linux/include/crypto/skcipher.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Symmetric key ciphers.
   4 * 
   5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
   6 */
   7
   8#ifndef _CRYPTO_SKCIPHER_H
   9#define _CRYPTO_SKCIPHER_H
  10
  11#include <linux/crypto.h>
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14
  15/**
  16 *      struct skcipher_request - Symmetric key cipher request
  17 *      @cryptlen: Number of bytes to encrypt or decrypt
  18 *      @iv: Initialisation Vector
  19 *      @src: Source SG list
  20 *      @dst: Destination SG list
  21 *      @base: Underlying async request
  22 *      @__ctx: Start of private context data
  23 */
  24struct skcipher_request {
  25        unsigned int cryptlen;
  26
  27        u8 *iv;
  28
  29        struct scatterlist *src;
  30        struct scatterlist *dst;
  31
  32        struct crypto_async_request base;
  33
  34        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  35};
  36
  37struct crypto_skcipher {
  38        unsigned int reqsize;
  39
  40        struct crypto_tfm base;
  41};
  42
  43struct crypto_sync_skcipher {
  44        struct crypto_skcipher base;
  45};
  46
  47/**
  48 * struct skcipher_alg - symmetric key cipher definition
  49 * @min_keysize: Minimum key size supported by the transformation. This is the
  50 *               smallest key length supported by this transformation algorithm.
  51 *               This must be set to one of the pre-defined values as this is
  52 *               not hardware specific. Possible values for this field can be
  53 *               found via git grep "_MIN_KEY_SIZE" include/crypto/
  54 * @max_keysize: Maximum key size supported by the transformation. This is the
  55 *               largest key length supported by this transformation algorithm.
  56 *               This must be set to one of the pre-defined values as this is
  57 *               not hardware specific. Possible values for this field can be
  58 *               found via git grep "_MAX_KEY_SIZE" include/crypto/
  59 * @setkey: Set key for the transformation. This function is used to either
  60 *          program a supplied key into the hardware or store the key in the
  61 *          transformation context for programming it later. Note that this
  62 *          function does modify the transformation context. This function can
  63 *          be called multiple times during the existence of the transformation
  64 *          object, so one must make sure the key is properly reprogrammed into
  65 *          the hardware. This function is also responsible for checking the key
  66 *          length for validity. In case a software fallback was put in place in
  67 *          the @cra_init call, this function might need to use the fallback if
  68 *          the algorithm doesn't support all of the key sizes.
  69 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
  70 *           the supplied scatterlist containing the blocks of data. The crypto
  71 *           API consumer is responsible for aligning the entries of the
  72 *           scatterlist properly and making sure the chunks are correctly
  73 *           sized. In case a software fallback was put in place in the
  74 *           @cra_init call, this function might need to use the fallback if
  75 *           the algorithm doesn't support all of the key sizes. In case the
  76 *           key was stored in transformation context, the key might need to be
  77 *           re-programmed into the hardware in this function. This function
  78 *           shall not modify the transformation context, as this function may
  79 *           be called in parallel with the same transformation object.
  80 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
  81 *           and the conditions are exactly the same.
  82 * @init: Initialize the cryptographic transformation object. This function
  83 *        is used to initialize the cryptographic transformation object.
  84 *        This function is called only once at the instantiation time, right
  85 *        after the transformation context was allocated. In case the
  86 *        cryptographic hardware has some special requirements which need to
  87 *        be handled by software, this function shall check for the precise
  88 *        requirement of the transformation and put any software fallbacks
  89 *        in place.
  90 * @exit: Deinitialize the cryptographic transformation object. This is a
  91 *        counterpart to @init, used to remove various changes set in
  92 *        @init.
  93 * @ivsize: IV size applicable for transformation. The consumer must provide an
  94 *          IV of exactly that size to perform the encrypt or decrypt operation.
  95 * @chunksize: Equal to the block size except for stream ciphers such as
  96 *             CTR where it is set to the underlying block size.
  97 * @walksize: Equal to the chunk size except in cases where the algorithm is
  98 *            considerably more efficient if it can operate on multiple chunks
  99 *            in parallel. Should be a multiple of chunksize.
