linux/include/linux/kernel.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_KERNEL_H
   3#define _LINUX_KERNEL_H
   4
   5
   6#include <stdarg.h>
   7#include <linux/limits.h>
   8#include <linux/linkage.h>
   9#include <linux/stddef.h>
  10#include <linux/types.h>
  11#include <linux/compiler.h>
  12#include <linux/bitops.h>
  13#include <linux/log2.h>
  14#include <linux/typecheck.h>
  15#include <linux/printk.h>
  16#include <linux/build_bug.h>
  17#include <asm/byteorder.h>
  18#include <asm/div64.h>
  19#include <uapi/linux/kernel.h>
  20
  21#define STACK_MAGIC     0xdeadbeef
  22
  23/**
  24 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
  25 * @x: value to repeat
  26 *
  27 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
  28 */
  29#define REPEAT_BYTE(x)  ((~0ul / 0xff) * (x))
  30
  31/* @a is a power of 2 value */
  32#define ALIGN(x, a)             __ALIGN_KERNEL((x), (a))
  33#define ALIGN_DOWN(x, a)        __ALIGN_KERNEL((x) - ((a) - 1), (a))
  34#define __ALIGN_MASK(x, mask)   __ALIGN_KERNEL_MASK((x), (mask))
  35#define PTR_ALIGN(p, a)         ((typeof(p))ALIGN((unsigned long)(p), (a)))
  36#define PTR_ALIGN_DOWN(p, a)    ((typeof(p))ALIGN_DOWN((unsigned long)(p), (a)))
  37#define IS_ALIGNED(x, a)                (((x) & ((typeof(x))(a) - 1)) == 0)
  38
  39/* generic data direction definitions */
  40#define READ                    0
  41#define WRITE                   1
  42
  43/**
  44 * ARRAY_SIZE - get the number of elements in array @arr
  45 * @arr: array to be sized
  46 */
  47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
  48
  49#define u64_to_user_ptr(x) (            \
  50{                                       \
  51        typecheck(u64, (x));            \
  52        (void __user *)(uintptr_t)(x);  \
  53}                                       \
  54)
  55
  56/*
  57 * This looks more complex than it should be. But we need to
  58 * get the type for the ~ right in round_down (it needs to be
  59 * as wide as the result!), and we want to evaluate the macro
  60 * arguments just once each.
  61 */
  62#define __round_mask(x, y) ((__typeof__(x))((y)-1))
  63/**
  64 * round_up - round up to next specified power of 2
  65 * @x: the value to round
  66 * @y: multiple to round up to (must be a power of 2)
  67 *
  68 * Rounds @x up to next multiple of @y (which must be a power of 2).
  69 * To perform arbitrary rounding up, use roundup() below.
  70 */
  71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
  72/**
  73 * round_down - round down to next specified power of 2
  74 * @x: the value to round
  75 * @y: multiple to round down to (must be a power of 2)
  76 *
  77 * Rounds @x down to next multiple of @y (which must be a power of 2).
  78 * To perform arbitrary rounding down, use rounddown() below.
  79 */
  80#define round_down(x, y) ((x) & ~__round_mask(x, y))
  81
  82#define typeof_member(T, m)     typeof(((T*)0)->m)
  83
  84#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
  85
  86#define DIV_ROUND_DOWN_ULL(ll, d) \
  87        ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
  88
  89#define DIV_ROUND_UP_ULL(ll, d) \
  90        DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
  91
  92#if BITS_PER_LONG == 32
  93# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
  94#else
  95# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
  96#endif
  97
  98/**
  99 * roundup - round up to the next specified multiple
 100 * @x: the value to up
 101 * @y: multiple to round up to
 102 *
 103 * Rounds @x up to next multiple of @y. If @y will always be a power
 104 * of 2, consider using the faster round_up().
 105 */
 106#define roundup(x, y) (                                 \
 107{                                                       \
 108        typeof(y) __y = y;                              \
 109        (((x) + (__y - 1)) / __y) * __y;                \
 110}                                                       \
 111)
 112/**
 113 * rounddown - round down to next specified multiple
 114 * @x: the value to round
 115 * @y: multiple to round down to
 116 *
 117 * Rounds @x down to next multiple of @y. If @y will always be a power
 118 * of 2, consider using the faster round_down().
 119 */
 120#define rounddown(x, y) (                               \
 121{                                                       \
 122        typeof(x) __x = (x);                            \
 123        __x - (__x % (y));                              \
 124}                                                       \
 125)
 126
 127/*
 128 * Divide positive or negative dividend by positive or negative divisor
 129 * and round to closest integer. Result is undefined for negative
 130 * divisors if the dividend variable type is unsigned and for negative
 131 * dividends if the divisor variable type is unsigned.
