linux/fs/proc/base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/generic-radix-tree.h>
  63#include <linux/string.h>
  64#include <linux/seq_file.h>
  65#include <linux/namei.h>
  66#include <linux/mnt_namespace.h>
  67#include <linux/mm.h>
  68#include <linux/swap.h>
  69#include <linux/rcupdate.h>
  70#include <linux/kallsyms.h>
  71#include <linux/stacktrace.h>
  72#include <linux/resource.h>
  73#include <linux/module.h>
  74#include <linux/mount.h>
  75#include <linux/security.h>
  76#include <linux/ptrace.h>
  77#include <linux/tracehook.h>
  78#include <linux/printk.h>
  79#include <linux/cache.h>
  80#include <linux/cgroup.h>
  81#include <linux/cpuset.h>
  82#include <linux/audit.h>
  83#include <linux/poll.h>
  84#include <linux/nsproxy.h>
  85#include <linux/oom.h>
  86#include <linux/elf.h>
  87#include <linux/pid_namespace.h>
  88#include <linux/user_namespace.h>
  89#include <linux/fs_struct.h>
  90#include <linux/slab.h>
  91#include <linux/sched/autogroup.h>
  92#include <linux/sched/mm.h>
  93#include <linux/sched/coredump.h>
  94#include <linux/sched/debug.h>
  95#include <linux/sched/stat.h>
  96#include <linux/posix-timers.h>
  97#include <linux/time_namespace.h>
  98#include <linux/resctrl.h>
  99#include <trace/events/oom.h>
 100#include "internal.h"
 101#include "fd.h"
 102
 103#include "../../lib/kstrtox.h"
 104
 105/* NOTE:
 106 *      Implementing inode permission operations in /proc is almost
 107 *      certainly an error.  Permission checks need to happen during
 108 *      each system call not at open time.  The reason is that most of
 109 *      what we wish to check for permissions in /proc varies at runtime.
 110 *
 111 *      The classic example of a problem is opening file descriptors
 112 *      in /proc for a task before it execs a suid executable.
 113 */
 114
 115static u8 nlink_tid __ro_after_init;
 116static u8 nlink_tgid __ro_after_init;
 117
 118struct pid_entry {
 119        const char *name;
 120        unsigned int len;
 121        umode_t mode;
 122        const struct inode_operations *iop;
 123        const struct file_operations *fop;
 124        union proc_op op;
 125};
 126
 127#define NOD(NAME, MODE, IOP, FOP, OP) {                 \
 128        .name = (NAME),                                 \
 129        .len  = sizeof(NAME) - 1,                       \
 130        .mode = MODE,                                   \
 131        .iop  = IOP,                                    \
 132        .fop  = FOP,                                    \
 133        .op   = OP,                                     \
 134}
 135
 136#define DIR(NAME, MODE, iops, fops)     \
 137        NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 138#define LNK(NAME, get_link)                                     \
 139        NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
 140                &proc_pid_link_inode_operations, NULL,          \
 141                { .proc_get_link = get_link } )
 142#define REG(NAME, MODE, fops)                           \
 143        NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 144#define ONE(NAME, MODE, show)                           \
 145        NOD(NAME, (S_IFREG|(MODE)),                     \
 146                NULL, &proc_single_file_operations,     \
 147                { .proc_show = show } )
 148#define ATTR(LSM, NAME, MODE)                           \
 149        NOD(NAME, (S_IFREG|(MODE)),                     \
 150                NULL, &proc_pid_attr_operations,        \
 151                { .lsm = LSM })
 152
 153/*
 154 * Count the number of hardlinks for the pid_entry table, excluding the .
 155 * and .. links.
 156 */
 157static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 158        unsigned int n)
 159{
 160        unsigned int i;
 161        unsigned int count;
 162
 163        count = 2;
 164        for (i = 0; i < n; ++i) {
 165                if (S_ISDIR(entries[i].mode))
 166                        ++count;
 167        }
 168
 169        return count;
 170}
 171
 172static int get_task_root(struct task_struct *task, struct path *root)
 173{
 174        int result = -ENOENT;
 175
 176        task_lock(task);
 177        if (task->fs) {
 178                get_fs_root(task->fs, root);
 179                result = 0;
 180        }
 181        task_unlock(task);
 182        return result;
 183}
 184
 185static int proc_cwd_link(struct dentry *dentry, struct path *path)
 186{
 187        struct task_struct *task = get_proc_task(d_inode(dentry));
 188        int result = -ENOENT;
 189
 190        if (task) {
 191                task_lock(task);
 192                if (task->fs) {
 193                        get_fs_pwd(task->fs, path);
 194                        result = 0;
 195                }
 196                task_unlock(task);
 197                put_task_struct(task);
 198        }
 199        return result;
 200}
 201
 202static int proc_root_link(struct dentry *dentry, struct path *path)
 203{
 204        struct task_struct *task = get_proc_task(d_inode(dentry));
 205        int result = -ENOENT;
 206
 207        if (task) {
 208                result = get_task_root(task, path);
 209                put_task_struct(task);
 210        }
 211        return result;
 212}
 213
 214/*
 215 * If the user used setproctitle(), we just get the string from
 216 * user space at arg_start, and limit it to a maximum of one page.
 217 */
 218static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 219                                size_t count, unsigned long pos,
 220                                unsigned long arg_start)
 221{
 222        char *page;
 223        int ret, got;
 224
 225        if (pos >= PAGE_SIZE)
 226                return 0;
 227
 228        page = (char *)__get_free_page(GFP_KERNEL);
 229        if (!page)
 230                return -ENOMEM;
 231
 232        ret = 0;
 233        got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 234        if (got > 0) {
 235                int len = strnlen(page, got);
 236
 237                /* Include the NUL character if it was found */
 238                if (len < got)
 239                        len++;
 240
 241                if (len > pos) {
 242                        len -= pos;
 243                        if (len > count)
 244                                len = count;
 245                        len -= copy_to_user(buf, page+pos, len);
 246                        if (!len)
 247                                len = -EFAULT;
 248                        ret = len;
 249                }
 250        }
 251        free_page((unsigned long)page);
 252        return ret;
 253}
 254
 255static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 256                              size_t count, loff_t *ppos)
 257{
 258        unsigned long arg_start, arg_end, env_start, env_end;
 259        unsigned long pos, len;
 260        char *page, c;
 261
 262        /* Check if process spawned far enough to have cmdline. */
 263        if (!mm->env_end)
 264                return 0;
 265
 266        spin_lock(&mm->arg_lock);
 267        arg_start = mm->arg_start;
 268        arg_end = mm->arg_end;
 269        env_start = mm->env_start;
 270        env_end = mm->env_end;
 271        spin_unlock(&mm->arg_lock);
 272
 273        if (arg_start >= arg_end)
 274                return 0;
 275
 276        /*
 277         * We allow setproctitle() to overwrite the argument
 278         * strings, and overflow past the original end. But
 279         * only when it overflows into the environment area.
 280         */
 281        if (env_start != arg_end || env_end < env_start)
 282                env_start = env_end = arg_end;
 283        len = env_end - arg_start;
 284
 285        /* We're not going to care if "*ppos" has high bits set */
 286        pos = *ppos;
 287        if (pos >= len)
 288                return 0;
 289        if (count > len - pos)
 290                count = len - pos;
 291        if (!count)
 292                return 0;
 293
 294        /*
 295         * Magical special case: if the argv[] end byte is not
 296         * zero, the user has overwritten it with setproctitle(3).
 297         *
 298         * Possible future enhancement: do this only once when
 299         * pos is 0, and set a flag in the 'struct file'.
 300         */
 301        if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 302                return get_mm_proctitle(mm, buf, count, pos, arg_start);
 303
 304        /*
 305         * For the non-setproctitle() case we limit things strictly
 306         * to the [arg_start, arg_end[ range.
 307         */
 308        pos += arg_start;
 309        if (pos < arg_start || pos >= arg_end)
 310                return 0;
 311        if (count > arg_end - pos)
 312                count = arg_end - pos;
 313
 314        page = (char *)__get_free_page(GFP_KERNEL);
 315        if (!page)
 316                return -ENOMEM;
 317
 318        len = 0;
 319        while (count) {
 320                int got;
 321                size_t size = min_t(size_t, PAGE_SIZE, count);
 322
 323                got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 324                if (got <= 0)
 325                        break;
 326                got -= copy_to_user(buf, page, got);
 327                if (unlikely(!got)) {
 328                        if (!len)
 329                                len = -EFAULT;
 330                        break;
 331                }
 332                pos += got;
 333                buf += got;
 334                len += got;
 335                count -= got;
 336        }
 337
 338        free_page((unsigned long)page);
 339        return len;
 340}
 341
 342static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 343                                size_t count, loff_t *pos)
 344{
 345        struct mm_struct *mm;
 346        ssize_t ret;
 347
 348        mm = get_task_mm(tsk);
 349        if (!mm)
 350                return 0;
 351
 352        ret = get_mm_cmdline(mm, buf, count, pos);
 353        mmput(mm);
 354        return ret;
 355}
 356
 357static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 358                                     size_t count, loff_t *pos)
 359{
 360        struct task_struct *tsk;
 361        ssize_t ret;
 362
 363        BUG_ON(*pos < 0);
 364
 365        tsk = get_proc_task(file_inode(file));
 366        if (!tsk)
 367                return -ESRCH;
 368        ret = get_task_cmdline(tsk, buf, count, pos);
 369        put_task_struct(tsk);
 370        if (ret > 0)
 371                *pos += ret;
 372        return ret;
 373}
 374
 375static const struct file_operations proc_pid_cmdline_ops = {
 376        .read   = proc_pid_cmdline_read,
 377        .llseek = generic_file_llseek,
 378};
 379
 380#ifdef CONFIG_KALLSYMS
 381/*
 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 383 * Returns the resolved symbol.  If that fails, simply return the address.
 384 */
 385static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 386                          struct pid *pid, struct task_struct *task)
 387{
 388        unsigned long wchan;
 389        char symname[KSYM_NAME_LEN];
 390
 391        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 392                goto print0;
 393
 394        wchan = get_wchan(task);
 395        if (wchan && !lookup_symbol_name(wchan, symname)) {
 396                seq_puts(m, symname);
 397                return 0;
 398        }
 399
 400print0:
 401        seq_putc(m, '0');
 402        return 0;
 403}
 404#endif /* CONFIG_KALLSYMS */
 405
 406static int lock_trace(struct task_struct *task)
 407{
 408        int err = mutex_lock_killable(&task->signal->exec_update_mutex);
 409        if (err)
 410                return err;
 411        if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 412                mutex_unlock(&task->signal->exec_update_mutex);
 413                return -EPERM;
 414        }
 415        return 0;
 416}
 417
 418static void unlock_trace(struct task_struct *task)
 419{
 420        mutex_unlock(&task->signal->exec_update_mutex);
 421}
 422
 423#ifdef CONFIG_STACKTRACE
 424
 425#define MAX_STACK_TRACE_DEPTH   64
 426
 427static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 428                          struct pid *pid, struct task_struct *task)
 429{
 430        unsigned long *entries;
 431        int err;
 432
 433        /*
 434         * The ability to racily run the kernel stack unwinder on a running task
 435         * and then observe the unwinder output is scary; while it is useful for
 436         * debugging kernel issues, it can also allow an attacker to leak kernel
 437         * stack contents.
 438         * Doing this in a manner that is at least safe from races would require
 439         * some work to ensure that the remote task can not be scheduled; and
 440         * even then, this would still expose the unwinder as local attack
 441         * surface.
 442         * Therefore, this interface is restricted to root.
 443         */
 444        if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 445                return -EACCES;
 446
 447        entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 448                                GFP_KERNEL);
 449        if (!entries)
 450                return -ENOMEM;
 451
 452        err = lock_trace(task);
 453        if (!err) {
 454                unsigned int i, nr_entries;
 455
 456                nr_entries = stack_trace_save_tsk(task, entries,
 457                                                  MAX_STACK_TRACE_DEPTH, 0);
 458
 459                for (i = 0; i < nr_entries; i++) {
 460                        seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 461                }
 462
 463                unlock_trace(task);
 464        }
 465        kfree(entries);
 466
 467        return err;
 468}
 469#endif
 470
 471#ifdef CONFIG_SCHED_INFO
 472/*
 473 * Provides /proc/PID/schedstat
 474 */
 475static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 476                              struct pid *pid, struct task_struct *task)
 477{
 478        if (unlikely(!sched_info_on()))
 479                seq_puts(m, "0 0 0\n");
 480        else
 481                seq_printf(m, "%llu %llu %lu\n",
 482                   (unsigned long long)task->se.sum_exec_runtime,
 483                   (unsigned long long)task->sched_info.run_delay,
 484                   task->sched_info.pcount);
 485
 486        return 0;
 487}
 488#endif
 489
 490#ifdef CONFIG_LATENCYTOP
 491static int lstats_show_proc(struct seq_file *m, void *v)
 492{
 493        int i;
 494        struct inode *inode = m->private;
 495        struct task_struct *task = get_proc_task(inode);
 496
 497        if (!task)
 498                return -ESRCH;
 499        seq_puts(m, "Latency Top version : v0.1\n");
 500        for (i = 0; i < LT_SAVECOUNT; i++) {
 501                struct latency_record *lr = &task->latency_record[i];
 502                if (lr->backtrace[0]) {
 503                        int q;
 504                        seq_printf(m, "%i %li %li",
 505                                   lr->count, lr->time, lr->max);
 506                        for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 507                                unsigned long bt = lr->backtrace[q];
 508
 509                                if (!bt)
 510                                        break;
 511                                seq_printf(m, " %ps", (void *)bt);
 512                        }
 513                        seq_putc(m, '\n');
 514                }
 515
 516        }
 517        put_task_struct(task);
 518        return 0;
 519}
 520
 521static int lstats_open(struct inode *inode, struct file *file)
 522{
 523        return single_open(file, lstats_show_proc, inode);
 524}
 525
 526static ssize_t lstats_write(struct file *file, const char __user *buf,
 527                            size_t count, loff_t *offs)
 528{
 529        struct task_struct *task = get_proc_task(file_inode(file));
 530
 531        if (!task)
 532                return -ESRCH;
 533        clear_tsk_latency_tracing(task);
 534        put_task_struct(task);
 535
 536        return count;
 537}
 538
 539static const struct file_operations proc_lstats_operations = {
 540        .open           = lstats_open,
 541        .read           = seq_read,
 542        .write          = lstats_write,
 543        .llseek         = seq_lseek,
 544        .release        = single_release,
 545};
 546
 547#endif
 548
 549static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 550                          struct pid *pid, struct task_struct *task)
 551{
 552        unsigned long totalpages = totalram_pages() + total_swap_pages;
 553        unsigned long points = 0;
 554        long badness;
 555
 556        badness = oom_badness(task, totalpages);
 557        /*
 558         * Special case OOM_SCORE_ADJ_MIN for all others scale the
 559         * badness value into [0, 2000] range which we have been
 560         * exporting for a long time so userspace might depend on it.