 100 * @base: Definition of a generic crypto algorithm.
 101 *
 102 * All fields except @ivsize are mandatory and must be filled.
 103 */
 104struct skcipher_alg {
 105        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
 106                      unsigned int keylen);
 107        int (*encrypt)(struct skcipher_request *req);
 108        int (*decrypt)(struct skcipher_request *req);
 109        int (*init)(struct crypto_skcipher *tfm);
 110        void (*exit)(struct crypto_skcipher *tfm);
 111
 112        unsigned int min_keysize;
 113        unsigned int max_keysize;
 114        unsigned int ivsize;
 115        unsigned int chunksize;
 116        unsigned int walksize;
 117
 118        struct crypto_alg base;
 119};
 120
 121#define MAX_SYNC_SKCIPHER_REQSIZE      384
 122/*
 123 * This performs a type-check against the "tfm" argument to make sure
 124 * all users have the correct skcipher tfm for doing on-stack requests.
 125 */
 126#define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
 127        char __##name##_desc[sizeof(struct skcipher_request) + \
 128                             MAX_SYNC_SKCIPHER_REQSIZE + \
 129                             (!(sizeof((struct crypto_sync_skcipher *)1 == \
 130                                       (typeof(tfm))1))) \
 131                            ] CRYPTO_MINALIGN_ATTR; \
 132        struct skcipher_request *name = (void *)__##name##_desc
 133
 134/**
 135 * DOC: Symmetric Key Cipher API
 136 *
 137 * Symmetric key cipher API is used with the ciphers of type
 138 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
 139 *
 140 * Asynchronous cipher operations imply that the function invocation for a
 141 * cipher request returns immediately before the completion of the operation.
 142 * The cipher request is scheduled as a separate kernel thread and therefore
 143 * load-balanced on the different CPUs via the process scheduler. To allow
 144 * the kernel crypto API to inform the caller about the completion of a cipher
 145 * request, the caller must provide a callback function. That function is
 146 * invoked with the cipher handle when the request completes.
 147 *
 148 * To support the asynchronous operation, additional information than just the
 149 * cipher handle must be supplied to the kernel crypto API. That additional
 150 * information is given by filling in the skcipher_request data structure.
 151 *
 152 * For the symmetric key cipher API, the state is maintained with the tfm
 153 * cipher handle. A single tfm can be used across multiple calls and in
 154 * parallel. For asynchronous block cipher calls, context data supplied and
 155 * only used by the caller can be referenced the request data structure in
 156 * addition to the IV used for the cipher request. The maintenance of such
 157 * state information would be important for a crypto driver implementer to
 158 * have, because when calling the callback function upon completion of the
 159 * cipher operation, that callback function may need some information about
 160 * which operation just finished if it invoked multiple in parallel. This
 161 * state information is unused by the kernel crypto API.
 162 */
 163
 164static inline struct crypto_skcipher *__crypto_skcipher_cast(
 165        struct crypto_tfm *tfm)
 166{
 167        return container_of(tfm, struct crypto_skcipher, base);
 168}
 169
 170/**
 171 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
 172 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 173 *            skcipher cipher
 174 * @type: specifies the type of the cipher
 175 * @mask: specifies the mask for the cipher
 176 *
 177 * Allocate a cipher handle for an skcipher. The returned struct
 178 * crypto_skcipher is the cipher handle that is required for any subsequent
 179 * API invocation for that skcipher.
 180 *
 181 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 182 *         of an error, PTR_ERR() returns the error code.
 183 */
 184struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
 185                                              u32 type, u32 mask);
 186
 187struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
 188                                              u32 type, u32 mask);
 189
 190static inline struct crypto_tfm *crypto_skcipher_tfm(
 191        struct crypto_skcipher *tfm)
 192{
 193        return &tfm->base;
 194}
 195
 196/**
 197 * crypto_free_skcipher() - zeroize and free cipher handle
 198 * @tfm: cipher handle to be freed
 199 */
 200static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
 201{
 202        crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
 203}
 204
 205static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
 206{
 207        crypto_free_skcipher(&tfm->base);
 208}
 209
 210/**
 211 * crypto_has_skcipher() - Search for the availability of an skcipher.
