linux/include/linux/jiffies.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_JIFFIES_H
   3#define _LINUX_JIFFIES_H
   4
   5#include <linux/cache.h>
   6#include <linux/math64.h>
   7#include <linux/kernel.h>
   8#include <linux/types.h>
   9#include <linux/time.h>
  10#include <linux/timex.h>
  11#include <vdso/jiffies.h>
  12#include <asm/param.h>                  /* for HZ */
  13#include <generated/timeconst.h>
  14
  15/*
  16 * The following defines establish the engineering parameters of the PLL
  17 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  18 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  19 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  20 * nearest power of two in order to avoid hardware multiply operations.
  21 */
  22#if HZ >= 12 && HZ < 24
  23# define SHIFT_HZ       4
  24#elif HZ >= 24 && HZ < 48
  25# define SHIFT_HZ       5
  26#elif HZ >= 48 && HZ < 96
  27# define SHIFT_HZ       6
  28#elif HZ >= 96 && HZ < 192
  29# define SHIFT_HZ       7
  30#elif HZ >= 192 && HZ < 384
  31# define SHIFT_HZ       8
  32#elif HZ >= 384 && HZ < 768
  33# define SHIFT_HZ       9
  34#elif HZ >= 768 && HZ < 1536
  35# define SHIFT_HZ       10
  36#elif HZ >= 1536 && HZ < 3072
  37# define SHIFT_HZ       11
  38#elif HZ >= 3072 && HZ < 6144
  39# define SHIFT_HZ       12
  40#elif HZ >= 6144 && HZ < 12288
  41# define SHIFT_HZ       13
  42#else
  43# error Invalid value of HZ.
  44#endif
  45
  46/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
  47 * improve accuracy by shifting LSH bits, hence calculating:
  48 *     (NOM << LSH) / DEN
  49 * This however means trouble for large NOM, because (NOM << LSH) may no
  50 * longer fit in 32 bits. The following way of calculating this gives us
  51 * some slack, under the following conditions:
  52 *   - (NOM / DEN) fits in (32 - LSH) bits.
  53 *   - (NOM % DEN) fits in (32 - LSH) bits.
  54 */
  55#define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
  56                             + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
  57
  58/* LATCH is used in the interval timer and ftape setup. */
  59#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)   /* For divider */
  60
  61extern int register_refined_jiffies(long clock_tick_rate);
  62
  63/* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */
  64#define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ)
  65
  66/* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  67#define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  68
  69#ifndef __jiffy_arch_data
  70#define __jiffy_arch_data
  71#endif
  72
  73/*
  74 * The 64-bit value is not atomic - you MUST NOT read it
  75 * without sampling the sequence number in jiffies_lock.
  76 * get_jiffies_64() will do this for you as appropriate.
  77 */
  78extern u64 __cacheline_aligned_in_smp jiffies_64;
  79extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
  80
  81#if (BITS_PER_LONG < 64)
  82u64 get_jiffies_64(void);
  83#else
  84static inline u64 get_jiffies_64(void)
  85{
  86        return (u64)jiffies;
  87}
  88#endif
  89
  90/*
  91 *      These inlines deal with timer wrapping correctly. You are 
  92 *      strongly encouraged to use them
  93 *      1. Because people otherwise forget
  94 *      2. Because if the timer wrap changes in future you won't have to
  95 *         alter your driver code.
  96 *
  97 * time_after(a,b) returns true if the time a is after time b.
  98 *
  99 * Do this with "<0" and ">=0" to only test the sign of the result. A
 100 * good compiler would generate better code (and a really good compiler
 101 * wouldn't care). Gcc is currently neither.
