linux/include/linux/netdevice.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the Interfaces handler.
   8 *
   9 * Version:     @(#)dev.h       1.0.10  08/12/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  15 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  16 *              Bjorn Ekwall. <bj0rn@blox.se>
  17 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  18 *
  19 *              Moved to /usr/include/linux for NET3
  20 */
  21#ifndef _LINUX_NETDEVICE_H
  22#define _LINUX_NETDEVICE_H
  23
  24#include <linux/timer.h>
  25#include <linux/bug.h>
  26#include <linux/delay.h>
  27#include <linux/atomic.h>
  28#include <linux/prefetch.h>
  29#include <asm/cache.h>
  30#include <asm/byteorder.h>
  31
  32#include <linux/percpu.h>
  33#include <linux/rculist.h>
  34#include <linux/workqueue.h>
  35#include <linux/dynamic_queue_limits.h>
  36
  37#include <linux/ethtool.h>
  38#include <net/net_namespace.h>
  39#ifdef CONFIG_DCB
  40#include <net/dcbnl.h>
  41#endif
  42#include <net/netprio_cgroup.h>
  43#include <net/xdp.h>
  44
  45#include <linux/netdev_features.h>
  46#include <linux/neighbour.h>
  47#include <uapi/linux/netdevice.h>
  48#include <uapi/linux/if_bonding.h>
  49#include <uapi/linux/pkt_cls.h>
  50#include <linux/hashtable.h>
  51
  52struct netpoll_info;
  53struct device;
  54struct phy_device;
  55struct dsa_port;
  56struct ip_tunnel_parm;
  57struct macsec_context;
  58struct macsec_ops;
  59
  60struct sfp_bus;
  61/* 802.11 specific */
  62struct wireless_dev;
  63/* 802.15.4 specific */
  64struct wpan_dev;
  65struct mpls_dev;
  66/* UDP Tunnel offloads */
  67struct udp_tunnel_info;
  68struct udp_tunnel_nic_info;
  69struct udp_tunnel_nic;
  70struct bpf_prog;
  71struct xdp_buff;
  72
  73void netdev_set_default_ethtool_ops(struct net_device *dev,
  74                                    const struct ethtool_ops *ops);
  75
  76/* Backlog congestion levels */
  77#define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
  78#define NET_RX_DROP             1       /* packet dropped */
  79
  80#define MAX_NEST_DEV 8
  81
  82/*
  83 * Transmit return codes: transmit return codes originate from three different
  84 * namespaces:
  85 *
  86 * - qdisc return codes
  87 * - driver transmit return codes
  88 * - errno values
  89 *
  90 * Drivers are allowed to return any one of those in their hard_start_xmit()
  91 * function. Real network devices commonly used with qdiscs should only return
  92 * the driver transmit return codes though - when qdiscs are used, the actual
  93 * transmission happens asynchronously, so the value is not propagated to
  94 * higher layers. Virtual network devices transmit synchronously; in this case
  95 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
  96 * others are propagated to higher layers.
  97 */
  98
  99/* qdisc ->enqueue() return codes. */
 100#define NET_XMIT_SUCCESS        0x00
 101#define NET_XMIT_DROP           0x01    /* skb dropped                  */
 102#define NET_XMIT_CN             0x02    /* congestion notification      */
 103#define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
 104
 105/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 106 * indicates that the device will soon be dropping packets, or already drops
 107 * some packets of the same priority; prompting us to send less aggressively. */
 108#define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
 109#define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 110
 111/* Driver transmit return codes */
 112#define NETDEV_TX_MASK          0xf0
 113
 114enum netdev_tx {
 115        __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
 116        NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
 117        NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
 118};
 119typedef enum netdev_tx netdev_tx_t;
 120
 121/*
 122 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 123 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 124 */
 125static inline bool dev_xmit_complete(int rc)
 126{
 127        /*
 128         * Positive cases with an skb consumed by a driver:
 129         * - successful transmission (rc == NETDEV_TX_OK)
 130         * - error while transmitting (rc < 0)
 131         * - error while queueing to a different device (rc & NET_XMIT_MASK)
 132         */
 133        if (likely(rc < NET_XMIT_MASK))
 134                return true;
 135
 136        return false;
 137}
 138
 139/*
 140 *      Compute the worst-case header length according to the protocols
 141 *      used.
 142 */
 143
 144#if defined(CONFIG_HYPERV_NET)
 145# define LL_MAX_HEADER 128
 146#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 147# if defined(CONFIG_MAC80211_MESH)
 148#  define LL_MAX_HEADER 128
 149# else
 150#  define LL_MAX_HEADER 96
 151# endif
 152#else
 153# define LL_MAX_HEADER 32
 154#endif
 155
 156#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 157    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 158#define MAX_HEADER LL_MAX_HEADER
 159#else
 160#define MAX_HEADER (LL_MAX_HEADER + 48)
 161#endif
 162
 163/*
 164 *      Old network device statistics. Fields are native words
 165 *      (unsigned long) so they can be read and written atomically.
 166 */
 167
 168struct net_device_stats {
 169        unsigned long   rx_packets;
 170        unsigned long   tx_packets;
 171        unsigned long   rx_bytes;
 172        unsigned long   tx_bytes;
 173        unsigned long   rx_errors;
 174        unsigned long   tx_errors;
 175        unsigned long   rx_dropped;
 176        unsigned long   tx_dropped;
 177        unsigned long   multicast;
 178        unsigned long   collisions;
 179        unsigned long   rx_length_errors;
 180        unsigned long   rx_over_errors;
 181        unsigned long   rx_crc_errors;
 182        unsigned long   rx_frame_errors;
 183        unsigned long   rx_fifo_errors;
 184        unsigned long   rx_missed_errors;
 185        unsigned long   tx_aborted_errors;
 186        unsigned long   tx_carrier_errors;
 187        unsigned long   tx_fifo_errors;
 188        unsigned long   tx_heartbeat_errors;
 189        unsigned long   tx_window_errors;
 190        unsigned long   rx_compressed;
 191        unsigned long   tx_compressed;
 192};
 193
 194
 195#include <linux/cache.h>
 196#include <linux/skbuff.h>
 197
 198#ifdef CONFIG_RPS
 199#include <linux/static_key.h>
 200extern struct static_key_false rps_needed;
 201extern struct static_key_false rfs_needed;
 202#endif
 203
 204struct neighbour;
 205struct neigh_parms;
 206struct sk_buff;
 207
 208struct netdev_hw_addr {
 209        struct list_head        list;
 210        unsigned char           addr[MAX_ADDR_LEN];
 211        unsigned char           type;
 212#define NETDEV_HW_ADDR_T_LAN            1
 213#define NETDEV_HW_ADDR_T_SAN            2
 214#define NETDEV_HW_ADDR_T_SLAVE          3
 215#define NETDEV_HW_ADDR_T_UNICAST        4
 216#define NETDEV_HW_ADDR_T_MULTICAST      5
 217        bool                    global_use;
 218        int                     sync_cnt;
 219        int                     refcount;
 220        int                     synced;
 221        struct rcu_head         rcu_head;
 222};
 223
 224struct netdev_hw_addr_list {
 225        struct list_head        list;
 226        int                     count;
 227};
 228
 229#define netdev_hw_addr_list_count(l) ((l)->count)
 230#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 231#define netdev_hw_addr_list_for_each(ha, l) \
 232        list_for_each_entry(ha, &(l)->list, list)
 233
 234#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 235#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 236#define netdev_for_each_uc_addr(ha, dev) \
 237        netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 238
 239#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 240#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 241#define netdev_for_each_mc_addr(ha, dev) \
 242        netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 243
 244struct hh_cache {
 245        unsigned int    hh_len;
 246        seqlock_t       hh_lock;
 247
 248        /* cached hardware header; allow for machine alignment needs.        */
 249#define HH_DATA_MOD     16
 250#define HH_DATA_OFF(__len) \
 251        (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 252#define HH_DATA_ALIGN(__len) \
 253        (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 254        unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 255};
 256
 257/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
 258 * Alternative is:
 259 *   dev->hard_header_len ? (dev->hard_header_len +
 260 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 261 *
 262 * We could use other alignment values, but we must maintain the
 263 * relationship HH alignment <= LL alignment.
 264 */
 265#define LL_RESERVED_SPACE(dev) \
 266        ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 267#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 268        ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 269
 270struct header_ops {
 271        int     (*create) (struct sk_buff *skb, struct net_device *dev,
 272                           unsigned short type, const void *daddr,
 273                           const void *saddr, unsigned int len);
 274        int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
 275        int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 276        void    (*cache_update)(struct hh_cache *hh,
 277                                const struct net_device *dev,
 278                                const unsigned char *haddr);
 279        bool    (*validate)(const char *ll_header, unsigned int len);
 280        __be16  (*parse_protocol)(const struct sk_buff *skb);
 281};
 282
 283/* These flag bits are private to the generic network queueing
 284 * layer; they may not be explicitly referenced by any other
 285 * code.
 286 */
 287
 288enum netdev_state_t {
 289        __LINK_STATE_START,
 290        __LINK_STATE_PRESENT,
 291        __LINK_STATE_NOCARRIER,
 292        __LINK_STATE_LINKWATCH_PENDING,
 293        __LINK_STATE_DORMANT,
 294        __LINK_STATE_TESTING,
 295};
 296
 297
 298/*
 299 * This structure holds boot-time configured netdevice settings. They
 300 * are then used in the device probing.
 301 */
 302struct netdev_boot_setup {
 303        char name[IFNAMSIZ];
 304        struct ifmap map;
 305};
 306#define NETDEV_BOOT_SETUP_MAX 8
 307
 308int __init netdev_boot_setup(char *str);
 309
 310struct gro_list {
 311        struct list_head        list;
 312        int                     count;
 313};
 314
 315/*
 316 * size of gro hash buckets, must less than bit number of
 317 * napi_struct::gro_bitmask
 318 */
 319#define GRO_HASH_BUCKETS        8
 320
 321/*
 322 * Structure for NAPI scheduling similar to tasklet but with weighting
 323 */
 324struct napi_struct {
 325        /* The poll_list must only be managed by the entity which
 326         * changes the state of the NAPI_STATE_SCHED bit.  This means
 327         * whoever atomically sets that bit can add this napi_struct
 328         * to the per-CPU poll_list, and whoever clears that bit
 329         * can remove from the list right before clearing the bit.
 330         */
 331        struct list_head        poll_list;
 332
 333        unsigned long           state;
 334        int                     weight;
 335        int                     defer_hard_irqs_count;
 336        unsigned long           gro_bitmask;
 337        int                     (*poll)(struct napi_struct *, int);
 338#ifdef CONFIG_NETPOLL
 339        int                     poll_owner;
 340#endif
 341        struct net_device       *dev;
 342        struct gro_list         gro_hash[GRO_HASH_BUCKETS];
 343        struct sk_buff          *skb;
 344        struct list_head        rx_list; /* Pending GRO_NORMAL skbs */
 345        int                     rx_count; /* length of rx_list */
 346        struct hrtimer          timer;
 347        struct list_head        dev_list;
 348        struct hlist_node       napi_hash_node;
 349        unsigned int            napi_id;
 350};
 351
 352enum {
 353        NAPI_STATE_SCHED,       /* Poll is scheduled */
 354        NAPI_STATE_MISSED,      /* reschedule a napi */
 355        NAPI_STATE_DISABLE,     /* Disable pending */
 356        NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
 357        NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
 358        NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
 359        NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
 360};
 361
 362enum {
 363        NAPIF_STATE_SCHED        = BIT(NAPI_STATE_SCHED),
 364        NAPIF_STATE_MISSED       = BIT(NAPI_STATE_MISSED),
 365        NAPIF_STATE_DISABLE      = BIT(NAPI_STATE_DISABLE),
 366        NAPIF_STATE_NPSVC        = BIT(NAPI_STATE_NPSVC),
 367        NAPIF_STATE_HASHED       = BIT(NAPI_STATE_HASHED),
 368        NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
 369        NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
 370};
 371
 372enum gro_result {
 373        GRO_MERGED,
 374        GRO_MERGED_FREE,
 375        GRO_HELD,
 376        GRO_NORMAL,
 377        GRO_DROP,
 378        GRO_CONSUMED,
 379};
 380typedef enum gro_result gro_result_t;
 381
 382/*
 383 * enum rx_handler_result - Possible return values for rx_handlers.
 384 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 385 * further.
 386 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 387 * case skb->dev was changed by rx_handler.
 388 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 389 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
 390 *
 391 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 392 * special processing of the skb, prior to delivery to protocol handlers.
 393 *
 394 * Currently, a net_device can only have a single rx_handler registered. Trying
 395 * to register a second rx_handler will return -EBUSY.
 396 *
 397 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 398 * To unregister a rx_handler on a net_device, use
 399 * netdev_rx_handler_unregister().
 400 *
 401 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 402 * do with the skb.
 403 *
 404 * If the rx_handler consumed the skb in some way, it should return
 405 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 406 * the skb to be delivered in some other way.
 407 *
 408 * If the rx_handler changed skb->dev, to divert the skb to another
 409 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 410 * new device will be called if it exists.
 411 *
 412 * If the rx_handler decides the skb should be ignored, it should return
 413 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 414 * are registered on exact device (ptype->dev == skb->dev).
 415 *
 416 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
 417 * delivered, it should return RX_HANDLER_PASS.
 418 *
 419 * A device without a registered rx_handler will behave as if rx_handler
 420 * returned RX_HANDLER_PASS.
 421 */
 422
 423enum rx_handler_result {
 424        RX_HANDLER_CONSUMED,
 425        RX_HANDLER_ANOTHER,
 426        RX_HANDLER_EXACT,
 427        RX_HANDLER_PASS,
 428};
 429typedef enum rx_handler_result rx_handler_result_t;
 430typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 431
 432void __napi_schedule(struct napi_struct *n);
 433void __napi_schedule_irqoff(struct napi_struct *n);
 434
 435static inline bool napi_disable_pending(struct napi_struct *n)
 436{
 437        return test_bit(NAPI_STATE_DISABLE, &n->state);
 438}
 439
 440bool napi_schedule_prep(struct napi_struct *n);
 441
 442/**
 443 *      napi_schedule - schedule NAPI poll
 444 *      @n: NAPI context
 445 *
 446 * Schedule NAPI poll routine to be called if it is not already
 447 * running.
 448 */
 449static inline void napi_schedule(struct napi_struct *n)
 450{
 451        if (napi_schedule_prep(n))
 452                __napi_schedule(n);
 453}
 454
 455/**
 456 *      napi_schedule_irqoff - schedule NAPI poll
 457 *      @n: NAPI context
 458 *
 459 * Variant of napi_schedule(), assuming hard irqs are masked.
 460 */
 461static inline void napi_schedule_irqoff(struct napi_struct *n)
 462{
 463        if (napi_schedule_prep(n))
 464                __napi_schedule_irqoff(n);
 465}
 466
 467/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 468static inline bool napi_reschedule(struct napi_struct *napi)
 469{
 470        if (napi_schedule_prep(napi)) {
 471                __napi_schedule(napi);
 472                return true;
 473        }
 474        return false;
 475}
 476
 477bool napi_complete_done(struct napi_struct *n, int work_done);
 478/**
 479 *      napi_complete - NAPI processing complete
 480 *      @n: NAPI context
 481 *
 482 * Mark NAPI processing as complete.
 483 * Consider using napi_complete_done() instead.
 484 * Return false if device should avoid rearming interrupts.
 485 */
 486static inline bool napi_complete(struct napi_struct *n)
 487{
 488        return napi_complete_done(n, 0);
 489}
 490
 491/**
 492 *      napi_hash_del - remove a NAPI from global table
 493 *      @napi: NAPI context
 494 *
 495 * Warning: caller must observe RCU grace period
 496 * before freeing memory containing @napi, if
 497 * this function returns true.
 498 * Note: core networking stack automatically calls it
 499 * from netif_napi_del().
 500 * Drivers might want to call this helper to combine all
 501 * the needed RCU grace periods into a single one.
 502 */
 503bool napi_hash_del(struct napi_struct *napi);
 504
 505/**
 506 *      napi_disable - prevent NAPI from scheduling
 507 *      @n: NAPI context
 508 *
 509 * Stop NAPI from being scheduled on this context.
 510 * Waits till any outstanding processing completes.
 511 */
 512void napi_disable(struct napi_struct *n);
 513
 514/**
 515 *      napi_enable - enable NAPI scheduling
 516 *      @n: NAPI context
 517 *
 518 * Resume NAPI from being scheduled on this context.
 519 * Must be paired with napi_disable.
 520 */
 521static inline void napi_enable(struct napi_struct *n)
 522{
 523        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 524        smp_mb__before_atomic();
 525        clear_bit(NAPI_STATE_SCHED, &n->state);
 526        clear_bit(NAPI_STATE_NPSVC, &n->state);
 527}
 528
 529/**
 530 *      napi_synchronize - wait until NAPI is not running
 531 *      @n: NAPI context
 532 *
 533 * Wait until NAPI is done being scheduled on this context.
 534 * Waits till any outstanding processing completes but
 535 * does not disable future activations.
 536 */
 537static inline void napi_synchronize(const struct napi_struct *n)
 538{
 539        if (IS_ENABLED(CONFIG_SMP))
 540                while (test_bit(NAPI_STATE_SCHED, &n->state))
 541                        msleep(1);
 542        else
 543                barrier();
 544}
 545
 546/**
 547 *      napi_if_scheduled_mark_missed - if napi is running, set the
 548 *      NAPIF_STATE_MISSED
 549 *      @n: NAPI context
 550 *
 551 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
 552 * NAPI is scheduled.
 553 **/
 554static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
 555{
 556        unsigned long val, new;
 557
 558        do {
 559                val = READ_ONCE(n->state);
 560                if (val & NAPIF_STATE_DISABLE)
 561                        return true;
 562
 563                if (!(val & NAPIF_STATE_SCHED))
 564                        return false;
 565
 566                new = val | NAPIF_STATE_MISSED;
 567        } while (cmpxchg(&n->state, val, new) != val);
 568
 569        return true;
 570}
 571
 572enum netdev_queue_state_t {
 573        __QUEUE_STATE_DRV_XOFF,
 574        __QUEUE_STATE_STACK_XOFF,
 575        __QUEUE_STATE_FROZEN,
 576};
 577
 578#define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
 579#define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
 580#define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
 581
 582#define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 583#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 584                                        QUEUE_STATE_FROZEN)
 585#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 586                                        QUEUE_STATE_FROZEN)
 587
 588/*
 589 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 590 * netif_tx_* functions below are used to manipulate this flag.  The
 591 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 592 * queue independently.  The netif_xmit_*stopped functions below are called
 593 * to check if the queue has been stopped by the driver or stack (either
 594 * of the XOFF bits are set in the state).  Drivers should not need to call
 595 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 596 */
 597
 598struct netdev_queue {
 599/*
 600 * read-mostly part
 601 */
 602        struct net_device       *dev;
 603        struct Qdisc __rcu      *qdisc;
 604        struct Qdisc            *qdisc_sleeping;
 605#ifdef CONFIG_SYSFS
 606        struct kobject          kobj;
 607#endif
 608#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 609        int                     numa_node;
 610#endif
 611        unsigned long           tx_maxrate;
 612        /*
 613         * Number of TX timeouts for this queue
 614         * (/sys/class/net/DEV/Q/trans_timeout)
 615         */
 616        unsigned long           trans_timeout;
 617
 618        /* Subordinate device that the queue has been assigned to */
 619        struct net_device       *sb_dev;
 620#ifdef CONFIG_XDP_SOCKETS
 621        struct xdp_umem         *umem;
 622#endif
 623/*
 624 * write-mostly part
 625 */
 626        spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
 627        int                     xmit_lock_owner;
 628        /*
 629         * Time (in jiffies) of last Tx
 630         */
 631        unsigned long           trans_start;
 632
 633        unsigned long           state;
 634
 635#ifdef CONFIG_BQL
 636        struct dql              dql;
 637#endif
 638} ____cacheline_aligned_in_smp;
 639
 640extern int sysctl_fb_tunnels_only_for_init_net;
 641extern int sysctl_devconf_inherit_init_net;
 642
 643static inline bool net_has_fallback_tunnels(const struct net *net)
 644{
 645        return net == &init_net ||
 646               !IS_ENABLED(CONFIG_SYSCTL) ||
 647               !sysctl_fb_tunnels_only_for_init_net;
 648}
 649
 650static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 651{
 652#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 653        return q->numa_node;
 654#else
 655        return NUMA_NO_NODE;
 656#endif
 657}
 658
 659static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 660{
 661#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 662        q->numa_node = node;
 663#endif
 664}
 665
 666#ifdef CONFIG_RPS
 667/*
 668 * This structure holds an RPS map which can be of variable length.  The
 669 * map is an array of CPUs.
 670 */
 671struct rps_map {
 672        unsigned int len;
 673        struct rcu_head rcu;
 674        u16 cpus[];
 675};
 676#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 677
 678/*
 679 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 680 * tail pointer for that CPU's input queue at the time of last enqueue, and
 681 * a hardware filter index.
 682 */
 683struct rps_dev_flow {
 684        u16 cpu;
 685        u16 filter;
 686        unsigned int last_qtail;
 687};
 688#define RPS_NO_FILTER 0xffff
 689
 690/*
 691 * The rps_dev_flow_table structure contains a table of flow mappings.
