linux/fs/namespace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/namespace.c
   4 *
   5 * (C) Copyright Al Viro 2000, 2001
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>         /* init_rootfs */
  21#include <linux/fs_struct.h>    /* get_fs_root et.al. */
  22#include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
  23#include <linux/file.h>
  24#include <linux/uaccess.h>
  25#include <linux/proc_ns.h>
  26#include <linux/magic.h>
  27#include <linux/memblock.h>
  28#include <linux/task_work.h>
  29#include <linux/sched/task.h>
  30#include <uapi/linux/mount.h>
  31#include <linux/fs_context.h>
  32#include <linux/shmem_fs.h>
  33
  34#include "pnode.h"
  35#include "internal.h"
  36
  37/* Maximum number of mounts in a mount namespace */
  38unsigned int sysctl_mount_max __read_mostly = 100000;
  39
  40static unsigned int m_hash_mask __read_mostly;
  41static unsigned int m_hash_shift __read_mostly;
  42static unsigned int mp_hash_mask __read_mostly;
  43static unsigned int mp_hash_shift __read_mostly;
  44
  45static __initdata unsigned long mhash_entries;
  46static int __init set_mhash_entries(char *str)
  47{
  48        if (!str)
  49                return 0;
  50        mhash_entries = simple_strtoul(str, &str, 0);
  51        return 1;
  52}
  53__setup("mhash_entries=", set_mhash_entries);
  54
  55static __initdata unsigned long mphash_entries;
  56static int __init set_mphash_entries(char *str)
  57{
  58        if (!str)
  59                return 0;
  60        mphash_entries = simple_strtoul(str, &str, 0);
  61        return 1;
  62}
  63__setup("mphash_entries=", set_mphash_entries);
  64
  65static u64 event;
  66static DEFINE_IDA(mnt_id_ida);
  67static DEFINE_IDA(mnt_group_ida);
  68
  69static struct hlist_head *mount_hashtable __read_mostly;
  70static struct hlist_head *mountpoint_hashtable __read_mostly;
  71static struct kmem_cache *mnt_cache __read_mostly;
  72static DECLARE_RWSEM(namespace_sem);
  73static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
  74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
  75
  76/* /sys/fs */
  77struct kobject *fs_kobj;
  78EXPORT_SYMBOL_GPL(fs_kobj);
  79
  80/*
  81 * vfsmount lock may be taken for read to prevent changes to the
  82 * vfsmount hash, ie. during mountpoint lookups or walking back
  83 * up the tree.
  84 *
  85 * It should be taken for write in all cases where the vfsmount
  86 * tree or hash is modified or when a vfsmount structure is modified.
  87 */
  88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  89
  90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  91{
  92        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  93        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  94        tmp = tmp + (tmp >> m_hash_shift);
  95        return &mount_hashtable[tmp & m_hash_mask];
  96}
  97
  98static inline struct hlist_head *mp_hash(struct dentry *dentry)
  99{
 100        unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
 101        tmp = tmp + (tmp >> mp_hash_shift);
 102        return &mountpoint_hashtable[tmp & mp_hash_mask];
 103}
 104
 105static int mnt_alloc_id(struct mount *mnt)
 106{
 107        int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 108
 109        if (res < 0)
 110                return res;
 111        mnt->mnt_id = res;
 112        return 0;
 113}
 114
 115static void mnt_free_id(struct mount *mnt)
 116{
 117        ida_free(&mnt_id_ida, mnt->mnt_id);
 118}
 119
 120/*
 121 * Allocate a new peer group ID
 122 */
 123static int mnt_alloc_group_id(struct mount *mnt)
 124{
 125        int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 126
 127        if (res < 0)
 128                return res;
 129        mnt->mnt_group_id = res;
 130        return 0;
 131}
 132
 133/*
 134 * Release a peer group ID
 135 */
 136void mnt_release_group_id(struct mount *mnt)
 137{
 138        ida_free(&mnt_group_ida, mnt->mnt_group_id);
 139        mnt->mnt_group_id = 0;
 140}
 141
 142/*
 143 * vfsmount lock must be held for read
 144 */
 145static inline void mnt_add_count(struct mount *mnt, int n)
 146{
 147#ifdef CONFIG_SMP
 148        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 149#else
 150        preempt_disable();
 151        mnt->mnt_count += n;
 152        preempt_enable();
 153#endif
 154}
 155
 156/*
 157 * vfsmount lock must be held for write
 158 */
 159unsigned int mnt_get_count(struct mount *mnt)
 160{
 161#ifdef CONFIG_SMP
 162        unsigned int count = 0;
 163        int cpu;
 164
 165        for_each_possible_cpu(cpu) {
 166                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 167        }
 168
 169        return count;
 170#else
 171        return mnt->mnt_count;
 172#endif
 173}
 174
 175static struct mount *alloc_vfsmnt(const char *name)
 176{
 177        struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 178        if (mnt) {
 179                int err;
 180
 181                err = mnt_alloc_id(mnt);
 182                if (err)
 183                        goto out_free_cache;
 184
 185                if (name) {
 186                        mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 187                        if (!mnt->mnt_devname)
 188                                goto out_free_id;
 189                }
 190
 191#ifdef CONFIG_SMP
 192                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 193                if (!mnt->mnt_pcp)
 194                        goto out_free_devname;
 195
 196                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 197#else
 198                mnt->mnt_count = 1;
 199                mnt->mnt_writers = 0;
 200#endif
 201
 202                INIT_HLIST_NODE(&mnt->mnt_hash);
 203                INIT_LIST_HEAD(&mnt->mnt_child);
 204                INIT_LIST_HEAD(&mnt->mnt_mounts);
 205                INIT_LIST_HEAD(&mnt->mnt_list);
 206                INIT_LIST_HEAD(&mnt->mnt_expire);
 207                INIT_LIST_HEAD(&mnt->mnt_share);
 208                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 209                INIT_LIST_HEAD(&mnt->mnt_slave);
 210                INIT_HLIST_NODE(&mnt->mnt_mp_list);
 211                INIT_LIST_HEAD(&mnt->mnt_umounting);
 212                INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
 213        }
 214        return mnt;
 215
 216#ifdef CONFIG_SMP
 217out_free_devname:
 218        kfree_const(mnt->mnt_devname);
 219#endif
 220out_free_id:
 221        mnt_free_id(mnt);
 222out_free_cache:
 223        kmem_cache_free(mnt_cache, mnt);
 224        return NULL;
 225}
 226
 227/*
 228 * Most r/o checks on a fs are for operations that take
 229 * discrete amounts of time, like a write() or unlink().
 230 * We must keep track of when those operations start
 231 * (for permission checks) and when they end, so that
 232 * we can determine when writes are able to occur to
 233 * a filesystem.
 234 */
 235/*
 236 * __mnt_is_readonly: check whether a mount is read-only
 237 * @mnt: the mount to check for its write status
 238 *
 239 * This shouldn't be used directly ouside of the VFS.
 240 * It does not guarantee that the filesystem will stay
 241 * r/w, just that it is right *now*.  This can not and
 242 * should not be used in place of IS_RDONLY(inode).
 243 * mnt_want/drop_write() will _keep_ the filesystem
 244 * r/w.
 245 */
 246bool __mnt_is_readonly(struct vfsmount *mnt)
 247{
 248        return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
 249}
 250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 251
 252static inline void mnt_inc_writers(struct mount *mnt)
 253{
 254#ifdef CONFIG_SMP
 255        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 256#else
 257        mnt->mnt_writers++;
 258#endif
 259}
 260
 261static inline void mnt_dec_writers(struct mount *mnt)
 262{
 263#ifdef CONFIG_SMP
 264        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 265#else
 266        mnt->mnt_writers--;
 267#endif
 268}
 269
 270static unsigned int mnt_get_writers(struct mount *mnt)
 271{
 272#ifdef CONFIG_SMP
 273        unsigned int count = 0;
 274        int cpu;
 275
 276        for_each_possible_cpu(cpu) {
 277                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 278        }
 279
 280        return count;
 281#else
 282        return mnt->mnt_writers;
 283#endif
 284}
 285
 286static int mnt_is_readonly(struct vfsmount *mnt)
 287{
 288        if (mnt->mnt_sb->s_readonly_remount)
 289                return 1;
 290        /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 291        smp_rmb();
 292        return __mnt_is_readonly(mnt);
 293}
 294
 295/*
 296 * Most r/o & frozen checks on a fs are for operations that take discrete
 297 * amounts of time, like a write() or unlink().  We must keep track of when
 298 * those operations start (for permission checks) and when they end, so that we
 299 * can determine when writes are able to occur to a filesystem.
 300 */
 301/**
 302 * __mnt_want_write - get write access to a mount without freeze protection
 303 * @m: the mount on which to take a write
 304 *
 305 * This tells the low-level filesystem that a write is about to be performed to
 306 * it, and makes sure that writes are allowed (mnt it read-write) before
 307 * returning success. This operation does not protect against filesystem being
 308 * frozen. When the write operation is finished, __mnt_drop_write() must be
 309 * called. This is effectively a refcount.
 310 */
 311int __mnt_want_write(struct vfsmount *m)
 312{
 313        struct mount *mnt = real_mount(m);
 314        int ret = 0;
 315
 316        preempt_disable();
 317        mnt_inc_writers(mnt);
 318        /*
 319         * The store to mnt_inc_writers must be visible before we pass
 320         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 321         * incremented count after it has set MNT_WRITE_HOLD.
 322         */
 323        smp_mb();
 324        while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 325                cpu_relax();
 326        /*
 327         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 328         * be set to match its requirements. So we must not load that until
 329         * MNT_WRITE_HOLD is cleared.
 330         */
 331        smp_rmb();
 332        if (mnt_is_readonly(m)) {
 333                mnt_dec_writers(mnt);
 334                ret = -EROFS;
 335        }
 336        preempt_enable();
 337
 338        return ret;
 339}
 340
 341/**
 342 * mnt_want_write - get write access to a mount
 343 * @m: the mount on which to take a write
 344 *
 345 * This tells the low-level filesystem that a write is about to be performed to
 346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 347 * is not frozen) before returning success.  When the write operation is
 348 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 349 */
 350int mnt_want_write(struct vfsmount *m)
 351{
 352        int ret;
 353
 354        sb_start_write(m->mnt_sb);
 355        ret = __mnt_want_write(m);
 356        if (ret)
 357                sb_end_write(m->mnt_sb);
 358        return ret;
 359}
 360EXPORT_SYMBOL_GPL(mnt_want_write);
 361
 362/**
 363 * mnt_clone_write - get write access to a mount
 364 * @mnt: the mount on which to take a write
 365 *
 366 * This is effectively like mnt_want_write, except
 367 * it must only be used to take an extra write reference
 368 * on a mountpoint that we already know has a write reference
 369 * on it. This allows some optimisation.
 370 *
 371 * After finished, mnt_drop_write must be called as usual to
 372 * drop the reference.
 373 */
 374int mnt_clone_write(struct vfsmount *mnt)
 375{
 376        /* superblock may be r/o */
 377        if (__mnt_is_readonly(mnt))
 378                return -EROFS;
 379        preempt_disable();
 380        mnt_inc_writers(real_mount(mnt));
 381        preempt_enable();
 382        return 0;
 383}
 384EXPORT_SYMBOL_GPL(mnt_clone_write);
 385
 386/**
 387 * __mnt_want_write_file - get write access to a file's mount
 388 * @file: the file who's mount on which to take a write
 389 *
 390 * This is like __mnt_want_write, but it takes a file and can
 391 * do some optimisations if the file is open for write already
 392 */
 393int __mnt_want_write_file(struct file *file)
 394{
 395        if (!(file->f_mode & FMODE_WRITER))
 396                return __mnt_want_write(file->f_path.mnt);
 397        else
 398                return mnt_clone_write(file->f_path.mnt);
 399}
 400
 401/**
 402 * mnt_want_write_file - get write access to a file's mount
 403 * @file: the file who's mount on which to take a write
 404 *
 405 * This is like mnt_want_write, but it takes a file and can
 406 * do some optimisations if the file is open for write already
 407 */
 408int mnt_want_write_file(struct file *file)
 409{
 410        int ret;
 411
 412        sb_start_write(file_inode(file)->i_sb);
 413        ret = __mnt_want_write_file(file);
 414        if (ret)
 415                sb_end_write(file_inode(file)->i_sb);
 416        return ret;
 417}
 418EXPORT_SYMBOL_GPL(mnt_want_write_file);
 419
 420/**
 421 * __mnt_drop_write - give up write access to a mount
 422 * @mnt: the mount on which to give up write access
 423 *
 424 * Tells the low-level filesystem that we are done
 425 * performing writes to it.  Must be matched with
 426 * __mnt_want_write() call above.
 427 */
 428void __mnt_drop_write(struct vfsmount *mnt)
 429{
 430        preempt_disable();
 431        mnt_dec_writers(real_mount(mnt));
 432        preempt_enable();
 433}
 434
 435/**
 436 * mnt_drop_write - give up write access to a mount
 437 * @mnt: the mount on which to give up write access
 438 *
 439 * Tells the low-level filesystem that we are done performing writes to it and
 440 * also allows filesystem to be frozen again.  Must be matched with
 441 * mnt_want_write() call above.
 442 */
 443void mnt_drop_write(struct vfsmount *mnt)
 444{
 445        __mnt_drop_write(mnt);
 446        sb_end_write(mnt->mnt_sb);
 447}
 448EXPORT_SYMBOL_GPL(mnt_drop_write);
 449
 450void __mnt_drop_write_file(struct file *file)
 451{
 452        __mnt_drop_write(file->f_path.mnt);
 453}
 454
 455void mnt_drop_write_file(struct file *file)
 456{
 457        __mnt_drop_write_file(file);
 458        sb_end_write(file_inode(file)->i_sb);
 459}
 460EXPORT_SYMBOL(mnt_drop_write_file);
 461
 462static int mnt_make_readonly(struct mount *mnt)
 463{
 464        int ret = 0;
 465
 466        lock_mount_hash();
 467        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 468        /*
 469         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 470         * should be visible before we do.
 471         */
 472        smp_mb();
 473
 474        /*
 475         * With writers on hold, if this value is zero, then there are
 476         * definitely no active writers (although held writers may subsequently
 477         * increment the count, they'll have to wait, and decrement it after
 478         * seeing MNT_READONLY).
 479         *
 480         * It is OK to have counter incremented on one CPU and decremented on
 481         * another: the sum will add up correctly. The danger would be when we
 482         * sum up each counter, if we read a counter before it is incremented,
 483         * but then read another CPU's count which it has been subsequently
 484         * decremented from -- we would see more decrements than we should.
 485         * MNT_WRITE_HOLD protects against this scenario, because
 486         * mnt_want_write first increments count, then smp_mb, then spins on
 487         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 488         * we're counting up here.
 489         */
 490        if (mnt_get_writers(mnt) > 0)
 491                ret = -EBUSY;
 492        else
 493                mnt->mnt.mnt_flags |= MNT_READONLY;
 494        /*
 495         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 496         * that become unheld will see MNT_READONLY.
