linux/fs/nfs/dir.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996  Added silly rename for unlink   --okir
  10 * 28 Sep 1996  Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/time.h>
  23#include <linux/errno.h>
  24#include <linux/stat.h>
  25#include <linux/fcntl.h>
  26#include <linux/string.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/sunrpc/clnt.h>
  31#include <linux/nfs_fs.h>
  32#include <linux/nfs_mount.h>
  33#include <linux/pagemap.h>
  34#include <linux/pagevec.h>
  35#include <linux/namei.h>
  36#include <linux/mount.h>
  37#include <linux/swap.h>
  38#include <linux/sched.h>
  39#include <linux/kmemleak.h>
  40#include <linux/xattr.h>
  41
  42#include "delegation.h"
  43#include "iostat.h"
  44#include "internal.h"
  45#include "fscache.h"
  46
  47#include "nfstrace.h"
  48
  49/* #define NFS_DEBUG_VERBOSE 1 */
  50
  51static int nfs_opendir(struct inode *, struct file *);
  52static int nfs_closedir(struct inode *, struct file *);
  53static int nfs_readdir(struct file *, struct dir_context *);
  54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  55static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  56static void nfs_readdir_clear_array(struct page*);
  57
  58const struct file_operations nfs_dir_operations = {
  59        .llseek         = nfs_llseek_dir,
  60        .read           = generic_read_dir,
  61        .iterate_shared = nfs_readdir,
  62        .open           = nfs_opendir,
  63        .release        = nfs_closedir,
  64        .fsync          = nfs_fsync_dir,
  65};
  66
  67const struct address_space_operations nfs_dir_aops = {
  68        .freepage = nfs_readdir_clear_array,
  69};
  70
  71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
  72{
  73        struct nfs_inode *nfsi = NFS_I(dir);
  74        struct nfs_open_dir_context *ctx;
  75        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  76        if (ctx != NULL) {
  77                ctx->duped = 0;
  78                ctx->attr_gencount = nfsi->attr_gencount;
  79                ctx->dir_cookie = 0;
  80                ctx->dup_cookie = 0;
  81                ctx->cred = get_cred(cred);
  82                spin_lock(&dir->i_lock);
  83                if (list_empty(&nfsi->open_files) &&
  84                    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  85                        nfsi->cache_validity |= NFS_INO_INVALID_DATA |
  86                                NFS_INO_REVAL_FORCED;
  87                list_add(&ctx->list, &nfsi->open_files);
  88                spin_unlock(&dir->i_lock);
  89                return ctx;
  90        }
  91        return  ERR_PTR(-ENOMEM);
  92}
  93
  94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  95{
  96        spin_lock(&dir->i_lock);
  97        list_del(&ctx->list);
  98        spin_unlock(&dir->i_lock);
  99        put_cred(ctx->cred);
 100        kfree(ctx);
 101}
 102
 103/*
 104 * Open file
 105 */
 106static int
 107nfs_opendir(struct inode *inode, struct file *filp)
 108{
 109        int res = 0;
 110        struct nfs_open_dir_context *ctx;
 111
 112        dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 113
 114        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 115
 116        ctx = alloc_nfs_open_dir_context(inode, current_cred());
 117        if (IS_ERR(ctx)) {
 118                res = PTR_ERR(ctx);
 119                goto out;
 120        }
 121        filp->private_data = ctx;
 122out:
 123        return res;
 124}
 125
 126static int
 127nfs_closedir(struct inode *inode, struct file *filp)
 128{
 129        put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 130        return 0;
 131}
 132
 133struct nfs_cache_array_entry {
 134        u64 cookie;
 135        u64 ino;
 136        struct qstr string;
 137        unsigned char d_type;
 138};
 139
 140struct nfs_cache_array {
 141        int size;
 142        int eof_index;
 143        u64 last_cookie;
 144        struct nfs_cache_array_entry array[];
 145};
 146
 147typedef struct {
 148        struct file     *file;
 149        struct page     *page;
 150        struct dir_context *ctx;
 151        unsigned long   page_index;
 152        u64             *dir_cookie;
 153        u64             last_cookie;
 154        loff_t          current_index;
 155        loff_t          prev_index;
 156
 157        unsigned long   dir_verifier;
 158        unsigned long   timestamp;
 159        unsigned long   gencount;
 160        unsigned int    cache_entry_index;
 161        bool plus;
 162        bool eof;
 163} nfs_readdir_descriptor_t;
 164
 165static
 166void nfs_readdir_init_array(struct page *page)
 167{
 168        struct nfs_cache_array *array;
 169
 170        array = kmap_atomic(page);
 171        memset(array, 0, sizeof(struct nfs_cache_array));
 172        array->eof_index = -1;
 173        kunmap_atomic(array);
 174}
 175
 176/*
 177 * we are freeing strings created by nfs_add_to_readdir_array()
 178 */
 179static
 180void nfs_readdir_clear_array(struct page *page)
 181{
 182        struct nfs_cache_array *array;
 183        int i;
 184
 185        array = kmap_atomic(page);
 186        for (i = 0; i < array->size; i++)
 187                kfree(array->array[i].string.name);
 188        array->size = 0;
 189        kunmap_atomic(array);
 190}
 191
 192/*
 193 * the caller is responsible for freeing qstr.name
 194 * when called by nfs_readdir_add_to_array, the strings will be freed in
 195 * nfs_clear_readdir_array()
 196 */
 197static
 198int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 199{
 200        string->len = len;
 201        string->name = kmemdup_nul(name, len, GFP_KERNEL);
 202        if (string->name == NULL)
 203                return -ENOMEM;
 204        /*
 205         * Avoid a kmemleak false positive. The pointer to the name is stored
 206         * in a page cache page which kmemleak does not scan.
 207         */
 208        kmemleak_not_leak(string->name);
 209        string->hash = full_name_hash(NULL, name, len);
 210        return 0;
 211}
 212
 213static
 214int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 215{
 216        struct nfs_cache_array *array = kmap(page);
 217        struct nfs_cache_array_entry *cache_entry;
 218        int ret;
 219
 220        cache_entry = &array->array[array->size];
 221
 222        /* Check that this entry lies within the page bounds */
 223        ret = -ENOSPC;
 224        if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 225                goto out;
 226
 227        cache_entry->cookie = entry->prev_cookie;
 228        cache_entry->ino = entry->ino;
 229        cache_entry->d_type = entry->d_type;
 230        ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 231        if (ret)
 232                goto out;
 233        array->last_cookie = entry->cookie;
 234        array->size++;
 235        if (entry->eof != 0)
 236                array->eof_index = array->size;
 237out:
 238        kunmap(page);
 239        return ret;
 240}
 241
 242static inline
 243int is_32bit_api(void)
 244{
 245#ifdef CONFIG_COMPAT
 246        return in_compat_syscall();
 247#else
 248        return (BITS_PER_LONG == 32);
 249#endif
 250}
 251
 252static
 253bool nfs_readdir_use_cookie(const struct file *filp)
 254{
 255        if ((filp->f_mode & FMODE_32BITHASH) ||
 256            (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 257                return false;
 258        return true;
 259}
 260
 261static
 262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 263{
 264        loff_t diff = desc->ctx->pos - desc->current_index;
 265        unsigned int index;
 266
 267        if (diff < 0)
 268                goto out_eof;
 269        if (diff >= array->size) {
 270                if (array->eof_index >= 0)
 271                        goto out_eof;
 272                return -EAGAIN;
 273        }
 274
 275        index = (unsigned int)diff;
 276        *desc->dir_cookie = array->array[index].cookie;
 277        desc->cache_entry_index = index;
 278        return 0;
 279out_eof:
 280        desc->eof = true;
 281        return -EBADCOOKIE;
 282}
 283
 284static bool
 285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 286{
 287        if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 288                return false;
 289        smp_rmb();
 290        return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 291}
 292
 293static
 294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 295{
 296        int i;
 297        loff_t new_pos;
 298        int status = -EAGAIN;
 299
 300        for (i = 0; i < array->size; i++) {
 301                if (array->array[i].cookie == *desc->dir_cookie) {
 302                        struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 303                        struct nfs_open_dir_context *ctx = desc->file->private_data;
 304
 305                        new_pos = desc->current_index + i;
 306                        if (ctx->attr_gencount != nfsi->attr_gencount ||
 307                            !nfs_readdir_inode_mapping_valid(nfsi)) {
 308                                ctx->duped = 0;
 309                                ctx->attr_gencount = nfsi->attr_gencount;
 310                        } else if (new_pos < desc->prev_index) {
 311                                if (ctx->duped > 0
 312                                    && ctx->dup_cookie == *desc->dir_cookie) {
 313                                        if (printk_ratelimit()) {
 314                                                pr_notice("NFS: directory %pD2 contains a readdir loop."