 692 */
 693struct rps_dev_flow_table {
 694        unsigned int mask;
 695        struct rcu_head rcu;
 696        struct rps_dev_flow flows[];
 697};
 698#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 699    ((_num) * sizeof(struct rps_dev_flow)))
 700
 701/*
 702 * The rps_sock_flow_table contains mappings of flows to the last CPU
 703 * on which they were processed by the application (set in recvmsg).
 704 * Each entry is a 32bit value. Upper part is the high-order bits
 705 * of flow hash, lower part is CPU number.
 706 * rps_cpu_mask is used to partition the space, depending on number of
 707 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 708 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
 709 * meaning we use 32-6=26 bits for the hash.
 710 */
 711struct rps_sock_flow_table {
 712        u32     mask;
 713
 714        u32     ents[] ____cacheline_aligned_in_smp;
 715};
 716#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 717
 718#define RPS_NO_CPU 0xffff
 719
 720extern u32 rps_cpu_mask;
 721extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 722
 723static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 724                                        u32 hash)
 725{
 726        if (table && hash) {
 727                unsigned int index = hash & table->mask;
 728                u32 val = hash & ~rps_cpu_mask;
 729
 730                /* We only give a hint, preemption can change CPU under us */
 731                val |= raw_smp_processor_id();
 732
 733                if (table->ents[index] != val)
 734                        table->ents[index] = val;
 735        }
 736}
 737
 738#ifdef CONFIG_RFS_ACCEL
 739bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 740                         u16 filter_id);
 741#endif
 742#endif /* CONFIG_RPS */
 743
 744/* This structure contains an instance of an RX queue. */
 745struct netdev_rx_queue {
 746#ifdef CONFIG_RPS
 747        struct rps_map __rcu            *rps_map;
 748        struct rps_dev_flow_table __rcu *rps_flow_table;
 749#endif
 750        struct kobject                  kobj;
 751        struct net_device               *dev;
 752        struct xdp_rxq_info             xdp_rxq;
 753#ifdef CONFIG_XDP_SOCKETS
 754        struct xdp_umem                 *umem;
 755#endif
 756} ____cacheline_aligned_in_smp;
 757
 758/*
 759 * RX queue sysfs structures and functions.
 760 */
 761struct rx_queue_attribute {
 762        struct attribute attr;
 763        ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
 764        ssize_t (*store)(struct netdev_rx_queue *queue,
 765                         const char *buf, size_t len);
 766};
 767
 768#ifdef CONFIG_XPS
 769/*
 770 * This structure holds an XPS map which can be of variable length.  The
 771 * map is an array of queues.
 772 */
 773struct xps_map {
 774        unsigned int len;
 775        unsigned int alloc_len;
 776        struct rcu_head rcu;
 777        u16 queues[];
 778};
 779#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 780#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 781       - sizeof(struct xps_map)) / sizeof(u16))
 782
 783/*
 784 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 785 */
 786struct xps_dev_maps {
 787        struct rcu_head rcu;
 788        struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
 789};
 790
 791#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +      \
 792        (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
 793
 794#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
 795        (_rxqs * (_tcs) * sizeof(struct xps_map *)))
 796
 797#endif /* CONFIG_XPS */
 798
 799#define TC_MAX_QUEUE    16
 800#define TC_BITMASK      15
 801/* HW offloaded queuing disciplines txq count and offset maps */
 802struct netdev_tc_txq {
 803        u16 count;
 804        u16 offset;
 805};
 806
 807#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 808/*
 809 * This structure is to hold information about the device
 810 * configured to run FCoE protocol stack.
 811 */
 812struct netdev_fcoe_hbainfo {
 813        char    manufacturer[64];
 814        char    serial_number[64];
 815        char    hardware_version[64];
 816        char    driver_version[64];
 817        char    optionrom_version[64];
 818        char    firmware_version[64];
 819        char    model[256];
 820        char    model_description[256];
 821};
 822#endif
 823
 824#define MAX_PHYS_ITEM_ID_LEN 32
 825
 826/* This structure holds a unique identifier to identify some
 827 * physical item (port for example) used by a netdevice.
 828 */
 829struct netdev_phys_item_id {
 830        unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 831        unsigned char id_len;
 832};
 833
 834static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 835                                            struct netdev_phys_item_id *b)
 836{
 837        return a->id_len == b->id_len &&
 838               memcmp(a->id, b->id, a->id_len) == 0;
 839}
 840
 841typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 842                                       struct sk_buff *skb,
 843                                       struct net_device *sb_dev);
 844
 845enum tc_setup_type {
 846        TC_SETUP_QDISC_MQPRIO,
 847        TC_SETUP_CLSU32,
 848        TC_SETUP_CLSFLOWER,
 849        TC_SETUP_CLSMATCHALL,
 850        TC_SETUP_CLSBPF,
 851        TC_SETUP_BLOCK,
 852        TC_SETUP_QDISC_CBS,
 853        TC_SETUP_QDISC_RED,
 854        TC_SETUP_QDISC_PRIO,
 855        TC_SETUP_QDISC_MQ,
 856        TC_SETUP_QDISC_ETF,
 857        TC_SETUP_ROOT_QDISC,
 858        TC_SETUP_QDISC_GRED,
 859        TC_SETUP_QDISC_TAPRIO,
 860        TC_SETUP_FT,
 861        TC_SETUP_QDISC_ETS,
 862        TC_SETUP_QDISC_TBF,
 863        TC_SETUP_QDISC_FIFO,
 864};
 865
 866/* These structures hold the attributes of bpf state that are being passed
 867 * to the netdevice through the bpf op.
 868 */
 869enum bpf_netdev_command {
 870        /* Set or clear a bpf program used in the earliest stages of packet
 871         * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
 872         * is responsible for calling bpf_prog_put on any old progs that are
 873         * stored. In case of error, the callee need not release the new prog
 874         * reference, but on success it takes ownership and must bpf_prog_put
 875         * when it is no longer used.
 876         */
 877        XDP_SETUP_PROG,
 878        XDP_SETUP_PROG_HW,
 879        /* BPF program for offload callbacks, invoked at program load time. */
 880        BPF_OFFLOAD_MAP_ALLOC,
 881        BPF_OFFLOAD_MAP_FREE,
 882        XDP_SETUP_XSK_UMEM,
 883};
 884
 885struct bpf_prog_offload_ops;
 886struct netlink_ext_ack;
 887struct xdp_umem;
 888struct xdp_dev_bulk_queue;
 889struct bpf_xdp_link;
 890
 891enum bpf_xdp_mode {
 892        XDP_MODE_SKB = 0,
 893        XDP_MODE_DRV = 1,
 894        XDP_MODE_HW = 2,
 895        __MAX_XDP_MODE
 896};
 897
 898struct bpf_xdp_entity {
 899        struct bpf_prog *prog;
 900        struct bpf_xdp_link *link;
 901};
 902
 903struct netdev_bpf {
 904        enum bpf_netdev_command command;
 905        union {
 906                /* XDP_SETUP_PROG */
 907                struct {
 908                        u32 flags;
 909                        struct bpf_prog *prog;
 910                        struct netlink_ext_ack *extack;
 911                };
 912                /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
 913                struct {
 914                        struct bpf_offloaded_map *offmap;
 915                };
 916                /* XDP_SETUP_XSK_UMEM */
 917                struct {
 918                        struct xdp_umem *umem;
 919                        u16 queue_id;
 920                } xsk;
 921        };
 922};
 923
 924/* Flags for ndo_xsk_wakeup. */
 925#define XDP_WAKEUP_RX (1 << 0)
 926#define XDP_WAKEUP_TX (1 << 1)
 927
 928#ifdef CONFIG_XFRM_OFFLOAD
 929struct xfrmdev_ops {
 930        int     (*xdo_dev_state_add) (struct xfrm_state *x);
 931        void    (*xdo_dev_state_delete) (struct xfrm_state *x);
 932        void    (*xdo_dev_state_free) (struct xfrm_state *x);
 933        bool    (*xdo_dev_offload_ok) (struct sk_buff *skb,
 934                                       struct xfrm_state *x);
 935        void    (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
 936};
 937#endif
 938
 939struct dev_ifalias {
 940        struct rcu_head rcuhead;
 941        char ifalias[];
 942};
 943
 944struct devlink;
 945struct tlsdev_ops;
 946
 947struct netdev_name_node {
 948        struct hlist_node hlist;
 949        struct list_head list;
 950        struct net_device *dev;
 951        const char *name;
 952};
 953
 954int netdev_name_node_alt_create(struct net_device *dev, const char *name);
 955int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
 956
 957struct netdev_net_notifier {
 958        struct list_head list;
 959        struct notifier_block *nb;
 960};
 961
 962/*
 963 * This structure defines the management hooks for network devices.
 964 * The following hooks can be defined; unless noted otherwise, they are
 965 * optional and can be filled with a null pointer.
 966 *
 967 * int (*ndo_init)(struct net_device *dev);
 968 *     This function is called once when a network device is registered.
 969 *     The network device can use this for any late stage initialization
 970 *     or semantic validation. It can fail with an error code which will
 971 *     be propagated back to register_netdev.
 972 *
 973 * void (*ndo_uninit)(struct net_device *dev);
 974 *     This function is called when device is unregistered or when registration
 975 *     fails. It is not called if init fails.
 976 *
 977 * int (*ndo_open)(struct net_device *dev);
 978 *     This function is called when a network device transitions to the up
 979 *     state.
 980 *
 981 * int (*ndo_stop)(struct net_device *dev);
 982 *     This function is called when a network device transitions to the down
 983 *     state.
 984 *
 985 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 986 *                               struct net_device *dev);
 987 *      Called when a packet needs to be transmitted.
 988 *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 989 *      the queue before that can happen; it's for obsolete devices and weird
 990 *      corner cases, but the stack really does a non-trivial amount
 991 *      of useless work if you return NETDEV_TX_BUSY.
 992 *      Required; cannot be NULL.
 993 *
 994 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
 995 *                                         struct net_device *dev
 996 *                                         netdev_features_t features);
 997 *      Called by core transmit path to determine if device is capable of
 998 *      performing offload operations on a given packet. This is to give
 999 *      the device an opportunity to implement any restrictions that cannot
1000 *      be otherwise expressed by feature flags. The check is called with
1001 *      the set of features that the stack has calculated and it returns
1002 *      those the driver believes to be appropriate.
1003 *
1004 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1005 *                         struct net_device *sb_dev);
1006 *      Called to decide which queue to use when device supports multiple
1007 *      transmit queues.
1008 *
1009 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1010 *      This function is called to allow device receiver to make
1011 *      changes to configuration when multicast or promiscuous is enabled.
1012 *
1013 * void (*ndo_set_rx_mode)(struct net_device *dev);
1014 *      This function is called device changes address list filtering.
1015 *      If driver handles unicast address filtering, it should set
1016 *      IFF_UNICAST_FLT in its priv_flags.
1017 *
1018 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1019 *      This function  is called when the Media Access Control address
1020 *      needs to be changed. If this interface is not defined, the
1021 *      MAC address can not be changed.
1022 *
1023 * int (*ndo_validate_addr)(struct net_device *dev);
1024 *      Test if Media Access Control address is valid for the device.
1025 *
1026 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1027 *      Called when a user requests an ioctl which can't be handled by
1028 *      the generic interface code. If not defined ioctls return
1029 *      not supported error code.
1030 *
1031 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1032 *      Used to set network devices bus interface parameters. This interface
1033 *      is retained for legacy reasons; new devices should use the bus
1034 *      interface (PCI) for low level management.
1035 *
1036 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1037 *      Called when a user wants to change the Maximum Transfer Unit
1038 *      of a device.
1039 *
1040 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1041 *      Callback used when the transmitter has not made any progress
1042 *      for dev->watchdog ticks.
1043 *
1044 * void (*ndo_get_stats64)(struct net_device *dev,
1045 *                         struct rtnl_link_stats64 *storage);
1046 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1047 *      Called when a user wants to get the network device usage
1048 *      statistics. Drivers must do one of the following:
1049 *      1. Define @ndo_get_stats64 to fill in a zero-initialised
1050 *         rtnl_link_stats64 structure passed by the caller.
1051 *      2. Define @ndo_get_stats to update a net_device_stats structure
1052 *         (which should normally be dev->stats) and return a pointer to
1053 *         it. The structure may be changed asynchronously only if each
1054 *         field is written atomically.
1055 *      3. Update dev->stats asynchronously and atomically, and define
1056 *         neither operation.
1057 *
1058 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1059 *      Return true if this device supports offload stats of this attr_id.
1060 *
1061 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1062 *      void *attr_data)
1063 *      Get statistics for offload operations by attr_id. Write it into the
1064 *      attr_data pointer.
1065 *
1066 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1067 *      If device supports VLAN filtering this function is called when a
1068 *      VLAN id is registered.
1069 *
1070 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1071 *      If device supports VLAN filtering this function is called when a
1072 *      VLAN id is unregistered.
1073 *
1074 * void (*ndo_poll_controller)(struct net_device *dev);
1075 *
1076 *      SR-IOV management functions.
1077 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1078 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1079 *                        u8 qos, __be16 proto);
1080 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1081 *                        int max_tx_rate);
1082 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1083 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1084 * int (*ndo_get_vf_config)(struct net_device *dev,
1085 *                          int vf, struct ifla_vf_info *ivf);
1086 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1087 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1088 *                        struct nlattr *port[]);
1089 *
1090 *      Enable or disable the VF ability to query its RSS Redirection Table and
1091 *      Hash Key. This is needed since on some devices VF share this information
1092 *      with PF and querying it may introduce a theoretical security risk.
1093 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1094 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1095 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1096 *                     void *type_data);
1097 *      Called to setup any 'tc' scheduler, classifier or action on @dev.
1098 *      This is always called from the stack with the rtnl lock held and netif
1099 *      tx queues stopped. This allows the netdevice to perform queue
1100 *      management safely.
1101 *
1102 *      Fiber Channel over Ethernet (FCoE) offload functions.
1103 * int (*ndo_fcoe_enable)(struct net_device *dev);
1104 *      Called when the FCoE protocol stack wants to start using LLD for FCoE
1105 *      so the underlying device can perform whatever needed configuration or
1106 *      initialization to support acceleration of FCoE traffic.
1107 *
1108 * int (*ndo_fcoe_disable)(struct net_device *dev);
1109 *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
1110 *      so the underlying device can perform whatever needed clean-ups to
1111 *      stop supporting acceleration of FCoE traffic.
1112 *
1113 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1114 *                           struct scatterlist *sgl, unsigned int sgc);
1115 *      Called when the FCoE Initiator wants to initialize an I/O that
1116 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1117 *      perform necessary setup and returns 1 to indicate the device is set up
1118 *      successfully to perform DDP on this I/O, otherwise this returns 0.
1119 *
1120 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1121 *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
1122 *      indicated by the FC exchange id 'xid', so the underlying device can
1123 *      clean up and reuse resources for later DDP requests.
1124 *
1125 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1126 *                            struct scatterlist *sgl, unsigned int sgc);
1127 *      Called when the FCoE Target wants to initialize an I/O that
1128 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1129 *      perform necessary setup and returns 1 to indicate the device is set up
1130 *      successfully to perform DDP on this I/O, otherwise this returns 0.
1131 *
1132 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1133 *                             struct netdev_fcoe_hbainfo *hbainfo);
1134 *      Called when the FCoE Protocol stack wants information on the underlying
1135 *      device. This information is utilized by the FCoE protocol stack to
1136 *      register attributes with Fiber Channel management service as per the
1137 *      FC-GS Fabric Device Management Information(FDMI) specification.
1138 *
1139 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1140 *      Called when the underlying device wants to override default World Wide
1141 *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1142 *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1143 *      protocol stack to use.
1144 *
1145 *      RFS acceleration.
1146 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1147 *                          u16 rxq_index, u32 flow_id);
1148 *      Set hardware filter for RFS.  rxq_index is the target queue index;
1149 *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1150 *      Return the filter ID on success, or a negative error code.
1151 *
1152 *      Slave management functions (for bridge, bonding, etc).
1153 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1154 *      Called to make another netdev an underling.
1155 *
1156 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1157 *      Called to release previously enslaved netdev.
1158 *
1159 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1160 *                                          struct sk_buff *skb,
1161 *                                          bool all_slaves);
1162 *      Get the xmit slave of master device. If all_slaves is true, function
1163 *      assume all the slaves can transmit.
1164 *
1165 *      Feature/offload setting functions.
1166 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1167 *              netdev_features_t features);
1168 *      Adjusts the requested feature flags according to device-specific
1169 *      constraints, and returns the resulting flags. Must not modify
1170 *      the device state.
1171 *
1172 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1173 *      Called to update device configuration to new features. Passed
1174 *      feature set might be less than what was returned by ndo_fix_features()).
1175 *      Must return >0 or -errno if it changed dev->features itself.
1176 *
1177 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1178 *                    struct net_device *dev,
1179 *                    const unsigned char *addr, u16 vid, u16 flags,
1180 *                    struct netlink_ext_ack *extack);
1181 *      Adds an FDB entry to dev for addr.
1182 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1183 *                    struct net_device *dev,
1184 *                    const unsigned char *addr, u16 vid)
1185 *      Deletes the FDB entry from dev coresponding to addr.
1186 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1187 *                     struct net_device *dev, struct net_device *filter_dev,
1188 *                     int *idx)
1189 *      Used to add FDB entries to dump requests. Implementers should add
1190 *      entries to skb and update idx with the number of entries.
1191 *
1192 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1193 *                           u16 flags, struct netlink_ext_ack *extack)
1194 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1195 *                           struct net_device *dev, u32 filter_mask,
1196 *                           int nlflags)
1197 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1198 *                           u16 flags);
1199 *
1200 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1201 *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1202 *      which do not represent real hardware may define this to allow their
1203 *      userspace components to manage their virtual carrier state. Devices
1204 *      that determine carrier state from physical hardware properties (eg
1205 *      network cables) or protocol-dependent mechanisms (eg
1206 *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1207 *
1208 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1209 *                             struct netdev_phys_item_id *ppid);
1210 *      Called to get ID of physical port of this device. If driver does
1211 *      not implement this, it is assumed that the hw is not able to have
1212 *      multiple net devices on single physical port.
1213 *
1214 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1215 *                               struct netdev_phys_item_id *ppid)
1216 *      Called to get the parent ID of the physical port of this device.
1217 *
1218 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1219 *                            struct udp_tunnel_info *ti);
1220 *      Called by UDP tunnel to notify a driver about the UDP port and socket
1221 *      address family that a UDP tunnel is listnening to. It is called only
1222 *      when a new port starts listening. The operation is protected by the
1223 *      RTNL.
1224 *
1225 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1226 *                            struct udp_tunnel_info *ti);
1227 *      Called by UDP tunnel to notify the driver about a UDP port and socket
1228 *      address family that the UDP tunnel is not listening to anymore. The
1229 *      operation is protected by the RTNL.
1230 *
1231 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1232 *                               struct net_device *dev)
1233 *      Called by upper layer devices to accelerate switching or other
1234 *      station functionality into hardware. 'pdev is the lowerdev
1235 *      to use for the offload and 'dev' is the net device that will
1236 *      back the offload. Returns a pointer to the private structure
1237 *      the upper layer will maintain.
1238 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1239 *      Called by upper layer device to delete the station created
1240 *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1241 *      the station and priv is the structure returned by the add
1242 *      operation.
1243 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1244 *                           int queue_index, u32 maxrate);
1245 *      Called when a user wants to set a max-rate limitation of specific
1246 *      TX queue.
1247 * int (*ndo_get_iflink)(const struct net_device *dev);
1248 *      Called to get the iflink value of this device.
1249 * void (*ndo_change_proto_down)(struct net_device *dev,
1250 *                               bool proto_down);
1251 *      This function is used to pass protocol port error state information
1252 *      to the switch driver. The switch driver can react to the proto_down
1253 *      by doing a phys down on the associated switch port.
1254 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1255 *      This function is used to get egress tunnel information for given skb.
1256 *      This is useful for retrieving outer tunnel header parameters while
1257 *      sampling packet.
1258 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1259 *      This function is used to specify the headroom that the skb must
1260 *      consider when allocation skb during packet reception. Setting
1261 *      appropriate rx headroom value allows avoiding skb head copy on
1262 *      forward. Setting a negative value resets the rx headroom to the
1263 *      default value.
1264 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1265 *      This function is used to set or query state related to XDP on the
1266 *      netdevice and manage BPF offload. See definition of
1267 *      enum bpf_netdev_command for details.
1268 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1269 *                      u32 flags);
1270 *      This function is used to submit @n XDP packets for transmit on a
1271 *      netdevice. Returns number of frames successfully transmitted, frames
1272 *      that got dropped are freed/returned via xdp_return_frame().
1273 *      Returns negative number, means general error invoking ndo, meaning
1274 *      no frames were xmit'ed and core-caller will free all frames.
1275 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1276 *      This function is used to wake up the softirq, ksoftirqd or kthread
1277 *      responsible for sending and/or receiving packets on a specific
1278 *      queue id bound to an AF_XDP socket. The flags field specifies if
1279 *      only RX, only Tx, or both should be woken up using the flags
1280 *      XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1281 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1282 *      Get devlink port instance associated with a given netdev.