 132 */
 133#define DIV_ROUND_CLOSEST(x, divisor)(                  \
 134{                                                       \
 135        typeof(x) __x = x;                              \
 136        typeof(divisor) __d = divisor;                  \
 137        (((typeof(x))-1) > 0 ||                         \
 138         ((typeof(divisor))-1) > 0 ||                   \
 139         (((__x) > 0) == ((__d) > 0))) ?                \
 140                (((__x) + ((__d) / 2)) / (__d)) :       \
 141                (((__x) - ((__d) / 2)) / (__d));        \
 142}                                                       \
 143)
 144/*
 145 * Same as above but for u64 dividends. divisor must be a 32-bit
 146 * number.
 147 */
 148#define DIV_ROUND_CLOSEST_ULL(x, divisor)(              \
 149{                                                       \
 150        typeof(divisor) __d = divisor;                  \
 151        unsigned long long _tmp = (x) + (__d) / 2;      \
 152        do_div(_tmp, __d);                              \
 153        _tmp;                                           \
 154}                                                       \
 155)
 156
 157/*
 158 * Multiplies an integer by a fraction, while avoiding unnecessary
 159 * overflow or loss of precision.
 160 */
 161#define mult_frac(x, numer, denom)(                     \
 162{                                                       \
 163        typeof(x) quot = (x) / (denom);                 \
 164        typeof(x) rem  = (x) % (denom);                 \
 165        (quot * (numer)) + ((rem * (numer)) / (denom)); \
 166}                                                       \
 167)
 168
 169
 170#define _RET_IP_                (unsigned long)__builtin_return_address(0)
 171#define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
 172
 173#define sector_div(a, b) do_div(a, b)
 174
 175/**
 176 * upper_32_bits - return bits 32-63 of a number
 177 * @n: the number we're accessing
 178 *
 179 * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
 180 * the "right shift count >= width of type" warning when that quantity is
 181 * 32-bits.
 182 */
 183#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
 184
 185/**
 186 * lower_32_bits - return bits 0-31 of a number
 187 * @n: the number we're accessing
 188 */
 189#define lower_32_bits(n) ((u32)((n) & 0xffffffff))
 190
 191struct completion;
 192struct pt_regs;
 193struct user;
 194
 195#ifdef CONFIG_PREEMPT_VOLUNTARY
 196extern int _cond_resched(void);
 197# define might_resched() _cond_resched()
 198#else
 199# define might_resched() do { } while (0)
 200#endif
 201
 202#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 203extern void ___might_sleep(const char *file, int line, int preempt_offset);
 204extern void __might_sleep(const char *file, int line, int preempt_offset);
 205extern void __cant_sleep(const char *file, int line, int preempt_offset);
 206
 207/**
 208 * might_sleep - annotation for functions that can sleep
 209 *
 210 * this macro will print a stack trace if it is executed in an atomic
 211 * context (spinlock, irq-handler, ...). Additional sections where blocking is
 212 * not allowed can be annotated with non_block_start() and non_block_end()
 213 * pairs.
 214 *
 215 * This is a useful debugging help to be able to catch problems early and not
 216 * be bitten later when the calling function happens to sleep when it is not
 217 * supposed to.
 218 */
 219# define might_sleep() \
 220        do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
 221/**
 222 * cant_sleep - annotation for functions that cannot sleep
 223 *
 224 * this macro will print a stack trace if it is executed with preemption enabled
 225 */
 226# define cant_sleep() \
 227        do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
 228# define sched_annotate_sleep() (current->task_state_change = 0)
 229/**
 230 * non_block_start - annotate the start of section where sleeping is prohibited
 231 *
 232 * This is on behalf of the oom reaper, specifically when it is calling the mmu
 233 * notifiers. The problem is that if the notifier were to block on, for example,
 234 * mutex_lock() and if the process which holds that mutex were to perform a
 235 * sleeping memory allocation, the oom reaper is now blocked on completion of
 236 * that memory allocation. Other blocking calls like wait_event() pose similar
 237 * issues.
 238 */
 239# define non_block_start() (current->non_block_count++)
 240/**
 241 * non_block_end - annotate the end of section where sleeping is prohibited
 242 *
 243 * Closes a section opened by non_block_start().
 244 */
 245# define non_block_end() WARN_ON(current->non_block_count-- == 0)
 246#else
 247  static inline void ___might_sleep(const char *file, int line,
 248                                   int preempt_offset) { }
 249  static inline void __might_sleep(const char *file, int line,
 250                                   int preempt_offset) { }
 251# define might_sleep() do { might_resched(); } while (0)
 252# define cant_sleep() do { } while (0)
 253# define sched_annotate_sleep() do { } while (0)
 254# define non_block_start() do { } while (0)
 255# define non_block_end() do { } while (0)
 256#endif
 257
 258#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
 259
 260#ifndef CONFIG_PREEMPT_RT
 261# define cant_migrate()         cant_sleep()
 262#else
 263  /* Placeholder for now */
 264# define cant_migrate()         do { } while (0)
 265#endif
 266
 267/**
 268 * abs - return absolute value of an argument
 269 * @x: the value.  If it is unsigned type, it is converted to signed type first.