 315                                                                "Please contact your server vendor.  "
 316                                                                "The file: %.*s has duplicate cookie %llu\n",
 317                                                                desc->file, array->array[i].string.len,
 318                                                                array->array[i].string.name, *desc->dir_cookie);
 319                                        }
 320                                        status = -ELOOP;
 321                                        goto out;
 322                                }
 323                                ctx->dup_cookie = *desc->dir_cookie;
 324                                ctx->duped = -1;
 325                        }
 326                        if (nfs_readdir_use_cookie(desc->file))
 327                                desc->ctx->pos = *desc->dir_cookie;
 328                        else
 329                                desc->ctx->pos = new_pos;
 330                        desc->prev_index = new_pos;
 331                        desc->cache_entry_index = i;
 332                        return 0;
 333                }
 334        }
 335        if (array->eof_index >= 0) {
 336                status = -EBADCOOKIE;
 337                if (*desc->dir_cookie == array->last_cookie)
 338                        desc->eof = true;
 339        }
 340out:
 341        return status;
 342}
 343
 344static
 345int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 346{
 347        struct nfs_cache_array *array;
 348        int status;
 349
 350        array = kmap(desc->page);
 351
 352        if (*desc->dir_cookie == 0)
 353                status = nfs_readdir_search_for_pos(array, desc);
 354        else
 355                status = nfs_readdir_search_for_cookie(array, desc);
 356
 357        if (status == -EAGAIN) {
 358                desc->last_cookie = array->last_cookie;
 359                desc->current_index += array->size;
 360                desc->page_index++;
 361        }
 362        kunmap(desc->page);
 363        return status;
 364}
 365
 366/* Fill a page with xdr information before transferring to the cache page */
 367static
 368int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 369                        struct nfs_entry *entry, struct file *file, struct inode *inode)
 370{
 371        struct nfs_open_dir_context *ctx = file->private_data;
 372        const struct cred *cred = ctx->cred;
 373        unsigned long   timestamp, gencount;
 374        int             error;
 375
 376 again:
 377        timestamp = jiffies;
 378        gencount = nfs_inc_attr_generation_counter();
 379        desc->dir_verifier = nfs_save_change_attribute(inode);
 380        error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
 381                                          NFS_SERVER(inode)->dtsize, desc->plus);
 382        if (error < 0) {
 383                /* We requested READDIRPLUS, but the server doesn't grok it */
 384                if (error == -ENOTSUPP && desc->plus) {
 385                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 386                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 387                        desc->plus = false;
 388                        goto again;
 389                }
 390                goto error;
 391        }
 392        desc->timestamp = timestamp;
 393        desc->gencount = gencount;
 394error:
 395        return error;
 396}
 397
 398static int xdr_decode(nfs_readdir_descriptor_t *desc,
 399                      struct nfs_entry *entry, struct xdr_stream *xdr)
 400{
 401        struct inode *inode = file_inode(desc->file);
 402        int error;
 403
 404        error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 405        if (error)
 406                return error;
 407        entry->fattr->time_start = desc->timestamp;
 408        entry->fattr->gencount = desc->gencount;
 409        return 0;
 410}
 411
 412/* Match file and dirent using either filehandle or fileid
 413 * Note: caller is responsible for checking the fsid
 414 */
 415static
 416int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 417{
 418        struct inode *inode;
 419        struct nfs_inode *nfsi;
 420
 421        if (d_really_is_negative(dentry))
 422                return 0;
 423
 424        inode = d_inode(dentry);
 425        if (is_bad_inode(inode) || NFS_STALE(inode))
 426                return 0;
 427
 428        nfsi = NFS_I(inode);
 429        if (entry->fattr->fileid != nfsi->fileid)
 430                return 0;
 431        if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 432                return 0;
 433        return 1;
 434}
 435
 436static
 437bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 438{
 439        if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 440                return false;
 441        if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 442                return true;
 443        if (ctx->pos == 0)
 444                return true;
 445        return false;
 446}
 447
 448/*
 449 * This function is called by the lookup and getattr code to request the
 450 * use of readdirplus to accelerate any future lookups in the same
 451 * directory.
 452 */
 453void nfs_advise_use_readdirplus(struct inode *dir)
 454{
 455        struct nfs_inode *nfsi = NFS_I(dir);
 456
 457        if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 458            !list_empty(&nfsi->open_files))
 459                set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 460}
 461
 462/*
 463 * This function is mainly for use by nfs_getattr().
 464 *
 465 * If this is an 'ls -l', we want to force use of readdirplus.
 466 * Do this by checking if there is an active file descriptor
 467 * and calling nfs_advise_use_readdirplus, then forcing a
 468 * cache flush.
 469 */
 470void nfs_force_use_readdirplus(struct inode *dir)
 471{
 472        struct nfs_inode *nfsi = NFS_I(dir);
 473
 474        if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 475            !list_empty(&nfsi->open_files)) {
 476                set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 477                invalidate_mapping_pages(dir->i_mapping,
 478                        nfsi->page_index + 1, -1);
 479        }
 480}
 481
 482static
 483void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 484                unsigned long dir_verifier)
 485{
 486        struct qstr filename = QSTR_INIT(entry->name, entry->len);
 487        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 488        struct dentry *dentry;
 489        struct dentry *alias;
 490        struct inode *inode;
 491        int status;
 492
 493        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 494                return;
 495        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 496                return;
 497        if (filename.len == 0)
 498                return;
 499        /* Validate that the name doesn't contain any illegal '\0' */
 500        if (strnlen(filename.name, filename.len) != filename.len)
 501                return;
 502        /* ...or '/' */
 503        if (strnchr(filename.name, filename.len, '/'))
 504                return;
 505        if (filename.name[0] == '.') {
 506                if (filename.len == 1)
 507                        return;
 508                if (filename.len == 2 && filename.name[1] == '.')
 509                        return;
 510        }
 511        filename.hash = full_name_hash(parent, filename.name, filename.len);
 512
 513        dentry = d_lookup(parent, &filename);
 514again:
 515        if (!dentry) {
 516                dentry = d_alloc_parallel(parent, &filename, &wq);
 517                if (IS_ERR(dentry))
 518                        return;
 519        }
 520        if (!d_in_lookup(dentry)) {
 521                /* Is there a mountpoint here? If so, just exit */
 522                if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 523                                        &entry->fattr->fsid))
 524                        goto out;
 525                if (nfs_same_file(dentry, entry)) {
 526                        if (!entry->fh->size)
 527                                goto out;
 528                        nfs_set_verifier(dentry, dir_verifier);
 529                        status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 530                        if (!status)
 531                                nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 532                        goto out;
 533                } else {
 534                        d_invalidate(dentry);
 535                        dput(dentry);
 536                        dentry = NULL;
 537                        goto again;
 538                }
 539        }
 540        if (!entry->fh->size) {
 541                d_lookup_done(dentry);
 542                goto out;
 543        }
 544
 545        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 546        alias = d_splice_alias(inode, dentry);
 547        d_lookup_done(dentry);
 548        if (alias) {
 549                if (IS_ERR(alias))
 550                        goto out;
 551                dput(dentry);
 552                dentry = alias;
 553        }
 554        nfs_set_verifier(dentry, dir_verifier);
 555out:
 556        dput(dentry);
 557}
 558
 559/* Perform conversion from xdr to cache array */
 560static
 561int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 562                                struct page **xdr_pages, struct page *page, unsigned int buflen)
 563{
 564        struct xdr_stream stream;
 565        struct xdr_buf buf;
 566        struct page *scratch;
 567        struct nfs_cache_array *array;
 568        unsigned int count = 0;
 569        int status;
 570
 571        scratch = alloc_page(GFP_KERNEL);
 572        if (scratch == NULL)
 573                return -ENOMEM;
 574
 575        if (buflen == 0)
 576                goto out_nopages;
 577
 578        xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 579        xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 580
 581        do {
 582                if (entry->label)
 583                        entry->label->len = NFS4_MAXLABELLEN;
 584
 585                status = xdr_decode(desc, entry, &stream);
 586                if (status != 0) {
 587                        if (status == -EAGAIN)
 588                                status = 0;
 589                        break;
 590                }
 591
 592                count++;
 593
 594                if (desc->plus)
 595                        nfs_prime_dcache(file_dentry(desc->file), entry,
 596                                        desc->dir_verifier);
 597
 598                status = nfs_readdir_add_to_array(entry, page);
 599                if (status != 0)
 600                        break;
 601        } while (!entry->eof);
 602
 603out_nopages:
 604        if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 605                array = kmap(page);
 606                array->eof_index = array->size;
 607                status = 0;
 608                kunmap(page);
 609        }
 610
 611        put_page(scratch);
 612        return status;
 613}
 614
 615static
 616void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
 617{
 618        unsigned int i;
 619        for (i = 0; i < npages; i++)
 620                put_page(pages[i]);
 621}
 622
 623/*
 624 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 625 * to nfs_readdir_free_pages()
 626 */
 627static
 628int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
 629{
 630        unsigned int i;
 631
 632        for (i = 0; i < npages; i++) {
 633                struct page *page = alloc_page(GFP_KERNEL);
 634                if (page == NULL)
 635                        goto out_freepages;
 636                pages[i] = page;
 637        }
 638        return 0;
 639
 640out_freepages:
 641        nfs_readdir_free_pages(pages, i);
 642        return -ENOMEM;
 643}
 644
 645static
 646int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 647{
 648        struct page *pages[NFS_MAX_READDIR_PAGES];
 649        struct nfs_entry entry;
 650        struct file     *file = desc->file;
 651        struct nfs_cache_array *array;
 652        int status = -ENOMEM;
 653        unsigned int array_size = ARRAY_SIZE(pages);
 654
 655        nfs_readdir_init_array(page);
 656
 657        entry.prev_cookie = 0;
 658        entry.cookie = desc->last_cookie;
 659        entry.eof = 0;
 660        entry.fh = nfs_alloc_fhandle();
 661        entry.fattr = nfs_alloc_fattr();
 662        entry.server = NFS_SERVER(inode);
 663        if (entry.fh == NULL || entry.fattr == NULL)
 664                goto out;
 665
 666        entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 667        if (IS_ERR(entry.label)) {
 668                status = PTR_ERR(entry.label);
 669                goto out;
 670        }
 671
 672        array = kmap(page);
 673
 674        status = nfs_readdir_alloc_pages(pages, array_size);
 675        if (status < 0)
 676                goto out_release_array;
 677        do {
 678                unsigned int pglen;
 679                status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 680
 681                if (status < 0)
 682                        break;
 683                pglen = status;
 684                status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 685                if (status < 0) {
 686                        if (status == -ENOSPC)
 687                                status = 0;
 688                        break;
 689                }
 690        } while (array->eof_index < 0);
 691
 692        nfs_readdir_free_pages(pages, array_size);
 693out_release_array:
 694        kunmap(page);
 695        nfs4_label_free(entry.label);
 696out:
 697        nfs_free_fattr(entry.fattr);
 698        nfs_free_fhandle(entry.fh);
 699        return status;
 700}
 701
 702/*
 703 * Now we cache directories properly, by converting xdr information
 704 * to an array that can be used for lookups later.  This results in
 705 * fewer cache pages, since we can store more information on each page.
