linux/fs/xfs/libxfs/xfs_ialloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_inode.h"
  16#include "xfs_btree.h"
  17#include "xfs_ialloc.h"
  18#include "xfs_ialloc_btree.h"
  19#include "xfs_alloc.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_bmap.h"
  23#include "xfs_trans.h"
  24#include "xfs_buf_item.h"
  25#include "xfs_icreate_item.h"
  26#include "xfs_icache.h"
  27#include "xfs_trace.h"
  28#include "xfs_log.h"
  29#include "xfs_rmap.h"
  30
  31/*
  32 * Lookup a record by ino in the btree given by cur.
  33 */
  34int                                     /* error */
  35xfs_inobt_lookup(
  36        struct xfs_btree_cur    *cur,   /* btree cursor */
  37        xfs_agino_t             ino,    /* starting inode of chunk */
  38        xfs_lookup_t            dir,    /* <=, >=, == */
  39        int                     *stat)  /* success/failure */
  40{
  41        cur->bc_rec.i.ir_startino = ino;
  42        cur->bc_rec.i.ir_holemask = 0;
  43        cur->bc_rec.i.ir_count = 0;
  44        cur->bc_rec.i.ir_freecount = 0;
  45        cur->bc_rec.i.ir_free = 0;
  46        return xfs_btree_lookup(cur, dir, stat);
  47}
  48
  49/*
  50 * Update the record referred to by cur to the value given.
  51 * This either works (return 0) or gets an EFSCORRUPTED error.
  52 */
  53STATIC int                              /* error */
  54xfs_inobt_update(
  55        struct xfs_btree_cur    *cur,   /* btree cursor */
  56        xfs_inobt_rec_incore_t  *irec)  /* btree record */
  57{
  58        union xfs_btree_rec     rec;
  59
  60        rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  61        if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
  62                rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  63                rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  64                rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  65        } else {
  66                /* ir_holemask/ir_count not supported on-disk */
  67                rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  68        }
  69        rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  70        return xfs_btree_update(cur, &rec);
  71}
  72
  73/* Convert on-disk btree record to incore inobt record. */
  74void
  75xfs_inobt_btrec_to_irec(
  76        struct xfs_mount                *mp,
  77        union xfs_btree_rec             *rec,
  78        struct xfs_inobt_rec_incore     *irec)
  79{
  80        irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
  81        if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
  82                irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
  83                irec->ir_count = rec->inobt.ir_u.sp.ir_count;
  84                irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
  85        } else {
  86                /*
  87                 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
  88                 * values for full inode chunks.
  89                 */
  90                irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
  91                irec->ir_count = XFS_INODES_PER_CHUNK;
  92                irec->ir_freecount =
  93                                be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
  94        }
  95        irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
  96}
  97
  98/*
  99 * Get the data from the pointed-to record.
 100 */
 101int
 102xfs_inobt_get_rec(
 103        struct xfs_btree_cur            *cur,
 104        struct xfs_inobt_rec_incore     *irec,
 105        int                             *stat)
 106{
 107        struct xfs_mount                *mp = cur->bc_mp;
 108        xfs_agnumber_t                  agno = cur->bc_ag.agno;
 109        union xfs_btree_rec             *rec;
 110        int                             error;
 111        uint64_t                        realfree;
 112
 113        error = xfs_btree_get_rec(cur, &rec, stat);
 114        if (error || *stat == 0)
 115                return error;
 116
 117        xfs_inobt_btrec_to_irec(mp, rec, irec);
 118
 119        if (!xfs_verify_agino(mp, agno, irec->ir_startino))
 120                goto out_bad_rec;
 121        if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
 122            irec->ir_count > XFS_INODES_PER_CHUNK)
 123                goto out_bad_rec;
 124        if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
 125                goto out_bad_rec;
 126
 127        /* if there are no holes, return the first available offset */
 128        if (!xfs_inobt_issparse(irec->ir_holemask))
 129                realfree = irec->ir_free;
 130        else
 131                realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
 132        if (hweight64(realfree) != irec->ir_freecount)
 133                goto out_bad_rec;
 134
 135        return 0;
 136
 137out_bad_rec:
 138        xfs_warn(mp,
 139                "%s Inode BTree record corruption in AG %d detected!",
 140                cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
 141        xfs_warn(mp,
 142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
 143                irec->ir_startino, irec->ir_count, irec->ir_freecount,
 144                irec->ir_free, irec->ir_holemask);
 145        return -EFSCORRUPTED;
 146}
 147
 148/*
 149 * Insert a single inobt record. Cursor must already point to desired location.
 150 */
 151int
 152xfs_inobt_insert_rec(
 153        struct xfs_btree_cur    *cur,
 154        uint16_t                holemask,
 155        uint8_t                 count,
 156        int32_t                 freecount,
 157        xfs_inofree_t           free,
 158        int                     *stat)
 159{
 160        cur->bc_rec.i.ir_holemask = holemask;
 161        cur->bc_rec.i.ir_count = count;
 162        cur->bc_rec.i.ir_freecount = freecount;
 163        cur->bc_rec.i.ir_free = free;
 164        return xfs_btree_insert(cur, stat);
 165}
 166
 167/*
 168 * Insert records describing a newly allocated inode chunk into the inobt.
 169 */
 170STATIC int
 171xfs_inobt_insert(
 172        struct xfs_mount        *mp,
 173        struct xfs_trans        *tp,
 174        struct xfs_buf          *agbp,
 175        xfs_agino_t             newino,
 176        xfs_agino_t             newlen,
 177        xfs_btnum_t             btnum)
 178{
 179        struct xfs_btree_cur    *cur;
 180        struct xfs_agi          *agi = agbp->b_addr;
 181        xfs_agnumber_t          agno = be32_to_cpu(agi->agi_seqno);
 182        xfs_agino_t             thisino;
 183        int                     i;
 184        int                     error;
 185
 186        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 187
 188        for (thisino = newino;
 189             thisino < newino + newlen;
 190             thisino += XFS_INODES_PER_CHUNK) {
 191                error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 192                if (error) {
 193                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 194                        return error;
 195                }
 196                ASSERT(i == 0);
 197
 198                error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 199                                             XFS_INODES_PER_CHUNK,
 200                                             XFS_INODES_PER_CHUNK,
 201                                             XFS_INOBT_ALL_FREE, &i);
 202                if (error) {
 203                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 204                        return error;
 205                }
 206                ASSERT(i == 1);
 207        }
 208
 209        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 210
 211        return 0;
 212}
 213
 214/*
 215 * Verify that the number of free inodes in the AGI is correct.
 216 */
 217#ifdef DEBUG
 218STATIC int
 219xfs_check_agi_freecount(
 220        struct xfs_btree_cur    *cur,
 221        struct xfs_agi          *agi)
 222{
 223        if (cur->bc_nlevels == 1) {
 224                xfs_inobt_rec_incore_t rec;
 225                int             freecount = 0;
 226                int             error;
 227                int             i;
 228
 229                error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 230                if (error)
 231                        return error;
 232
 233                do {
 234                        error = xfs_inobt_get_rec(cur, &rec, &i);
 235                        if (error)
 236                                return error;
 237
 238                        if (i) {
 239                                freecount += rec.ir_freecount;
 240                                error = xfs_btree_increment(cur, 0, &i);
 241                                if (error)
 242                                        return error;
 243                        }
 244                } while (i == 1);
 245
 246                if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
 247                        ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
 248        }
 249        return 0;
 250}
 251#else
 252#define xfs_check_agi_freecount(cur, agi)       0
 253#endif
 254
 255/*
 256 * Initialise a new set of inodes. When called without a transaction context
 257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 258 * than logging them (which in a transaction context puts them into the AIL
 259 * for writeback rather than the xfsbufd queue).
 260 */
 261int
 262xfs_ialloc_inode_init(
 263        struct xfs_mount        *mp,
 264        struct xfs_trans        *tp,
 265        struct list_head        *buffer_list,
 266        int                     icount,
 267        xfs_agnumber_t          agno,
 268        xfs_agblock_t           agbno,
 269        xfs_agblock_t           length,
 270        unsigned int            gen)
 271{
 272        struct xfs_buf          *fbuf;
 273        struct xfs_dinode       *free;
 274        int                     nbufs;
 275        int                     version;
 276        int                     i, j;
 277        xfs_daddr_t             d;
 278        xfs_ino_t               ino = 0;
 279        int                     error;
 280
 281        /*
 282         * Loop over the new block(s), filling in the inodes.  For small block
 283         * sizes, manipulate the inodes in buffers  which are multiples of the
 284         * blocks size.
 285         */
 286        nbufs = length / M_IGEO(mp)->blocks_per_cluster;
 287
 288        /*
 289         * Figure out what version number to use in the inodes we create.  If
 290         * the superblock version has caught up to the one that supports the new
 291         * inode format, then use the new inode version.  Otherwise use the old
 292         * version so that old kernels will continue to be able to use the file
 293         * system.
 294         *
 295         * For v3 inodes, we also need to write the inode number into the inode,
 296         * so calculate the first inode number of the chunk here as
 297         * XFS_AGB_TO_AGINO() only works within a filesystem block, not
 298         * across multiple filesystem blocks (such as a cluster) and so cannot
 299         * be used in the cluster buffer loop below.
 300         *
 301         * Further, because we are writing the inode directly into the buffer
 302         * and calculating a CRC on the entire inode, we have ot log the entire
 303         * inode so that the entire range the CRC covers is present in the log.
 304         * That means for v3 inode we log the entire buffer rather than just the
 305         * inode cores.
 306         */
 307        if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
 308                version = 3;
 309                ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
 310
 311                /*
 312                 * log the initialisation that is about to take place as an
 313                 * logical operation. This means the transaction does not
 314                 * need to log the physical changes to the inode buffers as log
 315                 * recovery will know what initialisation is actually needed.
 316                 * Hence we only need to log the buffers as "ordered" buffers so
 317                 * they track in the AIL as if they were physically logged.
 318                 */
 319                if (tp)
 320                        xfs_icreate_log(tp, agno, agbno, icount,
 321                                        mp->m_sb.sb_inodesize, length, gen);
 322        } else
 323                version = 2;
 324
 325        for (j = 0; j < nbufs; j++) {
 326                /*
 327                 * Get the block.
 328                 */
 329                d = XFS_AGB_TO_DADDR(mp, agno, agbno +
 330                                (j * M_IGEO(mp)->blocks_per_cluster));
 331                error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 332                                mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
 333                                XBF_UNMAPPED, &fbuf);
 334                if (error)
 335                        return error;
 336
 337                /* Initialize the inode buffers and log them appropriately. */
 338                fbuf->b_ops = &xfs_inode_buf_ops;
 339                xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 340                for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
 341                        int     ioffset = i << mp->m_sb.sb_inodelog;
 342                        uint    isize = XFS_DINODE_SIZE(&mp->m_sb);
 343
 344                        free = xfs_make_iptr(mp, fbuf, i);
 345                        free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 346                        free->di_version = version;
 347                        free->di_gen = cpu_to_be32(gen);
 348                        free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 349
 350                        if (version == 3) {
 351                                free->di_ino = cpu_to_be64(ino);
 352                                ino++;
 353                                uuid_copy(&free->di_uuid,
 354                                          &mp->m_sb.sb_meta_uuid);
 355                                xfs_dinode_calc_crc(mp, free);
 356                        } else if (tp) {
 357                                /* just log the inode core */
 358                                xfs_trans_log_buf(tp, fbuf, ioffset,
 359                                                  ioffset + isize - 1);
 360                        }
 361                }
 362
 363                if (tp) {
 364                        /*
 365                         * Mark the buffer as an inode allocation buffer so it
 366                         * sticks in AIL at the point of this allocation
 367                         * transaction. This ensures the they are on disk before
 368                         * the tail of the log can be moved past this
 369                         * transaction (i.e. by preventing relogging from moving
 370                         * it forward in the log).
