linux/include/linux/gfp.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __LINUX_GFP_H
   3#define __LINUX_GFP_H
   4
   5#include <linux/mmdebug.h>
   6#include <linux/mmzone.h>
   7#include <linux/stddef.h>
   8#include <linux/linkage.h>
   9#include <linux/topology.h>
  10
  11struct vm_area_struct;
  12
  13/*
  14 * In case of changes, please don't forget to update
  15 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
  16 */
  17
  18/* Plain integer GFP bitmasks. Do not use this directly. */
  19#define ___GFP_DMA              0x01u
  20#define ___GFP_HIGHMEM          0x02u
  21#define ___GFP_DMA32            0x04u
  22#define ___GFP_MOVABLE          0x08u
  23#define ___GFP_RECLAIMABLE      0x10u
  24#define ___GFP_HIGH             0x20u
  25#define ___GFP_IO               0x40u
  26#define ___GFP_FS               0x80u
  27#define ___GFP_ZERO             0x100u
  28#define ___GFP_ATOMIC           0x200u
  29#define ___GFP_DIRECT_RECLAIM   0x400u
  30#define ___GFP_KSWAPD_RECLAIM   0x800u
  31#define ___GFP_WRITE            0x1000u
  32#define ___GFP_NOWARN           0x2000u
  33#define ___GFP_RETRY_MAYFAIL    0x4000u
  34#define ___GFP_NOFAIL           0x8000u
  35#define ___GFP_NORETRY          0x10000u
  36#define ___GFP_MEMALLOC         0x20000u
  37#define ___GFP_COMP             0x40000u
  38#define ___GFP_NOMEMALLOC       0x80000u
  39#define ___GFP_HARDWALL         0x100000u
  40#define ___GFP_THISNODE         0x200000u
  41#define ___GFP_ACCOUNT          0x400000u
  42#ifdef CONFIG_LOCKDEP
  43#define ___GFP_NOLOCKDEP        0x800000u
  44#else
  45#define ___GFP_NOLOCKDEP        0
  46#endif
  47/* If the above are modified, __GFP_BITS_SHIFT may need updating */
  48
  49/*
  50 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
  51 *
  52 * Do not put any conditional on these. If necessary modify the definitions
  53 * without the underscores and use them consistently. The definitions here may
  54 * be used in bit comparisons.
  55 */
  56#define __GFP_DMA       ((__force gfp_t)___GFP_DMA)
  57#define __GFP_HIGHMEM   ((__force gfp_t)___GFP_HIGHMEM)
  58#define __GFP_DMA32     ((__force gfp_t)___GFP_DMA32)
  59#define __GFP_MOVABLE   ((__force gfp_t)___GFP_MOVABLE)  /* ZONE_MOVABLE allowed */
  60#define GFP_ZONEMASK    (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
  61
  62/**
  63 * DOC: Page mobility and placement hints
  64 *
  65 * Page mobility and placement hints
  66 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  67 *
  68 * These flags provide hints about how mobile the page is. Pages with similar
  69 * mobility are placed within the same pageblocks to minimise problems due
  70 * to external fragmentation.
  71 *
  72 * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be
  73 * moved by page migration during memory compaction or can be reclaimed.
  74 *
  75 * %__GFP_RECLAIMABLE is used for slab allocations that specify
  76 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
  77 *
  78 * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible,
  79 * these pages will be spread between local zones to avoid all the dirty
  80 * pages being in one zone (fair zone allocation policy).
  81 *
  82 * %__GFP_HARDWALL enforces the cpuset memory allocation policy.
  83 *
  84 * %__GFP_THISNODE forces the allocation to be satisfied from the requested
  85 * node with no fallbacks or placement policy enforcements.
  86 *
  87 * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
  88 */
  89#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
  90#define __GFP_WRITE     ((__force gfp_t)___GFP_WRITE)
  91#define __GFP_HARDWALL   ((__force gfp_t)___GFP_HARDWALL)
  92#define __GFP_THISNODE  ((__force gfp_t)___GFP_THISNODE)
  93#define __GFP_ACCOUNT   ((__force gfp_t)___GFP_ACCOUNT)
  94
  95/**
  96 * DOC: Watermark modifiers
  97 *
  98 * Watermark modifiers -- controls access to emergency reserves
  99 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 100 *
 101 * %__GFP_HIGH indicates that the caller is high-priority and that granting
 102 * the request is necessary before the system can make forward progress.