 706 * We only need to convert from xdr once so future lookups are much simpler
 707 */
 708static
 709int nfs_readdir_filler(void *data, struct page* page)
 710{
 711        nfs_readdir_descriptor_t *desc = data;
 712        struct inode    *inode = file_inode(desc->file);
 713        int ret;
 714
 715        ret = nfs_readdir_xdr_to_array(desc, page, inode);
 716        if (ret < 0)
 717                goto error;
 718        SetPageUptodate(page);
 719
 720        if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 721                /* Should never happen */
 722                nfs_zap_mapping(inode, inode->i_mapping);
 723        }
 724        unlock_page(page);
 725        return 0;
 726 error:
 727        nfs_readdir_clear_array(page);
 728        unlock_page(page);
 729        return ret;
 730}
 731
 732static
 733void cache_page_release(nfs_readdir_descriptor_t *desc)
 734{
 735        put_page(desc->page);
 736        desc->page = NULL;
 737}
 738
 739static
 740struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 741{
 742        return read_cache_page(desc->file->f_mapping, desc->page_index,
 743                        nfs_readdir_filler, desc);
 744}
 745
 746/*
 747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 748 * and locks the page to prevent removal from the page cache.
 749 */
 750static
 751int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
 752{
 753        struct inode *inode = file_inode(desc->file);
 754        struct nfs_inode *nfsi = NFS_I(inode);
 755        int res;
 756
 757        desc->page = get_cache_page(desc);
 758        if (IS_ERR(desc->page))
 759                return PTR_ERR(desc->page);
 760        res = lock_page_killable(desc->page);
 761        if (res != 0)
 762                goto error;
 763        res = -EAGAIN;
 764        if (desc->page->mapping != NULL) {
 765                res = nfs_readdir_search_array(desc);
 766                if (res == 0) {
 767                        nfsi->page_index = desc->page_index;
 768                        return 0;
 769                }
 770        }
 771        unlock_page(desc->page);
 772error:
 773        cache_page_release(desc);
 774        return res;
 775}
 776
 777/* Search for desc->dir_cookie from the beginning of the page cache */
 778static inline
 779int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 780{
 781        int res;
 782
 783        if (desc->page_index == 0) {
 784                desc->current_index = 0;
 785                desc->prev_index = 0;
 786                desc->last_cookie = 0;
 787        }
 788        do {
 789                res = find_and_lock_cache_page(desc);
 790        } while (res == -EAGAIN);
 791        return res;
 792}
 793
 794/*
 795 * Once we've found the start of the dirent within a page: fill 'er up...
 796 */
 797static 
 798int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 799{
 800        struct file     *file = desc->file;
 801        int i = 0;
 802        int res = 0;
 803        struct nfs_cache_array *array = NULL;
 804        struct nfs_open_dir_context *ctx = file->private_data;
 805
 806        array = kmap(desc->page);
 807        for (i = desc->cache_entry_index; i < array->size; i++) {
 808                struct nfs_cache_array_entry *ent;
 809
 810                ent = &array->array[i];
 811                if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 812                    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 813                        desc->eof = true;
 814                        break;
 815                }
 816                if (i < (array->size-1))
 817                        *desc->dir_cookie = array->array[i+1].cookie;
 818                else
 819                        *desc->dir_cookie = array->last_cookie;
 820                if (nfs_readdir_use_cookie(file))
 821                        desc->ctx->pos = *desc->dir_cookie;
 822                else
 823                        desc->ctx->pos++;
 824                if (ctx->duped != 0)
 825                        ctx->duped = 1;
 826        }
 827        if (array->eof_index >= 0)
 828                desc->eof = true;
 829
 830        kunmap(desc->page);
 831        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 832                        (unsigned long long)*desc->dir_cookie, res);
 833        return res;
 834}
 835
 836/*
 837 * If we cannot find a cookie in our cache, we suspect that this is
 838 * because it points to a deleted file, so we ask the server to return
 839 * whatever it thinks is the next entry. We then feed this to filldir.
 840 * If all goes well, we should then be able to find our way round the
 841 * cache on the next call to readdir_search_pagecache();
 842 *
 843 * NOTE: we cannot add the anonymous page to the pagecache because
 844 *       the data it contains might not be page aligned. Besides,
 845 *       we should already have a complete representation of the
 846 *       directory in the page cache by the time we get here.
 847 */
 848static inline
 849int uncached_readdir(nfs_readdir_descriptor_t *desc)
 850{
 851        struct page     *page = NULL;
 852        int             status;
 853        struct inode *inode = file_inode(desc->file);
 854        struct nfs_open_dir_context *ctx = desc->file->private_data;
 855
 856        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 857                        (unsigned long long)*desc->dir_cookie);
 858
 859        page = alloc_page(GFP_HIGHUSER);
 860        if (!page) {
 861                status = -ENOMEM;
 862                goto out;
 863        }
 864
 865        desc->page_index = 0;
 866        desc->last_cookie = *desc->dir_cookie;
 867        desc->page = page;
 868        ctx->duped = 0;
 869
 870        status = nfs_readdir_xdr_to_array(desc, page, inode);
 871        if (status < 0)
 872                goto out_release;
 873
 874        status = nfs_do_filldir(desc);
 875
 876 out_release:
 877        nfs_readdir_clear_array(desc->page);
 878        cache_page_release(desc);
 879 out:
 880        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 881                        __func__, status);
 882        return status;
 883}
 884
 885/* The file offset position represents the dirent entry number.  A
 886   last cookie cache takes care of the common case of reading the
 887   whole directory.
 888 */
 889static int nfs_readdir(struct file *file, struct dir_context *ctx)
 890{
 891        struct dentry   *dentry = file_dentry(file);
 892        struct inode    *inode = d_inode(dentry);
 893        struct nfs_open_dir_context *dir_ctx = file->private_data;
 894        nfs_readdir_descriptor_t my_desc = {
 895                .file = file,
 896                .ctx = ctx,
 897                .dir_cookie = &dir_ctx->dir_cookie,
 898                .plus = nfs_use_readdirplus(inode, ctx),
 899        },
 900                        *desc = &my_desc;
 901        int res = 0;
 902
 903        dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
 904                        file, (long long)ctx->pos);
 905        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 906
 907        /*
 908         * ctx->pos points to the dirent entry number.
 909         * *desc->dir_cookie has the cookie for the next entry. We have
 910         * to either find the entry with the appropriate number or
 911         * revalidate the cookie.
 912         */
 913        if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
 914                res = nfs_revalidate_mapping(inode, file->f_mapping);
 915        if (res < 0)
 916                goto out;
 917
 918        do {
 919                res = readdir_search_pagecache(desc);
 920
 921                if (res == -EBADCOOKIE) {
 922                        res = 0;
 923                        /* This means either end of directory */
 924                        if (*desc->dir_cookie && !desc->eof) {
 925                                /* Or that the server has 'lost' a cookie */
 926                                res = uncached_readdir(desc);
 927                                if (res == 0)
 928                                        continue;
 929                        }
 930                        break;
 931                }
 932                if (res == -ETOOSMALL && desc->plus) {
 933                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 934                        nfs_zap_caches(inode);
 935                        desc->page_index = 0;
 936                        desc->plus = false;
 937                        desc->eof = false;
 938                        continue;
 939                }
 940                if (res < 0)
 941                        break;
 942
 943                res = nfs_do_filldir(desc);
 944                unlock_page(desc->page);
 945                cache_page_release(desc);
 946                if (res < 0)
 947                        break;
 948        } while (!desc->eof);
 949out:
 950        if (res > 0)
 951                res = 0;
 952        dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 953        return res;
 954}
 955
 956static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 957{
 958        struct inode *inode = file_inode(filp);
 959        struct nfs_open_dir_context *dir_ctx = filp->private_data;
 960
 961        dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
 962                        filp, offset, whence);
 963
 964        switch (whence) {
 965        default:
 966                return -EINVAL;
 967        case SEEK_SET:
 968                if (offset < 0)
 969                        return -EINVAL;
 970                inode_lock(inode);
 971                break;
 972        case SEEK_CUR:
 973                if (offset == 0)
 974                        return filp->f_pos;
 975                inode_lock(inode);
 976                offset += filp->f_pos;
 977                if (offset < 0) {
 978                        inode_unlock(inode);
 979                        return -EINVAL;
 980                }
 981        }
 982        if (offset != filp->f_pos) {
 983                filp->f_pos = offset;
 984                if (nfs_readdir_use_cookie(filp))
 985                        dir_ctx->dir_cookie = offset;
 986                else
 987                        dir_ctx->dir_cookie = 0;
 988                dir_ctx->duped = 0;
 989        }
 990        inode_unlock(inode);
 991        return offset;
 992}
 993
 994/*
 995 * All directory operations under NFS are synchronous, so fsync()
 996 * is a dummy operation.
 997 */
 998static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 999                         int datasync)
1000{
1001        struct inode *inode = file_inode(filp);
1002
1003        dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1004
1005        inode_lock(inode);
1006        nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1007        inode_unlock(inode);
1008        return 0;
1009}
1010
1011/**
1012 * nfs_force_lookup_revalidate - Mark the directory as having changed
1013 * @dir: pointer to directory inode
1014 *
1015 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1016 * full lookup on all child dentries of 'dir' whenever a change occurs
1017 * on the server that might have invalidated our dcache.
1018 *
1019 * Note that we reserve bit '0' as a tag to let us know when a dentry
1020 * was revalidated while holding a delegation on its inode.
1021 *
1022 * The caller should be holding dir->i_lock
1023 */
1024void nfs_force_lookup_revalidate(struct inode *dir)
1025{
1026        NFS_I(dir)->cache_change_attribute += 2;
1027}
1028EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1029
1030/**
1031 * nfs_verify_change_attribute - Detects NFS remote directory changes
1032 * @dir: pointer to parent directory inode
1033 * @verf: previously saved change attribute
1034 *
1035 * Return "false" if the verifiers doesn't match the change attribute.
1036 * This would usually indicate that the directory contents have changed on
1037 * the server, and that any dentries need revalidating.