 497         */
 498        smp_wmb();
 499        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 500        unlock_mount_hash();
 501        return ret;
 502}
 503
 504static int __mnt_unmake_readonly(struct mount *mnt)
 505{
 506        lock_mount_hash();
 507        mnt->mnt.mnt_flags &= ~MNT_READONLY;
 508        unlock_mount_hash();
 509        return 0;
 510}
 511
 512int sb_prepare_remount_readonly(struct super_block *sb)
 513{
 514        struct mount *mnt;
 515        int err = 0;
 516
 517        /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 518        if (atomic_long_read(&sb->s_remove_count))
 519                return -EBUSY;
 520
 521        lock_mount_hash();
 522        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 523                if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 524                        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 525                        smp_mb();
 526                        if (mnt_get_writers(mnt) > 0) {
 527                                err = -EBUSY;
 528                                break;
 529                        }
 530                }
 531        }
 532        if (!err && atomic_long_read(&sb->s_remove_count))
 533                err = -EBUSY;
 534
 535        if (!err) {
 536                sb->s_readonly_remount = 1;
 537                smp_wmb();
 538        }
 539        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 540                if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 541                        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 542        }
 543        unlock_mount_hash();
 544
 545        return err;
 546}
 547
 548static void free_vfsmnt(struct mount *mnt)
 549{
 550        kfree_const(mnt->mnt_devname);
 551#ifdef CONFIG_SMP
 552        free_percpu(mnt->mnt_pcp);
 553#endif
 554        kmem_cache_free(mnt_cache, mnt);
 555}
 556
 557static void delayed_free_vfsmnt(struct rcu_head *head)
 558{
 559        free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 560}
 561
 562/* call under rcu_read_lock */
 563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 564{
 565        struct mount *mnt;
 566        if (read_seqretry(&mount_lock, seq))
 567                return 1;
 568        if (bastard == NULL)
 569                return 0;
 570        mnt = real_mount(bastard);
 571        mnt_add_count(mnt, 1);
 572        smp_mb();                       // see mntput_no_expire()
 573        if (likely(!read_seqretry(&mount_lock, seq)))
 574                return 0;
 575        if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 576                mnt_add_count(mnt, -1);
 577                return 1;
 578        }
 579        lock_mount_hash();
 580        if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 581                mnt_add_count(mnt, -1);
 582                unlock_mount_hash();
 583                return 1;
 584        }
 585        unlock_mount_hash();
 586        /* caller will mntput() */
 587        return -1;
 588}
 589
 590/* call under rcu_read_lock */
 591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 592{
 593        int res = __legitimize_mnt(bastard, seq);
 594        if (likely(!res))
 595                return true;
 596        if (unlikely(res < 0)) {
 597                rcu_read_unlock();
 598                mntput(bastard);
 599                rcu_read_lock();
 600        }
 601        return false;
 602}
 603
 604/*
 605 * find the first mount at @dentry on vfsmount @mnt.
 606 * call under rcu_read_lock()
 607 */
 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 609{
 610        struct hlist_head *head = m_hash(mnt, dentry);
 611        struct mount *p;
 612
 613        hlist_for_each_entry_rcu(p, head, mnt_hash)
 614                if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 615                        return p;
 616        return NULL;
 617}
 618
 619/*
 620 * lookup_mnt - Return the first child mount mounted at path
 621 *
 622 * "First" means first mounted chronologically.  If you create the
 623 * following mounts:
 624 *
 625 * mount /dev/sda1 /mnt
 626 * mount /dev/sda2 /mnt
 627 * mount /dev/sda3 /mnt
 628 *
 629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 630 * return successively the root dentry and vfsmount of /dev/sda1, then
 631 * /dev/sda2, then /dev/sda3, then NULL.
 632 *
 633 * lookup_mnt takes a reference to the found vfsmount.
 634 */
 635struct vfsmount *lookup_mnt(const struct path *path)
 636{
 637        struct mount *child_mnt;
 638        struct vfsmount *m;
 639        unsigned seq;
 640
 641        rcu_read_lock();
 642        do {
 643                seq = read_seqbegin(&mount_lock);
 644                child_mnt = __lookup_mnt(path->mnt, path->dentry);
 645                m = child_mnt ? &child_mnt->mnt : NULL;
 646        } while (!legitimize_mnt(m, seq));
 647        rcu_read_unlock();
 648        return m;
 649}
 650
 651static inline void lock_ns_list(struct mnt_namespace *ns)
 652{
 653        spin_lock(&ns->ns_lock);
 654}
 655
 656static inline void unlock_ns_list(struct mnt_namespace *ns)
 657{
 658        spin_unlock(&ns->ns_lock);
 659}
 660
 661static inline bool mnt_is_cursor(struct mount *mnt)
 662{
 663        return mnt->mnt.mnt_flags & MNT_CURSOR;
 664}
 665
 666/*
 667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 668 *                         current mount namespace.
 669 *
 670 * The common case is dentries are not mountpoints at all and that
 671 * test is handled inline.  For the slow case when we are actually
 672 * dealing with a mountpoint of some kind, walk through all of the
 673 * mounts in the current mount namespace and test to see if the dentry
 674 * is a mountpoint.
 675 *
 676 * The mount_hashtable is not usable in the context because we
 677 * need to identify all mounts that may be in the current mount
 678 * namespace not just a mount that happens to have some specified
 679 * parent mount.
 680 */
 681bool __is_local_mountpoint(struct dentry *dentry)
 682{
 683        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 684        struct mount *mnt;
 685        bool is_covered = false;
 686
 687        down_read(&namespace_sem);
 688        lock_ns_list(ns);
 689        list_for_each_entry(mnt, &ns->list, mnt_list) {
 690                if (mnt_is_cursor(mnt))
 691                        continue;
 692                is_covered = (mnt->mnt_mountpoint == dentry);
 693                if (is_covered)
 694                        break;
 695        }
 696        unlock_ns_list(ns);
 697        up_read(&namespace_sem);
 698
 699        return is_covered;
 700}
 701
 702static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 703{
 704        struct hlist_head *chain = mp_hash(dentry);
 705        struct mountpoint *mp;
 706
 707        hlist_for_each_entry(mp, chain, m_hash) {
 708                if (mp->m_dentry == dentry) {
 709                        mp->m_count++;
 710                        return mp;
 711                }
 712        }
 713        return NULL;
 714}
 715
 716static struct mountpoint *get_mountpoint(struct dentry *dentry)
 717{
 718        struct mountpoint *mp, *new = NULL;
 719        int ret;
 720
 721        if (d_mountpoint(dentry)) {
 722                /* might be worth a WARN_ON() */
 723                if (d_unlinked(dentry))
 724                        return ERR_PTR(-ENOENT);
 725mountpoint:
 726                read_seqlock_excl(&mount_lock);
 727                mp = lookup_mountpoint(dentry);
 728                read_sequnlock_excl(&mount_lock);
 729                if (mp)
 730                        goto done;
 731        }
 732
 733        if (!new)
 734                new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 735        if (!new)
 736                return ERR_PTR(-ENOMEM);
 737
 738
 739        /* Exactly one processes may set d_mounted */
 740        ret = d_set_mounted(dentry);
 741
 742        /* Someone else set d_mounted? */
 743        if (ret == -EBUSY)
 744                goto mountpoint;
 745
 746        /* The dentry is not available as a mountpoint? */
 747        mp = ERR_PTR(ret);
 748        if (ret)
 749                goto done;
 750
 751        /* Add the new mountpoint to the hash table */
 752        read_seqlock_excl(&mount_lock);
 753        new->m_dentry = dget(dentry);
 754        new->m_count = 1;
 755        hlist_add_head(&new->m_hash, mp_hash(dentry));
 756        INIT_HLIST_HEAD(&new->m_list);
 757        read_sequnlock_excl(&mount_lock);
 758
 759        mp = new;
 760        new = NULL;
 761done:
 762        kfree(new);
 763        return mp;
 764}
 765
 766/*
 767 * vfsmount lock must be held.  Additionally, the caller is responsible
 768 * for serializing calls for given disposal list.
 769 */
 770static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
 771{
 772        if (!--mp->m_count) {
 773                struct dentry *dentry = mp->m_dentry;
 774                BUG_ON(!hlist_empty(&mp->m_list));
 775                spin_lock(&dentry->d_lock);
 776                dentry->d_flags &= ~DCACHE_MOUNTED;
 777                spin_unlock(&dentry->d_lock);
 778                dput_to_list(dentry, list);
 779                hlist_del(&mp->m_hash);
 780                kfree(mp);
 781        }
 782}
 783
 784/* called with namespace_lock and vfsmount lock */
 785static void put_mountpoint(struct mountpoint *mp)
 786{
 787        __put_mountpoint(mp, &ex_mountpoints);
 788}
 789
 790static inline int check_mnt(struct mount *mnt)
 791{
 792        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 793}
 794
 795/*
 796 * vfsmount lock must be held for write
 797 */
 798static void touch_mnt_namespace(struct mnt_namespace *ns)
 799{
 800        if (ns) {
 801                ns->event = ++event;
 802                wake_up_interruptible(&ns->poll);
 803        }
 804}
 805
 806/*
 807 * vfsmount lock must be held for write
 808 */
 809static void __touch_mnt_namespace(struct mnt_namespace *ns)
 810{
 811        if (ns && ns->event != event) {
 812                ns->event = event;
 813                wake_up_interruptible(&ns->poll);
 814        }
 815}
 816
 817/*
 818 * vfsmount lock must be held for write
 819 */
 820static struct mountpoint *unhash_mnt(struct mount *mnt)
 821{
 822        struct mountpoint *mp;
 823        mnt->mnt_parent = mnt;
 824        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 825        list_del_init(&mnt->mnt_child);
 826        hlist_del_init_rcu(&mnt->mnt_hash);
 827        hlist_del_init(&mnt->mnt_mp_list);
 828        mp = mnt->mnt_mp;
 829        mnt->mnt_mp = NULL;
 830        return mp;
 831}
 832
 833/*
 834 * vfsmount lock must be held for write
 835 */
 836static void umount_mnt(struct mount *mnt)
 837{
 838        put_mountpoint(unhash_mnt(mnt));
 839}
 840
 841/*
 842 * vfsmount lock must be held for write
 843 */
 844void mnt_set_mountpoint(struct mount *mnt,
 845                        struct mountpoint *mp,
 846                        struct mount *child_mnt)
 847{
 848        mp->m_count++;
 849        mnt_add_count(mnt, 1);  /* essentially, that's mntget */
 850        child_mnt->mnt_mountpoint = mp->m_dentry;
 851        child_mnt->mnt_parent = mnt;
 852        child_mnt->mnt_mp = mp;
 853        hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 854}
 855
 856static void __attach_mnt(struct mount *mnt, struct mount *parent)
 857{
 858        hlist_add_head_rcu(&mnt->mnt_hash,
 859                           m_hash(&parent->mnt, mnt->mnt_mountpoint));
 860        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 861}
 862
 863/*
 864 * vfsmount lock must be held for write
 865 */
 866static void attach_mnt(struct mount *mnt,
 867                        struct mount *parent,
 868                        struct mountpoint *mp)
 869{
 870        mnt_set_mountpoint(parent, mp, mnt);
 871        __attach_mnt(mnt, parent);
 872}
 873
 874void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 875{
 876        struct mountpoint *old_mp = mnt->mnt_mp;
 877        struct mount *old_parent = mnt->mnt_parent;
 878
 879        list_del_init(&mnt->mnt_child);
 880        hlist_del_init(&mnt->mnt_mp_list);
 881        hlist_del_init_rcu(&mnt->mnt_hash);
 882
 883        attach_mnt(mnt, parent, mp);
 884
 885        put_mountpoint(old_mp);
 886        mnt_add_count(old_parent, -1);
 887}
 888
 889/*
 890 * vfsmount lock must be held for write
 891 */
 892static void commit_tree(struct mount *mnt)
 893{
 894        struct mount *parent = mnt->mnt_parent;
 895        struct mount *m;
 896        LIST_HEAD(head);
 897        struct mnt_namespace *n = parent->mnt_ns;
 898
 899        BUG_ON(parent == mnt);
 900
 901        list_add_tail(&head, &mnt->mnt_list);
 902        list_for_each_entry(m, &head, mnt_list)
 903                m->mnt_ns = n;
 904
 905        list_splice(&head, n->list.prev);
 906
 907        n->mounts += n->pending_mounts;
 908        n->pending_mounts = 0;
 909
 910        __attach_mnt(mnt, parent);
 911        touch_mnt_namespace(n);
 912}
 913
 914static struct mount *next_mnt(struct mount *p, struct mount *root)
 915{
 916        struct list_head *next = p->mnt_mounts.next;
 917        if (next == &p->mnt_mounts) {
 918                while (1) {
 919                        if (p == root)
 920                                return NULL;
 921                        next = p->mnt_child.next;
 922                        if (next != &p->mnt_parent->mnt_mounts)
 923                                break;
 924                        p = p->mnt_parent;
 925                }
 926        }
 927        return list_entry(next, struct mount, mnt_child);
 928}
 929
 930static struct mount *skip_mnt_tree(struct mount *p)
 931{
 932        struct list_head *prev = p->mnt_mounts.prev;
 933        while (prev != &p->mnt_mounts) {
 934                p = list_entry(prev, struct mount, mnt_child);
 935                prev = p->mnt_mounts.prev;
 936        }
 937        return p;
 938}
 939
 940/**
 941 * vfs_create_mount - Create a mount for a configured superblock
 942 * @fc: The configuration context with the superblock attached
 943 *
 944 * Create a mount to an already configured superblock.  If necessary, the
 945 * caller should invoke vfs_get_tree() before calling this.
 946 *
 947 * Note that this does not attach the mount to anything.
 948 */
 949struct vfsmount *vfs_create_mount(struct fs_context *fc)
 950{
 951        struct mount *mnt;
 952
 953        if (!fc->root)
 954                return ERR_PTR(-EINVAL);
 955
 956        mnt = alloc_vfsmnt(fc->source ?: "none");
 957        if (!mnt)
 958                return ERR_PTR(-ENOMEM);
 959
 960        if (fc->sb_flags & SB_KERNMOUNT)
 961                mnt->mnt.mnt_flags = MNT_INTERNAL;
 962
 963        atomic_inc(&fc->root->d_sb->s_active);
 964        mnt->mnt.mnt_sb         = fc->root->d_sb;
 965        mnt->mnt.mnt_root       = dget(fc->root);
 966        mnt->mnt_mountpoint     = mnt->mnt.mnt_root;
 967        mnt->mnt_parent         = mnt;
 968
 969        lock_mount_hash();
 970        list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
 971        unlock_mount_hash();
 972        return &mnt->mnt;
 973}
 974EXPORT_SYMBOL(vfs_create_mount);
 975
 976struct vfsmount *fc_mount(struct fs_context *fc)
 977{
 978        int err = vfs_get_tree(fc);
 979        if (!err) {
 980                up_write(&fc->root->d_sb->s_umount);
 981                return vfs_create_mount(fc);
 982        }
 983        return ERR_PTR(err);
 984}
 985EXPORT_SYMBOL(fc_mount);
 986
 987struct vfsmount *vfs_kern_mount(struct file_system_type *type,
 988                                int flags, const char *name,
 989                                void *data)
 990{
 991        struct fs_context *fc;
 992        struct vfsmount *mnt;
 993        int ret = 0;
 994
 995        if (!type)
 996                return ERR_PTR(-EINVAL);
 997
 998        fc = fs_context_for_mount(type, flags);
 999        if (IS_ERR(fc))
1000                return ERR_CAST(fc);
1001
1002        if (name)
1003                ret = vfs_parse_fs_string(fc, "source",
1004                                          name, strlen(name));
1005        if (!ret)
1006                ret = parse_monolithic_mount_data(fc, data);
1007        if (!ret)
1008                mnt = fc_mount(fc);
1009        else
1010                mnt = ERR_PTR(ret);
1011
1012        put_fs_context(fc);
1013        return mnt;
1014}
1015EXPORT_SYMBOL_GPL(vfs_kern_mount);
1016
1017struct vfsmount *
1018vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1019             const char *name, void *data)
1020{
1021        /* Until it is worked out how to pass the user namespace
1022         * through from the parent mount to the submount don't support
1023         * unprivileged mounts with submounts.