 102 */
 103#define time_after(a,b)         \
 104        (typecheck(unsigned long, a) && \
 105         typecheck(unsigned long, b) && \
 106         ((long)((b) - (a)) < 0))
 107#define time_before(a,b)        time_after(b,a)
 108
 109#define time_after_eq(a,b)      \
 110        (typecheck(unsigned long, a) && \
 111         typecheck(unsigned long, b) && \
 112         ((long)((a) - (b)) >= 0))
 113#define time_before_eq(a,b)     time_after_eq(b,a)
 114
 115/*
 116 * Calculate whether a is in the range of [b, c].
 117 */
 118#define time_in_range(a,b,c) \
 119        (time_after_eq(a,b) && \
 120         time_before_eq(a,c))
 121
 122/*
 123 * Calculate whether a is in the range of [b, c).
 124 */
 125#define time_in_range_open(a,b,c) \
 126        (time_after_eq(a,b) && \
 127         time_before(a,c))
 128
 129/* Same as above, but does so with platform independent 64bit types.
 130 * These must be used when utilizing jiffies_64 (i.e. return value of
 131 * get_jiffies_64() */
 132#define time_after64(a,b)       \
 133        (typecheck(__u64, a) && \
 134         typecheck(__u64, b) && \
 135         ((__s64)((b) - (a)) < 0))
 136#define time_before64(a,b)      time_after64(b,a)
 137
 138#define time_after_eq64(a,b)    \
 139        (typecheck(__u64, a) && \
 140         typecheck(__u64, b) && \
 141         ((__s64)((a) - (b)) >= 0))
 142#define time_before_eq64(a,b)   time_after_eq64(b,a)
 143
 144#define time_in_range64(a, b, c) \
 145        (time_after_eq64(a, b) && \
 146         time_before_eq64(a, c))
 147
 148/*
 149 * These four macros compare jiffies and 'a' for convenience.
 150 */
 151
 152/* time_is_before_jiffies(a) return true if a is before jiffies */
 153#define time_is_before_jiffies(a) time_after(jiffies, a)
 154#define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
 155
 156/* time_is_after_jiffies(a) return true if a is after jiffies */
 157#define time_is_after_jiffies(a) time_before(jiffies, a)
 158#define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
 159
 160/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
 161#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
 162#define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
 163
 164/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
 165#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
 166#define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
 167
 168/*
 169 * Have the 32 bit jiffies value wrap 5 minutes after boot
 170 * so jiffies wrap bugs show up earlier.
 171 */
 172#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
 173
 174/*
 175 * Change timeval to jiffies, trying to avoid the
 176 * most obvious overflows..
 177 *
 178 * And some not so obvious.
 179 *
 180 * Note that we don't want to return LONG_MAX, because
 181 * for various timeout reasons we often end up having
 182 * to wait "jiffies+1" in order to guarantee that we wait
 183 * at _least_ "jiffies" - so "jiffies+1" had better still
 184 * be positive.
 185 */
 186#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
 187
 188extern unsigned long preset_lpj;
 189
 190/*
 191 * We want to do realistic conversions of time so we need to use the same
 192 * values the update wall clock code uses as the jiffies size.  This value
 193 * is: TICK_NSEC (which is defined in timex.h).  This
 194 * is a constant and is in nanoseconds.  We will use scaled math
 195 * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
 196 * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
 197 * constants and so are computed at compile time.  SHIFT_HZ (computed in
 198 * timex.h) adjusts the scaling for different HZ values.
 199
 200 * Scaled math???  What is that?
 201 *
 202 * Scaled math is a way to do integer math on values that would,
 203 * otherwise, either overflow, underflow, or cause undesired div
 204 * instructions to appear in the execution path.  In short, we "scale"
 205 * up the operands so they take more bits (more precision, less
 206 * underflow), do the desired operation and then "scale" the result back
 207 * by the same amount.  If we do the scaling by shifting we avoid the
 208 * costly mpy and the dastardly div instructions.
 209
 210 * Suppose, for example, we want to convert from seconds to jiffies
 211 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
 212 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
 213 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
 214 * might calculate at compile time, however, the result will only have
 215 * about 3-4 bits of precision (less for smaller values of HZ).