 103 * For example, creating an IO context to clean pages.
 104 *
 105 * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
 106 * high priority. Users are typically interrupt handlers. This may be
 107 * used in conjunction with %__GFP_HIGH
 108 *
 109 * %__GFP_MEMALLOC allows access to all memory. This should only be used when
 110 * the caller guarantees the allocation will allow more memory to be freed
 111 * very shortly e.g. process exiting or swapping. Users either should
 112 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
 113 * Users of this flag have to be extremely careful to not deplete the reserve
 114 * completely and implement a throttling mechanism which controls the
 115 * consumption of the reserve based on the amount of freed memory.
 116 * Usage of a pre-allocated pool (e.g. mempool) should be always considered
 117 * before using this flag.
 118 *
 119 * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
 120 * This takes precedence over the %__GFP_MEMALLOC flag if both are set.
 121 */
 122#define __GFP_ATOMIC    ((__force gfp_t)___GFP_ATOMIC)
 123#define __GFP_HIGH      ((__force gfp_t)___GFP_HIGH)
 124#define __GFP_MEMALLOC  ((__force gfp_t)___GFP_MEMALLOC)
 125#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
 126
 127/**
 128 * DOC: Reclaim modifiers
 129 *
 130 * Reclaim modifiers
 131 * ~~~~~~~~~~~~~~~~~
 132 * Please note that all the following flags are only applicable to sleepable
 133 * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them).
 134 *
 135 * %__GFP_IO can start physical IO.
 136 *
 137 * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the
 138 * allocator recursing into the filesystem which might already be holding
 139 * locks.
 140 *
 141 * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
 142 * This flag can be cleared to avoid unnecessary delays when a fallback
 143 * option is available.
 144 *
 145 * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
 146 * the low watermark is reached and have it reclaim pages until the high
 147 * watermark is reached. A caller may wish to clear this flag when fallback
 148 * options are available and the reclaim is likely to disrupt the system. The
 149 * canonical example is THP allocation where a fallback is cheap but
 150 * reclaim/compaction may cause indirect stalls.
 151 *
 152 * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
 153 *
 154 * The default allocator behavior depends on the request size. We have a concept
 155 * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER).
 156 * !costly allocations are too essential to fail so they are implicitly
 157 * non-failing by default (with some exceptions like OOM victims might fail so
 158 * the caller still has to check for failures) while costly requests try to be
 159 * not disruptive and back off even without invoking the OOM killer.
 160 * The following three modifiers might be used to override some of these
 161 * implicit rules
 162 *
 163 * %__GFP_NORETRY: The VM implementation will try only very lightweight
 164 * memory direct reclaim to get some memory under memory pressure (thus
 165 * it can sleep). It will avoid disruptive actions like OOM killer. The
 166 * caller must handle the failure which is quite likely to happen under
 167 * heavy memory pressure. The flag is suitable when failure can easily be
 168 * handled at small cost, such as reduced throughput
 169 *
 170 * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
 171 * procedures that have previously failed if there is some indication
 172 * that progress has been made else where.  It can wait for other
 173 * tasks to attempt high level approaches to freeing memory such as
 174 * compaction (which removes fragmentation) and page-out.
 175 * There is still a definite limit to the number of retries, but it is
 176 * a larger limit than with %__GFP_NORETRY.
 177 * Allocations with this flag may fail, but only when there is
 178 * genuinely little unused memory. While these allocations do not
 179 * directly trigger the OOM killer, their failure indicates that
 180 * the system is likely to need to use the OOM killer soon.  The
 181 * caller must handle failure, but can reasonably do so by failing
 182 * a higher-level request, or completing it only in a much less
 183 * efficient manner.
 184 * If the allocation does fail, and the caller is in a position to
 185 * free some non-essential memory, doing so could benefit the system
 186 * as a whole.