 212 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 213 *            skcipher
 214 * @type: specifies the type of the skcipher
 215 * @mask: specifies the mask for the skcipher
 216 *
 217 * Return: true when the skcipher is known to the kernel crypto API; false
 218 *         otherwise
 219 */
 220int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
 221
 222static inline const char *crypto_skcipher_driver_name(
 223        struct crypto_skcipher *tfm)
 224{
 225        return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
 226}
 227
 228static inline struct skcipher_alg *crypto_skcipher_alg(
 229        struct crypto_skcipher *tfm)
 230{
 231        return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
 232                            struct skcipher_alg, base);
 233}
 234
 235static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
 236{
 237        return alg->ivsize;
 238}
 239
 240/**
 241 * crypto_skcipher_ivsize() - obtain IV size
 242 * @tfm: cipher handle
 243 *
 244 * The size of the IV for the skcipher referenced by the cipher handle is
 245 * returned. This IV size may be zero if the cipher does not need an IV.
 246 *
 247 * Return: IV size in bytes
 248 */
 249static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
 250{
 251        return crypto_skcipher_alg(tfm)->ivsize;
 252}
 253
 254static inline unsigned int crypto_sync_skcipher_ivsize(
 255        struct crypto_sync_skcipher *tfm)
 256{
 257        return crypto_skcipher_ivsize(&tfm->base);
 258}
 259
 260/**
 261 * crypto_skcipher_blocksize() - obtain block size of cipher
 262 * @tfm: cipher handle
 263 *
 264 * The block size for the skcipher referenced with the cipher handle is
 265 * returned. The caller may use that information to allocate appropriate
 266 * memory for the data returned by the encryption or decryption operation
 267 *
 268 * Return: block size of cipher
 269 */
 270static inline unsigned int crypto_skcipher_blocksize(
 271        struct crypto_skcipher *tfm)
 272{
 273        return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
 274}
 275
 276static inline unsigned int crypto_skcipher_alg_chunksize(
 277        struct skcipher_alg *alg)
 278{
 279        return alg->chunksize;
 280}
 281
 282/**
 283 * crypto_skcipher_chunksize() - obtain chunk size
 284 * @tfm: cipher handle
 285 *
 286 * The block size is set to one for ciphers such as CTR.  However,
 287 * you still need to provide incremental updates in multiples of
 288 * the underlying block size as the IV does not have sub-block
 289 * granularity.  This is known in this API as the chunk size.
 290 *
 291 * Return: chunk size in bytes
 292 */
 293static inline unsigned int crypto_skcipher_chunksize(
 294        struct crypto_skcipher *tfm)
 295{
 296        return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
 297}
 298
 299static inline unsigned int crypto_sync_skcipher_blocksize(
 300        struct crypto_sync_skcipher *tfm)
 301{
 302        return crypto_skcipher_blocksize(&tfm->base);
 303}
 304
 305static inline unsigned int crypto_skcipher_alignmask(
 306        struct crypto_skcipher *tfm)
 307{
 308        return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
 309}
 310
 311static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
 312{
 313        return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
 314}
 315
 316static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
 317                                               u32 flags)
 318{
 319        crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
 320}
 321
 322static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
 323                                                 u32 flags)
 324{
 325        crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
 326}
 327
 328static inline u32 crypto_sync_skcipher_get_flags(
 329        struct crypto_sync_skcipher *tfm)
 330{
 331        return crypto_skcipher_get_flags(&tfm->base);
 332}
 333
 334static inline void crypto_sync_skcipher_set_flags(
 335        struct crypto_sync_skcipher *tfm, u32 flags)
 336{
 337        crypto_skcipher_set_flags(&tfm->base, flags);
 338}
 339
 340static inline void crypto_sync_skcipher_clear_flags(
 341        struct crypto_sync_skcipher *tfm, u32 flags)
 342{
 343        crypto_skcipher_clear_flags(&tfm->base, flags);
 344}
 345
 346/**
 347 * crypto_skcipher_setkey() - set key for cipher
 348 * @tfm: cipher handle
 349 * @key: buffer holding the key
 350 * @keylen: length of the key in bytes
 351 *
 352 * The caller provided key is set for the skcipher referenced by the cipher
 353 * handle.