1283 *      Called with a reference on the netdevice and devlink locks only,
1284 *      rtnl_lock is not held.
1285 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1286 *                       int cmd);
1287 *      Add, change, delete or get information on an IPv4 tunnel.
1288 */
1289struct net_device_ops {
1290        int                     (*ndo_init)(struct net_device *dev);
1291        void                    (*ndo_uninit)(struct net_device *dev);
1292        int                     (*ndo_open)(struct net_device *dev);
1293        int                     (*ndo_stop)(struct net_device *dev);
1294        netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1295                                                  struct net_device *dev);
1296        netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1297                                                      struct net_device *dev,
1298                                                      netdev_features_t features);
1299        u16                     (*ndo_select_queue)(struct net_device *dev,
1300                                                    struct sk_buff *skb,
1301                                                    struct net_device *sb_dev);
1302        void                    (*ndo_change_rx_flags)(struct net_device *dev,
1303                                                       int flags);
1304        void                    (*ndo_set_rx_mode)(struct net_device *dev);
1305        int                     (*ndo_set_mac_address)(struct net_device *dev,
1306                                                       void *addr);
1307        int                     (*ndo_validate_addr)(struct net_device *dev);
1308        int                     (*ndo_do_ioctl)(struct net_device *dev,
1309                                                struct ifreq *ifr, int cmd);
1310        int                     (*ndo_set_config)(struct net_device *dev,
1311                                                  struct ifmap *map);
1312        int                     (*ndo_change_mtu)(struct net_device *dev,
1313                                                  int new_mtu);
1314        int                     (*ndo_neigh_setup)(struct net_device *dev,
1315                                                   struct neigh_parms *);
1316        void                    (*ndo_tx_timeout) (struct net_device *dev,
1317                                                   unsigned int txqueue);
1318
1319        void                    (*ndo_get_stats64)(struct net_device *dev,
1320                                                   struct rtnl_link_stats64 *storage);
1321        bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1322        int                     (*ndo_get_offload_stats)(int attr_id,
1323                                                         const struct net_device *dev,
1324                                                         void *attr_data);
1325        struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1326
1327        int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1328                                                       __be16 proto, u16 vid);
1329        int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1330                                                        __be16 proto, u16 vid);
1331#ifdef CONFIG_NET_POLL_CONTROLLER
1332        void                    (*ndo_poll_controller)(struct net_device *dev);
1333        int                     (*ndo_netpoll_setup)(struct net_device *dev,
1334                                                     struct netpoll_info *info);
1335        void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1336#endif
1337        int                     (*ndo_set_vf_mac)(struct net_device *dev,
1338                                                  int queue, u8 *mac);
1339        int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1340                                                   int queue, u16 vlan,
1341                                                   u8 qos, __be16 proto);
1342        int                     (*ndo_set_vf_rate)(struct net_device *dev,
1343                                                   int vf, int min_tx_rate,
1344                                                   int max_tx_rate);
1345        int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1346                                                       int vf, bool setting);
1347        int                     (*ndo_set_vf_trust)(struct net_device *dev,
1348                                                    int vf, bool setting);
1349        int                     (*ndo_get_vf_config)(struct net_device *dev,
1350                                                     int vf,
1351                                                     struct ifla_vf_info *ivf);
1352        int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1353                                                         int vf, int link_state);
1354        int                     (*ndo_get_vf_stats)(struct net_device *dev,
1355                                                    int vf,
1356                                                    struct ifla_vf_stats
1357                                                    *vf_stats);
1358        int                     (*ndo_set_vf_port)(struct net_device *dev,
1359                                                   int vf,
1360                                                   struct nlattr *port[]);
1361        int                     (*ndo_get_vf_port)(struct net_device *dev,
1362                                                   int vf, struct sk_buff *skb);
1363        int                     (*ndo_get_vf_guid)(struct net_device *dev,
1364                                                   int vf,
1365                                                   struct ifla_vf_guid *node_guid,
1366                                                   struct ifla_vf_guid *port_guid);
1367        int                     (*ndo_set_vf_guid)(struct net_device *dev,
1368                                                   int vf, u64 guid,
1369                                                   int guid_type);
1370        int                     (*ndo_set_vf_rss_query_en)(
1371                                                   struct net_device *dev,
1372                                                   int vf, bool setting);
1373        int                     (*ndo_setup_tc)(struct net_device *dev,
1374                                                enum tc_setup_type type,
1375                                                void *type_data);
1376#if IS_ENABLED(CONFIG_FCOE)
1377        int                     (*ndo_fcoe_enable)(struct net_device *dev);
1378        int                     (*ndo_fcoe_disable)(struct net_device *dev);
1379        int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1380                                                      u16 xid,
1381                                                      struct scatterlist *sgl,
1382                                                      unsigned int sgc);
1383        int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1384                                                     u16 xid);
1385        int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1386                                                       u16 xid,
1387                                                       struct scatterlist *sgl,
1388                                                       unsigned int sgc);
1389        int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1390                                                        struct netdev_fcoe_hbainfo *hbainfo);
1391#endif
1392
1393#if IS_ENABLED(CONFIG_LIBFCOE)
1394#define NETDEV_FCOE_WWNN 0
1395#define NETDEV_FCOE_WWPN 1
1396        int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1397                                                    u64 *wwn, int type);
1398#endif
1399
1400#ifdef CONFIG_RFS_ACCEL
1401        int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1402                                                     const struct sk_buff *skb,
1403                                                     u16 rxq_index,
1404                                                     u32 flow_id);
1405#endif
1406        int                     (*ndo_add_slave)(struct net_device *dev,
1407                                                 struct net_device *slave_dev,
1408                                                 struct netlink_ext_ack *extack);
1409        int                     (*ndo_del_slave)(struct net_device *dev,
1410                                                 struct net_device *slave_dev);
1411        struct net_device*      (*ndo_get_xmit_slave)(struct net_device *dev,
1412                                                      struct sk_buff *skb,
1413                                                      bool all_slaves);
1414        netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1415                                                    netdev_features_t features);
1416        int                     (*ndo_set_features)(struct net_device *dev,
1417                                                    netdev_features_t features);
1418        int                     (*ndo_neigh_construct)(struct net_device *dev,
1419                                                       struct neighbour *n);
1420        void                    (*ndo_neigh_destroy)(struct net_device *dev,
1421                                                     struct neighbour *n);
1422
1423        int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1424                                               struct nlattr *tb[],
1425                                               struct net_device *dev,
1426                                               const unsigned char *addr,
1427                                               u16 vid,
1428                                               u16 flags,
1429                                               struct netlink_ext_ack *extack);
1430        int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1431                                               struct nlattr *tb[],
1432                                               struct net_device *dev,
1433                                               const unsigned char *addr,
1434                                               u16 vid);
1435        int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1436                                                struct netlink_callback *cb,
1437                                                struct net_device *dev,
1438                                                struct net_device *filter_dev,
1439                                                int *idx);
1440        int                     (*ndo_fdb_get)(struct sk_buff *skb,
1441                                               struct nlattr *tb[],
1442                                               struct net_device *dev,
1443                                               const unsigned char *addr,
1444                                               u16 vid, u32 portid, u32 seq,
1445                                               struct netlink_ext_ack *extack);
1446        int                     (*ndo_bridge_setlink)(struct net_device *dev,
1447                                                      struct nlmsghdr *nlh,
1448                                                      u16 flags,
1449                                                      struct netlink_ext_ack *extack);
1450        int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1451                                                      u32 pid, u32 seq,
1452                                                      struct net_device *dev,
1453                                                      u32 filter_mask,
1454                                                      int nlflags);
1455        int                     (*ndo_bridge_dellink)(struct net_device *dev,
1456                                                      struct nlmsghdr *nlh,
1457                                                      u16 flags);
1458        int                     (*ndo_change_carrier)(struct net_device *dev,
1459                                                      bool new_carrier);
1460        int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1461                                                        struct netdev_phys_item_id *ppid);
1462        int                     (*ndo_get_port_parent_id)(struct net_device *dev,
1463                                                          struct netdev_phys_item_id *ppid);
1464        int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1465                                                          char *name, size_t len);
1466        void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1467                                                      struct udp_tunnel_info *ti);
1468        void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1469                                                      struct udp_tunnel_info *ti);
1470        void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1471                                                        struct net_device *dev);
1472        void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1473                                                        void *priv);
1474
1475        int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1476                                                      int queue_index,
1477                                                      u32 maxrate);
1478        int                     (*ndo_get_iflink)(const struct net_device *dev);
1479        int                     (*ndo_change_proto_down)(struct net_device *dev,
1480                                                         bool proto_down);
1481        int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1482                                                       struct sk_buff *skb);
1483        void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1484                                                       int needed_headroom);
1485        int                     (*ndo_bpf)(struct net_device *dev,
1486                                           struct netdev_bpf *bpf);
1487        int                     (*ndo_xdp_xmit)(struct net_device *dev, int n,
1488                                                struct xdp_frame **xdp,
1489                                                u32 flags);
1490        int                     (*ndo_xsk_wakeup)(struct net_device *dev,
1491                                                  u32 queue_id, u32 flags);
1492        struct devlink_port *   (*ndo_get_devlink_port)(struct net_device *dev);
1493        int                     (*ndo_tunnel_ctl)(struct net_device *dev,
1494                                                  struct ip_tunnel_parm *p, int cmd);
1495};
1496
1497/**
1498 * enum net_device_priv_flags - &struct net_device priv_flags
1499 *
1500 * These are the &struct net_device, they are only set internally
1501 * by drivers and used in the kernel. These flags are invisible to
1502 * userspace; this means that the order of these flags can change
1503 * during any kernel release.
1504 *
1505 * You should have a pretty good reason to be extending these flags.
1506 *
1507 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1508 * @IFF_EBRIDGE: Ethernet bridging device
1509 * @IFF_BONDING: bonding master or slave
1510 * @IFF_ISATAP: ISATAP interface (RFC4214)
1511 * @IFF_WAN_HDLC: WAN HDLC device
1512 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1513 *      release skb->dst
1514 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1515 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1516 * @IFF_MACVLAN_PORT: device used as macvlan port
1517 * @IFF_BRIDGE_PORT: device used as bridge port
1518 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1519 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1520 * @IFF_UNICAST_FLT: Supports unicast filtering
1521 * @IFF_TEAM_PORT: device used as team port
1522 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1523 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1524 *      change when it's running
1525 * @IFF_MACVLAN: Macvlan device
1526 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1527 *      underlying stacked devices
1528 * @IFF_L3MDEV_MASTER: device is an L3 master device
1529 * @IFF_NO_QUEUE: device can run without qdisc attached
1530 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1531 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1532 * @IFF_TEAM: device is a team device
1533 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1534 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1535 *      entity (i.e. the master device for bridged veth)
1536 * @IFF_MACSEC: device is a MACsec device
1537 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1538 * @IFF_FAILOVER: device is a failover master device
1539 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1540 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1541 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1542 */
1543enum netdev_priv_flags {
1544        IFF_802_1Q_VLAN                 = 1<<0,
1545        IFF_EBRIDGE                     = 1<<1,
1546        IFF_BONDING                     = 1<<2,
1547        IFF_ISATAP                      = 1<<3,
1548        IFF_WAN_HDLC                    = 1<<4,
1549        IFF_XMIT_DST_RELEASE            = 1<<5,
1550        IFF_DONT_BRIDGE                 = 1<<6,
1551        IFF_DISABLE_NETPOLL             = 1<<7,
1552        IFF_MACVLAN_PORT                = 1<<8,
1553        IFF_BRIDGE_PORT                 = 1<<9,
1554        IFF_OVS_DATAPATH                = 1<<10,
1555        IFF_TX_SKB_SHARING              = 1<<11,
1556        IFF_UNICAST_FLT                 = 1<<12,
1557        IFF_TEAM_PORT                   = 1<<13,
1558        IFF_SUPP_NOFCS                  = 1<<14,
1559        IFF_LIVE_ADDR_CHANGE            = 1<<15,
1560        IFF_MACVLAN                     = 1<<16,
1561        IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1562        IFF_L3MDEV_MASTER               = 1<<18,
1563        IFF_NO_QUEUE                    = 1<<19,
1564        IFF_OPENVSWITCH                 = 1<<20,
1565        IFF_L3MDEV_SLAVE                = 1<<21,
1566        IFF_TEAM                        = 1<<22,
1567        IFF_RXFH_CONFIGURED             = 1<<23,
1568        IFF_PHONY_HEADROOM              = 1<<24,
1569        IFF_MACSEC                      = 1<<25,
1570        IFF_NO_RX_HANDLER               = 1<<26,
1571        IFF_FAILOVER                    = 1<<27,
1572        IFF_FAILOVER_SLAVE              = 1<<28,
1573        IFF_L3MDEV_RX_HANDLER           = 1<<29,
1574        IFF_LIVE_RENAME_OK              = 1<<30,
1575};
1576
1577#define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1578#define IFF_EBRIDGE                     IFF_EBRIDGE
1579#define IFF_BONDING                     IFF_BONDING
1580#define IFF_ISATAP                      IFF_ISATAP
1581#define IFF_WAN_HDLC                    IFF_WAN_HDLC
1582#define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1583#define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1584#define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1585#define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1586#define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1587#define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1588#define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1589#define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1590#define IFF_TEAM_PORT                   IFF_TEAM_PORT
1591#define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1592#define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1593#define IFF_MACVLAN                     IFF_MACVLAN
1594#define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1595#define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1596#define IFF_NO_QUEUE                    IFF_NO_QUEUE
1597#define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1598#define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1599#define IFF_TEAM                        IFF_TEAM
1600#define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1601#define IFF_MACSEC                      IFF_MACSEC
1602#define IFF_NO_RX_HANDLER               IFF_NO_RX_HANDLER
1603#define IFF_FAILOVER                    IFF_FAILOVER
1604#define IFF_FAILOVER_SLAVE              IFF_FAILOVER_SLAVE
1605#define IFF_L3MDEV_RX_HANDLER           IFF_L3MDEV_RX_HANDLER
1606#define IFF_LIVE_RENAME_OK              IFF_LIVE_RENAME_OK
1607
1608/**
1609 *      struct net_device - The DEVICE structure.
1610 *
1611 *      Actually, this whole structure is a big mistake.  It mixes I/O
1612 *      data with strictly "high-level" data, and it has to know about
1613 *      almost every data structure used in the INET module.
1614 *
1615 *      @name:  This is the first field of the "visible" part of this structure
1616 *              (i.e. as seen by users in the "Space.c" file).  It is the name
1617 *              of the interface.
1618 *
1619 *      @name_node:     Name hashlist node
1620 *      @ifalias:       SNMP alias
1621 *      @mem_end:       Shared memory end
1622 *      @mem_start:     Shared memory start
1623 *      @base_addr:     Device I/O address
1624 *      @irq:           Device IRQ number
1625 *
1626 *      @state:         Generic network queuing layer state, see netdev_state_t
1627 *      @dev_list:      The global list of network devices
1628 *      @napi_list:     List entry used for polling NAPI devices
1629 *      @unreg_list:    List entry  when we are unregistering the
1630 *                      device; see the function unregister_netdev
1631 *      @close_list:    List entry used when we are closing the device
1632 *      @ptype_all:     Device-specific packet handlers for all protocols
1633 *      @ptype_specific: Device-specific, protocol-specific packet handlers
1634 *
1635 *      @adj_list:      Directly linked devices, like slaves for bonding
1636 *      @features:      Currently active device features
1637 *      @hw_features:   User-changeable features
1638 *
1639 *      @wanted_features:       User-requested features
1640 *      @vlan_features:         Mask of features inheritable by VLAN devices
1641 *
1642 *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1643 *                              This field indicates what encapsulation
1644 *                              offloads the hardware is capable of doing,
1645 *                              and drivers will need to set them appropriately.
1646 *
1647 *      @mpls_features: Mask of features inheritable by MPLS
1648 *      @gso_partial_features: value(s) from NETIF_F_GSO\*
1649 *
1650 *      @ifindex:       interface index
1651 *      @group:         The group the device belongs to
1652 *
1653 *      @stats:         Statistics struct, which was left as a legacy, use
1654 *                      rtnl_link_stats64 instead
1655 *
1656 *      @rx_dropped:    Dropped packets by core network,
1657 *                      do not use this in drivers
1658 *      @tx_dropped:    Dropped packets by core network,
1659 *                      do not use this in drivers
1660 *      @rx_nohandler:  nohandler dropped packets by core network on
1661 *                      inactive devices, do not use this in drivers
1662 *      @carrier_up_count:      Number of times the carrier has been up
1663 *      @carrier_down_count:    Number of times the carrier has been down
1664 *
1665 *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1666 *                              instead of ioctl,
1667 *                              see <net/iw_handler.h> for details.
1668 *      @wireless_data: Instance data managed by the core of wireless extensions
1669 *
1670 *      @netdev_ops:    Includes several pointers to callbacks,
1671 *                      if one wants to override the ndo_*() functions
1672 *      @ethtool_ops:   Management operations
1673 *      @l3mdev_ops:    Layer 3 master device operations
1674 *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1675 *                      discovery handling. Necessary for e.g. 6LoWPAN.
1676 *      @xfrmdev_ops:   Transformation offload operations
1677 *      @tlsdev_ops:    Transport Layer Security offload operations
1678 *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1679 *                      of Layer 2 headers.
1680 *
1681 *      @flags:         Interface flags (a la BSD)
1682 *      @priv_flags:    Like 'flags' but invisible to userspace,
1683 *                      see if.h for the definitions
1684 *      @gflags:        Global flags ( kept as legacy )
1685 *      @padded:        How much padding added by alloc_netdev()
1686 *      @operstate:     RFC2863 operstate
1687 *      @link_mode:     Mapping policy to operstate
1688 *      @if_port:       Selectable AUI, TP, ...
1689 *      @dma:           DMA channel
1690 *      @mtu:           Interface MTU value
1691 *      @min_mtu:       Interface Minimum MTU value
1692 *      @max_mtu:       Interface Maximum MTU value
1693 *      @type:          Interface hardware type
1694 *      @hard_header_len: Maximum hardware header length.
1695 *      @min_header_len:  Minimum hardware header length
1696 *
1697 *      @needed_headroom: Extra headroom the hardware may need, but not in all
1698 *                        cases can this be guaranteed
1699 *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1700 *                        cases can this be guaranteed. Some cases also use
1701 *                        LL_MAX_HEADER instead to allocate the skb
1702 *
1703 *      interface address info:
1704 *
1705 *      @perm_addr:             Permanent hw address
1706 *      @addr_assign_type:      Hw address assignment type
1707 *      @addr_len:              Hardware address length
1708 *      @upper_level:           Maximum depth level of upper devices.
1709 *      @lower_level:           Maximum depth level of lower devices.
1710 *      @neigh_priv_len:        Used in neigh_alloc()
1711 *      @dev_id:                Used to differentiate devices that share
1712 *                              the same link layer address
1713 *      @dev_port:              Used to differentiate devices that share
1714 *                              the same function
1715 *      @addr_list_lock:        XXX: need comments on this one
1716 *      @name_assign_type:      network interface name assignment type
1717 *      @uc_promisc:            Counter that indicates promiscuous mode
1718 *                              has been enabled due to the need to listen to
1719 *                              additional unicast addresses in a device that
1720 *                              does not implement ndo_set_rx_mode()
1721 *      @uc:                    unicast mac addresses
1722 *      @mc:                    multicast mac addresses
1723 *      @dev_addrs:             list of device hw addresses
1724 *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1725 *      @promiscuity:           Number of times the NIC is told to work in
1726 *                              promiscuous mode; if it becomes 0 the NIC will
1727 *                              exit promiscuous mode
1728 *      @allmulti:              Counter, enables or disables allmulticast mode
1729 *
1730 *      @vlan_info:     VLAN info
1731 *      @dsa_ptr:       dsa specific data
1732 *      @tipc_ptr:      TIPC specific data
1733 *      @atalk_ptr:     AppleTalk link
1734 *      @ip_ptr:        IPv4 specific data
1735 *      @dn_ptr:        DECnet specific data
1736 *      @ip6_ptr:       IPv6 specific data
1737 *      @ax25_ptr:      AX.25 specific data
1738 *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1739 *      @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1740 *                       device struct
1741 *      @mpls_ptr:      mpls_dev struct pointer
1742 *
1743 *      @dev_addr:      Hw address (before bcast,
1744 *                      because most packets are unicast)
1745 *
1746 *      @_rx:                   Array of RX queues
1747 *      @num_rx_queues:         Number of RX queues
1748 *                              allocated at register_netdev() time
1749 *      @real_num_rx_queues:    Number of RX queues currently active in device
1750 *      @xdp_prog:              XDP sockets filter program pointer
1751 *      @gro_flush_timeout:     timeout for GRO layer in NAPI
1752 *      @napi_defer_hard_irqs:  If not zero, provides a counter that would
1753 *                              allow to avoid NIC hard IRQ, on busy queues.
1754 *
1755 *      @rx_handler:            handler for received packets
1756 *      @rx_handler_data:       XXX: need comments on this one
1757 *      @miniq_ingress:         ingress/clsact qdisc specific data for
1758 *                              ingress processing
1759 *      @ingress_queue:         XXX: need comments on this one
1760 *      @nf_hooks_ingress:      netfilter hooks executed for ingress packets
1761 *      @broadcast:             hw bcast address
1762 *
1763 *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1764 *                      indexed by RX queue number. Assigned by driver.
