linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_inode.h"
  16#include "xfs_dir2.h"
  17#include "xfs_ialloc.h"
  18#include "xfs_alloc.h"
  19#include "xfs_rtalloc.h"
  20#include "xfs_bmap.h"
  21#include "xfs_trans.h"
  22#include "xfs_trans_priv.h"
  23#include "xfs_log.h"
  24#include "xfs_error.h"
  25#include "xfs_quota.h"
  26#include "xfs_fsops.h"
  27#include "xfs_icache.h"
  28#include "xfs_sysfs.h"
  29#include "xfs_rmap_btree.h"
  30#include "xfs_refcount_btree.h"
  31#include "xfs_reflink.h"
  32#include "xfs_extent_busy.h"
  33#include "xfs_health.h"
  34#include "xfs_trace.h"
  35
  36static DEFINE_MUTEX(xfs_uuid_table_mutex);
  37static int xfs_uuid_table_size;
  38static uuid_t *xfs_uuid_table;
  39
  40void
  41xfs_uuid_table_free(void)
  42{
  43        if (xfs_uuid_table_size == 0)
  44                return;
  45        kmem_free(xfs_uuid_table);
  46        xfs_uuid_table = NULL;
  47        xfs_uuid_table_size = 0;
  48}
  49
  50/*
  51 * See if the UUID is unique among mounted XFS filesystems.
  52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  53 */
  54STATIC int
  55xfs_uuid_mount(
  56        struct xfs_mount        *mp)
  57{
  58        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
  59        int                     hole, i;
  60
  61        /* Publish UUID in struct super_block */
  62        uuid_copy(&mp->m_super->s_uuid, uuid);
  63
  64        if (mp->m_flags & XFS_MOUNT_NOUUID)
  65                return 0;
  66
  67        if (uuid_is_null(uuid)) {
  68                xfs_warn(mp, "Filesystem has null UUID - can't mount");
  69                return -EINVAL;
  70        }
  71
  72        mutex_lock(&xfs_uuid_table_mutex);
  73        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  74                if (uuid_is_null(&xfs_uuid_table[i])) {
  75                        hole = i;
  76                        continue;
  77                }
  78                if (uuid_equal(uuid, &xfs_uuid_table[i]))
  79                        goto out_duplicate;
  80        }
  81
  82        if (hole < 0) {
  83                xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  84                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  85                        0);
  86                hole = xfs_uuid_table_size++;
  87        }
  88        xfs_uuid_table[hole] = *uuid;
  89        mutex_unlock(&xfs_uuid_table_mutex);
  90
  91        return 0;
  92
  93 out_duplicate:
  94        mutex_unlock(&xfs_uuid_table_mutex);
  95        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
  96        return -EINVAL;
  97}
  98
  99STATIC void
 100xfs_uuid_unmount(
 101        struct xfs_mount        *mp)
 102{
 103        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 104        int                     i;
 105
 106        if (mp->m_flags & XFS_MOUNT_NOUUID)
 107                return;
 108
 109        mutex_lock(&xfs_uuid_table_mutex);
 110        for (i = 0; i < xfs_uuid_table_size; i++) {
 111                if (uuid_is_null(&xfs_uuid_table[i]))
 112                        continue;
 113                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 114                        continue;
 115                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 116                break;
 117        }
 118        ASSERT(i < xfs_uuid_table_size);
 119        mutex_unlock(&xfs_uuid_table_mutex);
 120}
 121
 122
 123STATIC void
 124__xfs_free_perag(
 125        struct rcu_head *head)
 126{
 127        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 128
 129        ASSERT(atomic_read(&pag->pag_ref) == 0);
 130        kmem_free(pag);
 131}
 132
 133/*
 134 * Free up the per-ag resources associated with the mount structure.
 135 */
 136STATIC void
 137xfs_free_perag(
 138        xfs_mount_t     *mp)
 139{
 140        xfs_agnumber_t  agno;
 141        struct xfs_perag *pag;
 142
 143        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 144                spin_lock(&mp->m_perag_lock);
 145                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 146                spin_unlock(&mp->m_perag_lock);
 147                ASSERT(pag);
 148                ASSERT(atomic_read(&pag->pag_ref) == 0);
 149                xfs_iunlink_destroy(pag);
 150                xfs_buf_hash_destroy(pag);
 151                call_rcu(&pag->rcu_head, __xfs_free_perag);
 152        }
 153}
 154
 155/*
 156 * Check size of device based on the (data/realtime) block count.
 157 * Note: this check is used by the growfs code as well as mount.
 158 */
 159int
 160xfs_sb_validate_fsb_count(
 161        xfs_sb_t        *sbp,
 162        uint64_t        nblocks)
 163{
 164        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 165        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 166
 167        /* Limited by ULONG_MAX of page cache index */
 168        if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 169                return -EFBIG;
 170        return 0;
 171}
 172
 173int
 174xfs_initialize_perag(
 175        xfs_mount_t     *mp,
 176        xfs_agnumber_t  agcount,
 177        xfs_agnumber_t  *maxagi)
 178{
 179        xfs_agnumber_t  index;
 180        xfs_agnumber_t  first_initialised = NULLAGNUMBER;
 181        xfs_perag_t     *pag;
 182        int             error = -ENOMEM;
 183
 184        /*
 185         * Walk the current per-ag tree so we don't try to initialise AGs
 186         * that already exist (growfs case). Allocate and insert all the
 187         * AGs we don't find ready for initialisation.