1024         */
1025        if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1026                return ERR_PTR(-EPERM);
1027
1028        return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1029}
1030EXPORT_SYMBOL_GPL(vfs_submount);
1031
1032static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1033                                        int flag)
1034{
1035        struct super_block *sb = old->mnt.mnt_sb;
1036        struct mount *mnt;
1037        int err;
1038
1039        mnt = alloc_vfsmnt(old->mnt_devname);
1040        if (!mnt)
1041                return ERR_PTR(-ENOMEM);
1042
1043        if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1044                mnt->mnt_group_id = 0; /* not a peer of original */
1045        else
1046                mnt->mnt_group_id = old->mnt_group_id;
1047
1048        if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049                err = mnt_alloc_group_id(mnt);
1050                if (err)
1051                        goto out_free;
1052        }
1053
1054        mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055        mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1056
1057        atomic_inc(&sb->s_active);
1058        mnt->mnt.mnt_sb = sb;
1059        mnt->mnt.mnt_root = dget(root);
1060        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061        mnt->mnt_parent = mnt;
1062        lock_mount_hash();
1063        list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1064        unlock_mount_hash();
1065
1066        if ((flag & CL_SLAVE) ||
1067            ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1068                list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069                mnt->mnt_master = old;
1070                CLEAR_MNT_SHARED(mnt);
1071        } else if (!(flag & CL_PRIVATE)) {
1072                if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073                        list_add(&mnt->mnt_share, &old->mnt_share);
1074                if (IS_MNT_SLAVE(old))
1075                        list_add(&mnt->mnt_slave, &old->mnt_slave);
1076                mnt->mnt_master = old->mnt_master;
1077        } else {
1078                CLEAR_MNT_SHARED(mnt);
1079        }
1080        if (flag & CL_MAKE_SHARED)
1081                set_mnt_shared(mnt);
1082
1083        /* stick the duplicate mount on the same expiry list
1084         * as the original if that was on one */
1085        if (flag & CL_EXPIRE) {
1086                if (!list_empty(&old->mnt_expire))
1087                        list_add(&mnt->mnt_expire, &old->mnt_expire);
1088        }
1089
1090        return mnt;
1091
1092 out_free:
1093        mnt_free_id(mnt);
1094        free_vfsmnt(mnt);
1095        return ERR_PTR(err);
1096}
1097
1098static void cleanup_mnt(struct mount *mnt)
1099{
1100        struct hlist_node *p;
1101        struct mount *m;
1102        /*
1103         * The warning here probably indicates that somebody messed
1104         * up a mnt_want/drop_write() pair.  If this happens, the
1105         * filesystem was probably unable to make r/w->r/o transitions.
1106         * The locking used to deal with mnt_count decrement provides barriers,
1107         * so mnt_get_writers() below is safe.
1108         */
1109        WARN_ON(mnt_get_writers(mnt));
1110        if (unlikely(mnt->mnt_pins.first))
1111                mnt_pin_kill(mnt);
1112        hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1113                hlist_del(&m->mnt_umount);
1114                mntput(&m->mnt);
1115        }
1116        fsnotify_vfsmount_delete(&mnt->mnt);
1117        dput(mnt->mnt.mnt_root);
1118        deactivate_super(mnt->mnt.mnt_sb);
1119        mnt_free_id(mnt);
1120        call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1121}
1122
1123static void __cleanup_mnt(struct rcu_head *head)
1124{
1125        cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1126}
1127
1128static LLIST_HEAD(delayed_mntput_list);
1129static void delayed_mntput(struct work_struct *unused)
1130{
1131        struct llist_node *node = llist_del_all(&delayed_mntput_list);
1132        struct mount *m, *t;
1133
1134        llist_for_each_entry_safe(m, t, node, mnt_llist)
1135                cleanup_mnt(m);
1136}
1137static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1138
1139static void mntput_no_expire(struct mount *mnt)
1140{
1141        LIST_HEAD(list);
1142
1143        rcu_read_lock();
1144        if (likely(READ_ONCE(mnt->mnt_ns))) {
1145                /*
1146                 * Since we don't do lock_mount_hash() here,
1147                 * ->mnt_ns can change under us.  However, if it's
1148                 * non-NULL, then there's a reference that won't
1149                 * be dropped until after an RCU delay done after
1150                 * turning ->mnt_ns NULL.  So if we observe it
1151                 * non-NULL under rcu_read_lock(), the reference
1152                 * we are dropping is not the final one.
1153                 */
1154                mnt_add_count(mnt, -1);
1155                rcu_read_unlock();
1156                return;
1157        }
1158        lock_mount_hash();
1159        /*
1160         * make sure that if __legitimize_mnt() has not seen us grab
1161         * mount_lock, we'll see their refcount increment here.
1162         */
1163        smp_mb();
1164        mnt_add_count(mnt, -1);
1165        if (mnt_get_count(mnt)) {
1166                rcu_read_unlock();
1167                unlock_mount_hash();
1168                return;
1169        }
1170        if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1171                rcu_read_unlock();
1172                unlock_mount_hash();
1173                return;
1174        }
1175        mnt->mnt.mnt_flags |= MNT_DOOMED;
1176        rcu_read_unlock();
1177
1178        list_del(&mnt->mnt_instance);
1179
1180        if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1181                struct mount *p, *tmp;
1182                list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1183                        __put_mountpoint(unhash_mnt(p), &list);
1184                        hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1185                }
1186        }
1187        unlock_mount_hash();
1188        shrink_dentry_list(&list);
1189
1190        if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1191                struct task_struct *task = current;
1192                if (likely(!(task->flags & PF_KTHREAD))) {
1193                        init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1194                        if (!task_work_add(task, &mnt->mnt_rcu, true))
1195                                return;
1196                }
1197                if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1198                        schedule_delayed_work(&delayed_mntput_work, 1);
1199                return;
1200        }
1201        cleanup_mnt(mnt);
1202}
1203
1204void mntput(struct vfsmount *mnt)
1205{
1206        if (mnt) {
1207                struct mount *m = real_mount(mnt);
1208                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1209                if (unlikely(m->mnt_expiry_mark))
1210                        m->mnt_expiry_mark = 0;
1211                mntput_no_expire(m);
1212        }
1213}
1214EXPORT_SYMBOL(mntput);
1215
1216struct vfsmount *mntget(struct vfsmount *mnt)
1217{
1218        if (mnt)
1219                mnt_add_count(real_mount(mnt), 1);
1220        return mnt;
1221}
1222EXPORT_SYMBOL(mntget);
1223
1224/* path_is_mountpoint() - Check if path is a mount in the current
1225 *                          namespace.
1226 *
1227 *  d_mountpoint() can only be used reliably to establish if a dentry is
1228 *  not mounted in any namespace and that common case is handled inline.
1229 *  d_mountpoint() isn't aware of the possibility there may be multiple
1230 *  mounts using a given dentry in a different namespace. This function
1231 *  checks if the passed in path is a mountpoint rather than the dentry
1232 *  alone.
1233 */
1234bool path_is_mountpoint(const struct path *path)
1235{
1236        unsigned seq;
1237        bool res;
1238
1239        if (!d_mountpoint(path->dentry))
1240                return false;
1241
1242        rcu_read_lock();
1243        do {
1244                seq = read_seqbegin(&mount_lock);
1245                res = __path_is_mountpoint(path);
1246        } while (read_seqretry(&mount_lock, seq));
1247        rcu_read_unlock();
1248
1249        return res;
1250}
1251EXPORT_SYMBOL(path_is_mountpoint);
1252
1253struct vfsmount *mnt_clone_internal(const struct path *path)
1254{
1255        struct mount *p;
1256        p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1257        if (IS_ERR(p))
1258                return ERR_CAST(p);
1259        p->mnt.mnt_flags |= MNT_INTERNAL;
1260        return &p->mnt;
1261}
1262
1263#ifdef CONFIG_PROC_FS
1264static struct mount *mnt_list_next(struct mnt_namespace *ns,
1265                                   struct list_head *p)
1266{
1267        struct mount *mnt, *ret = NULL;
1268
1269        lock_ns_list(ns);
1270        list_for_each_continue(p, &ns->list) {
1271                mnt = list_entry(p, typeof(*mnt), mnt_list);
1272                if (!mnt_is_cursor(mnt)) {
1273                        ret = mnt;
1274                        break;
1275                }
1276        }
1277        unlock_ns_list(ns);
1278
1279        return ret;
1280}
1281
1282/* iterator; we want it to have access to namespace_sem, thus here... */
1283static void *m_start(struct seq_file *m, loff_t *pos)
1284{
1285        struct proc_mounts *p = m->private;
1286        struct list_head *prev;
1287
1288        down_read(&namespace_sem);
1289        if (!*pos) {
1290                prev = &p->ns->list;
1291        } else {
1292                prev = &p->cursor.mnt_list;
1293
1294                /* Read after we'd reached the end? */
1295                if (list_empty(prev))
1296                        return NULL;
1297        }
1298
1299        return mnt_list_next(p->ns, prev);
1300}
1301
1302static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1303{
1304        struct proc_mounts *p = m->private;
1305        struct mount *mnt = v;
1306
1307        ++*pos;
1308        return mnt_list_next(p->ns, &mnt->mnt_list);
1309}
1310
1311static void m_stop(struct seq_file *m, void *v)
1312{
1313        struct proc_mounts *p = m->private;
1314        struct mount *mnt = v;
1315
1316        lock_ns_list(p->ns);
1317        if (mnt)
1318                list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1319        else
1320                list_del_init(&p->cursor.mnt_list);
1321        unlock_ns_list(p->ns);
1322        up_read(&namespace_sem);
1323}
1324
1325static int m_show(struct seq_file *m, void *v)
1326{
1327        struct proc_mounts *p = m->private;
1328        struct mount *r = v;
1329        return p->show(m, &r->mnt);
1330}
1331
1332const struct seq_operations mounts_op = {
1333        .start  = m_start,
1334        .next   = m_next,
1335        .stop   = m_stop,
1336        .show   = m_show,
1337};
1338
1339void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1340{
1341        down_read(&namespace_sem);
1342        lock_ns_list(ns);
1343        list_del(&cursor->mnt_list);
1344        unlock_ns_list(ns);
1345        up_read(&namespace_sem);
1346}
1347#endif  /* CONFIG_PROC_FS */
1348
1349/**
1350 * may_umount_tree - check if a mount tree is busy
1351 * @mnt: root of mount tree
1352 *
1353 * This is called to check if a tree of mounts has any
1354 * open files, pwds, chroots or sub mounts that are
1355 * busy.
1356 */
1357int may_umount_tree(struct vfsmount *m)
1358{
1359        struct mount *mnt = real_mount(m);
1360        int actual_refs = 0;
1361        int minimum_refs = 0;
1362        struct mount *p;
1363        BUG_ON(!m);
1364
1365        /* write lock needed for mnt_get_count */
1366        lock_mount_hash();
1367        for (p = mnt; p; p = next_mnt(p, mnt)) {
1368                actual_refs += mnt_get_count(p);
1369                minimum_refs += 2;
1370        }
1371        unlock_mount_hash();
1372
1373        if (actual_refs > minimum_refs)
1374                return 0;
1375
1376        return 1;
1377}
1378
1379EXPORT_SYMBOL(may_umount_tree);
1380
1381/**
1382 * may_umount - check if a mount point is busy
1383 * @mnt: root of mount
1384 *
1385 * This is called to check if a mount point has any
1386 * open files, pwds, chroots or sub mounts. If the
1387 * mount has sub mounts this will return busy
1388 * regardless of whether the sub mounts are busy.
1389 *
1390 * Doesn't take quota and stuff into account. IOW, in some cases it will
1391 * give false negatives. The main reason why it's here is that we need
1392 * a non-destructive way to look for easily umountable filesystems.
1393 */
1394int may_umount(struct vfsmount *mnt)
1395{
1396        int ret = 1;
1397        down_read(&namespace_sem);
1398        lock_mount_hash();
1399        if (propagate_mount_busy(real_mount(mnt), 2))
1400                ret = 0;
1401        unlock_mount_hash();
1402        up_read(&namespace_sem);
1403        return ret;
1404}
1405
1406EXPORT_SYMBOL(may_umount);
1407
1408static void namespace_unlock(void)
1409{
1410        struct hlist_head head;
1411        struct hlist_node *p;
1412        struct mount *m;
1413        LIST_HEAD(list);
1414
1415        hlist_move_list(&unmounted, &head);
1416        list_splice_init(&ex_mountpoints, &list);
1417
1418        up_write(&namespace_sem);
1419
1420        shrink_dentry_list(&list);
1421
1422        if (likely(hlist_empty(&head)))
1423                return;
1424
1425        synchronize_rcu_expedited();
1426
1427        hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1428                hlist_del(&m->mnt_umount);
1429                mntput(&m->mnt);
1430        }
1431}
1432
1433static inline void namespace_lock(void)
1434{
1435        down_write(&namespace_sem);
1436}
1437
1438enum umount_tree_flags {
1439        UMOUNT_SYNC = 1,
1440        UMOUNT_PROPAGATE = 2,
1441        UMOUNT_CONNECTED = 4,
1442};
1443
1444static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1445{
1446        /* Leaving mounts connected is only valid for lazy umounts */
1447        if (how & UMOUNT_SYNC)
1448                return true;
1449
1450        /* A mount without a parent has nothing to be connected to */
1451        if (!mnt_has_parent(mnt))
1452                return true;
1453
1454        /* Because the reference counting rules change when mounts are
1455         * unmounted and connected, umounted mounts may not be
1456         * connected to mounted mounts.
1457         */
1458        if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1459                return true;
1460
1461        /* Has it been requested that the mount remain connected? */
1462        if (how & UMOUNT_CONNECTED)
1463                return false;
1464
1465        /* Is the mount locked such that it needs to remain connected? */
1466        if (IS_MNT_LOCKED(mnt))
1467                return false;
1468
1469        /* By default disconnect the mount */
1470        return true;
1471}
1472
1473/*
1474 * mount_lock must be held
1475 * namespace_sem must be held for write
1476 */
1477static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1478{
1479        LIST_HEAD(tmp_list);
1480        struct mount *p;
1481
1482        if (how & UMOUNT_PROPAGATE)
1483                propagate_mount_unlock(mnt);
1484
1485        /* Gather the mounts to umount */
1486        for (p = mnt; p; p = next_mnt(p, mnt)) {
1487                p->mnt.mnt_flags |= MNT_UMOUNT;
1488                list_move(&p->mnt_list, &tmp_list);
1489        }
1490
1491        /* Hide the mounts from mnt_mounts */
1492        list_for_each_entry(p, &tmp_list, mnt_list) {
1493                list_del_init(&p->mnt_child);
1494        }
1495
1496        /* Add propogated mounts to the tmp_list */
1497        if (how & UMOUNT_PROPAGATE)
1498                propagate_umount(&tmp_list);
1499
1500        while (!list_empty(&tmp_list)) {
1501                struct mnt_namespace *ns;
1502                bool disconnect;
1503                p = list_first_entry(&tmp_list, struct mount, mnt_list);
1504                list_del_init(&p->mnt_expire);
1505                list_del_init(&p->mnt_list);
1506                ns = p->mnt_ns;
1507                if (ns) {
1508                        ns->mounts--;
1509                        __touch_mnt_namespace(ns);
1510                }
1511                p->mnt_ns = NULL;
1512                if (how & UMOUNT_SYNC)
1513                        p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1514
1515                disconnect = disconnect_mount(p, how);
1516                if (mnt_has_parent(p)) {
1517                        mnt_add_count(p->mnt_parent, -1);
1518                        if (!disconnect) {
1519                                /* Don't forget about p */
1520                                list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1521                        } else {
1522                                umount_mnt(p);
1523                        }
1524                }
1525                change_mnt_propagation(p, MS_PRIVATE);
1526                if (disconnect)
1527                        hlist_add_head(&p->mnt_umount, &unmounted);
1528        }
1529}
1530
1531static void shrink_submounts(struct mount *mnt);
1532
1533static int do_umount_root(struct super_block *sb)
1534{
1535        int ret = 0;
1536
1537        down_write(&sb->s_umount);
1538        if (!sb_rdonly(sb)) {
1539                struct fs_context *fc;
1540
1541                fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1542                                                SB_RDONLY);
1543                if (IS_ERR(fc)) {
1544                        ret = PTR_ERR(fc);
1545                } else {
1546                        ret = parse_monolithic_mount_data(fc, NULL);
1547                        if (!ret)
1548                                ret = reconfigure_super(fc);
1549                        put_fs_context(fc);
1550                }
1551        }
1552        up_write(&sb->s_umount);
1553        return ret;
1554}
1555
1556static int do_umount(struct mount *mnt, int flags)
1557{
1558        struct super_block *sb = mnt->mnt.mnt_sb;
1559        int retval;
1560
1561        retval = security_sb_umount(&mnt->mnt, flags);
1562        if (retval)
1563                return retval;
1564
1565        /*
1566         * Allow userspace to request a mountpoint be expired rather than
1567         * unmounting unconditionally. Unmount only happens if:
1568         *  (1) the mark is already set (the mark is cleared by mntput())
1569         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1570         */
1571        if (flags & MNT_EXPIRE) {
1572                if (&mnt->mnt == current->fs->root.mnt ||
1573                    flags & (MNT_FORCE | MNT_DETACH))
1574                        return -EINVAL;
1575
1576                /*
1577                 * probably don't strictly need the lock here if we examined
1578                 * all race cases, but it's a slowpath.