 561         */
 562        if (badness != LONG_MIN)
 563                points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
 564
 565        seq_printf(m, "%lu\n", points);
 566
 567        return 0;
 568}
 569
 570struct limit_names {
 571        const char *name;
 572        const char *unit;
 573};
 574
 575static const struct limit_names lnames[RLIM_NLIMITS] = {
 576        [RLIMIT_CPU] = {"Max cpu time", "seconds"},
 577        [RLIMIT_FSIZE] = {"Max file size", "bytes"},
 578        [RLIMIT_DATA] = {"Max data size", "bytes"},
 579        [RLIMIT_STACK] = {"Max stack size", "bytes"},
 580        [RLIMIT_CORE] = {"Max core file size", "bytes"},
 581        [RLIMIT_RSS] = {"Max resident set", "bytes"},
 582        [RLIMIT_NPROC] = {"Max processes", "processes"},
 583        [RLIMIT_NOFILE] = {"Max open files", "files"},
 584        [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 585        [RLIMIT_AS] = {"Max address space", "bytes"},
 586        [RLIMIT_LOCKS] = {"Max file locks", "locks"},
 587        [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 588        [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 589        [RLIMIT_NICE] = {"Max nice priority", NULL},
 590        [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 591        [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 592};
 593
 594/* Display limits for a process */
 595static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 596                           struct pid *pid, struct task_struct *task)
 597{
 598        unsigned int i;
 599        unsigned long flags;
 600
 601        struct rlimit rlim[RLIM_NLIMITS];
 602
 603        if (!lock_task_sighand(task, &flags))
 604                return 0;
 605        memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 606        unlock_task_sighand(task, &flags);
 607
 608        /*
 609         * print the file header
 610         */
 611        seq_puts(m, "Limit                     "
 612                "Soft Limit           "
 613                "Hard Limit           "
 614                "Units     \n");
 615
 616        for (i = 0; i < RLIM_NLIMITS; i++) {
 617                if (rlim[i].rlim_cur == RLIM_INFINITY)
 618                        seq_printf(m, "%-25s %-20s ",
 619                                   lnames[i].name, "unlimited");
 620                else
 621                        seq_printf(m, "%-25s %-20lu ",
 622                                   lnames[i].name, rlim[i].rlim_cur);
 623
 624                if (rlim[i].rlim_max == RLIM_INFINITY)
 625                        seq_printf(m, "%-20s ", "unlimited");
 626                else
 627                        seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 628
 629                if (lnames[i].unit)
 630                        seq_printf(m, "%-10s\n", lnames[i].unit);
 631                else
 632                        seq_putc(m, '\n');
 633        }
 634
 635        return 0;
 636}
 637
 638#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 639static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 640                            struct pid *pid, struct task_struct *task)
 641{
 642        struct syscall_info info;
 643        u64 *args = &info.data.args[0];
 644        int res;
 645
 646        res = lock_trace(task);
 647        if (res)
 648                return res;
 649
 650        if (task_current_syscall(task, &info))
 651                seq_puts(m, "running\n");
 652        else if (info.data.nr < 0)
 653                seq_printf(m, "%d 0x%llx 0x%llx\n",
 654                           info.data.nr, info.sp, info.data.instruction_pointer);
 655        else
 656                seq_printf(m,
 657                       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 658                       info.data.nr,
 659                       args[0], args[1], args[2], args[3], args[4], args[5],
 660                       info.sp, info.data.instruction_pointer);
 661        unlock_trace(task);
 662
 663        return 0;
 664}
 665#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 666
 667/************************************************************************/
 668/*                       Here the fs part begins                        */
 669/************************************************************************/
 670
 671/* permission checks */
 672static int proc_fd_access_allowed(struct inode *inode)
 673{
 674        struct task_struct *task;
 675        int allowed = 0;
 676        /* Allow access to a task's file descriptors if it is us or we
 677         * may use ptrace attach to the process and find out that
 678         * information.
 679         */
 680        task = get_proc_task(inode);
 681        if (task) {
 682                allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 683                put_task_struct(task);
 684        }
 685        return allowed;
 686}
 687
 688int proc_setattr(struct dentry *dentry, struct iattr *attr)
 689{
 690        int error;
 691        struct inode *inode = d_inode(dentry);
 692
 693        if (attr->ia_valid & ATTR_MODE)
 694                return -EPERM;
 695
 696        error = setattr_prepare(dentry, attr);
 697        if (error)
 698                return error;
 699
 700        setattr_copy(inode, attr);
 701        mark_inode_dirty(inode);
 702        return 0;
 703}
 704
 705/*
 706 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 707 * or euid/egid (for hide_pid_min=2)?
 708 */
 709static bool has_pid_permissions(struct proc_fs_info *fs_info,
 710                                 struct task_struct *task,
 711                                 enum proc_hidepid hide_pid_min)
 712{
 713        /*
 714         * If 'hidpid' mount option is set force a ptrace check,
 715         * we indicate that we are using a filesystem syscall
 716         * by passing PTRACE_MODE_READ_FSCREDS
 717         */
 718        if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
 719                return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 720
 721        if (fs_info->hide_pid < hide_pid_min)
 722                return true;
 723        if (in_group_p(fs_info->pid_gid))
 724                return true;
 725        return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 726}
 727
 728
 729static int proc_pid_permission(struct inode *inode, int mask)
 730{
 731        struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
 732        struct task_struct *task;
 733        bool has_perms;
 734
 735        task = get_proc_task(inode);
 736        if (!task)
 737                return -ESRCH;
 738        has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
 739        put_task_struct(task);
 740
 741        if (!has_perms) {
 742                if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
 743                        /*
 744                         * Let's make getdents(), stat(), and open()
 745                         * consistent with each other.  If a process
 746                         * may not stat() a file, it shouldn't be seen
 747                         * in procfs at all.
 748                         */
 749                        return -ENOENT;
 750                }
 751
 752                return -EPERM;
 753        }
 754        return generic_permission(inode, mask);
 755}
 756
 757
 758
 759static const struct inode_operations proc_def_inode_operations = {
 760        .setattr        = proc_setattr,
 761};
 762
 763static int proc_single_show(struct seq_file *m, void *v)
 764{
 765        struct inode *inode = m->private;
 766        struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
 767        struct pid *pid = proc_pid(inode);
 768        struct task_struct *task;
 769        int ret;
 770
 771        task = get_pid_task(pid, PIDTYPE_PID);
 772        if (!task)
 773                return -ESRCH;
 774
 775        ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 776
 777        put_task_struct(task);
 778        return ret;
 779}
 780
 781static int proc_single_open(struct inode *inode, struct file *filp)
 782{
 783        return single_open(filp, proc_single_show, inode);
 784}
 785
 786static const struct file_operations proc_single_file_operations = {
 787        .open           = proc_single_open,
 788        .read           = seq_read,
 789        .llseek         = seq_lseek,
 790        .release        = single_release,
 791};
 792
 793
 794struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 795{
 796        struct task_struct *task = get_proc_task(inode);
 797        struct mm_struct *mm = ERR_PTR(-ESRCH);
 798
 799        if (task) {
 800                mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 801                put_task_struct(task);
 802
 803                if (!IS_ERR_OR_NULL(mm)) {
 804                        /* ensure this mm_struct can't be freed */
 805                        mmgrab(mm);
 806                        /* but do not pin its memory */
 807                        mmput(mm);
 808                }
 809        }
 810
 811        return mm;
 812}
 813
 814static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 815{
 816        struct mm_struct *mm = proc_mem_open(inode, mode);
 817
 818        if (IS_ERR(mm))
 819                return PTR_ERR(mm);
 820
 821        file->private_data = mm;
 822        return 0;
 823}
 824
 825static int mem_open(struct inode *inode, struct file *file)
 826{
 827        int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 828
 829        /* OK to pass negative loff_t, we can catch out-of-range */
 830        file->f_mode |= FMODE_UNSIGNED_OFFSET;
 831
 832        return ret;
 833}
 834
 835static ssize_t mem_rw(struct file *file, char __user *buf,
 836                        size_t count, loff_t *ppos, int write)
 837{
 838        struct mm_struct *mm = file->private_data;
 839        unsigned long addr = *ppos;
 840        ssize_t copied;
 841        char *page;
 842        unsigned int flags;
 843
 844        if (!mm)
 845                return 0;
 846
 847        page = (char *)__get_free_page(GFP_KERNEL);
 848        if (!page)
 849                return -ENOMEM;
 850
 851        copied = 0;
 852        if (!mmget_not_zero(mm))
 853                goto free;
 854
 855        flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 856
 857        while (count > 0) {
 858                int this_len = min_t(int, count, PAGE_SIZE);
 859
 860                if (write && copy_from_user(page, buf, this_len)) {
 861                        copied = -EFAULT;
 862                        break;
 863                }
 864
 865                this_len = access_remote_vm(mm, addr, page, this_len, flags);
 866                if (!this_len) {
 867                        if (!copied)
 868                                copied = -EIO;
 869                        break;
 870                }
 871
 872                if (!write && copy_to_user(buf, page, this_len)) {
 873                        copied = -EFAULT;
 874                        break;
 875                }
 876
 877                buf += this_len;
 878                addr += this_len;
 879                copied += this_len;
 880                count -= this_len;
 881        }
 882        *ppos = addr;
 883
 884        mmput(mm);
 885free:
 886        free_page((unsigned long) page);
 887        return copied;
 888}
 889
 890static ssize_t mem_read(struct file *file, char __user *buf,
 891                        size_t count, loff_t *ppos)
 892{
 893        return mem_rw(file, buf, count, ppos, 0);
 894}
 895
 896static ssize_t mem_write(struct file *file, const char __user *buf,
 897                         size_t count, loff_t *ppos)
 898{
 899        return mem_rw(file, (char __user*)buf, count, ppos, 1);
 900}
 901
 902loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 903{
 904        switch (orig) {
 905        case 0:
 906                file->f_pos = offset;
 907                break;
 908        case 1:
 909                file->f_pos += offset;
 910                break;
 911        default:
 912                return -EINVAL;
 913        }
 914        force_successful_syscall_return();
 915        return file->f_pos;
 916}
 917
 918static int mem_release(struct inode *inode, struct file *file)
 919{
 920        struct mm_struct *mm = file->private_data;
 921        if (mm)
 922                mmdrop(mm);
 923        return 0;
 924}
 925
 926static const struct file_operations proc_mem_operations = {
 927        .llseek         = mem_lseek,
 928        .read           = mem_read,
 929        .write          = mem_write,
 930        .open           = mem_open,
 931        .release        = mem_release,
 932};
 933
 934static int environ_open(struct inode *inode, struct file *file)
 935{
 936        return __mem_open(inode, file, PTRACE_MODE_READ);
 937}
 938
 939static ssize_t environ_read(struct file *file, char __user *buf,
 940                        size_t count, loff_t *ppos)
 941{
 942        char *page;
 943        unsigned long src = *ppos;
 944        int ret = 0;
 945        struct mm_struct *mm = file->private_data;
 946        unsigned long env_start, env_end;
 947
 948        /* Ensure the process spawned far enough to have an environment. */
 949        if (!mm || !mm->env_end)
 950                return 0;
 951
 952        page = (char *)__get_free_page(GFP_KERNEL);
 953        if (!page)
 954                return -ENOMEM;
 955
 956        ret = 0;
 957        if (!mmget_not_zero(mm))
 958                goto free;
 959
 960        spin_lock(&mm->arg_lock);
 961        env_start = mm->env_start;
 962        env_end = mm->env_end;
 963        spin_unlock(&mm->arg_lock);
 964
 965        while (count > 0) {
 966                size_t this_len, max_len;
 967                int retval;
 968
 969                if (src >= (env_end - env_start))
 970                        break;
 971
 972                this_len = env_end - (env_start + src);
 973
 974                max_len = min_t(size_t, PAGE_SIZE, count);
 975                this_len = min(max_len, this_len);
 976
 977                retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 978
 979                if (retval <= 0) {
 980                        ret = retval;
 981                        break;
 982                }
 983
 984                if (copy_to_user(buf, page, retval)) {
 985                        ret = -EFAULT;
 986                        break;
 987                }
 988
 989                ret += retval;
 990                src += retval;
 991                buf += retval;
 992                count -= retval;
 993        }
 994        *ppos = src;
 995        mmput(mm);
 996
 997free:
 998        free_page((unsigned long) page);
 999        return ret;
1000}
1001
1002static const struct file_operations proc_environ_operations = {
1003        .open           = environ_open,
1004        .read           = environ_read,
1005        .llseek         = generic_file_llseek,
1006        .release        = mem_release,
1007};
1008
1009static int auxv_open(struct inode *inode, struct file *file)
1010{
1011        return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1012}
1013
1014static ssize_t auxv_read(struct file *file, char __user *buf,
1015                        size_t count, loff_t *ppos)
1016{
1017        struct mm_struct *mm = file->private_data;
1018        unsigned int nwords = 0;
1019
1020        if (!mm)
1021                return 0;
1022        do {
1023                nwords += 2;
1024        } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1025        return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1026                                       nwords * sizeof(mm->saved_auxv[0]));
1027}
1028
1029static const struct file_operations proc_auxv_operations = {
1030        .open           = auxv_open,
1031        .read           = auxv_read,
1032        .llseek         = generic_file_llseek,
1033        .release        = mem_release,
1034};
1035
1036static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1037                            loff_t *ppos)
1038{
1039        struct task_struct *task = get_proc_task(file_inode(file));
1040        char buffer[PROC_NUMBUF];
1041        int oom_adj = OOM_ADJUST_MIN;
1042        size_t len;
1043
1044        if (!task)
1045                return -ESRCH;
1046        if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1047                oom_adj = OOM_ADJUST_MAX;
1048        else
1049                oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1050                          OOM_SCORE_ADJ_MAX;
1051        put_task_struct(task);
1052        len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1053        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1054}
1055
1056static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1057{
1058        static DEFINE_MUTEX(oom_adj_mutex);
1059        struct mm_struct *mm = NULL;
1060        struct task_struct *task;
1061        int err = 0;
1062
1063        task = get_proc_task(file_inode(file));
1064        if (!task)
1065                return -ESRCH;
1066
1067        mutex_lock(&oom_adj_mutex);
1068        if (legacy) {
1069                if (oom_adj < task->signal->oom_score_adj &&
1070                                !capable(CAP_SYS_RESOURCE)) {
1071                        err = -EACCES;
1072                        goto err_unlock;
1073                }
1074                /*
1075                 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1076                 * /proc/pid/oom_score_adj instead.