1765 *                      This must only be set if the ndo_rx_flow_steer
1766 *                      operation is defined
1767 *      @index_hlist:           Device index hash chain
1768 *
1769 *      @_tx:                   Array of TX queues
1770 *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1771 *      @real_num_tx_queues:    Number of TX queues currently active in device
1772 *      @qdisc:                 Root qdisc from userspace point of view
1773 *      @tx_queue_len:          Max frames per queue allowed
1774 *      @tx_global_lock:        XXX: need comments on this one
1775 *      @xdp_bulkq:             XDP device bulk queue
1776 *      @xps_cpus_map:          all CPUs map for XPS device
1777 *      @xps_rxqs_map:          all RXQs map for XPS device
1778 *
1779 *      @xps_maps:      XXX: need comments on this one
1780 *      @miniq_egress:          clsact qdisc specific data for
1781 *                              egress processing
1782 *      @qdisc_hash:            qdisc hash table
1783 *      @watchdog_timeo:        Represents the timeout that is used by
1784 *                              the watchdog (see dev_watchdog())
1785 *      @watchdog_timer:        List of timers
1786 *
1787 *      @proto_down_reason:     reason a netdev interface is held down
1788 *      @pcpu_refcnt:           Number of references to this device
1789 *      @todo_list:             Delayed register/unregister
1790 *      @link_watch_list:       XXX: need comments on this one
1791 *
1792 *      @reg_state:             Register/unregister state machine
1793 *      @dismantle:             Device is going to be freed
1794 *      @rtnl_link_state:       This enum represents the phases of creating
1795 *                              a new link
1796 *
1797 *      @needs_free_netdev:     Should unregister perform free_netdev?
1798 *      @priv_destructor:       Called from unregister
1799 *      @npinfo:                XXX: need comments on this one
1800 *      @nd_net:                Network namespace this network device is inside
1801 *
1802 *      @ml_priv:       Mid-layer private
1803 *      @lstats:        Loopback statistics
1804 *      @tstats:        Tunnel statistics
1805 *      @dstats:        Dummy statistics
1806 *      @vstats:        Virtual ethernet statistics
1807 *
1808 *      @garp_port:     GARP
1809 *      @mrp_port:      MRP
1810 *
1811 *      @dev:           Class/net/name entry
1812 *      @sysfs_groups:  Space for optional device, statistics and wireless
1813 *                      sysfs groups
1814 *
1815 *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1816 *      @rtnl_link_ops: Rtnl_link_ops
1817 *
1818 *      @gso_max_size:  Maximum size of generic segmentation offload
1819 *      @gso_max_segs:  Maximum number of segments that can be passed to the
1820 *                      NIC for GSO
1821 *
1822 *      @dcbnl_ops:     Data Center Bridging netlink ops
1823 *      @num_tc:        Number of traffic classes in the net device
1824 *      @tc_to_txq:     XXX: need comments on this one
1825 *      @prio_tc_map:   XXX: need comments on this one
1826 *
1827 *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1828 *
1829 *      @priomap:       XXX: need comments on this one
1830 *      @phydev:        Physical device may attach itself
1831 *                      for hardware timestamping
1832 *      @sfp_bus:       attached &struct sfp_bus structure.
1833 *
1834 *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1835 *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1836 *
1837 *      @proto_down:    protocol port state information can be sent to the
1838 *                      switch driver and used to set the phys state of the
1839 *                      switch port.
1840 *
1841 *      @wol_enabled:   Wake-on-LAN is enabled
1842 *
1843 *      @net_notifier_list:     List of per-net netdev notifier block
1844 *                              that follow this device when it is moved
1845 *                              to another network namespace.
1846 *
1847 *      @macsec_ops:    MACsec offloading ops
1848 *
1849 *      @udp_tunnel_nic_info:   static structure describing the UDP tunnel
1850 *                              offload capabilities of the device
1851 *      @udp_tunnel_nic:        UDP tunnel offload state
1852 *      @xdp_state:             stores info on attached XDP BPF programs
1853 *
1854 *      @nested_level:  Used as as a parameter of spin_lock_nested() of
1855 *                      dev->addr_list_lock.
1856 *      @unlink_list:   As netif_addr_lock() can be called recursively,
1857 *                      keep a list of interfaces to be deleted.
1858 *
1859 *      FIXME: cleanup struct net_device such that network protocol info
1860 *      moves out.
1861 */
1862
1863struct net_device {
1864        char                    name[IFNAMSIZ];
1865        struct netdev_name_node *name_node;
1866        struct dev_ifalias      __rcu *ifalias;
1867        /*
1868         *      I/O specific fields
1869         *      FIXME: Merge these and struct ifmap into one
1870         */
1871        unsigned long           mem_end;
1872        unsigned long           mem_start;
1873        unsigned long           base_addr;
1874        int                     irq;
1875
1876        /*
1877         *      Some hardware also needs these fields (state,dev_list,
1878         *      napi_list,unreg_list,close_list) but they are not
1879         *      part of the usual set specified in Space.c.
1880         */
1881
1882        unsigned long           state;
1883
1884        struct list_head        dev_list;
1885        struct list_head        napi_list;
1886        struct list_head        unreg_list;
1887        struct list_head        close_list;
1888        struct list_head        ptype_all;
1889        struct list_head        ptype_specific;
1890
1891        struct {
1892                struct list_head upper;
1893                struct list_head lower;
1894        } adj_list;
1895
1896        netdev_features_t       features;
1897        netdev_features_t       hw_features;
1898        netdev_features_t       wanted_features;
1899        netdev_features_t       vlan_features;
1900        netdev_features_t       hw_enc_features;
1901        netdev_features_t       mpls_features;
1902        netdev_features_t       gso_partial_features;
1903
1904        int                     ifindex;
1905        int                     group;
1906
1907        struct net_device_stats stats;
1908
1909        atomic_long_t           rx_dropped;
1910        atomic_long_t           tx_dropped;
1911        atomic_long_t           rx_nohandler;
1912
1913        /* Stats to monitor link on/off, flapping */
1914        atomic_t                carrier_up_count;
1915        atomic_t                carrier_down_count;
1916
1917#ifdef CONFIG_WIRELESS_EXT
1918        const struct iw_handler_def *wireless_handlers;
1919        struct iw_public_data   *wireless_data;
1920#endif
1921        const struct net_device_ops *netdev_ops;
1922        const struct ethtool_ops *ethtool_ops;
1923#ifdef CONFIG_NET_L3_MASTER_DEV
1924        const struct l3mdev_ops *l3mdev_ops;
1925#endif
1926#if IS_ENABLED(CONFIG_IPV6)
1927        const struct ndisc_ops *ndisc_ops;
1928#endif
1929
1930#ifdef CONFIG_XFRM_OFFLOAD
1931        const struct xfrmdev_ops *xfrmdev_ops;
1932#endif
1933
1934#if IS_ENABLED(CONFIG_TLS_DEVICE)
1935        const struct tlsdev_ops *tlsdev_ops;
1936#endif
1937
1938        const struct header_ops *header_ops;
1939
1940        unsigned int            flags;
1941        unsigned int            priv_flags;
1942
1943        unsigned short          gflags;
1944        unsigned short          padded;
1945
1946        unsigned char           operstate;
1947        unsigned char           link_mode;
1948
1949        unsigned char           if_port;
1950        unsigned char           dma;
1951
1952        /* Note : dev->mtu is often read without holding a lock.
1953         * Writers usually hold RTNL.
1954         * It is recommended to use READ_ONCE() to annotate the reads,
1955         * and to use WRITE_ONCE() to annotate the writes.
1956         */
1957        unsigned int            mtu;
1958        unsigned int            min_mtu;
1959        unsigned int            max_mtu;
1960        unsigned short          type;
1961        unsigned short          hard_header_len;
1962        unsigned char           min_header_len;
1963        unsigned char           name_assign_type;
1964
1965        unsigned short          needed_headroom;
1966        unsigned short          needed_tailroom;
1967
1968        /* Interface address info. */
1969        unsigned char           perm_addr[MAX_ADDR_LEN];
1970        unsigned char           addr_assign_type;
1971        unsigned char           addr_len;
1972        unsigned char           upper_level;
1973        unsigned char           lower_level;
1974
1975        unsigned short          neigh_priv_len;
1976        unsigned short          dev_id;
1977        unsigned short          dev_port;
1978        spinlock_t              addr_list_lock;
1979
1980        struct netdev_hw_addr_list      uc;
1981        struct netdev_hw_addr_list      mc;
1982        struct netdev_hw_addr_list      dev_addrs;
1983
1984#ifdef CONFIG_SYSFS
1985        struct kset             *queues_kset;
1986#endif
1987#ifdef CONFIG_LOCKDEP
1988        struct list_head        unlink_list;
1989#endif
1990        unsigned int            promiscuity;
1991        unsigned int            allmulti;
1992        bool                    uc_promisc;
1993#ifdef CONFIG_LOCKDEP
1994        unsigned char           nested_level;
1995#endif
1996
1997
1998        /* Protocol-specific pointers */
1999
2000#if IS_ENABLED(CONFIG_VLAN_8021Q)
2001        struct vlan_info __rcu  *vlan_info;
2002#endif
2003#if IS_ENABLED(CONFIG_NET_DSA)
2004        struct dsa_port         *dsa_ptr;
2005#endif
2006#if IS_ENABLED(CONFIG_TIPC)
2007        struct tipc_bearer __rcu *tipc_ptr;
2008#endif
2009#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2010        void                    *atalk_ptr;
2011#endif
2012        struct in_device __rcu  *ip_ptr;
2013#if IS_ENABLED(CONFIG_DECNET)
2014        struct dn_dev __rcu     *dn_ptr;
2015#endif
2016        struct inet6_dev __rcu  *ip6_ptr;
2017#if IS_ENABLED(CONFIG_AX25)
2018        void                    *ax25_ptr;
2019#endif
2020        struct wireless_dev     *ieee80211_ptr;
2021        struct wpan_dev         *ieee802154_ptr;
2022#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2023        struct mpls_dev __rcu   *mpls_ptr;
2024#endif
2025
2026/*
2027 * Cache lines mostly used on receive path (including eth_type_trans())
2028 */
2029        /* Interface address info used in eth_type_trans() */
2030        unsigned char           *dev_addr;
2031
2032        struct netdev_rx_queue  *_rx;
2033        unsigned int            num_rx_queues;
2034        unsigned int            real_num_rx_queues;
2035
2036        struct bpf_prog __rcu   *xdp_prog;
2037        unsigned long           gro_flush_timeout;
2038        int                     napi_defer_hard_irqs;
2039        rx_handler_func_t __rcu *rx_handler;
2040        void __rcu              *rx_handler_data;
2041
2042#ifdef CONFIG_NET_CLS_ACT
2043        struct mini_Qdisc __rcu *miniq_ingress;
2044#endif
2045        struct netdev_queue __rcu *ingress_queue;
2046#ifdef CONFIG_NETFILTER_INGRESS
2047        struct nf_hook_entries __rcu *nf_hooks_ingress;
2048#endif
2049
2050        unsigned char           broadcast[MAX_ADDR_LEN];
2051#ifdef CONFIG_RFS_ACCEL
2052        struct cpu_rmap         *rx_cpu_rmap;
2053#endif
2054        struct hlist_node       index_hlist;
2055
2056/*
2057 * Cache lines mostly used on transmit path
2058 */
2059        struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
2060        unsigned int            num_tx_queues;
2061        unsigned int            real_num_tx_queues;
2062        struct Qdisc            *qdisc;
2063        unsigned int            tx_queue_len;
2064        spinlock_t              tx_global_lock;
2065
2066        struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2067
2068#ifdef CONFIG_XPS
2069        struct xps_dev_maps __rcu *xps_cpus_map;
2070        struct xps_dev_maps __rcu *xps_rxqs_map;
2071#endif
2072#ifdef CONFIG_NET_CLS_ACT
2073        struct mini_Qdisc __rcu *miniq_egress;
2074#endif
2075
2076#ifdef CONFIG_NET_SCHED
2077        DECLARE_HASHTABLE       (qdisc_hash, 4);
2078#endif
2079        /* These may be needed for future network-power-down code. */
2080        struct timer_list       watchdog_timer;
2081        int                     watchdog_timeo;
2082
2083        u32                     proto_down_reason;
2084
2085        struct list_head        todo_list;
2086        int __percpu            *pcpu_refcnt;
2087
2088        struct list_head        link_watch_list;
2089
2090        enum { NETREG_UNINITIALIZED=0,
2091               NETREG_REGISTERED,       /* completed register_netdevice */
2092               NETREG_UNREGISTERING,    /* called unregister_netdevice */
2093               NETREG_UNREGISTERED,     /* completed unregister todo */
2094               NETREG_RELEASED,         /* called free_netdev */
2095               NETREG_DUMMY,            /* dummy device for NAPI poll */
2096        } reg_state:8;
2097
2098        bool dismantle;
2099
2100        enum {
2101                RTNL_LINK_INITIALIZED,
2102                RTNL_LINK_INITIALIZING,
2103        } rtnl_link_state:16;
2104
2105        bool needs_free_netdev;
2106        void (*priv_destructor)(struct net_device *dev);
2107
2108#ifdef CONFIG_NETPOLL
2109        struct netpoll_info __rcu       *npinfo;
2110#endif
2111
2112        possible_net_t                  nd_net;
2113
2114        /* mid-layer private */
2115        union {
2116                void                                    *ml_priv;
2117                struct pcpu_lstats __percpu             *lstats;
2118                struct pcpu_sw_netstats __percpu        *tstats;
2119                struct pcpu_dstats __percpu             *dstats;
2120        };
2121
2122#if IS_ENABLED(CONFIG_GARP)
2123        struct garp_port __rcu  *garp_port;
2124#endif
2125#if IS_ENABLED(CONFIG_MRP)
2126        struct mrp_port __rcu   *mrp_port;
2127#endif
2128
2129        struct device           dev;
2130        const struct attribute_group *sysfs_groups[4];
2131        const struct attribute_group *sysfs_rx_queue_group;
2132
2133        const struct rtnl_link_ops *rtnl_link_ops;
2134
2135        /* for setting kernel sock attribute on TCP connection setup */
2136#define GSO_MAX_SIZE            65536
2137        unsigned int            gso_max_size;
2138#define GSO_MAX_SEGS            65535
2139        u16                     gso_max_segs;
2140
2141#ifdef CONFIG_DCB
2142        const struct dcbnl_rtnl_ops *dcbnl_ops;
2143#endif
2144        s16                     num_tc;
2145        struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
2146        u8                      prio_tc_map[TC_BITMASK + 1];
2147
2148#if IS_ENABLED(CONFIG_FCOE)
2149        unsigned int            fcoe_ddp_xid;
2150#endif
2151#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2152        struct netprio_map __rcu *priomap;
2153#endif
2154        struct phy_device       *phydev;
2155        struct sfp_bus          *sfp_bus;
2156        struct lock_class_key   *qdisc_tx_busylock;
2157        struct lock_class_key   *qdisc_running_key;
2158        bool                    proto_down;
2159        unsigned                wol_enabled:1;
2160
2161        struct list_head        net_notifier_list;
2162
2163#if IS_ENABLED(CONFIG_MACSEC)
2164        /* MACsec management functions */
2165        const struct macsec_ops *macsec_ops;
2166#endif
2167        const struct udp_tunnel_nic_info        *udp_tunnel_nic_info;
2168        struct udp_tunnel_nic   *udp_tunnel_nic;
2169
2170        /* protected by rtnl_lock */
2171        struct bpf_xdp_entity   xdp_state[__MAX_XDP_MODE];
2172};
2173#define to_net_dev(d) container_of(d, struct net_device, dev)
2174
2175static inline bool netif_elide_gro(const struct net_device *dev)
2176{
2177        if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2178                return true;
2179        return false;
2180}
2181
2182#define NETDEV_ALIGN            32
2183
2184static inline
2185int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2186{
2187        return dev->prio_tc_map[prio & TC_BITMASK];
2188}
2189
2190static inline
2191int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2192{
2193        if (tc >= dev->num_tc)
2194                return -EINVAL;
2195
2196        dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2197        return 0;
2198}
2199
2200int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2201void netdev_reset_tc(struct net_device *dev);
2202int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2203int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2204
2205static inline
2206int netdev_get_num_tc(struct net_device *dev)
2207{
2208        return dev->num_tc;
2209}
2210
2211void netdev_unbind_sb_channel(struct net_device *dev,
2212                              struct net_device *sb_dev);
2213int netdev_bind_sb_channel_queue(struct net_device *dev,
2214                                 struct net_device *sb_dev,
2215                                 u8 tc, u16 count, u16 offset);
2216int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2217static inline int netdev_get_sb_channel(struct net_device *dev)
2218{
2219        return max_t(int, -dev->num_tc, 0);
2220}
2221
2222static inline
2223struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2224                                         unsigned int index)
2225{
2226        return &dev->_tx[index];
2227}
2228
2229static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2230                                                    const struct sk_buff *skb)
2231{
2232        return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2233}
2234
2235static inline void netdev_for_each_tx_queue(struct net_device *dev,
2236                                            void (*f)(struct net_device *,
2237                                                      struct netdev_queue *,
2238                                                      void *),
2239                                            void *arg)
2240{
2241        unsigned int i;
2242
2243        for (i = 0; i < dev->num_tx_queues; i++)
2244                f(dev, &dev->_tx[i], arg);
2245}
2246
2247#define netdev_lockdep_set_classes(dev)                         \
2248{                                                               \
2249        static struct lock_class_key qdisc_tx_busylock_key;     \
2250        static struct lock_class_key qdisc_running_key;         \
2251        static struct lock_class_key qdisc_xmit_lock_key;       \
2252        static struct lock_class_key dev_addr_list_lock_key;    \
2253        unsigned int i;                                         \
2254                                                                \
2255        (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
2256        (dev)->qdisc_running_key = &qdisc_running_key;          \
2257        lockdep_set_class(&(dev)->addr_list_lock,               \
2258                          &dev_addr_list_lock_key);             \
2259        for (i = 0; i < (dev)->num_tx_queues; i++)              \
2260                lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
2261                                  &qdisc_xmit_lock_key);        \
2262}
2263
2264u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2265                     struct net_device *sb_dev);
2266struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2267                                         struct sk_buff *skb,
2268                                         struct net_device *sb_dev);
2269
2270/* returns the headroom that the master device needs to take in account
2271 * when forwarding to this dev
2272 */
2273static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2274{
2275        return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2276}
2277
2278static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2279{
2280        if (dev->netdev_ops->ndo_set_rx_headroom)
2281                dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2282}
2283
2284/* set the device rx headroom to the dev's default */
2285static inline void netdev_reset_rx_headroom(struct net_device *dev)
2286{
2287        netdev_set_rx_headroom(dev, -1);
2288}
2289
2290/*
2291 * Net namespace inlines
2292 */
2293static inline
2294struct net *dev_net(const struct net_device *dev)
2295{
2296        return read_pnet(&dev->nd_net);
2297}
2298
2299static inline
2300void dev_net_set(struct net_device *dev, struct net *net)
2301{
2302        write_pnet(&dev->nd_net, net);
2303}
2304
2305/**
2306 *      netdev_priv - access network device private data
2307 *      @dev: network device
2308 *
2309 * Get network device private data
2310 */
2311static inline void *netdev_priv(const struct net_device *dev)
2312{
2313        return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2314}
2315
2316/* Set the sysfs physical device reference for the network logical device
2317 * if set prior to registration will cause a symlink during initialization.
2318 */
2319#define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2320
2321/* Set the sysfs device type for the network logical device to allow
2322 * fine-grained identification of different network device types. For
2323 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2324 */
2325#define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2326
2327/* Default NAPI poll() weight
2328 * Device drivers are strongly advised to not use bigger value
2329 */
2330#define NAPI_POLL_WEIGHT 64
2331
2332/**
2333 *      netif_napi_add - initialize a NAPI context
2334 *      @dev:  network device
2335 *      @napi: NAPI context
2336 *      @poll: polling function
2337 *      @weight: default weight
2338 *
2339 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2340 * *any* of the other NAPI-related functions.
2341 */
2342void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2343                    int (*poll)(struct napi_struct *, int), int weight);
2344
2345/**
2346 *      netif_tx_napi_add - initialize a NAPI context
2347 *      @dev:  network device
2348 *      @napi: NAPI context
2349 *      @poll: polling function
2350 *      @weight: default weight
2351 *
2352 * This variant of netif_napi_add() should be used from drivers using NAPI
2353 * to exclusively poll a TX queue.