1579                 */
1580                lock_mount_hash();
1581                if (mnt_get_count(mnt) != 2) {
1582                        unlock_mount_hash();
1583                        return -EBUSY;
1584                }
1585                unlock_mount_hash();
1586
1587                if (!xchg(&mnt->mnt_expiry_mark, 1))
1588                        return -EAGAIN;
1589        }
1590
1591        /*
1592         * If we may have to abort operations to get out of this
1593         * mount, and they will themselves hold resources we must
1594         * allow the fs to do things. In the Unix tradition of
1595         * 'Gee thats tricky lets do it in userspace' the umount_begin
1596         * might fail to complete on the first run through as other tasks
1597         * must return, and the like. Thats for the mount program to worry
1598         * about for the moment.
1599         */
1600
1601        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1602                sb->s_op->umount_begin(sb);
1603        }
1604
1605        /*
1606         * No sense to grab the lock for this test, but test itself looks
1607         * somewhat bogus. Suggestions for better replacement?
1608         * Ho-hum... In principle, we might treat that as umount + switch
1609         * to rootfs. GC would eventually take care of the old vfsmount.
1610         * Actually it makes sense, especially if rootfs would contain a
1611         * /reboot - static binary that would close all descriptors and
1612         * call reboot(9). Then init(8) could umount root and exec /reboot.
1613         */
1614        if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1615                /*
1616                 * Special case for "unmounting" root ...
1617                 * we just try to remount it readonly.
1618                 */
1619                if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1620                        return -EPERM;
1621                return do_umount_root(sb);
1622        }
1623
1624        namespace_lock();
1625        lock_mount_hash();
1626
1627        /* Recheck MNT_LOCKED with the locks held */
1628        retval = -EINVAL;
1629        if (mnt->mnt.mnt_flags & MNT_LOCKED)
1630                goto out;
1631
1632        event++;
1633        if (flags & MNT_DETACH) {
1634                if (!list_empty(&mnt->mnt_list))
1635                        umount_tree(mnt, UMOUNT_PROPAGATE);
1636                retval = 0;
1637        } else {
1638                shrink_submounts(mnt);
1639                retval = -EBUSY;
1640                if (!propagate_mount_busy(mnt, 2)) {
1641                        if (!list_empty(&mnt->mnt_list))
1642                                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1643                        retval = 0;
1644                }
1645        }
1646out:
1647        unlock_mount_hash();
1648        namespace_unlock();
1649        return retval;
1650}
1651
1652/*
1653 * __detach_mounts - lazily unmount all mounts on the specified dentry
1654 *
1655 * During unlink, rmdir, and d_drop it is possible to loose the path
1656 * to an existing mountpoint, and wind up leaking the mount.
1657 * detach_mounts allows lazily unmounting those mounts instead of
1658 * leaking them.
1659 *
1660 * The caller may hold dentry->d_inode->i_mutex.
1661 */
1662void __detach_mounts(struct dentry *dentry)
1663{
1664        struct mountpoint *mp;
1665        struct mount *mnt;
1666
1667        namespace_lock();
1668        lock_mount_hash();
1669        mp = lookup_mountpoint(dentry);
1670        if (!mp)
1671                goto out_unlock;
1672
1673        event++;
1674        while (!hlist_empty(&mp->m_list)) {
1675                mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1676                if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1677                        umount_mnt(mnt);
1678                        hlist_add_head(&mnt->mnt_umount, &unmounted);
1679                }
1680                else umount_tree(mnt, UMOUNT_CONNECTED);
1681        }
1682        put_mountpoint(mp);
1683out_unlock:
1684        unlock_mount_hash();
1685        namespace_unlock();
1686}
1687
1688/*
1689 * Is the caller allowed to modify his namespace?
1690 */
1691static inline bool may_mount(void)
1692{
1693        return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1694}
1695
1696#ifdef  CONFIG_MANDATORY_FILE_LOCKING
1697static inline bool may_mandlock(void)
1698{
1699        return capable(CAP_SYS_ADMIN);
1700}
1701#else
1702static inline bool may_mandlock(void)
1703{
1704        pr_warn("VFS: \"mand\" mount option not supported");
1705        return false;
1706}
1707#endif
1708
1709static int can_umount(const struct path *path, int flags)
1710{
1711        struct mount *mnt = real_mount(path->mnt);
1712
1713        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1714                return -EINVAL;
1715        if (!may_mount())
1716                return -EPERM;
1717        if (path->dentry != path->mnt->mnt_root)
1718                return -EINVAL;
1719        if (!check_mnt(mnt))
1720                return -EINVAL;
1721        if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1722                return -EINVAL;
1723        if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1724                return -EPERM;
1725        return 0;
1726}
1727
1728int path_umount(struct path *path, int flags)
1729{
1730        struct mount *mnt = real_mount(path->mnt);
1731        int ret;
1732
1733        ret = can_umount(path, flags);
1734        if (!ret)
1735                ret = do_umount(mnt, flags);
1736
1737        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1738        dput(path->dentry);
1739        mntput_no_expire(mnt);
1740        return ret;
1741}
1742
1743static int ksys_umount(char __user *name, int flags)
1744{
1745        int lookup_flags = LOOKUP_MOUNTPOINT;
1746        struct path path;
1747        int ret;
1748
1749        if (!(flags & UMOUNT_NOFOLLOW))
1750                lookup_flags |= LOOKUP_FOLLOW;
1751        ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1752        if (ret)
1753                return ret;
1754        return path_umount(&path, flags);
1755}
1756
1757SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1758{
1759        return ksys_umount(name, flags);
1760}
1761
1762#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1763
1764/*
1765 *      The 2.0 compatible umount. No flags.
1766 */
1767SYSCALL_DEFINE1(oldumount, char __user *, name)
1768{
1769        return ksys_umount(name, 0);
1770}
1771
1772#endif
1773
1774static bool is_mnt_ns_file(struct dentry *dentry)
1775{
1776        /* Is this a proxy for a mount namespace? */
1777        return dentry->d_op == &ns_dentry_operations &&
1778               dentry->d_fsdata == &mntns_operations;
1779}
1780
1781static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1782{
1783        return container_of(ns, struct mnt_namespace, ns);
1784}
1785
1786struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1787{
1788        return &mnt->ns;
1789}
1790
1791static bool mnt_ns_loop(struct dentry *dentry)
1792{
1793        /* Could bind mounting the mount namespace inode cause a
1794         * mount namespace loop?
1795         */
1796        struct mnt_namespace *mnt_ns;
1797        if (!is_mnt_ns_file(dentry))
1798                return false;
1799
1800        mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1801        return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1802}
1803
1804struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1805                                        int flag)
1806{
1807        struct mount *res, *p, *q, *r, *parent;
1808
1809        if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1810                return ERR_PTR(-EINVAL);
1811
1812        if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1813                return ERR_PTR(-EINVAL);
1814
1815        res = q = clone_mnt(mnt, dentry, flag);
1816        if (IS_ERR(q))
1817                return q;
1818
1819        q->mnt_mountpoint = mnt->mnt_mountpoint;
1820
1821        p = mnt;
1822        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1823                struct mount *s;
1824                if (!is_subdir(r->mnt_mountpoint, dentry))
1825                        continue;
1826
1827                for (s = r; s; s = next_mnt(s, r)) {
1828                        if (!(flag & CL_COPY_UNBINDABLE) &&
1829                            IS_MNT_UNBINDABLE(s)) {
1830                                if (s->mnt.mnt_flags & MNT_LOCKED) {
1831                                        /* Both unbindable and locked. */
1832                                        q = ERR_PTR(-EPERM);
1833                                        goto out;
1834                                } else {
1835                                        s = skip_mnt_tree(s);
1836                                        continue;
1837                                }
1838                        }
1839                        if (!(flag & CL_COPY_MNT_NS_FILE) &&
1840                            is_mnt_ns_file(s->mnt.mnt_root)) {
1841                                s = skip_mnt_tree(s);
1842                                continue;
1843                        }
1844                        while (p != s->mnt_parent) {
1845                                p = p->mnt_parent;
1846                                q = q->mnt_parent;
1847                        }
1848                        p = s;
1849                        parent = q;
1850                        q = clone_mnt(p, p->mnt.mnt_root, flag);
1851                        if (IS_ERR(q))
1852                                goto out;
1853                        lock_mount_hash();
1854                        list_add_tail(&q->mnt_list, &res->mnt_list);
1855                        attach_mnt(q, parent, p->mnt_mp);
1856                        unlock_mount_hash();
1857                }
1858        }
1859        return res;
1860out:
1861        if (res) {
1862                lock_mount_hash();
1863                umount_tree(res, UMOUNT_SYNC);
1864                unlock_mount_hash();
1865        }
1866        return q;
1867}
1868
1869/* Caller should check returned pointer for errors */
1870
1871struct vfsmount *collect_mounts(const struct path *path)
1872{
1873        struct mount *tree;
1874        namespace_lock();
1875        if (!check_mnt(real_mount(path->mnt)))
1876                tree = ERR_PTR(-EINVAL);
1877        else
1878                tree = copy_tree(real_mount(path->mnt), path->dentry,
1879                                 CL_COPY_ALL | CL_PRIVATE);
1880        namespace_unlock();
1881        if (IS_ERR(tree))
1882                return ERR_CAST(tree);
1883        return &tree->mnt;
1884}
1885
1886static void free_mnt_ns(struct mnt_namespace *);
1887static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1888
1889void dissolve_on_fput(struct vfsmount *mnt)
1890{
1891        struct mnt_namespace *ns;
1892        namespace_lock();
1893        lock_mount_hash();
1894        ns = real_mount(mnt)->mnt_ns;
1895        if (ns) {
1896                if (is_anon_ns(ns))
1897                        umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1898                else
1899                        ns = NULL;
1900        }
1901        unlock_mount_hash();
1902        namespace_unlock();
1903        if (ns)
1904                free_mnt_ns(ns);
1905}
1906
1907void drop_collected_mounts(struct vfsmount *mnt)
1908{
1909        namespace_lock();
1910        lock_mount_hash();
1911        umount_tree(real_mount(mnt), 0);
1912        unlock_mount_hash();
1913        namespace_unlock();
1914}
1915
1916/**
1917 * clone_private_mount - create a private clone of a path
1918 *
1919 * This creates a new vfsmount, which will be the clone of @path.  The new will
1920 * not be attached anywhere in the namespace and will be private (i.e. changes
1921 * to the originating mount won't be propagated into this).
1922 *
1923 * Release with mntput().
1924 */
1925struct vfsmount *clone_private_mount(const struct path *path)
1926{
1927        struct mount *old_mnt = real_mount(path->mnt);
1928        struct mount *new_mnt;
1929
1930        if (IS_MNT_UNBINDABLE(old_mnt))
1931                return ERR_PTR(-EINVAL);
1932
1933        new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1934        if (IS_ERR(new_mnt))
1935                return ERR_CAST(new_mnt);
1936
1937        /* Longterm mount to be removed by kern_unmount*() */
1938        new_mnt->mnt_ns = MNT_NS_INTERNAL;
1939
1940        return &new_mnt->mnt;
1941}
1942EXPORT_SYMBOL_GPL(clone_private_mount);
1943
1944int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1945                   struct vfsmount *root)
1946{
1947        struct mount *mnt;
1948        int res = f(root, arg);
1949        if (res)
1950                return res;
1951        list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1952                res = f(&mnt->mnt, arg);
1953                if (res)
1954                        return res;
1955        }
1956        return 0;
1957}
1958
1959static void lock_mnt_tree(struct mount *mnt)
1960{
1961        struct mount *p;
1962
1963        for (p = mnt; p; p = next_mnt(p, mnt)) {
1964                int flags = p->mnt.mnt_flags;
1965                /* Don't allow unprivileged users to change mount flags */
1966                flags |= MNT_LOCK_ATIME;
1967
1968                if (flags & MNT_READONLY)
1969                        flags |= MNT_LOCK_READONLY;
1970
1971                if (flags & MNT_NODEV)
1972                        flags |= MNT_LOCK_NODEV;
1973
1974                if (flags & MNT_NOSUID)
1975                        flags |= MNT_LOCK_NOSUID;
1976
1977                if (flags & MNT_NOEXEC)
1978                        flags |= MNT_LOCK_NOEXEC;
1979                /* Don't allow unprivileged users to reveal what is under a mount */
1980                if (list_empty(&p->mnt_expire))
1981                        flags |= MNT_LOCKED;
1982                p->mnt.mnt_flags = flags;
1983        }
1984}
1985
1986static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1987{
1988        struct mount *p;
1989
1990        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1991                if (p->mnt_group_id && !IS_MNT_SHARED(p))
1992                        mnt_release_group_id(p);
1993        }
1994}
1995
1996static int invent_group_ids(struct mount *mnt, bool recurse)
1997{
1998        struct mount *p;
1999
2000        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2001                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2002                        int err = mnt_alloc_group_id(p);
2003                        if (err) {
2004                                cleanup_group_ids(mnt, p);
2005                                return err;
2006                        }
2007                }
2008        }
2009
2010        return 0;
2011}
2012
2013int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2014{
2015        unsigned int max = READ_ONCE(sysctl_mount_max);
2016        unsigned int mounts = 0, old, pending, sum;
2017        struct mount *p;
2018
2019        for (p = mnt; p; p = next_mnt(p, mnt))
2020                mounts++;
2021
2022        old = ns->mounts;
2023        pending = ns->pending_mounts;
2024        sum = old + pending;
2025        if ((old > sum) ||
2026            (pending > sum) ||
2027            (max < sum) ||
2028            (mounts > (max - sum)))
2029                return -ENOSPC;
2030
2031        ns->pending_mounts = pending + mounts;
2032        return 0;
2033}
2034
2035/*
2036 *  @source_mnt : mount tree to be attached
2037 *  @nd         : place the mount tree @source_mnt is attached
2038 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2039 *                 store the parent mount and mountpoint dentry.
2040 *                 (done when source_mnt is moved)
2041 *
2042 *  NOTE: in the table below explains the semantics when a source mount
2043 *  of a given type is attached to a destination mount of a given type.