1077                 */
1078                pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1079                          current->comm, task_pid_nr(current), task_pid_nr(task),
1080                          task_pid_nr(task));
1081        } else {
1082                if ((short)oom_adj < task->signal->oom_score_adj_min &&
1083                                !capable(CAP_SYS_RESOURCE)) {
1084                        err = -EACCES;
1085                        goto err_unlock;
1086                }
1087        }
1088
1089        /*
1090         * Make sure we will check other processes sharing the mm if this is
1091         * not vfrok which wants its own oom_score_adj.
1092         * pin the mm so it doesn't go away and get reused after task_unlock
1093         */
1094        if (!task->vfork_done) {
1095                struct task_struct *p = find_lock_task_mm(task);
1096
1097                if (p) {
1098                        if (atomic_read(&p->mm->mm_users) > 1) {
1099                                mm = p->mm;
1100                                mmgrab(mm);
1101                        }
1102                        task_unlock(p);
1103                }
1104        }
1105
1106        task->signal->oom_score_adj = oom_adj;
1107        if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108                task->signal->oom_score_adj_min = (short)oom_adj;
1109        trace_oom_score_adj_update(task);
1110
1111        if (mm) {
1112                struct task_struct *p;
1113
1114                rcu_read_lock();
1115                for_each_process(p) {
1116                        if (same_thread_group(task, p))
1117                                continue;
1118
1119                        /* do not touch kernel threads or the global init */
1120                        if (p->flags & PF_KTHREAD || is_global_init(p))
1121                                continue;
1122
1123                        task_lock(p);
1124                        if (!p->vfork_done && process_shares_mm(p, mm)) {
1125                                p->signal->oom_score_adj = oom_adj;
1126                                if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1127                                        p->signal->oom_score_adj_min = (short)oom_adj;
1128                        }
1129                        task_unlock(p);
1130                }
1131                rcu_read_unlock();
1132                mmdrop(mm);
1133        }
1134err_unlock:
1135        mutex_unlock(&oom_adj_mutex);
1136        put_task_struct(task);
1137        return err;
1138}
1139
1140/*
1141 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1142 * kernels.  The effective policy is defined by oom_score_adj, which has a
1143 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1144 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1145 * Processes that become oom disabled via oom_adj will still be oom disabled
1146 * with this implementation.
1147 *
1148 * oom_adj cannot be removed since existing userspace binaries use it.
1149 */
1150static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1151                             size_t count, loff_t *ppos)
1152{
1153        char buffer[PROC_NUMBUF];
1154        int oom_adj;
1155        int err;
1156
1157        memset(buffer, 0, sizeof(buffer));
1158        if (count > sizeof(buffer) - 1)
1159                count = sizeof(buffer) - 1;
1160        if (copy_from_user(buffer, buf, count)) {
1161                err = -EFAULT;
1162                goto out;
1163        }
1164
1165        err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1166        if (err)
1167                goto out;
1168        if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1169             oom_adj != OOM_DISABLE) {
1170                err = -EINVAL;
1171                goto out;
1172        }
1173
1174        /*
1175         * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1176         * value is always attainable.
1177         */
1178        if (oom_adj == OOM_ADJUST_MAX)
1179                oom_adj = OOM_SCORE_ADJ_MAX;
1180        else
1181                oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1182
1183        err = __set_oom_adj(file, oom_adj, true);
1184out:
1185        return err < 0 ? err : count;
1186}
1187
1188static const struct file_operations proc_oom_adj_operations = {
1189        .read           = oom_adj_read,
1190        .write          = oom_adj_write,
1191        .llseek         = generic_file_llseek,
1192};
1193
1194static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1195                                        size_t count, loff_t *ppos)
1196{
1197        struct task_struct *task = get_proc_task(file_inode(file));
1198        char buffer[PROC_NUMBUF];
1199        short oom_score_adj = OOM_SCORE_ADJ_MIN;
1200        size_t len;
1201
1202        if (!task)
1203                return -ESRCH;
1204        oom_score_adj = task->signal->oom_score_adj;
1205        put_task_struct(task);
1206        len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1207        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1208}
1209
1210static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1211                                        size_t count, loff_t *ppos)
1212{
1213        char buffer[PROC_NUMBUF];
1214        int oom_score_adj;
1215        int err;
1216
1217        memset(buffer, 0, sizeof(buffer));
1218        if (count > sizeof(buffer) - 1)
1219                count = sizeof(buffer) - 1;
1220        if (copy_from_user(buffer, buf, count)) {
1221                err = -EFAULT;
1222                goto out;
1223        }
1224
1225        err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1226        if (err)
1227                goto out;
1228        if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1229                        oom_score_adj > OOM_SCORE_ADJ_MAX) {
1230                err = -EINVAL;
1231                goto out;
1232        }
1233
1234        err = __set_oom_adj(file, oom_score_adj, false);
1235out:
1236        return err < 0 ? err : count;
1237}
1238
1239static const struct file_operations proc_oom_score_adj_operations = {
1240        .read           = oom_score_adj_read,
1241        .write          = oom_score_adj_write,
1242        .llseek         = default_llseek,
1243};
1244
1245#ifdef CONFIG_AUDIT
1246#define TMPBUFLEN 11
1247static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1248                                  size_t count, loff_t *ppos)
1249{
1250        struct inode * inode = file_inode(file);
1251        struct task_struct *task = get_proc_task(inode);
1252        ssize_t length;
1253        char tmpbuf[TMPBUFLEN];
1254
1255        if (!task)
1256                return -ESRCH;
1257        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1258                           from_kuid(file->f_cred->user_ns,
1259                                     audit_get_loginuid(task)));
1260        put_task_struct(task);
1261        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1262}
1263
1264static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1265                                   size_t count, loff_t *ppos)
1266{
1267        struct inode * inode = file_inode(file);
1268        uid_t loginuid;
1269        kuid_t kloginuid;
1270        int rv;
1271
1272        rcu_read_lock();
1273        if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1274                rcu_read_unlock();
1275                return -EPERM;
1276        }
1277        rcu_read_unlock();
1278
1279        if (*ppos != 0) {
1280                /* No partial writes. */
1281                return -EINVAL;
1282        }
1283
1284        rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1285        if (rv < 0)
1286                return rv;
1287
1288        /* is userspace tring to explicitly UNSET the loginuid? */
1289        if (loginuid == AUDIT_UID_UNSET) {
1290                kloginuid = INVALID_UID;
1291        } else {
1292                kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1293                if (!uid_valid(kloginuid))
1294                        return -EINVAL;
1295        }
1296
1297        rv = audit_set_loginuid(kloginuid);
1298        if (rv < 0)
1299                return rv;
1300        return count;
1301}
1302
1303static const struct file_operations proc_loginuid_operations = {
1304        .read           = proc_loginuid_read,
1305        .write          = proc_loginuid_write,
1306        .llseek         = generic_file_llseek,
1307};
1308
1309static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1310                                  size_t count, loff_t *ppos)
1311{
1312        struct inode * inode = file_inode(file);
1313        struct task_struct *task = get_proc_task(inode);
1314        ssize_t length;
1315        char tmpbuf[TMPBUFLEN];
1316
1317        if (!task)
1318                return -ESRCH;
1319        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1320                                audit_get_sessionid(task));
1321        put_task_struct(task);
1322        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1323}
1324
1325static const struct file_operations proc_sessionid_operations = {
1326        .read           = proc_sessionid_read,
1327        .llseek         = generic_file_llseek,
1328};
1329#endif
1330
1331#ifdef CONFIG_FAULT_INJECTION
1332static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1333                                      size_t count, loff_t *ppos)
1334{
1335        struct task_struct *task = get_proc_task(file_inode(file));
1336        char buffer[PROC_NUMBUF];
1337        size_t len;
1338        int make_it_fail;
1339
1340        if (!task)
1341                return -ESRCH;
1342        make_it_fail = task->make_it_fail;
1343        put_task_struct(task);
1344
1345        len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1346
1347        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1348}
1349
1350static ssize_t proc_fault_inject_write(struct file * file,
1351                        const char __user * buf, size_t count, loff_t *ppos)
1352{
1353        struct task_struct *task;
1354        char buffer[PROC_NUMBUF];
1355        int make_it_fail;
1356        int rv;
1357
1358        if (!capable(CAP_SYS_RESOURCE))
1359                return -EPERM;
1360        memset(buffer, 0, sizeof(buffer));
1361        if (count > sizeof(buffer) - 1)
1362                count = sizeof(buffer) - 1;
1363        if (copy_from_user(buffer, buf, count))
1364                return -EFAULT;
1365        rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1366        if (rv < 0)
1367                return rv;
1368        if (make_it_fail < 0 || make_it_fail > 1)
1369                return -EINVAL;
1370
1371        task = get_proc_task(file_inode(file));
1372        if (!task)
1373                return -ESRCH;
1374        task->make_it_fail = make_it_fail;
1375        put_task_struct(task);
1376
1377        return count;
1378}
1379
1380static const struct file_operations proc_fault_inject_operations = {
1381        .read           = proc_fault_inject_read,
1382        .write          = proc_fault_inject_write,
1383        .llseek         = generic_file_llseek,
1384};
1385
1386static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1387                                   size_t count, loff_t *ppos)
1388{
1389        struct task_struct *task;
1390        int err;
1391        unsigned int n;
1392
1393        err = kstrtouint_from_user(buf, count, 0, &n);
1394        if (err)
1395                return err;
1396
1397        task = get_proc_task(file_inode(file));
1398        if (!task)
1399                return -ESRCH;
1400        task->fail_nth = n;
1401        put_task_struct(task);
1402
1403        return count;
1404}
1405
1406static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1407                                  size_t count, loff_t *ppos)
1408{
1409        struct task_struct *task;
1410        char numbuf[PROC_NUMBUF];
1411        ssize_t len;
1412
1413        task = get_proc_task(file_inode(file));
1414        if (!task)
1415                return -ESRCH;
1416        len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1417        put_task_struct(task);
1418        return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1419}
1420
1421static const struct file_operations proc_fail_nth_operations = {
1422        .read           = proc_fail_nth_read,
1423        .write          = proc_fail_nth_write,
1424};
1425#endif
1426
1427
1428#ifdef CONFIG_SCHED_DEBUG
1429/*
1430 * Print out various scheduling related per-task fields:
1431 */
1432static int sched_show(struct seq_file *m, void *v)
1433{
1434        struct inode *inode = m->private;
1435        struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1436        struct task_struct *p;
1437
1438        p = get_proc_task(inode);
1439        if (!p)
1440                return -ESRCH;
1441        proc_sched_show_task(p, ns, m);
1442
1443        put_task_struct(p);
1444
1445        return 0;
1446}
1447
1448static ssize_t
1449sched_write(struct file *file, const char __user *buf,
1450            size_t count, loff_t *offset)
1451{
1452        struct inode *inode = file_inode(file);
1453        struct task_struct *p;
1454
1455        p = get_proc_task(inode);
1456        if (!p)
1457                return -ESRCH;
1458        proc_sched_set_task(p);
1459
1460        put_task_struct(p);
1461
1462        return count;
1463}
1464
1465static int sched_open(struct inode *inode, struct file *filp)
1466{
1467        return single_open(filp, sched_show, inode);
1468}
1469
1470static const struct file_operations proc_pid_sched_operations = {
1471        .open           = sched_open,
1472        .read           = seq_read,
1473        .write          = sched_write,
1474        .llseek         = seq_lseek,
1475        .release        = single_release,
1476};
1477
1478#endif
1479
1480#ifdef CONFIG_SCHED_AUTOGROUP
1481/*
1482 * Print out autogroup related information:
1483 */
1484static int sched_autogroup_show(struct seq_file *m, void *v)
1485{
1486        struct inode *inode = m->private;
1487        struct task_struct *p;
1488
1489        p = get_proc_task(inode);
1490        if (!p)
1491                return -ESRCH;
1492        proc_sched_autogroup_show_task(p, m);
1493
1494        put_task_struct(p);
1495
1496        return 0;
1497}
1498
1499static ssize_t
1500sched_autogroup_write(struct file *file, const char __user *buf,
1501            size_t count, loff_t *offset)
1502{
1503        struct inode *inode = file_inode(file);
1504        struct task_struct *p;
1505        char buffer[PROC_NUMBUF];
1506        int nice;
1507        int err;
1508
1509        memset(buffer, 0, sizeof(buffer));
1510        if (count > sizeof(buffer) - 1)
1511                count = sizeof(buffer) - 1;
1512        if (copy_from_user(buffer, buf, count))