1038 */
1039static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1040{
1041        return (verf & ~1UL) == nfs_save_change_attribute(dir);
1042}
1043
1044static void nfs_set_verifier_delegated(unsigned long *verf)
1045{
1046        *verf |= 1UL;
1047}
1048
1049#if IS_ENABLED(CONFIG_NFS_V4)
1050static void nfs_unset_verifier_delegated(unsigned long *verf)
1051{
1052        *verf &= ~1UL;
1053}
1054#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1055
1056static bool nfs_test_verifier_delegated(unsigned long verf)
1057{
1058        return verf & 1;
1059}
1060
1061static bool nfs_verifier_is_delegated(struct dentry *dentry)
1062{
1063        return nfs_test_verifier_delegated(dentry->d_time);
1064}
1065
1066static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1067{
1068        struct inode *inode = d_inode(dentry);
1069
1070        if (!nfs_verifier_is_delegated(dentry) &&
1071            !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1072                goto out;
1073        if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1074                nfs_set_verifier_delegated(&verf);
1075out:
1076        dentry->d_time = verf;
1077}
1078
1079/**
1080 * nfs_set_verifier - save a parent directory verifier in the dentry
1081 * @dentry: pointer to dentry
1082 * @verf: verifier to save
1083 *
1084 * Saves the parent directory verifier in @dentry. If the inode has
1085 * a delegation, we also tag the dentry as having been revalidated
1086 * while holding a delegation so that we know we don't have to
1087 * look it up again after a directory change.
1088 */
1089void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1090{
1091
1092        spin_lock(&dentry->d_lock);
1093        nfs_set_verifier_locked(dentry, verf);
1094        spin_unlock(&dentry->d_lock);
1095}
1096EXPORT_SYMBOL_GPL(nfs_set_verifier);
1097
1098#if IS_ENABLED(CONFIG_NFS_V4)
1099/**
1100 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1101 * @inode: pointer to inode
1102 *
1103 * Iterates through the dentries in the inode alias list and clears
1104 * the tag used to indicate that the dentry has been revalidated
1105 * while holding a delegation.
1106 * This function is intended for use when the delegation is being
1107 * returned or revoked.
1108 */
1109void nfs_clear_verifier_delegated(struct inode *inode)
1110{
1111        struct dentry *alias;
1112
1113        if (!inode)
1114                return;
1115        spin_lock(&inode->i_lock);
1116        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1117                spin_lock(&alias->d_lock);
1118                nfs_unset_verifier_delegated(&alias->d_time);
1119                spin_unlock(&alias->d_lock);
1120        }
1121        spin_unlock(&inode->i_lock);
1122}
1123EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1124#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1125
1126/*
1127 * A check for whether or not the parent directory has changed.
1128 * In the case it has, we assume that the dentries are untrustworthy
1129 * and may need to be looked up again.
1130 * If rcu_walk prevents us from performing a full check, return 0.
1131 */
1132static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1133                              int rcu_walk)
1134{
1135        if (IS_ROOT(dentry))
1136                return 1;
1137        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1138                return 0;
1139        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1140                return 0;
1141        /* Revalidate nfsi->cache_change_attribute before we declare a match */
1142        if (nfs_mapping_need_revalidate_inode(dir)) {
1143                if (rcu_walk)
1144                        return 0;
1145                if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1146                        return 0;
1147        }
1148        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1149                return 0;
1150        return 1;
1151}
1152
1153/*
1154 * Use intent information to check whether or not we're going to do
1155 * an O_EXCL create using this path component.
1156 */
1157static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1158{
1159        if (NFS_PROTO(dir)->version == 2)
1160                return 0;
1161        return flags & LOOKUP_EXCL;
1162}
1163
1164/*
1165 * Inode and filehandle revalidation for lookups.
1166 *
1167 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1168 * or if the intent information indicates that we're about to open this
1169 * particular file and the "nocto" mount flag is not set.
1170 *
1171 */
1172static
1173int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1174{
1175        struct nfs_server *server = NFS_SERVER(inode);
1176        int ret;
1177
1178        if (IS_AUTOMOUNT(inode))
1179                return 0;
1180
1181        if (flags & LOOKUP_OPEN) {
1182                switch (inode->i_mode & S_IFMT) {
1183                case S_IFREG:
1184                        /* A NFSv4 OPEN will revalidate later */
1185                        if (server->caps & NFS_CAP_ATOMIC_OPEN)
1186                                goto out;
1187                        fallthrough;
1188                case S_IFDIR:
1189                        if (server->flags & NFS_MOUNT_NOCTO)
1190                                break;
1191                        /* NFS close-to-open cache consistency validation */
1192                        goto out_force;
1193                }
1194        }
1195
1196        /* VFS wants an on-the-wire revalidation */
1197        if (flags & LOOKUP_REVAL)
1198                goto out_force;
1199out:
1200        return (inode->i_nlink == 0) ? -ESTALE : 0;
1201out_force:
1202        if (flags & LOOKUP_RCU)
1203                return -ECHILD;
1204        ret = __nfs_revalidate_inode(server, inode);
1205        if (ret != 0)
1206                return ret;
1207        goto out;
1208}
1209
1210/*
1211 * We judge how long we want to trust negative
1212 * dentries by looking at the parent inode mtime.
1213 *
1214 * If parent mtime has changed, we revalidate, else we wait for a
1215 * period corresponding to the parent's attribute cache timeout value.
1216 *
1217 * If LOOKUP_RCU prevents us from performing a full check, return 1
1218 * suggesting a reval is needed.
1219 *
1220 * Note that when creating a new file, or looking up a rename target,
1221 * then it shouldn't be necessary to revalidate a negative dentry.
1222 */
1223static inline
1224int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1225                       unsigned int flags)
1226{
1227        if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1228                return 0;
1229        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1230                return 1;
1231        return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1232}
1233
1234static int
1235nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1236                           struct inode *inode, int error)
1237{
1238        switch (error) {
1239        case 1:
1240                dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1241                        __func__, dentry);
1242                return 1;
1243        case 0:
1244                nfs_mark_for_revalidate(dir);
1245                if (inode && S_ISDIR(inode->i_mode)) {
1246                        /* Purge readdir caches. */
1247                        nfs_zap_caches(inode);
1248                        /*
1249                         * We can't d_drop the root of a disconnected tree:
1250                         * its d_hash is on the s_anon list and d_drop() would hide
1251                         * it from shrink_dcache_for_unmount(), leading to busy
1252                         * inodes on unmount and further oopses.
1253                         */
1254                        if (IS_ROOT(dentry))
1255                                return 1;
1256                }
1257                dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1258                                __func__, dentry);
1259                return 0;
1260        }
1261        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1262                                __func__, dentry, error);
1263        return error;
1264}
1265
1266static int
1267nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1268                               unsigned int flags)
1269{
1270        int ret = 1;
1271        if (nfs_neg_need_reval(dir, dentry, flags)) {
1272                if (flags & LOOKUP_RCU)
1273                        return -ECHILD;
1274                ret = 0;
1275        }
1276        return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1277}
1278
1279static int
1280nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1281                                struct inode *inode)
1282{
1283        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1284        return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1285}
1286
1287static int
1288nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1289                             struct inode *inode)
1290{
1291        struct nfs_fh *fhandle;
1292        struct nfs_fattr *fattr;
1293        struct nfs4_label *label;
1294        unsigned long dir_verifier;
1295        int ret;
1296
1297        ret = -ENOMEM;
1298        fhandle = nfs_alloc_fhandle();
1299        fattr = nfs_alloc_fattr();
1300        label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1301        if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1302                goto out;
1303
1304        dir_verifier = nfs_save_change_attribute(dir);
1305        ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1306        if (ret < 0) {
1307                switch (ret) {
1308                case -ESTALE:
1309                case -ENOENT:
1310                        ret = 0;
1311                        break;
1312                case -ETIMEDOUT:
1313                        if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1314                                ret = 1;
1315                }
1316                goto out;
1317        }
1318        ret = 0;
1319        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1320                goto out;
1321        if (nfs_refresh_inode(inode, fattr) < 0)
1322                goto out;
1323
1324        nfs_setsecurity(inode, fattr, label);
1325        nfs_set_verifier(dentry, dir_verifier);
1326
1327        /* set a readdirplus hint that we had a cache miss */
1328        nfs_force_use_readdirplus(dir);
1329        ret = 1;
1330out:
1331        nfs_free_fattr(fattr);
1332        nfs_free_fhandle(fhandle);
1333        nfs4_label_free(label);
1334        return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1335}
1336
1337/*
1338 * This is called every time the dcache has a lookup hit,
1339 * and we should check whether we can really trust that
1340 * lookup.
1341 *
1342 * NOTE! The hit can be a negative hit too, don't assume
1343 * we have an inode!
1344 *
1345 * If the parent directory is seen to have changed, we throw out the
1346 * cached dentry and do a new lookup.
1347 */
1348static int
1349nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1350                         unsigned int flags)
1351{
1352        struct inode *inode;
1353        int error;
1354
1355        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1356        inode = d_inode(dentry);
1357
1358        if (!inode)
1359                return nfs_lookup_revalidate_negative(dir, dentry, flags);
1360
1361        if (is_bad_inode(inode)) {
1362                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1363                                __func__, dentry);
1364                goto out_bad;
1365        }
1366
1367        if (nfs_verifier_is_delegated(dentry))
1368                return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1369
1370        /* Force a full look up iff the parent directory has changed */
1371        if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1372            nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1373                error = nfs_lookup_verify_inode(inode, flags);
1374                if (error) {
1375                        if (error == -ESTALE)
1376                                nfs_zap_caches(dir);
1377                        goto out_bad;
1378                }
1379                nfs_advise_use_readdirplus(dir);
1380                goto out_valid;
1381        }
1382
1383        if (flags & LOOKUP_RCU)
1384                return -ECHILD;
1385
1386        if (NFS_STALE(inode))
1387                goto out_bad;
1388
1389        trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1390        error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1391        trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1392        return error;
1393out_valid:
1394        return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1395out_bad:
1396        if (flags & LOOKUP_RCU)
1397                return -ECHILD;
1398        return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1399}
1400
1401static int
1402__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1403                        int (*reval)(struct inode *, struct dentry *, unsigned int))
1404{
1405        struct dentry *parent;
1406        struct inode *dir;
1407        int ret;
1408
1409        if (flags & LOOKUP_RCU) {
1410                parent = READ_ONCE(dentry->d_parent);
1411                dir = d_inode_rcu(parent);
1412                if (!dir)
1413                        return -ECHILD;
1414                ret = reval(dir, dentry, flags);
1415                if (parent != READ_ONCE(dentry->d_parent))
1416                        return -ECHILD;
1417        } else {
1418                parent = dget_parent(dentry);
1419                ret = reval(d_inode(parent), dentry, flags);
1420                dput(parent);
1421        }
1422        return ret;
1423}
1424
1425static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1426{
1427        return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1428}
1429
1430/*
1431 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1432 * when we don't really care about the dentry name. This is called when a
1433 * pathwalk ends on a dentry that was not found via a normal lookup in the
1434 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1435 *
1436 * In this situation, we just want to verify that the inode itself is OK
1437 * since the dentry might have changed on the server.