2044 * ---------------------------------------------------------------------------
2045 * |         BIND MOUNT OPERATION                                            |
2046 * |**************************************************************************
2047 * | source-->| shared        |       private  |       slave    | unbindable |
2048 * | dest     |               |                |                |            |
2049 * |   |      |               |                |                |            |
2050 * |   v      |               |                |                |            |
2051 * |**************************************************************************
2052 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2053 * |          |               |                |                |            |
2054 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2055 * ***************************************************************************
2056 * A bind operation clones the source mount and mounts the clone on the
2057 * destination mount.
2058 *
2059 * (++)  the cloned mount is propagated to all the mounts in the propagation
2060 *       tree of the destination mount and the cloned mount is added to
2061 *       the peer group of the source mount.
2062 * (+)   the cloned mount is created under the destination mount and is marked
2063 *       as shared. The cloned mount is added to the peer group of the source
2064 *       mount.
2065 * (+++) the mount is propagated to all the mounts in the propagation tree
2066 *       of the destination mount and the cloned mount is made slave
2067 *       of the same master as that of the source mount. The cloned mount
2068 *       is marked as 'shared and slave'.
2069 * (*)   the cloned mount is made a slave of the same master as that of the
2070 *       source mount.
2071 *
2072 * ---------------------------------------------------------------------------
2073 * |                    MOVE MOUNT OPERATION                                 |
2074 * |**************************************************************************
2075 * | source-->| shared        |       private  |       slave    | unbindable |
2076 * | dest     |               |                |                |            |
2077 * |   |      |               |                |                |            |
2078 * |   v      |               |                |                |            |
2079 * |**************************************************************************
2080 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2081 * |          |               |                |                |            |
2082 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2083 * ***************************************************************************
2084 *
2085 * (+)  the mount is moved to the destination. And is then propagated to
2086 *      all the mounts in the propagation tree of the destination mount.
2087 * (+*)  the mount is moved to the destination.
2088 * (+++)  the mount is moved to the destination and is then propagated to
2089 *      all the mounts belonging to the destination mount's propagation tree.
2090 *      the mount is marked as 'shared and slave'.
2091 * (*)  the mount continues to be a slave at the new location.
2092 *
2093 * if the source mount is a tree, the operations explained above is
2094 * applied to each mount in the tree.
2095 * Must be called without spinlocks held, since this function can sleep
2096 * in allocations.
2097 */
2098static int attach_recursive_mnt(struct mount *source_mnt,
2099                        struct mount *dest_mnt,
2100                        struct mountpoint *dest_mp,
2101                        bool moving)
2102{
2103        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2104        HLIST_HEAD(tree_list);
2105        struct mnt_namespace *ns = dest_mnt->mnt_ns;
2106        struct mountpoint *smp;
2107        struct mount *child, *p;
2108        struct hlist_node *n;
2109        int err;
2110
2111        /* Preallocate a mountpoint in case the new mounts need
2112         * to be tucked under other mounts.
2113         */
2114        smp = get_mountpoint(source_mnt->mnt.mnt_root);
2115        if (IS_ERR(smp))
2116                return PTR_ERR(smp);
2117
2118        /* Is there space to add these mounts to the mount namespace? */
2119        if (!moving) {
2120                err = count_mounts(ns, source_mnt);
2121                if (err)
2122                        goto out;
2123        }
2124
2125        if (IS_MNT_SHARED(dest_mnt)) {
2126                err = invent_group_ids(source_mnt, true);
2127                if (err)
2128                        goto out;
2129                err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2130                lock_mount_hash();
2131                if (err)
2132                        goto out_cleanup_ids;
2133                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2134                        set_mnt_shared(p);
2135        } else {
2136                lock_mount_hash();
2137        }
2138        if (moving) {
2139                unhash_mnt(source_mnt);
2140                attach_mnt(source_mnt, dest_mnt, dest_mp);
2141                touch_mnt_namespace(source_mnt->mnt_ns);
2142        } else {
2143                if (source_mnt->mnt_ns) {
2144                        /* move from anon - the caller will destroy */
2145                        list_del_init(&source_mnt->mnt_ns->list);
2146                }
2147                mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2148                commit_tree(source_mnt);
2149        }
2150
2151        hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2152                struct mount *q;
2153                hlist_del_init(&child->mnt_hash);
2154                q = __lookup_mnt(&child->mnt_parent->mnt,
2155                                 child->mnt_mountpoint);
2156                if (q)
2157                        mnt_change_mountpoint(child, smp, q);
2158                /* Notice when we are propagating across user namespaces */
2159                if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2160                        lock_mnt_tree(child);
2161                child->mnt.mnt_flags &= ~MNT_LOCKED;
2162                commit_tree(child);
2163        }
2164        put_mountpoint(smp);
2165        unlock_mount_hash();
2166
2167        return 0;
2168
2169 out_cleanup_ids:
2170        while (!hlist_empty(&tree_list)) {
2171                child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2172                child->mnt_parent->mnt_ns->pending_mounts = 0;
2173                umount_tree(child, UMOUNT_SYNC);
2174        }
2175        unlock_mount_hash();
2176        cleanup_group_ids(source_mnt, NULL);
2177 out:
2178        ns->pending_mounts = 0;
2179
2180        read_seqlock_excl(&mount_lock);
2181        put_mountpoint(smp);
2182        read_sequnlock_excl(&mount_lock);
2183
2184        return err;
2185}
2186
2187static struct mountpoint *lock_mount(struct path *path)
2188{
2189        struct vfsmount *mnt;
2190        struct dentry *dentry = path->dentry;
2191retry:
2192        inode_lock(dentry->d_inode);
2193        if (unlikely(cant_mount(dentry))) {
2194                inode_unlock(dentry->d_inode);
2195                return ERR_PTR(-ENOENT);
2196        }
2197        namespace_lock();
2198        mnt = lookup_mnt(path);
2199        if (likely(!mnt)) {
2200                struct mountpoint *mp = get_mountpoint(dentry);
2201                if (IS_ERR(mp)) {
2202                        namespace_unlock();
2203                        inode_unlock(dentry->d_inode);
2204                        return mp;
2205                }
2206                return mp;
2207        }
2208        namespace_unlock();
2209        inode_unlock(path->dentry->d_inode);
2210        path_put(path);
2211        path->mnt = mnt;
2212        dentry = path->dentry = dget(mnt->mnt_root);
2213        goto retry;
2214}
2215
2216static void unlock_mount(struct mountpoint *where)
2217{
2218        struct dentry *dentry = where->m_dentry;
2219
2220        read_seqlock_excl(&mount_lock);
2221        put_mountpoint(where);
2222        read_sequnlock_excl(&mount_lock);
2223
2224        namespace_unlock();
2225        inode_unlock(dentry->d_inode);
2226}
2227
2228static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2229{
2230        if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2231                return -EINVAL;
2232
2233        if (d_is_dir(mp->m_dentry) !=
2234              d_is_dir(mnt->mnt.mnt_root))
2235                return -ENOTDIR;
2236
2237        return attach_recursive_mnt(mnt, p, mp, false);
2238}
2239
2240/*
2241 * Sanity check the flags to change_mnt_propagation.
2242 */
2243
2244static int flags_to_propagation_type(int ms_flags)
2245{
2246        int type = ms_flags & ~(MS_REC | MS_SILENT);
2247
2248        /* Fail if any non-propagation flags are set */
2249        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2250                return 0;
2251        /* Only one propagation flag should be set */
2252        if (!is_power_of_2(type))
2253                return 0;
2254        return type;
2255}
2256
2257/*
2258 * recursively change the type of the mountpoint.
2259 */
2260static int do_change_type(struct path *path, int ms_flags)
2261{
2262        struct mount *m;
2263        struct mount *mnt = real_mount(path->mnt);
2264        int recurse = ms_flags & MS_REC;
2265        int type;
2266        int err = 0;
2267
2268        if (path->dentry != path->mnt->mnt_root)
2269                return -EINVAL;
2270
2271        type = flags_to_propagation_type(ms_flags);
2272        if (!type)
2273                return -EINVAL;
2274
2275        namespace_lock();
2276        if (type == MS_SHARED) {
2277                err = invent_group_ids(mnt, recurse);
2278                if (err)
2279                        goto out_unlock;
2280        }
2281
2282        lock_mount_hash();
2283        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2284                change_mnt_propagation(m, type);
2285        unlock_mount_hash();
2286
2287 out_unlock:
2288        namespace_unlock();
2289        return err;
2290}
2291
2292static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2293{
2294        struct mount *child;
2295        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2296                if (!is_subdir(child->mnt_mountpoint, dentry))
2297                        continue;
2298
2299                if (child->mnt.mnt_flags & MNT_LOCKED)
2300                        return true;
2301        }
2302        return false;
2303}
2304
2305static struct mount *__do_loopback(struct path *old_path, int recurse)
2306{
2307        struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2308
2309        if (IS_MNT_UNBINDABLE(old))
2310                return mnt;
2311
2312        if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2313                return mnt;
2314
2315        if (!recurse && has_locked_children(old, old_path->dentry))
2316                return mnt;
2317
2318        if (recurse)
2319                mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2320        else
2321                mnt = clone_mnt(old, old_path->dentry, 0);
2322
2323        if (!IS_ERR(mnt))
2324                mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2325
2326        return mnt;
2327}
2328
2329/*
2330 * do loopback mount.
2331 */
2332static int do_loopback(struct path *path, const char *old_name,
2333                                int recurse)
2334{
2335        struct path old_path;
2336        struct mount *mnt = NULL, *parent;
2337        struct mountpoint *mp;
2338        int err;
2339        if (!old_name || !*old_name)
2340                return -EINVAL;
2341        err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2342        if (err)
2343                return err;
2344
2345        err = -EINVAL;
2346        if (mnt_ns_loop(old_path.dentry))
2347                goto out;
2348
2349        mp = lock_mount(path);
2350        if (IS_ERR(mp)) {
2351                err = PTR_ERR(mp);
2352                goto out;
2353        }
2354
2355        parent = real_mount(path->mnt);
2356        if (!check_mnt(parent))
2357                goto out2;
2358
2359        mnt = __do_loopback(&old_path, recurse);
2360        if (IS_ERR(mnt)) {
2361                err = PTR_ERR(mnt);
2362                goto out2;
2363        }
2364
2365        err = graft_tree(mnt, parent, mp);
2366        if (err) {
2367                lock_mount_hash();
2368                umount_tree(mnt, UMOUNT_SYNC);
2369                unlock_mount_hash();
2370        }
2371out2:
2372        unlock_mount(mp);
2373out:
2374        path_put(&old_path);
2375        return err;
2376}
2377
2378static struct file *open_detached_copy(struct path *path, bool recursive)
2379{
2380        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2381        struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2382        struct mount *mnt, *p;
2383        struct file *file;
2384
2385        if (IS_ERR(ns))
2386                return ERR_CAST(ns);
2387
2388        namespace_lock();
2389        mnt = __do_loopback(path, recursive);
2390        if (IS_ERR(mnt)) {
2391                namespace_unlock();
2392                free_mnt_ns(ns);
2393                return ERR_CAST(mnt);
2394        }
2395
2396        lock_mount_hash();
2397        for (p = mnt; p; p = next_mnt(p, mnt)) {
2398                p->mnt_ns = ns;
2399                ns->mounts++;
2400        }
2401        ns->root = mnt;
2402        list_add_tail(&ns->list, &mnt->mnt_list);
2403        mntget(&mnt->mnt);
2404        unlock_mount_hash();
2405        namespace_unlock();
2406
2407        mntput(path->mnt);
2408        path->mnt = &mnt->mnt;
2409        file = dentry_open(path, O_PATH, current_cred());
2410        if (IS_ERR(file))
2411                dissolve_on_fput(path->mnt);
2412        else
2413                file->f_mode |= FMODE_NEED_UNMOUNT;
2414        return file;
2415}
2416
2417SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2418{
2419        struct file *file;
2420        struct path path;
2421        int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2422        bool detached = flags & OPEN_TREE_CLONE;
2423        int error;
2424        int fd;
2425
2426        BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2427
2428        if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2429                      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2430                      OPEN_TREE_CLOEXEC))
2431                return -EINVAL;
2432
2433        if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2434                return -EINVAL;
2435
2436        if (flags & AT_NO_AUTOMOUNT)
2437                lookup_flags &= ~LOOKUP_AUTOMOUNT;
2438        if (flags & AT_SYMLINK_NOFOLLOW)
2439                lookup_flags &= ~LOOKUP_FOLLOW;
2440        if (flags & AT_EMPTY_PATH)
2441                lookup_flags |= LOOKUP_EMPTY;
2442
2443        if (detached && !may_mount())
2444                return -EPERM;
2445
2446        fd = get_unused_fd_flags(flags & O_CLOEXEC);
2447        if (fd < 0)
2448                return fd;
2449
2450        error = user_path_at(dfd, filename, lookup_flags, &path);
2451        if (unlikely(error)) {
2452                file = ERR_PTR(error);
2453        } else {
2454                if (detached)
2455                        file = open_detached_copy(&path, flags & AT_RECURSIVE);
2456                else
2457                        file = dentry_open(&path, O_PATH, current_cred());
2458                path_put(&path);
2459        }
2460        if (IS_ERR(file)) {
2461                put_unused_fd(fd);
2462                return PTR_ERR(file);
2463        }
2464        fd_install(fd, file);
2465        return fd;
2466}
2467
2468/*
2469 * Don't allow locked mount flags to be cleared.
2470 *
2471 * No locks need to be held here while testing the various MNT_LOCK
2472 * flags because those flags can never be cleared once they are set.
2473 */
2474static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2475{
2476        unsigned int fl = mnt->mnt.mnt_flags;
2477
2478        if ((fl & MNT_LOCK_READONLY) &&
2479            !(mnt_flags & MNT_READONLY))
2480                return false;
2481
2482        if ((fl & MNT_LOCK_NODEV) &&
2483            !(mnt_flags & MNT_NODEV))
2484                return false;
2485
2486        if ((fl & MNT_LOCK_NOSUID) &&
2487            !(mnt_flags & MNT_NOSUID))
2488                return false;
2489
2490        if ((fl & MNT_LOCK_NOEXEC) &&
2491            !(mnt_flags & MNT_NOEXEC))
2492                return false;
2493
2494        if ((fl & MNT_LOCK_ATIME) &&
2495            ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2496                return false;
2497
2498        return true;
2499}
2500
2501static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2502{
2503        bool readonly_request = (mnt_flags & MNT_READONLY);
2504
2505        if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2506                return 0;
2507
2508        if (readonly_request)
2509                return mnt_make_readonly(mnt);
2510
2511        return __mnt_unmake_readonly(mnt);
2512}
2513
2514/*
2515 * Update the user-settable attributes on a mount.  The caller must hold
2516 * sb->s_umount for writing.
2517 */
2518static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2519{
2520        lock_mount_hash();
2521        mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2522        mnt->mnt.mnt_flags = mnt_flags;
2523        touch_mnt_namespace(mnt->mnt_ns);
2524        unlock_mount_hash();
2525}
2526
2527static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2528{
2529        struct super_block *sb = mnt->mnt_sb;
2530
2531        if (!__mnt_is_readonly(mnt) &&
2532           (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2533                char *buf = (char *)__get_free_page(GFP_KERNEL);
2534                char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2535                struct tm tm;
2536
2537                time64_to_tm(sb->s_time_max, 0, &tm);
2538
2539                pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2540                        sb->s_type->name,
2541                        is_mounted(mnt) ? "remounted" : "mounted",
2542                        mntpath,
2543                        tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2544
2545                free_page((unsigned long)buf);
2546        }
2547}
2548
2549/*
2550 * Handle reconfiguration of the mountpoint only without alteration of the
2551 * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2552 * to mount(2).
