linux/fs/xfs/scrub/repair.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2018 Oracle.  All Rights Reserved.
   4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_trans_resv.h"
  11#include "xfs_mount.h"
  12#include "xfs_btree.h"
  13#include "xfs_log_format.h"
  14#include "xfs_trans.h"
  15#include "xfs_sb.h"
  16#include "xfs_inode.h"
  17#include "xfs_alloc.h"
  18#include "xfs_alloc_btree.h"
  19#include "xfs_ialloc.h"
  20#include "xfs_ialloc_btree.h"
  21#include "xfs_rmap.h"
  22#include "xfs_rmap_btree.h"
  23#include "xfs_refcount_btree.h"
  24#include "xfs_extent_busy.h"
  25#include "xfs_ag_resv.h"
  26#include "xfs_quota.h"
  27#include "scrub/scrub.h"
  28#include "scrub/common.h"
  29#include "scrub/trace.h"
  30#include "scrub/repair.h"
  31#include "scrub/bitmap.h"
  32
  33/*
  34 * Attempt to repair some metadata, if the metadata is corrupt and userspace
  35 * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
  36 * and will set *fixed to true if it thinks it repaired anything.
  37 */
  38int
  39xrep_attempt(
  40        struct xfs_inode        *ip,
  41        struct xfs_scrub        *sc)
  42{
  43        int                     error = 0;
  44
  45        trace_xrep_attempt(ip, sc->sm, error);
  46
  47        xchk_ag_btcur_free(&sc->sa);
  48
  49        /* Repair whatever's broken. */
  50        ASSERT(sc->ops->repair);
  51        error = sc->ops->repair(sc);
  52        trace_xrep_done(ip, sc->sm, error);
  53        switch (error) {
  54        case 0:
  55                /*
  56                 * Repair succeeded.  Commit the fixes and perform a second
  57                 * scrub so that we can tell userspace if we fixed the problem.
  58                 */
  59                sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
  60                sc->flags |= XREP_ALREADY_FIXED;
  61                return -EAGAIN;
  62        case -EDEADLOCK:
  63        case -EAGAIN:
  64                /* Tell the caller to try again having grabbed all the locks. */
  65                if (!(sc->flags & XCHK_TRY_HARDER)) {
  66                        sc->flags |= XCHK_TRY_HARDER;
  67                        return -EAGAIN;
  68                }
  69                /*
  70                 * We tried harder but still couldn't grab all the resources
  71                 * we needed to fix it.  The corruption has not been fixed,
  72                 * so report back to userspace.
  73                 */
  74                return -EFSCORRUPTED;
  75        default:
  76                return error;
  77        }
  78}
  79
  80/*
  81 * Complain about unfixable problems in the filesystem.  We don't log
  82 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
  83 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
  84 * administrator isn't running xfs_scrub in no-repairs mode.
  85 *
  86 * Use this helper function because _ratelimited silently declares a static
  87 * structure to track rate limiting information.
  88 */
  89void
  90xrep_failure(
  91        struct xfs_mount        *mp)
  92{
  93        xfs_alert_ratelimited(mp,
  94"Corruption not fixed during online repair.  Unmount and run xfs_repair.");
  95}
  96
  97/*
  98 * Repair probe -- userspace uses this to probe if we're willing to repair a
  99 * given mountpoint.
 100 */
 101int
 102xrep_probe(
 103        struct xfs_scrub        *sc)
 104{
 105        int                     error = 0;
 106
 107        if (xchk_should_terminate(sc, &error))
 108                return error;
 109
 110        return 0;
 111}
 112
 113/*
 114 * Roll a transaction, keeping the AG headers locked and reinitializing
 115 * the btree cursors.
 116 */
 117int
 118xrep_roll_ag_trans(
 119        struct xfs_scrub        *sc)
 120{
 121        int                     error;
 122
 123        /* Keep the AG header buffers locked so we can keep going. */
 124        if (sc->sa.agi_bp)
 125                xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
 126        if (sc->sa.agf_bp)
 127                xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
 128        if (sc->sa.agfl_bp)
 129                xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
 130
 131        /*
 132         * Roll the transaction.  We still own the buffer and the buffer lock
 133         * regardless of whether or not the roll succeeds.  If the roll fails,
 134         * the buffers will be released during teardown on our way out of the
 135         * kernel.  If it succeeds, we join them to the new transaction and
 136         * move on.