 371                         */
 372                        xfs_trans_inode_alloc_buf(tp, fbuf);
 373                        if (version == 3) {
 374                                /*
 375                                 * Mark the buffer as ordered so that they are
 376                                 * not physically logged in the transaction but
 377                                 * still tracked in the AIL as part of the
 378                                 * transaction and pin the log appropriately.
 379                                 */
 380                                xfs_trans_ordered_buf(tp, fbuf);
 381                        }
 382                } else {
 383                        fbuf->b_flags |= XBF_DONE;
 384                        xfs_buf_delwri_queue(fbuf, buffer_list);
 385                        xfs_buf_relse(fbuf);
 386                }
 387        }
 388        return 0;
 389}
 390
 391/*
 392 * Align startino and allocmask for a recently allocated sparse chunk such that
 393 * they are fit for insertion (or merge) into the on-disk inode btrees.
 394 *
 395 * Background:
 396 *
 397 * When enabled, sparse inode support increases the inode alignment from cluster
 398 * size to inode chunk size. This means that the minimum range between two
 399 * non-adjacent inode records in the inobt is large enough for a full inode
 400 * record. This allows for cluster sized, cluster aligned block allocation
 401 * without need to worry about whether the resulting inode record overlaps with
 402 * another record in the tree. Without this basic rule, we would have to deal
 403 * with the consequences of overlap by potentially undoing recent allocations in
 404 * the inode allocation codepath.
 405 *
 406 * Because of this alignment rule (which is enforced on mount), there are two
 407 * inobt possibilities for newly allocated sparse chunks. One is that the
 408 * aligned inode record for the chunk covers a range of inodes not already
 409 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 410 * other is that a record already exists at the aligned startino that considers
 411 * the newly allocated range as sparse. In the latter case, record content is
 412 * merged in hope that sparse inode chunks fill to full chunks over time.
 413 */
 414STATIC void
 415xfs_align_sparse_ino(
 416        struct xfs_mount                *mp,
 417        xfs_agino_t                     *startino,
 418        uint16_t                        *allocmask)
 419{
 420        xfs_agblock_t                   agbno;
 421        xfs_agblock_t                   mod;
 422        int                             offset;
 423
 424        agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 425        mod = agbno % mp->m_sb.sb_inoalignmt;
 426        if (!mod)
 427                return;
 428
 429        /* calculate the inode offset and align startino */
 430        offset = XFS_AGB_TO_AGINO(mp, mod);
 431        *startino -= offset;
 432
 433        /*
 434         * Since startino has been aligned down, left shift allocmask such that
 435         * it continues to represent the same physical inodes relative to the
 436         * new startino.
 437         */
 438        *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 439}
 440
 441/*
 442 * Determine whether the source inode record can merge into the target. Both
 443 * records must be sparse, the inode ranges must match and there must be no
 444 * allocation overlap between the records.
 445 */
 446STATIC bool
 447__xfs_inobt_can_merge(
 448        struct xfs_inobt_rec_incore     *trec,  /* tgt record */
 449        struct xfs_inobt_rec_incore     *srec)  /* src record */
 450{
 451        uint64_t                        talloc;
 452        uint64_t                        salloc;
 453
 454        /* records must cover the same inode range */
 455        if (trec->ir_startino != srec->ir_startino)
 456                return false;
 457
 458        /* both records must be sparse */
 459        if (!xfs_inobt_issparse(trec->ir_holemask) ||
 460            !xfs_inobt_issparse(srec->ir_holemask))
 461                return false;
 462
 463        /* both records must track some inodes */
 464        if (!trec->ir_count || !srec->ir_count)
 465                return false;
 466
 467        /* can't exceed capacity of a full record */
 468        if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 469                return false;
 470
 471        /* verify there is no allocation overlap */
 472        talloc = xfs_inobt_irec_to_allocmask(trec);
 473        salloc = xfs_inobt_irec_to_allocmask(srec);
 474        if (talloc & salloc)
 475                return false;
 476
 477        return true;
 478}
 479
 480/*
 481 * Merge the source inode record into the target. The caller must call
 482 * __xfs_inobt_can_merge() to ensure the merge is valid.
 483 */
 484STATIC void
 485__xfs_inobt_rec_merge(
 486        struct xfs_inobt_rec_incore     *trec,  /* target */
 487        struct xfs_inobt_rec_incore     *srec)  /* src */
 488{
 489        ASSERT(trec->ir_startino == srec->ir_startino);
 490
 491        /* combine the counts */
 492        trec->ir_count += srec->ir_count;
 493        trec->ir_freecount += srec->ir_freecount;
 494
 495        /*
 496         * Merge the holemask and free mask. For both fields, 0 bits refer to
 497         * allocated inodes. We combine the allocated ranges with bitwise AND.
 498         */
 499        trec->ir_holemask &= srec->ir_holemask;
 500        trec->ir_free &= srec->ir_free;
 501}
 502
 503/*
 504 * Insert a new sparse inode chunk into the associated inode btree. The inode
 505 * record for the sparse chunk is pre-aligned to a startino that should match
 506 * any pre-existing sparse inode record in the tree. This allows sparse chunks
 507 * to fill over time.
 508 *
 509 * This function supports two modes of handling preexisting records depending on
 510 * the merge flag. If merge is true, the provided record is merged with the
 511 * existing record and updated in place. The merged record is returned in nrec.
 512 * If merge is false, an existing record is replaced with the provided record.
 513 * If no preexisting record exists, the provided record is always inserted.
 514 *
 515 * It is considered corruption if a merge is requested and not possible. Given
 516 * the sparse inode alignment constraints, this should never happen.
 517 */
 518STATIC int
 519xfs_inobt_insert_sprec(
 520        struct xfs_mount                *mp,
 521        struct xfs_trans                *tp,
 522        struct xfs_buf                  *agbp,
 523        int                             btnum,
 524        struct xfs_inobt_rec_incore     *nrec,  /* in/out: new/merged rec. */
 525        bool                            merge)  /* merge or replace */
 526{
 527        struct xfs_btree_cur            *cur;
 528        struct xfs_agi                  *agi = agbp->b_addr;
 529        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
 530        int                             error;
 531        int                             i;
 532        struct xfs_inobt_rec_incore     rec;
 533
 534        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 535
 536        /* the new record is pre-aligned so we know where to look */
 537        error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 538        if (error)
 539                goto error;
 540        /* if nothing there, insert a new record and return */
 541        if (i == 0) {
 542                error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 543                                             nrec->ir_count, nrec->ir_freecount,
 544                                             nrec->ir_free, &i);
 545                if (error)
 546                        goto error;
 547                if (XFS_IS_CORRUPT(mp, i != 1)) {
 548                        error = -EFSCORRUPTED;
 549                        goto error;
 550                }
 551
 552                goto out;
 553        }
 554
 555        /*
 556         * A record exists at this startino. Merge or replace the record
 557         * depending on what we've been asked to do.
 558         */
 559        if (merge) {
 560                error = xfs_inobt_get_rec(cur, &rec, &i);
 561                if (error)
 562                        goto error;
 563                if (XFS_IS_CORRUPT(mp, i != 1)) {
 564                        error = -EFSCORRUPTED;
 565                        goto error;
 566                }
 567                if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
 568                        error = -EFSCORRUPTED;
 569                        goto error;
 570                }
 571
 572                /*
 573                 * This should never fail. If we have coexisting records that
 574                 * cannot merge, something is seriously wrong.
 575                 */
 576                if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
 577                        error = -EFSCORRUPTED;
 578                        goto error;
 579                }
 580
 581                trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
 582                                         rec.ir_holemask, nrec->ir_startino,
 583                                         nrec->ir_holemask);
 584
 585                /* merge to nrec to output the updated record */
 586                __xfs_inobt_rec_merge(nrec, &rec);
 587
 588                trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
 589                                          nrec->ir_holemask);
 590
 591                error = xfs_inobt_rec_check_count(mp, nrec);
 592                if (error)
 593                        goto error;
 594        }
 595
 596        error = xfs_inobt_update(cur, nrec);
 597        if (error)
 598                goto error;
 599
 600out:
 601        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 602        return 0;
 603error:
 604        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 605        return error;
 606}
 607
 608/*
 609 * Allocate new inodes in the allocation group specified by agbp.
 610 * Return 0 for success, else error code.
 611 */
 612STATIC int
 613xfs_ialloc_ag_alloc(
 614        struct xfs_trans        *tp,
 615        struct xfs_buf          *agbp,
 616        int                     *alloc)
 617{
 618        struct xfs_agi          *agi;
 619        struct xfs_alloc_arg    args;
 620        xfs_agnumber_t          agno;
 621        int                     error;
 622        xfs_agino_t             newino;         /* new first inode's number */
 623        xfs_agino_t             newlen;         /* new number of inodes */
 624        int                     isaligned = 0;  /* inode allocation at stripe */
 625                                                /* unit boundary */
 626        /* init. to full chunk */
 627        uint16_t                allocmask = (uint16_t) -1;
 628        struct xfs_inobt_rec_incore rec;
 629        struct xfs_perag        *pag;
 630        struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
 631        int                     do_sparse = 0;
 632
 633        memset(&args, 0, sizeof(args));
 634        args.tp = tp;
 635        args.mp = tp->t_mountp;
 636        args.fsbno = NULLFSBLOCK;
 637        args.oinfo = XFS_RMAP_OINFO_INODES;
 638
 639#ifdef DEBUG
 640        /* randomly do sparse inode allocations */
 641        if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
 642            igeo->ialloc_min_blks < igeo->ialloc_blks)
 643                do_sparse = prandom_u32() & 1;
 644#endif
 645
 646        /*
 647         * Locking will ensure that we don't have two callers in here
 648         * at one time.
 649         */
 650        newlen = igeo->ialloc_inos;
 651        if (igeo->maxicount &&
 652            percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 653                                                        igeo->maxicount)
 654                return -ENOSPC;
 655        args.minlen = args.maxlen = igeo->ialloc_blks;
 656        /*
 657         * First try to allocate inodes contiguous with the last-allocated
 658         * chunk of inodes.  If the filesystem is striped, this will fill
 659         * an entire stripe unit with inodes.
 660         */
 661        agi = agbp->b_addr;
 662        newino = be32_to_cpu(agi->agi_newino);
 663        agno = be32_to_cpu(agi->agi_seqno);
 664        args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 665                     igeo->ialloc_blks;
 666        if (do_sparse)
 667                goto sparse_alloc;
 668        if (likely(newino != NULLAGINO &&
 669                  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 670                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 671                args.type = XFS_ALLOCTYPE_THIS_BNO;
 672                args.prod = 1;
 673
 674                /*
 675                 * We need to take into account alignment here to ensure that
 676                 * we don't modify the free list if we fail to have an exact
 677                 * block. If we don't have an exact match, and every oher
 678                 * attempt allocation attempt fails, we'll end up cancelling
 679                 * a dirty transaction and shutting down.
 680                 *
 681                 * For an exact allocation, alignment must be 1,
 682                 * however we need to take cluster alignment into account when
 683                 * fixing up the freelist. Use the minalignslop field to
 684                 * indicate that extra blocks might be required for alignment,
 685                 * but not to use them in the actual exact allocation.
 686                 */
 687                args.alignment = 1;
 688                args.minalignslop = igeo->cluster_align - 1;
 689
 690                /* Allow space for the inode btree to split. */
 691                args.minleft = igeo->inobt_maxlevels;
 692                if ((error = xfs_alloc_vextent(&args)))
 693                        return error;
 694
 695                /*
 696                 * This request might have dirtied the transaction if the AG can
 697                 * satisfy the request, but the exact block was not available.