1513                return -EFAULT;
1514
1515        err = kstrtoint(strstrip(buffer), 0, &nice);
1516        if (err < 0)
1517                return err;
1518
1519        p = get_proc_task(inode);
1520        if (!p)
1521                return -ESRCH;
1522
1523        err = proc_sched_autogroup_set_nice(p, nice);
1524        if (err)
1525                count = err;
1526
1527        put_task_struct(p);
1528
1529        return count;
1530}
1531
1532static int sched_autogroup_open(struct inode *inode, struct file *filp)
1533{
1534        int ret;
1535
1536        ret = single_open(filp, sched_autogroup_show, NULL);
1537        if (!ret) {
1538                struct seq_file *m = filp->private_data;
1539
1540                m->private = inode;
1541        }
1542        return ret;
1543}
1544
1545static const struct file_operations proc_pid_sched_autogroup_operations = {
1546        .open           = sched_autogroup_open,
1547        .read           = seq_read,
1548        .write          = sched_autogroup_write,
1549        .llseek         = seq_lseek,
1550        .release        = single_release,
1551};
1552
1553#endif /* CONFIG_SCHED_AUTOGROUP */
1554
1555#ifdef CONFIG_TIME_NS
1556static int timens_offsets_show(struct seq_file *m, void *v)
1557{
1558        struct task_struct *p;
1559
1560        p = get_proc_task(file_inode(m->file));
1561        if (!p)
1562                return -ESRCH;
1563        proc_timens_show_offsets(p, m);
1564
1565        put_task_struct(p);
1566
1567        return 0;
1568}
1569
1570static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1571                                    size_t count, loff_t *ppos)
1572{
1573        struct inode *inode = file_inode(file);
1574        struct proc_timens_offset offsets[2];
1575        char *kbuf = NULL, *pos, *next_line;
1576        struct task_struct *p;
1577        int ret, noffsets;
1578
1579        /* Only allow < page size writes at the beginning of the file */
1580        if ((*ppos != 0) || (count >= PAGE_SIZE))
1581                return -EINVAL;
1582
1583        /* Slurp in the user data */
1584        kbuf = memdup_user_nul(buf, count);
1585        if (IS_ERR(kbuf))
1586                return PTR_ERR(kbuf);
1587
1588        /* Parse the user data */
1589        ret = -EINVAL;
1590        noffsets = 0;
1591        for (pos = kbuf; pos; pos = next_line) {
1592                struct proc_timens_offset *off = &offsets[noffsets];
1593                char clock[10];
1594                int err;
1595
1596                /* Find the end of line and ensure we don't look past it */
1597                next_line = strchr(pos, '\n');
1598                if (next_line) {
1599                        *next_line = '\0';
1600                        next_line++;
1601                        if (*next_line == '\0')
1602                                next_line = NULL;
1603                }
1604
1605                err = sscanf(pos, "%9s %lld %lu", clock,
1606                                &off->val.tv_sec, &off->val.tv_nsec);
1607                if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1608                        goto out;
1609
1610                clock[sizeof(clock) - 1] = 0;
1611                if (strcmp(clock, "monotonic") == 0 ||
1612                    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1613                        off->clockid = CLOCK_MONOTONIC;
1614                else if (strcmp(clock, "boottime") == 0 ||
1615                         strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1616                        off->clockid = CLOCK_BOOTTIME;
1617                else
1618                        goto out;
1619
1620                noffsets++;
1621                if (noffsets == ARRAY_SIZE(offsets)) {
1622                        if (next_line)
1623                                count = next_line - kbuf;
1624                        break;
1625                }
1626        }
1627
1628        ret = -ESRCH;
1629        p = get_proc_task(inode);
1630        if (!p)
1631                goto out;
1632        ret = proc_timens_set_offset(file, p, offsets, noffsets);
1633        put_task_struct(p);
1634        if (ret)
1635                goto out;
1636
1637        ret = count;
1638out:
1639        kfree(kbuf);
1640        return ret;
1641}
1642
1643static int timens_offsets_open(struct inode *inode, struct file *filp)
1644{
1645        return single_open(filp, timens_offsets_show, inode);
1646}
1647
1648static const struct file_operations proc_timens_offsets_operations = {
1649        .open           = timens_offsets_open,
1650        .read           = seq_read,
1651        .write          = timens_offsets_write,
1652        .llseek         = seq_lseek,
1653        .release        = single_release,
1654};
1655#endif /* CONFIG_TIME_NS */
1656
1657static ssize_t comm_write(struct file *file, const char __user *buf,
1658                                size_t count, loff_t *offset)
1659{
1660        struct inode *inode = file_inode(file);
1661        struct task_struct *p;
1662        char buffer[TASK_COMM_LEN];
1663        const size_t maxlen = sizeof(buffer) - 1;
1664
1665        memset(buffer, 0, sizeof(buffer));
1666        if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1667                return -EFAULT;
1668
1669        p = get_proc_task(inode);
1670        if (!p)
1671                return -ESRCH;
1672
1673        if (same_thread_group(current, p))
1674                set_task_comm(p, buffer);
1675        else
1676                count = -EINVAL;
1677
1678        put_task_struct(p);
1679
1680        return count;
1681}
1682
1683static int comm_show(struct seq_file *m, void *v)
1684{
1685        struct inode *inode = m->private;
1686        struct task_struct *p;
1687
1688        p = get_proc_task(inode);
1689        if (!p)
1690                return -ESRCH;
1691
1692        proc_task_name(m, p, false);
1693        seq_putc(m, '\n');
1694
1695        put_task_struct(p);
1696
1697        return 0;
1698}
1699
1700static int comm_open(struct inode *inode, struct file *filp)
1701{
1702        return single_open(filp, comm_show, inode);
1703}
1704
1705static const struct file_operations proc_pid_set_comm_operations = {
1706        .open           = comm_open,
1707        .read           = seq_read,
1708        .write          = comm_write,
1709        .llseek         = seq_lseek,
1710        .release        = single_release,
1711};
1712
1713static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1714{
1715        struct task_struct *task;
1716        struct file *exe_file;
1717
1718        task = get_proc_task(d_inode(dentry));
1719        if (!task)
1720                return -ENOENT;
1721        exe_file = get_task_exe_file(task);
1722        put_task_struct(task);
1723        if (exe_file) {
1724                *exe_path = exe_file->f_path;
1725                path_get(&exe_file->f_path);
1726                fput(exe_file);
1727                return 0;
1728        } else
1729                return -ENOENT;
1730}
1731
1732static const char *proc_pid_get_link(struct dentry *dentry,
1733                                     struct inode *inode,
1734                                     struct delayed_call *done)
1735{
1736        struct path path;
1737        int error = -EACCES;
1738
1739        if (!dentry)
1740                return ERR_PTR(-ECHILD);
1741
1742        /* Are we allowed to snoop on the tasks file descriptors? */
1743        if (!proc_fd_access_allowed(inode))
1744                goto out;
1745
1746        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1747        if (error)
1748                goto out;
1749
1750        error = nd_jump_link(&path);
1751out:
1752        return ERR_PTR(error);
1753}
1754
1755static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1756{
1757        char *tmp = (char *)__get_free_page(GFP_KERNEL);
1758        char *pathname;
1759        int len;
1760
1761        if (!tmp)
1762                return -ENOMEM;
1763
1764        pathname = d_path(path, tmp, PAGE_SIZE);
1765        len = PTR_ERR(pathname);
1766        if (IS_ERR(pathname))
1767                goto out;
1768        len = tmp + PAGE_SIZE - 1 - pathname;
1769
1770        if (len > buflen)
1771                len = buflen;
1772        if (copy_to_user(buffer, pathname, len))
1773                len = -EFAULT;
1774 out:
1775        free_page((unsigned long)tmp);
1776        return len;
1777}
1778
1779static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1780{
1781        int error = -EACCES;
1782        struct inode *inode = d_inode(dentry);
1783        struct path path;
1784
1785        /* Are we allowed to snoop on the tasks file descriptors? */
1786        if (!proc_fd_access_allowed(inode))
1787                goto out;
1788
1789        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1790        if (error)
1791                goto out;
1792
1793        error = do_proc_readlink(&path, buffer, buflen);
1794        path_put(&path);
1795out:
1796        return error;
1797}
1798
1799const struct inode_operations proc_pid_link_inode_operations = {
1800        .readlink       = proc_pid_readlink,
1801        .get_link       = proc_pid_get_link,
1802        .setattr        = proc_setattr,
1803};
1804
1805
1806/* building an inode */
1807
1808void task_dump_owner(struct task_struct *task, umode_t mode,
1809                     kuid_t *ruid, kgid_t *rgid)
1810{
1811        /* Depending on the state of dumpable compute who should own a
1812         * proc file for a task.
1813         */
1814        const struct cred *cred;
1815        kuid_t uid;
1816        kgid_t gid;
1817
1818        if (unlikely(task->flags & PF_KTHREAD)) {
1819                *ruid = GLOBAL_ROOT_UID;
1820                *rgid = GLOBAL_ROOT_GID;
1821                return;
1822        }
1823
1824        /* Default to the tasks effective ownership */
1825        rcu_read_lock();
1826        cred = __task_cred(task);
1827        uid = cred->euid;
1828        gid = cred->egid;
1829        rcu_read_unlock();
1830
1831        /*
1832         * Before the /proc/pid/status file was created the only way to read
1833         * the effective uid of a /process was to stat /proc/pid.  Reading
1834         * /proc/pid/status is slow enough that procps and other packages
1835         * kept stating /proc/pid.  To keep the rules in /proc simple I have
1836         * made this apply to all per process world readable and executable
1837         * directories.
1838         */
1839        if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1840                struct mm_struct *mm;
1841                task_lock(task);
1842                mm = task->mm;
1843                /* Make non-dumpable tasks owned by some root */
1844                if (mm) {
1845                        if (get_dumpable(mm) != SUID_DUMP_USER) {
1846                                struct user_namespace *user_ns = mm->user_ns;
1847
1848                                uid = make_kuid(user_ns, 0);
1849                                if (!uid_valid(uid))
1850                                        uid = GLOBAL_ROOT_UID;
1851
1852                                gid = make_kgid(user_ns, 0);
1853                                if (!gid_valid(gid))
1854                                        gid = GLOBAL_ROOT_GID;
1855                        }
1856                } else {
1857                        uid = GLOBAL_ROOT_UID;
1858                        gid = GLOBAL_ROOT_GID;
1859                }
1860                task_unlock(task);
1861        }
1862        *ruid = uid;
1863        *rgid = gid;
1864}
1865
1866void proc_pid_evict_inode(struct proc_inode *ei)
1867{
1868        struct pid *pid = ei->pid;
1869
1870        if (S_ISDIR(ei->vfs_inode.i_mode)) {
1871                spin_lock(&pid->lock);
1872                hlist_del_init_rcu(&ei->sibling_inodes);
1873                spin_unlock(&pid->lock);
1874        }
1875
1876        put_pid(pid);
1877}
1878
1879struct inode *proc_pid_make_inode(struct super_block * sb,
1880                                  struct task_struct *task, umode_t mode)
1881{
1882        struct inode * inode;
1883        struct proc_inode *ei;
1884        struct pid *pid;
1885
1886        /* We need a new inode */
1887
1888        inode = new_inode(sb);
1889        if (!inode)
1890                goto out;
1891
1892        /* Common stuff */
1893        ei = PROC_I(inode);
1894        inode->i_mode = mode;
1895        inode->i_ino = get_next_ino();
1896        inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1897        inode->i_op = &proc_def_inode_operations;
1898
1899        /*
1900         * grab the reference to task.
1901         */
1902        pid = get_task_pid(task, PIDTYPE_PID);
1903        if (!pid)
1904                goto out_unlock;
1905
1906        /* Let the pid remember us for quick removal */
1907        ei->pid = pid;
1908        if (S_ISDIR(mode)) {
1909                spin_lock(&pid->lock);
1910                hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1911                spin_unlock(&pid->lock);
1912        }
1913
1914        task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1915        security_task_to_inode(task, inode);
1916
1917out:
1918        return inode;
1919
1920out_unlock:
1921        iput(inode);
1922        return NULL;
1923}
1924
1925int pid_getattr(const struct path *path, struct kstat *stat,
1926                u32 request_mask, unsigned int query_flags)
1927{
1928        struct inode *inode = d_inode(path->dentry);
1929        struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1930        struct task_struct *task;
1931
1932        generic_fillattr(inode, stat);
1933
1934        stat->uid = GLOBAL_ROOT_UID;
1935        stat->gid = GLOBAL_ROOT_GID;
1936        rcu_read_lock();
1937        task = pid_task(proc_pid(inode), PIDTYPE_PID);
1938        if (task) {
1939                if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1940                        rcu_read_unlock();
1941                        /*
1942                         * This doesn't prevent learning whether PID exists,
1943                         * it only makes getattr() consistent with readdir().
1944                         */
1945                        return -ENOENT;
1946                }
1947                task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1948        }
1949        rcu_read_unlock();
1950        return 0;
1951}
1952
1953/* dentry stuff */
1954
1955/*
1956 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1957 */
1958void pid_update_inode(struct task_struct *task, struct inode *inode)
1959{
1960        task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1961
1962        inode->i_mode &= ~(S_ISUID | S_ISGID);
1963        security_task_to_inode(task, inode);
1964}
1965
1966/*
1967 * Rewrite the inode's ownerships here because the owning task may have
1968 * performed a setuid(), etc.