 137         */
 138        error = xfs_trans_roll(&sc->tp);
 139        if (error)
 140                return error;
 141
 142        /* Join AG headers to the new transaction. */
 143        if (sc->sa.agi_bp)
 144                xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
 145        if (sc->sa.agf_bp)
 146                xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
 147        if (sc->sa.agfl_bp)
 148                xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
 149
 150        return 0;
 151}
 152
 153/*
 154 * Does the given AG have enough space to rebuild a btree?  Neither AG
 155 * reservation can be critical, and we must have enough space (factoring
 156 * in AG reservations) to construct a whole btree.
 157 */
 158bool
 159xrep_ag_has_space(
 160        struct xfs_perag        *pag,
 161        xfs_extlen_t            nr_blocks,
 162        enum xfs_ag_resv_type   type)
 163{
 164        return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
 165                !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
 166                pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
 167}
 168
 169/*
 170 * Figure out how many blocks to reserve for an AG repair.  We calculate the
 171 * worst case estimate for the number of blocks we'd need to rebuild one of
 172 * any type of per-AG btree.
 173 */
 174xfs_extlen_t
 175xrep_calc_ag_resblks(
 176        struct xfs_scrub                *sc)
 177{
 178        struct xfs_mount                *mp = sc->mp;
 179        struct xfs_scrub_metadata       *sm = sc->sm;
 180        struct xfs_perag                *pag;
 181        struct xfs_buf                  *bp;
 182        xfs_agino_t                     icount = NULLAGINO;
 183        xfs_extlen_t                    aglen = NULLAGBLOCK;
 184        xfs_extlen_t                    usedlen;
 185        xfs_extlen_t                    freelen;
 186        xfs_extlen_t                    bnobt_sz;
 187        xfs_extlen_t                    inobt_sz;
 188        xfs_extlen_t                    rmapbt_sz;
 189        xfs_extlen_t                    refcbt_sz;
 190        int                             error;
 191
 192        if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
 193                return 0;
 194
 195        pag = xfs_perag_get(mp, sm->sm_agno);
 196        if (pag->pagi_init) {
 197                /* Use in-core icount if possible. */
 198                icount = pag->pagi_count;
 199        } else {
 200                /* Try to get the actual counters from disk. */
 201                error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
 202                if (!error) {
 203                        icount = pag->pagi_count;
 204                        xfs_buf_relse(bp);
 205                }
 206        }
 207
 208        /* Now grab the block counters from the AGF. */
 209        error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
 210        if (!error) {
 211                struct xfs_agf  *agf = bp->b_addr;
 212
 213                aglen = be32_to_cpu(agf->agf_length);
 214                freelen = be32_to_cpu(agf->agf_freeblks);
 215                usedlen = aglen - freelen;
 216                xfs_buf_relse(bp);
 217        }
 218        xfs_perag_put(pag);
 219
 220        /* If the icount is impossible, make some worst-case assumptions. */
 221        if (icount == NULLAGINO ||
 222            !xfs_verify_agino(mp, sm->sm_agno, icount)) {
 223                xfs_agino_t     first, last;
 224
 225                xfs_agino_range(mp, sm->sm_agno, &first, &last);
 226                icount = last - first + 1;
 227        }
 228
 229        /* If the block counts are impossible, make worst-case assumptions. */
 230        if (aglen == NULLAGBLOCK ||
 231            aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
 232            freelen >= aglen) {
 233                aglen = xfs_ag_block_count(mp, sm->sm_agno);
 234                freelen = aglen;
 235                usedlen = aglen;
 236        }
 237
 238        trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
 239                        freelen, usedlen);
 240
 241        /*
 242         * Figure out how many blocks we'd need worst case to rebuild
 243         * each type of btree.  Note that we can only rebuild the
 244         * bnobt/cntbt or inobt/finobt as pairs.