 698                 * If the allocation did fail, subsequent requests will relax
 699                 * the exact agbno requirement and increase the alignment
 700                 * instead. It is critical that the total size of the request
 701                 * (len + alignment + slop) does not increase from this point
 702                 * on, so reset minalignslop to ensure it is not included in
 703                 * subsequent requests.
 704                 */
 705                args.minalignslop = 0;
 706        }
 707
 708        if (unlikely(args.fsbno == NULLFSBLOCK)) {
 709                /*
 710                 * Set the alignment for the allocation.
 711                 * If stripe alignment is turned on then align at stripe unit
 712                 * boundary.
 713                 * If the cluster size is smaller than a filesystem block
 714                 * then we're doing I/O for inodes in filesystem block size
 715                 * pieces, so don't need alignment anyway.
 716                 */
 717                isaligned = 0;
 718                if (igeo->ialloc_align) {
 719                        ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
 720                        args.alignment = args.mp->m_dalign;
 721                        isaligned = 1;
 722                } else
 723                        args.alignment = igeo->cluster_align;
 724                /*
 725                 * Need to figure out where to allocate the inode blocks.
 726                 * Ideally they should be spaced out through the a.g.
 727                 * For now, just allocate blocks up front.
 728                 */
 729                args.agbno = be32_to_cpu(agi->agi_root);
 730                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 731                /*
 732                 * Allocate a fixed-size extent of inodes.
 733                 */
 734                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 735                args.prod = 1;
 736                /*
 737                 * Allow space for the inode btree to split.
 738                 */
 739                args.minleft = igeo->inobt_maxlevels;
 740                if ((error = xfs_alloc_vextent(&args)))
 741                        return error;
 742        }
 743
 744        /*
 745         * If stripe alignment is turned on, then try again with cluster
 746         * alignment.
 747         */
 748        if (isaligned && args.fsbno == NULLFSBLOCK) {
 749                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 750                args.agbno = be32_to_cpu(agi->agi_root);
 751                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 752                args.alignment = igeo->cluster_align;
 753                if ((error = xfs_alloc_vextent(&args)))
 754                        return error;
 755        }
 756
 757        /*
 758         * Finally, try a sparse allocation if the filesystem supports it and
 759         * the sparse allocation length is smaller than a full chunk.
 760         */
 761        if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
 762            igeo->ialloc_min_blks < igeo->ialloc_blks &&
 763            args.fsbno == NULLFSBLOCK) {
 764sparse_alloc:
 765                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 766                args.agbno = be32_to_cpu(agi->agi_root);
 767                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 768                args.alignment = args.mp->m_sb.sb_spino_align;
 769                args.prod = 1;
 770
 771                args.minlen = igeo->ialloc_min_blks;
 772                args.maxlen = args.minlen;
 773
 774                /*
 775                 * The inode record will be aligned to full chunk size. We must
 776                 * prevent sparse allocation from AG boundaries that result in
 777                 * invalid inode records, such as records that start at agbno 0
 778                 * or extend beyond the AG.
 779                 *
 780                 * Set min agbno to the first aligned, non-zero agbno and max to
 781                 * the last aligned agbno that is at least one full chunk from
 782                 * the end of the AG.
 783                 */
 784                args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 785                args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
 786                                            args.mp->m_sb.sb_inoalignmt) -
 787                                 igeo->ialloc_blks;
 788
 789                error = xfs_alloc_vextent(&args);
 790                if (error)
 791                        return error;
 792
 793                newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
 794                ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 795                allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 796        }
 797
 798        if (args.fsbno == NULLFSBLOCK) {
 799                *alloc = 0;
 800                return 0;
 801        }
 802        ASSERT(args.len == args.minlen);
 803
 804        /*
 805         * Stamp and write the inode buffers.
 806         *
 807         * Seed the new inode cluster with a random generation number. This
 808         * prevents short-term reuse of generation numbers if a chunk is
 809         * freed and then immediately reallocated. We use random numbers
 810         * rather than a linear progression to prevent the next generation
 811         * number from being easily guessable.
 812         */
 813        error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
 814                        args.agbno, args.len, prandom_u32());
 815
 816        if (error)
 817                return error;
 818        /*
 819         * Convert the results.
 820         */
 821        newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
 822
 823        if (xfs_inobt_issparse(~allocmask)) {
 824                /*
 825                 * We've allocated a sparse chunk. Align the startino and mask.
 826                 */
 827                xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 828
 829                rec.ir_startino = newino;
 830                rec.ir_holemask = ~allocmask;
 831                rec.ir_count = newlen;
 832                rec.ir_freecount = newlen;
 833                rec.ir_free = XFS_INOBT_ALL_FREE;
 834
 835                /*
 836                 * Insert the sparse record into the inobt and allow for a merge
 837                 * if necessary. If a merge does occur, rec is updated to the
 838                 * merged record.
 839                 */
 840                error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
 841                                               &rec, true);
 842                if (error == -EFSCORRUPTED) {
 843                        xfs_alert(args.mp,
 844        "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 845                                  XFS_AGINO_TO_INO(args.mp, agno,
 846                                                   rec.ir_startino),
 847                                  rec.ir_holemask, rec.ir_count);
 848                        xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 849                }
 850                if (error)
 851                        return error;
 852
 853                /*
 854                 * We can't merge the part we've just allocated as for the inobt
 855                 * due to finobt semantics. The original record may or may not
 856                 * exist independent of whether physical inodes exist in this
 857                 * sparse chunk.
 858                 *
 859                 * We must update the finobt record based on the inobt record.
 860                 * rec contains the fully merged and up to date inobt record
 861                 * from the previous call. Set merge false to replace any
 862                 * existing record with this one.
 863                 */
 864                if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 865                        error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
 866                                                       XFS_BTNUM_FINO, &rec,
 867                                                       false);
 868                        if (error)
 869                                return error;
 870                }
 871        } else {
 872                /* full chunk - insert new records to both btrees */
 873                error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
 874                                         XFS_BTNUM_INO);
 875                if (error)
 876                        return error;
 877
 878                if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 879                        error = xfs_inobt_insert(args.mp, tp, agbp, newino,
 880                                                 newlen, XFS_BTNUM_FINO);
 881                        if (error)
 882                                return error;
 883                }
 884        }
 885
 886        /*
 887         * Update AGI counts and newino.
 888         */
 889        be32_add_cpu(&agi->agi_count, newlen);
 890        be32_add_cpu(&agi->agi_freecount, newlen);
 891        pag = agbp->b_pag;
 892        pag->pagi_freecount += newlen;
 893        pag->pagi_count += newlen;
 894        agi->agi_newino = cpu_to_be32(newino);
 895
 896        /*
 897         * Log allocation group header fields
 898         */
 899        xfs_ialloc_log_agi(tp, agbp,
 900                XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 901        /*
 902         * Modify/log superblock values for inode count and inode free count.
 903         */
 904        xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 905        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 906        *alloc = 1;
 907        return 0;
 908}
 909
 910STATIC xfs_agnumber_t
 911xfs_ialloc_next_ag(
 912        xfs_mount_t     *mp)
 913{
 914        xfs_agnumber_t  agno;
 915
 916        spin_lock(&mp->m_agirotor_lock);
 917        agno = mp->m_agirotor;
 918        if (++mp->m_agirotor >= mp->m_maxagi)
 919                mp->m_agirotor = 0;
 920        spin_unlock(&mp->m_agirotor_lock);
 921
 922        return agno;
 923}
 924
 925/*
 926 * Select an allocation group to look for a free inode in, based on the parent
 927 * inode and the mode.  Return the allocation group buffer.
 928 */
 929STATIC xfs_agnumber_t
 930xfs_ialloc_ag_select(
 931        xfs_trans_t     *tp,            /* transaction pointer */
 932        xfs_ino_t       parent,         /* parent directory inode number */
 933        umode_t         mode)           /* bits set to indicate file type */
 934{
 935        xfs_agnumber_t  agcount;        /* number of ag's in the filesystem */
 936        xfs_agnumber_t  agno;           /* current ag number */
 937        int             flags;          /* alloc buffer locking flags */
 938        xfs_extlen_t    ineed;          /* blocks needed for inode allocation */
 939        xfs_extlen_t    longest = 0;    /* longest extent available */
 940        xfs_mount_t     *mp;            /* mount point structure */
 941        int             needspace;      /* file mode implies space allocated */
 942        xfs_perag_t     *pag;           /* per allocation group data */
 943        xfs_agnumber_t  pagno;          /* parent (starting) ag number */
 944        int             error;
 945
 946        /*
 947         * Files of these types need at least one block if length > 0
 948         * (and they won't fit in the inode, but that's hard to figure out).
 949         */
 950        needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
 951        mp = tp->t_mountp;
 952        agcount = mp->m_maxagi;
 953        if (S_ISDIR(mode))
 954                pagno = xfs_ialloc_next_ag(mp);
 955        else {
 956                pagno = XFS_INO_TO_AGNO(mp, parent);
 957                if (pagno >= agcount)
 958                        pagno = 0;
 959        }
 960
 961        ASSERT(pagno < agcount);
 962
 963        /*
 964         * Loop through allocation groups, looking for one with a little
 965         * free space in it.  Note we don't look for free inodes, exactly.
 966         * Instead, we include whether there is a need to allocate inodes
 967         * to mean that blocks must be allocated for them,
 968         * if none are currently free.
 969         */
 970        agno = pagno;
 971        flags = XFS_ALLOC_FLAG_TRYLOCK;
 972        for (;;) {
 973                pag = xfs_perag_get(mp, agno);
 974                if (!pag->pagi_inodeok) {
 975                        xfs_ialloc_next_ag(mp);
 976                        goto nextag;
 977                }
 978
 979                if (!pag->pagi_init) {
 980                        error = xfs_ialloc_pagi_init(mp, tp, agno);
 981                        if (error)
 982                                goto nextag;
 983                }
 984
 985                if (pag->pagi_freecount) {
 986                        xfs_perag_put(pag);
 987                        return agno;
 988                }
 989
 990                if (!pag->pagf_init) {
 991                        error = xfs_alloc_pagf_init(mp, tp, agno, flags);
 992                        if (error)
 993                                goto nextag;
 994                }
 995
 996                /*
 997                 * Check that there is enough free space for the file plus a
 998                 * chunk of inodes if we need to allocate some. If this is the
 999                 * first pass across the AGs, take into account the potential
1000                 * space needed for alignment of inode chunks when checking the
1001                 * longest contiguous free space in the AG - this prevents us
1002                 * from getting ENOSPC because we have free space larger than
1003                 * ialloc_blks but alignment constraints prevent us from using
1004                 * it.
1005                 *
1006                 * If we can't find an AG with space for full alignment slack to
1007                 * be taken into account, we must be near ENOSPC in all AGs.
1008                 * Hence we don't include alignment for the second pass and so
1009                 * if we fail allocation due to alignment issues then it is most
1010                 * likely a real ENOSPC condition.
1011                 */
1012                ineed = M_IGEO(mp)->ialloc_min_blks;
1013                if (flags && ineed > 1)
1014                        ineed += M_IGEO(mp)->cluster_align;
1015                longest = pag->pagf_longest;
1016                if (!longest)
1017                        longest = pag->pagf_flcount > 0;
1018
1019                if (pag->pagf_freeblks >= needspace + ineed &&
1020                    longest >= ineed) {
1021                        xfs_perag_put(pag);
1022                        return agno;
1023                }
1024nextag:
1025                xfs_perag_put(pag);
1026                /*
1027                 * No point in iterating over the rest, if we're shutting
1028                 * down.
1029                 */
1030                if (XFS_FORCED_SHUTDOWN(mp))
1031                        return NULLAGNUMBER;
1032                agno++;
1033                if (agno >= agcount)
1034                        agno = 0;
1035                if (agno == pagno) {
1036                        if (flags == 0)
1037                                return NULLAGNUMBER;
1038                        flags = 0;
1039                }
1040        }
1041}
1042
1043/*
1044 * Try to retrieve the next record to the left/right from the current one.
