820        if (!dir->i_op->unlink)
3821                return -EPERM;
3822
3823        inode_lock(target);
3824        if (is_local_mountpoint(dentry))
3825                error = -EBUSY;
3826        else {
3827                error = security_inode_unlink(dir, dentry);
3828                if (!error) {
3829                        error = try_break_deleg(target, delegated_inode);
3830                        if (error)
3831                                goto out;
3832                        error = dir->i_op->unlink(dir, dentry);
3833                        if (!error) {
3834                                dont_mount(dentry);
3835                                detach_mounts(dentry);
3836                                fsnotify_unlink(dir, dentry);
3837                        }
3838                }
3839        }
3840out:
3841        inode_unlock(target);
3842
3843        /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3844        if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3845                fsnotify_link_count(target);
3846                d_delete(dentry);
3847        }
3848
3849        return error;
3850}
3851EXPORT_SYMBOL(vfs_unlink);
3852
3853/*
3854 * Make sure that the actual truncation of the file will occur outside its
3855 * directory's i_mutex.  Truncate can take a long time if there is a lot of
3856 * writeout happening, and we don't want to prevent access to the directory
3857 * while waiting on the I/O.
3858 */
3859long do_unlinkat(int dfd, struct filename *name)
3860{
3861        int error;
3862        struct dentry *dentry;
3863        struct path path;
3864        struct qstr last;
3865        int type;
3866        struct inode *inode = NULL;
3867        struct inode *delegated_inode = NULL;
3868        unsigned int lookup_flags = 0;
3869retry:
3870        name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3871        if (IS_ERR(name))
3872                return PTR_ERR(name);
3873
3874        error = -EISDIR;
3875        if (type != LAST_NORM)
3876                goto exit1;
3877
3878        error = mnt_want_write(path.mnt);
3879        if (error)
3880                goto exit1;
3881retry_deleg:
3882        inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3883        dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3884        error = PTR_ERR(dentry);
3885        if (!IS_ERR(dentry)) {
3886                /* Why not before? Because we want correct error value */
3887                if (last.name[last.len])
3888                        goto slashes;
3889                inode = dentry->d_inode;
3890                if (d_is_negative(dentry))
3891                        goto slashes;
3892                ihold(inode);
3893                error = security_path_unlink(&path, dentry);
3894                if (error)
3895                        goto exit2;
3896                error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3897exit2:
3898                dput(dentry);
3899        }
3900        inode_unlock(path.dentry->d_inode);
3901        if (inode)
3902                iput(inode);    /* truncate the inode here */
3903        inode = NULL;
3904        if (delegated_inode) {
3905                error = break_deleg_wait(&delegated_inode);
3906                if (!error)
3907                        goto retry_deleg;
3908        }
3909        mnt_drop_write(path.mnt);
3910exit1:
3911        path_put(&path);
3912        if (retry_estale(error, lookup_flags)) {
3913                lookup_flags |= LOOKUP_REVAL;
3914                inode = NULL;
3915                goto retry;
3916        }
3917        putname(name);
3918        return error;
3919
3920slashes:
3921        if (d_is_negative(dentry))
3922                error = -ENOENT;
3923        else if (d_is_dir(dentry))
3924                error = -EISDIR;
3925        else
3926                error = -ENOTDIR;
3927        goto exit2;
3928}
3929
3930SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3931{
3932        if ((flag & ~AT_REMOVEDIR) != 0)
3933                return -EINVAL;
3934
3935        if (flag & AT_REMOVEDIR)
3936                return do_rmdir(dfd, getname(pathname));
3937        return do_unlinkat(dfd, getname(pathname));
3938}
3939
3940SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3941{
3942        return do_unlinkat(AT_FDCWD, getname(pathname));
3943}
3944
3945int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3946{
3947        int error = may_create(dir, dentry);
3948
3949        if (error)
3950                return error;
3951
3952        if (!dir->i_op->symlink)
3953                return -EPERM;
3954
3955        error = security_inode_symlink(dir, dentry, oldname);
3956        if (error)
3957                return error;
3958
3959        error = dir->i_op->symlink(dir, dentry, oldname);
3960        if (!error)
3961                fsnotify_create(dir, dentry);
3962        return error;
3963}
3964EXPORT_SYMBOL(vfs_symlink);
3965
3966static long do_symlinkat(const char __user *oldname, int newdfd,
3967                  const char __user *newname)
3968{
3969        int error;
3970        struct filename *from;