 245         */
 246        bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
 247        if (xfs_sb_version_hassparseinodes(&mp->m_sb))
 248                inobt_sz = xfs_iallocbt_calc_size(mp, icount /
 249                                XFS_INODES_PER_HOLEMASK_BIT);
 250        else
 251                inobt_sz = xfs_iallocbt_calc_size(mp, icount /
 252                                XFS_INODES_PER_CHUNK);
 253        if (xfs_sb_version_hasfinobt(&mp->m_sb))
 254                inobt_sz *= 2;
 255        if (xfs_sb_version_hasreflink(&mp->m_sb))
 256                refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
 257        else
 258                refcbt_sz = 0;
 259        if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
 260                /*
 261                 * Guess how many blocks we need to rebuild the rmapbt.
 262                 * For non-reflink filesystems we can't have more records than
 263                 * used blocks.  However, with reflink it's possible to have
 264                 * more than one rmap record per AG block.  We don't know how
 265                 * many rmaps there could be in the AG, so we start off with
 266                 * what we hope is an generous over-estimation.
 267                 */
 268                if (xfs_sb_version_hasreflink(&mp->m_sb))
 269                        rmapbt_sz = xfs_rmapbt_calc_size(mp,
 270                                        (unsigned long long)aglen * 2);
 271                else
 272                        rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
 273        } else {
 274                rmapbt_sz = 0;
 275        }
 276
 277        trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
 278                        inobt_sz, rmapbt_sz, refcbt_sz);
 279
 280        return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
 281}
 282
 283/* Allocate a block in an AG. */
 284int
 285xrep_alloc_ag_block(
 286        struct xfs_scrub                *sc,
 287        const struct xfs_owner_info     *oinfo,
 288        xfs_fsblock_t                   *fsbno,
 289        enum xfs_ag_resv_type           resv)
 290{
 291        struct xfs_alloc_arg            args = {0};
 292        xfs_agblock_t                   bno;
 293        int                             error;
 294
 295        switch (resv) {
 296        case XFS_AG_RESV_AGFL:
 297        case XFS_AG_RESV_RMAPBT:
 298                error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
 299                if (error)
 300                        return error;
 301                if (bno == NULLAGBLOCK)
 302                        return -ENOSPC;
 303                xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
 304                                1, false);
 305                *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
 306                if (resv == XFS_AG_RESV_RMAPBT)
 307                        xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
 308                return 0;
 309        default:
 310                break;
 311        }
 312
 313        args.tp = sc->tp;
 314        args.mp = sc->mp;
 315        args.oinfo = *oinfo;
 316        args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
 317        args.minlen = 1;
 318        args.maxlen = 1;
 319        args.prod = 1;
 320        args.type = XFS_ALLOCTYPE_THIS_AG;
 321        args.resv = resv;
 322
 323        error = xfs_alloc_vextent(&args);
 324        if (error)
 325                return error;
 326        if (args.fsbno == NULLFSBLOCK)
 327                return -ENOSPC;
 328        ASSERT(args.len == 1);
 329        *fsbno = args.fsbno;
 330
 331        return 0;
 332}
 333
 334/* Initialize a new AG btree root block with zero entries. */
 335int
 336xrep_init_btblock(
 337        struct xfs_scrub                *sc,
 338        xfs_fsblock_t                   fsb,
 339        struct xfs_buf                  **bpp,
 340        xfs_btnum_t                     btnum,
 341        const struct xfs_buf_ops        *ops)
 342{
 343        struct xfs_trans                *tp = sc->tp;
 344        struct xfs_mount                *mp = sc->mp;
 345        struct xfs_buf                  *bp;
 346        int                             error;
 347
 348        trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
 349                        XFS_FSB_TO_AGBNO(mp, fsb), btnum);
 350
 351        ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
 352        error = xfs_trans_get_buf(tp, mp->m_ddev_targp,
 353                        XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0,
 354                        &bp);
 355        if (error)
 356                return error;
 357        xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
 358        xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno);
 359        xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
 360        xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
 361        bp->b_ops = ops;
 362        *bpp = bp;
 363
 364        return 0;
 365}
 366
 367/*
 368 * Reconstructing per-AG Btrees
 369 *
 370 * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
 371 * we scan secondary space metadata to derive the records that should be in
 372 * the damaged btree, initialize a fresh btree root, and insert the records.
 373 * Note that for rebuilding the rmapbt we scan all the primary data to
 374 * generate the new records.