1045 */
1046STATIC int
1047xfs_ialloc_next_rec(
1048        struct xfs_btree_cur    *cur,
1049        xfs_inobt_rec_incore_t  *rec,
1050        int                     *done,
1051        int                     left)
1052{
1053        int                     error;
1054        int                     i;
1055
1056        if (left)
1057                error = xfs_btree_decrement(cur, 0, &i);
1058        else
1059                error = xfs_btree_increment(cur, 0, &i);
1060
1061        if (error)
1062                return error;
1063        *done = !i;
1064        if (i) {
1065                error = xfs_inobt_get_rec(cur, rec, &i);
1066                if (error)
1067                        return error;
1068                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1069                        return -EFSCORRUPTED;
1070        }
1071
1072        return 0;
1073}
1074
1075STATIC int
1076xfs_ialloc_get_rec(
1077        struct xfs_btree_cur    *cur,
1078        xfs_agino_t             agino,
1079        xfs_inobt_rec_incore_t  *rec,
1080        int                     *done)
1081{
1082        int                     error;
1083        int                     i;
1084
1085        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1086        if (error)
1087                return error;
1088        *done = !i;
1089        if (i) {
1090                error = xfs_inobt_get_rec(cur, rec, &i);
1091                if (error)
1092                        return error;
1093                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1094                        return -EFSCORRUPTED;
1095        }
1096
1097        return 0;
1098}
1099
1100/*
1101 * Return the offset of the first free inode in the record. If the inode chunk
1102 * is sparsely allocated, we convert the record holemask to inode granularity
1103 * and mask off the unallocated regions from the inode free mask.
1104 */
1105STATIC int
1106xfs_inobt_first_free_inode(
1107        struct xfs_inobt_rec_incore     *rec)
1108{
1109        xfs_inofree_t                   realfree;
1110
1111        /* if there are no holes, return the first available offset */
1112        if (!xfs_inobt_issparse(rec->ir_holemask))
1113                return xfs_lowbit64(rec->ir_free);
1114
1115        realfree = xfs_inobt_irec_to_allocmask(rec);
1116        realfree &= rec->ir_free;
1117
1118        return xfs_lowbit64(realfree);
1119}
1120
1121/*
1122 * Allocate an inode using the inobt-only algorithm.
1123 */
1124STATIC int
1125xfs_dialloc_ag_inobt(
1126        struct xfs_trans        *tp,
1127        struct xfs_buf          *agbp,
1128        xfs_ino_t               parent,
1129        xfs_ino_t               *inop)
1130{
1131        struct xfs_mount        *mp = tp->t_mountp;
1132        struct xfs_agi          *agi = agbp->b_addr;
1133        xfs_agnumber_t          agno = be32_to_cpu(agi->agi_seqno);
1134        xfs_agnumber_t          pagno = XFS_INO_TO_AGNO(mp, parent);
1135        xfs_agino_t             pagino = XFS_INO_TO_AGINO(mp, parent);
1136        struct xfs_perag        *pag = agbp->b_pag;
1137        struct xfs_btree_cur    *cur, *tcur;
1138        struct xfs_inobt_rec_incore rec, trec;
1139        xfs_ino_t               ino;
1140        int                     error;
1141        int                     offset;
1142        int                     i, j;
1143        int                     searchdistance = 10;
1144
1145        ASSERT(pag->pagi_init);
1146        ASSERT(pag->pagi_inodeok);
1147        ASSERT(pag->pagi_freecount > 0);
1148
1149 restart_pagno:
1150        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1151        /*
1152         * If pagino is 0 (this is the root inode allocation) use newino.
1153         * This must work because we've just allocated some.
1154         */
1155        if (!pagino)
1156                pagino = be32_to_cpu(agi->agi_newino);
1157
1158        error = xfs_check_agi_freecount(cur, agi);
1159        if (error)
1160                goto error0;
1161
1162        /*
1163         * If in the same AG as the parent, try to get near the parent.
1164         */
1165        if (pagno == agno) {
1166                int             doneleft;       /* done, to the left */
1167                int             doneright;      /* done, to the right */
1168
1169                error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1170                if (error)
1171                        goto error0;
1172                if (XFS_IS_CORRUPT(mp, i != 1)) {
1173                        error = -EFSCORRUPTED;
1174                        goto error0;
1175                }
1176
1177                error = xfs_inobt_get_rec(cur, &rec, &j);
1178                if (error)
1179                        goto error0;
1180                if (XFS_IS_CORRUPT(mp, j != 1)) {
1181                        error = -EFSCORRUPTED;
1182                        goto error0;
1183                }
1184
1185                if (rec.ir_freecount > 0) {
1186                        /*
1187                         * Found a free inode in the same chunk
1188                         * as the parent, done.
1189                         */
1190                        goto alloc_inode;
1191                }
1192
1193
1194                /*
1195                 * In the same AG as parent, but parent's chunk is full.
1196                 */
1197
1198                /* duplicate the cursor, search left & right simultaneously */
1199                error = xfs_btree_dup_cursor(cur, &tcur);
1200                if (error)
1201                        goto error0;
1202
1203                /*
1204                 * Skip to last blocks looked up if same parent inode.
1205                 */
1206                if (pagino != NULLAGINO &&
1207                    pag->pagl_pagino == pagino &&
1208                    pag->pagl_leftrec != NULLAGINO &&
1209                    pag->pagl_rightrec != NULLAGINO) {
1210                        error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1211                                                   &trec, &doneleft);
1212                        if (error)
1213                                goto error1;
1214
1215                        error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1216                                                   &rec, &doneright);
1217                        if (error)
1218                                goto error1;
1219                } else {
1220                        /* search left with tcur, back up 1 record */
1221                        error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1222                        if (error)
1223                                goto error1;
1224
1225                        /* search right with cur, go forward 1 record. */
1226                        error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1227                        if (error)
1228                                goto error1;
1229                }
1230
1231                /*
1232                 * Loop until we find an inode chunk with a free inode.
1233                 */
1234                while (--searchdistance > 0 && (!doneleft || !doneright)) {
1235                        int     useleft;  /* using left inode chunk this time */
1236
1237                        /* figure out the closer block if both are valid. */
1238                        if (!doneleft && !doneright) {
1239                                useleft = pagino -
1240                                 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1241                                  rec.ir_startino - pagino;
1242                        } else {
1243                                useleft = !doneleft;
1244                        }
1245
1246                        /* free inodes to the left? */
1247                        if (useleft && trec.ir_freecount) {
1248                                xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1249                                cur = tcur;
1250
1251                                pag->pagl_leftrec = trec.ir_startino;
1252                                pag->pagl_rightrec = rec.ir_startino;
1253                                pag->pagl_pagino = pagino;
1254                                rec = trec;
1255                                goto alloc_inode;
1256                        }
1257
1258                        /* free inodes to the right? */
1259                        if (!useleft && rec.ir_freecount) {
1260                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1261
1262                                pag->pagl_leftrec = trec.ir_startino;
1263                                pag->pagl_rightrec = rec.ir_startino;
1264                                pag->pagl_pagino = pagino;
1265                                goto alloc_inode;
1266                        }
1267
1268                        /* get next record to check */
1269                        if (useleft) {
1270                                error = xfs_ialloc_next_rec(tcur, &trec,
1271                                                                 &doneleft, 1);
1272                        } else {
1273                                error = xfs_ialloc_next_rec(cur, &rec,
1274                                                                 &doneright, 0);
1275                        }
1276                        if (error)
1277                                goto error1;
1278                }
1279
1280                if (searchdistance <= 0) {
1281                        /*
1282                         * Not in range - save last search
1283                         * location and allocate a new inode
1284                         */
1285                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286                        pag->pagl_leftrec = trec.ir_startino;
1287                        pag->pagl_rightrec = rec.ir_startino;
1288                        pag->pagl_pagino = pagino;
1289
1290                } else {
1291                        /*
1292                         * We've reached the end of the btree. because
1293                         * we are only searching a small chunk of the
1294                         * btree each search, there is obviously free
1295                         * inodes closer to the parent inode than we
1296                         * are now. restart the search again.
1297                         */
1298                        pag->pagl_pagino = NULLAGINO;
1299                        pag->pagl_leftrec = NULLAGINO;
1300                        pag->pagl_rightrec = NULLAGINO;
1301                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1302                        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1303                        goto restart_pagno;
1304                }
1305        }
1306
1307        /*
1308         * In a different AG from the parent.
1309         * See if the most recently allocated block has any free.
1310         */
1311        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1312                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1313                                         XFS_LOOKUP_EQ, &i);
1314                if (error)
1315                        goto error0;
1316
1317                if (i == 1) {
1318                        error = xfs_inobt_get_rec(cur, &rec, &j);
1319                        if (error)
1320                                goto error0;
1321
1322                        if (j == 1 && rec.ir_freecount > 0) {
1323                                /*
1324                                 * The last chunk allocated in the group
1325                                 * still has a free inode.
1326                                 */
1327                                goto alloc_inode;
1328                        }
1329                }
1330        }
1331
1332        /*
1333         * None left in the last group, search the whole AG
1334         */
1335        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1336        if (error)
1337                goto error0;
1338        if (XFS_IS_CORRUPT(mp, i != 1)) {
1339                error = -EFSCORRUPTED;
1340                goto error0;
1341        }
1342
1343        for (;;) {
1344                error = xfs_inobt_get_rec(cur, &rec, &i);
1345                if (error)
1346                        goto error0;
1347                if (XFS_IS_CORRUPT(mp, i != 1)) {
1348                        error = -EFSCORRUPTED;
1349                        goto error0;
1350                }
1351                if (rec.ir_freecount > 0)
1352                        break;
1353                error = xfs_btree_increment(cur, 0, &i);
1354                if (error)
1355                        goto error0;
1356                if (XFS_IS_CORRUPT(mp, i != 1)) {
1357                        error = -EFSCORRUPTED;
1358                        goto error0;
1359                }
1360        }
1361
1362alloc_inode:
1363        offset = xfs_inobt_first_free_inode(&rec);
1364        ASSERT(offset >= 0);
1365        ASSERT(offset < XFS_INODES_PER_CHUNK);
1366        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1367                                   XFS_INODES_PER_CHUNK) == 0);
1368        ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1369        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1370        rec.ir_freecount--;
1371        error = xfs_inobt_update(cur, &rec);
1372        if (error)
1373                goto error0;
1374        be32_add_cpu(&agi->agi_freecount, -1);
1375        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1376        pag->pagi_freecount--;
1377
1378        error = xfs_check_agi_freecount(cur, agi);
1379        if (error)
1380                goto error0;
1381
1382        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1383        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1384        *inop = ino;
1385        return 0;
1386error1:
1387        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1388error0:
1389        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1390        return error;
1391}
1392
1393/*
1394 * Use the free inode btree to allocate an inode based on distance from the
1395 * parent. Note that the provided cursor may be deleted and replaced.
1396 */
1397STATIC int
1398xfs_dialloc_ag_finobt_near(
1399        xfs_agino_t                     pagino,
1400        struct xfs_btree_cur            **ocur,
1401        struct xfs_inobt_rec_incore     *rec)
1402{
1403        struct xfs_btree_cur            *lcur = *ocur;  /* left search cursor */
1404        struct xfs_btree_cur            *rcur;  /* right search cursor */
1405        struct xfs_inobt_rec_incore     rrec;
1406        int                             error;
1407        int                             i, j;
1408
1409        error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1410        if (error)
1411                return error;
1412
1413        if (i == 1) {
1414                error = xfs_inobt_get_rec(lcur, rec, &i);
1415                if (error)
1416                        return error;
1417                if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1418                        return -EFSCORRUPTED;
1419
1420                /*
1421                 * See if we've landed in the parent inode record. The finobt
1422                 * only tracks chunks with at least one free inode, so record
1423                 * existence is enough.