1969 *
1970 */
1971static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1972{
1973        struct inode *inode;
1974        struct task_struct *task;
1975
1976        if (flags & LOOKUP_RCU)
1977                return -ECHILD;
1978
1979        inode = d_inode(dentry);
1980        task = get_proc_task(inode);
1981
1982        if (task) {
1983                pid_update_inode(task, inode);
1984                put_task_struct(task);
1985                return 1;
1986        }
1987        return 0;
1988}
1989
1990static inline bool proc_inode_is_dead(struct inode *inode)
1991{
1992        return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1993}
1994
1995int pid_delete_dentry(const struct dentry *dentry)
1996{
1997        /* Is the task we represent dead?
1998         * If so, then don't put the dentry on the lru list,
1999         * kill it immediately.
2000         */
2001        return proc_inode_is_dead(d_inode(dentry));
2002}
2003
2004const struct dentry_operations pid_dentry_operations =
2005{
2006        .d_revalidate   = pid_revalidate,
2007        .d_delete       = pid_delete_dentry,
2008};
2009
2010/* Lookups */
2011
2012/*
2013 * Fill a directory entry.
2014 *
2015 * If possible create the dcache entry and derive our inode number and
2016 * file type from dcache entry.
2017 *
2018 * Since all of the proc inode numbers are dynamically generated, the inode
2019 * numbers do not exist until the inode is cache.  This means creating the
2020 * the dcache entry in readdir is necessary to keep the inode numbers
2021 * reported by readdir in sync with the inode numbers reported
2022 * by stat.
2023 */
2024bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2025        const char *name, unsigned int len,
2026        instantiate_t instantiate, struct task_struct *task, const void *ptr)
2027{
2028        struct dentry *child, *dir = file->f_path.dentry;
2029        struct qstr qname = QSTR_INIT(name, len);
2030        struct inode *inode;
2031        unsigned type = DT_UNKNOWN;
2032        ino_t ino = 1;
2033
2034        child = d_hash_and_lookup(dir, &qname);
2035        if (!child) {
2036                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2037                child = d_alloc_parallel(dir, &qname, &wq);
2038                if (IS_ERR(child))
2039                        goto end_instantiate;
2040                if (d_in_lookup(child)) {
2041                        struct dentry *res;
2042                        res = instantiate(child, task, ptr);
2043                        d_lookup_done(child);
2044                        if (unlikely(res)) {
2045                                dput(child);
2046                                child = res;
2047                                if (IS_ERR(child))
2048                                        goto end_instantiate;
2049                        }
2050                }
2051        }
2052        inode = d_inode(child);
2053        ino = inode->i_ino;
2054        type = inode->i_mode >> 12;
2055        dput(child);
2056end_instantiate:
2057        return dir_emit(ctx, name, len, ino, type);
2058}
2059
2060/*
2061 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2062 * which represent vma start and end addresses.
2063 */
2064static int dname_to_vma_addr(struct dentry *dentry,
2065                             unsigned long *start, unsigned long *end)
2066{
2067        const char *str = dentry->d_name.name;
2068        unsigned long long sval, eval;
2069        unsigned int len;
2070
2071        if (str[0] == '0' && str[1] != '-')
2072                return -EINVAL;
2073        len = _parse_integer(str, 16, &sval);
2074        if (len & KSTRTOX_OVERFLOW)
2075                return -EINVAL;
2076        if (sval != (unsigned long)sval)
2077                return -EINVAL;
2078        str += len;
2079
2080        if (*str != '-')
2081                return -EINVAL;
2082        str++;
2083
2084        if (str[0] == '0' && str[1])
2085                return -EINVAL;
2086        len = _parse_integer(str, 16, &eval);
2087        if (len & KSTRTOX_OVERFLOW)
2088                return -EINVAL;
2089        if (eval != (unsigned long)eval)
2090                return -EINVAL;
2091        str += len;
2092
2093        if (*str != '\0')
2094                return -EINVAL;
2095
2096        *start = sval;
2097        *end = eval;
2098
2099        return 0;
2100}
2101
2102static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2103{
2104        unsigned long vm_start, vm_end;
2105        bool exact_vma_exists = false;
2106        struct mm_struct *mm = NULL;
2107        struct task_struct *task;
2108        struct inode *inode;
2109        int status = 0;
2110
2111        if (flags & LOOKUP_RCU)
2112                return -ECHILD;
2113
2114        inode = d_inode(dentry);
2115        task = get_proc_task(inode);
2116        if (!task)
2117                goto out_notask;
2118
2119        mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2120        if (IS_ERR_OR_NULL(mm))
2121                goto out;
2122
2123        if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2124                status = mmap_read_lock_killable(mm);
2125                if (!status) {
2126                        exact_vma_exists = !!find_exact_vma(mm, vm_start,
2127                                                            vm_end);
2128                        mmap_read_unlock(mm);
2129                }
2130        }
2131
2132        mmput(mm);
2133
2134        if (exact_vma_exists) {
2135                task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2136
2137                security_task_to_inode(task, inode);
2138                status = 1;
2139        }
2140
2141out:
2142        put_task_struct(task);
2143
2144out_notask:
2145        return status;
2146}
2147
2148static const struct dentry_operations tid_map_files_dentry_operations = {
2149        .d_revalidate   = map_files_d_revalidate,
2150        .d_delete       = pid_delete_dentry,
2151};
2152
2153static int map_files_get_link(struct dentry *dentry, struct path *path)
2154{
2155        unsigned long vm_start, vm_end;
2156        struct vm_area_struct *vma;
2157        struct task_struct *task;
2158        struct mm_struct *mm;
2159        int rc;
2160
2161        rc = -ENOENT;
2162        task = get_proc_task(d_inode(dentry));
2163        if (!task)
2164                goto out;
2165
2166        mm = get_task_mm(task);
2167        put_task_struct(task);
2168        if (!mm)
2169                goto out;
2170
2171        rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2172        if (rc)
2173                goto out_mmput;
2174
2175        rc = mmap_read_lock_killable(mm);
2176        if (rc)
2177                goto out_mmput;
2178
2179        rc = -ENOENT;
2180        vma = find_exact_vma(mm, vm_start, vm_end);
2181        if (vma && vma->vm_file) {
2182                *path = vma->vm_file->f_path;
2183                path_get(path);
2184                rc = 0;
2185        }
2186        mmap_read_unlock(mm);
2187
2188out_mmput:
2189        mmput(mm);
2190out:
2191        return rc;
2192}
2193
2194struct map_files_info {
2195        unsigned long   start;
2196        unsigned long   end;
2197        fmode_t         mode;
2198};
2199
2200/*
2201 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2202 * to concerns about how the symlinks may be used to bypass permissions on
2203 * ancestor directories in the path to the file in question.
2204 */
2205static const char *
2206proc_map_files_get_link(struct dentry *dentry,
2207                        struct inode *inode,
2208                        struct delayed_call *done)
2209{
2210        if (!checkpoint_restore_ns_capable(&init_user_ns))
2211                return ERR_PTR(-EPERM);
2212
2213        return proc_pid_get_link(dentry, inode, done);
2214}
2215
2216/*
2217 * Identical to proc_pid_link_inode_operations except for get_link()
2218 */
2219static const struct inode_operations proc_map_files_link_inode_operations = {
2220        .readlink       = proc_pid_readlink,
2221        .get_link       = proc_map_files_get_link,
2222        .setattr        = proc_setattr,
2223};
2224
2225static struct dentry *
2226proc_map_files_instantiate(struct dentry *dentry,
2227                           struct task_struct *task, const void *ptr)
2228{
2229        fmode_t mode = (fmode_t)(unsigned long)ptr;
2230        struct proc_inode *ei;
2231        struct inode *inode;
2232
2233        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2234                                    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2235                                    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2236        if (!inode)
2237                return ERR_PTR(-ENOENT);
2238
2239        ei = PROC_I(inode);
2240        ei->op.proc_get_link = map_files_get_link;
2241
2242        inode->i_op = &proc_map_files_link_inode_operations;
2243        inode->i_size = 64;
2244
2245        d_set_d_op(dentry, &tid_map_files_dentry_operations);
2246        return d_splice_alias(inode, dentry);
2247}
2248
2249static struct dentry *proc_map_files_lookup(struct inode *dir,
2250                struct dentry *dentry, unsigned int flags)
2251{
2252        unsigned long vm_start, vm_end;
2253        struct vm_area_struct *vma;
2254        struct task_struct *task;
2255        struct dentry *result;
2256        struct mm_struct *mm;
2257
2258        result = ERR_PTR(-ENOENT);
2259        task = get_proc_task(dir);
2260        if (!task)
2261                goto out;
2262
2263        result = ERR_PTR(-EACCES);
2264        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2265                goto out_put_task;
2266
2267        result = ERR_PTR(-ENOENT);
2268        if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2269                goto out_put_task;
2270
2271        mm = get_task_mm(task);
2272        if (!mm)
2273                goto out_put_task;
2274
2275        result = ERR_PTR(-EINTR);
2276        if (mmap_read_lock_killable(mm))
2277                goto out_put_mm;
2278
2279        result = ERR_PTR(-ENOENT);
2280        vma = find_exact_vma(mm, vm_start, vm_end);
2281        if (!vma)
2282                goto out_no_vma;
2283
2284        if (vma->vm_file)
2285                result = proc_map_files_instantiate(dentry, task,
2286                                (void *)(unsigned long)vma->vm_file->f_mode);
2287
2288out_no_vma:
2289        mmap_read_unlock(mm);
2290out_put_mm:
2291        mmput(mm);
2292out_put_task:
2293        put_task_struct(task);
2294out:
2295        return result;
2296}
2297
2298static const struct inode_operations proc_map_files_inode_operations = {
2299        .lookup         = proc_map_files_lookup,
2300        .permission     = proc_fd_permission,
2301        .setattr        = proc_setattr,
2302};
2303
2304static int
2305proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2306{
2307        struct vm_area_struct *vma;
2308        struct task_struct *task;
2309        struct mm_struct *mm;
2310        unsigned long nr_files, pos, i;
2311        GENRADIX(struct map_files_info) fa;
2312        struct map_files_info *p;
2313        int ret;
2314
2315        genradix_init(&fa);
2316
2317        ret = -ENOENT;
2318        task = get_proc_task(file_inode(file));
2319        if (!task)
2320                goto out;
2321
2322        ret = -EACCES;
2323        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2324                goto out_put_task;
2325
2326        ret = 0;
2327        if (!dir_emit_dots(file, ctx))
2328                goto out_put_task;
2329
2330        mm = get_task_mm(task);
2331        if (!mm)
2332                goto out_put_task;
2333
2334        ret = mmap_read_lock_killable(mm);
2335        if (ret) {
2336                mmput(mm);
2337                goto out_put_task;
2338        }
2339
2340        nr_files = 0;
2341
2342        /*
2343         * We need two passes here:
2344         *
2345         *  1) Collect vmas of mapped files with mmap_lock taken
2346         *  2) Release mmap_lock and instantiate entries
2347         *
2348         * otherwise we get lockdep complained, since filldir()
2349         * routine might require mmap_lock taken in might_fault().