 354 *
 355 * Note, the key length determines the cipher type. Many block ciphers implement
 356 * different cipher modes depending on the key size, such as AES-128 vs AES-192
 357 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 358 * is performed.
 359 *
 360 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 361 */
 362int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
 363                           const u8 *key, unsigned int keylen);
 364
 365static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
 366                                         const u8 *key, unsigned int keylen)
 367{
 368        return crypto_skcipher_setkey(&tfm->base, key, keylen);
 369}
 370
 371static inline unsigned int crypto_skcipher_min_keysize(
 372        struct crypto_skcipher *tfm)
 373{
 374        return crypto_skcipher_alg(tfm)->min_keysize;
 375}
 376
 377static inline unsigned int crypto_skcipher_max_keysize(
 378        struct crypto_skcipher *tfm)
 379{
 380        return crypto_skcipher_alg(tfm)->max_keysize;
 381}
 382
 383/**
 384 * crypto_skcipher_reqtfm() - obtain cipher handle from request
 385 * @req: skcipher_request out of which the cipher handle is to be obtained
 386 *
 387 * Return the crypto_skcipher handle when furnishing an skcipher_request
 388 * data structure.
 389 *
 390 * Return: crypto_skcipher handle
 391 */
 392static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
 393        struct skcipher_request *req)
 394{
 395        return __crypto_skcipher_cast(req->base.tfm);
 396}
 397
 398static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
 399        struct skcipher_request *req)
 400{
 401        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 402
 403        return container_of(tfm, struct crypto_sync_skcipher, base);
 404}
 405
 406/**
 407 * crypto_skcipher_encrypt() - encrypt plaintext
 408 * @req: reference to the skcipher_request handle that holds all information
 409 *       needed to perform the cipher operation
 410 *
 411 * Encrypt plaintext data using the skcipher_request handle. That data
 412 * structure and how it is filled with data is discussed with the
 413 * skcipher_request_* functions.
 414 *
 415 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 416 */
 417int crypto_skcipher_encrypt(struct skcipher_request *req);
 418
 419/**
 420 * crypto_skcipher_decrypt() - decrypt ciphertext
 421 * @req: reference to the skcipher_request handle that holds all information
 422 *       needed to perform the cipher operation
 423 *
 424 * Decrypt ciphertext data using the skcipher_request handle. That data
 425 * structure and how it is filled with data is discussed with the
 426 * skcipher_request_* functions.
 427 *
 428 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 429 */
 430int crypto_skcipher_decrypt(struct skcipher_request *req);
 431
 432/**
 433 * DOC: Symmetric Key Cipher Request Handle
 434 *
 435 * The skcipher_request data structure contains all pointers to data
 436 * required for the symmetric key cipher operation. This includes the cipher
 437 * handle (which can be used by multiple skcipher_request instances), pointer
 438 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
 439 * as a handle to the skcipher_request_* API calls in a similar way as
 440 * skcipher handle to the crypto_skcipher_* API calls.
 441 */
 442
 443/**
 444 * crypto_skcipher_reqsize() - obtain size of the request data structure
 445 * @tfm: cipher handle
 446 *
 447 * Return: number of bytes
 448 */
 449static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
 450{
 451        return tfm->reqsize;
 452}
 453
 454/**
 455 * skcipher_request_set_tfm() - update cipher handle reference in request
 456 * @req: request handle to be modified
 457 * @tfm: cipher handle that shall be added to the request handle
 458 *
 459 * Allow the caller to replace the existing skcipher handle in the request
 460 * data structure with a different one.