3971        struct dentry *dentry;
3972        struct path path;
3973        unsigned int lookup_flags = 0;
3974
3975        from = getname(oldname);
3976        if (IS_ERR(from))
3977                return PTR_ERR(from);
3978retry:
3979        dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3980        error = PTR_ERR(dentry);
3981        if (IS_ERR(dentry))
3982                goto out_putname;
3983
3984        error = security_path_symlink(&path, dentry, from->name);
3985        if (!error)
3986                error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3987        done_path_create(&path, dentry);
3988        if (retry_estale(error, lookup_flags)) {
3989                lookup_flags |= LOOKUP_REVAL;
3990                goto retry;
3991        }
3992out_putname:
3993        putname(from);
3994        return error;
3995}
3996
3997SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3998                int, newdfd, const char __user *, newname)
3999{
4000        return do_symlinkat(oldname, newdfd, newname);
4001}
4002
4003SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4004{
4005        return do_symlinkat(oldname, AT_FDCWD, newname);
4006}
4007
4008/**
4009 * vfs_link - create a new link
4010 * @old_dentry: object to be linked
4011 * @dir:        new parent
4012 * @new_dentry: where to create the new link
4013 * @delegated_inode: returns inode needing a delegation break
4014 *
4015 * The caller must hold dir->i_mutex
4016 *
4017 * If vfs_link discovers a delegation on the to-be-linked file in need
4018 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4019 * inode in delegated_inode.  The caller should then break the delegation
4020 * and retry.  Because breaking a delegation may take a long time, the
4021 * caller should drop the i_mutex before doing so.
4022 *
4023 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4024 * be appropriate for callers that expect the underlying filesystem not
4025 * to be NFS exported.
4026 */
4027int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4028{
4029        struct inode *inode = old_dentry->d_inode;
4030        unsigned max_links = dir->i_sb->s_max_links;
4031        int error;
4032
4033        if (!inode)
4034                return -ENOENT;
4035
4036        error = may_create(dir, new_dentry);
4037        if (error)
4038                return error;
4039
4040        if (dir->i_sb != inode->i_sb)
4041                return -EXDEV;
4042
4043        /*
4044         * A link to an append-only or immutable file cannot be created.
4045         */
4046        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4047                return -EPERM;
4048        /*
4049         * Updating the link count will likely cause i_uid and i_gid to
4050         * be writen back improperly if their true value is unknown to
4051         * the vfs.
4052         */
4053        if (HAS_UNMAPPED_ID(inode))
4054                return -EPERM;
4055        if (!dir->i_op->link)
4056                return -EPERM;
4057        if (S_ISDIR(inode->i_mode))
4058                return -EPERM;
4059
4060        error = security_inode_link(old_dentry, dir, new_dentry);
4061        if (error)
4062                return error;
4063
4064        inode_lock(inode);
4065        /* Make sure we don't allow creating hardlink to an unlinked file */
4066        if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4067                error =  -ENOENT;
4068        else if (max_links && inode->i_nlink >= max_links)
4069                error = -EMLINK;
4070        else {
4071                error = try_break_deleg(inode, delegated_inode);
4072                if (!error)
4073                        error = dir->i_op->link(old_dentry, dir, new_dentry);
4074        }
4075
4076        if (!error && (inode->i_state & I_LINKABLE)) {
4077                spin_lock(&inode->i_lock);
4078                inode->i_state &= ~I_LINKABLE;
4079                spin_unlock(&inode->i_lock);
4080        }
4081        inode_unlock(inode);
4082        if (!error)
4083                fsnotify_link(dir, inode, new_dentry);
4084        return error;
4085}
4086EXPORT_SYMBOL(vfs_link);
4087
4088/*
4089 * Hardlinks are often used in delicate situations.  We avoid
4090 * security-related surprises by not following symlinks on the
4091 * newname.  --KAB
4092 *
4093 * We don't follow them on the oldname either to be compatible
4094 * with linux 2.0, and to avoid hard-linking to directories
4095 * and other special files.  --ADM
4096 */
4097static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4098              const char __user *newname, int flags)
4099{
4100        struct dentry *new_dentry;
4101        struct path old_path, new_path;
4102        struct inode *delegated_inode = NULL;
4103        int how = 0;
4104        int error;
4105
4106        if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4107                return -EINVAL;
4108        /*
4109         * To use null names we require CAP_DAC_READ_SEARCH
4110         * This ensures that not everyone will be able to create
4111         * handlink using the passed filedescriptor.