 270 *     char is treated as if it was signed (regardless of whether it really is)
 271 *     but the macro's return type is preserved as char.
 272 *
 273 * Return: an absolute value of x.
 274 */
 275#define abs(x)  __abs_choose_expr(x, long long,                         \
 276                __abs_choose_expr(x, long,                              \
 277                __abs_choose_expr(x, int,                               \
 278                __abs_choose_expr(x, short,                             \
 279                __abs_choose_expr(x, char,                              \
 280                __builtin_choose_expr(                                  \
 281                        __builtin_types_compatible_p(typeof(x), char),  \
 282                        (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
 283                        ((void)0)))))))
 284
 285#define __abs_choose_expr(x, type, other) __builtin_choose_expr(        \
 286        __builtin_types_compatible_p(typeof(x),   signed type) ||       \
 287        __builtin_types_compatible_p(typeof(x), unsigned type),         \
 288        ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
 289
 290/**
 291 * reciprocal_scale - "scale" a value into range [0, ep_ro)
 292 * @val: value
 293 * @ep_ro: right open interval endpoint
 294 *
 295 * Perform a "reciprocal multiplication" in order to "scale" a value into
 296 * range [0, @ep_ro), where the upper interval endpoint is right-open.
 297 * This is useful, e.g. for accessing a index of an array containing
 298 * @ep_ro elements, for example. Think of it as sort of modulus, only that
 299 * the result isn't that of modulo. ;) Note that if initial input is a
 300 * small value, then result will return 0.
 301 *
 302 * Return: a result based on @val in interval [0, @ep_ro).
 303 */
 304static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
 305{
 306        return (u32)(((u64) val * ep_ro) >> 32);
 307}
 308
 309#if defined(CONFIG_MMU) && \
 310        (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
 311#define might_fault() __might_fault(__FILE__, __LINE__)
 312void __might_fault(const char *file, int line);
 313#else
 314static inline void might_fault(void) { }
 315#endif
 316
 317extern struct atomic_notifier_head panic_notifier_list;
 318extern long (*panic_blink)(int state);
 319__printf(1, 2)
 320void panic(const char *fmt, ...) __noreturn __cold;
 321void nmi_panic(struct pt_regs *regs, const char *msg);
 322extern void oops_enter(void);
 323extern void oops_exit(void);
 324extern bool oops_may_print(void);
 325void do_exit(long error_code) __noreturn;
 326void complete_and_exit(struct completion *, long) __noreturn;
 327
 328/* Internal, do not use. */
 329int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
 330int __must_check _kstrtol(const char *s, unsigned int base, long *res);
 331
 332int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
 333int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
 334
 335/**
 336 * kstrtoul - convert a string to an unsigned long
 337 * @s: The start of the string. The string must be null-terminated, and may also
 338 *  include a single newline before its terminating null. The first character
 339 *  may also be a plus sign, but not a minus sign.
 340 * @base: The number base to use. The maximum supported base is 16. If base is
 341 *  given as 0, then the base of the string is automatically detected with the
 342 *  conventional semantics - If it begins with 0x the number will be parsed as a
 343 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 344 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 345 * @res: Where to write the result of the conversion on success.
 346 *
 347 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 348 * Preferred over simple_strtoul(). Return code must be checked.
 349*/
 350static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
 351{
 352        /*
 353         * We want to shortcut function call, but
 354         * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
 355         */
 356        if (sizeof(unsigned long) == sizeof(unsigned long long) &&
 357            __alignof__(unsigned long) == __alignof__(unsigned long long))
 358                return kstrtoull(s, base, (unsigned long long *)res);
 359        else
 360                return _kstrtoul(s, base, res);
 361}
 362
 363/**
 364 * kstrtol - convert a string to a long
 365 * @s: The start of the string. The string must be null-terminated, and may also
 366 *  include a single newline before its terminating null. The first character
 367 *  may also be a plus sign or a minus sign.
 368 * @base: The number base to use. The maximum supported base is 16. If base is
 369 *  given as 0, then the base of the string is automatically detected with the
 370 *  conventional semantics - If it begins with 0x the number will be parsed as a
 371 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 372 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 373 * @res: Where to write the result of the conversion on success.
 374 *
 375 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 376 * Preferred over simple_strtol(). Return code must be checked.