 375 *
 376 * However, that leaves the matter of removing all the metadata describing the
 377 * old broken structure.  For primary metadata we use the rmap data to collect
 378 * every extent with a matching rmap owner (bitmap); we then iterate all other
 379 * metadata structures with the same rmap owner to collect the extents that
 380 * cannot be removed (sublist).  We then subtract sublist from bitmap to
 381 * derive the blocks that were used by the old btree.  These blocks can be
 382 * reaped.
 383 *
 384 * For rmapbt reconstructions we must use different tactics for extent
 385 * collection.  First we iterate all primary metadata (this excludes the old
 386 * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
 387 * records are collected as bitmap.  The bnobt records are collected as
 388 * sublist.  As with the other btrees we subtract sublist from bitmap, and the
 389 * result (since the rmapbt lives in the free space) are the blocks from the
 390 * old rmapbt.
 391 *
 392 * Disposal of Blocks from Old per-AG Btrees
 393 *
 394 * Now that we've constructed a new btree to replace the damaged one, we want
 395 * to dispose of the blocks that (we think) the old btree was using.
 396 * Previously, we used the rmapbt to collect the extents (bitmap) with the
 397 * rmap owner corresponding to the tree we rebuilt, collected extents for any
 398 * blocks with the same rmap owner that are owned by another data structure
 399 * (sublist), and subtracted sublist from bitmap.  In theory the extents
 400 * remaining in bitmap are the old btree's blocks.
 401 *
 402 * Unfortunately, it's possible that the btree was crosslinked with other
 403 * blocks on disk.  The rmap data can tell us if there are multiple owners, so
 404 * if the rmapbt says there is an owner of this block other than @oinfo, then
 405 * the block is crosslinked.  Remove the reverse mapping and continue.
 406 *
 407 * If there is one rmap record, we can free the block, which removes the
 408 * reverse mapping but doesn't add the block to the free space.  Our repair
 409 * strategy is to hope the other metadata objects crosslinked on this block
 410 * will be rebuilt (atop different blocks), thereby removing all the cross
 411 * links.
 412 *
 413 * If there are no rmap records at all, we also free the block.  If the btree
 414 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
 415 * supposed to be a rmap record and everything is ok.  For other btrees there
 416 * had to have been an rmap entry for the block to have ended up on @bitmap,
 417 * so if it's gone now there's something wrong and the fs will shut down.
 418 *
 419 * Note: If there are multiple rmap records with only the same rmap owner as
 420 * the btree we're trying to rebuild and the block is indeed owned by another
 421 * data structure with the same rmap owner, then the block will be in sublist
 422 * and therefore doesn't need disposal.  If there are multiple rmap records
 423 * with only the same rmap owner but the block is not owned by something with
 424 * the same rmap owner, the block will be freed.
 425 *
 426 * The caller is responsible for locking the AG headers for the entire rebuild
 427 * operation so that nothing else can sneak in and change the AG state while
 428 * we're not looking.  We also assume that the caller already invalidated any
 429 * buffers associated with @bitmap.
 430 */
 431
 432/*
 433 * Invalidate buffers for per-AG btree blocks we're dumping.  This function
 434 * is not intended for use with file data repairs; we have bunmapi for that.
 435 */
 436int
 437xrep_invalidate_blocks(
 438        struct xfs_scrub        *sc,
 439        struct xbitmap          *bitmap)
 440{
 441        struct xbitmap_range    *bmr;
 442        struct xbitmap_range    *n;
 443        struct xfs_buf          *bp;
 444        xfs_fsblock_t           fsbno;
 445
 446        /*
 447         * For each block in each extent, see if there's an incore buffer for
 448         * exactly that block; if so, invalidate it.  The buffer cache only
 449         * lets us look for one buffer at a time, so we have to look one block
 450         * at a time.  Avoid invalidating AG headers and post-EOFS blocks
 451         * because we never own those; and if we can't TRYLOCK the buffer we
 452         * assume it's owned by someone else.