4112         */
4113        if (flags & AT_EMPTY_PATH) {
4114                if (!capable(CAP_DAC_READ_SEARCH))
4115                        return -ENOENT;
4116                how = LOOKUP_EMPTY;
4117        }
4118
4119        if (flags & AT_SYMLINK_FOLLOW)
4120                how |= LOOKUP_FOLLOW;
4121retry:
4122        error = user_path_at(olddfd, oldname, how, &old_path);
4123        if (error)
4124                return error;
4125
4126        new_dentry = user_path_create(newdfd, newname, &new_path,
4127                                        (how & LOOKUP_REVAL));
4128        error = PTR_ERR(new_dentry);
4129        if (IS_ERR(new_dentry))
4130                goto out;
4131
4132        error = -EXDEV;
4133        if (old_path.mnt != new_path.mnt)
4134                goto out_dput;
4135        error = may_linkat(&old_path);
4136        if (unlikely(error))
4137                goto out_dput;
4138        error = security_path_link(old_path.dentry, &new_path, new_dentry);
4139        if (error)
4140                goto out_dput;
4141        error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4142out_dput:
4143        done_path_create(&new_path, new_dentry);
4144        if (delegated_inode) {
4145                error = break_deleg_wait(&delegated_inode);
4146                if (!error) {
4147                        path_put(&old_path);
4148                        goto retry;
4149                }
4150        }
4151        if (retry_estale(error, how)) {
4152                path_put(&old_path);
4153                how |= LOOKUP_REVAL;
4154                goto retry;
4155        }
4156out:
4157        path_put(&old_path);
4158
4159        return error;
4160}
4161
4162SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4163                int, newdfd, const char __user *, newname, int, flags)
4164{
4165        return do_linkat(olddfd, oldname, newdfd, newname, flags);
4166}
4167
4168SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4169{
4170        return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4171}
4172
4173/**
4174 * vfs_rename - rename a filesystem object
4175 * @old_dir:    parent of source
4176 * @old_dentry: source
4177 * @new_dir:    parent of destination
4178 * @new_dentry: destination
4179 * @delegated_inode: returns an inode needing a delegation break
4180 * @flags:      rename flags
4181 *
4182 * The caller must hold multiple mutexes--see lock_rename()).
4183 *
4184 * If vfs_rename discovers a delegation in need of breaking at either
4185 * the source or destination, it will return -EWOULDBLOCK and return a
4186 * reference to the inode in delegated_inode.  The caller should then
4187 * break the delegation and retry.  Because breaking a delegation may
4188 * take a long time, the caller should drop all locks before doing
4189 * so.
4190 *
4191 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4192 * be appropriate for callers that expect the underlying filesystem not
4193 * to be NFS exported.
4194 *
4195 * The worst of all namespace operations - renaming directory. "Perverted"
4196 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4197 * Problems:
4198 *
4199 *      a) we can get into loop creation.
4200 *      b) race potential - two innocent renames can create a loop together.
4201 *         That's where 4.4 screws up. Current fix: serialization on
4202 *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4203 *         story.
4204 *      c) we have to lock _four_ objects - parents and victim (if it exists),
4205 *         and source (if it is not a directory).
4206 *         And that - after we got ->i_mutex on parents (until then we don't know
4207 *         whether the target exists).  Solution: try to be smart with locking
4208 *         order for inodes.  We rely on the fact that tree topology may change
4209 *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4210 *         move will be locked.  Thus we can rank directories by the tree
4211 *         (ancestors first) and rank all non-directories after them.
4212 *         That works since everybody except rename does "lock parent, lookup,
4213 *         lock child" and rename is under ->s_vfs_rename_mutex.
4214 *         HOWEVER, it relies on the assumption that any object with ->lookup()
4215 *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4216 *         we'd better make sure that there's no link(2) for them.
4217 *      d) conversion from fhandle to dentry may come in the wrong moment - when
4218 *         we are removing the target. Solution: we will have to grab ->i_mutex
4219 *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4220 *         ->i_mutex on parents, which works but leads to some truly excessive
4221 *         locking].