 377 */
 378static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
 379{
 380        /*
 381         * We want to shortcut function call, but
 382         * __builtin_types_compatible_p(long, long long) = 0.
 383         */
 384        if (sizeof(long) == sizeof(long long) &&
 385            __alignof__(long) == __alignof__(long long))
 386                return kstrtoll(s, base, (long long *)res);
 387        else
 388                return _kstrtol(s, base, res);
 389}
 390
 391int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
 392int __must_check kstrtoint(const char *s, unsigned int base, int *res);
 393
 394static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
 395{
 396        return kstrtoull(s, base, res);
 397}
 398
 399static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
 400{
 401        return kstrtoll(s, base, res);
 402}
 403
 404static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
 405{
 406        return kstrtouint(s, base, res);
 407}
 408
 409static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
 410{
 411        return kstrtoint(s, base, res);
 412}
 413
 414int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
 415int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
 416int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
 417int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
 418int __must_check kstrtobool(const char *s, bool *res);
 419
 420int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
 421int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
 422int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
 423int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
 424int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
 425int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
 426int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
 427int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
 428int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
 429int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
 430int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
 431
 432static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
 433{
 434        return kstrtoull_from_user(s, count, base, res);
 435}
 436
 437static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
 438{
 439        return kstrtoll_from_user(s, count, base, res);
 440}
 441
 442static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
 443{
 444        return kstrtouint_from_user(s, count, base, res);
 445}
 446
 447static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
 448{
 449        return kstrtoint_from_user(s, count, base, res);
 450}
 451
 452/*
 453 * Use kstrto<foo> instead.
 454 *
 455 * NOTE: simple_strto<foo> does not check for the range overflow and,
 456 *       depending on the input, may give interesting results.
 457 *
 458 * Use these functions if and only if you cannot use kstrto<foo>, because
 459 * the conversion ends on the first non-digit character, which may be far
 460 * beyond the supported range. It might be useful to parse the strings like
 461 * 10x50 or 12:21 without altering original string or temporary buffer in use.
 462 * Keep in mind above caveat.
 463 */
 464
 465extern unsigned long simple_strtoul(const char *,char **,unsigned int);
 466extern long simple_strtol(const char *,char **,unsigned int);
 467extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
 468extern long long simple_strtoll(const char *,char **,unsigned int);
 469
 470extern int num_to_str(char *buf, int size,
 471                      unsigned long long num, unsigned int width);
 472
 473/* lib/printf utilities */
 474
 475extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
 476extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
 477extern __printf(3, 4)
 478int snprintf(char *buf, size_t size, const char *fmt, ...);
 479extern __printf(3, 0)
 480int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
 481extern __printf(3, 4)
 482int scnprintf(char *buf, size_t size, const char *fmt, ...);
 483extern __printf(3, 0)
 484int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
 485extern __printf(2, 3) __malloc
 486char *kasprintf(gfp_t gfp, const char *fmt, ...);
 487extern __printf(2, 0) __malloc
 488char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
 489extern __printf(2, 0)
 490const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
 491
 492extern __scanf(2, 3)
 493int sscanf(const char *, const char *, ...);
 494extern __scanf(2, 0)
 495int vsscanf(const char *, const char *, va_list);
 496
 497extern int get_option(char **str, int *pint);
 498extern char *get_options(const char *str, int nints, int *ints);
 499extern unsigned long long memparse(const char *ptr, char **retptr);
 500extern bool parse_option_str(const char *str, const char *option);
 501extern char *next_arg(char *args, char **param, char **val);
 502
 503extern int core_kernel_text(unsigned long addr);
 504extern int init_kernel_text(unsigned long addr);
 505extern int core_kernel_data(unsigned long addr);
 506extern int __kernel_text_address(unsigned long addr);
 507extern int kernel_text_address(unsigned long addr);
 508extern int func_ptr_is_kernel_text(void *ptr);
 509
 510u64 int_pow(u64 base, unsigned int exp);
 511unsigned long int_sqrt(unsigned long);
 512
 513#if BITS_PER_LONG < 64
 514u32 int_sqrt64(u64 x);
 515#else
 516static inline u32 int_sqrt64(u64 x)
 517{
 518        return (u32)int_sqrt(x);
 519}
 520#endif
 521
 522#ifdef CONFIG_SMP
 523extern unsigned int sysctl_oops_all_cpu_backtrace;
 524#else
 525#define sysctl_oops_all_cpu_backtrace 0
 526#endif /* CONFIG_SMP */
 527
 528extern void bust_spinlocks(int yes);
 529extern int oops_in_progress;            /* If set, an oops, panic(), BUG() or die() is in progress */
 530extern int panic_timeout;
 531extern unsigned long panic_print;
 532extern int panic_on_oops;
 533extern int panic_on_unrecovered_nmi;
 534extern int panic_on_io_nmi;
 535extern int panic_on_warn;
 536extern unsigned long panic_on_taint;
 537extern bool panic_on_taint_nousertaint;
 538extern int sysctl_panic_on_rcu_stall;
 539extern int sysctl_panic_on_stackoverflow;
 540
 541extern bool crash_kexec_post_notifiers;
 542
 543/*
 544 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
 545 * holds a CPU number which is executing panic() currently. A value of
 546 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
 547 */
 548extern atomic_t panic_cpu;
 549#define PANIC_CPU_INVALID       -1
 550
 551/*
 552 * Only to be used by arch init code. If the user over-wrote the default
 553 * CONFIG_PANIC_TIMEOUT, honor it.