1424                 */
1425                if (pagino >= rec->ir_startino &&
1426                    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1427                        return 0;
1428        }
1429
1430        error = xfs_btree_dup_cursor(lcur, &rcur);
1431        if (error)
1432                return error;
1433
1434        error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1435        if (error)
1436                goto error_rcur;
1437        if (j == 1) {
1438                error = xfs_inobt_get_rec(rcur, &rrec, &j);
1439                if (error)
1440                        goto error_rcur;
1441                if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1442                        error = -EFSCORRUPTED;
1443                        goto error_rcur;
1444                }
1445        }
1446
1447        if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1448                error = -EFSCORRUPTED;
1449                goto error_rcur;
1450        }
1451        if (i == 1 && j == 1) {
1452                /*
1453                 * Both the left and right records are valid. Choose the closer
1454                 * inode chunk to the target.
1455                 */
1456                if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1457                    (rrec.ir_startino - pagino)) {
1458                        *rec = rrec;
1459                        xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1460                        *ocur = rcur;
1461                } else {
1462                        xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1463                }
1464        } else if (j == 1) {
1465                /* only the right record is valid */
1466                *rec = rrec;
1467                xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1468                *ocur = rcur;
1469        } else if (i == 1) {
1470                /* only the left record is valid */
1471                xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1472        }
1473
1474        return 0;
1475
1476error_rcur:
1477        xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1478        return error;
1479}
1480
1481/*
1482 * Use the free inode btree to find a free inode based on a newino hint. If
1483 * the hint is NULL, find the first free inode in the AG.
1484 */
1485STATIC int
1486xfs_dialloc_ag_finobt_newino(
1487        struct xfs_agi                  *agi,
1488        struct xfs_btree_cur            *cur,
1489        struct xfs_inobt_rec_incore     *rec)
1490{
1491        int error;
1492        int i;
1493
1494        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1495                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1496                                         XFS_LOOKUP_EQ, &i);
1497                if (error)
1498                        return error;
1499                if (i == 1) {
1500                        error = xfs_inobt_get_rec(cur, rec, &i);
1501                        if (error)
1502                                return error;
1503                        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1504                                return -EFSCORRUPTED;
1505                        return 0;
1506                }
1507        }
1508
1509        /*
1510         * Find the first inode available in the AG.
1511         */
1512        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1513        if (error)
1514                return error;
1515        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1516                return -EFSCORRUPTED;
1517
1518        error = xfs_inobt_get_rec(cur, rec, &i);
1519        if (error)
1520                return error;
1521        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1522                return -EFSCORRUPTED;
1523
1524        return 0;
1525}
1526
1527/*
1528 * Update the inobt based on a modification made to the finobt. Also ensure that
1529 * the records from both trees are equivalent post-modification.
1530 */
1531STATIC int
1532xfs_dialloc_ag_update_inobt(
1533        struct xfs_btree_cur            *cur,   /* inobt cursor */
1534        struct xfs_inobt_rec_incore     *frec,  /* finobt record */
1535        int                             offset) /* inode offset */
1536{
1537        struct xfs_inobt_rec_incore     rec;
1538        int                             error;
1539        int                             i;
1540
1541        error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1542        if (error)
1543                return error;
1544        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1545                return -EFSCORRUPTED;
1546
1547        error = xfs_inobt_get_rec(cur, &rec, &i);
1548        if (error)
1549                return error;
1550        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1551                return -EFSCORRUPTED;
1552        ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1553                                   XFS_INODES_PER_CHUNK) == 0);
1554
1555        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1556        rec.ir_freecount--;
1557
1558        if (XFS_IS_CORRUPT(cur->bc_mp,
1559                           rec.ir_free != frec->ir_free ||
1560                           rec.ir_freecount != frec->ir_freecount))
1561                return -EFSCORRUPTED;
1562
1563        return xfs_inobt_update(cur, &rec);
1564}
1565
1566/*
1567 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1568 * back to the inobt search algorithm.
1569 *
1570 * The caller selected an AG for us, and made sure that free inodes are
1571 * available.
1572 */
1573STATIC int
1574xfs_dialloc_ag(
1575        struct xfs_trans        *tp,
1576        struct xfs_buf          *agbp,
1577        xfs_ino_t               parent,
1578        xfs_ino_t               *inop)
1579{
1580        struct xfs_mount                *mp = tp->t_mountp;
1581        struct xfs_agi                  *agi = agbp->b_addr;
1582        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
1583        xfs_agnumber_t                  pagno = XFS_INO_TO_AGNO(mp, parent);
1584        xfs_agino_t                     pagino = XFS_INO_TO_AGINO(mp, parent);
1585        struct xfs_btree_cur            *cur;   /* finobt cursor */
1586        struct xfs_btree_cur            *icur;  /* inobt cursor */
1587        struct xfs_inobt_rec_incore     rec;
1588        xfs_ino_t                       ino;
1589        int                             error;
1590        int                             offset;
1591        int                             i;
1592
1593        if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1594                return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1595
1596        /*
1597         * If pagino is 0 (this is the root inode allocation) use newino.
1598         * This must work because we've just allocated some.
1599         */
1600        if (!pagino)
1601                pagino = be32_to_cpu(agi->agi_newino);
1602
1603        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1604
1605        error = xfs_check_agi_freecount(cur, agi);
1606        if (error)
1607                goto error_cur;
1608
1609        /*
1610         * The search algorithm depends on whether we're in the same AG as the
1611         * parent. If so, find the closest available inode to the parent. If
1612         * not, consider the agi hint or find the first free inode in the AG.
1613         */
1614        if (agno == pagno)
1615                error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1616        else
1617                error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1618        if (error)
1619                goto error_cur;
1620
1621        offset = xfs_inobt_first_free_inode(&rec);
1622        ASSERT(offset >= 0);
1623        ASSERT(offset < XFS_INODES_PER_CHUNK);
1624        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1625                                   XFS_INODES_PER_CHUNK) == 0);
1626        ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1627
1628        /*
1629         * Modify or remove the finobt record.
1630         */
1631        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1632        rec.ir_freecount--;
1633        if (rec.ir_freecount)
1634                error = xfs_inobt_update(cur, &rec);
1635        else
1636                error = xfs_btree_delete(cur, &i);
1637        if (error)
1638                goto error_cur;
1639
1640        /*
1641         * The finobt has now been updated appropriately. We haven't updated the
1642         * agi and superblock yet, so we can create an inobt cursor and validate
1643         * the original freecount. If all is well, make the equivalent update to
1644         * the inobt using the finobt record and offset information.
1645         */
1646        icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1647
1648        error = xfs_check_agi_freecount(icur, agi);
1649        if (error)
1650                goto error_icur;
1651
1652        error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1653        if (error)
1654                goto error_icur;
1655
1656        /*
1657         * Both trees have now been updated. We must update the perag and
1658         * superblock before we can check the freecount for each btree.
1659         */
1660        be32_add_cpu(&agi->agi_freecount, -1);
1661        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1662        agbp->b_pag->pagi_freecount--;
1663
1664        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1665
1666        error = xfs_check_agi_freecount(icur, agi);
1667        if (error)
1668                goto error_icur;
1669        error = xfs_check_agi_freecount(cur, agi);
1670        if (error)
1671                goto error_icur;
1672
1673        xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1674        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1675        *inop = ino;
1676        return 0;
1677
1678error_icur:
1679        xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1680error_cur:
1681        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1682        return error;
1683}
1684
1685/*
1686 * Allocate an inode on disk.
1687 *
1688 * Mode is used to tell whether the new inode will need space, and whether it
1689 * is a directory.
1690 *
1691 * This function is designed to be called twice if it has to do an allocation
1692 * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1693 * If an inode is available without having to performn an allocation, an inode
1694 * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1695 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1696 * The caller should then commit the current transaction, allocate a
1697 * new transaction, and call xfs_dialloc() again, passing in the previous value
1698 * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1699 * buffer is locked across the two calls, the second call is guaranteed to have
1700 * a free inode available.
1701 *
1702 * Once we successfully pick an inode its number is returned and the on-disk
1703 * data structures are updated.  The inode itself is not read in, since doing so
1704 * would break ordering constraints with xfs_reclaim.
1705 */
1706int
1707xfs_dialloc(
1708        struct xfs_trans        *tp,
1709        xfs_ino_t               parent,
1710        umode_t                 mode,
1711        struct xfs_buf          **IO_agbp,
1712        xfs_ino_t               *inop)
1713{
1714        struct xfs_mount        *mp = tp->t_mountp;
1715        struct xfs_buf          *agbp;
1716        xfs_agnumber_t          agno;
1717        int                     error;
1718        int                     ialloced;
1719        int                     noroom = 0;
1720        xfs_agnumber_t          start_agno;
1721        struct xfs_perag        *pag;
1722        struct xfs_ino_geometry *igeo = M_IGEO(mp);
1723        int                     okalloc = 1;
1724
1725        if (*IO_agbp) {
1726                /*
1727                 * If the caller passes in a pointer to the AGI buffer,
1728                 * continue where we left off before.  In this case, we
1729                 * know that the allocation group has free inodes.
1730                 */
1731                agbp = *IO_agbp;
1732                goto out_alloc;
1733        }
1734
1735        /*
1736         * We do not have an agbp, so select an initial allocation
1737         * group for inode allocation.
1738         */
1739        start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1740        if (start_agno == NULLAGNUMBER) {
1741                *inop = NULLFSINO;
1742                return 0;
1743        }
1744
1745        /*
1746         * If we have already hit the ceiling of inode blocks then clear
1747         * okalloc so we scan all available agi structures for a free
1748         * inode.
1749         *
1750         * Read rough value of mp->m_icount by percpu_counter_read_positive,
1751         * which will sacrifice the preciseness but improve the performance.
1752         */
1753        if (igeo->maxicount &&
1754            percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1755                                                        > igeo->maxicount) {
1756                noroom = 1;
1757                okalloc = 0;
1758        }
1759
1760        /*
1761         * Loop until we find an allocation group that either has free inodes
1762         * or in which we can allocate some inodes.  Iterate through the
1763         * allocation groups upward, wrapping at the end.
1764         */
1765        agno = start_agno;
1766        for (;;) {
1767                pag = xfs_perag_get(mp, agno);
1768                if (!pag->pagi_inodeok) {
1769                        xfs_ialloc_next_ag(mp);
1770                        goto nextag;
1771                }
1772
1773                if (!pag->pagi_init) {
1774                        error = xfs_ialloc_pagi_init(mp, tp, agno);
1775                        if (error)
1776                                goto out_error;
1777                }
1778
1779                /*
1780                 * Do a first racy fast path check if this AG is usable.
1781                 */
1782                if (!pag->pagi_freecount && !okalloc)
1783                        goto nextag;
1784
1785                /*
1786                 * Then read in the AGI buffer and recheck with the AGI buffer
1787                 * lock held.
1788                 */
1789                error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1790                if (error)
1791                        goto out_error;
1792
1793                if (pag->pagi_freecount) {
1794                        xfs_perag_put(pag);
1795                        goto out_alloc;
1796                }
1797
1798                if (!okalloc)
1799                        goto nextag_relse_buffer;
1800
1801
1802                error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1803                if (error) {
1804                        xfs_trans_brelse(tp, agbp);
1805
1806                        if (error != -ENOSPC)
1807                                goto out_error;
1808
1809                        xfs_perag_put(pag);
1810                        *inop = NULLFSINO;
1811                        return 0;
1812                }
1813
1814                if (ialloced) {
1815                        /*
1816                         * We successfully allocated some inodes, return
1817                         * the current context to the caller so that it
1818                         * can commit the current transaction and call
1819                         * us again where we left off.