4222 */
4223int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4224               struct inode *new_dir, struct dentry *new_dentry,
4225               struct inode **delegated_inode, unsigned int flags)
4226{
4227        int error;
4228        bool is_dir = d_is_dir(old_dentry);
4229        struct inode *source = old_dentry->d_inode;
4230        struct inode *target = new_dentry->d_inode;
4231        bool new_is_dir = false;
4232        unsigned max_links = new_dir->i_sb->s_max_links;
4233        struct name_snapshot old_name;
4234
4235        if (source == target)
4236                return 0;
4237
4238        error = may_delete(old_dir, old_dentry, is_dir);
4239        if (error)
4240                return error;
4241
4242        if (!target) {
4243                error = may_create(new_dir, new_dentry);
4244        } else {
4245                new_is_dir = d_is_dir(new_dentry);
4246
4247                if (!(flags & RENAME_EXCHANGE))
4248                        error = may_delete(new_dir, new_dentry, is_dir);
4249                else
4250                        error = may_delete(new_dir, new_dentry, new_is_dir);
4251        }
4252        if (error)
4253                return error;
4254
4255        if (!old_dir->i_op->rename)
4256                return -EPERM;
4257
4258        /*
4259         * If we are going to change the parent - check write permissions,
4260         * we'll need to flip '..'.
4261         */
4262        if (new_dir != old_dir) {
4263                if (is_dir) {
4264                        error = inode_permission(source, MAY_WRITE);
4265                        if (error)
4266                                return error;
4267                }
4268                if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4269                        error = inode_permission(target, MAY_WRITE);
4270                        if (error)
4271                                return error;
4272                }
4273        }
4274
4275        error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4276                                      flags);
4277        if (error)
4278                return error;
4279
4280        take_dentry_name_snapshot(&old_name, old_dentry);
4281        dget(new_dentry);
4282        if (!is_dir || (flags & RENAME_EXCHANGE))
4283                lock_two_nondirectories(source, target);
4284        else if (target)
4285                inode_lock(target);
4286
4287        error = -EBUSY;
4288        if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4289                goto out;
4290
4291        if (max_links && new_dir != old_dir) {
4292                error = -EMLINK;
4293                if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4294                        goto out;
4295                if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4296                    old_dir->i_nlink >= max_links)
4297                        goto out;
4298        }
4299        if (!is_dir) {
4300                error = try_break_deleg(source, delegated_inode);
4301                if (error)
4302                        goto out;
4303        }
4304        if (target && !new_is_dir) {
4305                error = try_break_deleg(target, delegated_inode);
4306                if (error)
4307                        goto out;
4308        }
4309        error = old_dir->i_op->rename(old_dir, old_dentry,
4310                                       new_dir, new_dentry, flags);
4311        if (error)
4312                goto out;
4313
4314        if (!(flags & RENAME_EXCHANGE) && target) {
4315                if (is_dir) {
4316                        shrink_dcache_parent(new_dentry);
4317                        target->i_flags |= S_DEAD;
4318                }
4319                dont_mount(new_dentry);
4320                detach_mounts(new_dentry);
4321        }
4322        if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4323                if (!(flags & RENAME_EXCHANGE))
4324                        d_move(old_dentry, new_dentry);
4325                else
4326                        d_exchange(old_dentry, new_dentry);
4327        }
4328out:
4329        if (!is_dir || (flags & RENAME_EXCHANGE))
4330                unlock_two_nondirectories(source, target);
4331        else if (target)
4332                inode_unlock(target);
4333        dput(new_dentry);
4334        if (!error) {
4335                fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4336                              !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4337                if (flags & RENAME_EXCHANGE) {
4338                        fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4339                                      new_is_dir, NULL, new_dentry);
4340                }
4341        }
4342        release_dentry_name_snapshot(&old_name);
4343
4344        return error;
4345}
4346EXPORT_SYMBOL(vfs_rename);
4347
4348static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4349                        const char __user *newname, unsigned int flags)
4350{
4351        struct dentry *old_dentry, *new_dentry;
4352        struct dentry *trap;
4353        struct path old_path, new_path;
4354        struct qstr old_last, new_last;
4355        int old_type, new_type;
4356        struct inode *delegated_inode = NULL;
4357        struct filename *from;
4358        struct filename *to;
4359        unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4360        bool should_retry = false;
4361        int error;
4362
4363        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4364                return -EINVAL;
4365