 188         */
 189        for (index = 0; index < agcount; index++) {
 190                pag = xfs_perag_get(mp, index);
 191                if (pag) {
 192                        xfs_perag_put(pag);
 193                        continue;
 194                }
 195
 196                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 197                if (!pag)
 198                        goto out_unwind_new_pags;
 199                pag->pag_agno = index;
 200                pag->pag_mount = mp;
 201                spin_lock_init(&pag->pag_ici_lock);
 202                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 203                if (xfs_buf_hash_init(pag))
 204                        goto out_free_pag;
 205                init_waitqueue_head(&pag->pagb_wait);
 206                spin_lock_init(&pag->pagb_lock);
 207                pag->pagb_count = 0;
 208                pag->pagb_tree = RB_ROOT;
 209
 210                if (radix_tree_preload(GFP_NOFS))
 211                        goto out_hash_destroy;
 212
 213                spin_lock(&mp->m_perag_lock);
 214                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 215                        WARN_ON_ONCE(1);
 216                        spin_unlock(&mp->m_perag_lock);
 217                        radix_tree_preload_end();
 218                        error = -EEXIST;
 219                        goto out_hash_destroy;
 220                }
 221                spin_unlock(&mp->m_perag_lock);
 222                radix_tree_preload_end();
 223                /* first new pag is fully initialized */
 224                if (first_initialised == NULLAGNUMBER)
 225                        first_initialised = index;
 226                error = xfs_iunlink_init(pag);
 227                if (error)
 228                        goto out_hash_destroy;
 229                spin_lock_init(&pag->pag_state_lock);
 230        }
 231
 232        index = xfs_set_inode_alloc(mp, agcount);
 233
 234        if (maxagi)
 235                *maxagi = index;
 236
 237        mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
 238        return 0;
 239
 240out_hash_destroy:
 241        xfs_buf_hash_destroy(pag);
 242out_free_pag:
 243        kmem_free(pag);
 244out_unwind_new_pags:
 245        /* unwind any prior newly initialized pags */
 246        for (index = first_initialised; index < agcount; index++) {
 247                pag = radix_tree_delete(&mp->m_perag_tree, index);
 248                if (!pag)
 249                        break;
 250                xfs_buf_hash_destroy(pag);
 251                xfs_iunlink_destroy(pag);
 252                kmem_free(pag);
 253        }
 254        return error;
 255}
 256
 257/*
 258 * xfs_readsb
 259 *
 260 * Does the initial read of the superblock.
 261 */
 262int
 263xfs_readsb(
 264        struct xfs_mount *mp,
 265        int             flags)
 266{
 267        unsigned int    sector_size;
 268        struct xfs_buf  *bp;
 269        struct xfs_sb   *sbp = &mp->m_sb;
 270        int             error;
 271        int             loud = !(flags & XFS_MFSI_QUIET);
 272        const struct xfs_buf_ops *buf_ops;
 273
 274        ASSERT(mp->m_sb_bp == NULL);
 275        ASSERT(mp->m_ddev_targp != NULL);
 276
 277        /*
 278         * For the initial read, we must guess at the sector
 279         * size based on the block device.  It's enough to
 280         * get the sb_sectsize out of the superblock and
 281         * then reread with the proper length.
 282         * We don't verify it yet, because it may not be complete.
 283         */
 284        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 285        buf_ops = NULL;
 286
 287        /*
 288         * Allocate a (locked) buffer to hold the superblock. This will be kept
 289         * around at all times to optimize access to the superblock. Therefore,
 290         * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
 291         * elevated.
 292         */
 293reread:
 294        error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 295                                      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
 296                                      buf_ops);
 297        if (error) {
 298                if (loud)
 299                        xfs_warn(mp, "SB validate failed with error %d.", error);
 300                /* bad CRC means corrupted metadata */
 301                if (error == -EFSBADCRC)
 302                        error = -EFSCORRUPTED;
 303                return error;
 304        }
 305
 306        /*
 307         * Initialize the mount structure from the superblock.
 308         */
 309        xfs_sb_from_disk(sbp, bp->b_addr);
 310
 311        /*
 312         * If we haven't validated the superblock, do so now before we try
 313         * to check the sector size and reread the superblock appropriately.
 314         */
 315        if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 316                if (loud)
 317                        xfs_warn(mp, "Invalid superblock magic number");
 318                error = -EINVAL;
 319                goto release_buf;
 320        }
 321
 322        /*
 323         * We must be able to do sector-sized and sector-aligned IO.
 324         */
 325        if (sector_size > sbp->sb_sectsize) {
 326                if (loud)
 327                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 328                                sector_size, sbp->sb_sectsize);
 329                error = -ENOSYS;
 330                goto release_buf;
 331        }
 332
 333        if (buf_ops == NULL) {
 334                /*
 335                 * Re-read the superblock so the buffer is correctly sized,
 336                 * and properly verified.
 337                 */
 338                xfs_buf_relse(bp);
 339                sector_size = sbp->sb_sectsize;
 340                buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 341                goto reread;
 342        }
 343
 344        xfs_reinit_percpu_counters(mp);
 345
 346        /* no need to be quiet anymore, so reset the buf ops */
 347        bp->b_ops = &xfs_sb_buf_ops;
 348
 349        mp->m_sb_bp = bp;
 350        xfs_buf_unlock(bp);
 351        return 0;
 352
 353release_buf:
 354        xfs_buf_relse(bp);
 355        return error;
 356}
 357
 358/*
 359 * If the sunit/swidth change would move the precomputed root inode value, we
 360 * must reject the ondisk change because repair will stumble over that.
 361 * However, we allow the mount to proceed because we never rejected this
 362 * combination before.  Returns true to update the sb, false otherwise.