2350         */
2351
2352        for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2353                if (!vma->vm_file)
2354                        continue;
2355                if (++pos <= ctx->pos)
2356                        continue;
2357
2358                p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2359                if (!p) {
2360                        ret = -ENOMEM;
2361                        mmap_read_unlock(mm);
2362                        mmput(mm);
2363                        goto out_put_task;
2364                }
2365
2366                p->start = vma->vm_start;
2367                p->end = vma->vm_end;
2368                p->mode = vma->vm_file->f_mode;
2369        }
2370        mmap_read_unlock(mm);
2371        mmput(mm);
2372
2373        for (i = 0; i < nr_files; i++) {
2374                char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2375                unsigned int len;
2376
2377                p = genradix_ptr(&fa, i);
2378                len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2379                if (!proc_fill_cache(file, ctx,
2380                                      buf, len,
2381                                      proc_map_files_instantiate,
2382                                      task,
2383                                      (void *)(unsigned long)p->mode))
2384                        break;
2385                ctx->pos++;
2386        }
2387
2388out_put_task:
2389        put_task_struct(task);
2390out:
2391        genradix_free(&fa);
2392        return ret;
2393}
2394
2395static const struct file_operations proc_map_files_operations = {
2396        .read           = generic_read_dir,
2397        .iterate_shared = proc_map_files_readdir,
2398        .llseek         = generic_file_llseek,
2399};
2400
2401#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2402struct timers_private {
2403        struct pid *pid;
2404        struct task_struct *task;
2405        struct sighand_struct *sighand;
2406        struct pid_namespace *ns;
2407        unsigned long flags;
2408};
2409
2410static void *timers_start(struct seq_file *m, loff_t *pos)
2411{
2412        struct timers_private *tp = m->private;
2413
2414        tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2415        if (!tp->task)
2416                return ERR_PTR(-ESRCH);
2417
2418        tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2419        if (!tp->sighand)
2420                return ERR_PTR(-ESRCH);
2421
2422        return seq_list_start(&tp->task->signal->posix_timers, *pos);
2423}
2424
2425static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2426{
2427        struct timers_private *tp = m->private;
2428        return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2429}
2430
2431static void timers_stop(struct seq_file *m, void *v)
2432{
2433        struct timers_private *tp = m->private;
2434
2435        if (tp->sighand) {
2436                unlock_task_sighand(tp->task, &tp->flags);
2437                tp->sighand = NULL;
2438        }
2439
2440        if (tp->task) {
2441                put_task_struct(tp->task);
2442                tp->task = NULL;
2443        }
2444}
2445
2446static int show_timer(struct seq_file *m, void *v)
2447{
2448        struct k_itimer *timer;
2449        struct timers_private *tp = m->private;
2450        int notify;
2451        static const char * const nstr[] = {
2452                [SIGEV_SIGNAL] = "signal",
2453                [SIGEV_NONE] = "none",
2454                [SIGEV_THREAD] = "thread",
2455        };
2456
2457        timer = list_entry((struct list_head *)v, struct k_itimer, list);
2458        notify = timer->it_sigev_notify;
2459
2460        seq_printf(m, "ID: %d\n", timer->it_id);
2461        seq_printf(m, "signal: %d/%px\n",
2462                   timer->sigq->info.si_signo,
2463                   timer->sigq->info.si_value.sival_ptr);
2464        seq_printf(m, "notify: %s/%s.%d\n",
2465                   nstr[notify & ~SIGEV_THREAD_ID],
2466                   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2467                   pid_nr_ns(timer->it_pid, tp->ns));
2468        seq_printf(m, "ClockID: %d\n", timer->it_clock);
2469
2470        return 0;
2471}
2472
2473static const struct seq_operations proc_timers_seq_ops = {
2474        .start  = timers_start,
2475        .next   = timers_next,
2476        .stop   = timers_stop,
2477        .show   = show_timer,
2478};
2479
2480static int proc_timers_open(struct inode *inode, struct file *file)
2481{
2482        struct timers_private *tp;
2483
2484        tp = __seq_open_private(file, &proc_timers_seq_ops,
2485                        sizeof(struct timers_private));
2486        if (!tp)
2487                return -ENOMEM;
2488
2489        tp->pid = proc_pid(inode);
2490        tp->ns = proc_pid_ns(inode->i_sb);
2491        return 0;
2492}
2493
2494static const struct file_operations proc_timers_operations = {
2495        .open           = proc_timers_open,
2496        .read           = seq_read,
2497        .llseek         = seq_lseek,
2498        .release        = seq_release_private,
2499};
2500#endif
2501
2502static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2503                                        size_t count, loff_t *offset)
2504{
2505        struct inode *inode = file_inode(file);
2506        struct task_struct *p;
2507        u64 slack_ns;
2508        int err;
2509
2510        err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2511        if (err < 0)
2512                return err;
2513
2514        p = get_proc_task(inode);
2515        if (!p)
2516                return -ESRCH;
2517
2518        if (p != current) {
2519                rcu_read_lock();
2520                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2521                        rcu_read_unlock();
2522                        count = -EPERM;
2523                        goto out;
2524                }
2525                rcu_read_unlock();
2526
2527                err = security_task_setscheduler(p);
2528                if (err) {
2529                        count = err;
2530                        goto out;
2531                }
2532        }
2533
2534        task_lock(p);
2535        if (slack_ns == 0)
2536                p->timer_slack_ns = p->default_timer_slack_ns;
2537        else
2538                p->timer_slack_ns = slack_ns;
2539        task_unlock(p);
2540
2541out:
2542        put_task_struct(p);
2543
2544        return count;
2545}
2546
2547static int timerslack_ns_show(struct seq_file *m, void *v)
2548{
2549        struct inode *inode = m->private;
2550        struct task_struct *p;
2551        int err = 0;
2552
2553        p = get_proc_task(inode);
2554        if (!p)
2555                return -ESRCH;
2556
2557        if (p != current) {
2558                rcu_read_lock();
2559                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2560                        rcu_read_unlock();
2561                        err = -EPERM;
2562                        goto out;
2563                }
2564                rcu_read_unlock();
2565
2566                err = security_task_getscheduler(p);
2567                if (err)
2568                        goto out;
2569        }
2570
2571        task_lock(p);
2572        seq_printf(m, "%llu\n", p->timer_slack_ns);
2573        task_unlock(p);
2574
2575out:
2576        put_task_struct(p);
2577
2578        return err;
2579}
2580
2581static int timerslack_ns_open(struct inode *inode, struct file *filp)
2582{
2583        return single_open(filp, timerslack_ns_show, inode);
2584}
2585
2586static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2587        .open           = timerslack_ns_open,
2588        .read           = seq_read,
2589        .write          = timerslack_ns_write,
2590        .llseek         = seq_lseek,
2591        .release        = single_release,
2592};
2593
2594static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2595        struct task_struct *task, const void *ptr)
2596{
2597        const struct pid_entry *p = ptr;
2598        struct inode *inode;
2599        struct proc_inode *ei;
2600
2601        inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2602        if (!inode)
2603                return ERR_PTR(-ENOENT);
2604
2605        ei = PROC_I(inode);
2606        if (S_ISDIR(inode->i_mode))
2607                set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2608        if (p->iop)
2609                inode->i_op = p->iop;
2610        if (p->fop)
2611                inode->i_fop = p->fop;
2612        ei->op = p->op;
2613        pid_update_inode(task, inode);
2614        d_set_d_op(dentry, &pid_dentry_operations);
2615        return d_splice_alias(inode, dentry);
2616}
2617
2618static struct dentry *proc_pident_lookup(struct inode *dir, 
2619                                         struct dentry *dentry,
2620                                         const struct pid_entry *p,
2621                                         const struct pid_entry *end)
2622{
2623        struct task_struct *task = get_proc_task(dir);
2624        struct dentry *res = ERR_PTR(-ENOENT);
2625
2626        if (!task)
2627                goto out_no_task;
2628
2629        /*
2630         * Yes, it does not scale. And it should not. Don't add
2631         * new entries into /proc/<tgid>/ without very good reasons.
2632         */
2633        for (; p < end; p++) {
2634                if (p->len != dentry->d_name.len)
2635                        continue;
2636                if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2637                        res = proc_pident_instantiate(dentry, task, p);
2638                        break;
2639                }
2640        }
2641        put_task_struct(task);
2642out_no_task:
2643        return res;
2644}
2645
2646static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2647                const struct pid_entry *ents, unsigned int nents)
2648{
2649        struct task_struct *task = get_proc_task(file_inode(file));
2650        const struct pid_entry *p;
2651
2652        if (!task)
2653                return -ENOENT;
2654
2655        if (!dir_emit_dots(file, ctx))
2656                goto out;
2657
2658        if (ctx->pos >= nents + 2)
2659                goto out;
2660
2661        for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2662                if (!proc_fill_cache(file, ctx, p->name, p->len,
2663                                proc_pident_instantiate, task, p))
2664                        break;
2665                ctx->pos++;
2666        }
2667out:
2668        put_task_struct(task);
2669        return 0;
2670}
2671
2672#ifdef CONFIG_SECURITY
2673static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2674                                  size_t count, loff_t *ppos)
2675{
2676        struct inode * inode = file_inode(file);
2677        char *p = NULL;
2678        ssize_t length;
2679        struct task_struct *task = get_proc_task(inode);
2680
2681        if (!task)
2682                return -ESRCH;
2683
2684        length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2685                                      (char*)file->f_path.dentry->d_name.name,
2686                                      &p);
2687        put_task_struct(task);
2688        if (length > 0)
2689                length = simple_read_from_buffer(buf, count, ppos, p, length);
2690        kfree(p);
2691        return length;
2692}
2693
2694static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2695                                   size_t count, loff_t *ppos)
2696{
2697        struct inode * inode = file_inode(file);
2698        struct task_struct *task;
2699        void *page;
2700        int rv;
2701
2702        rcu_read_lock();
2703        task = pid_task(proc_pid(inode), PIDTYPE_PID);
2704        if (!task) {
2705                rcu_read_unlock();
2706                return -ESRCH;
2707        }
2708        /* A task may only write its own attributes. */
2709        if (current != task) {
2710                rcu_read_unlock();
2711                return -EACCES;
2712        }
2713        /* Prevent changes to overridden credentials. */
2714        if (current_cred() != current_real_cred()) {
2715                rcu_read_unlock();
2716                return -EBUSY;
2717        }
2718        rcu_read_unlock();
2719
2720        if (count > PAGE_SIZE)
2721                count = PAGE_SIZE;
2722
2723        /* No partial writes. */
2724        if (*ppos != 0)
2725                return -EINVAL;
2726
2727        page = memdup_user(buf, count);
2728        if (IS_ERR(page)) {
2729                rv = PTR_ERR(page);
2730                goto out;
2731        }
2732
2733        /* Guard against adverse ptrace interaction */
2734        rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2735        if (rv < 0)
2736                goto out_free;
2737
2738        rv = security_setprocattr(PROC_I(inode)->op.lsm,
2739                                  file->f_path.dentry->d_name.name, page,
2740                                  count);
2741        mutex_unlock(&current->signal->cred_guard_mutex);
2742out_free:
2743        kfree(page);
2744out:
2745        return rv;
2746}
2747
2748static const struct file_operations proc_pid_attr_operations = {
2749        .read           = proc_pid_attr_read,
2750        .write          = proc_pid_attr_write,
2751        .llseek         = generic_file_llseek,
2752};
2753
2754#define LSM_DIR_OPS(LSM) \
2755static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2756                             struct dir_context *ctx) \
2757{ \
2758        return proc_pident_readdir(filp, ctx, \
2759                                   LSM##_attr_dir_stuff, \
2760                                   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2761} \
2762\
2763static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2764        .read           = generic_read_dir, \
2765        .iterate        = proc_##LSM##_attr_dir_iterate, \
2766        .llseek         = default_llseek, \
2767}; \
2768\
2769static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2770                                struct dentry *dentry, unsigned int flags) \
2771{ \
2772        return proc_pident_lookup(dir, dentry, \
2773                                  LSM##_attr_dir_stuff, \
2774                                  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2775} \
2776\
2777static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2778        .lookup         = proc_##LSM##_attr_dir_lookup, \
2779        .getattr        = pid_getattr, \
2780        .setattr        = proc_setattr, \
2781}
2782
2783#ifdef CONFIG_SECURITY_SMACK
2784static const struct pid_entry smack_attr_dir_stuff[] = {
2785        ATTR("smack", "current",        0666),
2786};
2787LSM_DIR_OPS(smack);
2788#endif
2789
2790#ifdef CONFIG_SECURITY_APPARMOR
2791static const struct pid_entry apparmor_attr_dir_stuff[] = {
2792        ATTR("apparmor", "current",     0666),
2793        ATTR("apparmor", "prev",        0444),
2794        ATTR("apparmor", "exec",        0666),
2795};
2796LSM_DIR_OPS(apparmor);
2797#endif
2798
2799static const struct pid_entry attr_dir_stuff[] = {
2800        ATTR(NULL, "current",           0666),
2801        ATTR(NULL, "prev",              0444),
2802        ATTR(NULL, "exec",              0666),
2803        ATTR(NULL, "fscreate",          0666),
2804        ATTR(NULL, "keycreate",         0666),
2805        ATTR(NULL, "sockcreate",        0666),
2806#ifdef CONFIG_SECURITY_SMACK
2807        DIR("smack",                    0555,
2808            proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2809#endif
2810#ifdef CONFIG_SECURITY_APPARMOR
2811        DIR("apparmor",                 0555,
2812            proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2813#endif
2814};
2815
2816static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2817{
2818        return proc_pident_readdir(file, ctx, 
2819                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2820}
2821
2822static const struct file_operations proc_attr_dir_operations = {
2823        .read           = generic_read_dir,
2824        .iterate_shared = proc_attr_dir_readdir,
2825        .llseek         = generic_file_llseek,
2826};
2827
2828static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2829                                struct dentry *dentry, unsigned int flags)
2830{
2831        return proc_pident_lookup(dir, dentry,
2832                                  attr_dir_stuff,
2833                                  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2834}
2835
2836static const struct inode_operations proc_attr_dir_inode_operations = {
2837        .lookup         = proc_attr_dir_lookup,
2838        .getattr        = pid_getattr,
2839        .setattr        = proc_setattr,
2840};
2841
2842#endif
2843
2844#ifdef CONFIG_ELF_CORE
2845static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2846                                         size_t count, loff_t *ppos)
2847{