4366        if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4367            (flags & RENAME_EXCHANGE))
4368                return -EINVAL;
4369
4370        if (flags & RENAME_EXCHANGE)
4371                target_flags = 0;
4372
4373retry:
4374        from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4375                                &old_path, &old_last, &old_type);
4376        if (IS_ERR(from)) {
4377                error = PTR_ERR(from);
4378                goto exit;
4379        }
4380
4381        to = filename_parentat(newdfd, getname(newname), lookup_flags,
4382                                &new_path, &new_last, &new_type);
4383        if (IS_ERR(to)) {
4384                error = PTR_ERR(to);
4385                goto exit1;
4386        }
4387
4388        error = -EXDEV;
4389        if (old_path.mnt != new_path.mnt)
4390                goto exit2;
4391
4392        error = -EBUSY;
4393        if (old_type != LAST_NORM)
4394                goto exit2;
4395
4396        if (flags & RENAME_NOREPLACE)
4397                error = -EEXIST;
4398        if (new_type != LAST_NORM)
4399                goto exit2;
4400
4401        error = mnt_want_write(old_path.mnt);
4402        if (error)
4403                goto exit2;
4404
4405retry_deleg:
4406        trap = lock_rename(new_path.dentry, old_path.dentry);
4407
4408        old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4409        error = PTR_ERR(old_dentry);
4410        if (IS_ERR(old_dentry))
4411                goto exit3;
4412        /* source must exist */
4413        error = -ENOENT;
4414        if (d_is_negative(old_dentry))
4415                goto exit4;
4416        new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4417        error = PTR_ERR(new_dentry);
4418        if (IS_ERR(new_dentry))
4419                goto exit4;
4420        error = -EEXIST;
4421        if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4422                goto exit5;
4423        if (flags & RENAME_EXCHANGE) {
4424                error = -ENOENT;
4425                if (d_is_negative(new_dentry))
4426                        goto exit5;
4427
4428                if (!d_is_dir(new_dentry)) {
4429                        error = -ENOTDIR;
4430                        if (new_last.name[new_last.len])
4431                                goto exit5;
4432                }
4433        }
4434        /* unless the source is a directory trailing slashes give -ENOTDIR */
4435        if (!d_is_dir(old_dentry)) {
4436                error = -ENOTDIR;
4437                if (old_last.name[old_last.len])
4438                        goto exit5;
4439                if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4440                        goto exit5;
4441        }
4442        /* source should not be ancestor of target */
4443        error = -EINVAL;
4444        if (old_dentry == trap)
4445                goto exit5;
4446        /* target should not be an ancestor of source */
4447        if (!(flags & RENAME_EXCHANGE))
4448                error = -ENOTEMPTY;
4449        if (new_dentry == trap)
4450                goto exit5;
4451
4452        error = security_path_rename(&old_path, old_dentry,
4453                                     &new_path, new_dentry, flags);
4454        if (error)
4455                goto exit5;
4456        error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4457                           new_path.dentry->d_inode, new_dentry,
4458                           &delegated_inode, flags);
4459exit5:
4460        dput(new_dentry);
4461exit4:
4462        dput(old_dentry);
4463exit3:
4464        unlock_rename(new_path.dentry, old_path.dentry);
4465        if (delegated_inode) {
4466                error = break_deleg_wait(&delegated_inode);
4467                if (!error)
4468                        goto retry_deleg;
4469        }
4470        mnt_drop_write(old_path.mnt);
4471exit2:
4472        if (retry_estale(error, lookup_flags))
4473                should_retry = true;
4474        path_put(&new_path);
4475        putname(to);
4476exit1:
4477        path_put(&old_path);
4478        putname(from);
4479        if (should_retry) {
4480                should_retry = false;
4481                lookup_flags |= LOOKUP_REVAL;
4482                goto retry;
4483        }
4484exit:
4485        return error;
4486}
4487
4488SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4489                int, newdfd, const char __user *, newname, unsigned int, flags)
4490{
4491        return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4492}
4493
4494SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4495                int, newdfd, const char __user *, newname)
4496{
4497        return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4498}
4499
4500SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4501{
4502        return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4503}
4504
4505int readlink_copy(char __user *buffer, int buflen, const char *link)
4506{
4507        int len = PTR_ERR(link);
4508        if (IS_ERR(link))
4509                goto out;
4510
4511        len = strlen(link);
4512        if (len > (unsigned) buflen)
4513                len = buflen;
4514        if (copy_to_user(buffer, link, len))
4515                len = -EFAULT;
4516out:
4517        return len;
4518}
4519
4520/**
4521 * vfs_readlink - copy symlink body into userspace buffer
4522 * @dentry: dentry on which to get symbolic link
4523 * @buffer: user memory pointer
4524 * @buflen: size of buffer
4525 *
4526 * Does not touch atime.  That's up to the caller if necessary
4527 *
4528 * Does not call security hook.