1820                         */
1821                        ASSERT(pag->pagi_freecount > 0);
1822                        xfs_perag_put(pag);
1823
1824                        *IO_agbp = agbp;
1825                        *inop = NULLFSINO;
1826                        return 0;
1827                }
1828
1829nextag_relse_buffer:
1830                xfs_trans_brelse(tp, agbp);
1831nextag:
1832                xfs_perag_put(pag);
1833                if (++agno == mp->m_sb.sb_agcount)
1834                        agno = 0;
1835                if (agno == start_agno) {
1836                        *inop = NULLFSINO;
1837                        return noroom ? -ENOSPC : 0;
1838                }
1839        }
1840
1841out_alloc:
1842        *IO_agbp = NULL;
1843        return xfs_dialloc_ag(tp, agbp, parent, inop);
1844out_error:
1845        xfs_perag_put(pag);
1846        return error;
1847}
1848
1849/*
1850 * Free the blocks of an inode chunk. We must consider that the inode chunk
1851 * might be sparse and only free the regions that are allocated as part of the
1852 * chunk.
1853 */
1854STATIC void
1855xfs_difree_inode_chunk(
1856        struct xfs_trans                *tp,
1857        xfs_agnumber_t                  agno,
1858        struct xfs_inobt_rec_incore     *rec)
1859{
1860        struct xfs_mount                *mp = tp->t_mountp;
1861        xfs_agblock_t                   sagbno = XFS_AGINO_TO_AGBNO(mp,
1862                                                        rec->ir_startino);
1863        int                             startidx, endidx;
1864        int                             nextbit;
1865        xfs_agblock_t                   agbno;
1866        int                             contigblk;
1867        DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1868
1869        if (!xfs_inobt_issparse(rec->ir_holemask)) {
1870                /* not sparse, calculate extent info directly */
1871                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1872                                  M_IGEO(mp)->ialloc_blks,
1873                                  &XFS_RMAP_OINFO_INODES);
1874                return;
1875        }
1876
1877        /* holemask is only 16-bits (fits in an unsigned long) */
1878        ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1879        holemask[0] = rec->ir_holemask;
1880
1881        /*
1882         * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1883         * holemask and convert the start/end index of each range to an extent.
1884         * We start with the start and end index both pointing at the first 0 in
1885         * the mask.
1886         */
1887        startidx = endidx = find_first_zero_bit(holemask,
1888                                                XFS_INOBT_HOLEMASK_BITS);
1889        nextbit = startidx + 1;
1890        while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1891                nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1892                                             nextbit);
1893                /*
1894                 * If the next zero bit is contiguous, update the end index of
1895                 * the current range and continue.
1896                 */
1897                if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1898                    nextbit == endidx + 1) {
1899                        endidx = nextbit;
1900                        goto next;
1901                }
1902
1903                /*
1904                 * nextbit is not contiguous with the current end index. Convert
1905                 * the current start/end to an extent and add it to the free
1906                 * list.
1907                 */
1908                agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1909                                  mp->m_sb.sb_inopblock;
1910                contigblk = ((endidx - startidx + 1) *
1911                             XFS_INODES_PER_HOLEMASK_BIT) /
1912                            mp->m_sb.sb_inopblock;
1913
1914                ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1915                ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1916                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1917                                  contigblk, &XFS_RMAP_OINFO_INODES);
1918
1919                /* reset range to current bit and carry on... */
1920                startidx = endidx = nextbit;
1921
1922next:
1923                nextbit++;
1924        }
1925}
1926
1927STATIC int
1928xfs_difree_inobt(
1929        struct xfs_mount                *mp,
1930        struct xfs_trans                *tp,
1931        struct xfs_buf                  *agbp,
1932        xfs_agino_t                     agino,
1933        struct xfs_icluster             *xic,
1934        struct xfs_inobt_rec_incore     *orec)
1935{
1936        struct xfs_agi                  *agi = agbp->b_addr;
1937        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
1938        struct xfs_btree_cur            *cur;
1939        struct xfs_inobt_rec_incore     rec;
1940        int                             ilen;
1941        int                             error;
1942        int                             i;
1943        int                             off;
1944
1945        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1946        ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1947
1948        /*
1949         * Initialize the cursor.
1950         */
1951        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1952
1953        error = xfs_check_agi_freecount(cur, agi);
1954        if (error)
1955                goto error0;
1956
1957        /*
1958         * Look for the entry describing this inode.
1959         */
1960        if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1961                xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1962                        __func__, error);
1963                goto error0;
1964        }
1965        if (XFS_IS_CORRUPT(mp, i != 1)) {
1966                error = -EFSCORRUPTED;
1967                goto error0;
1968        }
1969        error = xfs_inobt_get_rec(cur, &rec, &i);
1970        if (error) {
1971                xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1972                        __func__, error);
1973                goto error0;
1974        }
1975        if (XFS_IS_CORRUPT(mp, i != 1)) {
1976                error = -EFSCORRUPTED;
1977                goto error0;
1978        }
1979        /*
1980         * Get the offset in the inode chunk.
1981         */
1982        off = agino - rec.ir_startino;
1983        ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1984        ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1985        /*
1986         * Mark the inode free & increment the count.
1987         */
1988        rec.ir_free |= XFS_INOBT_MASK(off);
1989        rec.ir_freecount++;
1990
1991        /*
1992         * When an inode chunk is free, it becomes eligible for removal. Don't
1993         * remove the chunk if the block size is large enough for multiple inode
1994         * chunks (that might not be free).
1995         */
1996        if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1997            rec.ir_free == XFS_INOBT_ALL_FREE &&
1998            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1999                struct xfs_perag        *pag = agbp->b_pag;
2000
2001                xic->deleted = true;
2002                xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
2003                xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2004
2005                /*
2006                 * Remove the inode cluster from the AGI B+Tree, adjust the
2007                 * AGI and Superblock inode counts, and mark the disk space
2008                 * to be freed when the transaction is committed.
2009                 */
2010                ilen = rec.ir_freecount;
2011                be32_add_cpu(&agi->agi_count, -ilen);
2012                be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2013                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2014                pag->pagi_freecount -= ilen - 1;
2015                pag->pagi_count -= ilen;
2016                xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2017                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2018
2019                if ((error = xfs_btree_delete(cur, &i))) {
2020                        xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2021                                __func__, error);
2022                        goto error0;
2023                }
2024
2025                xfs_difree_inode_chunk(tp, agno, &rec);
2026        } else {
2027                xic->deleted = false;
2028
2029                error = xfs_inobt_update(cur, &rec);
2030                if (error) {
2031                        xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2032                                __func__, error);
2033                        goto error0;
2034                }
2035
2036                /* 
2037                 * Change the inode free counts and log the ag/sb changes.
2038                 */
2039                be32_add_cpu(&agi->agi_freecount, 1);
2040                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2041                agbp->b_pag->pagi_freecount++;
2042                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2043        }
2044
2045        error = xfs_check_agi_freecount(cur, agi);
2046        if (error)
2047                goto error0;
2048
2049        *orec = rec;
2050        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2051        return 0;
2052
2053error0:
2054        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2055        return error;
2056}
2057
2058/*
2059 * Free an inode in the free inode btree.
2060 */
2061STATIC int
2062xfs_difree_finobt(
2063        struct xfs_mount                *mp,
2064        struct xfs_trans                *tp,
2065        struct xfs_buf                  *agbp,
2066        xfs_agino_t                     agino,
2067        struct xfs_inobt_rec_incore     *ibtrec) /* inobt record */
2068{
2069        struct xfs_agi                  *agi = agbp->b_addr;
2070        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
2071        struct xfs_btree_cur            *cur;
2072        struct xfs_inobt_rec_incore     rec;
2073        int                             offset = agino - ibtrec->ir_startino;
2074        int                             error;
2075        int                             i;
2076
2077        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2078
2079        error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2080        if (error)
2081                goto error;
2082        if (i == 0) {
2083                /*
2084                 * If the record does not exist in the finobt, we must have just
2085                 * freed an inode in a previously fully allocated chunk. If not,
2086                 * something is out of sync.
2087                 */
2088                if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2089                        error = -EFSCORRUPTED;
2090                        goto error;
2091                }
2092
2093                error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2094                                             ibtrec->ir_count,
2095                                             ibtrec->ir_freecount,
2096                                             ibtrec->ir_free, &i);
2097                if (error)
2098                        goto error;
2099                ASSERT(i == 1);
2100
2101                goto out;
2102        }
2103
2104        /*
2105         * Read and update the existing record. We could just copy the ibtrec
2106         * across here, but that would defeat the purpose of having redundant
2107         * metadata. By making the modifications independently, we can catch
2108         * corruptions that we wouldn't see if we just copied from one record
2109         * to another.
2110         */
2111        error = xfs_inobt_get_rec(cur, &rec, &i);
2112        if (error)
2113                goto error;
2114        if (XFS_IS_CORRUPT(mp, i != 1)) {
2115                error = -EFSCORRUPTED;
2116                goto error;
2117        }
2118
2119        rec.ir_free |= XFS_INOBT_MASK(offset);
2120        rec.ir_freecount++;
2121
2122        if (XFS_IS_CORRUPT(mp,
2123                           rec.ir_free != ibtrec->ir_free ||
2124                           rec.ir_freecount != ibtrec->ir_freecount)) {
2125                error = -EFSCORRUPTED;
2126                goto error;
2127        }
2128
2129        /*
2130         * The content of inobt records should always match between the inobt
2131         * and finobt. The lifecycle of records in the finobt is different from
2132         * the inobt in that the finobt only tracks records with at least one
2133         * free inode. Hence, if all of the inodes are free and we aren't
2134         * keeping inode chunks permanently on disk, remove the record.
2135         * Otherwise, update the record with the new information.
2136         *
2137         * Note that we currently can't free chunks when the block size is large
2138         * enough for multiple chunks. Leave the finobt record to remain in sync
2139         * with the inobt.
2140         */
2141        if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2142            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2143            !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2144                error = xfs_btree_delete(cur, &i);
2145                if (error)
2146                        goto error;
2147                ASSERT(i == 1);
2148        } else {
2149                error = xfs_inobt_update(cur, &rec);
2150                if (error)
2151                        goto error;
2152        }
2153
2154out:
2155        error = xfs_check_agi_freecount(cur, agi);
2156        if (error)
2157                goto error;
2158
2159        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2160        return 0;
2161
2162error:
2163        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2164        return error;
2165}
2166
2167/*
2168 * Free disk inode.  Carefully avoids touching the incore inode, all
2169 * manipulations incore are the caller's responsibility.
2170 * The on-disk inode is not changed by this operation, only the
2171 * btree (free inode mask) is changed.
2172 */
2173int
2174xfs_difree(
2175        struct xfs_trans        *tp,            /* transaction pointer */
2176        xfs_ino_t               inode,          /* inode to be freed */
2177        struct xfs_icluster     *xic)   /* cluster info if deleted */
2178{
2179        /* REFERENCED */
2180        xfs_agblock_t           agbno;  /* block number containing inode */
2181        struct xfs_buf          *agbp;  /* buffer for allocation group header */
2182        xfs_agino_t             agino;  /* allocation group inode number */
2183        xfs_agnumber_t          agno;   /* allocation group number */
2184        int                     error;  /* error return value */
2185        struct xfs_mount        *mp;    /* mount structure for filesystem */
2186        struct xfs_inobt_rec_incore rec;/* btree record */
2187
2188        mp = tp->t_mountp;
2189
2190        /*
2191         * Break up inode number into its components.
2192         */
2193        agno = XFS_INO_TO_AGNO(mp, inode);
2194        if (agno >= mp->m_sb.sb_agcount)  {
2195                xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2196                        __func__, agno, mp->m_sb.sb_agcount);
2197                ASSERT(0);
2198                return -EINVAL;
2199        }
2200        agino = XFS_INO_TO_AGINO(mp, inode);
2201        if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2202                xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2203                        __func__, (unsigned long long)inode,
2204                        (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2205                ASSERT(0);
2206                return -EINVAL;
2207        }
2208        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2209        if (agbno >= mp->m_sb.sb_agblocks)  {
2210                xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2211                        __func__, agbno, mp->m_sb.sb_agblocks);
2212                ASSERT(0);
2213                return -EINVAL;
2214        }
2215        /*
2216         * Get the allocation group header.