2553 */
2554static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2555{
2556        struct super_block *sb = path->mnt->mnt_sb;
2557        struct mount *mnt = real_mount(path->mnt);
2558        int ret;
2559
2560        if (!check_mnt(mnt))
2561                return -EINVAL;
2562
2563        if (path->dentry != mnt->mnt.mnt_root)
2564                return -EINVAL;
2565
2566        if (!can_change_locked_flags(mnt, mnt_flags))
2567                return -EPERM;
2568
2569        down_write(&sb->s_umount);
2570        ret = change_mount_ro_state(mnt, mnt_flags);
2571        if (ret == 0)
2572                set_mount_attributes(mnt, mnt_flags);
2573        up_write(&sb->s_umount);
2574
2575        mnt_warn_timestamp_expiry(path, &mnt->mnt);
2576
2577        return ret;
2578}
2579
2580/*
2581 * change filesystem flags. dir should be a physical root of filesystem.
2582 * If you've mounted a non-root directory somewhere and want to do remount
2583 * on it - tough luck.
2584 */
2585static int do_remount(struct path *path, int ms_flags, int sb_flags,
2586                      int mnt_flags, void *data)
2587{
2588        int err;
2589        struct super_block *sb = path->mnt->mnt_sb;
2590        struct mount *mnt = real_mount(path->mnt);
2591        struct fs_context *fc;
2592
2593        if (!check_mnt(mnt))
2594                return -EINVAL;
2595
2596        if (path->dentry != path->mnt->mnt_root)
2597                return -EINVAL;
2598
2599        if (!can_change_locked_flags(mnt, mnt_flags))
2600                return -EPERM;
2601
2602        fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2603        if (IS_ERR(fc))
2604                return PTR_ERR(fc);
2605
2606        fc->oldapi = true;
2607        err = parse_monolithic_mount_data(fc, data);
2608        if (!err) {
2609                down_write(&sb->s_umount);
2610                err = -EPERM;
2611                if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2612                        err = reconfigure_super(fc);
2613                        if (!err)
2614                                set_mount_attributes(mnt, mnt_flags);
2615                }
2616                up_write(&sb->s_umount);
2617        }
2618
2619        mnt_warn_timestamp_expiry(path, &mnt->mnt);
2620
2621        put_fs_context(fc);
2622        return err;
2623}
2624
2625static inline int tree_contains_unbindable(struct mount *mnt)
2626{
2627        struct mount *p;
2628        for (p = mnt; p; p = next_mnt(p, mnt)) {
2629                if (IS_MNT_UNBINDABLE(p))
2630                        return 1;
2631        }
2632        return 0;
2633}
2634
2635/*
2636 * Check that there aren't references to earlier/same mount namespaces in the
2637 * specified subtree.  Such references can act as pins for mount namespaces
2638 * that aren't checked by the mount-cycle checking code, thereby allowing
2639 * cycles to be made.
2640 */
2641static bool check_for_nsfs_mounts(struct mount *subtree)
2642{
2643        struct mount *p;
2644        bool ret = false;
2645
2646        lock_mount_hash();
2647        for (p = subtree; p; p = next_mnt(p, subtree))
2648                if (mnt_ns_loop(p->mnt.mnt_root))
2649                        goto out;
2650
2651        ret = true;
2652out:
2653        unlock_mount_hash();
2654        return ret;
2655}
2656
2657static int do_move_mount(struct path *old_path, struct path *new_path)
2658{
2659        struct mnt_namespace *ns;
2660        struct mount *p;
2661        struct mount *old;
2662        struct mount *parent;
2663        struct mountpoint *mp, *old_mp;
2664        int err;
2665        bool attached;
2666
2667        mp = lock_mount(new_path);
2668        if (IS_ERR(mp))
2669                return PTR_ERR(mp);
2670
2671        old = real_mount(old_path->mnt);
2672        p = real_mount(new_path->mnt);
2673        parent = old->mnt_parent;
2674        attached = mnt_has_parent(old);
2675        old_mp = old->mnt_mp;
2676        ns = old->mnt_ns;
2677
2678        err = -EINVAL;
2679        /* The mountpoint must be in our namespace. */
2680        if (!check_mnt(p))
2681                goto out;
2682
2683        /* The thing moved must be mounted... */
2684        if (!is_mounted(&old->mnt))
2685                goto out;
2686
2687        /* ... and either ours or the root of anon namespace */
2688        if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2689                goto out;
2690
2691        if (old->mnt.mnt_flags & MNT_LOCKED)
2692                goto out;
2693
2694        if (old_path->dentry != old_path->mnt->mnt_root)
2695                goto out;
2696
2697        if (d_is_dir(new_path->dentry) !=
2698            d_is_dir(old_path->dentry))
2699                goto out;
2700        /*
2701         * Don't move a mount residing in a shared parent.
2702         */
2703        if (attached && IS_MNT_SHARED(parent))
2704                goto out;
2705        /*
2706         * Don't move a mount tree containing unbindable mounts to a destination
2707         * mount which is shared.
2708         */
2709        if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2710                goto out;
2711        err = -ELOOP;
2712        if (!check_for_nsfs_mounts(old))
2713                goto out;
2714        for (; mnt_has_parent(p); p = p->mnt_parent)
2715                if (p == old)
2716                        goto out;
2717
2718        err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2719                                   attached);
2720        if (err)
2721                goto out;
2722
2723        /* if the mount is moved, it should no longer be expire
2724         * automatically */
2725        list_del_init(&old->mnt_expire);
2726        if (attached)
2727                put_mountpoint(old_mp);
2728out:
2729        unlock_mount(mp);
2730        if (!err) {
2731                if (attached)
2732                        mntput_no_expire(parent);
2733                else
2734                        free_mnt_ns(ns);
2735        }
2736        return err;
2737}
2738
2739static int do_move_mount_old(struct path *path, const char *old_name)
2740{
2741        struct path old_path;
2742        int err;
2743
2744        if (!old_name || !*old_name)
2745                return -EINVAL;
2746
2747        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2748        if (err)
2749                return err;
2750
2751        err = do_move_mount(&old_path, path);
2752        path_put(&old_path);
2753        return err;
2754}
2755
2756/*
2757 * add a mount into a namespace's mount tree
2758 */
2759static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2760                        struct path *path, int mnt_flags)
2761{
2762        struct mount *parent = real_mount(path->mnt);
2763
2764        mnt_flags &= ~MNT_INTERNAL_FLAGS;
2765
2766        if (unlikely(!check_mnt(parent))) {
2767                /* that's acceptable only for automounts done in private ns */
2768                if (!(mnt_flags & MNT_SHRINKABLE))
2769                        return -EINVAL;
2770                /* ... and for those we'd better have mountpoint still alive */
2771                if (!parent->mnt_ns)
2772                        return -EINVAL;
2773        }
2774
2775        /* Refuse the same filesystem on the same mount point */
2776        if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2777            path->mnt->mnt_root == path->dentry)
2778                return -EBUSY;
2779
2780        if (d_is_symlink(newmnt->mnt.mnt_root))
2781                return -EINVAL;
2782
2783        newmnt->mnt.mnt_flags = mnt_flags;
2784        return graft_tree(newmnt, parent, mp);
2785}
2786
2787static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2788
2789/*
2790 * Create a new mount using a superblock configuration and request it
2791 * be added to the namespace tree.
2792 */
2793static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2794                           unsigned int mnt_flags)
2795{
2796        struct vfsmount *mnt;
2797        struct mountpoint *mp;
2798        struct super_block *sb = fc->root->d_sb;
2799        int error;
2800
2801        error = security_sb_kern_mount(sb);
2802        if (!error && mount_too_revealing(sb, &mnt_flags))
2803                error = -EPERM;
2804
2805        if (unlikely(error)) {
2806                fc_drop_locked(fc);
2807                return error;
2808        }
2809
2810        up_write(&sb->s_umount);
2811
2812        mnt = vfs_create_mount(fc);
2813        if (IS_ERR(mnt))
2814                return PTR_ERR(mnt);
2815
2816        mnt_warn_timestamp_expiry(mountpoint, mnt);
2817
2818        mp = lock_mount(mountpoint);
2819        if (IS_ERR(mp)) {
2820                mntput(mnt);
2821                return PTR_ERR(mp);
2822        }
2823        error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2824        unlock_mount(mp);
2825        if (error < 0)
2826                mntput(mnt);
2827        return error;
2828}
2829
2830/*
2831 * create a new mount for userspace and request it to be added into the
2832 * namespace's tree
2833 */
2834static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2835                        int mnt_flags, const char *name, void *data)
2836{
2837        struct file_system_type *type;
2838        struct fs_context *fc;
2839        const char *subtype = NULL;
2840        int err = 0;
2841
2842        if (!fstype)
2843                return -EINVAL;
2844
2845        type = get_fs_type(fstype);
2846        if (!type)
2847                return -ENODEV;
2848
2849        if (type->fs_flags & FS_HAS_SUBTYPE) {
2850                subtype = strchr(fstype, '.');
2851                if (subtype) {
2852                        subtype++;
2853                        if (!*subtype) {
2854                                put_filesystem(type);
2855                                return -EINVAL;
2856                        }
2857                }
2858        }
2859
2860        fc = fs_context_for_mount(type, sb_flags);
2861        put_filesystem(type);
2862        if (IS_ERR(fc))
2863                return PTR_ERR(fc);
2864
2865        if (subtype)
2866                err = vfs_parse_fs_string(fc, "subtype",
2867                                          subtype, strlen(subtype));
2868        if (!err && name)
2869                err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2870        if (!err)
2871                err = parse_monolithic_mount_data(fc, data);
2872        if (!err && !mount_capable(fc))
2873                err = -EPERM;
2874        if (!err)
2875                err = vfs_get_tree(fc);
2876        if (!err)
2877                err = do_new_mount_fc(fc, path, mnt_flags);
2878
2879        put_fs_context(fc);
2880        return err;
2881}
2882
2883int finish_automount(struct vfsmount *m, struct path *path)
2884{
2885        struct dentry *dentry = path->dentry;
2886        struct mountpoint *mp;
2887        struct mount *mnt;
2888        int err;
2889
2890        if (!m)
2891                return 0;
2892        if (IS_ERR(m))
2893                return PTR_ERR(m);
2894
2895        mnt = real_mount(m);
2896        /* The new mount record should have at least 2 refs to prevent it being
2897         * expired before we get a chance to add it
2898         */
2899        BUG_ON(mnt_get_count(mnt) < 2);
2900
2901        if (m->mnt_sb == path->mnt->mnt_sb &&
2902            m->mnt_root == dentry) {
2903                err = -ELOOP;
2904                goto discard;
2905        }
2906
2907        /*
2908         * we don't want to use lock_mount() - in this case finding something
2909         * that overmounts our mountpoint to be means "quitely drop what we've
2910         * got", not "try to mount it on top".
2911         */
2912        inode_lock(dentry->d_inode);
2913        namespace_lock();
2914        if (unlikely(cant_mount(dentry))) {
2915                err = -ENOENT;
2916                goto discard_locked;
2917        }
2918        rcu_read_lock();
2919        if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2920                rcu_read_unlock();
2921                err = 0;
2922                goto discard_locked;
2923        }
2924        rcu_read_unlock();
2925        mp = get_mountpoint(dentry);
2926        if (IS_ERR(mp)) {
2927                err = PTR_ERR(mp);
2928                goto discard_locked;
2929        }
2930
2931        err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2932        unlock_mount(mp);
2933        if (unlikely(err))
2934                goto discard;
2935        mntput(m);
2936        return 0;
2937
2938discard_locked:
2939        namespace_unlock();
2940        inode_unlock(dentry->d_inode);
2941discard:
2942        /* remove m from any expiration list it may be on */
2943        if (!list_empty(&mnt->mnt_expire)) {
2944                namespace_lock();
2945                list_del_init(&mnt->mnt_expire);
2946                namespace_unlock();
2947        }
2948        mntput(m);
2949        mntput(m);
2950        return err;
2951}
2952
2953/**
2954 * mnt_set_expiry - Put a mount on an expiration list
2955 * @mnt: The mount to list.
2956 * @expiry_list: The list to add the mount to.
2957 */
2958void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2959{
2960        namespace_lock();
2961
2962        list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2963
2964        namespace_unlock();
2965}
2966EXPORT_SYMBOL(mnt_set_expiry);
2967
2968/*
2969 * process a list of expirable mountpoints with the intent of discarding any
2970 * mountpoints that aren't in use and haven't been touched since last we came
2971 * here
2972 */
2973void mark_mounts_for_expiry(struct list_head *mounts)
2974{
2975        struct mount *mnt, *next;
2976        LIST_HEAD(graveyard);
2977
2978        if (list_empty(mounts))
2979                return;
2980
2981        namespace_lock();
2982        lock_mount_hash();
2983
2984        /* extract from the expiration list every vfsmount that matches the
2985         * following criteria:
2986         * - only referenced by its parent vfsmount
2987         * - still marked for expiry (marked on the last call here; marks are
2988         *   cleared by mntput())
2989         */
2990        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2991                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2992                        propagate_mount_busy(mnt, 1))
2993                        continue;
2994                list_move(&mnt->mnt_expire, &graveyard);
2995        }
2996        while (!list_empty(&graveyard)) {
2997                mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2998                touch_mnt_namespace(mnt->mnt_ns);
2999                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3000        }
3001        unlock_mount_hash();
3002        namespace_unlock();
3003}
3004
3005EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3006
3007/*
3008 * Ripoff of 'select_parent()'
3009 *
3010 * search the list of submounts for a given mountpoint, and move any
3011 * shrinkable submounts to the 'graveyard' list.
3012 */
3013static int select_submounts(struct mount *parent, struct list_head *graveyard)
3014{
3015        struct mount *this_parent = parent;
3016        struct list_head *next;
3017        int found = 0;
3018
3019repeat:
3020        next = this_parent->mnt_mounts.next;
3021resume:
3022        while (next != &this_parent->mnt_mounts) {
3023                struct list_head *tmp = next;
3024                struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3025
3026                next = tmp->next;
3027                if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3028                        continue;
3029                /*
3030                 * Descend a level if the d_mounts list is non-empty.
3031                 */
3032                if (!list_empty(&mnt->mnt_mounts)) {
3033                        this_parent = mnt;
3034                        goto repeat;
3035                }
3036
3037                if (!propagate_mount_busy(mnt, 1)) {
3038                        list_move_tail(&mnt->mnt_expire, graveyard);
3039                        found++;
3040                }
3041        }
3042        /*
3043         * All done at this level ... ascend and resume the search
3044         */
3045        if (this_parent != parent) {
3046                next = this_parent->mnt_child.next;
3047                this_parent = this_parent->mnt_parent;
3048                goto resume;
3049        }
3050        return found;
3051}
3052
3053/*
3054 * process a list of expirable mountpoints with the intent of discarding any
3055 * submounts of a specific parent mountpoint
3056 *
3057 * mount_lock must be held for write
3058 */
3059static void shrink_submounts(struct mount *mnt)
3060{
3061        LIST_HEAD(graveyard);
3062        struct mount *m;
3063
3064        /* extract submounts of 'mountpoint' from the expiration list */
3065        while (select_submounts(mnt, &graveyard)) {
3066                while (!list_empty(&graveyard)) {
3067                        m = list_first_entry(&graveyard, struct mount,
3068                                                mnt_expire);
3069                        touch_mnt_namespace(m->mnt_ns);
3070                        umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3071                }
3072        }
3073}
3074
3075void *copy_mount_options(const void __user * data)
3076{
3077        char *copy;
3078        unsigned size;
3079
3080        if (!data)
3081                return NULL;
3082
3083        copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3084        if (!copy)
3085                return ERR_PTR(-ENOMEM);
3086
3087        size = PAGE_SIZE - offset_in_page(data);
3088
3089        if (copy_from_user(copy, data, size)) {
3090                kfree(copy);
3091                return ERR_PTR(-EFAULT);
3092        }
3093        if (size != PAGE_SIZE) {
3094                if (copy_from_user(copy + size, data + size, PAGE_SIZE - size))
3095                        memset(copy + size, 0, PAGE_SIZE - size);
3096        }
3097        return copy;
3098}
3099
3100char *copy_mount_string(const void __user *data)
3101{
3102        return data ? strndup_user(data, PATH_MAX) : NULL;
3103}
3104
3105/*
3106 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3107 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3108 *
3109 * data is a (void *) that can point to any structure up to
3110 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3111 * information (or be NULL).