4529 */
4530int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4531{
4532        struct inode *inode = d_inode(dentry);
4533        DEFINE_DELAYED_CALL(done);
4534        const char *link;
4535        int res;
4536
4537        if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4538                if (unlikely(inode->i_op->readlink))
4539                        return inode->i_op->readlink(dentry, buffer, buflen);
4540
4541                if (!d_is_symlink(dentry))
4542                        return -EINVAL;
4543
4544                spin_lock(&inode->i_lock);
4545                inode->i_opflags |= IOP_DEFAULT_READLINK;
4546                spin_unlock(&inode->i_lock);
4547        }
4548
4549        link = READ_ONCE(inode->i_link);
4550        if (!link) {
4551                link = inode->i_op->get_link(dentry, inode, &done);
4552                if (IS_ERR(link))
4553                        return PTR_ERR(link);
4554        }
4555        res = readlink_copy(buffer, buflen, link);
4556        do_delayed_call(&done);
4557        return res;
4558}
4559EXPORT_SYMBOL(vfs_readlink);
4560
4561/**
4562 * vfs_get_link - get symlink body
4563 * @dentry: dentry on which to get symbolic link
4564 * @done: caller needs to free returned data with this
4565 *
4566 * Calls security hook and i_op->get_link() on the supplied inode.
4567 *
4568 * It does not touch atime.  That's up to the caller if necessary.
4569 *
4570 * Does not work on "special" symlinks like /proc/$$/fd/N
4571 */
4572const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4573{
4574        const char *res = ERR_PTR(-EINVAL);
4575        struct inode *inode = d_inode(dentry);
4576
4577        if (d_is_symlink(dentry)) {
4578                res = ERR_PTR(security_inode_readlink(dentry));
4579                if (!res)
4580                        res = inode->i_op->get_link(dentry, inode, done);
4581        }
4582        return res;
4583}
4584EXPORT_SYMBOL(vfs_get_link);
4585
4586/* get the link contents into pagecache */
4587const char *page_get_link(struct dentry *dentry, struct inode *inode,
4588                          struct delayed_call *callback)
4589{
4590        char *kaddr;
4591        struct page *page;
4592        struct address_space *mapping = inode->i_mapping;
4593
4594        if (!dentry) {
4595                page = find_get_page(mapping, 0);
4596                if (!page)
4597                        return ERR_PTR(-ECHILD);
4598                if (!PageUptodate(page)) {
4599                        put_page(page);
4600                        return ERR_PTR(-ECHILD);
4601                }
4602        } else {
4603                page = read_mapping_page(mapping, 0, NULL);
4604                if (IS_ERR(page))
4605                        return (char*)page;
4606        }
4607        set_delayed_call(callback, page_put_link, page);
4608        BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4609        kaddr = page_address(page);
4610        nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4611        return kaddr;
4612}
4613
4614EXPORT_SYMBOL(page_get_link);
4615
4616void page_put_link(void *arg)
4617{
4618        put_page(arg);
4619}
4620EXPORT_SYMBOL(page_put_link);
4621
4622int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4623{
4624        DEFINE_DELAYED_CALL(done);
4625        int res = readlink_copy(buffer, buflen,
4626                                page_get_link(dentry, d_inode(dentry),
4627                                              &done));
4628        do_delayed_call(&done);
4629        return res;
4630}
4631EXPORT_SYMBOL(page_readlink);
4632
4633/*
4634 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4635 */
4636int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4637{
4638        struct address_space *mapping = inode->i_mapping;
4639        struct page *page;
4640        void *fsdata;
4641        int err;
4642        unsigned int flags = 0;
4643        if (nofs)
4644                flags |= AOP_FLAG_NOFS;
4645
4646retry:
4647        err = pagecache_write_begin(NULL, mapping, 0, len-1,
4648                                flags, &page, &fsdata);
4649        if (err)
4650                goto fail;
4651
4652        memcpy(page_address(page), symname, len-1);
4653
4654        err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4655                                                        page, fsdata);
4656        if (err < 0)
4657                goto fail;
4658        if (err < len-1)
4659                goto retry;
4660
4661        mark_inode_dirty(inode);
4662        return 0;
4663fail:
4664        return err;
4665}
4666EXPORT_SYMBOL(__page_symlink);
4667
4668int page_symlink(struct inode *inode, const char *symname, int len)
4669{
4670        return __page_symlink(inode, symname, len,
4671                        !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4672}
4673EXPORT_SYMBOL(page_symlink);
4674
4675const struct inode_operations page_symlink_inode_operations = {
4676        .get_link       = page_get_link,
4677};
4678EXPORT_SYMBOL(page_symlink_inode_operations);
4679