 216 *
 217 * So, we scale as follows:
 218 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
 219 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
 220 * Then we make SCALE a power of two so:
 221 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
 222 * Now we define:
 223 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
 224 * jiff = (sec * SEC_CONV) >> SCALE;
 225 *
 226 * Often the math we use will expand beyond 32-bits so we tell C how to
 227 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
 228 * which should take the result back to 32-bits.  We want this expansion
 229 * to capture as much precision as possible.  At the same time we don't
 230 * want to overflow so we pick the SCALE to avoid this.  In this file,
 231 * that means using a different scale for each range of HZ values (as
 232 * defined in timex.h).
 233 *
 234 * For those who want to know, gcc will give a 64-bit result from a "*"
 235 * operator if the result is a long long AND at least one of the
 236 * operands is cast to long long (usually just prior to the "*" so as
 237 * not to confuse it into thinking it really has a 64-bit operand,
 238 * which, buy the way, it can do, but it takes more code and at least 2
 239 * mpys).
 240
 241 * We also need to be aware that one second in nanoseconds is only a
 242 * couple of bits away from overflowing a 32-bit word, so we MUST use
 243 * 64-bits to get the full range time in nanoseconds.
 244
 245 */
 246
 247/*
 248 * Here are the scales we will use.  One for seconds, nanoseconds and
 249 * microseconds.
 250 *
 251 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
 252 * check if the sign bit is set.  If not, we bump the shift count by 1.
 253 * (Gets an extra bit of precision where we can use it.)
 254 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
 255 * Haven't tested others.
 256
 257 * Limits of cpp (for #if expressions) only long (no long long), but
 258 * then we only need the most signicant bit.
 259 */
 260
 261#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
 262#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
 263#undef SEC_JIFFIE_SC
 264#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
 265#endif
 266#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
 267#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
 268                                TICK_NSEC -1) / (u64)TICK_NSEC))
 269
 270#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
 271                                        TICK_NSEC -1) / (u64)TICK_NSEC))
 272/*
 273 * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
 274 * into seconds.  The 64-bit case will overflow if we are not careful,
 275 * so use the messy SH_DIV macro to do it.  Still all constants.
 276 */
 277#if BITS_PER_LONG < 64
 278# define MAX_SEC_IN_JIFFIES \
 279        (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
 280#else   /* take care of overflow on 64 bits machines */
 281# define MAX_SEC_IN_JIFFIES \
 282        (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
 283
 284#endif
 285
 286/*
 287 * Convert various time units to each other:
 288 */
 289extern unsigned int jiffies_to_msecs(const unsigned long j);
 290extern unsigned int jiffies_to_usecs(const unsigned long j);
 291
 292static inline u64 jiffies_to_nsecs(const unsigned long j)
 293{
 294        return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
 295}
 296
 297extern u64 jiffies64_to_nsecs(u64 j);
 298extern u64 jiffies64_to_msecs(u64 j);
 299
 300extern unsigned long __msecs_to_jiffies(const unsigned int m);
 301#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 302/*
 303 * HZ is equal to or smaller than 1000, and 1000 is a nice round
 304 * multiple of HZ, divide with the factor between them, but round
 305 * upwards:
 306 */
 307static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 308{
 309        return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
 310}
 311#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 312/*
 313 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
 314 * simply multiply with the factor between them.
 315 *
 316 * But first make sure the multiplication result cannot overflow:
 317 */
 318static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 319{
 320        if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 321                return MAX_JIFFY_OFFSET;
 322        return m * (HZ / MSEC_PER_SEC);
 323}
 324#else
 325/*
 326 * Generic case - multiply, round and divide. But first check that if
 327 * we are doing a net multiplication, that we wouldn't overflow:
 328 */
 329static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 330{
 331        if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 332                return MAX_JIFFY_OFFSET;
 333
 334        return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
 335}
 336#endif
 337/**
 338 * msecs_to_jiffies: - convert milliseconds to jiffies
 339 * @m:  time in milliseconds
 340 *
 341 * conversion is done as follows:
 342 *
 343 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 344 *
 345 * - 'too large' values [that would result in larger than
 346 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 347 *
 348 * - all other values are converted to jiffies by either multiplying
 349 *   the input value by a factor or dividing it with a factor and
 350 *   handling any 32-bit overflows.