 363 */
 364static inline int
 365xfs_check_new_dalign(
 366        struct xfs_mount        *mp,
 367        int                     new_dalign,
 368        bool                    *update_sb)
 369{
 370        struct xfs_sb           *sbp = &mp->m_sb;
 371        xfs_ino_t               calc_ino;
 372
 373        calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
 374        trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
 375
 376        if (sbp->sb_rootino == calc_ino) {
 377                *update_sb = true;
 378                return 0;
 379        }
 380
 381        xfs_warn(mp,
 382"Cannot change stripe alignment; would require moving root inode.");
 383
 384        /*
 385         * XXX: Next time we add a new incompat feature, this should start
 386         * returning -EINVAL to fail the mount.  Until then, spit out a warning
 387         * that we're ignoring the administrator's instructions.
 388         */
 389        xfs_warn(mp, "Skipping superblock stripe alignment update.");
 390        *update_sb = false;
 391        return 0;
 392}
 393
 394/*
 395 * If we were provided with new sunit/swidth values as mount options, make sure
 396 * that they pass basic alignment and superblock feature checks, and convert
 397 * them into the same units (FSB) that everything else expects.  This step
 398 * /must/ be done before computing the inode geometry.
 399 */
 400STATIC int
 401xfs_validate_new_dalign(
 402        struct xfs_mount        *mp)
 403{
 404        if (mp->m_dalign == 0)
 405                return 0;
 406
 407        /*
 408         * If stripe unit and stripe width are not multiples
 409         * of the fs blocksize turn off alignment.
 410         */
 411        if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 412            (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 413                xfs_warn(mp,
 414        "alignment check failed: sunit/swidth vs. blocksize(%d)",
 415                        mp->m_sb.sb_blocksize);
 416                return -EINVAL;
 417        } else {
 418                /*
 419                 * Convert the stripe unit and width to FSBs.
 420                 */
 421                mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 422                if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
 423                        xfs_warn(mp,
 424                "alignment check failed: sunit/swidth vs. agsize(%d)",
 425                                 mp->m_sb.sb_agblocks);
 426                        return -EINVAL;
 427                } else if (mp->m_dalign) {
 428                        mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 429                } else {
 430                        xfs_warn(mp,
 431                "alignment check failed: sunit(%d) less than bsize(%d)",
 432                                 mp->m_dalign, mp->m_sb.sb_blocksize);
 433                        return -EINVAL;
 434                }
 435        }
 436
 437        if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
 438                xfs_warn(mp,
 439"cannot change alignment: superblock does not support data alignment");
 440                return -EINVAL;
 441        }
 442
 443        return 0;
 444}
 445
 446/* Update alignment values based on mount options and sb values. */
 447STATIC int
 448xfs_update_alignment(
 449        struct xfs_mount        *mp)
 450{
 451        struct xfs_sb           *sbp = &mp->m_sb;
 452
 453        if (mp->m_dalign) {
 454                bool            update_sb;
 455                int             error;
 456
 457                if (sbp->sb_unit == mp->m_dalign &&
 458                    sbp->sb_width == mp->m_swidth)
 459                        return 0;
 460
 461                error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
 462                if (error || !update_sb)
 463                        return error;
 464
 465                sbp->sb_unit = mp->m_dalign;
 466                sbp->sb_width = mp->m_swidth;
 467                mp->m_update_sb = true;
 468        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 469                    xfs_sb_version_hasdalign(&mp->m_sb)) {
 470                mp->m_dalign = sbp->sb_unit;
 471                mp->m_swidth = sbp->sb_width;
 472        }
 473
 474        return 0;
 475}
 476
 477/*
 478 * precalculate the low space thresholds for dynamic speculative preallocation.
 479 */
 480void
 481xfs_set_low_space_thresholds(
 482        struct xfs_mount        *mp)
 483{
 484        int i;
 485
 486        for (i = 0; i < XFS_LOWSP_MAX; i++) {
 487                uint64_t space = mp->m_sb.sb_dblocks;
 488
 489                do_div(space, 100);
 490                mp->m_low_space[i] = space * (i + 1);
 491        }
 492}
 493
 494/*
 495 * Check that the data (and log if separate) is an ok size.
 496 */
 497STATIC int
 498xfs_check_sizes(
 499        struct xfs_mount *mp)
 500{
 501        struct xfs_buf  *bp;
 502        xfs_daddr_t     d;
 503        int             error;
 504
 505        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 506        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 507                xfs_warn(mp, "filesystem size mismatch detected");
 508                return -EFBIG;
 509        }
 510        error = xfs_buf_read_uncached(mp->m_ddev_targp,
 511                                        d - XFS_FSS_TO_BB(mp, 1),
 512                                        XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 513        if (error) {
 514                xfs_warn(mp, "last sector read failed");
 515                return error;
 516        }
 517        xfs_buf_relse(bp);
 518
 519        if (mp->m_logdev_targp == mp->m_ddev_targp)
 520                return 0;
 521
 522        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 523        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 524                xfs_warn(mp, "log size mismatch detected");
 525                return -EFBIG;
 526        }
 527        error = xfs_buf_read_uncached(mp->m_logdev_targp,
 528                                        d - XFS_FSB_TO_BB(mp, 1),
 529                                        XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 530        if (error) {
 531                xfs_warn(mp, "log device read failed");
 532                return error;
 533        }
 534        xfs_buf_relse(bp);
 535        return 0;
 536}
 537
 538/*
 539 * Clear the quotaflags in memory and in the superblock.