3112 *
3113 * Pre-0.97 versions of mount() didn't have a flags word.
3114 * When the flags word was introduced its top half was required
3115 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3116 * Therefore, if this magic number is present, it carries no information
3117 * and must be discarded.
3118 */
3119int path_mount(const char *dev_name, struct path *path,
3120                const char *type_page, unsigned long flags, void *data_page)
3121{
3122        unsigned int mnt_flags = 0, sb_flags;
3123        int ret;
3124
3125        /* Discard magic */
3126        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3127                flags &= ~MS_MGC_MSK;
3128
3129        /* Basic sanity checks */
3130        if (data_page)
3131                ((char *)data_page)[PAGE_SIZE - 1] = 0;
3132
3133        if (flags & MS_NOUSER)
3134                return -EINVAL;
3135
3136        ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3137        if (ret)
3138                return ret;
3139        if (!may_mount())
3140                return -EPERM;
3141        if ((flags & SB_MANDLOCK) && !may_mandlock())
3142                return -EPERM;
3143
3144        /* Default to relatime unless overriden */
3145        if (!(flags & MS_NOATIME))
3146                mnt_flags |= MNT_RELATIME;
3147
3148        /* Separate the per-mountpoint flags */
3149        if (flags & MS_NOSUID)
3150                mnt_flags |= MNT_NOSUID;
3151        if (flags & MS_NODEV)
3152                mnt_flags |= MNT_NODEV;
3153        if (flags & MS_NOEXEC)
3154                mnt_flags |= MNT_NOEXEC;
3155        if (flags & MS_NOATIME)
3156                mnt_flags |= MNT_NOATIME;
3157        if (flags & MS_NODIRATIME)
3158                mnt_flags |= MNT_NODIRATIME;
3159        if (flags & MS_STRICTATIME)
3160                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3161        if (flags & MS_RDONLY)
3162                mnt_flags |= MNT_READONLY;
3163
3164        /* The default atime for remount is preservation */
3165        if ((flags & MS_REMOUNT) &&
3166            ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3167                       MS_STRICTATIME)) == 0)) {
3168                mnt_flags &= ~MNT_ATIME_MASK;
3169                mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3170        }
3171
3172        sb_flags = flags & (SB_RDONLY |
3173                            SB_SYNCHRONOUS |
3174                            SB_MANDLOCK |
3175                            SB_DIRSYNC |
3176                            SB_SILENT |
3177                            SB_POSIXACL |
3178                            SB_LAZYTIME |
3179                            SB_I_VERSION);
3180
3181        if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3182                return do_reconfigure_mnt(path, mnt_flags);
3183        if (flags & MS_REMOUNT)
3184                return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3185        if (flags & MS_BIND)
3186                return do_loopback(path, dev_name, flags & MS_REC);
3187        if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3188                return do_change_type(path, flags);
3189        if (flags & MS_MOVE)
3190                return do_move_mount_old(path, dev_name);
3191
3192        return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3193                            data_page);
3194}
3195
3196long do_mount(const char *dev_name, const char __user *dir_name,
3197                const char *type_page, unsigned long flags, void *data_page)
3198{
3199        struct path path;
3200        int ret;
3201
3202        ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3203        if (ret)
3204                return ret;
3205        ret = path_mount(dev_name, &path, type_page, flags, data_page);
3206        path_put(&path);
3207        return ret;
3208}
3209
3210static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3211{
3212        return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3213}
3214
3215static void dec_mnt_namespaces(struct ucounts *ucounts)
3216{
3217        dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3218}
3219
3220static void free_mnt_ns(struct mnt_namespace *ns)
3221{
3222        if (!is_anon_ns(ns))
3223                ns_free_inum(&ns->ns);
3224        dec_mnt_namespaces(ns->ucounts);
3225        put_user_ns(ns->user_ns);
3226        kfree(ns);
3227}
3228
3229/*
3230 * Assign a sequence number so we can detect when we attempt to bind
3231 * mount a reference to an older mount namespace into the current
3232 * mount namespace, preventing reference counting loops.  A 64bit
3233 * number incrementing at 10Ghz will take 12,427 years to wrap which
3234 * is effectively never, so we can ignore the possibility.
3235 */
3236static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3237
3238static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3239{
3240        struct mnt_namespace *new_ns;
3241        struct ucounts *ucounts;
3242        int ret;
3243
3244        ucounts = inc_mnt_namespaces(user_ns);
3245        if (!ucounts)
3246                return ERR_PTR(-ENOSPC);
3247
3248        new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3249        if (!new_ns) {
3250                dec_mnt_namespaces(ucounts);
3251                return ERR_PTR(-ENOMEM);
3252        }
3253        if (!anon) {
3254                ret = ns_alloc_inum(&new_ns->ns);
3255                if (ret) {
3256                        kfree(new_ns);
3257                        dec_mnt_namespaces(ucounts);
3258                        return ERR_PTR(ret);
3259                }
3260        }
3261        new_ns->ns.ops = &mntns_operations;
3262        if (!anon)
3263                new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3264        atomic_set(&new_ns->count, 1);
3265        INIT_LIST_HEAD(&new_ns->list);
3266        init_waitqueue_head(&new_ns->poll);
3267        spin_lock_init(&new_ns->ns_lock);
3268        new_ns->user_ns = get_user_ns(user_ns);
3269        new_ns->ucounts = ucounts;
3270        return new_ns;
3271}
3272
3273__latent_entropy
3274struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3275                struct user_namespace *user_ns, struct fs_struct *new_fs)
3276{
3277        struct mnt_namespace *new_ns;
3278        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3279        struct mount *p, *q;
3280        struct mount *old;
3281        struct mount *new;
3282        int copy_flags;
3283
3284        BUG_ON(!ns);
3285
3286        if (likely(!(flags & CLONE_NEWNS))) {
3287                get_mnt_ns(ns);
3288                return ns;
3289        }
3290
3291        old = ns->root;
3292
3293        new_ns = alloc_mnt_ns(user_ns, false);
3294        if (IS_ERR(new_ns))
3295                return new_ns;
3296
3297        namespace_lock();
3298        /* First pass: copy the tree topology */
3299        copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3300        if (user_ns != ns->user_ns)
3301                copy_flags |= CL_SHARED_TO_SLAVE;
3302        new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3303        if (IS_ERR(new)) {
3304                namespace_unlock();
3305                free_mnt_ns(new_ns);
3306                return ERR_CAST(new);
3307        }
3308        if (user_ns != ns->user_ns) {
3309                lock_mount_hash();
3310                lock_mnt_tree(new);
3311                unlock_mount_hash();
3312        }
3313        new_ns->root = new;
3314        list_add_tail(&new_ns->list, &new->mnt_list);
3315
3316        /*
3317         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3318         * as belonging to new namespace.  We have already acquired a private
3319         * fs_struct, so tsk->fs->lock is not needed.
3320         */
3321        p = old;
3322        q = new;
3323        while (p) {
3324                q->mnt_ns = new_ns;
3325                new_ns->mounts++;
3326                if (new_fs) {
3327                        if (&p->mnt == new_fs->root.mnt) {
3328                                new_fs->root.mnt = mntget(&q->mnt);
3329                                rootmnt = &p->mnt;
3330                        }
3331                        if (&p->mnt == new_fs->pwd.mnt) {
3332                                new_fs->pwd.mnt = mntget(&q->mnt);
3333                                pwdmnt = &p->mnt;
3334                        }
3335                }
3336                p = next_mnt(p, old);
3337                q = next_mnt(q, new);
3338                if (!q)
3339                        break;
3340                while (p->mnt.mnt_root != q->mnt.mnt_root)
3341                        p = next_mnt(p, old);
3342        }
3343        namespace_unlock();
3344
3345        if (rootmnt)
3346                mntput(rootmnt);
3347        if (pwdmnt)
3348                mntput(pwdmnt);
3349
3350        return new_ns;
3351}
3352
3353struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3354{
3355        struct mount *mnt = real_mount(m);
3356        struct mnt_namespace *ns;
3357        struct super_block *s;
3358        struct path path;
3359        int err;
3360
3361        ns = alloc_mnt_ns(&init_user_ns, true);
3362        if (IS_ERR(ns)) {
3363                mntput(m);
3364                return ERR_CAST(ns);
3365        }
3366        mnt->mnt_ns = ns;
3367        ns->root = mnt;
3368        ns->mounts++;
3369        list_add(&mnt->mnt_list, &ns->list);
3370
3371        err = vfs_path_lookup(m->mnt_root, m,
3372                        name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3373
3374        put_mnt_ns(ns);
3375
3376        if (err)
3377                return ERR_PTR(err);
3378
3379        /* trade a vfsmount reference for active sb one */
3380        s = path.mnt->mnt_sb;
3381        atomic_inc(&s->s_active);
3382        mntput(path.mnt);
3383        /* lock the sucker */
3384        down_write(&s->s_umount);
3385        /* ... and return the root of (sub)tree on it */
3386        return path.dentry;
3387}
3388EXPORT_SYMBOL(mount_subtree);
3389
3390SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3391                char __user *, type, unsigned long, flags, void __user *, data)
3392{
3393        int ret;
3394        char *kernel_type;
3395        char *kernel_dev;
3396        void *options;
3397
3398        kernel_type = copy_mount_string(type);
3399        ret = PTR_ERR(kernel_type);
3400        if (IS_ERR(kernel_type))
3401                goto out_type;
3402
3403        kernel_dev = copy_mount_string(dev_name);
3404        ret = PTR_ERR(kernel_dev);
3405        if (IS_ERR(kernel_dev))
3406                goto out_dev;
3407
3408        options = copy_mount_options(data);
3409        ret = PTR_ERR(options);
3410        if (IS_ERR(options))
3411                goto out_data;
3412
3413        ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3414
3415        kfree(options);
3416out_data:
3417        kfree(kernel_dev);
3418out_dev:
3419        kfree(kernel_type);
3420out_type:
3421        return ret;
3422}
3423
3424/*
3425 * Create a kernel mount representation for a new, prepared superblock
3426 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3427 */
3428SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3429                unsigned int, attr_flags)
3430{
3431        struct mnt_namespace *ns;
3432        struct fs_context *fc;
3433        struct file *file;
3434        struct path newmount;
3435        struct mount *mnt;
3436        struct fd f;
3437        unsigned int mnt_flags = 0;
3438        long ret;
3439
3440        if (!may_mount())
3441                return -EPERM;
3442
3443        if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3444                return -EINVAL;
3445
3446        if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3447                           MOUNT_ATTR_NOSUID |
3448                           MOUNT_ATTR_NODEV |
3449                           MOUNT_ATTR_NOEXEC |
3450                           MOUNT_ATTR__ATIME |
3451                           MOUNT_ATTR_NODIRATIME))
3452                return -EINVAL;
3453
3454        if (attr_flags & MOUNT_ATTR_RDONLY)
3455                mnt_flags |= MNT_READONLY;
3456        if (attr_flags & MOUNT_ATTR_NOSUID)
3457                mnt_flags |= MNT_NOSUID;
3458        if (attr_flags & MOUNT_ATTR_NODEV)
3459                mnt_flags |= MNT_NODEV;
3460        if (attr_flags & MOUNT_ATTR_NOEXEC)
3461                mnt_flags |= MNT_NOEXEC;
3462        if (attr_flags & MOUNT_ATTR_NODIRATIME)
3463                mnt_flags |= MNT_NODIRATIME;
3464
3465        switch (attr_flags & MOUNT_ATTR__ATIME) {
3466        case MOUNT_ATTR_STRICTATIME:
3467                break;
3468        case MOUNT_ATTR_NOATIME:
3469                mnt_flags |= MNT_NOATIME;
3470                break;
3471        case MOUNT_ATTR_RELATIME:
3472                mnt_flags |= MNT_RELATIME;
3473                break;
3474        default:
3475                return -EINVAL;
3476        }
3477
3478        f = fdget(fs_fd);
3479        if (!f.file)
3480                return -EBADF;
3481
3482        ret = -EINVAL;
3483        if (f.file->f_op != &fscontext_fops)
3484                goto err_fsfd;
3485
3486        fc = f.file->private_data;
3487
3488        ret = mutex_lock_interruptible(&fc->uapi_mutex);
3489        if (ret < 0)
3490                goto err_fsfd;
3491
3492        /* There must be a valid superblock or we can't mount it */
3493        ret = -EINVAL;
3494        if (!fc->root)
3495                goto err_unlock;
3496
3497        ret = -EPERM;
3498        if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3499                pr_warn("VFS: Mount too revealing\n");
3500                goto err_unlock;
3501        }
3502
3503        ret = -EBUSY;
3504        if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3505                goto err_unlock;
3506
3507        ret = -EPERM;
3508        if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3509                goto err_unlock;
3510
3511        newmount.mnt = vfs_create_mount(fc);
3512        if (IS_ERR(newmount.mnt)) {
3513                ret = PTR_ERR(newmount.mnt);
3514                goto err_unlock;
3515        }
3516        newmount.dentry = dget(fc->root);
3517        newmount.mnt->mnt_flags = mnt_flags;
3518
3519        /* We've done the mount bit - now move the file context into more or
3520         * less the same state as if we'd done an fspick().  We don't want to
3521         * do any memory allocation or anything like that at this point as we
3522         * don't want to have to handle any errors incurred.
3523         */
3524        vfs_clean_context(fc);
3525
3526        ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3527        if (IS_ERR(ns)) {
3528                ret = PTR_ERR(ns);
3529                goto err_path;
3530        }
3531        mnt = real_mount(newmount.mnt);
3532        mnt->mnt_ns = ns;
3533        ns->root = mnt;
3534        ns->mounts = 1;
3535        list_add(&mnt->mnt_list, &ns->list);
3536        mntget(newmount.mnt);
3537
3538        /* Attach to an apparent O_PATH fd with a note that we need to unmount
3539         * it, not just simply put it.
3540         */
3541        file = dentry_open(&newmount, O_PATH, fc->cred);
3542        if (IS_ERR(file)) {
3543                dissolve_on_fput(newmount.mnt);
3544                ret = PTR_ERR(file);
3545                goto err_path;
3546        }
3547        file->f_mode |= FMODE_NEED_UNMOUNT;
3548
3549        ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3550        if (ret >= 0)
3551                fd_install(ret, file);
3552        else
3553                fput(file);
3554
3555err_path:
3556        path_put(&newmount);
3557err_unlock:
3558        mutex_unlock(&fc->uapi_mutex);
3559err_fsfd:
3560        fdput(f);
3561        return ret;
3562}
3563
3564/*
3565 * Move a mount from one place to another.  In combination with
3566 * fsopen()/fsmount() this is used to install a new mount and in combination
3567 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3568 * a mount subtree.
3569 *
3570 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3571 */
3572SYSCALL_DEFINE5(move_mount,
3573                int, from_dfd, const char __user *, from_pathname,
3574                int, to_dfd, const char __user *, to_pathname,
3575                unsigned int, flags)
3576{
3577        struct path from_path, to_path;
3578        unsigned int lflags;
3579        int ret = 0;
3580
3581        if (!may_mount())
3582                return -EPERM;
3583
3584        if (flags & ~MOVE_MOUNT__MASK)
3585                return -EINVAL;
3586
3587        /* If someone gives a pathname, they aren't permitted to move
3588         * from an fd that requires unmount as we can't get at the flag
3589         * to clear it afterwards.