1438 */
1439static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1440{
1441        struct inode *inode = d_inode(dentry);
1442        int error = 0;
1443
1444        /*
1445         * I believe we can only get a negative dentry here in the case of a
1446         * procfs-style symlink. Just assume it's correct for now, but we may
1447         * eventually need to do something more here.
1448         */
1449        if (!inode) {
1450                dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1451                                __func__, dentry);
1452                return 1;
1453        }
1454
1455        if (is_bad_inode(inode)) {
1456                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1457                                __func__, dentry);
1458                return 0;
1459        }
1460
1461        error = nfs_lookup_verify_inode(inode, flags);
1462        dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1463                        __func__, inode->i_ino, error ? "invalid" : "valid");
1464        return !error;
1465}
1466
1467/*
1468 * This is called from dput() when d_count is going to 0.
1469 */
1470static int nfs_dentry_delete(const struct dentry *dentry)
1471{
1472        dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1473                dentry, dentry->d_flags);
1474
1475        /* Unhash any dentry with a stale inode */
1476        if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1477                return 1;
1478
1479        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1480                /* Unhash it, so that ->d_iput() would be called */
1481                return 1;
1482        }
1483        if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1484                /* Unhash it, so that ancestors of killed async unlink
1485                 * files will be cleaned up during umount */
1486                return 1;
1487        }
1488        return 0;
1489
1490}
1491
1492/* Ensure that we revalidate inode->i_nlink */
1493static void nfs_drop_nlink(struct inode *inode)
1494{
1495        spin_lock(&inode->i_lock);
1496        /* drop the inode if we're reasonably sure this is the last link */
1497        if (inode->i_nlink > 0)
1498                drop_nlink(inode);
1499        NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1500        NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1501                | NFS_INO_INVALID_CTIME
1502                | NFS_INO_INVALID_OTHER
1503                | NFS_INO_REVAL_FORCED;
1504        spin_unlock(&inode->i_lock);
1505}
1506
1507/*
1508 * Called when the dentry loses inode.
1509 * We use it to clean up silly-renamed files.
1510 */
1511static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1512{
1513        if (S_ISDIR(inode->i_mode))
1514                /* drop any readdir cache as it could easily be old */
1515                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1516
1517        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1518                nfs_complete_unlink(dentry, inode);
1519                nfs_drop_nlink(inode);
1520        }
1521        iput(inode);
1522}
1523
1524static void nfs_d_release(struct dentry *dentry)
1525{
1526        /* free cached devname value, if it survived that far */
1527        if (unlikely(dentry->d_fsdata)) {
1528                if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1529                        WARN_ON(1);
1530                else
1531                        kfree(dentry->d_fsdata);
1532        }
1533}
1534
1535const struct dentry_operations nfs_dentry_operations = {
1536        .d_revalidate   = nfs_lookup_revalidate,
1537        .d_weak_revalidate      = nfs_weak_revalidate,
1538        .d_delete       = nfs_dentry_delete,
1539        .d_iput         = nfs_dentry_iput,
1540        .d_automount    = nfs_d_automount,
1541        .d_release      = nfs_d_release,
1542};
1543EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1544
1545struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1546{
1547        struct dentry *res;
1548        struct inode *inode = NULL;
1549        struct nfs_fh *fhandle = NULL;
1550        struct nfs_fattr *fattr = NULL;
1551        struct nfs4_label *label = NULL;
1552        unsigned long dir_verifier;
1553        int error;
1554
1555        dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1556        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1557
1558        if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1559                return ERR_PTR(-ENAMETOOLONG);
1560
1561        /*
1562         * If we're doing an exclusive create, optimize away the lookup
1563         * but don't hash the dentry.
1564         */
1565        if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1566                return NULL;
1567
1568        res = ERR_PTR(-ENOMEM);
1569        fhandle = nfs_alloc_fhandle();
1570        fattr = nfs_alloc_fattr();
1571        if (fhandle == NULL || fattr == NULL)
1572                goto out;
1573
1574        label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1575        if (IS_ERR(label))
1576                goto out;
1577
1578        dir_verifier = nfs_save_change_attribute(dir);
1579        trace_nfs_lookup_enter(dir, dentry, flags);
1580        error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1581        if (error == -ENOENT)
1582                goto no_entry;
1583        if (error < 0) {
1584                res = ERR_PTR(error);
1585                goto out_label;
1586        }
1587        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1588        res = ERR_CAST(inode);
1589        if (IS_ERR(res))
1590                goto out_label;
1591
1592        /* Notify readdir to use READDIRPLUS */
1593        nfs_force_use_readdirplus(dir);
1594
1595no_entry:
1596        res = d_splice_alias(inode, dentry);
1597        if (res != NULL) {
1598                if (IS_ERR(res))
1599                        goto out_label;
1600                dentry = res;
1601        }
1602        nfs_set_verifier(dentry, dir_verifier);
1603out_label:
1604        trace_nfs_lookup_exit(dir, dentry, flags, error);
1605        nfs4_label_free(label);
1606out:
1607        nfs_free_fattr(fattr);
1608        nfs_free_fhandle(fhandle);
1609        return res;
1610}
1611EXPORT_SYMBOL_GPL(nfs_lookup);
1612
1613#if IS_ENABLED(CONFIG_NFS_V4)
1614static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1615
1616const struct dentry_operations nfs4_dentry_operations = {
1617        .d_revalidate   = nfs4_lookup_revalidate,
1618        .d_weak_revalidate      = nfs_weak_revalidate,
1619        .d_delete       = nfs_dentry_delete,
1620        .d_iput         = nfs_dentry_iput,
1621        .d_automount    = nfs_d_automount,
1622        .d_release      = nfs_d_release,
1623};
1624EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1625
1626static fmode_t flags_to_mode(int flags)
1627{
1628        fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1629        if ((flags & O_ACCMODE) != O_WRONLY)
1630                res |= FMODE_READ;
1631        if ((flags & O_ACCMODE) != O_RDONLY)
1632                res |= FMODE_WRITE;
1633        return res;
1634}
1635
1636static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1637{
1638        return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1639}
1640
1641static int do_open(struct inode *inode, struct file *filp)
1642{
1643        nfs_fscache_open_file(inode, filp);
1644        return 0;
1645}
1646
1647static int nfs_finish_open(struct nfs_open_context *ctx,
1648                           struct dentry *dentry,
1649                           struct file *file, unsigned open_flags)
1650{
1651        int err;
1652
1653        err = finish_open(file, dentry, do_open);
1654        if (err)
1655                goto out;
1656        if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1657                nfs_file_set_open_context(file, ctx);
1658        else
1659                err = -EOPENSTALE;
1660out:
1661        return err;
1662}
1663
1664int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1665                    struct file *file, unsigned open_flags,
1666                    umode_t mode)
1667{
1668        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1669        struct nfs_open_context *ctx;
1670        struct dentry *res;
1671        struct iattr attr = { .ia_valid = ATTR_OPEN };
1672        struct inode *inode;
1673        unsigned int lookup_flags = 0;
1674        bool switched = false;
1675        int created = 0;
1676        int err;
1677
1678        /* Expect a negative dentry */
1679        BUG_ON(d_inode(dentry));
1680
1681        dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1682                        dir->i_sb->s_id, dir->i_ino, dentry);
1683
1684        err = nfs_check_flags(open_flags);
1685        if (err)
1686                return err;
1687
1688        /* NFS only supports OPEN on regular files */
1689        if ((open_flags & O_DIRECTORY)) {
1690                if (!d_in_lookup(dentry)) {
1691                        /*
1692                         * Hashed negative dentry with O_DIRECTORY: dentry was
1693                         * revalidated and is fine, no need to perform lookup
1694                         * again
1695                         */
1696                        return -ENOENT;
1697                }
1698                lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1699                goto no_open;
1700        }
1701
1702        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1703                return -ENAMETOOLONG;
1704
1705        if (open_flags & O_CREAT) {
1706                struct nfs_server *server = NFS_SERVER(dir);
1707
1708                if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1709                        mode &= ~current_umask();
1710
1711                attr.ia_valid |= ATTR_MODE;
1712                attr.ia_mode = mode;
1713        }
1714        if (open_flags & O_TRUNC) {
1715                attr.ia_valid |= ATTR_SIZE;
1716                attr.ia_size = 0;
1717        }
1718
1719        if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1720                d_drop(dentry);
1721                switched = true;
1722                dentry = d_alloc_parallel(dentry->d_parent,
1723                                          &dentry->d_name, &wq);
1724                if (IS_ERR(dentry))
1725                        return PTR_ERR(dentry);
1726                if (unlikely(!d_in_lookup(dentry)))
1727                        return finish_no_open(file, dentry);
1728        }
1729
1730        ctx = create_nfs_open_context(dentry, open_flags, file);
1731        err = PTR_ERR(ctx);
1732        if (IS_ERR(ctx))
1733                goto out;
1734
1735        trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1736        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1737        if (created)
1738                file->f_mode |= FMODE_CREATED;
1739        if (IS_ERR(inode)) {
1740                err = PTR_ERR(inode);
1741                trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1742                put_nfs_open_context(ctx);
1743                d_drop(dentry);
1744                switch (err) {
1745                case -ENOENT:
1746                        d_splice_alias(NULL, dentry);
1747                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1748                        break;
1749                case -EISDIR:
1750                case -ENOTDIR:
1751                        goto no_open;
1752                case -ELOOP:
1753                        if (!(open_flags & O_NOFOLLOW))
1754                                goto no_open;
1755                        break;
1756                        /* case -EINVAL: */
1757                default:
1758                        break;
1759                }
1760                goto out;
1761        }
1762
1763        err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1764        trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1765        put_nfs_open_context(ctx);
1766out:
1767        if (unlikely(switched)) {
1768                d_lookup_done(dentry);
1769                dput(dentry);
1770        }
1771        return err;
1772
1773no_open:
1774        res = nfs_lookup(dir, dentry, lookup_flags);
1775        if (switched) {
1776                d_lookup_done(dentry);
1777                if (!res)
1778                        res = dentry;
1779                else
1780                        dput(dentry);
1781        }
1782        if (IS_ERR(res))
1783                return PTR_ERR(res);
1784        return finish_no_open(file, res);
1785}
1786EXPORT_SYMBOL_GPL(nfs_atomic_open);
1787
1788static int
1789nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1790                          unsigned int flags)
1791{
1792        struct inode *inode;
1793
1794        if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1795                goto full_reval;
1796        if (d_mountpoint(dentry))
1797                goto full_reval;
1798
1799        inode = d_inode(dentry);
1800
1801        /* We can't create new files in nfs_open_revalidate(), so we
1802         * optimize away revalidation of negative dentries.