 540 */
 541int
 542xfs_mount_reset_sbqflags(
 543        struct xfs_mount        *mp)
 544{
 545        mp->m_qflags = 0;
 546
 547        /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 548        if (mp->m_sb.sb_qflags == 0)
 549                return 0;
 550        spin_lock(&mp->m_sb_lock);
 551        mp->m_sb.sb_qflags = 0;
 552        spin_unlock(&mp->m_sb_lock);
 553
 554        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 555                return 0;
 556
 557        return xfs_sync_sb(mp, false);
 558}
 559
 560uint64_t
 561xfs_default_resblks(xfs_mount_t *mp)
 562{
 563        uint64_t resblks;
 564
 565        /*
 566         * We default to 5% or 8192 fsbs of space reserved, whichever is
 567         * smaller.  This is intended to cover concurrent allocation
 568         * transactions when we initially hit enospc. These each require a 4
 569         * block reservation. Hence by default we cover roughly 2000 concurrent
 570         * allocation reservations.
 571         */
 572        resblks = mp->m_sb.sb_dblocks;
 573        do_div(resblks, 20);
 574        resblks = min_t(uint64_t, resblks, 8192);
 575        return resblks;
 576}
 577
 578/* Ensure the summary counts are correct. */
 579STATIC int
 580xfs_check_summary_counts(
 581        struct xfs_mount        *mp)
 582{
 583        /*
 584         * The AG0 superblock verifier rejects in-progress filesystems,
 585         * so we should never see the flag set this far into mounting.
 586         */
 587        if (mp->m_sb.sb_inprogress) {
 588                xfs_err(mp, "sb_inprogress set after log recovery??");
 589                WARN_ON(1);
 590                return -EFSCORRUPTED;
 591        }
 592
 593        /*
 594         * Now the log is mounted, we know if it was an unclean shutdown or
 595         * not. If it was, with the first phase of recovery has completed, we
 596         * have consistent AG blocks on disk. We have not recovered EFIs yet,
 597         * but they are recovered transactionally in the second recovery phase
 598         * later.
 599         *
 600         * If the log was clean when we mounted, we can check the summary
 601         * counters.  If any of them are obviously incorrect, we can recompute
 602         * them from the AGF headers in the next step.
 603         */
 604        if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 605            (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
 606             !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
 607             mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
 608                xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
 609
 610        /*
 611         * We can safely re-initialise incore superblock counters from the
 612         * per-ag data. These may not be correct if the filesystem was not
 613         * cleanly unmounted, so we waited for recovery to finish before doing
 614         * this.
 615         *
 616         * If the filesystem was cleanly unmounted or the previous check did
 617         * not flag anything weird, then we can trust the values in the
 618         * superblock to be correct and we don't need to do anything here.
 619         * Otherwise, recalculate the summary counters.
 620         */
 621        if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
 622             XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
 623            !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
 624                return 0;
 625
 626        return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
 627}
 628
 629/*
 630 * This function does the following on an initial mount of a file system:
 631 *      - reads the superblock from disk and init the mount struct
 632 *      - if we're a 32-bit kernel, do a size check on the superblock
 633 *              so we don't mount terabyte filesystems
 634 *      - init mount struct realtime fields
 635 *      - allocate inode hash table for fs
 636 *      - init directory manager
 637 *      - perform recovery and init the log manager
 638 */
 639int
 640xfs_mountfs(
 641        struct xfs_mount        *mp)
 642{
 643        struct xfs_sb           *sbp = &(mp->m_sb);
 644        struct xfs_inode        *rip;
 645        struct xfs_ino_geometry *igeo = M_IGEO(mp);
 646        uint64_t                resblks;
 647        uint                    quotamount = 0;
 648        uint                    quotaflags = 0;
 649        int                     error = 0;
 650
 651        xfs_sb_mount_common(mp, sbp);
 652
 653        /*
 654         * Check for a mismatched features2 values.  Older kernels read & wrote
 655         * into the wrong sb offset for sb_features2 on some platforms due to
 656         * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 657         * which made older superblock reading/writing routines swap it as a
 658         * 64-bit value.
 659         *
 660         * For backwards compatibility, we make both slots equal.
 661         *
 662         * If we detect a mismatched field, we OR the set bits into the existing
 663         * features2 field in case it has already been modified; we don't want
 664         * to lose any features.  We then update the bad location with the ORed
 665         * value so that older kernels will see any features2 flags. The
 666         * superblock writeback code ensures the new sb_features2 is copied to
 667         * sb_bad_features2 before it is logged or written to disk.
 668         */
 669        if (xfs_sb_has_mismatched_features2(sbp)) {
 670                xfs_warn(mp, "correcting sb_features alignment problem");
 671                sbp->sb_features2 |= sbp->sb_bad_features2;
 672                mp->m_update_sb = true;
 673
 674                /*
 675                 * Re-check for ATTR2 in case it was found in bad_features2
 676                 * slot.
 677                 */
 678                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 679                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 680                        mp->m_flags |= XFS_MOUNT_ATTR2;
 681        }
 682
 683        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 684           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 685                xfs_sb_version_removeattr2(&mp->m_sb);
 686                mp->m_update_sb = true;
 687
 688                /* update sb_versionnum for the clearing of the morebits */
 689                if (!sbp->sb_features2)
 690                        mp->m_update_sb = true;
 691        }
 692
 693        /* always use v2 inodes by default now */
 694        if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 695                mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 696                mp->m_update_sb = true;
 697        }
 698
 699        /*
 700         * If we were given new sunit/swidth options, do some basic validation
 701         * checks and convert the incore dalign and swidth values to the
 702         * same units (FSB) that everything else uses.  This /must/ happen
 703         * before computing the inode geometry.