 554 */
 555static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
 556{
 557        if (panic_timeout == arch_default_timeout)
 558                panic_timeout = timeout;
 559}
 560extern const char *print_tainted(void);
 561enum lockdep_ok {
 562        LOCKDEP_STILL_OK,
 563        LOCKDEP_NOW_UNRELIABLE
 564};
 565extern void add_taint(unsigned flag, enum lockdep_ok);
 566extern int test_taint(unsigned flag);
 567extern unsigned long get_taint(void);
 568extern int root_mountflags;
 569
 570extern bool early_boot_irqs_disabled;
 571
 572/*
 573 * Values used for system_state. Ordering of the states must not be changed
 574 * as code checks for <, <=, >, >= STATE.
 575 */
 576extern enum system_states {
 577        SYSTEM_BOOTING,
 578        SYSTEM_SCHEDULING,
 579        SYSTEM_RUNNING,
 580        SYSTEM_HALT,
 581        SYSTEM_POWER_OFF,
 582        SYSTEM_RESTART,
 583        SYSTEM_SUSPEND,
 584} system_state;
 585
 586/* This cannot be an enum because some may be used in assembly source. */
 587#define TAINT_PROPRIETARY_MODULE        0
 588#define TAINT_FORCED_MODULE             1
 589#define TAINT_CPU_OUT_OF_SPEC           2
 590#define TAINT_FORCED_RMMOD              3
 591#define TAINT_MACHINE_CHECK             4
 592#define TAINT_BAD_PAGE                  5
 593#define TAINT_USER                      6
 594#define TAINT_DIE                       7
 595#define TAINT_OVERRIDDEN_ACPI_TABLE     8
 596#define TAINT_WARN                      9
 597#define TAINT_CRAP                      10
 598#define TAINT_FIRMWARE_WORKAROUND       11
 599#define TAINT_OOT_MODULE                12
 600#define TAINT_UNSIGNED_MODULE           13
 601#define TAINT_SOFTLOCKUP                14
 602#define TAINT_LIVEPATCH                 15
 603#define TAINT_AUX                       16
 604#define TAINT_RANDSTRUCT                17
 605#define TAINT_FLAGS_COUNT               18
 606#define TAINT_FLAGS_MAX                 ((1UL << TAINT_FLAGS_COUNT) - 1)
 607
 608struct taint_flag {
 609        char c_true;    /* character printed when tainted */
 610        char c_false;   /* character printed when not tainted */
 611        bool module;    /* also show as a per-module taint flag */
 612};
 613
 614extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
 615
 616extern const char hex_asc[];
 617#define hex_asc_lo(x)   hex_asc[((x) & 0x0f)]
 618#define hex_asc_hi(x)   hex_asc[((x) & 0xf0) >> 4]
 619
 620static inline char *hex_byte_pack(char *buf, u8 byte)
 621{
 622        *buf++ = hex_asc_hi(byte);
 623        *buf++ = hex_asc_lo(byte);
 624        return buf;
 625}
 626
 627extern const char hex_asc_upper[];
 628#define hex_asc_upper_lo(x)     hex_asc_upper[((x) & 0x0f)]
 629#define hex_asc_upper_hi(x)     hex_asc_upper[((x) & 0xf0) >> 4]
 630
 631static inline char *hex_byte_pack_upper(char *buf, u8 byte)
 632{
 633        *buf++ = hex_asc_upper_hi(byte);
 634        *buf++ = hex_asc_upper_lo(byte);
 635        return buf;
 636}
 637
 638extern int hex_to_bin(char ch);
 639extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
 640extern char *bin2hex(char *dst, const void *src, size_t count);
 641
 642bool mac_pton(const char *s, u8 *mac);
 643
 644/*
 645 * General tracing related utility functions - trace_printk(),
 646 * tracing_on/tracing_off and tracing_start()/tracing_stop
 647 *
 648 * Use tracing_on/tracing_off when you want to quickly turn on or off
 649 * tracing. It simply enables or disables the recording of the trace events.