 453         */
 454        for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
 455                /* Skip AG headers and post-EOFS blocks */
 456                if (!xfs_verify_fsbno(sc->mp, fsbno))
 457                        continue;
 458                bp = xfs_buf_incore(sc->mp->m_ddev_targp,
 459                                XFS_FSB_TO_DADDR(sc->mp, fsbno),
 460                                XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
 461                if (bp) {
 462                        xfs_trans_bjoin(sc->tp, bp);
 463                        xfs_trans_binval(sc->tp, bp);
 464                }
 465        }
 466
 467        return 0;
 468}
 469
 470/* Ensure the freelist is the correct size. */
 471int
 472xrep_fix_freelist(
 473        struct xfs_scrub        *sc,
 474        bool                    can_shrink)
 475{
 476        struct xfs_alloc_arg    args = {0};
 477
 478        args.mp = sc->mp;
 479        args.tp = sc->tp;
 480        args.agno = sc->sa.agno;
 481        args.alignment = 1;
 482        args.pag = sc->sa.pag;
 483
 484        return xfs_alloc_fix_freelist(&args,
 485                        can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
 486}
 487
 488/*
 489 * Put a block back on the AGFL.
 490 */
 491STATIC int
 492xrep_put_freelist(
 493        struct xfs_scrub        *sc,
 494        xfs_agblock_t           agbno)
 495{
 496        int                     error;
 497
 498        /* Make sure there's space on the freelist. */
 499        error = xrep_fix_freelist(sc, true);
 500        if (error)
 501                return error;
 502
 503        /*
 504         * Since we're "freeing" a lost block onto the AGFL, we have to
 505         * create an rmap for the block prior to merging it or else other
 506         * parts will break.
 507         */
 508        error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
 509                        &XFS_RMAP_OINFO_AG);
 510        if (error)
 511                return error;
 512
 513        /* Put the block on the AGFL. */
 514        error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
 515                        agbno, 0);
 516        if (error)
 517                return error;
 518        xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
 519                        XFS_EXTENT_BUSY_SKIP_DISCARD);
 520
 521        return 0;
 522}
 523
 524/* Dispose of a single block. */
 525STATIC int
 526xrep_reap_block(
 527        struct xfs_scrub                *sc,
 528        xfs_fsblock_t                   fsbno,
 529        const struct xfs_owner_info     *oinfo,
 530        enum xfs_ag_resv_type           resv)
 531{
 532        struct xfs_btree_cur            *cur;
 533        struct xfs_buf                  *agf_bp = NULL;
 534        xfs_agnumber_t                  agno;
 535        xfs_agblock_t                   agbno;
 536        bool                            has_other_rmap;
 537        int                             error;
 538
 539        agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
 540        agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
 541
 542        /*
 543         * If we are repairing per-inode metadata, we need to read in the AGF
 544         * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
 545         * the AGF buffer that the setup functions already grabbed.
 546         */
 547        if (sc->ip) {
 548                error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
 549                if (error)
 550                        return error;
 551        } else {
 552                agf_bp = sc->sa.agf_bp;
 553        }
 554        cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
 555
 556        /* Can we find any other rmappings? */
 557        error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
 558        xfs_btree_del_cursor(cur, error);
 559        if (error)
 560                goto out_free;
 561
 562        /*
 563         * If there are other rmappings, this block is cross linked and must
 564         * not be freed.  Remove the reverse mapping and move on.  Otherwise,
 565         * we were the only owner of the block, so free the extent, which will
 566         * also remove the rmap.
 567         *
 568         * XXX: XFS doesn't support detecting the case where a single block
 569         * metadata structure is crosslinked with a multi-block structure
 570         * because the buffer cache doesn't detect aliasing problems, so we
 571         * can't fix 100% of crosslinking problems (yet).  The verifiers will
 572         * blow on writeout, the filesystem will shut down, and the admin gets
 573         * to run xfs_repair.