 461 */
 462static inline void skcipher_request_set_tfm(struct skcipher_request *req,
 463                                            struct crypto_skcipher *tfm)
 464{
 465        req->base.tfm = crypto_skcipher_tfm(tfm);
 466}
 467
 468static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
 469                                            struct crypto_sync_skcipher *tfm)
 470{
 471        skcipher_request_set_tfm(req, &tfm->base);
 472}
 473
 474static inline struct skcipher_request *skcipher_request_cast(
 475        struct crypto_async_request *req)
 476{
 477        return container_of(req, struct skcipher_request, base);
 478}
 479
 480/**
 481 * skcipher_request_alloc() - allocate request data structure
 482 * @tfm: cipher handle to be registered with the request
 483 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 484 *
 485 * Allocate the request data structure that must be used with the skcipher
 486 * encrypt and decrypt API calls. During the allocation, the provided skcipher
 487 * handle is registered in the request data structure.
 488 *
 489 * Return: allocated request handle in case of success, or NULL if out of memory
 490 */
 491static inline struct skcipher_request *skcipher_request_alloc(
 492        struct crypto_skcipher *tfm, gfp_t gfp)
 493{
 494        struct skcipher_request *req;
 495
 496        req = kmalloc(sizeof(struct skcipher_request) +
 497                      crypto_skcipher_reqsize(tfm), gfp);
 498
 499        if (likely(req))
 500                skcipher_request_set_tfm(req, tfm);
 501
 502        return req;
 503}
 504
 505/**
 506 * skcipher_request_free() - zeroize and free request data structure
 507 * @req: request data structure cipher handle to be freed
 508 */
 509static inline void skcipher_request_free(struct skcipher_request *req)
 510{
 511        kfree_sensitive(req);
 512}
 513
 514static inline void skcipher_request_zero(struct skcipher_request *req)
 515{
 516        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 517
 518        memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
 519}
 520
 521/**
 522 * skcipher_request_set_callback() - set asynchronous callback function
 523 * @req: request handle
 524 * @flags: specify zero or an ORing of the flags
 525 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 526 *         increase the wait queue beyond the initial maximum size;
 527 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 528 * @compl: callback function pointer to be registered with the request handle
 529 * @data: The data pointer refers to memory that is not used by the kernel
 530 *        crypto API, but provided to the callback function for it to use. Here,
 531 *        the caller can provide a reference to memory the callback function can
 532 *        operate on. As the callback function is invoked asynchronously to the
 533 *        related functionality, it may need to access data structures of the
 534 *        related functionality which can be referenced using this pointer. The
 535 *        callback function can access the memory via the "data" field in the
 536 *        crypto_async_request data structure provided to the callback function.
 537 *
 538 * This function allows setting the callback function that is triggered once the
 539 * cipher operation completes.
 540 *
 541 * The callback function is registered with the skcipher_request handle and
 542 * must comply with the following template::
 543 *
 544 *      void callback_function(struct crypto_async_request *req, int error)
 545 */
 546static inline void skcipher_request_set_callback(struct skcipher_request *req,
 547                                                 u32 flags,
 548                                                 crypto_completion_t compl,
 549                                                 void *data)
 550{
 551        req->base.complete = compl;
 552        req->base.data = data;
 553        req->base.flags = flags;
 554}
 555
 556/**
 557 * skcipher_request_set_crypt() - set data buffers
 558 * @req: request handle
 559 * @src: source scatter / gather list
 560 * @dst: destination scatter / gather list
 561 * @cryptlen: number of bytes to process from @src
 562 * @iv: IV for the cipher operation which must comply with the IV size defined
 563 *      by crypto_skcipher_ivsize
 564 *
 565 * This function allows setting of the source data and destination data
 566 * scatter / gather lists.
 567 *
 568 * For encryption, the source is treated as the plaintext and the
 569 * destination is the ciphertext. For a decryption operation, the use is
 570 * reversed - the source is the ciphertext and the destination is the plaintext.
 571 */
 572static inline void skcipher_request_set_crypt(
 573        struct skcipher_request *req,
 574        struct scatterlist *src, struct scatterlist *dst,
 575        unsigned int cryptlen, void *iv)
 576{
 577        req->src = src;
 578        req->dst = dst;
 579        req->cryptlen = cryptlen;
 580        req->iv = iv;
 581}
 582
 583#endif  /* _CRYPTO_SKCIPHER_H */
 584
 585