 650 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
 651 * file, which gives a means for the kernel and userspace to interact.
 652 * Place a tracing_off() in the kernel where you want tracing to end.
 653 * From user space, examine the trace, and then echo 1 > tracing_on
 654 * to continue tracing.
 655 *
 656 * tracing_stop/tracing_start has slightly more overhead. It is used
 657 * by things like suspend to ram where disabling the recording of the
 658 * trace is not enough, but tracing must actually stop because things
 659 * like calling smp_processor_id() may crash the system.
 660 *
 661 * Most likely, you want to use tracing_on/tracing_off.
 662 */
 663
 664enum ftrace_dump_mode {
 665        DUMP_NONE,
 666        DUMP_ALL,
 667        DUMP_ORIG,
 668};
 669
 670#ifdef CONFIG_TRACING
 671void tracing_on(void);
 672void tracing_off(void);
 673int tracing_is_on(void);
 674void tracing_snapshot(void);
 675void tracing_snapshot_alloc(void);
 676
 677extern void tracing_start(void);
 678extern void tracing_stop(void);
 679
 680static inline __printf(1, 2)
 681void ____trace_printk_check_format(const char *fmt, ...)
 682{
 683}
 684#define __trace_printk_check_format(fmt, args...)                       \
 685do {                                                                    \
 686        if (0)                                                          \
 687                ____trace_printk_check_format(fmt, ##args);             \
 688} while (0)
 689
 690/**
 691 * trace_printk - printf formatting in the ftrace buffer
 692 * @fmt: the printf format for printing
 693 *
 694 * Note: __trace_printk is an internal function for trace_printk() and
 695 *       the @ip is passed in via the trace_printk() macro.
 696 *
 697 * This function allows a kernel developer to debug fast path sections
 698 * that printk is not appropriate for. By scattering in various
 699 * printk like tracing in the code, a developer can quickly see
 700 * where problems are occurring.
 701 *
 702 * This is intended as a debugging tool for the developer only.
 703 * Please refrain from leaving trace_printks scattered around in
 704 * your code. (Extra memory is used for special buffers that are
 705 * allocated when trace_printk() is used.)
 706 *
 707 * A little optimization trick is done here. If there's only one
 708 * argument, there's no need to scan the string for printf formats.
 709 * The trace_puts() will suffice. But how can we take advantage of
 710 * using trace_puts() when trace_printk() has only one argument?
 711 * By stringifying the args and checking the size we can tell
 712 * whether or not there are args. __stringify((__VA_ARGS__)) will
 713 * turn into "()\0" with a size of 3 when there are no args, anything
 714 * else will be bigger. All we need to do is define a string to this,
 715 * and then take its size and compare to 3. If it's bigger, use
 716 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
 717 * let gcc optimize the rest.
 718 */
 719
 720#define trace_printk(fmt, ...)                          \
 721do {                                                    \
 722        char _______STR[] = __stringify((__VA_ARGS__)); \
 723        if (sizeof(_______STR) > 3)                     \
 724                do_trace_printk(fmt, ##__VA_ARGS__);    \
 725        else                                            \
 726                trace_puts(fmt);                        \
 727} while (0)
 728
 729#define do_trace_printk(fmt, args...)                                   \
 730do {                                                                    \
 731        static const char *trace_printk_fmt __used                      \
 732                __attribute__((section("__trace_printk_fmt"))) =        \
 733                __builtin_constant_p(fmt) ? fmt : NULL;                 \
 734                                                                        \
 735        __trace_printk_check_format(fmt, ##args);                       \
 736                                                                        \
 737        if (__builtin_constant_p(fmt))                                  \
 738                __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);   \
 739        else                                                            \
 740                __trace_printk(_THIS_IP_, fmt, ##args);                 \
 741} while (0)
 742
 743extern __printf(2, 3)
 744int __trace_bprintk(unsigned long ip, const char *fmt, ...);
 745
 746extern __printf(2, 3)
 747int __trace_printk(unsigned long ip, const char *fmt, ...);
 748
 749/**
 750 * trace_puts - write a string into the ftrace buffer
 751 * @str: the string to record
 752 *
 753 * Note: __trace_bputs is an internal function for trace_puts and
 754 *       the @ip is passed in via the trace_puts macro.
 755 *
 756 * This is similar to trace_printk() but is made for those really fast
 757 * paths that a developer wants the least amount of "Heisenbug" effects,
 758 * where the processing of the print format is still too much.
 759 *
 760 * This function allows a kernel developer to debug fast path sections
 761 * that printk is not appropriate for. By scattering in various
 762 * printk like tracing in the code, a developer can quickly see
 763 * where problems are occurring.
 764 *
 765 * This is intended as a debugging tool for the developer only.