 187 *
 188 * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
 189 * cannot handle allocation failures. The allocation could block
 190 * indefinitely but will never return with failure. Testing for
 191 * failure is pointless.
 192 * New users should be evaluated carefully (and the flag should be
 193 * used only when there is no reasonable failure policy) but it is
 194 * definitely preferable to use the flag rather than opencode endless
 195 * loop around allocator.
 196 * Using this flag for costly allocations is _highly_ discouraged.
 197 */
 198#define __GFP_IO        ((__force gfp_t)___GFP_IO)
 199#define __GFP_FS        ((__force gfp_t)___GFP_FS)
 200#define __GFP_DIRECT_RECLAIM    ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
 201#define __GFP_KSWAPD_RECLAIM    ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
 202#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
 203#define __GFP_RETRY_MAYFAIL     ((__force gfp_t)___GFP_RETRY_MAYFAIL)
 204#define __GFP_NOFAIL    ((__force gfp_t)___GFP_NOFAIL)
 205#define __GFP_NORETRY   ((__force gfp_t)___GFP_NORETRY)
 206
 207/**
 208 * DOC: Action modifiers
 209 *
 210 * Action modifiers
 211 * ~~~~~~~~~~~~~~~~
 212 *
 213 * %__GFP_NOWARN suppresses allocation failure reports.
 214 *
 215 * %__GFP_COMP address compound page metadata.
 216 *
 217 * %__GFP_ZERO returns a zeroed page on success.
 218 */
 219#define __GFP_NOWARN    ((__force gfp_t)___GFP_NOWARN)
 220#define __GFP_COMP      ((__force gfp_t)___GFP_COMP)
 221#define __GFP_ZERO      ((__force gfp_t)___GFP_ZERO)
 222
 223/* Disable lockdep for GFP context tracking */
 224#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
 225
 226/* Room for N __GFP_FOO bits */
 227#define __GFP_BITS_SHIFT (23 + IS_ENABLED(CONFIG_LOCKDEP))
 228#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
 229
 230/**
 231 * DOC: Useful GFP flag combinations
 232 *
 233 * Useful GFP flag combinations
 234 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 235 *
 236 * Useful GFP flag combinations that are commonly used. It is recommended
 237 * that subsystems start with one of these combinations and then set/clear
 238 * %__GFP_FOO flags as necessary.
 239 *
 240 * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
 241 * watermark is applied to allow access to "atomic reserves"
 242 *
 243 * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires
 244 * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
 245 *
 246 * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
 247 * accounted to kmemcg.
 248 *
 249 * %GFP_NOWAIT is for kernel allocations that should not stall for direct
 250 * reclaim, start physical IO or use any filesystem callback.
 251 *
 252 * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages
 253 * that do not require the starting of any physical IO.
 254 * Please try to avoid using this flag directly and instead use
 255 * memalloc_noio_{save,restore} to mark the whole scope which cannot
 256 * perform any IO with a short explanation why. All allocation requests
 257 * will inherit GFP_NOIO implicitly.
 258 *
 259 * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
 260 * Please try to avoid using this flag directly and instead use
 261 * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
 262 * recurse into the FS layer with a short explanation why. All allocation
 263 * requests will inherit GFP_NOFS implicitly.
 264 *
 265 * %GFP_USER is for userspace allocations that also need to be directly
 266 * accessibly by the kernel or hardware. It is typically used by hardware
 267 * for buffers that are mapped to userspace (e.g. graphics) that hardware
 268 * still must DMA to. cpuset limits are enforced for these allocations.
 269 *
 270 * %GFP_DMA exists for historical reasons and should be avoided where possible.
 271 * The flags indicates that the caller requires that the lowest zone be
 272 * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
 273 * it would require careful auditing as some users really require it and
 274 * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the
 275 * lowest zone as a type of emergency reserve.
 276 *
 277 * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit
 278 * address.
 279 *
 280 * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
 281 * do not need to be directly accessible by the kernel but that cannot
 282 * move once in use. An example may be a hardware allocation that maps
 283 * data directly into userspace but has no addressing limitations.