2217         */
2218        error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2219        if (error) {
2220                xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2221                        __func__, error);
2222                return error;
2223        }
2224
2225        /*
2226         * Fix up the inode allocation btree.
2227         */
2228        error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2229        if (error)
2230                goto error0;
2231
2232        /*
2233         * Fix up the free inode btree.
2234         */
2235        if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2236                error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2237                if (error)
2238                        goto error0;
2239        }
2240
2241        return 0;
2242
2243error0:
2244        return error;
2245}
2246
2247STATIC int
2248xfs_imap_lookup(
2249        struct xfs_mount        *mp,
2250        struct xfs_trans        *tp,
2251        xfs_agnumber_t          agno,
2252        xfs_agino_t             agino,
2253        xfs_agblock_t           agbno,
2254        xfs_agblock_t           *chunk_agbno,
2255        xfs_agblock_t           *offset_agbno,
2256        int                     flags)
2257{
2258        struct xfs_inobt_rec_incore rec;
2259        struct xfs_btree_cur    *cur;
2260        struct xfs_buf          *agbp;
2261        int                     error;
2262        int                     i;
2263
2264        error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2265        if (error) {
2266                xfs_alert(mp,
2267                        "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2268                        __func__, error, agno);
2269                return error;
2270        }
2271
2272        /*
2273         * Lookup the inode record for the given agino. If the record cannot be
2274         * found, then it's an invalid inode number and we should abort. Once
2275         * we have a record, we need to ensure it contains the inode number
2276         * we are looking up.
2277         */
2278        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2279        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2280        if (!error) {
2281                if (i)
2282                        error = xfs_inobt_get_rec(cur, &rec, &i);
2283                if (!error && i == 0)
2284                        error = -EINVAL;
2285        }
2286
2287        xfs_trans_brelse(tp, agbp);
2288        xfs_btree_del_cursor(cur, error);
2289        if (error)
2290                return error;
2291
2292        /* check that the returned record contains the required inode */
2293        if (rec.ir_startino > agino ||
2294            rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2295                return -EINVAL;
2296
2297        /* for untrusted inodes check it is allocated first */
2298        if ((flags & XFS_IGET_UNTRUSTED) &&
2299            (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2300                return -EINVAL;
2301
2302        *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2303        *offset_agbno = agbno - *chunk_agbno;
2304        return 0;
2305}
2306
2307/*
2308 * Return the location of the inode in imap, for mapping it into a buffer.
2309 */
2310int
2311xfs_imap(
2312        xfs_mount_t      *mp,   /* file system mount structure */
2313        xfs_trans_t      *tp,   /* transaction pointer */
2314        xfs_ino_t       ino,    /* inode to locate */
2315        struct xfs_imap *imap,  /* location map structure */
2316        uint            flags)  /* flags for inode btree lookup */
2317{
2318        xfs_agblock_t   agbno;  /* block number of inode in the alloc group */
2319        xfs_agino_t     agino;  /* inode number within alloc group */
2320        xfs_agnumber_t  agno;   /* allocation group number */
2321        xfs_agblock_t   chunk_agbno;    /* first block in inode chunk */
2322        xfs_agblock_t   cluster_agbno;  /* first block in inode cluster */
2323        int             error;  /* error code */
2324        int             offset; /* index of inode in its buffer */
2325        xfs_agblock_t   offset_agbno;   /* blks from chunk start to inode */
2326
2327        ASSERT(ino != NULLFSINO);
2328
2329        /*
2330         * Split up the inode number into its parts.
2331         */
2332        agno = XFS_INO_TO_AGNO(mp, ino);
2333        agino = XFS_INO_TO_AGINO(mp, ino);
2334        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2335        if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2336            ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2337#ifdef DEBUG
2338                /*
2339                 * Don't output diagnostic information for untrusted inodes
2340                 * as they can be invalid without implying corruption.
2341                 */
2342                if (flags & XFS_IGET_UNTRUSTED)
2343                        return -EINVAL;
2344                if (agno >= mp->m_sb.sb_agcount) {
2345                        xfs_alert(mp,
2346                                "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2347                                __func__, agno, mp->m_sb.sb_agcount);
2348                }
2349                if (agbno >= mp->m_sb.sb_agblocks) {
2350                        xfs_alert(mp,
2351                "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2352                                __func__, (unsigned long long)agbno,
2353                                (unsigned long)mp->m_sb.sb_agblocks);
2354                }
2355                if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2356                        xfs_alert(mp,
2357                "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2358                                __func__, ino,
2359                                XFS_AGINO_TO_INO(mp, agno, agino));
2360                }
2361                xfs_stack_trace();
2362#endif /* DEBUG */
2363                return -EINVAL;
2364        }
2365
2366        /*
2367         * For bulkstat and handle lookups, we have an untrusted inode number
2368         * that we have to verify is valid. We cannot do this just by reading
2369         * the inode buffer as it may have been unlinked and removed leaving
2370         * inodes in stale state on disk. Hence we have to do a btree lookup
2371         * in all cases where an untrusted inode number is passed.
2372         */
2373        if (flags & XFS_IGET_UNTRUSTED) {
2374                error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2375                                        &chunk_agbno, &offset_agbno, flags);
2376                if (error)
2377                        return error;
2378                goto out_map;
2379        }
2380
2381        /*
2382         * If the inode cluster size is the same as the blocksize or
2383         * smaller we get to the buffer by simple arithmetics.
2384         */
2385        if (M_IGEO(mp)->blocks_per_cluster == 1) {
2386                offset = XFS_INO_TO_OFFSET(mp, ino);
2387                ASSERT(offset < mp->m_sb.sb_inopblock);
2388
2389                imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2390                imap->im_len = XFS_FSB_TO_BB(mp, 1);
2391                imap->im_boffset = (unsigned short)(offset <<
2392                                                        mp->m_sb.sb_inodelog);
2393                return 0;
2394        }
2395
2396        /*
2397         * If the inode chunks are aligned then use simple maths to
2398         * find the location. Otherwise we have to do a btree
2399         * lookup to find the location.
2400         */
2401        if (M_IGEO(mp)->inoalign_mask) {
2402                offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2403                chunk_agbno = agbno - offset_agbno;
2404        } else {
2405                error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2406                                        &chunk_agbno, &offset_agbno, flags);
2407                if (error)
2408                        return error;
2409        }
2410
2411out_map:
2412        ASSERT(agbno >= chunk_agbno);
2413        cluster_agbno = chunk_agbno +
2414                ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2415                 M_IGEO(mp)->blocks_per_cluster);
2416        offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2417                XFS_INO_TO_OFFSET(mp, ino);
2418
2419        imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2420        imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2421        imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2422
2423        /*
2424         * If the inode number maps to a block outside the bounds
2425         * of the file system then return NULL rather than calling
2426         * read_buf and panicing when we get an error from the
2427         * driver.
2428         */
2429        if ((imap->im_blkno + imap->im_len) >
2430            XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2431                xfs_alert(mp,
2432        "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2433                        __func__, (unsigned long long) imap->im_blkno,
2434                        (unsigned long long) imap->im_len,
2435                        XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2436                return -EINVAL;
2437        }
2438        return 0;
2439}
2440
2441/*
2442 * Log specified fields for the ag hdr (inode section). The growth of the agi
2443 * structure over time requires that we interpret the buffer as two logical
2444 * regions delineated by the end of the unlinked list. This is due to the size
2445 * of the hash table and its location in the middle of the agi.
2446 *
2447 * For example, a request to log a field before agi_unlinked and a field after
2448 * agi_unlinked could cause us to log the entire hash table and use an excessive
2449 * amount of log space. To avoid this behavior, log the region up through
2450 * agi_unlinked in one call and the region after agi_unlinked through the end of
2451 * the structure in another.
2452 */
2453void
2454xfs_ialloc_log_agi(
2455        xfs_trans_t     *tp,            /* transaction pointer */
2456        xfs_buf_t       *bp,            /* allocation group header buffer */
2457        int             fields)         /* bitmask of fields to log */
2458{
2459        int                     first;          /* first byte number */
2460        int                     last;           /* last byte number */
2461        static const short      offsets[] = {   /* field starting offsets */
2462                                        /* keep in sync with bit definitions */
2463                offsetof(xfs_agi_t, agi_magicnum),
2464                offsetof(xfs_agi_t, agi_versionnum),
2465                offsetof(xfs_agi_t, agi_seqno),
2466                offsetof(xfs_agi_t, agi_length),
2467                offsetof(xfs_agi_t, agi_count),
2468                offsetof(xfs_agi_t, agi_root),
2469                offsetof(xfs_agi_t, agi_level),
2470                offsetof(xfs_agi_t, agi_freecount),
2471                offsetof(xfs_agi_t, agi_newino),
2472                offsetof(xfs_agi_t, agi_dirino),
2473                offsetof(xfs_agi_t, agi_unlinked),
2474                offsetof(xfs_agi_t, agi_free_root),
2475                offsetof(xfs_agi_t, agi_free_level),
2476                sizeof(xfs_agi_t)
2477        };
2478#ifdef DEBUG
2479        struct xfs_agi          *agi = bp->b_addr;
2480
2481        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2482#endif
2483
2484        /*
2485         * Compute byte offsets for the first and last fields in the first
2486         * region and log the agi buffer. This only logs up through
2487         * agi_unlinked.
2488         */
2489        if (fields & XFS_AGI_ALL_BITS_R1) {
2490                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2491                                  &first, &last);
2492                xfs_trans_log_buf(tp, bp, first, last);
2493        }
2494
2495        /*
2496         * Mask off the bits in the first region and calculate the first and
2497         * last field offsets for any bits in the second region.
2498         */
2499        fields &= ~XFS_AGI_ALL_BITS_R1;
2500        if (fields) {
2501                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2502                                  &first, &last);
2503                xfs_trans_log_buf(tp, bp, first, last);
2504        }
2505}
2506
2507static xfs_failaddr_t
2508xfs_agi_verify(
2509        struct xfs_buf  *bp)
2510{
2511        struct xfs_mount *mp = bp->b_mount;
2512        struct xfs_agi  *agi = bp->b_addr;
2513        int             i;
2514
2515        if (xfs_sb_version_hascrc(&mp->m_sb)) {
2516                if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2517                        return __this_address;
2518                if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2519                        return __this_address;
2520        }
2521
2522        /*
2523         * Validate the magic number of the agi block.
2524         */
2525        if (!xfs_verify_magic(bp, agi->agi_magicnum))
2526                return __this_address;
2527        if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2528                return __this_address;
2529
2530        if (be32_to_cpu(agi->agi_level) < 1 ||
2531            be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2532                return __this_address;
2533
2534        if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2535            (be32_to_cpu(agi->agi_free_level) < 1 ||
2536             be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2537                return __this_address;
2538
2539        /*
2540         * during growfs operations, the perag is not fully initialised,
2541         * so we can't use it for any useful checking. growfs ensures we can't
2542         * use it by using uncached buffers that don't have the perag attached
2543         * so we can detect and avoid this problem.