2354 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2355 */
2356static inline void netif_tx_napi_add(struct net_device *dev,
2357                                     struct napi_struct *napi,
2358                                     int (*poll)(struct napi_struct *, int),
2359                                     int weight)
2360{
2361        set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2362        netif_napi_add(dev, napi, poll, weight);
2363}
2364
2365/**
2366 *  netif_napi_del - remove a NAPI context
2367 *  @napi: NAPI context
2368 *
2369 *  netif_napi_del() removes a NAPI context from the network device NAPI list
2370 */
2371void netif_napi_del(struct napi_struct *napi);
2372
2373struct napi_gro_cb {
2374        /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2375        void    *frag0;
2376
2377        /* Length of frag0. */
2378        unsigned int frag0_len;
2379
2380        /* This indicates where we are processing relative to skb->data. */
2381        int     data_offset;
2382
2383        /* This is non-zero if the packet cannot be merged with the new skb. */
2384        u16     flush;
2385
2386        /* Save the IP ID here and check when we get to the transport layer */
2387        u16     flush_id;
2388
2389        /* Number of segments aggregated. */
2390        u16     count;
2391
2392        /* Start offset for remote checksum offload */
2393        u16     gro_remcsum_start;
2394
2395        /* jiffies when first packet was created/queued */
2396        unsigned long age;
2397
2398        /* Used in ipv6_gro_receive() and foo-over-udp */
2399        u16     proto;
2400
2401        /* This is non-zero if the packet may be of the same flow. */
2402        u8      same_flow:1;
2403
2404        /* Used in tunnel GRO receive */
2405        u8      encap_mark:1;
2406
2407        /* GRO checksum is valid */
2408        u8      csum_valid:1;
2409
2410        /* Number of checksums via CHECKSUM_UNNECESSARY */
2411        u8      csum_cnt:3;
2412
2413        /* Free the skb? */
2414        u8      free:2;
2415#define NAPI_GRO_FREE             1
2416#define NAPI_GRO_FREE_STOLEN_HEAD 2
2417
2418        /* Used in foo-over-udp, set in udp[46]_gro_receive */
2419        u8      is_ipv6:1;
2420
2421        /* Used in GRE, set in fou/gue_gro_receive */
2422        u8      is_fou:1;
2423
2424        /* Used to determine if flush_id can be ignored */
2425        u8      is_atomic:1;
2426
2427        /* Number of gro_receive callbacks this packet already went through */
2428        u8 recursion_counter:4;
2429
2430        /* GRO is done by frag_list pointer chaining. */
2431        u8      is_flist:1;
2432
2433        /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2434        __wsum  csum;
2435
2436        /* used in skb_gro_receive() slow path */
2437        struct sk_buff *last;
2438};
2439
2440#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2441
2442#define GRO_RECURSION_LIMIT 15
2443static inline int gro_recursion_inc_test(struct sk_buff *skb)
2444{
2445        return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2446}
2447
2448typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2449static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2450                                               struct list_head *head,
2451                                               struct sk_buff *skb)
2452{
2453        if (unlikely(gro_recursion_inc_test(skb))) {
2454                NAPI_GRO_CB(skb)->flush |= 1;
2455                return NULL;
2456        }
2457
2458        return cb(head, skb);
2459}
2460
2461typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2462                                            struct sk_buff *);
2463static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2464                                                  struct sock *sk,
2465                                                  struct list_head *head,
2466                                                  struct sk_buff *skb)
2467{
2468        if (unlikely(gro_recursion_inc_test(skb))) {
2469                NAPI_GRO_CB(skb)->flush |= 1;
2470                return NULL;
2471        }
2472
2473        return cb(sk, head, skb);
2474}
2475
2476struct packet_type {
2477        __be16                  type;   /* This is really htons(ether_type). */
2478        bool                    ignore_outgoing;
2479        struct net_device       *dev;   /* NULL is wildcarded here           */
2480        int                     (*func) (struct sk_buff *,
2481                                         struct net_device *,
2482                                         struct packet_type *,
2483                                         struct net_device *);
2484        void                    (*list_func) (struct list_head *,
2485                                              struct packet_type *,
2486                                              struct net_device *);
2487        bool                    (*id_match)(struct packet_type *ptype,
2488                                            struct sock *sk);
2489        void                    *af_packet_priv;
2490        struct list_head        list;
2491};
2492
2493struct offload_callbacks {
2494        struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2495                                                netdev_features_t features);
2496        struct sk_buff          *(*gro_receive)(struct list_head *head,
2497                                                struct sk_buff *skb);
2498        int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2499};
2500
2501struct packet_offload {
2502        __be16                   type;  /* This is really htons(ether_type). */
2503        u16                      priority;
2504        struct offload_callbacks callbacks;
2505        struct list_head         list;
2506};
2507
2508/* often modified stats are per-CPU, other are shared (netdev->stats) */
2509struct pcpu_sw_netstats {
2510        u64     rx_packets;
2511        u64     rx_bytes;
2512        u64     tx_packets;
2513        u64     tx_bytes;
2514        struct u64_stats_sync   syncp;
2515} __aligned(4 * sizeof(u64));
2516
2517struct pcpu_lstats {
2518        u64_stats_t packets;
2519        u64_stats_t bytes;
2520        struct u64_stats_sync syncp;
2521} __aligned(2 * sizeof(u64));
2522
2523void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2524
2525static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2526{
2527        struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2528
2529        u64_stats_update_begin(&lstats->syncp);
2530        u64_stats_add(&lstats->bytes, len);
2531        u64_stats_inc(&lstats->packets);
2532        u64_stats_update_end(&lstats->syncp);
2533}
2534
2535#define __netdev_alloc_pcpu_stats(type, gfp)                            \
2536({                                                                      \
2537        typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2538        if (pcpu_stats) {                                               \
2539                int __cpu;                                              \
2540                for_each_possible_cpu(__cpu) {                          \
2541                        typeof(type) *stat;                             \
2542                        stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2543                        u64_stats_init(&stat->syncp);                   \
2544                }                                                       \
2545        }                                                               \
2546        pcpu_stats;                                                     \
2547})
2548
2549#define netdev_alloc_pcpu_stats(type)                                   \
2550        __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2551
2552enum netdev_lag_tx_type {
2553        NETDEV_LAG_TX_TYPE_UNKNOWN,
2554        NETDEV_LAG_TX_TYPE_RANDOM,
2555        NETDEV_LAG_TX_TYPE_BROADCAST,
2556        NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2557        NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2558        NETDEV_LAG_TX_TYPE_HASH,
2559};
2560
2561enum netdev_lag_hash {
2562        NETDEV_LAG_HASH_NONE,
2563        NETDEV_LAG_HASH_L2,
2564        NETDEV_LAG_HASH_L34,
2565        NETDEV_LAG_HASH_L23,
2566        NETDEV_LAG_HASH_E23,
2567        NETDEV_LAG_HASH_E34,
2568        NETDEV_LAG_HASH_UNKNOWN,
2569};
2570
2571struct netdev_lag_upper_info {
2572        enum netdev_lag_tx_type tx_type;
2573        enum netdev_lag_hash hash_type;
2574};
2575
2576struct netdev_lag_lower_state_info {
2577        u8 link_up : 1,
2578           tx_enabled : 1;
2579};
2580
2581#include <linux/notifier.h>
2582
2583/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2584 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2585 * adding new types.
2586 */
2587enum netdev_cmd {
2588        NETDEV_UP       = 1,    /* For now you can't veto a device up/down */
2589        NETDEV_DOWN,
2590        NETDEV_REBOOT,          /* Tell a protocol stack a network interface
2591                                   detected a hardware crash and restarted
2592                                   - we can use this eg to kick tcp sessions
2593                                   once done */
2594        NETDEV_CHANGE,          /* Notify device state change */
2595        NETDEV_REGISTER,
2596        NETDEV_UNREGISTER,
2597        NETDEV_CHANGEMTU,       /* notify after mtu change happened */
2598        NETDEV_CHANGEADDR,      /* notify after the address change */
2599        NETDEV_PRE_CHANGEADDR,  /* notify before the address change */
2600        NETDEV_GOING_DOWN,
2601        NETDEV_CHANGENAME,
2602        NETDEV_FEAT_CHANGE,
2603        NETDEV_BONDING_FAILOVER,
2604        NETDEV_PRE_UP,
2605        NETDEV_PRE_TYPE_CHANGE,
2606        NETDEV_POST_TYPE_CHANGE,
2607        NETDEV_POST_INIT,
2608        NETDEV_RELEASE,
2609        NETDEV_NOTIFY_PEERS,
2610        NETDEV_JOIN,
2611        NETDEV_CHANGEUPPER,
2612        NETDEV_RESEND_IGMP,
2613        NETDEV_PRECHANGEMTU,    /* notify before mtu change happened */
2614        NETDEV_CHANGEINFODATA,
2615        NETDEV_BONDING_INFO,
2616        NETDEV_PRECHANGEUPPER,
2617        NETDEV_CHANGELOWERSTATE,
2618        NETDEV_UDP_TUNNEL_PUSH_INFO,
2619        NETDEV_UDP_TUNNEL_DROP_INFO,
2620        NETDEV_CHANGE_TX_QUEUE_LEN,
2621        NETDEV_CVLAN_FILTER_PUSH_INFO,
2622        NETDEV_CVLAN_FILTER_DROP_INFO,
2623        NETDEV_SVLAN_FILTER_PUSH_INFO,
2624        NETDEV_SVLAN_FILTER_DROP_INFO,
2625};
2626const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2627
2628int register_netdevice_notifier(struct notifier_block *nb);
2629int unregister_netdevice_notifier(struct notifier_block *nb);
2630int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2631int unregister_netdevice_notifier_net(struct net *net,
2632                                      struct notifier_block *nb);
2633int register_netdevice_notifier_dev_net(struct net_device *dev,
2634                                        struct notifier_block *nb,
2635                                        struct netdev_net_notifier *nn);
2636int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2637                                          struct notifier_block *nb,
2638                                          struct netdev_net_notifier *nn);
2639
2640struct netdev_notifier_info {
2641        struct net_device       *dev;
2642        struct netlink_ext_ack  *extack;
2643};
2644
2645struct netdev_notifier_info_ext {
2646        struct netdev_notifier_info info; /* must be first */
2647        union {
2648                u32 mtu;
2649        } ext;
2650};
2651
2652struct netdev_notifier_change_info {
2653        struct netdev_notifier_info info; /* must be first */
2654        unsigned int flags_changed;
2655};
2656
2657struct netdev_notifier_changeupper_info {
2658        struct netdev_notifier_info info; /* must be first */
2659        struct net_device *upper_dev; /* new upper dev */
2660        bool master; /* is upper dev master */
2661        bool linking; /* is the notification for link or unlink */
2662        void *upper_info; /* upper dev info */
2663};
2664
2665struct netdev_notifier_changelowerstate_info {
2666        struct netdev_notifier_info info; /* must be first */
2667        void *lower_state_info; /* is lower dev state */
2668};
2669
2670struct netdev_notifier_pre_changeaddr_info {
2671        struct netdev_notifier_info info; /* must be first */
2672        const unsigned char *dev_addr;
2673};
2674
2675static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2676                                             struct net_device *dev)
2677{
2678        info->dev = dev;
2679        info->extack = NULL;
2680}
2681
2682static inline struct net_device *
2683netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2684{
2685        return info->dev;
2686}
2687
2688static inline struct netlink_ext_ack *
2689netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2690{
2691        return info->extack;
2692}
2693
2694int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2695
2696
2697extern rwlock_t                         dev_base_lock;          /* Device list lock */
2698
2699#define for_each_netdev(net, d)         \
2700                list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2701#define for_each_netdev_reverse(net, d) \
2702                list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2703#define for_each_netdev_rcu(net, d)             \
2704                list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2705#define for_each_netdev_safe(net, d, n) \
2706                list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2707#define for_each_netdev_continue(net, d)                \
2708                list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2709#define for_each_netdev_continue_reverse(net, d)                \
2710                list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2711                                                     dev_list)
2712#define for_each_netdev_continue_rcu(net, d)            \
2713        list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2714#define for_each_netdev_in_bond_rcu(bond, slave)        \
2715                for_each_netdev_rcu(&init_net, slave)   \
2716                        if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2717#define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2718
2719static inline struct net_device *next_net_device(struct net_device *dev)
2720{
2721        struct list_head *lh;
2722        struct net *net;
2723
2724        net = dev_net(dev);
2725        lh = dev->dev_list.next;
2726        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2727}
2728
2729static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2730{
2731        struct list_head *lh;
2732        struct net *net;
2733
2734        net = dev_net(dev);
2735        lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2736        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2737}
2738
2739static inline struct net_device *first_net_device(struct net *net)
2740{
2741        return list_empty(&net->dev_base_head) ? NULL :
2742                net_device_entry(net->dev_base_head.next);
2743}
2744
2745static inline struct net_device *first_net_device_rcu(struct net *net)
2746{
2747        struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2748
2749        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2750}
2751
2752int netdev_boot_setup_check(struct net_device *dev);
2753unsigned long netdev_boot_base(const char *prefix, int unit);
2754struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2755                                       const char *hwaddr);
2756struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2757struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2758void dev_add_pack(struct packet_type *pt);
2759void dev_remove_pack(struct packet_type *pt);
2760void __dev_remove_pack(struct packet_type *pt);
2761void dev_add_offload(struct packet_offload *po);
2762void dev_remove_offload(struct packet_offload *po);
2763
2764int dev_get_iflink(const struct net_device *dev);
2765int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2766struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2767                                      unsigned short mask);
2768struct net_device *dev_get_by_name(struct net *net, const char *name);
2769struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2770struct net_device *__dev_get_by_name(struct net *net, const char *name);
2771int dev_alloc_name(struct net_device *dev, const char *name);
2772int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2773void dev_close(struct net_device *dev);
2774void dev_close_many(struct list_head *head, bool unlink);
2775void dev_disable_lro(struct net_device *dev);
2776int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2777u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2778                     struct net_device *sb_dev);
2779u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2780                       struct net_device *sb_dev);
2781int dev_queue_xmit(struct sk_buff *skb);
2782int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2783int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2784int register_netdevice(struct net_device *dev);
2785void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2786void unregister_netdevice_many(struct list_head *head);
2787static inline void unregister_netdevice(struct net_device *dev)
2788{
2789        unregister_netdevice_queue(dev, NULL);
2790}
2791
2792int netdev_refcnt_read(const struct net_device *dev);
2793void free_netdev(struct net_device *dev);
2794void netdev_freemem(struct net_device *dev);
2795void synchronize_net(void);
2796int init_dummy_netdev(struct net_device *dev);
2797
2798struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2799                                         struct sk_buff *skb,
2800                                         bool all_slaves);
2801struct net_device *dev_get_by_index(struct net *net, int ifindex);
2802struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2803struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2804struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2805int netdev_get_name(struct net *net, char *name, int ifindex);
2806int dev_restart(struct net_device *dev);
2807int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2808int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2809
2810static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2811{
2812        return NAPI_GRO_CB(skb)->data_offset;
2813}
2814
2815static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2816{
2817        return skb->len - NAPI_GRO_CB(skb)->data_offset;
2818}
2819
2820static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2821{
2822        NAPI_GRO_CB(skb)->data_offset += len;
2823}
2824
2825static inline void *skb_gro_header_fast(struct sk_buff *skb,
2826                                        unsigned int offset)
2827{
2828        return NAPI_GRO_CB(skb)->frag0 + offset;
2829}
2830
2831static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2832{
2833        return NAPI_GRO_CB(skb)->frag0_len < hlen;
2834}
2835
2836static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2837{
2838        NAPI_GRO_CB(skb)->frag0 = NULL;
2839        NAPI_GRO_CB(skb)->frag0_len = 0;
2840}
2841
2842static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2843                                        unsigned int offset)
2844{
2845        if (!pskb_may_pull(skb, hlen))
2846                return NULL;
2847
2848        skb_gro_frag0_invalidate(skb);
2849        return skb->data + offset;
2850}
2851
2852static inline void *skb_gro_network_header(struct sk_buff *skb)
2853{
2854        return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2855               skb_network_offset(skb);
2856}
2857
2858static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2859                                        const void *start, unsigned int len)
2860{
2861        if (NAPI_GRO_CB(skb)->csum_valid)
2862                NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2863                                                  csum_partial(start, len, 0));
2864}
2865
2866/* GRO checksum functions. These are logical equivalents of the normal
2867 * checksum functions (in skbuff.h) except that they operate on the GRO
2868 * offsets and fields in sk_buff.
2869 */
2870
2871__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2872
2873static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2874{
2875        return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2876}
2877
2878static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2879                                                      bool zero_okay,
2880                                                      __sum16 check)
2881{
2882        return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2883                skb_checksum_start_offset(skb) <
2884                 skb_gro_offset(skb)) &&
2885                !skb_at_gro_remcsum_start(skb) &&
2886                NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2887                (!zero_okay || check));
2888}
2889
2890static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2891                                                           __wsum psum)
2892{
2893        if (NAPI_GRO_CB(skb)->csum_valid &&
2894            !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2895                return 0;
2896
2897        NAPI_GRO_CB(skb)->csum = psum;
2898
2899        return __skb_gro_checksum_complete(skb);
2900}
2901
2902static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2903{
2904        if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2905                /* Consume a checksum from CHECKSUM_UNNECESSARY */
2906                NAPI_GRO_CB(skb)->csum_cnt--;
2907        } else {
2908                /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2909                 * verified a new top level checksum or an encapsulated one
2910                 * during GRO. This saves work if we fallback to normal path.
2911                 */
2912                __skb_incr_checksum_unnecessary(skb);
2913        }
2914}
2915
2916#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2917                                    compute_pseudo)                     \
2918({                                                                      \
2919        __sum16 __ret = 0;                                              \
2920        if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2921                __ret = __skb_gro_checksum_validate_complete(skb,       \
2922                                compute_pseudo(skb, proto));            \
2923        if (!__ret)                                                     \
2924                skb_gro_incr_csum_unnecessary(skb);                     \
2925        __ret;                                                          \
2926})
2927
2928#define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2929        __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2930
2931#define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2932                                             compute_pseudo)            \
2933        __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2934
2935#define skb_gro_checksum_simple_validate(skb)                           \
2936        __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2937
2938static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2939{
2940        return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2941                !NAPI_GRO_CB(skb)->csum_valid);
2942}
2943
2944static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2945                                              __wsum pseudo)
2946{
2947        NAPI_GRO_CB(skb)->csum = ~pseudo;
2948        NAPI_GRO_CB(skb)->csum_valid = 1;
2949}
2950
2951#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)        \
2952do {                                                                    \
2953        if (__skb_gro_checksum_convert_check(skb))                      \
2954                __skb_gro_checksum_convert(skb,                         \
2955                                           compute_pseudo(skb, proto)); \
2956} while (0)
2957
2958struct gro_remcsum {
2959        int offset;
2960        __wsum delta;
2961};
2962
2963static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2964{
2965        grc->offset = 0;
2966        grc->delta = 0;
2967}
2968
2969static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2970                                            unsigned int off, size_t hdrlen,
2971                                            int start, int offset,
2972                                            struct gro_remcsum *grc,
2973                                            bool nopartial)
2974{
2975        __wsum delta;
2976        size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2977
2978        BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2979
2980        if (!nopartial) {
2981                NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2982                return ptr;
2983        }
2984
2985        ptr = skb_gro_header_fast(skb, off);
2986        if (skb_gro_header_hard(skb, off + plen)) {
2987                ptr = skb_gro_header_slow(skb, off + plen, off);
2988                if (!ptr)
2989                        return NULL;
2990        }
2991
2992        delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2993                               start, offset);
2994
2995        /* Adjust skb->csum since we changed the packet */
2996        NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2997
2998        grc->offset = off + hdrlen + offset;
2999        grc->delta = delta;
3000
3001        return ptr;
3002}
3003
3004static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3005                                           struct gro_remcsum *grc)
3006{
3007        void *ptr;
3008        size_t plen = grc->offset + sizeof(u16);
3009
3010        if (!grc->delta)
3011                return;
3012
3013        ptr = skb_gro_header_fast(skb, grc->offset);
3014        if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3015                ptr = skb_gro_header_slow(skb, plen, grc->offset);
3016                if (!ptr)
3017                        return;
3018        }
3019
3020        remcsum_unadjust((__sum16 *)ptr, grc->delta);
3021}
3022
3023#ifdef CONFIG_XFRM_OFFLOAD
3024static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3025{
3026        if (PTR_ERR(pp) != -EINPROGRESS)
3027                NAPI_GRO_CB(skb)->flush |= flush;
3028}
3029static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3030                                               struct sk_buff *pp,
3031                                               int flush,
3032                                               struct gro_remcsum *grc)
3033{
3034        if (PTR_ERR(pp) != -EINPROGRESS) {
3035                NAPI_GRO_CB(skb)->flush |= flush;
3036                skb_gro_remcsum_cleanup(skb, grc);
3037                skb->remcsum_offload = 0;
3038        }
3039}
3040#else
3041static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3042{
3043        NAPI_GRO_CB(skb)->flush |= flush;
3044}
3045static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3046                                               struct sk_buff *pp,
3047                                               int flush,
3048                                               struct gro_remcsum *grc)
3049{
3050        NAPI_GRO_CB(skb)->flush |= flush;
3051        skb_gro_remcsum_cleanup(skb, grc);
3052        skb->remcsum_offload = 0;
3053}
3054#endif
3055
3056static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3057                                  unsigned short type,
3058                                  const void *daddr, const void *saddr,
3059                                  unsigned int len)
3060{
3061        if (!dev->header_ops || !dev->header_ops->create)
3062                return 0;
3063
3064        return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3065}
3066
3067static inline int dev_parse_header(const struct sk_buff *skb,
3068                                   unsigned char *haddr)
3069{
3070        const struct net_device *dev = skb->dev;
3071
3072        if (!dev->header_ops || !dev->header_ops->parse)
3073                return 0;
3074        return dev->header_ops->parse(skb, haddr);
3075}
3076
3077static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3078{
3079        const struct net_device *dev = skb->dev;
3080
3081        if (!dev->header_ops || !dev->header_ops->parse_protocol)
3082                return 0;
3083        return dev->header_ops->parse_protocol(skb);
3084}
3085
3086/* ll_header must have at least hard_header_len allocated */
3087static inline bool dev_validate_header(const struct net_device *dev,
3088                                       char *ll_header, int len)
3089{
3090        if (likely(len >= dev->hard_header_len))
3091                return true;
3092        if (len < dev->min_header_len)
3093                return false;
3094
3095        if (capable(CAP_SYS_RAWIO)) {
3096                memset(ll_header + len, 0, dev->hard_header_len - len);
3097                return true;
3098        }
3099
3100        if (dev->header_ops && dev->header_ops->validate)
3101                return dev->header_ops->validate(ll_header, len);
3102
3103        return false;
3104}
3105
3106typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3107                           int len, int size);
3108int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3109static inline int unregister_gifconf(unsigned int family)
3110{
3111        return register_gifconf(family, NULL);
3112}
3113
3114#ifdef CONFIG_NET_FLOW_LIMIT
3115#define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
3116struct sd_flow_limit {
3117        u64                     count;
3118        unsigned int            num_buckets;
3119        unsigned int            history_head;
3120        u16                     history[FLOW_LIMIT_HISTORY];
3121        u8                      buckets[];
3122};
3123
3124extern int netdev_flow_limit_table_len;
3125#endif /* CONFIG_NET_FLOW_LIMIT */
3126
3127/*
3128 * Incoming packets are placed on per-CPU queues
3129 */
3130struct softnet_data {
3131        struct list_head        poll_list;
3132        struct sk_buff_head     process_queue;
3133
3134        /* stats */
3135        unsigned int            processed;
3136        unsigned int            time_squeeze;
3137        unsigned int            received_rps;
3138#ifdef CONFIG_RPS
3139        struct softnet_data     *rps_ipi_list;
3140#endif
3141#ifdef CONFIG_NET_FLOW_LIMIT
3142        struct sd_flow_limit __rcu *flow_limit;
3143#endif
3144        struct Qdisc            *output_queue;
3145        struct Qdisc            **output_queue_tailp;
3146        struct sk_buff          *completion_queue;
3147#ifdef CONFIG_XFRM_OFFLOAD
3148        struct sk_buff_head     xfrm_backlog;
3149#endif
3150        /* written and read only by owning cpu: */
3151        struct {
3152                u16 recursion;
3153                u8  more;
3154        } xmit;
3155#ifdef CONFIG_RPS
3156        /* input_queue_head should be written by cpu owning this struct,
3157         * and only read by other cpus. Worth using a cache line.