 284 *
 285 * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
 286 * need direct access to but can use kmap() when access is required. They
 287 * are expected to be movable via page reclaim or page migration. Typically,
 288 * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE.
 289 *
 290 * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They
 291 * are compound allocations that will generally fail quickly if memory is not
 292 * available and will not wake kswapd/kcompactd on failure. The _LIGHT
 293 * version does not attempt reclaim/compaction at all and is by default used
 294 * in page fault path, while the non-light is used by khugepaged.
 295 */
 296#define GFP_ATOMIC      (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
 297#define GFP_KERNEL      (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
 298#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
 299#define GFP_NOWAIT      (__GFP_KSWAPD_RECLAIM)
 300#define GFP_NOIO        (__GFP_RECLAIM)
 301#define GFP_NOFS        (__GFP_RECLAIM | __GFP_IO)
 302#define GFP_USER        (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
 303#define GFP_DMA         __GFP_DMA
 304#define GFP_DMA32       __GFP_DMA32
 305#define GFP_HIGHUSER    (GFP_USER | __GFP_HIGHMEM)
 306#define GFP_HIGHUSER_MOVABLE    (GFP_HIGHUSER | __GFP_MOVABLE)
 307#define GFP_TRANSHUGE_LIGHT     ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
 308                         __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
 309#define GFP_TRANSHUGE   (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
 310
 311/* Convert GFP flags to their corresponding migrate type */
 312#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
 313#define GFP_MOVABLE_SHIFT 3
 314
 315static inline int gfp_migratetype(const gfp_t gfp_flags)
 316{
 317        VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
 318        BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
 319        BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
 320
 321        if (unlikely(page_group_by_mobility_disabled))
 322                return MIGRATE_UNMOVABLE;
 323
 324        /* Group based on mobility */
 325        return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
 326}
 327#undef GFP_MOVABLE_MASK
 328#undef GFP_MOVABLE_SHIFT
 329
 330static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
 331{
 332        return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
 333}
 334
 335/**
 336 * gfpflags_normal_context - is gfp_flags a normal sleepable context?
 337 * @gfp_flags: gfp_flags to test
 338 *
 339 * Test whether @gfp_flags indicates that the allocation is from the
 340 * %current context and allowed to sleep.
 341 *
 342 * An allocation being allowed to block doesn't mean it owns the %current
 343 * context.  When direct reclaim path tries to allocate memory, the
 344 * allocation context is nested inside whatever %current was doing at the
 345 * time of the original allocation.  The nested allocation may be allowed
 346 * to block but modifying anything %current owns can corrupt the outer
 347 * context's expectations.
 348 *
 349 * %true result from this function indicates that the allocation context
 350 * can sleep and use anything that's associated with %current.
 351 */
 352static inline bool gfpflags_normal_context(const gfp_t gfp_flags)
 353{
 354        return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) ==
 355                __GFP_DIRECT_RECLAIM;
 356}
 357
 358#ifdef CONFIG_HIGHMEM
 359#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
 360#else
 361#define OPT_ZONE_HIGHMEM ZONE_NORMAL
 362#endif
 363
 364#ifdef CONFIG_ZONE_DMA
 365#define OPT_ZONE_DMA ZONE_DMA
 366#else
 367#define OPT_ZONE_DMA ZONE_NORMAL
 368#endif
 369
 370#ifdef CONFIG_ZONE_DMA32
 371#define OPT_ZONE_DMA32 ZONE_DMA32
 372#else
 373#define OPT_ZONE_DMA32 ZONE_NORMAL
 374#endif
 375
 376/*
 377 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
 378 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
 379 * bits long and there are 16 of them to cover all possible combinations of
 380 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
 381 *
 382 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
 383 * But GFP_MOVABLE is not only a zone specifier but also an allocation
 384 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
 385 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
 386 *
 387 *       bit       result
 388 *       =================
 389 *       0x0    => NORMAL
 390 *       0x1    => DMA or NORMAL
 391 *       0x2    => HIGHMEM or NORMAL
 392 *       0x3    => BAD (DMA+HIGHMEM)
 393 *       0x4    => DMA32 or NORMAL
 394 *       0x5    => BAD (DMA+DMA32)
 395 *       0x6    => BAD (HIGHMEM+DMA32)
 396 *       0x7    => BAD (HIGHMEM+DMA32+DMA)
 397 *       0x8    => NORMAL (MOVABLE+0)