2544         */
2545        if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2546                return __this_address;
2547
2548        for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2549                if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2550                        continue;
2551                if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2552                        return __this_address;
2553        }
2554
2555        return NULL;
2556}
2557
2558static void
2559xfs_agi_read_verify(
2560        struct xfs_buf  *bp)
2561{
2562        struct xfs_mount *mp = bp->b_mount;
2563        xfs_failaddr_t  fa;
2564
2565        if (xfs_sb_version_hascrc(&mp->m_sb) &&
2566            !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2567                xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2568        else {
2569                fa = xfs_agi_verify(bp);
2570                if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2571                        xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2572        }
2573}
2574
2575static void
2576xfs_agi_write_verify(
2577        struct xfs_buf  *bp)
2578{
2579        struct xfs_mount        *mp = bp->b_mount;
2580        struct xfs_buf_log_item *bip = bp->b_log_item;
2581        struct xfs_agi          *agi = bp->b_addr;
2582        xfs_failaddr_t          fa;
2583
2584        fa = xfs_agi_verify(bp);
2585        if (fa) {
2586                xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2587                return;
2588        }
2589
2590        if (!xfs_sb_version_hascrc(&mp->m_sb))
2591                return;
2592
2593        if (bip)
2594                agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2595        xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2596}
2597
2598const struct xfs_buf_ops xfs_agi_buf_ops = {
2599        .name = "xfs_agi",
2600        .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2601        .verify_read = xfs_agi_read_verify,
2602        .verify_write = xfs_agi_write_verify,
2603        .verify_struct = xfs_agi_verify,
2604};
2605
2606/*
2607 * Read in the allocation group header (inode allocation section)
2608 */
2609int
2610xfs_read_agi(
2611        struct xfs_mount        *mp,    /* file system mount structure */
2612        struct xfs_trans        *tp,    /* transaction pointer */
2613        xfs_agnumber_t          agno,   /* allocation group number */
2614        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2615{
2616        int                     error;
2617
2618        trace_xfs_read_agi(mp, agno);
2619
2620        ASSERT(agno != NULLAGNUMBER);
2621        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2622                        XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2623                        XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2624        if (error)
2625                return error;
2626        if (tp)
2627                xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2628
2629        xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2630        return 0;
2631}
2632
2633int
2634xfs_ialloc_read_agi(
2635        struct xfs_mount        *mp,    /* file system mount structure */
2636        struct xfs_trans        *tp,    /* transaction pointer */
2637        xfs_agnumber_t          agno,   /* allocation group number */
2638        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2639{
2640        struct xfs_agi          *agi;   /* allocation group header */
2641        struct xfs_perag        *pag;   /* per allocation group data */
2642        int                     error;
2643
2644        trace_xfs_ialloc_read_agi(mp, agno);
2645
2646        error = xfs_read_agi(mp, tp, agno, bpp);
2647        if (error)
2648                return error;
2649
2650        agi = (*bpp)->b_addr;
2651        pag = (*bpp)->b_pag;
2652        if (!pag->pagi_init) {
2653                pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2654                pag->pagi_count = be32_to_cpu(agi->agi_count);
2655                pag->pagi_init = 1;
2656        }
2657
2658        /*
2659         * It's possible for these to be out of sync if
2660         * we are in the middle of a forced shutdown.
2661         */
2662        ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2663                XFS_FORCED_SHUTDOWN(mp));
2664        return 0;
2665}
2666
2667/*
2668 * Read in the agi to initialise the per-ag data in the mount structure
2669 */
2670int
2671xfs_ialloc_pagi_init(
2672        xfs_mount_t     *mp,            /* file system mount structure */
2673        xfs_trans_t     *tp,            /* transaction pointer */
2674        xfs_agnumber_t  agno)           /* allocation group number */
2675{
2676        xfs_buf_t       *bp = NULL;
2677        int             error;
2678
2679        error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2680        if (error)
2681                return error;
2682        if (bp)
2683                xfs_trans_brelse(tp, bp);
2684        return 0;
2685}
2686
2687/* Is there an inode record covering a given range of inode numbers? */
2688int
2689xfs_ialloc_has_inode_record(
2690        struct xfs_btree_cur    *cur,
2691        xfs_agino_t             low,
2692        xfs_agino_t             high,
2693        bool                    *exists)
2694{
2695        struct xfs_inobt_rec_incore     irec;
2696        xfs_agino_t             agino;
2697        uint16_t                holemask;
2698        int                     has_record;
2699        int                     i;
2700        int                     error;
2701
2702        *exists = false;
2703        error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2704        while (error == 0 && has_record) {
2705                error = xfs_inobt_get_rec(cur, &irec, &has_record);
2706                if (error || irec.ir_startino > high)
2707                        break;
2708
2709                agino = irec.ir_startino;
2710                holemask = irec.ir_holemask;
2711                for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2712                                i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2713                        if (holemask & 1)
2714                                continue;
2715                        if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2716                                        agino <= high) {
2717                                *exists = true;
2718                                return 0;
2719                        }
2720                }
2721
2722                error = xfs_btree_increment(cur, 0, &has_record);
2723        }
2724        return error;
2725}
2726
2727/* Is there an inode record covering a given extent? */
2728int
2729xfs_ialloc_has_inodes_at_extent(
2730        struct xfs_btree_cur    *cur,
2731        xfs_agblock_t           bno,
2732        xfs_extlen_t            len,
2733        bool                    *exists)
2734{
2735        xfs_agino_t             low;
2736        xfs_agino_t             high;
2737
2738        low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2739        high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2740
2741        return xfs_ialloc_has_inode_record(cur, low, high, exists);
2742}
2743
2744struct xfs_ialloc_count_inodes {
2745        xfs_agino_t                     count;
2746        xfs_agino_t                     freecount;
2747};
2748
2749/* Record inode counts across all inobt records. */
2750STATIC int
2751xfs_ialloc_count_inodes_rec(
2752        struct xfs_btree_cur            *cur,
2753        union xfs_btree_rec             *rec,
2754        void                            *priv)
2755{
2756        struct xfs_inobt_rec_incore     irec;
2757        struct xfs_ialloc_count_inodes  *ci = priv;
2758
2759        xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2760        ci->count += irec.ir_count;
2761        ci->freecount += irec.ir_freecount;
2762
2763        return 0;
2764}
2765
2766/* Count allocated and free inodes under an inobt. */
2767int
2768xfs_ialloc_count_inodes(
2769        struct xfs_btree_cur            *cur,
2770        xfs_agino_t                     *count,
2771        xfs_agino_t                     *freecount)
2772{
2773        struct xfs_ialloc_count_inodes  ci = {0};
2774        int                             error;
2775
2776        ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2777        error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2778        if (error)
2779                return error;
2780
2781        *count = ci.count;
2782        *freecount = ci.freecount;
2783        return 0;
2784}
2785
2786/*
2787 * Initialize inode-related geometry information.
2788 *
2789 * Compute the inode btree min and max levels and set maxicount.
2790 *
2791 * Set the inode cluster size.  This may still be overridden by the file
2792 * system block size if it is larger than the chosen cluster size.
2793 *
2794 * For v5 filesystems, scale the cluster size with the inode size to keep a
2795 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2796 * inode alignment value appropriately for larger cluster sizes.
2797 *
2798 * Then compute the inode cluster alignment information.
2799 */
2800void
2801xfs_ialloc_setup_geometry(
2802        struct xfs_mount        *mp)
2803{
2804        struct xfs_sb           *sbp = &mp->m_sb;
2805        struct xfs_ino_geometry *igeo = M_IGEO(mp);
2806        uint64_t                icount;
2807        uint                    inodes;
2808
2809        /* Compute inode btree geometry. */
2810        igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2811        igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2812        igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2813        igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2814        igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2815
2816        igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2817                        sbp->sb_inopblock);
2818        igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2819
2820        if (sbp->sb_spino_align)
2821                igeo->ialloc_min_blks = sbp->sb_spino_align;
2822        else
2823                igeo->ialloc_min_blks = igeo->ialloc_blks;
2824
2825        /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2826        inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2827        igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2828                        inodes);
2829
2830        /*
2831         * Set the maximum inode count for this filesystem, being careful not
2832         * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2833         * users should never get here due to failing sb verification, but
2834         * certain users (xfs_db) need to be usable even with corrupt metadata.
2835         */
2836        if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2837                /*
2838                 * Make sure the maximum inode count is a multiple
2839                 * of the units we allocate inodes in.
2840                 */
2841                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2842                do_div(icount, 100);
2843                do_div(icount, igeo->ialloc_blks);
2844                igeo->maxicount = XFS_FSB_TO_INO(mp,
2845                                icount * igeo->ialloc_blks);
2846        } else {
2847                igeo->maxicount = 0;
2848        }
2849
2850        /*
2851         * Compute the desired size of an inode cluster buffer size, which
2852         * starts at 8K and (on v5 filesystems) scales up with larger inode
2853         * sizes.
2854         *
2855         * Preserve the desired inode cluster size because the sparse inodes
2856         * feature uses that desired size (not the actual size) to compute the
2857         * sparse inode alignment.  The mount code validates this value, so we
2858         * cannot change the behavior.
2859         */
2860        igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2861        if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
2862                int     new_size = igeo->inode_cluster_size_raw;
2863
2864                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2865                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2866                        igeo->inode_cluster_size_raw = new_size;
2867        }
2868
2869        /* Calculate inode cluster ratios. */
2870        if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2871                igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2872                                igeo->inode_cluster_size_raw);
2873        else
2874                igeo->blocks_per_cluster = 1;
2875        igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2876        igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2877
2878        /* Calculate inode cluster alignment. */
2879        if (xfs_sb_version_hasalign(&mp->m_sb) &&
2880            mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2881                igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2882        else
2883                igeo->cluster_align = 1;
2884        igeo->inoalign_mask = igeo->cluster_align - 1;
2885        igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2886
2887        /*
2888         * If we are using stripe alignment, check whether
2889         * the stripe unit is a multiple of the inode alignment
2890         */
2891        if (mp->m_dalign && igeo->inoalign_mask &&
2892            !(mp->m_dalign & igeo->inoalign_mask))
2893                igeo->ialloc_align = mp->m_dalign;
2894        else
2895                igeo->ialloc_align = 0;
2896}
2897
2898/* Compute the location of the root directory inode that is laid out by mkfs. */
2899xfs_ino_t
2900xfs_ialloc_calc_rootino(
2901        struct xfs_mount        *mp,
2902        int                     sunit)
2903{
2904        struct xfs_ino_geometry *igeo = M_IGEO(mp);
2905        xfs_agblock_t           first_bno;
2906
2907        /*
2908         * Pre-calculate the geometry of AG 0.  We know what it looks like
2909         * because libxfs knows how to create allocation groups now.
2910         *
2911         * first_bno is the first block in which mkfs could possibly have
2912         * allocated the root directory inode, once we factor in the metadata
2913         * that mkfs formats before it.  Namely, the four AG headers...
2914         */
2915        first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2916
2917        /* ...the two free space btree roots... */
2918        first_bno += 2;
2919
2920        /* ...the inode btree root... */
2921        first_bno += 1;
2922
2923        /* ...the initial AGFL... */
2924        first_bno += xfs_alloc_min_freelist(mp, NULL);
2925
2926        /* ...the free inode btree root... */
2927        if (xfs_sb_version_hasfinobt(&mp->m_sb))
2928                first_bno++;
2929
2930        /* ...the reverse mapping btree root... */
2931        if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2932                first_bno++;
2933
2934        /* ...the reference count btree... */
2935        if (xfs_sb_version_hasreflink(&mp->m_sb))
2936                first_bno++;
2937
2938        /*
2939         * ...and the log, if it is allocated in the first allocation group.
2940         *
2941         * This can happen with filesystems that only have a single
2942         * allocation group, or very odd geometries created by old mkfs
2943         * versions on very small filesystems.
2944         */
2945        if (mp->m_sb.sb_logstart &&
2946            XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2947                 first_bno += mp->m_sb.sb_logblocks;
2948
2949        /*
2950         * Now round first_bno up to whatever allocation alignment is given
2951         * by the filesystem or was passed in.
2952         */
2953        if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0)
2954                first_bno = roundup(first_bno, sunit);
2955        else if (xfs_sb_version_hasalign(&mp->m_sb) &&
2956                        mp->m_sb.sb_inoalignmt > 1)
2957                first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2958
2959        return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2960}
2961