 351 *   for the details see __msecs_to_jiffies()
 352 *
 353 * msecs_to_jiffies() checks for the passed in value being a constant
 354 * via __builtin_constant_p() allowing gcc to eliminate most of the
 355 * code, __msecs_to_jiffies() is called if the value passed does not
 356 * allow constant folding and the actual conversion must be done at
 357 * runtime.
 358 * the HZ range specific helpers _msecs_to_jiffies() are called both
 359 * directly here and from __msecs_to_jiffies() in the case where
 360 * constant folding is not possible.
 361 */
 362static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
 363{
 364        if (__builtin_constant_p(m)) {
 365                if ((int)m < 0)
 366                        return MAX_JIFFY_OFFSET;
 367                return _msecs_to_jiffies(m);
 368        } else {
 369                return __msecs_to_jiffies(m);
 370        }
 371}
 372
 373extern unsigned long __usecs_to_jiffies(const unsigned int u);
 374#if !(USEC_PER_SEC % HZ)
 375static inline unsigned long _usecs_to_jiffies(const unsigned int u)
 376{
 377        return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
 378}
 379#else
 380static inline unsigned long _usecs_to_jiffies(const unsigned int u)
 381{
 382        return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
 383                >> USEC_TO_HZ_SHR32;
 384}
 385#endif
 386
 387/**
 388 * usecs_to_jiffies: - convert microseconds to jiffies
 389 * @u:  time in microseconds
 390 *
 391 * conversion is done as follows:
 392 *
 393 * - 'too large' values [that would result in larger than
 394 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 395 *
 396 * - all other values are converted to jiffies by either multiplying
 397 *   the input value by a factor or dividing it with a factor and
 398 *   handling any 32-bit overflows as for msecs_to_jiffies.
 399 *
 400 * usecs_to_jiffies() checks for the passed in value being a constant
 401 * via __builtin_constant_p() allowing gcc to eliminate most of the
 402 * code, __usecs_to_jiffies() is called if the value passed does not
 403 * allow constant folding and the actual conversion must be done at
 404 * runtime.
 405 * the HZ range specific helpers _usecs_to_jiffies() are called both
 406 * directly here and from __msecs_to_jiffies() in the case where
 407 * constant folding is not possible.
 408 */
 409static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
 410{
 411        if (__builtin_constant_p(u)) {
 412                if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 413                        return MAX_JIFFY_OFFSET;
 414                return _usecs_to_jiffies(u);
 415        } else {
 416                return __usecs_to_jiffies(u);
 417        }
 418}
 419
 420extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
 421extern void jiffies_to_timespec64(const unsigned long jiffies,
 422                                  struct timespec64 *value);
 423extern clock_t jiffies_to_clock_t(unsigned long x);
 424static inline clock_t jiffies_delta_to_clock_t(long delta)
 425{
 426        return jiffies_to_clock_t(max(0L, delta));
 427}
 428
 429static inline unsigned int jiffies_delta_to_msecs(long delta)
 430{
 431        return jiffies_to_msecs(max(0L, delta));
 432}
 433
 434extern unsigned long clock_t_to_jiffies(unsigned long x);
 435extern u64 jiffies_64_to_clock_t(u64 x);
 436extern u64 nsec_to_clock_t(u64 x);
 437extern u64 nsecs_to_jiffies64(u64 n);
 438extern unsigned long nsecs_to_jiffies(u64 n);
 439
 440#define TIMESTAMP_SIZE  30
 441
 442#endif
 443