 704         */
 705        error = xfs_validate_new_dalign(mp);
 706        if (error)
 707                goto out;
 708
 709        xfs_alloc_compute_maxlevels(mp);
 710        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 711        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 712        xfs_ialloc_setup_geometry(mp);
 713        xfs_rmapbt_compute_maxlevels(mp);
 714        xfs_refcountbt_compute_maxlevels(mp);
 715
 716        /*
 717         * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
 718         * is NOT aligned turn off m_dalign since allocator alignment is within
 719         * an ag, therefore ag has to be aligned at stripe boundary.  Note that
 720         * we must compute the free space and rmap btree geometry before doing
 721         * this.
 722         */
 723        error = xfs_update_alignment(mp);
 724        if (error)
 725                goto out;
 726
 727        /* enable fail_at_unmount as default */
 728        mp->m_fail_unmount = true;
 729
 730        error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
 731                               NULL, mp->m_super->s_id);
 732        if (error)
 733                goto out;
 734
 735        error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
 736                               &mp->m_kobj, "stats");
 737        if (error)
 738                goto out_remove_sysfs;
 739
 740        error = xfs_error_sysfs_init(mp);
 741        if (error)
 742                goto out_del_stats;
 743
 744        error = xfs_errortag_init(mp);
 745        if (error)
 746                goto out_remove_error_sysfs;
 747
 748        error = xfs_uuid_mount(mp);
 749        if (error)
 750                goto out_remove_errortag;
 751
 752        /*
 753         * Update the preferred write size based on the information from the
 754         * on-disk superblock.
 755         */
 756        mp->m_allocsize_log =
 757                max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
 758        mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
 759
 760        /* set the low space thresholds for dynamic preallocation */
 761        xfs_set_low_space_thresholds(mp);
 762
 763        /*
 764         * If enabled, sparse inode chunk alignment is expected to match the
 765         * cluster size. Full inode chunk alignment must match the chunk size,
 766         * but that is checked on sb read verification...
 767         */
 768        if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
 769            mp->m_sb.sb_spino_align !=
 770                        XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
 771                xfs_warn(mp,
 772        "Sparse inode block alignment (%u) must match cluster size (%llu).",
 773                         mp->m_sb.sb_spino_align,
 774                         XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
 775                error = -EINVAL;
 776                goto out_remove_uuid;
 777        }
 778
 779        /*
 780         * Check that the data (and log if separate) is an ok size.
 781         */
 782        error = xfs_check_sizes(mp);
 783        if (error)
 784                goto out_remove_uuid;
 785
 786        /*
 787         * Initialize realtime fields in the mount structure
 788         */
 789        error = xfs_rtmount_init(mp);
 790        if (error) {
 791                xfs_warn(mp, "RT mount failed");
 792                goto out_remove_uuid;
 793        }
 794
 795        /*
 796         *  Copies the low order bits of the timestamp and the randomly
 797         *  set "sequence" number out of a UUID.
 798         */
 799        mp->m_fixedfsid[0] =
 800                (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
 801                 get_unaligned_be16(&sbp->sb_uuid.b[4]);
 802        mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
 803
 804        error = xfs_da_mount(mp);
 805        if (error) {
 806                xfs_warn(mp, "Failed dir/attr init: %d", error);
 807                goto out_remove_uuid;
 808        }
 809
 810        /*
 811         * Initialize the precomputed transaction reservations values.
 812         */
 813        xfs_trans_init(mp);
 814
 815        /*
 816         * Allocate and initialize the per-ag data.
 817         */
 818        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 819        if (error) {
 820                xfs_warn(mp, "Failed per-ag init: %d", error);
 821                goto out_free_dir;
 822        }
 823
 824        if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
 825                xfs_warn(mp, "no log defined");
 826                error = -EFSCORRUPTED;
 827                goto out_free_perag;
 828        }
 829
 830        /*
 831         * Log's mount-time initialization. The first part of recovery can place
 832         * some items on the AIL, to be handled when recovery is finished or
 833         * cancelled.
 834         */
 835        error = xfs_log_mount(mp, mp->m_logdev_targp,
 836                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 837                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 838        if (error) {
 839                xfs_warn(mp, "log mount failed");
 840                goto out_fail_wait;
 841        }
 842
 843        /* Make sure the summary counts are ok. */
 844        error = xfs_check_summary_counts(mp);
 845        if (error)
 846                goto out_log_dealloc;
 847
 848        /*
 849         * Get and sanity-check the root inode.
 850         * Save the pointer to it in the mount structure.
 851         */
 852        error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
 853                         XFS_ILOCK_EXCL, &rip);
 854        if (error) {
 855                xfs_warn(mp,
 856                        "Failed to read root inode 0x%llx, error %d",
 857                        sbp->sb_rootino, -error);
 858                goto out_log_dealloc;
 859        }
 860
 861        ASSERT(rip != NULL);
 862
 863        if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
 864                xfs_warn(mp, "corrupted root inode %llu: not a directory",
 865                        (unsigned long long)rip->i_ino);
 866                xfs_iunlock(rip, XFS_ILOCK_EXCL);
 867                error = -EFSCORRUPTED;
 868                goto out_rele_rip;
 869        }
 870        mp->m_rootip = rip;     /* save it */
 871
 872        xfs_iunlock(rip, XFS_ILOCK_EXCL);
 873
 874        /*
 875         * Initialize realtime inode pointers in the mount structure
 876         */
 877        error = xfs_rtmount_inodes(mp);
 878        if (error) {
 879                /*
 880                 * Free up the root inode.