1803         */
1804        if (inode == NULL)
1805                goto full_reval;
1806
1807        if (nfs_verifier_is_delegated(dentry))
1808                return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1809
1810        /* NFS only supports OPEN on regular files */
1811        if (!S_ISREG(inode->i_mode))
1812                goto full_reval;
1813
1814        /* We cannot do exclusive creation on a positive dentry */
1815        if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1816                goto reval_dentry;
1817
1818        /* Check if the directory changed */
1819        if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1820                goto reval_dentry;
1821
1822        /* Let f_op->open() actually open (and revalidate) the file */
1823        return 1;
1824reval_dentry:
1825        if (flags & LOOKUP_RCU)
1826                return -ECHILD;
1827        return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1828
1829full_reval:
1830        return nfs_do_lookup_revalidate(dir, dentry, flags);
1831}
1832
1833static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1834{
1835        return __nfs_lookup_revalidate(dentry, flags,
1836                        nfs4_do_lookup_revalidate);
1837}
1838
1839#endif /* CONFIG_NFSV4 */
1840
1841struct dentry *
1842nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1843                                struct nfs_fattr *fattr,
1844                                struct nfs4_label *label)
1845{
1846        struct dentry *parent = dget_parent(dentry);
1847        struct inode *dir = d_inode(parent);
1848        struct inode *inode;
1849        struct dentry *d;
1850        int error;
1851
1852        d_drop(dentry);
1853
1854        if (fhandle->size == 0) {
1855                error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1856                if (error)
1857                        goto out_error;
1858        }
1859        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1860        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1861                struct nfs_server *server = NFS_SB(dentry->d_sb);
1862                error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1863                                fattr, NULL, NULL);
1864                if (error < 0)
1865                        goto out_error;
1866        }
1867        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1868        d = d_splice_alias(inode, dentry);
1869out:
1870        dput(parent);
1871        return d;
1872out_error:
1873        nfs_mark_for_revalidate(dir);
1874        d = ERR_PTR(error);
1875        goto out;
1876}
1877EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1878
1879/*
1880 * Code common to create, mkdir, and mknod.
1881 */
1882int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1883                                struct nfs_fattr *fattr,
1884                                struct nfs4_label *label)
1885{
1886        struct dentry *d;
1887
1888        d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1889        if (IS_ERR(d))
1890                return PTR_ERR(d);
1891
1892        /* Callers don't care */
1893        dput(d);
1894        return 0;
1895}
1896EXPORT_SYMBOL_GPL(nfs_instantiate);
1897
1898/*
1899 * Following a failed create operation, we drop the dentry rather
1900 * than retain a negative dentry. This avoids a problem in the event
1901 * that the operation succeeded on the server, but an error in the
1902 * reply path made it appear to have failed.
1903 */
1904int nfs_create(struct inode *dir, struct dentry *dentry,
1905                umode_t mode, bool excl)
1906{
1907        struct iattr attr;
1908        int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1909        int error;
1910
1911        dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1912                        dir->i_sb->s_id, dir->i_ino, dentry);
1913
1914        attr.ia_mode = mode;
1915        attr.ia_valid = ATTR_MODE;
1916
1917        trace_nfs_create_enter(dir, dentry, open_flags);
1918        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1919        trace_nfs_create_exit(dir, dentry, open_flags, error);
1920        if (error != 0)
1921                goto out_err;
1922        return 0;
1923out_err:
1924        d_drop(dentry);
1925        return error;
1926}
1927EXPORT_SYMBOL_GPL(nfs_create);
1928
1929/*
1930 * See comments for nfs_proc_create regarding failed operations.
1931 */
1932int
1933nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1934{
1935        struct iattr attr;
1936        int status;
1937
1938        dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1939                        dir->i_sb->s_id, dir->i_ino, dentry);
1940
1941        attr.ia_mode = mode;
1942        attr.ia_valid = ATTR_MODE;
1943
1944        trace_nfs_mknod_enter(dir, dentry);
1945        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1946        trace_nfs_mknod_exit(dir, dentry, status);
1947        if (status != 0)
1948                goto out_err;
1949        return 0;
1950out_err:
1951        d_drop(dentry);
1952        return status;
1953}
1954EXPORT_SYMBOL_GPL(nfs_mknod);
1955
1956/*
1957 * See comments for nfs_proc_create regarding failed operations.
1958 */
1959int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1960{
1961        struct iattr attr;
1962        int error;
1963
1964        dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1965                        dir->i_sb->s_id, dir->i_ino, dentry);
1966
1967        attr.ia_valid = ATTR_MODE;
1968        attr.ia_mode = mode | S_IFDIR;
1969
1970        trace_nfs_mkdir_enter(dir, dentry);
1971        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1972        trace_nfs_mkdir_exit(dir, dentry, error);
1973        if (error != 0)
1974                goto out_err;
1975        return 0;
1976out_err:
1977        d_drop(dentry);
1978        return error;
1979}
1980EXPORT_SYMBOL_GPL(nfs_mkdir);
1981
1982static void nfs_dentry_handle_enoent(struct dentry *dentry)
1983{
1984        if (simple_positive(dentry))
1985                d_delete(dentry);
1986}
1987
1988int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1989{
1990        int error;
1991
1992        dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1993                        dir->i_sb->s_id, dir->i_ino, dentry);
1994
1995        trace_nfs_rmdir_enter(dir, dentry);
1996        if (d_really_is_positive(dentry)) {
1997                down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1998                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1999                /* Ensure the VFS deletes this inode */
2000                switch (error) {
2001                case 0:
2002                        clear_nlink(d_inode(dentry));
2003                        break;
2004                case -ENOENT:
2005                        nfs_dentry_handle_enoent(dentry);
2006                }
2007                up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2008        } else
2009                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2010        trace_nfs_rmdir_exit(dir, dentry, error);
2011
2012        return error;
2013}
2014EXPORT_SYMBOL_GPL(nfs_rmdir);
2015
2016/*
2017 * Remove a file after making sure there are no pending writes,
2018 * and after checking that the file has only one user. 
2019 *
2020 * We invalidate the attribute cache and free the inode prior to the operation
2021 * to avoid possible races if the server reuses the inode.
2022 */
2023static int nfs_safe_remove(struct dentry *dentry)
2024{
2025        struct inode *dir = d_inode(dentry->d_parent);
2026        struct inode *inode = d_inode(dentry);
2027        int error = -EBUSY;
2028                
2029        dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2030
2031        /* If the dentry was sillyrenamed, we simply call d_delete() */
2032        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2033                error = 0;
2034                goto out;
2035        }
2036
2037        trace_nfs_remove_enter(dir, dentry);
2038        if (inode != NULL) {
2039                error = NFS_PROTO(dir)->remove(dir, dentry);
2040                if (error == 0)
2041                        nfs_drop_nlink(inode);
2042        } else
2043                error = NFS_PROTO(dir)->remove(dir, dentry);
2044        if (error == -ENOENT)
2045                nfs_dentry_handle_enoent(dentry);
2046        trace_nfs_remove_exit(dir, dentry, error);
2047out:
2048        return error;
2049}
2050
2051/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2052 *  belongs to an active ".nfs..." file and we return -EBUSY.
2053 *
2054 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2055 */
2056int nfs_unlink(struct inode *dir, struct dentry *dentry)
2057{
2058        int error;
2059        int need_rehash = 0;
2060
2061        dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2062                dir->i_ino, dentry);
2063
2064        trace_nfs_unlink_enter(dir, dentry);
2065        spin_lock(&dentry->d_lock);
2066        if (d_count(dentry) > 1) {
2067                spin_unlock(&dentry->d_lock);
2068                /* Start asynchronous writeout of the inode */
2069                write_inode_now(d_inode(dentry), 0);
2070                error = nfs_sillyrename(dir, dentry);
2071                goto out;
2072        }
2073        if (!d_unhashed(dentry)) {
2074                __d_drop(dentry);
2075                need_rehash = 1;
2076        }
2077        spin_unlock(&dentry->d_lock);
2078        error = nfs_safe_remove(dentry);
2079        if (!error || error == -ENOENT) {
2080                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2081        } else if (need_rehash)
2082                d_rehash(dentry);
2083out:
2084        trace_nfs_unlink_exit(dir, dentry, error);
2085        return error;
2086}
2087EXPORT_SYMBOL_GPL(nfs_unlink);
2088
2089/*
2090 * To create a symbolic link, most file systems instantiate a new inode,
2091 * add a page to it containing the path, then write it out to the disk
2092 * using prepare_write/commit_write.
2093 *
2094 * Unfortunately the NFS client can't create the in-core inode first
2095 * because it needs a file handle to create an in-core inode (see
2096 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2097 * symlink request has completed on the server.
2098 *
2099 * So instead we allocate a raw page, copy the symname into it, then do
2100 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2101 * now have a new file handle and can instantiate an in-core NFS inode
2102 * and move the raw page into its mapping.
2103 */
2104int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2105{
2106        struct page *page;
2107        char *kaddr;
2108        struct iattr attr;
2109        unsigned int pathlen = strlen(symname);
2110        int error;
2111
2112        dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2113                dir->i_ino, dentry, symname);
2114
2115        if (pathlen > PAGE_SIZE)
2116                return -ENAMETOOLONG;
2117
2118        attr.ia_mode = S_IFLNK | S_IRWXUGO;
2119        attr.ia_valid = ATTR_MODE;
2120
2121        page = alloc_page(GFP_USER);
2122        if (!page)
2123                return -ENOMEM;
2124
2125        kaddr = page_address(page);
2126        memcpy(kaddr, symname, pathlen);
2127        if (pathlen < PAGE_SIZE)
2128                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2129
2130        trace_nfs_symlink_enter(dir, dentry);
2131        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2132        trace_nfs_symlink_exit(dir, dentry, error);
2133        if (error != 0) {
2134                dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2135                        dir->i_sb->s_id, dir->i_ino,
2136                        dentry, symname, error);
2137                d_drop(dentry);
2138                __free_page(page);
2139                return error;
2140        }
2141
2142        /*
2143         * No big deal if we can't add this page to the page cache here.