 398 *       0x9    => DMA or NORMAL (MOVABLE+DMA)
 399 *       0xa    => MOVABLE (Movable is valid only if HIGHMEM is set too)
 400 *       0xb    => BAD (MOVABLE+HIGHMEM+DMA)
 401 *       0xc    => DMA32 or NORMAL (MOVABLE+DMA32)
 402 *       0xd    => BAD (MOVABLE+DMA32+DMA)
 403 *       0xe    => BAD (MOVABLE+DMA32+HIGHMEM)
 404 *       0xf    => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
 405 *
 406 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
 407 */
 408
 409#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
 410/* ZONE_DEVICE is not a valid GFP zone specifier */
 411#define GFP_ZONES_SHIFT 2
 412#else
 413#define GFP_ZONES_SHIFT ZONES_SHIFT
 414#endif
 415
 416#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
 417#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
 418#endif
 419
 420#define GFP_ZONE_TABLE ( \
 421        (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT)                                   \
 422        | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT)                       \
 423        | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT)               \
 424        | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT)                   \
 425        | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT)                    \
 426        | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT)    \
 427        | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
 428        | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
 429)
 430
 431/*
 432 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
 433 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
 434 * entry starting with bit 0. Bit is set if the combination is not
 435 * allowed.
 436 */
 437#define GFP_ZONE_BAD ( \
 438        1 << (___GFP_DMA | ___GFP_HIGHMEM)                                    \
 439        | 1 << (___GFP_DMA | ___GFP_DMA32)                                    \
 440        | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM)                                \
 441        | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM)                   \
 442        | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA)                 \
 443        | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA)                   \
 444        | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM)               \
 445        | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM)  \
 446)
 447
 448static inline enum zone_type gfp_zone(gfp_t flags)
 449{
 450        enum zone_type z;
 451        int bit = (__force int) (flags & GFP_ZONEMASK);
 452
 453        z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
 454                                         ((1 << GFP_ZONES_SHIFT) - 1);
 455        VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
 456        return z;
 457}
 458
 459/*
 460 * There is only one page-allocator function, and two main namespaces to
 461 * it. The alloc_page*() variants return 'struct page *' and as such
 462 * can allocate highmem pages, the *get*page*() variants return
 463 * virtual kernel addresses to the allocated page(s).
 464 */
 465
 466static inline int gfp_zonelist(gfp_t flags)
 467{
 468#ifdef CONFIG_NUMA
 469        if (unlikely(flags & __GFP_THISNODE))
 470                return ZONELIST_NOFALLBACK;
 471#endif
 472        return ZONELIST_FALLBACK;
 473}
 474
 475/*
 476 * We get the zone list from the current node and the gfp_mask.
 477 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
 478 * There are two zonelists per node, one for all zones with memory and
 479 * one containing just zones from the node the zonelist belongs to.
 480 *
 481 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
 482 * optimized to &contig_page_data at compile-time.
 483 */
 484static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
 485{
 486        return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
 487}
 488
 489#ifndef HAVE_ARCH_FREE_PAGE
 490static inline void arch_free_page(struct page *page, int order) { }
 491#endif
 492#ifndef HAVE_ARCH_ALLOC_PAGE
 493static inline void arch_alloc_page(struct page *page, int order) { }
 494#endif
 495#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
 496static inline int arch_make_page_accessible(struct page *page)
 497{
 498        return 0;
 499}
 500#endif
 501
 502struct page *
 503__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
 504                                                        nodemask_t *nodemask);
 505
 506static inline struct page *
 507__alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid)
 508{
 509        return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL);
 510}
 511
 512/*
 513 * Allocate pages, preferring the node given as nid. The node must be valid and
 514 * online. For more general interface, see alloc_pages_node().