 881                 */
 882                xfs_warn(mp, "failed to read RT inodes");
 883                goto out_rele_rip;
 884        }
 885
 886        /*
 887         * If this is a read-only mount defer the superblock updates until
 888         * the next remount into writeable mode.  Otherwise we would never
 889         * perform the update e.g. for the root filesystem.
 890         */
 891        if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 892                error = xfs_sync_sb(mp, false);
 893                if (error) {
 894                        xfs_warn(mp, "failed to write sb changes");
 895                        goto out_rtunmount;
 896                }
 897        }
 898
 899        /*
 900         * Initialise the XFS quota management subsystem for this mount
 901         */
 902        if (XFS_IS_QUOTA_RUNNING(mp)) {
 903                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 904                if (error)
 905                        goto out_rtunmount;
 906        } else {
 907                ASSERT(!XFS_IS_QUOTA_ON(mp));
 908
 909                /*
 910                 * If a file system had quotas running earlier, but decided to
 911                 * mount without -o uquota/pquota/gquota options, revoke the
 912                 * quotachecked license.
 913                 */
 914                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 915                        xfs_notice(mp, "resetting quota flags");
 916                        error = xfs_mount_reset_sbqflags(mp);
 917                        if (error)
 918                                goto out_rtunmount;
 919                }
 920        }
 921
 922        /*
 923         * Finish recovering the file system.  This part needed to be delayed
 924         * until after the root and real-time bitmap inodes were consistently
 925         * read in.
 926         */
 927        error = xfs_log_mount_finish(mp);
 928        if (error) {
 929                xfs_warn(mp, "log mount finish failed");
 930                goto out_rtunmount;
 931        }
 932
 933        /*
 934         * Now the log is fully replayed, we can transition to full read-only
 935         * mode for read-only mounts. This will sync all the metadata and clean
 936         * the log so that the recovery we just performed does not have to be
 937         * replayed again on the next mount.
 938         *
 939         * We use the same quiesce mechanism as the rw->ro remount, as they are
 940         * semantically identical operations.
 941         */
 942        if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
 943                                                        XFS_MOUNT_RDONLY) {
 944                xfs_quiesce_attr(mp);
 945        }
 946
 947        /*
 948         * Complete the quota initialisation, post-log-replay component.
 949         */
 950        if (quotamount) {
 951                ASSERT(mp->m_qflags == 0);
 952                mp->m_qflags = quotaflags;
 953
 954                xfs_qm_mount_quotas(mp);
 955        }
 956
 957        /*
 958         * Now we are mounted, reserve a small amount of unused space for
 959         * privileged transactions. This is needed so that transaction
 960         * space required for critical operations can dip into this pool
 961         * when at ENOSPC. This is needed for operations like create with
 962         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 963         * are not allowed to use this reserved space.
 964         *
 965         * This may drive us straight to ENOSPC on mount, but that implies
 966         * we were already there on the last unmount. Warn if this occurs.
 967         */
 968        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 969                resblks = xfs_default_resblks(mp);
 970                error = xfs_reserve_blocks(mp, &resblks, NULL);
 971                if (error)
 972                        xfs_warn(mp,
 973        "Unable to allocate reserve blocks. Continuing without reserve pool.");
 974
 975                /* Recover any CoW blocks that never got remapped. */
 976                error = xfs_reflink_recover_cow(mp);
 977                if (error) {
 978                        xfs_err(mp,
 979        "Error %d recovering leftover CoW allocations.", error);
 980                        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 981                        goto out_quota;
 982                }
 983
 984                /* Reserve AG blocks for future btree expansion. */
 985                error = xfs_fs_reserve_ag_blocks(mp);
 986                if (error && error != -ENOSPC)
 987                        goto out_agresv;
 988        }
 989
 990        return 0;
 991
 992 out_agresv:
 993        xfs_fs_unreserve_ag_blocks(mp);
 994 out_quota:
 995        xfs_qm_unmount_quotas(mp);
 996 out_rtunmount:
 997        xfs_rtunmount_inodes(mp);
 998 out_rele_rip:
 999        xfs_irele(rip);
1000        /* Clean out dquots that might be in memory after quotacheck. */
1001        xfs_qm_unmount(mp);
1002        /*
1003         * Cancel all delayed reclaim work and reclaim the inodes directly.
1004         * We have to do this /after/ rtunmount and qm_unmount because those
1005         * two will have scheduled delayed reclaim for the rt/quota inodes.
1006         *
1007         * This is slightly different from the unmountfs call sequence
1008         * because we could be tearing down a partially set up mount.  In
1009         * particular, if log_mount_finish fails we bail out without calling
1010         * qm_unmount_quotas and therefore rely on qm_unmount to release the
1011         * quota inodes.
1012         */
1013        cancel_delayed_work_sync(&mp->m_reclaim_work);
1014        xfs_reclaim_inodes(mp);
1015        xfs_health_unmount(mp);
1016 out_log_dealloc:
1017        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1018        xfs_log_mount_cancel(mp);
1019 out_fail_wait:
1020        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1021                xfs_wait_buftarg(mp->m_logdev_targp);
1022        xfs_wait_buftarg(mp->m_ddev_targp);
1023 out_free_perag:
1024        xfs_free_perag(mp);
1025 out_free_dir:
1026        xfs_da_unmount(mp);
1027 out_remove_uuid:
1028        xfs_uuid_unmount(mp);
1029 out_remove_errortag:
1030        xfs_errortag_del(mp);
1031 out_remove_error_sysfs:
1032        xfs_error_sysfs_del(mp);
1033 out_del_stats:
1034        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1035 out_remove_sysfs:
1036        xfs_sysfs_del(&mp->m_kobj);
1037 out:
1038        return error;
1039}
1040
1041/*
1042 * This flushes out the inodes,dquots and the superblock, unmounts the
1043 * log and makes sure that incore structures are freed.