2144         * READLINK will get the missing page from the server if needed.
2145         */
2146        if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2147                                                        GFP_KERNEL)) {
2148                SetPageUptodate(page);
2149                unlock_page(page);
2150                /*
2151                 * add_to_page_cache_lru() grabs an extra page refcount.
2152                 * Drop it here to avoid leaking this page later.
2153                 */
2154                put_page(page);
2155        } else
2156                __free_page(page);
2157
2158        return 0;
2159}
2160EXPORT_SYMBOL_GPL(nfs_symlink);
2161
2162int
2163nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2164{
2165        struct inode *inode = d_inode(old_dentry);
2166        int error;
2167
2168        dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2169                old_dentry, dentry);
2170
2171        trace_nfs_link_enter(inode, dir, dentry);
2172        d_drop(dentry);
2173        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2174        if (error == 0) {
2175                ihold(inode);
2176                d_add(dentry, inode);
2177        }
2178        trace_nfs_link_exit(inode, dir, dentry, error);
2179        return error;
2180}
2181EXPORT_SYMBOL_GPL(nfs_link);
2182
2183/*
2184 * RENAME
2185 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2186 * different file handle for the same inode after a rename (e.g. when
2187 * moving to a different directory). A fail-safe method to do so would
2188 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2189 * rename the old file using the sillyrename stuff. This way, the original
2190 * file in old_dir will go away when the last process iput()s the inode.
2191 *
2192 * FIXED.
2193 * 
2194 * It actually works quite well. One needs to have the possibility for
2195 * at least one ".nfs..." file in each directory the file ever gets
2196 * moved or linked to which happens automagically with the new
2197 * implementation that only depends on the dcache stuff instead of
2198 * using the inode layer
2199 *
2200 * Unfortunately, things are a little more complicated than indicated
2201 * above. For a cross-directory move, we want to make sure we can get
2202 * rid of the old inode after the operation.  This means there must be
2203 * no pending writes (if it's a file), and the use count must be 1.
2204 * If these conditions are met, we can drop the dentries before doing
2205 * the rename.
2206 */
2207int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2208               struct inode *new_dir, struct dentry *new_dentry,
2209               unsigned int flags)
2210{
2211        struct inode *old_inode = d_inode(old_dentry);
2212        struct inode *new_inode = d_inode(new_dentry);
2213        struct dentry *dentry = NULL, *rehash = NULL;
2214        struct rpc_task *task;
2215        int error = -EBUSY;
2216
2217        if (flags)
2218                return -EINVAL;
2219
2220        dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2221                 old_dentry, new_dentry,
2222                 d_count(new_dentry));
2223
2224        trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2225        /*
2226         * For non-directories, check whether the target is busy and if so,
2227         * make a copy of the dentry and then do a silly-rename. If the
2228         * silly-rename succeeds, the copied dentry is hashed and becomes
2229         * the new target.
2230         */
2231        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2232                /*
2233                 * To prevent any new references to the target during the
2234                 * rename, we unhash the dentry in advance.
2235                 */
2236                if (!d_unhashed(new_dentry)) {
2237                        d_drop(new_dentry);
2238                        rehash = new_dentry;
2239                }
2240
2241                if (d_count(new_dentry) > 2) {
2242                        int err;
2243
2244                        /* copy the target dentry's name */
2245                        dentry = d_alloc(new_dentry->d_parent,
2246                                         &new_dentry->d_name);
2247                        if (!dentry)
2248                                goto out;
2249
2250                        /* silly-rename the existing target ... */
2251                        err = nfs_sillyrename(new_dir, new_dentry);
2252                        if (err)
2253                                goto out;
2254
2255                        new_dentry = dentry;
2256                        rehash = NULL;
2257                        new_inode = NULL;
2258                }
2259        }
2260
2261        task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2262        if (IS_ERR(task)) {
2263                error = PTR_ERR(task);
2264                goto out;
2265        }
2266
2267        error = rpc_wait_for_completion_task(task);
2268        if (error != 0) {
2269                ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2270                /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2271                smp_wmb();
2272        } else
2273                error = task->tk_status;
2274        rpc_put_task(task);
2275        /* Ensure the inode attributes are revalidated */
2276        if (error == 0) {
2277                spin_lock(&old_inode->i_lock);
2278                NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2279                NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2280                        | NFS_INO_INVALID_CTIME
2281                        | NFS_INO_REVAL_FORCED;
2282                spin_unlock(&old_inode->i_lock);
2283        }
2284out:
2285        if (rehash)
2286                d_rehash(rehash);
2287        trace_nfs_rename_exit(old_dir, old_dentry,
2288                        new_dir, new_dentry, error);
2289        if (!error) {
2290                if (new_inode != NULL)
2291                        nfs_drop_nlink(new_inode);
2292                /*
2293                 * The d_move() should be here instead of in an async RPC completion
2294                 * handler because we need the proper locks to move the dentry.  If
2295                 * we're interrupted by a signal, the async RPC completion handler
2296                 * should mark the directories for revalidation.
2297                 */
2298                d_move(old_dentry, new_dentry);
2299                nfs_set_verifier(old_dentry,
2300                                        nfs_save_change_attribute(new_dir));
2301        } else if (error == -ENOENT)
2302                nfs_dentry_handle_enoent(old_dentry);
2303
2304        /* new dentry created? */
2305        if (dentry)
2306                dput(dentry);
2307        return error;
2308}
2309EXPORT_SYMBOL_GPL(nfs_rename);
2310
2311static DEFINE_SPINLOCK(nfs_access_lru_lock);
2312static LIST_HEAD(nfs_access_lru_list);
2313static atomic_long_t nfs_access_nr_entries;
2314
2315static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2316module_param(nfs_access_max_cachesize, ulong, 0644);
2317MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2318
2319static void nfs_access_free_entry(struct nfs_access_entry *entry)
2320{
2321        put_cred(entry->cred);
2322        kfree_rcu(entry, rcu_head);
2323        smp_mb__before_atomic();
2324        atomic_long_dec(&nfs_access_nr_entries);
2325        smp_mb__after_atomic();
2326}
2327
2328static void nfs_access_free_list(struct list_head *head)
2329{
2330        struct nfs_access_entry *cache;
2331
2332        while (!list_empty(head)) {
2333                cache = list_entry(head->next, struct nfs_access_entry, lru);
2334                list_del(&cache->lru);
2335                nfs_access_free_entry(cache);
2336        }
2337}
2338
2339static unsigned long
2340nfs_do_access_cache_scan(unsigned int nr_to_scan)
2341{
2342        LIST_HEAD(head);
2343        struct nfs_inode *nfsi, *next;
2344        struct nfs_access_entry *cache;
2345        long freed = 0;
2346
2347        spin_lock(&nfs_access_lru_lock);
2348        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2349                struct inode *inode;
2350
2351                if (nr_to_scan-- == 0)
2352                        break;
2353                inode = &nfsi->vfs_inode;
2354                spin_lock(&inode->i_lock);
2355                if (list_empty(&nfsi->access_cache_entry_lru))
2356                        goto remove_lru_entry;
2357                cache = list_entry(nfsi->access_cache_entry_lru.next,
2358                                struct nfs_access_entry, lru);
2359                list_move(&cache->lru, &head);
2360                rb_erase(&cache->rb_node, &nfsi->access_cache);
2361                freed++;
2362                if (!list_empty(&nfsi->access_cache_entry_lru))
2363                        list_move_tail(&nfsi->access_cache_inode_lru,
2364                                        &nfs_access_lru_list);
2365                else {
2366remove_lru_entry:
2367                        list_del_init(&nfsi->access_cache_inode_lru);
2368                        smp_mb__before_atomic();
2369                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2370                        smp_mb__after_atomic();
2371                }
2372                spin_unlock(&inode->i_lock);
2373        }
2374        spin_unlock(&nfs_access_lru_lock);
2375        nfs_access_free_list(&head);
2376        return freed;
2377}
2378
2379unsigned long
2380nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2381{
2382        int nr_to_scan = sc->nr_to_scan;
2383        gfp_t gfp_mask = sc->gfp_mask;
2384
2385        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2386                return SHRINK_STOP;
2387        return nfs_do_access_cache_scan(nr_to_scan);
2388}
2389
2390
2391unsigned long
2392nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2393{
2394        return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2395}
2396
2397static void
2398nfs_access_cache_enforce_limit(void)
2399{
2400        long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2401        unsigned long diff;
2402        unsigned int nr_to_scan;
2403
2404        if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2405                return;
2406        nr_to_scan = 100;
2407        diff = nr_entries - nfs_access_max_cachesize;
2408        if (diff < nr_to_scan)
2409                nr_to_scan = diff;
2410        nfs_do_access_cache_scan(nr_to_scan);
2411}
2412
2413static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2414{
2415        struct rb_root *root_node = &nfsi->access_cache;
2416        struct rb_node *n;
2417        struct nfs_access_entry *entry;
2418
2419        /* Unhook entries from the cache */
2420        while ((n = rb_first(root_node)) != NULL) {
2421                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2422                rb_erase(n, root_node);
2423                list_move(&entry->lru, head);
2424        }
2425        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2426}
2427
2428void nfs_access_zap_cache(struct inode *inode)
2429{
2430        LIST_HEAD(head);
2431
2432        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2433                return;
2434        /* Remove from global LRU init */
2435        spin_lock(&nfs_access_lru_lock);
2436        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2437                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2438
2439        spin_lock(&inode->i_lock);
2440        __nfs_access_zap_cache(NFS_I(inode), &head);
2441        spin_unlock(&inode->i_lock);
2442        spin_unlock(&nfs_access_lru_lock);
2443        nfs_access_free_list(&head);
2444}
2445EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2446
2447static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2448{
2449        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2450
2451        while (n != NULL) {
2452                struct nfs_access_entry *entry =
2453                        rb_entry(n, struct nfs_access_entry, rb_node);
2454                int cmp = cred_fscmp(cred, entry->cred);
2455
2456                if (cmp < 0)
2457                        n = n->rb_left;
2458                else if (cmp > 0)
2459                        n = n->rb_right;
2460                else
2461                        return entry;
2462        }
2463        return NULL;
2464}
2465
2466static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2467{
2468        struct nfs_inode *nfsi = NFS_I(inode);
2469        struct nfs_access_entry *cache;
2470        bool retry = true;
2471        int err;
2472
2473        spin_lock(&inode->i_lock);
2474        for(;;) {
2475                if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2476                        goto out_zap;
2477                cache = nfs_access_search_rbtree(inode, cred);
2478                err = -ENOENT;
2479                if (cache == NULL)
2480                        goto out;
2481                /* Found an entry, is our attribute cache valid? */
2482                if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2483                        break;
2484                if (!retry)
2485                        break;
2486                err = -ECHILD;
2487                if (!may_block)
2488                        goto out;
2489                spin_unlock(&inode->i_lock);
2490                err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2491                if (err)
2492                        return err;
2493                spin_lock(&inode->i_lock);
2494                retry = false;
2495        }
2496        res->cred = cache->cred;
2497        res->mask = cache->mask;
2498        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2499        err = 0;
2500out:
2501        spin_unlock(&inode->i_lock);
2502        return err;
2503out_zap:
2504        spin_unlock(&inode->i_lock);
2505        nfs_access_zap_cache(inode);
2506        return -ENOENT;
2507}
2508
2509static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2510{
2511        /* Only check the most recently returned cache entry,
2512         * but do it without locking.