2848        struct task_struct *task = get_proc_task(file_inode(file));
2849        struct mm_struct *mm;
2850        char buffer[PROC_NUMBUF];
2851        size_t len;
2852        int ret;
2853
2854        if (!task)
2855                return -ESRCH;
2856
2857        ret = 0;
2858        mm = get_task_mm(task);
2859        if (mm) {
2860                len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2861                               ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2862                                MMF_DUMP_FILTER_SHIFT));
2863                mmput(mm);
2864                ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2865        }
2866
2867        put_task_struct(task);
2868
2869        return ret;
2870}
2871
2872static ssize_t proc_coredump_filter_write(struct file *file,
2873                                          const char __user *buf,
2874                                          size_t count,
2875                                          loff_t *ppos)
2876{
2877        struct task_struct *task;
2878        struct mm_struct *mm;
2879        unsigned int val;
2880        int ret;
2881        int i;
2882        unsigned long mask;
2883
2884        ret = kstrtouint_from_user(buf, count, 0, &val);
2885        if (ret < 0)
2886                return ret;
2887
2888        ret = -ESRCH;
2889        task = get_proc_task(file_inode(file));
2890        if (!task)
2891                goto out_no_task;
2892
2893        mm = get_task_mm(task);
2894        if (!mm)
2895                goto out_no_mm;
2896        ret = 0;
2897
2898        for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2899                if (val & mask)
2900                        set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2901                else
2902                        clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2903        }
2904
2905        mmput(mm);
2906 out_no_mm:
2907        put_task_struct(task);
2908 out_no_task:
2909        if (ret < 0)
2910                return ret;
2911        return count;
2912}
2913
2914static const struct file_operations proc_coredump_filter_operations = {
2915        .read           = proc_coredump_filter_read,
2916        .write          = proc_coredump_filter_write,
2917        .llseek         = generic_file_llseek,
2918};
2919#endif
2920
2921#ifdef CONFIG_TASK_IO_ACCOUNTING
2922static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2923{
2924        struct task_io_accounting acct = task->ioac;
2925        unsigned long flags;
2926        int result;
2927
2928        result = mutex_lock_killable(&task->signal->exec_update_mutex);
2929        if (result)
2930                return result;
2931
2932        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2933                result = -EACCES;
2934                goto out_unlock;
2935        }
2936
2937        if (whole && lock_task_sighand(task, &flags)) {
2938                struct task_struct *t = task;
2939
2940                task_io_accounting_add(&acct, &task->signal->ioac);
2941                while_each_thread(task, t)
2942                        task_io_accounting_add(&acct, &t->ioac);
2943
2944                unlock_task_sighand(task, &flags);
2945        }
2946        seq_printf(m,
2947                   "rchar: %llu\n"
2948                   "wchar: %llu\n"
2949                   "syscr: %llu\n"
2950                   "syscw: %llu\n"
2951                   "read_bytes: %llu\n"
2952                   "write_bytes: %llu\n"
2953                   "cancelled_write_bytes: %llu\n",
2954                   (unsigned long long)acct.rchar,
2955                   (unsigned long long)acct.wchar,
2956                   (unsigned long long)acct.syscr,
2957                   (unsigned long long)acct.syscw,
2958                   (unsigned long long)acct.read_bytes,
2959                   (unsigned long long)acct.write_bytes,
2960                   (unsigned long long)acct.cancelled_write_bytes);
2961        result = 0;
2962
2963out_unlock:
2964        mutex_unlock(&task->signal->exec_update_mutex);
2965        return result;
2966}
2967
2968static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2969                                  struct pid *pid, struct task_struct *task)
2970{
2971        return do_io_accounting(task, m, 0);
2972}
2973
2974static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2975                                   struct pid *pid, struct task_struct *task)
2976{
2977        return do_io_accounting(task, m, 1);
2978}
2979#endif /* CONFIG_TASK_IO_ACCOUNTING */
2980
2981#ifdef CONFIG_USER_NS
2982static int proc_id_map_open(struct inode *inode, struct file *file,
2983        const struct seq_operations *seq_ops)
2984{
2985        struct user_namespace *ns = NULL;
2986        struct task_struct *task;
2987        struct seq_file *seq;
2988        int ret = -EINVAL;
2989
2990        task = get_proc_task(inode);
2991        if (task) {
2992                rcu_read_lock();
2993                ns = get_user_ns(task_cred_xxx(task, user_ns));
2994                rcu_read_unlock();
2995                put_task_struct(task);
2996        }
2997        if (!ns)
2998                goto err;
2999
3000        ret = seq_open(file, seq_ops);
3001        if (ret)
3002                goto err_put_ns;
3003
3004        seq = file->private_data;
3005        seq->private = ns;
3006
3007        return 0;
3008err_put_ns:
3009        put_user_ns(ns);
3010err:
3011        return ret;
3012}
3013
3014static int proc_id_map_release(struct inode *inode, struct file *file)
3015{
3016        struct seq_file *seq = file->private_data;
3017        struct user_namespace *ns = seq->private;
3018        put_user_ns(ns);
3019        return seq_release(inode, file);
3020}
3021
3022static int proc_uid_map_open(struct inode *inode, struct file *file)
3023{
3024        return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3025}
3026
3027static int proc_gid_map_open(struct inode *inode, struct file *file)
3028{
3029        return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3030}
3031
3032static int proc_projid_map_open(struct inode *inode, struct file *file)
3033{
3034        return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3035}
3036
3037static const struct file_operations proc_uid_map_operations = {
3038        .open           = proc_uid_map_open,
3039        .write          = proc_uid_map_write,
3040        .read           = seq_read,
3041        .llseek         = seq_lseek,
3042        .release        = proc_id_map_release,
3043};
3044
3045static const struct file_operations proc_gid_map_operations = {
3046        .open           = proc_gid_map_open,
3047        .write          = proc_gid_map_write,
3048        .read           = seq_read,
3049        .llseek         = seq_lseek,
3050        .release        = proc_id_map_release,
3051};
3052
3053static const struct file_operations proc_projid_map_operations = {
3054        .open           = proc_projid_map_open,
3055        .write          = proc_projid_map_write,
3056        .read           = seq_read,
3057        .llseek         = seq_lseek,
3058        .release        = proc_id_map_release,
3059};
3060
3061static int proc_setgroups_open(struct inode *inode, struct file *file)
3062{
3063        struct user_namespace *ns = NULL;
3064        struct task_struct *task;
3065        int ret;
3066
3067        ret = -ESRCH;
3068        task = get_proc_task(inode);
3069        if (task) {
3070                rcu_read_lock();
3071                ns = get_user_ns(task_cred_xxx(task, user_ns));
3072                rcu_read_unlock();
3073                put_task_struct(task);
3074        }
3075        if (!ns)
3076                goto err;
3077
3078        if (file->f_mode & FMODE_WRITE) {
3079                ret = -EACCES;
3080                if (!ns_capable(ns, CAP_SYS_ADMIN))
3081                        goto err_put_ns;
3082        }
3083
3084        ret = single_open(file, &proc_setgroups_show, ns);
3085        if (ret)
3086                goto err_put_ns;
3087
3088        return 0;
3089err_put_ns:
3090        put_user_ns(ns);
3091err:
3092        return ret;
3093}
3094
3095static int proc_setgroups_release(struct inode *inode, struct file *file)
3096{
3097        struct seq_file *seq = file->private_data;
3098        struct user_namespace *ns = seq->private;
3099        int ret = single_release(inode, file);
3100        put_user_ns(ns);
3101        return ret;
3102}
3103
3104static const struct file_operations proc_setgroups_operations = {
3105        .open           = proc_setgroups_open,
3106        .write          = proc_setgroups_write,
3107        .read           = seq_read,
3108        .llseek         = seq_lseek,
3109        .release        = proc_setgroups_release,
3110};
3111#endif /* CONFIG_USER_NS */
3112
3113static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3114                                struct pid *pid, struct task_struct *task)
3115{
3116        int err = lock_trace(task);
3117        if (!err) {
3118                seq_printf(m, "%08x\n", task->personality);
3119                unlock_trace(task);
3120        }
3121        return err;
3122}
3123
3124#ifdef CONFIG_LIVEPATCH
3125static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3126                                struct pid *pid, struct task_struct *task)
3127{
3128        seq_printf(m, "%d\n", task->patch_state);
3129        return 0;
3130}
3131#endif /* CONFIG_LIVEPATCH */
3132
3133#ifdef CONFIG_STACKLEAK_METRICS
3134static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3135                                struct pid *pid, struct task_struct *task)
3136{
3137        unsigned long prev_depth = THREAD_SIZE -
3138                                (task->prev_lowest_stack & (THREAD_SIZE - 1));
3139        unsigned long depth = THREAD_SIZE -
3140                                (task->lowest_stack & (THREAD_SIZE - 1));
3141
3142        seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3143                                                        prev_depth, depth);
3144        return 0;
3145}
3146#endif /* CONFIG_STACKLEAK_METRICS */
3147
3148/*
3149 * Thread groups
3150 */
3151static const struct file_operations proc_task_operations;
3152static const struct inode_operations proc_task_inode_operations;
3153
3154static const struct pid_entry tgid_base_stuff[] = {
3155        DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3156        DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3157        DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3158        DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3159        DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3160#ifdef CONFIG_NET
3161        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3162#endif
3163        REG("environ",    S_IRUSR, proc_environ_operations),
3164        REG("auxv",       S_IRUSR, proc_auxv_operations),
3165        ONE("status",     S_IRUGO, proc_pid_status),
3166        ONE("personality", S_IRUSR, proc_pid_personality),
3167        ONE("limits",     S_IRUGO, proc_pid_limits),
3168#ifdef CONFIG_SCHED_DEBUG
3169        REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3170#endif
3171#ifdef CONFIG_SCHED_AUTOGROUP
3172        REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3173#endif
3174#ifdef CONFIG_TIME_NS
3175        REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3176#endif
3177        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3178#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3179        ONE("syscall",    S_IRUSR, proc_pid_syscall),
3180#endif
3181        REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3182        ONE("stat",       S_IRUGO, proc_tgid_stat),
3183        ONE("statm",      S_IRUGO, proc_pid_statm),
3184        REG("maps",       S_IRUGO, proc_pid_maps_operations),
3185#ifdef CONFIG_NUMA
3186        REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3187#endif
3188        REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3189        LNK("cwd",        proc_cwd_link),
3190        LNK("root",       proc_root_link),
3191        LNK("exe",        proc_exe_link),
3192        REG("mounts",     S_IRUGO, proc_mounts_operations),
3193        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3194        REG("mountstats", S_IRUSR, proc_mountstats_operations),
3195#ifdef CONFIG_PROC_PAGE_MONITOR
3196        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3197        REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3198        REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3199        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3200#endif
3201#ifdef CONFIG_SECURITY
3202        DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3203#endif
3204#ifdef CONFIG_KALLSYMS
3205        ONE("wchan",      S_IRUGO, proc_pid_wchan),
3206#endif
3207#ifdef CONFIG_STACKTRACE
3208        ONE("stack",      S_IRUSR, proc_pid_stack),
3209#endif
3210#ifdef CONFIG_SCHED_INFO
3211        ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3212#endif
3213#ifdef CONFIG_LATENCYTOP
3214        REG("latency",  S_IRUGO, proc_lstats_operations),
3215#endif
3216#ifdef CONFIG_PROC_PID_CPUSET
3217        ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3218#endif
3219#ifdef CONFIG_CGROUPS
3220        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3221#endif
3222#ifdef CONFIG_PROC_CPU_RESCTRL
3223        ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3224#endif
3225        ONE("oom_score",  S_IRUGO, proc_oom_score),
3226        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3227        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3228#ifdef CONFIG_AUDIT
3229        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3230        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3231#endif
3232#ifdef CONFIG_FAULT_INJECTION
3233        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3234        REG("fail-nth", 0644, proc_fail_nth_operations),
3235#endif
3236#ifdef CONFIG_ELF_CORE
3237        REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3238#endif
3239#ifdef CONFIG_TASK_IO_ACCOUNTING
3240        ONE("io",       S_IRUSR, proc_tgid_io_accounting),
3241#endif
3242#ifdef CONFIG_USER_NS
3243        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3244        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3245        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3246        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3247#endif
3248#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3249        REG("timers",     S_IRUGO, proc_timers_operations),
3250#endif
3251        REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3252#ifdef CONFIG_LIVEPATCH
3253        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3254#endif
3255#ifdef CONFIG_STACKLEAK_METRICS
3256        ONE("stack_depth", S_IRUGO, proc_stack_depth),
3257#endif
3258#ifdef CONFIG_PROC_PID_ARCH_STATUS
3259        ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3260#endif
3261};
3262
3263static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3264{
3265        return proc_pident_readdir(file, ctx,
3266                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3267}
3268
3269static const struct file_operations proc_tgid_base_operations = {
3270        .read           = generic_read_dir,
3271        .iterate_shared = proc_tgid_base_readdir,
3272        .llseek         = generic_file_llseek,
3273};
3274
3275struct pid *tgid_pidfd_to_pid(const struct file *file)
3276{
3277        if (file->f_op != &proc_tgid_base_operations)
3278                return ERR_PTR(-EBADF);
3279
3280        return proc_pid(file_inode(file));
3281}
3282
3283static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3284{
3285        return proc_pident_lookup(dir, dentry,
3286                                  tgid_base_stuff,
3287                                  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3288}
3289
3290static const struct inode_operations proc_tgid_base_inode_operations = {
3291        .lookup         = proc_tgid_base_lookup,
3292        .getattr        = pid_getattr,
3293        .setattr        = proc_setattr,
3294        .permission     = proc_pid_permission,
3295};
3296
3297/**
3298 * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3299 * @pid: pid that should be flushed.
3300 *
3301 * This function walks a list of inodes (that belong to any proc
3302 * filesystem) that are attached to the pid and flushes them from
3303 * the dentry cache.
3304 *
3305 * It is safe and reasonable to cache /proc entries for a task until
3306 * that task exits.  After that they just clog up the dcache with
3307 * useless entries, possibly causing useful dcache entries to be
3308 * flushed instead.  This routine is provided to flush those useless
3309 * dcache entries when a process is reaped.
3310 *
3311 * NOTE: This routine is just an optimization so it does not guarantee
3312 *       that no dcache entries will exist after a process is reaped
3313 *       it just makes it very unlikely that any will persist.