 766 * Please refrain from leaving trace_puts scattered around in
 767 * your code. (Extra memory is used for special buffers that are
 768 * allocated when trace_puts() is used.)
 769 *
 770 * Returns: 0 if nothing was written, positive # if string was.
 771 *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
 772 */
 773
 774#define trace_puts(str) ({                                              \
 775        static const char *trace_printk_fmt __used                      \
 776                __attribute__((section("__trace_printk_fmt"))) =        \
 777                __builtin_constant_p(str) ? str : NULL;                 \
 778                                                                        \
 779        if (__builtin_constant_p(str))                                  \
 780                __trace_bputs(_THIS_IP_, trace_printk_fmt);             \
 781        else                                                            \
 782                __trace_puts(_THIS_IP_, str, strlen(str));              \
 783})
 784extern int __trace_bputs(unsigned long ip, const char *str);
 785extern int __trace_puts(unsigned long ip, const char *str, int size);
 786
 787extern void trace_dump_stack(int skip);
 788
 789/*
 790 * The double __builtin_constant_p is because gcc will give us an error
 791 * if we try to allocate the static variable to fmt if it is not a
 792 * constant. Even with the outer if statement.
 793 */
 794#define ftrace_vprintk(fmt, vargs)                                      \
 795do {                                                                    \
 796        if (__builtin_constant_p(fmt)) {                                \
 797                static const char *trace_printk_fmt __used              \
 798                  __attribute__((section("__trace_printk_fmt"))) =      \
 799                        __builtin_constant_p(fmt) ? fmt : NULL;         \
 800                                                                        \
 801                __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);  \
 802        } else                                                          \
 803                __ftrace_vprintk(_THIS_IP_, fmt, vargs);                \
 804} while (0)
 805
 806extern __printf(2, 0) int
 807__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
 808
 809extern __printf(2, 0) int
 810__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
 811
 812extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
 813#else
 814static inline void tracing_start(void) { }
 815static inline void tracing_stop(void) { }
 816static inline void trace_dump_stack(int skip) { }
 817
 818static inline void tracing_on(void) { }
 819static inline void tracing_off(void) { }
 820static inline int tracing_is_on(void) { return 0; }
 821static inline void tracing_snapshot(void) { }
 822static inline void tracing_snapshot_alloc(void) { }
 823
 824static inline __printf(1, 2)
 825int trace_printk(const char *fmt, ...)
 826{
 827        return 0;
 828}
 829static __printf(1, 0) inline int
 830ftrace_vprintk(const char *fmt, va_list ap)
 831{
 832        return 0;
 833}
 834static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
 835#endif /* CONFIG_TRACING */
 836
 837/*
 838 * min()/max()/clamp() macros must accomplish three things:
 839 *
 840 * - avoid multiple evaluations of the arguments (so side-effects like
 841 *   "x++" happen only once) when non-constant.
 842 * - perform strict type-checking (to generate warnings instead of
 843 *   nasty runtime surprises). See the "unnecessary" pointer comparison
 844 *   in __typecheck().
 845 * - retain result as a constant expressions when called with only
 846 *   constant expressions (to avoid tripping VLA warnings in stack
 847 *   allocation usage).
 848 */
 849#define __typecheck(x, y) \
 850                (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
 851
 852/*
 853 * This returns a constant expression while determining if an argument is
 854 * a constant expression, most importantly without evaluating the argument.
 855 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
 856 */
 857#define __is_constexpr(x) \
 858        (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
 859
 860#define __no_side_effects(x, y) \
 861                (__is_constexpr(x) && __is_constexpr(y))
 862
 863#define __safe_cmp(x, y) \
 864                (__typecheck(x, y) && __no_side_effects(x, y))
 865
 866#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
 867
 868#define __cmp_once(x, y, unique_x, unique_y, op) ({     \
 869                typeof(x) unique_x = (x);               \
 870                typeof(y) unique_y = (y);               \
 871                __cmp(unique_x, unique_y, op); })
 872
 873#define __careful_cmp(x, y, op) \
 874        __builtin_choose_expr(__safe_cmp(x, y), \
 875                __cmp(x, y, op), \
 876                __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
 877
 878/**
 879 * min - return minimum of two values of the same or compatible types
 880 * @x: first value
 881 * @y: second value
 882 */
 883#define min(x, y)       __careful_cmp(x, y, <)
 884
 885/**
 886 * max - return maximum of two values of the same or compatible types
 887 * @x: first value
 888 * @y: second value
 889 */
 890#define max(x, y)       __careful_cmp(x, y, >)
 891
 892/**
 893 * min3 - return minimum of three values
 894 * @x: first value
 895 * @y: second value
 896 * @z: third value
 897 */
 898#define min3(x, y, z) min((typeof(x))min(x, y), z)
 899
 900/**
 901 * max3 - return maximum of three values
 902 * @x: first value
 903 * @y: second value
 904 * @z: third value
 905 */
 906#define max3(x, y, z) max((typeof(x))max(x, y), z)
 907
 908/**
 909 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
 910 * @x: value1
 911 * @y: value2
 912 */
 913#define min_not_zero(x, y) ({                   \
 914        typeof(x) __x = (x);                    \
 915        typeof(y) __y = (y);                    \
 916        __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
 917
 918/**
 919 * clamp - return a value clamped to a given range with strict typechecking
 920 * @val: current value
 921 * @lo: lowest allowable value
 922 * @hi: highest allowable value
 923 *
 924 * This macro does strict typechecking of @lo/@hi to make sure they are of the
 925 * same type as @val.  See the unnecessary pointer comparisons.