3158         */
3159        unsigned int            input_queue_head ____cacheline_aligned_in_smp;
3160
3161        /* Elements below can be accessed between CPUs for RPS/RFS */
3162        call_single_data_t      csd ____cacheline_aligned_in_smp;
3163        struct softnet_data     *rps_ipi_next;
3164        unsigned int            cpu;
3165        unsigned int            input_queue_tail;
3166#endif
3167        unsigned int            dropped;
3168        struct sk_buff_head     input_pkt_queue;
3169        struct napi_struct      backlog;
3170
3171};
3172
3173static inline void input_queue_head_incr(struct softnet_data *sd)
3174{
3175#ifdef CONFIG_RPS
3176        sd->input_queue_head++;
3177#endif
3178}
3179
3180static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3181                                              unsigned int *qtail)
3182{
3183#ifdef CONFIG_RPS
3184        *qtail = ++sd->input_queue_tail;
3185#endif
3186}
3187
3188DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3189
3190static inline int dev_recursion_level(void)
3191{
3192        return this_cpu_read(softnet_data.xmit.recursion);
3193}
3194
3195#define XMIT_RECURSION_LIMIT    8
3196static inline bool dev_xmit_recursion(void)
3197{
3198        return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3199                        XMIT_RECURSION_LIMIT);
3200}
3201
3202static inline void dev_xmit_recursion_inc(void)
3203{
3204        __this_cpu_inc(softnet_data.xmit.recursion);
3205}
3206
3207static inline void dev_xmit_recursion_dec(void)
3208{
3209        __this_cpu_dec(softnet_data.xmit.recursion);
3210}
3211
3212void __netif_schedule(struct Qdisc *q);
3213void netif_schedule_queue(struct netdev_queue *txq);
3214
3215static inline void netif_tx_schedule_all(struct net_device *dev)
3216{
3217        unsigned int i;
3218
3219        for (i = 0; i < dev->num_tx_queues; i++)
3220                netif_schedule_queue(netdev_get_tx_queue(dev, i));
3221}
3222
3223static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3224{
3225        clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3226}
3227
3228/**
3229 *      netif_start_queue - allow transmit
3230 *      @dev: network device
3231 *
3232 *      Allow upper layers to call the device hard_start_xmit routine.
3233 */
3234static inline void netif_start_queue(struct net_device *dev)
3235{
3236        netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3237}
3238
3239static inline void netif_tx_start_all_queues(struct net_device *dev)
3240{
3241        unsigned int i;
3242
3243        for (i = 0; i < dev->num_tx_queues; i++) {
3244                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3245                netif_tx_start_queue(txq);
3246        }
3247}
3248
3249void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3250
3251/**
3252 *      netif_wake_queue - restart transmit
3253 *      @dev: network device
3254 *
3255 *      Allow upper layers to call the device hard_start_xmit routine.
3256 *      Used for flow control when transmit resources are available.
3257 */
3258static inline void netif_wake_queue(struct net_device *dev)
3259{
3260        netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3261}
3262
3263static inline void netif_tx_wake_all_queues(struct net_device *dev)
3264{
3265        unsigned int i;
3266
3267        for (i = 0; i < dev->num_tx_queues; i++) {
3268                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3269                netif_tx_wake_queue(txq);
3270        }
3271}
3272
3273static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3274{
3275        set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3276}
3277
3278/**
3279 *      netif_stop_queue - stop transmitted packets
3280 *      @dev: network device
3281 *
3282 *      Stop upper layers calling the device hard_start_xmit routine.
3283 *      Used for flow control when transmit resources are unavailable.
3284 */
3285static inline void netif_stop_queue(struct net_device *dev)
3286{
3287        netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3288}
3289
3290void netif_tx_stop_all_queues(struct net_device *dev);
3291
3292static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3293{
3294        return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3295}
3296
3297/**
3298 *      netif_queue_stopped - test if transmit queue is flowblocked
3299 *      @dev: network device
3300 *
3301 *      Test if transmit queue on device is currently unable to send.
3302 */
3303static inline bool netif_queue_stopped(const struct net_device *dev)
3304{
3305        return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3306}
3307
3308static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3309{
3310        return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3311}
3312
3313static inline bool
3314netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3315{
3316        return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3317}
3318
3319static inline bool
3320netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3321{
3322        return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3323}
3324
3325/**
3326 *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3327 *      @dev_queue: pointer to transmit queue
3328 *
3329 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3330 * to give appropriate hint to the CPU.
3331 */
3332static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3333{
3334#ifdef CONFIG_BQL
3335        prefetchw(&dev_queue->dql.num_queued);
3336#endif
3337}
3338
3339/**
3340 *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3341 *      @dev_queue: pointer to transmit queue
3342 *
3343 * BQL enabled drivers might use this helper in their TX completion path,
3344 * to give appropriate hint to the CPU.
3345 */
3346static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3347{
3348#ifdef CONFIG_BQL
3349        prefetchw(&dev_queue->dql.limit);
3350#endif
3351}
3352
3353static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3354                                        unsigned int bytes)
3355{
3356#ifdef CONFIG_BQL
3357        dql_queued(&dev_queue->dql, bytes);
3358
3359        if (likely(dql_avail(&dev_queue->dql) >= 0))
3360                return;
3361
3362        set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3363
3364        /*
3365         * The XOFF flag must be set before checking the dql_avail below,
3366         * because in netdev_tx_completed_queue we update the dql_completed
3367         * before checking the XOFF flag.
3368         */
3369        smp_mb();
3370
3371        /* check again in case another CPU has just made room avail */
3372        if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3373                clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3374#endif
3375}
3376
3377/* Variant of netdev_tx_sent_queue() for drivers that are aware
3378 * that they should not test BQL status themselves.
3379 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3380 * skb of a batch.
3381 * Returns true if the doorbell must be used to kick the NIC.
3382 */
3383static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3384                                          unsigned int bytes,
3385                                          bool xmit_more)
3386{
3387        if (xmit_more) {
3388#ifdef CONFIG_BQL
3389                dql_queued(&dev_queue->dql, bytes);
3390#endif
3391                return netif_tx_queue_stopped(dev_queue);
3392        }
3393        netdev_tx_sent_queue(dev_queue, bytes);
3394        return true;
3395}
3396
3397/**
3398 *      netdev_sent_queue - report the number of bytes queued to hardware
3399 *      @dev: network device
3400 *      @bytes: number of bytes queued to the hardware device queue
3401 *
3402 *      Report the number of bytes queued for sending/completion to the network
3403 *      device hardware queue. @bytes should be a good approximation and should
3404 *      exactly match netdev_completed_queue() @bytes
3405 */
3406static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3407{
3408        netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3409}
3410
3411static inline bool __netdev_sent_queue(struct net_device *dev,
3412                                       unsigned int bytes,
3413                                       bool xmit_more)
3414{
3415        return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3416                                      xmit_more);
3417}
3418
3419static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3420                                             unsigned int pkts, unsigned int bytes)
3421{
3422#ifdef CONFIG_BQL
3423        if (unlikely(!bytes))
3424                return;
3425
3426        dql_completed(&dev_queue->dql, bytes);
3427
3428        /*
3429         * Without the memory barrier there is a small possiblity that
3430         * netdev_tx_sent_queue will miss the update and cause the queue to
3431         * be stopped forever
3432         */
3433        smp_mb();
3434
3435        if (unlikely(dql_avail(&dev_queue->dql) < 0))
3436                return;
3437
3438        if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3439                netif_schedule_queue(dev_queue);
3440#endif
3441}
3442
3443/**
3444 *      netdev_completed_queue - report bytes and packets completed by device
3445 *      @dev: network device
3446 *      @pkts: actual number of packets sent over the medium
3447 *      @bytes: actual number of bytes sent over the medium
3448 *
3449 *      Report the number of bytes and packets transmitted by the network device
3450 *      hardware queue over the physical medium, @bytes must exactly match the
3451 *      @bytes amount passed to netdev_sent_queue()
3452 */
3453static inline void netdev_completed_queue(struct net_device *dev,
3454                                          unsigned int pkts, unsigned int bytes)
3455{
3456        netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3457}
3458
3459static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3460{
3461#ifdef CONFIG_BQL
3462        clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3463        dql_reset(&q->dql);
3464#endif
3465}
3466
3467/**
3468 *      netdev_reset_queue - reset the packets and bytes count of a network device
3469 *      @dev_queue: network device
3470 *
3471 *      Reset the bytes and packet count of a network device and clear the
3472 *      software flow control OFF bit for this network device
3473 */
3474static inline void netdev_reset_queue(struct net_device *dev_queue)
3475{
3476        netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3477}
3478
3479/**
3480 *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3481 *      @dev: network device
3482 *      @queue_index: given tx queue index
3483 *
3484 *      Returns 0 if given tx queue index >= number of device tx queues,
3485 *      otherwise returns the originally passed tx queue index.
3486 */
3487static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3488{
3489        if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3490                net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3491                                     dev->name, queue_index,
3492                                     dev->real_num_tx_queues);
3493                return 0;
3494        }
3495
3496        return queue_index;
3497}
3498
3499/**
3500 *      netif_running - test if up
3501 *      @dev: network device
3502 *
3503 *      Test if the device has been brought up.
3504 */
3505static inline bool netif_running(const struct net_device *dev)
3506{
3507        return test_bit(__LINK_STATE_START, &dev->state);
3508}
3509
3510/*
3511 * Routines to manage the subqueues on a device.  We only need start,
3512 * stop, and a check if it's stopped.  All other device management is
3513 * done at the overall netdevice level.
3514 * Also test the device if we're multiqueue.
3515 */
3516
3517/**
3518 *      netif_start_subqueue - allow sending packets on subqueue
3519 *      @dev: network device
3520 *      @queue_index: sub queue index
3521 *
3522 * Start individual transmit queue of a device with multiple transmit queues.
3523 */
3524static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3525{
3526        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3527
3528        netif_tx_start_queue(txq);
3529}
3530
3531/**
3532 *      netif_stop_subqueue - stop sending packets on subqueue
3533 *      @dev: network device
3534 *      @queue_index: sub queue index
3535 *
3536 * Stop individual transmit queue of a device with multiple transmit queues.
3537 */
3538static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3539{
3540        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3541        netif_tx_stop_queue(txq);
3542}
3543
3544/**
3545 *      netif_subqueue_stopped - test status of subqueue
3546 *      @dev: network device
3547 *      @queue_index: sub queue index
3548 *
3549 * Check individual transmit queue of a device with multiple transmit queues.
3550 */
3551static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3552                                            u16 queue_index)
3553{
3554        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3555
3556        return netif_tx_queue_stopped(txq);
3557}
3558
3559static inline bool netif_subqueue_stopped(const struct net_device *dev,
3560                                          struct sk_buff *skb)
3561{
3562        return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3563}
3564
3565/**
3566 *      netif_wake_subqueue - allow sending packets on subqueue
3567 *      @dev: network device
3568 *      @queue_index: sub queue index
3569 *
3570 * Resume individual transmit queue of a device with multiple transmit queues.
3571 */
3572static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3573{
3574        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3575
3576        netif_tx_wake_queue(txq);
3577}
3578
3579#ifdef CONFIG_XPS
3580int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3581                        u16 index);
3582int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3583                          u16 index, bool is_rxqs_map);
3584
3585/**
3586 *      netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3587 *      @j: CPU/Rx queue index
3588 *      @mask: bitmask of all cpus/rx queues
3589 *      @nr_bits: number of bits in the bitmask
3590 *
3591 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3592 */
3593static inline bool netif_attr_test_mask(unsigned long j,
3594                                        const unsigned long *mask,
3595                                        unsigned int nr_bits)
3596{
3597        cpu_max_bits_warn(j, nr_bits);
3598        return test_bit(j, mask);
3599}
3600
3601/**
3602 *      netif_attr_test_online - Test for online CPU/Rx queue
3603 *      @j: CPU/Rx queue index
3604 *      @online_mask: bitmask for CPUs/Rx queues that are online
3605 *      @nr_bits: number of bits in the bitmask
3606 *
3607 * Returns true if a CPU/Rx queue is online.
3608 */
3609static inline bool netif_attr_test_online(unsigned long j,
3610                                          const unsigned long *online_mask,
3611                                          unsigned int nr_bits)
3612{
3613        cpu_max_bits_warn(j, nr_bits);
3614
3615        if (online_mask)
3616                return test_bit(j, online_mask);
3617
3618        return (j < nr_bits);
3619}
3620
3621/**
3622 *      netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3623 *      @n: CPU/Rx queue index
3624 *      @srcp: the cpumask/Rx queue mask pointer
3625 *      @nr_bits: number of bits in the bitmask
3626 *
3627 * Returns >= nr_bits if no further CPUs/Rx queues set.
3628 */
3629static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3630                                               unsigned int nr_bits)
3631{
3632        /* -1 is a legal arg here. */
3633        if (n != -1)
3634                cpu_max_bits_warn(n, nr_bits);
3635
3636        if (srcp)
3637                return find_next_bit(srcp, nr_bits, n + 1);
3638
3639        return n + 1;
3640}
3641
3642/**
3643 *      netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3644 *      @n: CPU/Rx queue index
3645 *      @src1p: the first CPUs/Rx queues mask pointer
3646 *      @src2p: the second CPUs/Rx queues mask pointer
3647 *      @nr_bits: number of bits in the bitmask
3648 *
3649 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3650 */
3651static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3652                                          const unsigned long *src2p,
3653                                          unsigned int nr_bits)
3654{
3655        /* -1 is a legal arg here. */
3656        if (n != -1)
3657                cpu_max_bits_warn(n, nr_bits);
3658
3659        if (src1p && src2p)
3660                return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3661        else if (src1p)
3662                return find_next_bit(src1p, nr_bits, n + 1);
3663        else if (src2p)
3664                return find_next_bit(src2p, nr_bits, n + 1);
3665
3666        return n + 1;
3667}
3668#else
3669static inline int netif_set_xps_queue(struct net_device *dev,
3670                                      const struct cpumask *mask,
3671                                      u16 index)
3672{
3673        return 0;
3674}
3675
3676static inline int __netif_set_xps_queue(struct net_device *dev,
3677                                        const unsigned long *mask,
3678                                        u16 index, bool is_rxqs_map)
3679{
3680        return 0;
3681}
3682#endif
3683
3684/**
3685 *      netif_is_multiqueue - test if device has multiple transmit queues
3686 *      @dev: network device
3687 *
3688 * Check if device has multiple transmit queues
3689 */
3690static inline bool netif_is_multiqueue(const struct net_device *dev)
3691{
3692        return dev->num_tx_queues > 1;
3693}
3694
3695int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3696
3697#ifdef CONFIG_SYSFS
3698int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3699#else
3700static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3701                                                unsigned int rxqs)
3702{
3703        dev->real_num_rx_queues = rxqs;
3704        return 0;
3705}
3706#endif
3707
3708static inline struct netdev_rx_queue *
3709__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3710{
3711        return dev->_rx + rxq;
3712}
3713
3714#ifdef CONFIG_SYSFS
3715static inline unsigned int get_netdev_rx_queue_index(
3716                struct netdev_rx_queue *queue)
3717{
3718        struct net_device *dev = queue->dev;
3719        int index = queue - dev->_rx;
3720
3721        BUG_ON(index >= dev->num_rx_queues);
3722        return index;
3723}
3724#endif
3725
3726#define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3727int netif_get_num_default_rss_queues(void);
3728
3729enum skb_free_reason {
3730        SKB_REASON_CONSUMED,
3731        SKB_REASON_DROPPED,
3732};
3733
3734void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3735void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3736
3737/*
3738 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3739 * interrupt context or with hardware interrupts being disabled.
3740 * (in_irq() || irqs_disabled())
3741 *
3742 * We provide four helpers that can be used in following contexts :
3743 *
3744 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3745 *  replacing kfree_skb(skb)
3746 *
3747 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3748 *  Typically used in place of consume_skb(skb) in TX completion path
3749 *
3750 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3751 *  replacing kfree_skb(skb)
3752 *
3753 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3754 *  and consumed a packet. Used in place of consume_skb(skb)
3755 */
3756static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3757{
3758        __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3759}
3760
3761static inline void dev_consume_skb_irq(struct sk_buff *skb)
3762{
3763        __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3764}
3765
3766static inline void dev_kfree_skb_any(struct sk_buff *skb)
3767{
3768        __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3769}
3770
3771static inline void dev_consume_skb_any(struct sk_buff *skb)
3772{
3773        __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3774}
3775
3776void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3777int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3778int netif_rx(struct sk_buff *skb);
3779int netif_rx_ni(struct sk_buff *skb);
3780int netif_receive_skb(struct sk_buff *skb);
3781int netif_receive_skb_core(struct sk_buff *skb);
3782void netif_receive_skb_list(struct list_head *head);
3783gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3784void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3785struct sk_buff *napi_get_frags(struct napi_struct *napi);
3786gro_result_t napi_gro_frags(struct napi_struct *napi);
3787struct packet_offload *gro_find_receive_by_type(__be16 type);
3788struct packet_offload *gro_find_complete_by_type(__be16 type);
3789
3790static inline void napi_free_frags(struct napi_struct *napi)
3791{
3792        kfree_skb(napi->skb);
3793        napi->skb = NULL;
3794}
3795
3796bool netdev_is_rx_handler_busy(struct net_device *dev);
3797int netdev_rx_handler_register(struct net_device *dev,
3798                               rx_handler_func_t *rx_handler,
3799                               void *rx_handler_data);
3800void netdev_rx_handler_unregister(struct net_device *dev);
3801
3802bool dev_valid_name(const char *name);
3803int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3804                bool *need_copyout);
3805int dev_ifconf(struct net *net, struct ifconf *, int);
3806int dev_ethtool(struct net *net, struct ifreq *);
3807unsigned int dev_get_flags(const struct net_device *);
3808int __dev_change_flags(struct net_device *dev, unsigned int flags,
3809                       struct netlink_ext_ack *extack);
3810int dev_change_flags(struct net_device *dev, unsigned int flags,
3811                     struct netlink_ext_ack *extack);
3812void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3813                        unsigned int gchanges);
3814int dev_change_name(struct net_device *, const char *);
3815int dev_set_alias(struct net_device *, const char *, size_t);
3816int dev_get_alias(const struct net_device *, char *, size_t);
3817int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3818int __dev_set_mtu(struct net_device *, int);
3819int dev_validate_mtu(struct net_device *dev, int mtu,
3820                     struct netlink_ext_ack *extack);
3821int dev_set_mtu_ext(struct net_device *dev, int mtu,
3822                    struct netlink_ext_ack *extack);
3823int dev_set_mtu(struct net_device *, int);
3824int dev_change_tx_queue_len(struct net_device *, unsigned long);
3825void dev_set_group(struct net_device *, int);
3826int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3827                              struct netlink_ext_ack *extack);
3828int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3829                        struct netlink_ext_ack *extack);
3830int dev_change_carrier(struct net_device *, bool new_carrier);
3831int dev_get_phys_port_id(struct net_device *dev,
3832                         struct netdev_phys_item_id *ppid);
3833int dev_get_phys_port_name(struct net_device *dev,
3834                           char *name, size_t len);
3835int dev_get_port_parent_id(struct net_device *dev,
3836                           struct netdev_phys_item_id *ppid, bool recurse);
3837bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3838int dev_change_proto_down(struct net_device *dev, bool proto_down);
3839int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3840void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3841                                  u32 value);
3842struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3843struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3844                                    struct netdev_queue *txq, int *ret);
3845
3846typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3847int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3848                      int fd, int expected_fd, u32 flags);
3849int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3850u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3851
3852int xdp_umem_query(struct net_device *dev, u16 queue_id);
3853
3854int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3855int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3856bool is_skb_forwardable(const struct net_device *dev,
3857                        const struct sk_buff *skb);
3858
3859static __always_inline int ____dev_forward_skb(struct net_device *dev,
3860                                               struct sk_buff *skb)
3861{
3862        if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3863            unlikely(!is_skb_forwardable(dev, skb))) {
3864                atomic_long_inc(&dev->rx_dropped);
3865                kfree_skb(skb);
3866                return NET_RX_DROP;
3867        }
3868
3869        skb_scrub_packet(skb, true);
3870        skb->priority = 0;
3871        return 0;
3872}
3873
3874bool dev_nit_active(struct net_device *dev);
3875void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3876
3877extern int              netdev_budget;
3878extern unsigned int     netdev_budget_usecs;
3879
3880/* Called by rtnetlink.c:rtnl_unlock() */
3881void netdev_run_todo(void);
3882
3883/**
3884 *      dev_put - release reference to device
3885 *      @dev: network device
3886 *
3887 * Release reference to device to allow it to be freed.