 574         */
 575        if (has_other_rmap)
 576                error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
 577        else if (resv == XFS_AG_RESV_AGFL)
 578                error = xrep_put_freelist(sc, agbno);
 579        else
 580                error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
 581        if (agf_bp != sc->sa.agf_bp)
 582                xfs_trans_brelse(sc->tp, agf_bp);
 583        if (error)
 584                return error;
 585
 586        if (sc->ip)
 587                return xfs_trans_roll_inode(&sc->tp, sc->ip);
 588        return xrep_roll_ag_trans(sc);
 589
 590out_free:
 591        if (agf_bp != sc->sa.agf_bp)
 592                xfs_trans_brelse(sc->tp, agf_bp);
 593        return error;
 594}
 595
 596/* Dispose of every block of every extent in the bitmap. */
 597int
 598xrep_reap_extents(
 599        struct xfs_scrub                *sc,
 600        struct xbitmap                  *bitmap,
 601        const struct xfs_owner_info     *oinfo,
 602        enum xfs_ag_resv_type           type)
 603{
 604        struct xbitmap_range            *bmr;
 605        struct xbitmap_range            *n;
 606        xfs_fsblock_t                   fsbno;
 607        int                             error = 0;
 608
 609        ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
 610
 611        for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
 612                ASSERT(sc->ip != NULL ||
 613                       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
 614                trace_xrep_dispose_btree_extent(sc->mp,
 615                                XFS_FSB_TO_AGNO(sc->mp, fsbno),
 616                                XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
 617
 618                error = xrep_reap_block(sc, fsbno, oinfo, type);
 619                if (error)
 620                        break;
 621        }
 622
 623        return error;
 624}
 625
 626/*
 627 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
 628 *
 629 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
 630 * the AG headers by using the rmap data to rummage through the AG looking for
 631 * btree roots.  This is not guaranteed to work if the AG is heavily damaged
 632 * or the rmap data are corrupt.
 633 *
 634 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
 635 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
 636 * AGI is being rebuilt.  It must maintain these locks until it's safe for
 637 * other threads to change the btrees' shapes.  The caller provides
 638 * information about the btrees to look for by passing in an array of
 639 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
 640 * The (root, height) fields will be set on return if anything is found.  The
 641 * last element of the array should have a NULL buf_ops to mark the end of the
 642 * array.
 643 *
 644 * For every rmapbt record matching any of the rmap owners in btree_info,
 645 * read each block referenced by the rmap record.  If the block is a btree
 646 * block from this filesystem matching any of the magic numbers and has a
 647 * level higher than what we've already seen, remember the block and the
 648 * height of the tree required to have such a block.  When the call completes,
 649 * we return the highest block we've found for each btree description; those
 650 * should be the roots.
 651 */
 652
 653struct xrep_findroot {
 654        struct xfs_scrub                *sc;
 655        struct xfs_buf                  *agfl_bp;
 656        struct xfs_agf                  *agf;
 657        struct xrep_find_ag_btree       *btree_info;
 658};
 659
 660/* See if our block is in the AGFL. */
 661STATIC int
 662xrep_findroot_agfl_walk(
 663        struct xfs_mount        *mp,
 664        xfs_agblock_t           bno,
 665        void                    *priv)
 666{
 667        xfs_agblock_t           *agbno = priv;
 668
 669        return (*agbno == bno) ? -ECANCELED : 0;
 670}
 671
 672/* Does this block match the btree information passed in? */
 673STATIC int
 674xrep_findroot_block(
 675        struct xrep_findroot            *ri,
 676        struct xrep_find_ag_btree       *fab,
 677        uint64_t                        owner,
 678        xfs_agblock_t                   agbno,
 679        bool                            *done_with_block)
 680{
 681        struct xfs_mount                *mp = ri->sc->mp;
 682        struct xfs_buf                  *bp;
 683        struct xfs_btree_block          *btblock;
 684        xfs_daddr_t                     daddr;
 685        int                             block_level;
 686        int                             error = 0;
 687
 688        daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
 689
 690        /*
 691         * Blocks in the AGFL have stale contents that might just happen to
 692         * have a matching magic and uuid.  We don't want to pull these blocks
 693         * in as part of a tree root, so we have to filter out the AGFL stuff
 694         * here.  If the AGFL looks insane we'll just refuse to repair.
 695         */
 696        if (owner == XFS_RMAP_OWN_AG) {
 697                error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
 698                                xrep_findroot_agfl_walk, &agbno);
 699                if (error == -ECANCELED)
 700                        return 0;
 701                if (error)
 702                        return error;
 703        }
 704
 705        /*
 706         * Read the buffer into memory so that we can see if it's a match for
 707         * our btree type.  We have no clue if it is beforehand, and we want to
 708         * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
 709         * will cause needless disk reads in subsequent calls to this function)
 710         * and logging metadata verifier failures.