1044 */
1045void
1046xfs_unmountfs(
1047        struct xfs_mount        *mp)
1048{
1049        uint64_t                resblks;
1050        int                     error;
1051
1052        xfs_stop_block_reaping(mp);
1053        xfs_fs_unreserve_ag_blocks(mp);
1054        xfs_qm_unmount_quotas(mp);
1055        xfs_rtunmount_inodes(mp);
1056        xfs_irele(mp->m_rootip);
1057
1058        /*
1059         * We can potentially deadlock here if we have an inode cluster
1060         * that has been freed has its buffer still pinned in memory because
1061         * the transaction is still sitting in a iclog. The stale inodes
1062         * on that buffer will have their flush locks held until the
1063         * transaction hits the disk and the callbacks run. the inode
1064         * flush takes the flush lock unconditionally and with nothing to
1065         * push out the iclog we will never get that unlocked. hence we
1066         * need to force the log first.
1067         */
1068        xfs_log_force(mp, XFS_LOG_SYNC);
1069
1070        /*
1071         * Wait for all busy extents to be freed, including completion of
1072         * any discard operation.
1073         */
1074        xfs_extent_busy_wait_all(mp);
1075        flush_workqueue(xfs_discard_wq);
1076
1077        /*
1078         * We now need to tell the world we are unmounting. This will allow
1079         * us to detect that the filesystem is going away and we should error
1080         * out anything that we have been retrying in the background. This will
1081         * prevent neverending retries in AIL pushing from hanging the unmount.
1082         */
1083        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1084
1085        /*
1086         * Flush all pending changes from the AIL.
1087         */
1088        xfs_ail_push_all_sync(mp->m_ail);
1089
1090        /*
1091         * Reclaim all inodes. At this point there should be no dirty inodes and
1092         * none should be pinned or locked. Stop background inode reclaim here
1093         * if it is still running.
1094         */
1095        cancel_delayed_work_sync(&mp->m_reclaim_work);
1096        xfs_reclaim_inodes(mp);
1097        xfs_health_unmount(mp);
1098
1099        xfs_qm_unmount(mp);
1100
1101        /*
1102         * Unreserve any blocks we have so that when we unmount we don't account
1103         * the reserved free space as used. This is really only necessary for
1104         * lazy superblock counting because it trusts the incore superblock
1105         * counters to be absolutely correct on clean unmount.
1106         *
1107         * We don't bother correcting this elsewhere for lazy superblock
1108         * counting because on mount of an unclean filesystem we reconstruct the
1109         * correct counter value and this is irrelevant.
1110         *
1111         * For non-lazy counter filesystems, this doesn't matter at all because
1112         * we only every apply deltas to the superblock and hence the incore
1113         * value does not matter....
1114         */
1115        resblks = 0;
1116        error = xfs_reserve_blocks(mp, &resblks, NULL);
1117        if (error)
1118                xfs_warn(mp, "Unable to free reserved block pool. "
1119                                "Freespace may not be correct on next mount.");
1120
1121        error = xfs_log_sbcount(mp);
1122        if (error)
1123                xfs_warn(mp, "Unable to update superblock counters. "
1124                                "Freespace may not be correct on next mount.");
1125
1126
1127        xfs_log_unmount(mp);
1128        xfs_da_unmount(mp);
1129        xfs_uuid_unmount(mp);
1130
1131#if defined(DEBUG)
1132        xfs_errortag_clearall(mp);
1133#endif
1134        xfs_free_perag(mp);
1135
1136        xfs_errortag_del(mp);
1137        xfs_error_sysfs_del(mp);
1138        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1139        xfs_sysfs_del(&mp->m_kobj);
1140}
1141
1142/*
1143 * Determine whether modifications can proceed. The caller specifies the minimum
1144 * freeze level for which modifications should not be allowed. This allows
1145 * certain operations to proceed while the freeze sequence is in progress, if
1146 * necessary.
1147 */
1148bool
1149xfs_fs_writable(
1150        struct xfs_mount        *mp,
1151        int                     level)
1152{
1153        ASSERT(level > SB_UNFROZEN);
1154        if ((mp->m_super->s_writers.frozen >= level) ||
1155            XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1156                return false;
1157
1158        return true;
1159}
1160
1161/*
1162 * xfs_log_sbcount
1163 *
1164 * Sync the superblock counters to disk.
1165 *
1166 * Note this code can be called during the process of freezing, so we use the
1167 * transaction allocator that does not block when the transaction subsystem is
1168 * in its frozen state.
1169 */
1170int
1171xfs_log_sbcount(xfs_mount_t *mp)
1172{
1173        /* allow this to proceed during the freeze sequence... */
1174        if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1175                return 0;
1176
1177        /*
1178         * we don't need to do this if we are updating the superblock
1179         * counters on every modification.
1180         */
1181        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1182                return 0;
1183
1184        return xfs_sync_sb(mp, true);
1185}
1186
1187/*
1188 * Deltas for the block count can vary from 1 to very large, but lock contention
1189 * only occurs on frequent small block count updates such as in the delayed
1190 * allocation path for buffered writes (page a time updates). Hence we set
1191 * a large batch count (1024) to minimise global counter updates except when
1192 * we get near to ENOSPC and we have to be very accurate with our updates.