3888 */
3889static inline void dev_put(struct net_device *dev)
3890{
3891        this_cpu_dec(*dev->pcpu_refcnt);
3892}
3893
3894/**
3895 *      dev_hold - get reference to device
3896 *      @dev: network device
3897 *
3898 * Hold reference to device to keep it from being freed.
3899 */
3900static inline void dev_hold(struct net_device *dev)
3901{
3902        this_cpu_inc(*dev->pcpu_refcnt);
3903}
3904
3905/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3906 * and _off may be called from IRQ context, but it is caller
3907 * who is responsible for serialization of these calls.
3908 *
3909 * The name carrier is inappropriate, these functions should really be
3910 * called netif_lowerlayer_*() because they represent the state of any
3911 * kind of lower layer not just hardware media.
3912 */
3913
3914void linkwatch_init_dev(struct net_device *dev);
3915void linkwatch_fire_event(struct net_device *dev);
3916void linkwatch_forget_dev(struct net_device *dev);
3917
3918/**
3919 *      netif_carrier_ok - test if carrier present
3920 *      @dev: network device
3921 *
3922 * Check if carrier is present on device
3923 */
3924static inline bool netif_carrier_ok(const struct net_device *dev)
3925{
3926        return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3927}
3928
3929unsigned long dev_trans_start(struct net_device *dev);
3930
3931void __netdev_watchdog_up(struct net_device *dev);
3932
3933void netif_carrier_on(struct net_device *dev);
3934
3935void netif_carrier_off(struct net_device *dev);
3936
3937/**
3938 *      netif_dormant_on - mark device as dormant.
3939 *      @dev: network device
3940 *
3941 * Mark device as dormant (as per RFC2863).
3942 *
3943 * The dormant state indicates that the relevant interface is not
3944 * actually in a condition to pass packets (i.e., it is not 'up') but is
3945 * in a "pending" state, waiting for some external event.  For "on-
3946 * demand" interfaces, this new state identifies the situation where the
3947 * interface is waiting for events to place it in the up state.
3948 */
3949static inline void netif_dormant_on(struct net_device *dev)
3950{
3951        if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3952                linkwatch_fire_event(dev);
3953}
3954
3955/**
3956 *      netif_dormant_off - set device as not dormant.
3957 *      @dev: network device
3958 *
3959 * Device is not in dormant state.
3960 */
3961static inline void netif_dormant_off(struct net_device *dev)
3962{
3963        if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3964                linkwatch_fire_event(dev);
3965}
3966
3967/**
3968 *      netif_dormant - test if device is dormant
3969 *      @dev: network device
3970 *
3971 * Check if device is dormant.
3972 */
3973static inline bool netif_dormant(const struct net_device *dev)
3974{
3975        return test_bit(__LINK_STATE_DORMANT, &dev->state);
3976}
3977
3978
3979/**
3980 *      netif_testing_on - mark device as under test.
3981 *      @dev: network device
3982 *
3983 * Mark device as under test (as per RFC2863).
3984 *
3985 * The testing state indicates that some test(s) must be performed on
3986 * the interface. After completion, of the test, the interface state
3987 * will change to up, dormant, or down, as appropriate.
3988 */
3989static inline void netif_testing_on(struct net_device *dev)
3990{
3991        if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3992                linkwatch_fire_event(dev);
3993}
3994
3995/**
3996 *      netif_testing_off - set device as not under test.
3997 *      @dev: network device
3998 *
3999 * Device is not in testing state.
4000 */
4001static inline void netif_testing_off(struct net_device *dev)
4002{
4003        if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4004                linkwatch_fire_event(dev);
4005}
4006
4007/**
4008 *      netif_testing - test if device is under test
4009 *      @dev: network device
4010 *
4011 * Check if device is under test
4012 */
4013static inline bool netif_testing(const struct net_device *dev)
4014{
4015        return test_bit(__LINK_STATE_TESTING, &dev->state);
4016}
4017
4018
4019/**
4020 *      netif_oper_up - test if device is operational
4021 *      @dev: network device
4022 *
4023 * Check if carrier is operational
4024 */
4025static inline bool netif_oper_up(const struct net_device *dev)
4026{
4027        return (dev->operstate == IF_OPER_UP ||
4028                dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4029}
4030
4031/**
4032 *      netif_device_present - is device available or removed
4033 *      @dev: network device
4034 *
4035 * Check if device has not been removed from system.
4036 */
4037static inline bool netif_device_present(struct net_device *dev)
4038{
4039        return test_bit(__LINK_STATE_PRESENT, &dev->state);
4040}
4041
4042void netif_device_detach(struct net_device *dev);
4043
4044void netif_device_attach(struct net_device *dev);
4045
4046/*
4047 * Network interface message level settings
4048 */
4049
4050enum {
4051        NETIF_MSG_DRV_BIT,
4052        NETIF_MSG_PROBE_BIT,
4053        NETIF_MSG_LINK_BIT,
4054        NETIF_MSG_TIMER_BIT,
4055        NETIF_MSG_IFDOWN_BIT,
4056        NETIF_MSG_IFUP_BIT,
4057        NETIF_MSG_RX_ERR_BIT,
4058        NETIF_MSG_TX_ERR_BIT,
4059        NETIF_MSG_TX_QUEUED_BIT,
4060        NETIF_MSG_INTR_BIT,
4061        NETIF_MSG_TX_DONE_BIT,
4062        NETIF_MSG_RX_STATUS_BIT,
4063        NETIF_MSG_PKTDATA_BIT,
4064        NETIF_MSG_HW_BIT,
4065        NETIF_MSG_WOL_BIT,
4066
4067        /* When you add a new bit above, update netif_msg_class_names array
4068         * in net/ethtool/common.c
4069         */
4070        NETIF_MSG_CLASS_COUNT,
4071};
4072/* Both ethtool_ops interface and internal driver implementation use u32 */
4073static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4074
4075#define __NETIF_MSG_BIT(bit)    ((u32)1 << (bit))
4076#define __NETIF_MSG(name)       __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4077
4078#define NETIF_MSG_DRV           __NETIF_MSG(DRV)
4079#define NETIF_MSG_PROBE         __NETIF_MSG(PROBE)
4080#define NETIF_MSG_LINK          __NETIF_MSG(LINK)
4081#define NETIF_MSG_TIMER         __NETIF_MSG(TIMER)
4082#define NETIF_MSG_IFDOWN        __NETIF_MSG(IFDOWN)
4083#define NETIF_MSG_IFUP          __NETIF_MSG(IFUP)
4084#define NETIF_MSG_RX_ERR        __NETIF_MSG(RX_ERR)
4085#define NETIF_MSG_TX_ERR        __NETIF_MSG(TX_ERR)
4086#define NETIF_MSG_TX_QUEUED     __NETIF_MSG(TX_QUEUED)
4087#define NETIF_MSG_INTR          __NETIF_MSG(INTR)
4088#define NETIF_MSG_TX_DONE       __NETIF_MSG(TX_DONE)
4089#define NETIF_MSG_RX_STATUS     __NETIF_MSG(RX_STATUS)
4090#define NETIF_MSG_PKTDATA       __NETIF_MSG(PKTDATA)
4091#define NETIF_MSG_HW            __NETIF_MSG(HW)
4092#define NETIF_MSG_WOL           __NETIF_MSG(WOL)
4093
4094#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
4095#define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
4096#define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
4097#define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
4098#define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
4099#define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
4100#define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
4101#define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
4102#define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4103#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
4104#define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
4105#define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4106#define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
4107#define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
4108#define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
4109
4110static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4111{
4112        /* use default */
4113        if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4114                return default_msg_enable_bits;
4115        if (debug_value == 0)   /* no output */
4116                return 0;
4117        /* set low N bits */
4118        return (1U << debug_value) - 1;
4119}
4120
4121static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4122{
4123        spin_lock(&txq->_xmit_lock);
4124        txq->xmit_lock_owner = cpu;
4125}
4126
4127static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4128{
4129        __acquire(&txq->_xmit_lock);
4130        return true;
4131}
4132
4133static inline void __netif_tx_release(struct netdev_queue *txq)
4134{
4135        __release(&txq->_xmit_lock);
4136}
4137
4138static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4139{
4140        spin_lock_bh(&txq->_xmit_lock);
4141        txq->xmit_lock_owner = smp_processor_id();
4142}
4143
4144static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4145{
4146        bool ok = spin_trylock(&txq->_xmit_lock);
4147        if (likely(ok))
4148                txq->xmit_lock_owner = smp_processor_id();
4149        return ok;
4150}
4151
4152static inline void __netif_tx_unlock(struct netdev_queue *txq)
4153{
4154        txq->xmit_lock_owner = -1;
4155        spin_unlock(&txq->_xmit_lock);
4156}
4157
4158static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4159{
4160        txq->xmit_lock_owner = -1;
4161        spin_unlock_bh(&txq->_xmit_lock);
4162}
4163
4164static inline void txq_trans_update(struct netdev_queue *txq)
4165{
4166        if (txq->xmit_lock_owner != -1)
4167                txq->trans_start = jiffies;
4168}
4169
4170/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4171static inline void netif_trans_update(struct net_device *dev)
4172{
4173        struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4174
4175        if (txq->trans_start != jiffies)
4176                txq->trans_start = jiffies;
4177}
4178
4179/**
4180 *      netif_tx_lock - grab network device transmit lock
4181 *      @dev: network device
4182 *
4183 * Get network device transmit lock
4184 */
4185static inline void netif_tx_lock(struct net_device *dev)
4186{
4187        unsigned int i;
4188        int cpu;
4189
4190        spin_lock(&dev->tx_global_lock);
4191        cpu = smp_processor_id();
4192        for (i = 0; i < dev->num_tx_queues; i++) {
4193                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4194
4195                /* We are the only thread of execution doing a
4196                 * freeze, but we have to grab the _xmit_lock in
4197                 * order to synchronize with threads which are in
4198                 * the ->hard_start_xmit() handler and already
4199                 * checked the frozen bit.
4200                 */
4201                __netif_tx_lock(txq, cpu);
4202                set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4203                __netif_tx_unlock(txq);
4204        }
4205}
4206
4207static inline void netif_tx_lock_bh(struct net_device *dev)
4208{
4209        local_bh_disable();
4210        netif_tx_lock(dev);
4211}
4212
4213static inline void netif_tx_unlock(struct net_device *dev)
4214{
4215        unsigned int i;
4216
4217        for (i = 0; i < dev->num_tx_queues; i++) {
4218                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4219
4220                /* No need to grab the _xmit_lock here.  If the
4221                 * queue is not stopped for another reason, we
4222                 * force a schedule.
4223                 */
4224                clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4225                netif_schedule_queue(txq);
4226        }
4227        spin_unlock(&dev->tx_global_lock);
4228}
4229
4230static inline void netif_tx_unlock_bh(struct net_device *dev)
4231{
4232        netif_tx_unlock(dev);
4233        local_bh_enable();
4234}
4235
4236#define HARD_TX_LOCK(dev, txq, cpu) {                   \
4237        if ((dev->features & NETIF_F_LLTX) == 0) {      \
4238                __netif_tx_lock(txq, cpu);              \
4239        } else {                                        \
4240                __netif_tx_acquire(txq);                \
4241        }                                               \
4242}
4243
4244#define HARD_TX_TRYLOCK(dev, txq)                       \
4245        (((dev->features & NETIF_F_LLTX) == 0) ?        \
4246                __netif_tx_trylock(txq) :               \
4247                __netif_tx_acquire(txq))
4248
4249#define HARD_TX_UNLOCK(dev, txq) {                      \
4250        if ((dev->features & NETIF_F_LLTX) == 0) {      \
4251                __netif_tx_unlock(txq);                 \
4252        } else {                                        \
4253                __netif_tx_release(txq);                \
4254        }                                               \
4255}
4256
4257static inline void netif_tx_disable(struct net_device *dev)
4258{
4259        unsigned int i;
4260        int cpu;
4261
4262        local_bh_disable();
4263        cpu = smp_processor_id();
4264        for (i = 0; i < dev->num_tx_queues; i++) {
4265                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4266
4267                __netif_tx_lock(txq, cpu);
4268                netif_tx_stop_queue(txq);
4269                __netif_tx_unlock(txq);
4270        }
4271        local_bh_enable();
4272}
4273
4274static inline void netif_addr_lock(struct net_device *dev)
4275{
4276        unsigned char nest_level = 0;
4277
4278#ifdef CONFIG_LOCKDEP
4279        nest_level = dev->nested_level;
4280#endif
4281        spin_lock_nested(&dev->addr_list_lock, nest_level);
4282}
4283
4284static inline void netif_addr_lock_bh(struct net_device *dev)
4285{
4286        unsigned char nest_level = 0;
4287
4288#ifdef CONFIG_LOCKDEP
4289        nest_level = dev->nested_level;
4290#endif
4291        local_bh_disable();
4292        spin_lock_nested(&dev->addr_list_lock, nest_level);
4293}
4294
4295static inline void netif_addr_unlock(struct net_device *dev)
4296{
4297        spin_unlock(&dev->addr_list_lock);
4298}
4299
4300static inline void netif_addr_unlock_bh(struct net_device *dev)
4301{
4302        spin_unlock_bh(&dev->addr_list_lock);
4303}
4304
4305/*
4306 * dev_addrs walker. Should be used only for read access. Call with
4307 * rcu_read_lock held.
4308 */
4309#define for_each_dev_addr(dev, ha) \
4310                list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4311
4312/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4313
4314void ether_setup(struct net_device *dev);
4315
4316/* Support for loadable net-drivers */
4317struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4318                                    unsigned char name_assign_type,
4319                                    void (*setup)(struct net_device *),
4320                                    unsigned int txqs, unsigned int rxqs);
4321#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4322        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4323
4324#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4325        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4326                         count)
4327
4328int register_netdev(struct net_device *dev);
4329void unregister_netdev(struct net_device *dev);
4330
4331int devm_register_netdev(struct device *dev, struct net_device *ndev);
4332
4333/* General hardware address lists handling functions */
4334int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4335                   struct netdev_hw_addr_list *from_list, int addr_len);
4336void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4337                      struct netdev_hw_addr_list *from_list, int addr_len);
4338int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4339                       struct net_device *dev,
4340                       int (*sync)(struct net_device *, const unsigned char *),
4341                       int (*unsync)(struct net_device *,
4342                                     const unsigned char *));
4343int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4344                           struct net_device *dev,
4345                           int (*sync)(struct net_device *,
4346                                       const unsigned char *, int),
4347                           int (*unsync)(struct net_device *,
4348                                         const unsigned char *, int));
4349void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4350                              struct net_device *dev,
4351                              int (*unsync)(struct net_device *,
4352                                            const unsigned char *, int));
4353void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4354                          struct net_device *dev,
4355                          int (*unsync)(struct net_device *,
4356                                        const unsigned char *));
4357void __hw_addr_init(struct netdev_hw_addr_list *list);
4358
4359/* Functions used for device addresses handling */
4360int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4361                 unsigned char addr_type);
4362int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4363                 unsigned char addr_type);
4364void dev_addr_flush(struct net_device *dev);
4365int dev_addr_init(struct net_device *dev);
4366
4367/* Functions used for unicast addresses handling */
4368int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4369int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4370int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4371int dev_uc_sync(struct net_device *to, struct net_device *from);
4372int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4373void dev_uc_unsync(struct net_device *to, struct net_device *from);
4374void dev_uc_flush(struct net_device *dev);
4375void dev_uc_init(struct net_device *dev);
4376
4377/**
4378 *  __dev_uc_sync - Synchonize device's unicast list
4379 *  @dev:  device to sync
4380 *  @sync: function to call if address should be added
4381 *  @unsync: function to call if address should be removed
4382 *
4383 *  Add newly added addresses to the interface, and release
4384 *  addresses that have been deleted.
4385 */
4386static inline int __dev_uc_sync(struct net_device *dev,
4387                                int (*sync)(struct net_device *,
4388                                            const unsigned char *),
4389                                int (*unsync)(struct net_device *,
4390                                              const unsigned char *))
4391{
4392        return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4393}
4394
4395/**
4396 *  __dev_uc_unsync - Remove synchronized addresses from device
4397 *  @dev:  device to sync
4398 *  @unsync: function to call if address should be removed
4399 *
4400 *  Remove all addresses that were added to the device by dev_uc_sync().
4401 */
4402static inline void __dev_uc_unsync(struct net_device *dev,
4403                                   int (*unsync)(struct net_device *,
4404                                                 const unsigned char *))
4405{
4406        __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4407}
4408
4409/* Functions used for multicast addresses handling */
4410int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4411int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4412int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4413int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4414int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4415int dev_mc_sync(struct net_device *to, struct net_device *from);
4416int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4417void dev_mc_unsync(struct net_device *to, struct net_device *from);
4418void dev_mc_flush(struct net_device *dev);
4419void dev_mc_init(struct net_device *dev);
4420
4421/**
4422 *  __dev_mc_sync - Synchonize device's multicast list
4423 *  @dev:  device to sync
4424 *  @sync: function to call if address should be added
4425 *  @unsync: function to call if address should be removed
4426 *
4427 *  Add newly added addresses to the interface, and release
4428 *  addresses that have been deleted.
4429 */
4430static inline int __dev_mc_sync(struct net_device *dev,
4431                                int (*sync)(struct net_device *,
4432                                            const unsigned char *),
4433                                int (*unsync)(struct net_device *,
4434                                              const unsigned char *))
4435{
4436        return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4437}
4438
4439/**
4440 *  __dev_mc_unsync - Remove synchronized addresses from device
4441 *  @dev:  device to sync
4442 *  @unsync: function to call if address should be removed
4443 *
4444 *  Remove all addresses that were added to the device by dev_mc_sync().