 926 */
 927#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
 928
 929/*
 930 * ..and if you can't take the strict
 931 * types, you can specify one yourself.
 932 *
 933 * Or not use min/max/clamp at all, of course.
 934 */
 935
 936/**
 937 * min_t - return minimum of two values, using the specified type
 938 * @type: data type to use
 939 * @x: first value
 940 * @y: second value
 941 */
 942#define min_t(type, x, y)       __careful_cmp((type)(x), (type)(y), <)
 943
 944/**
 945 * max_t - return maximum of two values, using the specified type
 946 * @type: data type to use
 947 * @x: first value
 948 * @y: second value
 949 */
 950#define max_t(type, x, y)       __careful_cmp((type)(x), (type)(y), >)
 951
 952/**
 953 * clamp_t - return a value clamped to a given range using a given type
 954 * @type: the type of variable to use
 955 * @val: current value
 956 * @lo: minimum allowable value
 957 * @hi: maximum allowable value
 958 *
 959 * This macro does no typechecking and uses temporary variables of type
 960 * @type to make all the comparisons.
 961 */
 962#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
 963
 964/**
 965 * clamp_val - return a value clamped to a given range using val's type
 966 * @val: current value
 967 * @lo: minimum allowable value
 968 * @hi: maximum allowable value
 969 *
 970 * This macro does no typechecking and uses temporary variables of whatever
 971 * type the input argument @val is.  This is useful when @val is an unsigned
 972 * type and @lo and @hi are literals that will otherwise be assigned a signed
 973 * integer type.
 974 */
 975#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
 976
 977
 978/**
 979 * swap - swap values of @a and @b
 980 * @a: first value
 981 * @b: second value
 982 */
 983#define swap(a, b) \
 984        do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
 985
 986/* This counts to 12. Any more, it will return 13th argument. */
 987#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
 988#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
 989
 990#define __CONCAT(a, b) a ## b
 991#define CONCATENATE(a, b) __CONCAT(a, b)
 992
 993/**
 994 * container_of - cast a member of a structure out to the containing structure
 995 * @ptr:        the pointer to the member.
 996 * @type:       the type of the container struct this is embedded in.
 997 * @member:     the name of the member within the struct.
 998 *
 999 */
1000#define container_of(ptr, type, member) ({                              \
1001        void *__mptr = (void *)(ptr);                                   \
1002        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
1003                         !__same_type(*(ptr), void),                    \
1004                         "pointer type mismatch in container_of()");    \
1005        ((type *)(__mptr - offsetof(type, member))); })
1006
1007/**
1008 * container_of_safe - cast a member of a structure out to the containing structure
1009 * @ptr:        the pointer to the member.
1010 * @type:       the type of the container struct this is embedded in.
1011 * @member:     the name of the member within the struct.
1012 *
1013 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
1014 */
1015#define container_of_safe(ptr, type, member) ({                         \
1016        void *__mptr = (void *)(ptr);                                   \
1017        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
1018                         !__same_type(*(ptr), void),                    \
1019                         "pointer type mismatch in container_of()");    \
1020        IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :                     \
1021                ((type *)(__mptr - offsetof(type, member))); })
1022
1023/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1024#ifdef CONFIG_FTRACE_MCOUNT_RECORD
1025# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1026#endif
1027
1028/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1029#define VERIFY_OCTAL_PERMISSIONS(perms)                                         \
1030        (BUILD_BUG_ON_ZERO((perms) < 0) +                                       \
1031         BUILD_BUG_ON_ZERO((perms) > 0777) +                                    \
1032         /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */                \
1033         BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +       \
1034         BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +              \
1035         /* USER_WRITABLE >= GROUP_WRITABLE */                                  \
1036         BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +       \
1037         /* OTHER_WRITABLE?  Generally considered a bad idea. */                \
1038         BUILD_BUG_ON_ZERO((perms) & 2) +                                       \
1039         (perms))
1040#endif
1041