 515 */
 516static inline struct page *
 517__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
 518{
 519        VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
 520        VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid));
 521
 522        return __alloc_pages(gfp_mask, order, nid);
 523}
 524
 525/*
 526 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
 527 * prefer the current CPU's closest node. Otherwise node must be valid and
 528 * online.
 529 */
 530static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
 531                                                unsigned int order)
 532{
 533        if (nid == NUMA_NO_NODE)
 534                nid = numa_mem_id();
 535
 536        return __alloc_pages_node(nid, gfp_mask, order);
 537}
 538
 539#ifdef CONFIG_NUMA
 540extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
 541
 542static inline struct page *
 543alloc_pages(gfp_t gfp_mask, unsigned int order)
 544{
 545        return alloc_pages_current(gfp_mask, order);
 546}
 547extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
 548                        struct vm_area_struct *vma, unsigned long addr,
 549                        int node, bool hugepage);
 550#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
 551        alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
 552#else
 553#define alloc_pages(gfp_mask, order) \
 554                alloc_pages_node(numa_node_id(), gfp_mask, order)
 555#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
 556        alloc_pages(gfp_mask, order)
 557#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
 558        alloc_pages(gfp_mask, order)
 559#endif
 560#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
 561#define alloc_page_vma(gfp_mask, vma, addr)                     \
 562        alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
 563#define alloc_page_vma_node(gfp_mask, vma, addr, node)          \
 564        alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
 565
 566extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
 567extern unsigned long get_zeroed_page(gfp_t gfp_mask);
 568
 569void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
 570void free_pages_exact(void *virt, size_t size);
 571void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
 572
 573#define __get_free_page(gfp_mask) \
 574                __get_free_pages((gfp_mask), 0)
 575
 576#define __get_dma_pages(gfp_mask, order) \
 577                __get_free_pages((gfp_mask) | GFP_DMA, (order))
 578
 579extern void __free_pages(struct page *page, unsigned int order);
 580extern void free_pages(unsigned long addr, unsigned int order);
 581extern void free_unref_page(struct page *page);
 582extern void free_unref_page_list(struct list_head *list);
 583
 584struct page_frag_cache;
 585extern void __page_frag_cache_drain(struct page *page, unsigned int count);
 586extern void *page_frag_alloc(struct page_frag_cache *nc,
 587                             unsigned int fragsz, gfp_t gfp_mask);
 588extern void page_frag_free(void *addr);
 589
 590#define __free_page(page) __free_pages((page), 0)
 591#define free_page(addr) free_pages((addr), 0)
 592
 593void page_alloc_init(void);
 594void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
 595void drain_all_pages(struct zone *zone);
 596void drain_local_pages(struct zone *zone);
 597
 598void page_alloc_init_late(void);
 599
 600/*
 601 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
 602 * GFP flags are used before interrupts are enabled. Once interrupts are
 603 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
 604 * hibernation, it is used by PM to avoid I/O during memory allocation while
 605 * devices are suspended.
 606 */
 607extern gfp_t gfp_allowed_mask;
 608
 609/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
 610bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
 611
 612extern void pm_restrict_gfp_mask(void);
 613extern void pm_restore_gfp_mask(void);
 614
 615#ifdef CONFIG_PM_SLEEP
 616extern bool pm_suspended_storage(void);
 617#else
 618static inline bool pm_suspended_storage(void)
 619{
 620        return false;
 621}
 622#endif /* CONFIG_PM_SLEEP */
 623
 624#ifdef CONFIG_CONTIG_ALLOC
 625/* The below functions must be run on a range from a single zone. */
 626extern int alloc_contig_range(unsigned long start, unsigned long end,
 627                              unsigned migratetype, gfp_t gfp_mask);
 628extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
 629                                       int nid, nodemask_t *nodemask);
 630#endif
 631void free_contig_range(unsigned long pfn, unsigned int nr_pages);
 632
 633#ifdef CONFIG_CMA
 634/* CMA stuff */
 635extern void init_cma_reserved_pageblock(struct page *page);
 636#endif
 637
 638#endif /* __LINUX_GFP_H */
 639