 711         *
 712         * Therefore, pass in NULL buffer ops.  If the buffer was already in
 713         * memory from some other caller it will already have b_ops assigned.
 714         * If it was in memory from a previous unsuccessful findroot_block
 715         * call, the buffer won't have b_ops but it should be clean and ready
 716         * for us to try to verify if the read call succeeds.  The same applies
 717         * if the buffer wasn't in memory at all.
 718         *
 719         * Note: If we never match a btree type with this buffer, it will be
 720         * left in memory with NULL b_ops.  This shouldn't be a problem unless
 721         * the buffer gets written.
 722         */
 723        error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
 724                        mp->m_bsize, 0, &bp, NULL);
 725        if (error)
 726                return error;
 727
 728        /* Ensure the block magic matches the btree type we're looking for. */
 729        btblock = XFS_BUF_TO_BLOCK(bp);
 730        ASSERT(fab->buf_ops->magic[1] != 0);
 731        if (btblock->bb_magic != fab->buf_ops->magic[1])
 732                goto out;
 733
 734        /*
 735         * If the buffer already has ops applied and they're not the ones for
 736         * this btree type, we know this block doesn't match the btree and we
 737         * can bail out.
 738         *
 739         * If the buffer ops match ours, someone else has already validated
 740         * the block for us, so we can move on to checking if this is a root
 741         * block candidate.
 742         *
 743         * If the buffer does not have ops, nobody has successfully validated
 744         * the contents and the buffer cannot be dirty.  If the magic, uuid,
 745         * and structure match this btree type then we'll move on to checking
 746         * if it's a root block candidate.  If there is no match, bail out.
 747         */
 748        if (bp->b_ops) {
 749                if (bp->b_ops != fab->buf_ops)
 750                        goto out;
 751        } else {
 752                ASSERT(!xfs_trans_buf_is_dirty(bp));
 753                if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
 754                                &mp->m_sb.sb_meta_uuid))
 755                        goto out;
 756                /*
 757                 * Read verifiers can reference b_ops, so we set the pointer
 758                 * here.  If the verifier fails we'll reset the buffer state
 759                 * to what it was before we touched the buffer.
 760                 */
 761                bp->b_ops = fab->buf_ops;
 762                fab->buf_ops->verify_read(bp);
 763                if (bp->b_error) {
 764                        bp->b_ops = NULL;
 765                        bp->b_error = 0;
 766                        goto out;
 767                }
 768
 769                /*
 770                 * Some read verifiers will (re)set b_ops, so we must be
 771                 * careful not to change b_ops after running the verifier.
 772                 */
 773        }
 774
 775        /*
 776         * This block passes the magic/uuid and verifier tests for this btree
 777         * type.  We don't need the caller to try the other tree types.
 778         */
 779        *done_with_block = true;
 780
 781        /*
 782         * Compare this btree block's level to the height of the current
 783         * candidate root block.
 784         *
 785         * If the level matches the root we found previously, throw away both
 786         * blocks because there can't be two candidate roots.
 787         *
 788         * If level is lower in the tree than the root we found previously,
 789         * ignore this block.
 790         */
 791        block_level = xfs_btree_get_level(btblock);
 792        if (block_level + 1 == fab->height) {
 793                fab->root = NULLAGBLOCK;
 794                goto out;
 795        } else if (block_level < fab->height) {
 796                goto out;
 797        }
 798
 799        /*
 800         * This is the highest block in the tree that we've found so far.
 801         * Update the btree height to reflect what we've learned from this
 802         * block.
 803         */
 804        fab->height = block_level + 1;
 805
 806        /*
 807         * If this block doesn't have sibling pointers, then it's the new root
 808         * block candidate.  Otherwise, the root will be found farther up the
 809         * tree.
 810         */
 811        if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
 812            btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
 813                fab->root = agbno;
 814        else
 815                fab->root = NULLAGBLOCK;
 816
 817        trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
 818                        be32_to_cpu(btblock->bb_magic), fab->height - 1);
 819out:
 820        xfs_trans_brelse(ri->sc->tp, bp);
 821        return error;
 822}
 823
 824/*
 825 * Do any of the blocks in this rmap record match one of the btrees we're
 826 * looking for?