1193 */
1194#define XFS_FDBLOCKS_BATCH      1024
1195int
1196xfs_mod_fdblocks(
1197        struct xfs_mount        *mp,
1198        int64_t                 delta,
1199        bool                    rsvd)
1200{
1201        int64_t                 lcounter;
1202        long long               res_used;
1203        s32                     batch;
1204
1205        if (delta > 0) {
1206                /*
1207                 * If the reserve pool is depleted, put blocks back into it
1208                 * first. Most of the time the pool is full.
1209                 */
1210                if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1211                        percpu_counter_add(&mp->m_fdblocks, delta);
1212                        return 0;
1213                }
1214
1215                spin_lock(&mp->m_sb_lock);
1216                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1217
1218                if (res_used > delta) {
1219                        mp->m_resblks_avail += delta;
1220                } else {
1221                        delta -= res_used;
1222                        mp->m_resblks_avail = mp->m_resblks;
1223                        percpu_counter_add(&mp->m_fdblocks, delta);
1224                }
1225                spin_unlock(&mp->m_sb_lock);
1226                return 0;
1227        }
1228
1229        /*
1230         * Taking blocks away, need to be more accurate the closer we
1231         * are to zero.
1232         *
1233         * If the counter has a value of less than 2 * max batch size,
1234         * then make everything serialise as we are real close to
1235         * ENOSPC.
1236         */
1237        if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1238                                     XFS_FDBLOCKS_BATCH) < 0)
1239                batch = 1;
1240        else
1241                batch = XFS_FDBLOCKS_BATCH;
1242
1243        percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1244        if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1245                                     XFS_FDBLOCKS_BATCH) >= 0) {
1246                /* we had space! */
1247                return 0;
1248        }
1249
1250        /*
1251         * lock up the sb for dipping into reserves before releasing the space
1252         * that took us to ENOSPC.
1253         */
1254        spin_lock(&mp->m_sb_lock);
1255        percpu_counter_add(&mp->m_fdblocks, -delta);
1256        if (!rsvd)
1257                goto fdblocks_enospc;
1258
1259        lcounter = (long long)mp->m_resblks_avail + delta;
1260        if (lcounter >= 0) {
1261                mp->m_resblks_avail = lcounter;
1262                spin_unlock(&mp->m_sb_lock);
1263                return 0;
1264        }
1265        xfs_warn_once(mp,
1266"Reserve blocks depleted! Consider increasing reserve pool size.");
1267
1268fdblocks_enospc:
1269        spin_unlock(&mp->m_sb_lock);
1270        return -ENOSPC;
1271}
1272
1273int
1274xfs_mod_frextents(
1275        struct xfs_mount        *mp,
1276        int64_t                 delta)
1277{
1278        int64_t                 lcounter;
1279        int                     ret = 0;
1280
1281        spin_lock(&mp->m_sb_lock);
1282        lcounter = mp->m_sb.sb_frextents + delta;
1283        if (lcounter < 0)
1284                ret = -ENOSPC;
1285        else
1286                mp->m_sb.sb_frextents = lcounter;
1287        spin_unlock(&mp->m_sb_lock);
1288        return ret;
1289}
1290
1291/*
1292 * xfs_getsb() is called to obtain the buffer for the superblock.
1293 * The buffer is returned locked and read in from disk.
1294 * The buffer should be released with a call to xfs_brelse().
1295 */
1296struct xfs_buf *
1297xfs_getsb(
1298        struct xfs_mount        *mp)
1299{
1300        struct xfs_buf          *bp = mp->m_sb_bp;
1301
1302        xfs_buf_lock(bp);
1303        xfs_buf_hold(bp);
1304        ASSERT(bp->b_flags & XBF_DONE);
1305        return bp;
1306}
1307
1308/*
1309 * Used to free the superblock along various error paths.
1310 */
1311void
1312xfs_freesb(
1313        struct xfs_mount        *mp)
1314{
1315        struct xfs_buf          *bp = mp->m_sb_bp;
1316
1317        xfs_buf_lock(bp);
1318        mp->m_sb_bp = NULL;
1319        xfs_buf_relse(bp);
1320}
1321
1322/*
1323 * If the underlying (data/log/rt) device is readonly, there are some
1324 * operations that cannot proceed.
1325 */
1326int
1327xfs_dev_is_read_only(
1328        struct xfs_mount        *mp,
1329        char                    *message)
1330{
1331        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1332            xfs_readonly_buftarg(mp->m_logdev_targp) ||
1333            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1334                xfs_notice(mp, "%s required on read-only device.", message);
1335                xfs_notice(mp, "write access unavailable, cannot proceed.");
1336                return -EROFS;
1337        }
1338        return 0;
1339}
1340
1341/* Force the summary counters to be recalculated at next mount. */
1342void
1343xfs_force_summary_recalc(
1344        struct xfs_mount        *mp)
1345{
1346        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1347                return;
1348
1349        xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1350}
1351
1352/*
1353 * Update the in-core delayed block counter.
1354 *
1355 * We prefer to update the counter without having to take a spinlock for every
1356 * counter update (i.e. batching).  Each change to delayed allocation
1357 * reservations can change can easily exceed the default percpu counter
1358 * batching, so we use a larger batch factor here.
1359 *
1360 * Note that we don't currently have any callers requiring fast summation
1361 * (e.g. percpu_counter_read) so we can use a big batch value here.
1362 */
1363#define XFS_DELALLOC_BATCH      (4096)
1364void
1365xfs_mod_delalloc(
1366        struct xfs_mount        *mp,
1367        int64_t                 delta)
1368{
1369        percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1370                        XFS_DELALLOC_BATCH);
1371}
1372