3590         */
3591        lflags = 0;
3592        if (flags & MOVE_MOUNT_F_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3593        if (flags & MOVE_MOUNT_F_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3594        if (flags & MOVE_MOUNT_F_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3595
3596        ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3597        if (ret < 0)
3598                return ret;
3599
3600        lflags = 0;
3601        if (flags & MOVE_MOUNT_T_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3602        if (flags & MOVE_MOUNT_T_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3603        if (flags & MOVE_MOUNT_T_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3604
3605        ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3606        if (ret < 0)
3607                goto out_from;
3608
3609        ret = security_move_mount(&from_path, &to_path);
3610        if (ret < 0)
3611                goto out_to;
3612
3613        ret = do_move_mount(&from_path, &to_path);
3614
3615out_to:
3616        path_put(&to_path);
3617out_from:
3618        path_put(&from_path);
3619        return ret;
3620}
3621
3622/*
3623 * Return true if path is reachable from root
3624 *
3625 * namespace_sem or mount_lock is held
3626 */
3627bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3628                         const struct path *root)
3629{
3630        while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3631                dentry = mnt->mnt_mountpoint;
3632                mnt = mnt->mnt_parent;
3633        }
3634        return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3635}
3636
3637bool path_is_under(const struct path *path1, const struct path *path2)
3638{
3639        bool res;
3640        read_seqlock_excl(&mount_lock);
3641        res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3642        read_sequnlock_excl(&mount_lock);
3643        return res;
3644}
3645EXPORT_SYMBOL(path_is_under);
3646
3647/*
3648 * pivot_root Semantics:
3649 * Moves the root file system of the current process to the directory put_old,
3650 * makes new_root as the new root file system of the current process, and sets
3651 * root/cwd of all processes which had them on the current root to new_root.
3652 *
3653 * Restrictions:
3654 * The new_root and put_old must be directories, and  must not be on the
3655 * same file  system as the current process root. The put_old  must  be
3656 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3657 * pointed to by put_old must yield the same directory as new_root. No other
3658 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3659 *
3660 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3661 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3662 * in this situation.
3663 *
3664 * Notes:
3665 *  - we don't move root/cwd if they are not at the root (reason: if something
3666 *    cared enough to change them, it's probably wrong to force them elsewhere)
3667 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3668 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3669 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3670 *    first.
3671 */
3672SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3673                const char __user *, put_old)
3674{
3675        struct path new, old, root;
3676        struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3677        struct mountpoint *old_mp, *root_mp;
3678        int error;
3679
3680        if (!may_mount())
3681                return -EPERM;
3682
3683        error = user_path_at(AT_FDCWD, new_root,
3684                             LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3685        if (error)
3686                goto out0;
3687
3688        error = user_path_at(AT_FDCWD, put_old,
3689                             LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3690        if (error)
3691                goto out1;
3692
3693        error = security_sb_pivotroot(&old, &new);
3694        if (error)
3695                goto out2;
3696
3697        get_fs_root(current->fs, &root);
3698        old_mp = lock_mount(&old);
3699        error = PTR_ERR(old_mp);
3700        if (IS_ERR(old_mp))
3701                goto out3;
3702
3703        error = -EINVAL;
3704        new_mnt = real_mount(new.mnt);
3705        root_mnt = real_mount(root.mnt);
3706        old_mnt = real_mount(old.mnt);
3707        ex_parent = new_mnt->mnt_parent;
3708        root_parent = root_mnt->mnt_parent;
3709        if (IS_MNT_SHARED(old_mnt) ||
3710                IS_MNT_SHARED(ex_parent) ||
3711                IS_MNT_SHARED(root_parent))
3712                goto out4;
3713        if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3714                goto out4;
3715        if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3716                goto out4;
3717        error = -ENOENT;
3718        if (d_unlinked(new.dentry))
3719                goto out4;
3720        error = -EBUSY;
3721        if (new_mnt == root_mnt || old_mnt == root_mnt)
3722                goto out4; /* loop, on the same file system  */
3723        error = -EINVAL;
3724        if (root.mnt->mnt_root != root.dentry)
3725                goto out4; /* not a mountpoint */
3726        if (!mnt_has_parent(root_mnt))
3727                goto out4; /* not attached */
3728        if (new.mnt->mnt_root != new.dentry)
3729                goto out4; /* not a mountpoint */
3730        if (!mnt_has_parent(new_mnt))
3731                goto out4; /* not attached */
3732        /* make sure we can reach put_old from new_root */
3733        if (!is_path_reachable(old_mnt, old.dentry, &new))
3734                goto out4;
3735        /* make certain new is below the root */
3736        if (!is_path_reachable(new_mnt, new.dentry, &root))
3737                goto out4;
3738        lock_mount_hash();
3739        umount_mnt(new_mnt);
3740        root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3741        if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3742                new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3743                root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3744        }
3745        /* mount old root on put_old */
3746        attach_mnt(root_mnt, old_mnt, old_mp);
3747        /* mount new_root on / */
3748        attach_mnt(new_mnt, root_parent, root_mp);
3749        mnt_add_count(root_parent, -1);
3750        touch_mnt_namespace(current->nsproxy->mnt_ns);
3751        /* A moved mount should not expire automatically */
3752        list_del_init(&new_mnt->mnt_expire);
3753        put_mountpoint(root_mp);
3754        unlock_mount_hash();
3755        chroot_fs_refs(&root, &new);
3756        error = 0;
3757out4:
3758        unlock_mount(old_mp);
3759        if (!error)
3760                mntput_no_expire(ex_parent);
3761out3:
3762        path_put(&root);
3763out2:
3764        path_put(&old);
3765out1:
3766        path_put(&new);
3767out0:
3768        return error;
3769}
3770
3771static void __init init_mount_tree(void)
3772{
3773        struct vfsmount *mnt;
3774        struct mount *m;
3775        struct mnt_namespace *ns;
3776        struct path root;
3777
3778        mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3779        if (IS_ERR(mnt))
3780                panic("Can't create rootfs");
3781
3782        ns = alloc_mnt_ns(&init_user_ns, false);
3783        if (IS_ERR(ns))
3784                panic("Can't allocate initial namespace");
3785        m = real_mount(mnt);
3786        m->mnt_ns = ns;
3787        ns->root = m;
3788        ns->mounts = 1;
3789        list_add(&m->mnt_list, &ns->list);
3790        init_task.nsproxy->mnt_ns = ns;
3791        get_mnt_ns(ns);
3792
3793        root.mnt = mnt;
3794        root.dentry = mnt->mnt_root;
3795        mnt->mnt_flags |= MNT_LOCKED;
3796
3797        set_fs_pwd(current->fs, &root);
3798        set_fs_root(current->fs, &root);
3799}
3800
3801void __init mnt_init(void)
3802{
3803        int err;
3804
3805        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3806                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3807
3808        mount_hashtable = alloc_large_system_hash("Mount-cache",
3809                                sizeof(struct hlist_head),
3810                                mhash_entries, 19,
3811                                HASH_ZERO,
3812                                &m_hash_shift, &m_hash_mask, 0, 0);
3813        mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3814                                sizeof(struct hlist_head),
3815                                mphash_entries, 19,
3816                                HASH_ZERO,
3817                                &mp_hash_shift, &mp_hash_mask, 0, 0);
3818
3819        if (!mount_hashtable || !mountpoint_hashtable)
3820                panic("Failed to allocate mount hash table\n");
3821
3822        kernfs_init();
3823
3824        err = sysfs_init();
3825        if (err)
3826                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3827                        __func__, err);
3828        fs_kobj = kobject_create_and_add("fs", NULL);
3829        if (!fs_kobj)
3830                printk(KERN_WARNING "%s: kobj create error\n", __func__);
3831        shmem_init();
3832        init_rootfs();
3833        init_mount_tree();
3834}
3835
3836void put_mnt_ns(struct mnt_namespace *ns)
3837{
3838        if (!atomic_dec_and_test(&ns->count))
3839                return;
3840        drop_collected_mounts(&ns->root->mnt);
3841        free_mnt_ns(ns);
3842}
3843
3844struct vfsmount *kern_mount(struct file_system_type *type)
3845{
3846        struct vfsmount *mnt;
3847        mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3848        if (!IS_ERR(mnt)) {
3849                /*
3850                 * it is a longterm mount, don't release mnt until
3851                 * we unmount before file sys is unregistered
3852                */
3853                real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3854        }
3855        return mnt;
3856}
3857EXPORT_SYMBOL_GPL(kern_mount);
3858
3859void kern_unmount(struct vfsmount *mnt)
3860{
3861        /* release long term mount so mount point can be released */
3862        if (!IS_ERR_OR_NULL(mnt)) {
3863                real_mount(mnt)->mnt_ns = NULL;
3864                synchronize_rcu();      /* yecchhh... */
3865                mntput(mnt);
3866        }
3867}
3868EXPORT_SYMBOL(kern_unmount);
3869
3870void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3871{
3872        unsigned int i;
3873
3874        for (i = 0; i < num; i++)
3875                if (mnt[i])
3876                        real_mount(mnt[i])->mnt_ns = NULL;
3877        synchronize_rcu_expedited();
3878        for (i = 0; i < num; i++)
3879                mntput(mnt[i]);
3880}
3881EXPORT_SYMBOL(kern_unmount_array);
3882
3883bool our_mnt(struct vfsmount *mnt)
3884{
3885        return check_mnt(real_mount(mnt));
3886}
3887
3888bool current_chrooted(void)
3889{
3890        /* Does the current process have a non-standard root */
3891        struct path ns_root;
3892        struct path fs_root;
3893        bool chrooted;
3894
3895        /* Find the namespace root */
3896        ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3897        ns_root.dentry = ns_root.mnt->mnt_root;
3898        path_get(&ns_root);
3899        while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3900                ;
3901
3902        get_fs_root(current->fs, &fs_root);
3903
3904        chrooted = !path_equal(&fs_root, &ns_root);
3905
3906        path_put(&fs_root);
3907        path_put(&ns_root);
3908
3909        return chrooted;
3910}
3911
3912static bool mnt_already_visible(struct mnt_namespace *ns,
3913                                const struct super_block *sb,
3914                                int *new_mnt_flags)
3915{
3916        int new_flags = *new_mnt_flags;
3917        struct mount *mnt;
3918        bool visible = false;
3919
3920        down_read(&namespace_sem);
3921        lock_ns_list(ns);
3922        list_for_each_entry(mnt, &ns->list, mnt_list) {
3923                struct mount *child;
3924                int mnt_flags;
3925
3926                if (mnt_is_cursor(mnt))
3927                        continue;
3928
3929                if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3930                        continue;
3931
3932                /* This mount is not fully visible if it's root directory
3933                 * is not the root directory of the filesystem.
3934                 */
3935                if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3936                        continue;
3937
3938                /* A local view of the mount flags */
3939                mnt_flags = mnt->mnt.mnt_flags;
3940
3941                /* Don't miss readonly hidden in the superblock flags */
3942                if (sb_rdonly(mnt->mnt.mnt_sb))
3943                        mnt_flags |= MNT_LOCK_READONLY;
3944
3945                /* Verify the mount flags are equal to or more permissive
3946                 * than the proposed new mount.
3947                 */
3948                if ((mnt_flags & MNT_LOCK_READONLY) &&
3949                    !(new_flags & MNT_READONLY))
3950                        continue;
3951                if ((mnt_flags & MNT_LOCK_ATIME) &&
3952                    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3953                        continue;
3954
3955                /* This mount is not fully visible if there are any
3956                 * locked child mounts that cover anything except for
3957                 * empty directories.
3958                 */
3959                list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3960                        struct inode *inode = child->mnt_mountpoint->d_inode;
3961                        /* Only worry about locked mounts */
3962                        if (!(child->mnt.mnt_flags & MNT_LOCKED))
3963                                continue;
3964                        /* Is the directory permanetly empty? */
3965                        if (!is_empty_dir_inode(inode))
3966                                goto next;
3967                }
3968                /* Preserve the locked attributes */
3969                *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3970                                               MNT_LOCK_ATIME);
3971                visible = true;
3972                goto found;
3973        next:   ;
3974        }
3975found:
3976        unlock_ns_list(ns);
3977        up_read(&namespace_sem);
3978        return visible;
3979}
3980
3981static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3982{
3983        const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3984        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3985        unsigned long s_iflags;
3986
3987        if (ns->user_ns == &init_user_ns)
3988                return false;
3989
3990        /* Can this filesystem be too revealing? */
3991        s_iflags = sb->s_iflags;
3992        if (!(s_iflags & SB_I_USERNS_VISIBLE))
3993                return false;
3994
3995        if ((s_iflags & required_iflags) != required_iflags) {
3996                WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3997                          required_iflags);
3998                return true;
3999        }
4000
4001        return !mnt_already_visible(ns, sb, new_mnt_flags);
4002}
4003
4004bool mnt_may_suid(struct vfsmount *mnt)
4005{
4006        /*
4007         * Foreign mounts (accessed via fchdir or through /proc
4008         * symlinks) are always treated as if they are nosuid.  This
4009         * prevents namespaces from trusting potentially unsafe
4010         * suid/sgid bits, file caps, or security labels that originate
4011         * in other namespaces.
4012         */
4013        return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4014               current_in_userns(mnt->mnt_sb->s_user_ns);
4015}
4016
4017static struct ns_common *mntns_get(struct task_struct *task)
4018{
4019        struct ns_common *ns = NULL;
4020        struct nsproxy *nsproxy;
4021
4022        task_lock(task);
4023        nsproxy = task->nsproxy;
4024        if (nsproxy) {
4025                ns = &nsproxy->mnt_ns->ns;
4026                get_mnt_ns(to_mnt_ns(ns));
4027        }
4028        task_unlock(task);
4029
4030        return ns;
4031}
4032
4033static void mntns_put(struct ns_common *ns)
4034{
4035        put_mnt_ns(to_mnt_ns(ns));
4036}
4037
4038static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4039{
4040        struct nsproxy *nsproxy = nsset->nsproxy;
4041        struct fs_struct *fs = nsset->fs;
4042        struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4043        struct user_namespace *user_ns = nsset->cred->user_ns;
4044        struct path root;
4045        int err;
4046
4047        if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4048            !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4049            !ns_capable(user_ns, CAP_SYS_ADMIN))
4050                return -EPERM;
4051
4052        if (is_anon_ns(mnt_ns))
4053                return -EINVAL;
4054
4055        if (fs->users != 1)
4056                return -EINVAL;
4057
4058        get_mnt_ns(mnt_ns);
4059        old_mnt_ns = nsproxy->mnt_ns;
4060        nsproxy->mnt_ns = mnt_ns;
4061
4062        /* Find the root */
4063        err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4064                                "/", LOOKUP_DOWN, &root);
4065        if (err) {
4066                /* revert to old namespace */
4067                nsproxy->mnt_ns = old_mnt_ns;
4068                put_mnt_ns(mnt_ns);
4069                return err;
4070        }
4071
4072        put_mnt_ns(old_mnt_ns);
4073
4074        /* Update the pwd and root */
4075        set_fs_pwd(fs, &root);
4076        set_fs_root(fs, &root);
4077
4078        path_put(&root);
4079        return 0;
4080}
4081
4082static struct user_namespace *mntns_owner(struct ns_common *ns)
4083{
4084        return to_mnt_ns(ns)->user_ns;
4085}
4086
4087const struct proc_ns_operations mntns_operations = {
4088        .name           = "mnt",
4089        .type           = CLONE_NEWNS,
4090        .get            = mntns_get,
4091        .put            = mntns_put,
4092        .install        = mntns_install,
4093        .owner          = mntns_owner,
4094};
4095