2513         */
2514        struct nfs_inode *nfsi = NFS_I(inode);
2515        struct nfs_access_entry *cache;
2516        int err = -ECHILD;
2517        struct list_head *lh;
2518
2519        rcu_read_lock();
2520        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2521                goto out;
2522        lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2523        cache = list_entry(lh, struct nfs_access_entry, lru);
2524        if (lh == &nfsi->access_cache_entry_lru ||
2525            cred_fscmp(cred, cache->cred) != 0)
2526                cache = NULL;
2527        if (cache == NULL)
2528                goto out;
2529        if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2530                goto out;
2531        res->cred = cache->cred;
2532        res->mask = cache->mask;
2533        err = 0;
2534out:
2535        rcu_read_unlock();
2536        return err;
2537}
2538
2539int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2540nfs_access_entry *res, bool may_block)
2541{
2542        int status;
2543
2544        status = nfs_access_get_cached_rcu(inode, cred, res);
2545        if (status != 0)
2546                status = nfs_access_get_cached_locked(inode, cred, res,
2547                    may_block);
2548
2549        return status;
2550}
2551EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2552
2553static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2554{
2555        struct nfs_inode *nfsi = NFS_I(inode);
2556        struct rb_root *root_node = &nfsi->access_cache;
2557        struct rb_node **p = &root_node->rb_node;
2558        struct rb_node *parent = NULL;
2559        struct nfs_access_entry *entry;
2560        int cmp;
2561
2562        spin_lock(&inode->i_lock);
2563        while (*p != NULL) {
2564                parent = *p;
2565                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2566                cmp = cred_fscmp(set->cred, entry->cred);
2567
2568                if (cmp < 0)
2569                        p = &parent->rb_left;
2570                else if (cmp > 0)
2571                        p = &parent->rb_right;
2572                else
2573                        goto found;
2574        }
2575        rb_link_node(&set->rb_node, parent, p);
2576        rb_insert_color(&set->rb_node, root_node);
2577        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2578        spin_unlock(&inode->i_lock);
2579        return;
2580found:
2581        rb_replace_node(parent, &set->rb_node, root_node);
2582        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2583        list_del(&entry->lru);
2584        spin_unlock(&inode->i_lock);
2585        nfs_access_free_entry(entry);
2586}
2587
2588void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2589{
2590        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2591        if (cache == NULL)
2592                return;
2593        RB_CLEAR_NODE(&cache->rb_node);
2594        cache->cred = get_cred(set->cred);
2595        cache->mask = set->mask;
2596
2597        /* The above field assignments must be visible
2598         * before this item appears on the lru.  We cannot easily
2599         * use rcu_assign_pointer, so just force the memory barrier.
2600         */
2601        smp_wmb();
2602        nfs_access_add_rbtree(inode, cache);
2603
2604        /* Update accounting */
2605        smp_mb__before_atomic();
2606        atomic_long_inc(&nfs_access_nr_entries);
2607        smp_mb__after_atomic();
2608
2609        /* Add inode to global LRU list */
2610        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2611                spin_lock(&nfs_access_lru_lock);
2612                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2613                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2614                                        &nfs_access_lru_list);
2615                spin_unlock(&nfs_access_lru_lock);
2616        }
2617        nfs_access_cache_enforce_limit();
2618}
2619EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2620
2621#define NFS_MAY_READ (NFS_ACCESS_READ)
2622#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2623                NFS_ACCESS_EXTEND | \
2624                NFS_ACCESS_DELETE)
2625#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2626                NFS_ACCESS_EXTEND)
2627#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2628#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2629#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2630static int
2631nfs_access_calc_mask(u32 access_result, umode_t umode)
2632{
2633        int mask = 0;
2634
2635        if (access_result & NFS_MAY_READ)
2636                mask |= MAY_READ;
2637        if (S_ISDIR(umode)) {
2638                if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2639                        mask |= MAY_WRITE;
2640                if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2641                        mask |= MAY_EXEC;
2642        } else if (S_ISREG(umode)) {
2643                if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2644                        mask |= MAY_WRITE;
2645                if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2646                        mask |= MAY_EXEC;
2647        } else if (access_result & NFS_MAY_WRITE)
2648                        mask |= MAY_WRITE;
2649        return mask;
2650}
2651
2652void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2653{
2654        entry->mask = access_result;
2655}
2656EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2657
2658static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2659{
2660        struct nfs_access_entry cache;
2661        bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2662        int cache_mask = -1;
2663        int status;
2664
2665        trace_nfs_access_enter(inode);
2666
2667        status = nfs_access_get_cached(inode, cred, &cache, may_block);
2668        if (status == 0)
2669                goto out_cached;
2670
2671        status = -ECHILD;
2672        if (!may_block)
2673                goto out;
2674
2675        /*
2676         * Determine which access bits we want to ask for...
2677         */
2678        cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2679        if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2680                cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2681                    NFS_ACCESS_XALIST;
2682        }
2683        if (S_ISDIR(inode->i_mode))
2684                cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2685        else
2686                cache.mask |= NFS_ACCESS_EXECUTE;
2687        cache.cred = cred;
2688        status = NFS_PROTO(inode)->access(inode, &cache);
2689        if (status != 0) {
2690                if (status == -ESTALE) {
2691                        if (!S_ISDIR(inode->i_mode))
2692                                nfs_set_inode_stale(inode);
2693                        else
2694                                nfs_zap_caches(inode);
2695                }
2696                goto out;
2697        }
2698        nfs_access_add_cache(inode, &cache);
2699out_cached:
2700        cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2701        if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2702                status = -EACCES;
2703out:
2704        trace_nfs_access_exit(inode, mask, cache_mask, status);
2705        return status;
2706}
2707
2708static int nfs_open_permission_mask(int openflags)
2709{
2710        int mask = 0;
2711
2712        if (openflags & __FMODE_EXEC) {
2713                /* ONLY check exec rights */
2714                mask = MAY_EXEC;
2715        } else {
2716                if ((openflags & O_ACCMODE) != O_WRONLY)
2717                        mask |= MAY_READ;
2718                if ((openflags & O_ACCMODE) != O_RDONLY)
2719                        mask |= MAY_WRITE;
2720        }
2721
2722        return mask;
2723}
2724
2725int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2726{
2727        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2728}
2729EXPORT_SYMBOL_GPL(nfs_may_open);
2730
2731static int nfs_execute_ok(struct inode *inode, int mask)
2732{
2733        struct nfs_server *server = NFS_SERVER(inode);
2734        int ret = 0;
2735
2736        if (S_ISDIR(inode->i_mode))
2737                return 0;
2738        if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2739                if (mask & MAY_NOT_BLOCK)
2740                        return -ECHILD;
2741                ret = __nfs_revalidate_inode(server, inode);
2742        }
2743        if (ret == 0 && !execute_ok(inode))
2744                ret = -EACCES;
2745        return ret;
2746}
2747
2748int nfs_permission(struct inode *inode, int mask)
2749{
2750        const struct cred *cred = current_cred();
2751        int res = 0;
2752
2753        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2754
2755        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2756                goto out;
2757        /* Is this sys_access() ? */
2758        if (mask & (MAY_ACCESS | MAY_CHDIR))
2759                goto force_lookup;
2760
2761        switch (inode->i_mode & S_IFMT) {
2762                case S_IFLNK:
2763                        goto out;
2764                case S_IFREG:
2765                        if ((mask & MAY_OPEN) &&
2766                           nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2767                                return 0;
2768                        break;
2769                case S_IFDIR:
2770                        /*
2771                         * Optimize away all write operations, since the server
2772                         * will check permissions when we perform the op.
2773                         */
2774                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2775                                goto out;
2776        }
2777
2778force_lookup:
2779        if (!NFS_PROTO(inode)->access)
2780                goto out_notsup;
2781
2782        res = nfs_do_access(inode, cred, mask);
2783out:
2784        if (!res && (mask & MAY_EXEC))
2785                res = nfs_execute_ok(inode, mask);
2786
2787        dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2788                inode->i_sb->s_id, inode->i_ino, mask, res);
2789        return res;
2790out_notsup:
2791        if (mask & MAY_NOT_BLOCK)
2792                return -ECHILD;
2793
2794        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2795        if (res == 0)
2796                res = generic_permission(inode, mask);
2797        goto out;
2798}
2799EXPORT_SYMBOL_GPL(nfs_permission);
2800
2801/*
2802 * Local variables:
2803 *  version-control: t
2804 *  kept-new-versions: 5
2805 * End:
2806 */
2807