 827 */
 828STATIC int
 829xrep_findroot_rmap(
 830        struct xfs_btree_cur            *cur,
 831        struct xfs_rmap_irec            *rec,
 832        void                            *priv)
 833{
 834        struct xrep_findroot            *ri = priv;
 835        struct xrep_find_ag_btree       *fab;
 836        xfs_agblock_t                   b;
 837        bool                            done;
 838        int                             error = 0;
 839
 840        /* Ignore anything that isn't AG metadata. */
 841        if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
 842                return 0;
 843
 844        /* Otherwise scan each block + btree type. */
 845        for (b = 0; b < rec->rm_blockcount; b++) {
 846                done = false;
 847                for (fab = ri->btree_info; fab->buf_ops; fab++) {
 848                        if (rec->rm_owner != fab->rmap_owner)
 849                                continue;
 850                        error = xrep_findroot_block(ri, fab,
 851                                        rec->rm_owner, rec->rm_startblock + b,
 852                                        &done);
 853                        if (error)
 854                                return error;
 855                        if (done)
 856                                break;
 857                }
 858        }
 859
 860        return 0;
 861}
 862
 863/* Find the roots of the per-AG btrees described in btree_info. */
 864int
 865xrep_find_ag_btree_roots(
 866        struct xfs_scrub                *sc,
 867        struct xfs_buf                  *agf_bp,
 868        struct xrep_find_ag_btree       *btree_info,
 869        struct xfs_buf                  *agfl_bp)
 870{
 871        struct xfs_mount                *mp = sc->mp;
 872        struct xrep_findroot            ri;
 873        struct xrep_find_ag_btree       *fab;
 874        struct xfs_btree_cur            *cur;
 875        int                             error;
 876
 877        ASSERT(xfs_buf_islocked(agf_bp));
 878        ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
 879
 880        ri.sc = sc;
 881        ri.btree_info = btree_info;
 882        ri.agf = agf_bp->b_addr;
 883        ri.agfl_bp = agfl_bp;
 884        for (fab = btree_info; fab->buf_ops; fab++) {
 885                ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
 886                ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
 887                fab->root = NULLAGBLOCK;
 888                fab->height = 0;
 889        }
 890
 891        cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
 892        error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
 893        xfs_btree_del_cursor(cur, error);
 894
 895        return error;
 896}
 897
 898/* Force a quotacheck the next time we mount. */
 899void
 900xrep_force_quotacheck(
 901        struct xfs_scrub        *sc,
 902        xfs_dqtype_t            type)
 903{
 904        uint                    flag;
 905
 906        flag = xfs_quota_chkd_flag(type);
 907        if (!(flag & sc->mp->m_qflags))
 908                return;
 909
 910        sc->mp->m_qflags &= ~flag;
 911        spin_lock(&sc->mp->m_sb_lock);
 912        sc->mp->m_sb.sb_qflags &= ~flag;
 913        spin_unlock(&sc->mp->m_sb_lock);
 914        xfs_log_sb(sc->tp);
 915}
 916
 917/*
 918 * Attach dquots to this inode, or schedule quotacheck to fix them.
 919 *
 920 * This function ensures that the appropriate dquots are attached to an inode.
 921 * We cannot allow the dquot code to allocate an on-disk dquot block here
 922 * because we're already in transaction context with the inode locked.  The
 923 * on-disk dquot should already exist anyway.  If the quota code signals
 924 * corruption or missing quota information, schedule quotacheck, which will
 925 * repair corruptions in the quota metadata.
 926 */
 927int
 928xrep_ino_dqattach(
 929        struct xfs_scrub        *sc)
 930{
 931        int                     error;
 932
 933        error = xfs_qm_dqattach_locked(sc->ip, false);
 934        switch (error) {
 935        case -EFSBADCRC:
 936        case -EFSCORRUPTED:
 937        case -ENOENT:
 938                xfs_err_ratelimited(sc->mp,
 939"inode %llu repair encountered quota error %d, quotacheck forced.",
 940                                (unsigned long long)sc->ip->i_ino, error);
 941                if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
 942                        xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
 943                if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
 944                        xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
 945                if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
 946                        xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
 947                /* fall through */
 948        case -ESRCH:
 949                error = 0;
 950                break;
 951        default:
 952                break;
 953        }
 954
 955        return error;
 956}
 957