3314 */
3315
3316void proc_flush_pid(struct pid *pid)
3317{
3318        proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3319}
3320
3321static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3322                                   struct task_struct *task, const void *ptr)
3323{
3324        struct inode *inode;
3325
3326        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3327        if (!inode)
3328                return ERR_PTR(-ENOENT);
3329
3330        inode->i_op = &proc_tgid_base_inode_operations;
3331        inode->i_fop = &proc_tgid_base_operations;
3332        inode->i_flags|=S_IMMUTABLE;
3333
3334        set_nlink(inode, nlink_tgid);
3335        pid_update_inode(task, inode);
3336
3337        d_set_d_op(dentry, &pid_dentry_operations);
3338        return d_splice_alias(inode, dentry);
3339}
3340
3341struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3342{
3343        struct task_struct *task;
3344        unsigned tgid;
3345        struct proc_fs_info *fs_info;
3346        struct pid_namespace *ns;
3347        struct dentry *result = ERR_PTR(-ENOENT);
3348
3349        tgid = name_to_int(&dentry->d_name);
3350        if (tgid == ~0U)
3351                goto out;
3352
3353        fs_info = proc_sb_info(dentry->d_sb);
3354        ns = fs_info->pid_ns;
3355        rcu_read_lock();
3356        task = find_task_by_pid_ns(tgid, ns);
3357        if (task)
3358                get_task_struct(task);
3359        rcu_read_unlock();
3360        if (!task)
3361                goto out;
3362
3363        /* Limit procfs to only ptraceable tasks */
3364        if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3365                if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3366                        goto out_put_task;
3367        }
3368
3369        result = proc_pid_instantiate(dentry, task, NULL);
3370out_put_task:
3371        put_task_struct(task);
3372out:
3373        return result;
3374}
3375
3376/*
3377 * Find the first task with tgid >= tgid
3378 *
3379 */
3380struct tgid_iter {
3381        unsigned int tgid;
3382        struct task_struct *task;
3383};
3384static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3385{
3386        struct pid *pid;
3387
3388        if (iter.task)
3389                put_task_struct(iter.task);
3390        rcu_read_lock();
3391retry:
3392        iter.task = NULL;
3393        pid = find_ge_pid(iter.tgid, ns);
3394        if (pid) {
3395                iter.tgid = pid_nr_ns(pid, ns);
3396                iter.task = pid_task(pid, PIDTYPE_TGID);
3397                if (!iter.task) {
3398                        iter.tgid += 1;
3399                        goto retry;
3400                }
3401                get_task_struct(iter.task);
3402        }
3403        rcu_read_unlock();
3404        return iter;
3405}
3406
3407#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3408
3409/* for the /proc/ directory itself, after non-process stuff has been done */
3410int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3411{
3412        struct tgid_iter iter;
3413        struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3414        struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3415        loff_t pos = ctx->pos;
3416
3417        if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3418                return 0;
3419
3420        if (pos == TGID_OFFSET - 2) {
3421                struct inode *inode = d_inode(fs_info->proc_self);
3422                if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3423                        return 0;
3424                ctx->pos = pos = pos + 1;
3425        }
3426        if (pos == TGID_OFFSET - 1) {
3427                struct inode *inode = d_inode(fs_info->proc_thread_self);
3428                if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3429                        return 0;
3430                ctx->pos = pos = pos + 1;
3431        }
3432        iter.tgid = pos - TGID_OFFSET;
3433        iter.task = NULL;
3434        for (iter = next_tgid(ns, iter);
3435             iter.task;
3436             iter.tgid += 1, iter = next_tgid(ns, iter)) {
3437                char name[10 + 1];
3438                unsigned int len;
3439
3440                cond_resched();
3441                if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3442                        continue;
3443
3444                len = snprintf(name, sizeof(name), "%u", iter.tgid);
3445                ctx->pos = iter.tgid + TGID_OFFSET;
3446                if (!proc_fill_cache(file, ctx, name, len,
3447                                     proc_pid_instantiate, iter.task, NULL)) {
3448                        put_task_struct(iter.task);
3449                        return 0;
3450                }
3451        }
3452        ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3453        return 0;
3454}
3455
3456/*
3457 * proc_tid_comm_permission is a special permission function exclusively
3458 * used for the node /proc/<pid>/task/<tid>/comm.
3459 * It bypasses generic permission checks in the case where a task of the same
3460 * task group attempts to access the node.
3461 * The rationale behind this is that glibc and bionic access this node for
3462 * cross thread naming (pthread_set/getname_np(!self)). However, if
3463 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3464 * which locks out the cross thread naming implementation.
3465 * This function makes sure that the node is always accessible for members of
3466 * same thread group.
3467 */
3468static int proc_tid_comm_permission(struct inode *inode, int mask)
3469{
3470        bool is_same_tgroup;
3471        struct task_struct *task;
3472
3473        task = get_proc_task(inode);
3474        if (!task)
3475                return -ESRCH;
3476        is_same_tgroup = same_thread_group(current, task);
3477        put_task_struct(task);
3478
3479        if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3480                /* This file (/proc/<pid>/task/<tid>/comm) can always be
3481                 * read or written by the members of the corresponding
3482                 * thread group.
3483                 */
3484                return 0;
3485        }
3486
3487        return generic_permission(inode, mask);
3488}
3489
3490static const struct inode_operations proc_tid_comm_inode_operations = {
3491                .permission = proc_tid_comm_permission,
3492};
3493
3494/*
3495 * Tasks
3496 */
3497static const struct pid_entry tid_base_stuff[] = {
3498        DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3499        DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3500        DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3501#ifdef CONFIG_NET
3502        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3503#endif
3504        REG("environ",   S_IRUSR, proc_environ_operations),
3505        REG("auxv",      S_IRUSR, proc_auxv_operations),
3506        ONE("status",    S_IRUGO, proc_pid_status),
3507        ONE("personality", S_IRUSR, proc_pid_personality),
3508        ONE("limits",    S_IRUGO, proc_pid_limits),
3509#ifdef CONFIG_SCHED_DEBUG
3510        REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3511#endif
3512        NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3513                         &proc_tid_comm_inode_operations,
3514                         &proc_pid_set_comm_operations, {}),
3515#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3516        ONE("syscall",   S_IRUSR, proc_pid_syscall),
3517#endif
3518        REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3519        ONE("stat",      S_IRUGO, proc_tid_stat),
3520        ONE("statm",     S_IRUGO, proc_pid_statm),
3521        REG("maps",      S_IRUGO, proc_pid_maps_operations),
3522#ifdef CONFIG_PROC_CHILDREN
3523        REG("children",  S_IRUGO, proc_tid_children_operations),
3524#endif
3525#ifdef CONFIG_NUMA
3526        REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3527#endif
3528        REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3529        LNK("cwd",       proc_cwd_link),
3530        LNK("root",      proc_root_link),
3531        LNK("exe",       proc_exe_link),
3532        REG("mounts",    S_IRUGO, proc_mounts_operations),
3533        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3534#ifdef CONFIG_PROC_PAGE_MONITOR
3535        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3536        REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3537        REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3538        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3539#endif
3540#ifdef CONFIG_SECURITY
3541        DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3542#endif
3543#ifdef CONFIG_KALLSYMS
3544        ONE("wchan",     S_IRUGO, proc_pid_wchan),
3545#endif
3546#ifdef CONFIG_STACKTRACE
3547        ONE("stack",      S_IRUSR, proc_pid_stack),
3548#endif
3549#ifdef CONFIG_SCHED_INFO
3550        ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3551#endif
3552#ifdef CONFIG_LATENCYTOP
3553        REG("latency",  S_IRUGO, proc_lstats_operations),
3554#endif
3555#ifdef CONFIG_PROC_PID_CPUSET
3556        ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3557#endif
3558#ifdef CONFIG_CGROUPS
3559        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3560#endif
3561#ifdef CONFIG_PROC_CPU_RESCTRL
3562        ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3563#endif
3564        ONE("oom_score", S_IRUGO, proc_oom_score),
3565        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3566        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3567#ifdef CONFIG_AUDIT
3568        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3569        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3570#endif
3571#ifdef CONFIG_FAULT_INJECTION
3572        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3573        REG("fail-nth", 0644, proc_fail_nth_operations),
3574#endif
3575#ifdef CONFIG_TASK_IO_ACCOUNTING
3576        ONE("io",       S_IRUSR, proc_tid_io_accounting),
3577#endif
3578#ifdef CONFIG_USER_NS
3579        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3580        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3581        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3582        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3583#endif
3584#ifdef CONFIG_LIVEPATCH
3585        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3586#endif
3587#ifdef CONFIG_PROC_PID_ARCH_STATUS
3588        ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3589#endif
3590};
3591
3592static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3593{
3594        return proc_pident_readdir(file, ctx,
3595                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3596}
3597
3598static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3599{
3600        return proc_pident_lookup(dir, dentry,
3601                                  tid_base_stuff,
3602                                  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3603}
3604
3605static const struct file_operations proc_tid_base_operations = {
3606        .read           = generic_read_dir,
3607        .iterate_shared = proc_tid_base_readdir,
3608        .llseek         = generic_file_llseek,
3609};
3610
3611static const struct inode_operations proc_tid_base_inode_operations = {
3612        .lookup         = proc_tid_base_lookup,
3613        .getattr        = pid_getattr,
3614        .setattr        = proc_setattr,
3615};
3616
3617static struct dentry *proc_task_instantiate(struct dentry *dentry,
3618        struct task_struct *task, const void *ptr)
3619{
3620        struct inode *inode;
3621        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3622        if (!inode)
3623                return ERR_PTR(-ENOENT);
3624
3625        inode->i_op = &proc_tid_base_inode_operations;
3626        inode->i_fop = &proc_tid_base_operations;
3627        inode->i_flags |= S_IMMUTABLE;
3628
3629        set_nlink(inode, nlink_tid);
3630        pid_update_inode(task, inode);
3631
3632        d_set_d_op(dentry, &pid_dentry_operations);
3633        return d_splice_alias(inode, dentry);
3634}
3635
3636static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3637{
3638        struct task_struct *task;
3639        struct task_struct *leader = get_proc_task(dir);
3640        unsigned tid;
3641        struct proc_fs_info *fs_info;
3642        struct pid_namespace *ns;
3643        struct dentry *result = ERR_PTR(-ENOENT);
3644
3645        if (!leader)
3646                goto out_no_task;
3647
3648        tid = name_to_int(&dentry->d_name);
3649        if (tid == ~0U)
3650                goto out;
3651
3652        fs_info = proc_sb_info(dentry->d_sb);
3653        ns = fs_info->pid_ns;
3654        rcu_read_lock();
3655        task = find_task_by_pid_ns(tid, ns);
3656        if (task)
3657                get_task_struct(task);
3658        rcu_read_unlock();
3659        if (!task)
3660                goto out;
3661        if (!same_thread_group(leader, task))
3662                goto out_drop_task;
3663
3664        result = proc_task_instantiate(dentry, task, NULL);
3665out_drop_task:
3666        put_task_struct(task);
3667out:
3668        put_task_struct(leader);
3669out_no_task:
3670        return result;
3671}
3672
3673/*
3674 * Find the first tid of a thread group to return to user space.
3675 *
3676 * Usually this is just the thread group leader, but if the users
3677 * buffer was too small or there was a seek into the middle of the
3678 * directory we have more work todo.
3679 *
3680 * In the case of a short read we start with find_task_by_pid.
3681 *
3682 * In the case of a seek we start with the leader and walk nr
3683 * threads past it.
3684 */
3685static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3686                                        struct pid_namespace *ns)
3687{
3688        struct task_struct *pos, *task;
3689        unsigned long nr = f_pos;
3690
3691        if (nr != f_pos)        /* 32bit overflow? */
3692                return NULL;
3693
3694        rcu_read_lock();
3695        task = pid_task(pid, PIDTYPE_PID);
3696        if (!task)
3697                goto fail;
3698
3699        /* Attempt to start with the tid of a thread */
3700        if (tid && nr) {
3701                pos = find_task_by_pid_ns(tid, ns);
3702                if (pos && same_thread_group(pos, task))
3703                        goto found;
3704        }
3705
3706        /* If nr exceeds the number of threads there is nothing todo */
3707        if (nr >= get_nr_threads(task))
3708                goto fail;
3709
3710        /* If we haven't found our starting place yet start
3711         * with the leader and walk nr threads forward.
3712         */
3713        pos = task = task->group_leader;
3714        do {
3715                if (!nr--)
3716                        goto found;
3717        } while_each_thread(task, pos);
3718fail:
3719        pos = NULL;
3720        goto out;
3721found:
3722        get_task_struct(pos);
3723out:
3724        rcu_read_unlock();
3725        return pos;
3726}
3727
3728/*
3729 * Find the next thread in the thread list.
3730 * Return NULL if there is an error or no next thread.
3731 *
3732 * The reference to the input task_struct is released.
3733 */
3734static struct task_struct *next_tid(struct task_struct *start)
3735{
3736        struct task_struct *pos = NULL;
3737        rcu_read_lock();
3738        if (pid_alive(start)) {
3739                pos = next_thread(start);
3740                if (thread_group_leader(pos))
3741                        pos = NULL;
3742                else
3743                        get_task_struct(pos);
3744        }
3745        rcu_read_unlock();
3746        put_task_struct(start);
3747        return pos;
3748}
3749
3750/* for the /proc/TGID/task/ directories */
3751static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3752{
3753        struct inode *inode = file_inode(file);
3754        struct task_struct *task;
3755        struct pid_namespace *ns;
3756        int tid;
3757
3758        if (proc_inode_is_dead(inode))
3759                return -ENOENT;
3760
3761        if (!dir_emit_dots(file, ctx))
3762                return 0;
3763
3764        /* f_version caches the tgid value that the last readdir call couldn't
3765         * return. lseek aka telldir automagically resets f_version to 0.
3766         */
3767        ns = proc_pid_ns(inode->i_sb);
3768        tid = (int)file->f_version;
3769        file->f_version = 0;
3770        for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3771             task;
3772             task = next_tid(task), ctx->pos++) {
3773                char name[10 + 1];
3774                unsigned int len;
3775                tid = task_pid_nr_ns(task, ns);
3776                len = snprintf(name, sizeof(name), "%u", tid);
3777                if (!proc_fill_cache(file, ctx, name, len,
3778                                proc_task_instantiate, task, NULL)) {
3779                        /* returning this tgid failed, save it as the first
3780                         * pid for the next readir call */
3781                        file->f_version = (u64)tid;
3782                        put_task_struct(task);
3783                        break;
3784                }
3785        }
3786
3787        return 0;
3788}
3789
3790static int proc_task_getattr(const struct path *path, struct kstat *stat,
3791                             u32 request_mask, unsigned int query_flags)
3792{
3793        struct inode *inode = d_inode(path->dentry);
3794        struct task_struct *p = get_proc_task(inode);
3795        generic_fillattr(inode, stat);
3796
3797        if (p) {
3798                stat->nlink += get_nr_threads(p);
3799                put_task_struct(p);
3800        }
3801
3802        return 0;
3803}
3804
3805static const struct inode_operations proc_task_inode_operations = {
3806        .lookup         = proc_task_lookup,
3807        .getattr        = proc_task_getattr,
3808        .setattr        = proc_setattr,
3809        .permission     = proc_pid_permission,
3810};
3811
3812static const struct file_operations proc_task_operations = {
3813        .read           = generic_read_dir,
3814        .iterate_shared = proc_task_readdir,
3815        .llseek         = generic_file_llseek,
3816};
3817
3818void __init set_proc_pid_nlink(void)
3819{
3820        nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3821        nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3822}
3823