4445 */
4446static inline void __dev_mc_unsync(struct net_device *dev,
4447                                   int (*unsync)(struct net_device *,
4448                                                 const unsigned char *))
4449{
4450        __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4451}
4452
4453/* Functions used for secondary unicast and multicast support */
4454void dev_set_rx_mode(struct net_device *dev);
4455void __dev_set_rx_mode(struct net_device *dev);
4456int dev_set_promiscuity(struct net_device *dev, int inc);
4457int dev_set_allmulti(struct net_device *dev, int inc);
4458void netdev_state_change(struct net_device *dev);
4459void netdev_notify_peers(struct net_device *dev);
4460void netdev_features_change(struct net_device *dev);
4461/* Load a device via the kmod */
4462void dev_load(struct net *net, const char *name);
4463struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4464                                        struct rtnl_link_stats64 *storage);
4465void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4466                             const struct net_device_stats *netdev_stats);
4467
4468extern int              netdev_max_backlog;
4469extern int              netdev_tstamp_prequeue;
4470extern int              weight_p;
4471extern int              dev_weight_rx_bias;
4472extern int              dev_weight_tx_bias;
4473extern int              dev_rx_weight;
4474extern int              dev_tx_weight;
4475extern int              gro_normal_batch;
4476
4477enum {
4478        NESTED_SYNC_IMM_BIT,
4479        NESTED_SYNC_TODO_BIT,
4480};
4481
4482#define __NESTED_SYNC_BIT(bit)  ((u32)1 << (bit))
4483#define __NESTED_SYNC(name)     __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4484
4485#define NESTED_SYNC_IMM         __NESTED_SYNC(IMM)
4486#define NESTED_SYNC_TODO        __NESTED_SYNC(TODO)
4487
4488struct netdev_nested_priv {
4489        unsigned char flags;
4490        void *data;
4491};
4492
4493bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4494struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4495                                                     struct list_head **iter);
4496struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4497                                                     struct list_head **iter);
4498
4499#ifdef CONFIG_LOCKDEP
4500static LIST_HEAD(net_unlink_list);
4501
4502static inline void net_unlink_todo(struct net_device *dev)
4503{
4504        if (list_empty(&dev->unlink_list))
4505                list_add_tail(&dev->unlink_list, &net_unlink_list);
4506}
4507#endif
4508
4509/* iterate through upper list, must be called under RCU read lock */
4510#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4511        for (iter = &(dev)->adj_list.upper, \
4512             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4513             updev; \
4514             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4515
4516int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4517                                  int (*fn)(struct net_device *upper_dev,
4518                                            struct netdev_nested_priv *priv),
4519                                  struct netdev_nested_priv *priv);
4520
4521bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4522                                  struct net_device *upper_dev);
4523
4524bool netdev_has_any_upper_dev(struct net_device *dev);
4525
4526void *netdev_lower_get_next_private(struct net_device *dev,
4527                                    struct list_head **iter);
4528void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4529                                        struct list_head **iter);
4530
4531#define netdev_for_each_lower_private(dev, priv, iter) \
4532        for (iter = (dev)->adj_list.lower.next, \
4533             priv = netdev_lower_get_next_private(dev, &(iter)); \
4534             priv; \
4535             priv = netdev_lower_get_next_private(dev, &(iter)))
4536
4537#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4538        for (iter = &(dev)->adj_list.lower, \
4539             priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4540             priv; \
4541             priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4542
4543void *netdev_lower_get_next(struct net_device *dev,
4544                                struct list_head **iter);
4545
4546#define netdev_for_each_lower_dev(dev, ldev, iter) \
4547        for (iter = (dev)->adj_list.lower.next, \
4548             ldev = netdev_lower_get_next(dev, &(iter)); \
4549             ldev; \
4550             ldev = netdev_lower_get_next(dev, &(iter)))
4551
4552struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4553                                             struct list_head **iter);
4554int netdev_walk_all_lower_dev(struct net_device *dev,
4555                              int (*fn)(struct net_device *lower_dev,
4556                                        struct netdev_nested_priv *priv),
4557                              struct netdev_nested_priv *priv);
4558int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4559                                  int (*fn)(struct net_device *lower_dev,
4560                                            struct netdev_nested_priv *priv),
4561                                  struct netdev_nested_priv *priv);
4562
4563void *netdev_adjacent_get_private(struct list_head *adj_list);
4564void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4565struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4566struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4567int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4568                          struct netlink_ext_ack *extack);
4569int netdev_master_upper_dev_link(struct net_device *dev,
4570                                 struct net_device *upper_dev,
4571                                 void *upper_priv, void *upper_info,
4572                                 struct netlink_ext_ack *extack);
4573void netdev_upper_dev_unlink(struct net_device *dev,
4574                             struct net_device *upper_dev);
4575int netdev_adjacent_change_prepare(struct net_device *old_dev,
4576                                   struct net_device *new_dev,
4577                                   struct net_device *dev,
4578                                   struct netlink_ext_ack *extack);
4579void netdev_adjacent_change_commit(struct net_device *old_dev,
4580                                   struct net_device *new_dev,
4581                                   struct net_device *dev);
4582void netdev_adjacent_change_abort(struct net_device *old_dev,
4583                                  struct net_device *new_dev,
4584                                  struct net_device *dev);
4585void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4586void *netdev_lower_dev_get_private(struct net_device *dev,
4587                                   struct net_device *lower_dev);
4588void netdev_lower_state_changed(struct net_device *lower_dev,
4589                                void *lower_state_info);
4590
4591/* RSS keys are 40 or 52 bytes long */
4592#define NETDEV_RSS_KEY_LEN 52
4593extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4594void netdev_rss_key_fill(void *buffer, size_t len);
4595
4596int skb_checksum_help(struct sk_buff *skb);
4597int skb_crc32c_csum_help(struct sk_buff *skb);
4598int skb_csum_hwoffload_help(struct sk_buff *skb,
4599                            const netdev_features_t features);
4600
4601struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4602                                  netdev_features_t features, bool tx_path);
4603struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4604                                    netdev_features_t features);
4605
4606struct netdev_bonding_info {
4607        ifslave slave;
4608        ifbond  master;
4609};
4610
4611struct netdev_notifier_bonding_info {
4612        struct netdev_notifier_info info; /* must be first */
4613        struct netdev_bonding_info  bonding_info;
4614};
4615
4616void netdev_bonding_info_change(struct net_device *dev,
4617                                struct netdev_bonding_info *bonding_info);
4618
4619#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4620void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4621#else
4622static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4623                                  const void *data)
4624{
4625}
4626#endif
4627
4628static inline
4629struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4630{
4631        return __skb_gso_segment(skb, features, true);
4632}
4633__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4634
4635static inline bool can_checksum_protocol(netdev_features_t features,
4636                                         __be16 protocol)
4637{
4638        if (protocol == htons(ETH_P_FCOE))
4639                return !!(features & NETIF_F_FCOE_CRC);
4640
4641        /* Assume this is an IP checksum (not SCTP CRC) */
4642
4643        if (features & NETIF_F_HW_CSUM) {
4644                /* Can checksum everything */
4645                return true;
4646        }
4647
4648        switch (protocol) {
4649        case htons(ETH_P_IP):
4650                return !!(features & NETIF_F_IP_CSUM);
4651        case htons(ETH_P_IPV6):
4652                return !!(features & NETIF_F_IPV6_CSUM);
4653        default:
4654                return false;
4655        }
4656}
4657
4658#ifdef CONFIG_BUG
4659void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4660#else
4661static inline void netdev_rx_csum_fault(struct net_device *dev,
4662                                        struct sk_buff *skb)
4663{
4664}
4665#endif
4666/* rx skb timestamps */
4667void net_enable_timestamp(void);
4668void net_disable_timestamp(void);
4669
4670#ifdef CONFIG_PROC_FS
4671int __init dev_proc_init(void);
4672#else
4673#define dev_proc_init() 0
4674#endif
4675
4676static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4677                                              struct sk_buff *skb, struct net_device *dev,
4678                                              bool more)
4679{
4680        __this_cpu_write(softnet_data.xmit.more, more);
4681        return ops->ndo_start_xmit(skb, dev);
4682}
4683
4684static inline bool netdev_xmit_more(void)
4685{
4686        return __this_cpu_read(softnet_data.xmit.more);
4687}
4688
4689static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4690                                            struct netdev_queue *txq, bool more)
4691{
4692        const struct net_device_ops *ops = dev->netdev_ops;
4693        netdev_tx_t rc;
4694
4695        rc = __netdev_start_xmit(ops, skb, dev, more);
4696        if (rc == NETDEV_TX_OK)
4697                txq_trans_update(txq);
4698
4699        return rc;
4700}
4701
4702int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4703                                const void *ns);
4704void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4705                                 const void *ns);
4706
4707static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4708{
4709        return netdev_class_create_file_ns(class_attr, NULL);
4710}
4711
4712static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4713{
4714        netdev_class_remove_file_ns(class_attr, NULL);
4715}
4716
4717extern const struct kobj_ns_type_operations net_ns_type_operations;
4718
4719const char *netdev_drivername(const struct net_device *dev);
4720
4721void linkwatch_run_queue(void);
4722
4723static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4724                                                          netdev_features_t f2)
4725{
4726        if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4727                if (f1 & NETIF_F_HW_CSUM)
4728                        f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4729                else
4730                        f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4731        }
4732
4733        return f1 & f2;
4734}
4735
4736static inline netdev_features_t netdev_get_wanted_features(
4737        struct net_device *dev)
4738{
4739        return (dev->features & ~dev->hw_features) | dev->wanted_features;
4740}
4741netdev_features_t netdev_increment_features(netdev_features_t all,
4742        netdev_features_t one, netdev_features_t mask);
4743
4744/* Allow TSO being used on stacked device :
4745 * Performing the GSO segmentation before last device
4746 * is a performance improvement.
4747 */
4748static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4749                                                        netdev_features_t mask)
4750{
4751        return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4752}
4753
4754int __netdev_update_features(struct net_device *dev);
4755void netdev_update_features(struct net_device *dev);
4756void netdev_change_features(struct net_device *dev);
4757
4758void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4759                                        struct net_device *dev);
4760
4761netdev_features_t passthru_features_check(struct sk_buff *skb,
4762                                          struct net_device *dev,
4763                                          netdev_features_t features);
4764netdev_features_t netif_skb_features(struct sk_buff *skb);
4765
4766static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4767{
4768        netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4769
4770        /* check flags correspondence */
4771        BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4772        BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4773        BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4774        BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4775        BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4776        BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4777        BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4778        BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4779        BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4780        BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4781        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4782        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4783        BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4784        BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4785        BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4786        BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4787        BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4788        BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4789        BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4790
4791        return (features & feature) == feature;
4792}
4793
4794static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4795{
4796        return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4797               (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4798}
4799
4800static inline bool netif_needs_gso(struct sk_buff *skb,
4801                                   netdev_features_t features)
4802{
4803        return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4804                unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4805                         (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4806}
4807
4808static inline void netif_set_gso_max_size(struct net_device *dev,
4809                                          unsigned int size)
4810{
4811        dev->gso_max_size = size;
4812}
4813
4814static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4815                                        int pulled_hlen, u16 mac_offset,
4816                                        int mac_len)
4817{
4818        skb->protocol = protocol;
4819        skb->encapsulation = 1;
4820        skb_push(skb, pulled_hlen);
4821        skb_reset_transport_header(skb);
4822        skb->mac_header = mac_offset;
4823        skb->network_header = skb->mac_header + mac_len;
4824        skb->mac_len = mac_len;
4825}
4826
4827static inline bool netif_is_macsec(const struct net_device *dev)
4828{
4829        return dev->priv_flags & IFF_MACSEC;
4830}
4831
4832static inline bool netif_is_macvlan(const struct net_device *dev)
4833{
4834        return dev->priv_flags & IFF_MACVLAN;
4835}
4836
4837static inline bool netif_is_macvlan_port(const struct net_device *dev)
4838{
4839        return dev->priv_flags & IFF_MACVLAN_PORT;
4840}
4841
4842static inline bool netif_is_bond_master(const struct net_device *dev)
4843{
4844        return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4845}
4846
4847static inline bool netif_is_bond_slave(const struct net_device *dev)
4848{
4849        return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4850}
4851
4852static inline bool netif_supports_nofcs(struct net_device *dev)
4853{
4854        return dev->priv_flags & IFF_SUPP_NOFCS;
4855}
4856
4857static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4858{
4859        return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4860}
4861
4862static inline bool netif_is_l3_master(const struct net_device *dev)
4863{
4864        return dev->priv_flags & IFF_L3MDEV_MASTER;
4865}
4866
4867static inline bool netif_is_l3_slave(const struct net_device *dev)
4868{
4869        return dev->priv_flags & IFF_L3MDEV_SLAVE;
4870}
4871
4872static inline bool netif_is_bridge_master(const struct net_device *dev)
4873{
4874        return dev->priv_flags & IFF_EBRIDGE;
4875}
4876
4877static inline bool netif_is_bridge_port(const struct net_device *dev)
4878{
4879        return dev->priv_flags & IFF_BRIDGE_PORT;
4880}
4881
4882static inline bool netif_is_ovs_master(const struct net_device *dev)
4883{
4884        return dev->priv_flags & IFF_OPENVSWITCH;
4885}
4886
4887static inline bool netif_is_ovs_port(const struct net_device *dev)
4888{
4889        return dev->priv_flags & IFF_OVS_DATAPATH;
4890}
4891
4892static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4893{
4894        return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4895}
4896
4897static inline bool netif_is_team_master(const struct net_device *dev)
4898{
4899        return dev->priv_flags & IFF_TEAM;
4900}
4901
4902static inline bool netif_is_team_port(const struct net_device *dev)
4903{
4904        return dev->priv_flags & IFF_TEAM_PORT;
4905}
4906
4907static inline bool netif_is_lag_master(const struct net_device *dev)
4908{
4909        return netif_is_bond_master(dev) || netif_is_team_master(dev);
4910}
4911
4912static inline bool netif_is_lag_port(const struct net_device *dev)
4913{
4914        return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4915}
4916
4917static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4918{
4919        return dev->priv_flags & IFF_RXFH_CONFIGURED;
4920}
4921
4922static inline bool netif_is_failover(const struct net_device *dev)
4923{
4924        return dev->priv_flags & IFF_FAILOVER;
4925}
4926
4927static inline bool netif_is_failover_slave(const struct net_device *dev)
4928{
4929        return dev->priv_flags & IFF_FAILOVER_SLAVE;
4930}
4931
4932/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4933static inline void netif_keep_dst(struct net_device *dev)
4934{
4935        dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4936}
4937
4938/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4939static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4940{
4941        /* TODO: reserve and use an additional IFF bit, if we get more users */
4942        return dev->priv_flags & IFF_MACSEC;
4943}
4944
4945extern struct pernet_operations __net_initdata loopback_net_ops;
4946
4947/* Logging, debugging and troubleshooting/diagnostic helpers. */
4948
4949/* netdev_printk helpers, similar to dev_printk */
4950
4951static inline const char *netdev_name(const struct net_device *dev)
4952{
4953        if (!dev->name[0] || strchr(dev->name, '%'))
4954                return "(unnamed net_device)";
4955        return dev->name;
4956}
4957
4958static inline bool netdev_unregistering(const struct net_device *dev)
4959{
4960        return dev->reg_state == NETREG_UNREGISTERING;
4961}
4962
4963static inline const char *netdev_reg_state(const struct net_device *dev)
4964{
4965        switch (dev->reg_state) {
4966        case NETREG_UNINITIALIZED: return " (uninitialized)";
4967        case NETREG_REGISTERED: return "";
4968        case NETREG_UNREGISTERING: return " (unregistering)";
4969        case NETREG_UNREGISTERED: return " (unregistered)";
4970        case NETREG_RELEASED: return " (released)";
4971        case NETREG_DUMMY: return " (dummy)";
4972        }
4973
4974        WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4975        return " (unknown)";
4976}
4977
4978__printf(3, 4) __cold
4979void netdev_printk(const char *level, const struct net_device *dev,
4980                   const char *format, ...);
4981__printf(2, 3) __cold
4982void netdev_emerg(const struct net_device *dev, const char *format, ...);
4983__printf(2, 3) __cold
4984void netdev_alert(const struct net_device *dev, const char *format, ...);
4985__printf(2, 3) __cold
4986void netdev_crit(const struct net_device *dev, const char *format, ...);
4987__printf(2, 3) __cold
4988void netdev_err(const struct net_device *dev, const char *format, ...);
4989__printf(2, 3) __cold
4990void netdev_warn(const struct net_device *dev, const char *format, ...);
4991__printf(2, 3) __cold
4992void netdev_notice(const struct net_device *dev, const char *format, ...);
4993__printf(2, 3) __cold
4994void netdev_info(const struct net_device *dev, const char *format, ...);
4995
4996#define netdev_level_once(level, dev, fmt, ...)                 \
4997do {                                                            \
4998        static bool __print_once __read_mostly;                 \
4999                                                                \
5000        if (!__print_once) {                                    \
5001                __print_once = true;                            \
5002                netdev_printk(level, dev, fmt, ##__VA_ARGS__);  \
5003        }                                                       \
5004} while (0)
5005
5006#define netdev_emerg_once(dev, fmt, ...) \
5007        netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5008#define netdev_alert_once(dev, fmt, ...) \
5009        netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5010#define netdev_crit_once(dev, fmt, ...) \
5011        netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5012#define netdev_err_once(dev, fmt, ...) \
5013        netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5014#define netdev_warn_once(dev, fmt, ...) \
5015        netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5016#define netdev_notice_once(dev, fmt, ...) \
5017        netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5018#define netdev_info_once(dev, fmt, ...) \
5019        netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5020
5021#define MODULE_ALIAS_NETDEV(device) \
5022        MODULE_ALIAS("netdev-" device)
5023
5024#if defined(CONFIG_DYNAMIC_DEBUG) || \
5025        (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5026#define netdev_dbg(__dev, format, args...)                      \
5027do {                                                            \
5028        dynamic_netdev_dbg(__dev, format, ##args);              \
5029} while (0)
5030#elif defined(DEBUG)
5031#define netdev_dbg(__dev, format, args...)                      \
5032        netdev_printk(KERN_DEBUG, __dev, format, ##args)
5033#else
5034#define netdev_dbg(__dev, format, args...)                      \
5035({                                                              \
5036        if (0)                                                  \
5037                netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5038})
5039#endif
5040
5041#if defined(VERBOSE_DEBUG)
5042#define netdev_vdbg     netdev_dbg
5043#else
5044
5045#define netdev_vdbg(dev, format, args...)                       \
5046({                                                              \
5047        if (0)                                                  \
5048                netdev_printk(KERN_DEBUG, dev, format, ##args); \
5049        0;                                                      \
5050})
5051#endif
5052
5053/*
5054 * netdev_WARN() acts like dev_printk(), but with the key difference
5055 * of using a WARN/WARN_ON to get the message out, including the
5056 * file/line information and a backtrace.
5057 */
5058#define netdev_WARN(dev, format, args...)                       \
5059        WARN(1, "netdevice: %s%s: " format, netdev_name(dev),   \
5060             netdev_reg_state(dev), ##args)
5061
5062#define netdev_WARN_ONCE(dev, format, args...)                          \
5063        WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),      \
5064                  netdev_reg_state(dev), ##args)
5065
5066/* netif printk helpers, similar to netdev_printk */
5067
5068#define netif_printk(priv, type, level, dev, fmt, args...)      \
5069do {                                                            \
5070        if (netif_msg_##type(priv))                             \
5071                netdev_printk(level, (dev), fmt, ##args);       \
5072} while (0)
5073
5074#define netif_level(level, priv, type, dev, fmt, args...)       \
5075do {                                                            \
5076        if (netif_msg_##type(priv))                             \
5077                netdev_##level(dev, fmt, ##args);               \
5078} while (0)
5079
5080#define netif_emerg(priv, type, dev, fmt, args...)              \
5081        netif_level(emerg, priv, type, dev, fmt, ##args)
5082#define netif_alert(priv, type, dev, fmt, args...)              \
5083        netif_level(alert, priv, type, dev, fmt, ##args)
5084#define netif_crit(priv, type, dev, fmt, args...)               \
5085        netif_level(crit, priv, type, dev, fmt, ##args)
5086#define netif_err(priv, type, dev, fmt, args...)                \
5087        netif_level(err, priv, type, dev, fmt, ##args)
5088#define netif_warn(priv, type, dev, fmt, args...)               \
5089        netif_level(warn, priv, type, dev, fmt, ##args)
5090#define netif_notice(priv, type, dev, fmt, args...)             \
5091        netif_level(notice, priv, type, dev, fmt, ##args)
5092#define netif_info(priv, type, dev, fmt, args...)               \
5093        netif_level(info, priv, type, dev, fmt, ##args)
5094
5095#if defined(CONFIG_DYNAMIC_DEBUG) || \
5096        (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5097#define netif_dbg(priv, type, netdev, format, args...)          \
5098do {                                                            \
5099        if (netif_msg_##type(priv))                             \
5100                dynamic_netdev_dbg(netdev, format, ##args);     \
5101} while (0)
5102#elif defined(DEBUG)
5103#define netif_dbg(priv, type, dev, format, args...)             \
5104        netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5105#else
5106#define netif_dbg(priv, type, dev, format, args...)                     \
5107({                                                                      \
5108        if (0)                                                          \
5109                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5110        0;                                                              \
5111})
5112#endif
5113
5114/* if @cond then downgrade to debug, else print at @level */
5115#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5116        do {                                                              \
5117                if (cond)                                                 \
5118                        netif_dbg(priv, type, netdev, fmt, ##args);       \
5119                else                                                      \
5120                        netif_ ## level(priv, type, netdev, fmt, ##args); \
5121        } while (0)
5122
5123#if defined(VERBOSE_DEBUG)
5124#define netif_vdbg      netif_dbg
5125#else
5126#define netif_vdbg(priv, type, dev, format, args...)            \
5127({                                                              \
5128        if (0)                                                  \
5129                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5130        0;                                                      \
5131})
5132#endif
5133
5134/*
5135 *      The list of packet types we will receive (as opposed to discard)
5136 *      and the routines to invoke.
5137 *
5138 *      Why 16. Because with 16 the only overlap we get on a hash of the
5139 *      low nibble of the protocol value is RARP/SNAP/X.25.
5140 *
5141 *              0800    IP
5142 *              0001    802.3
5143 *              0002    AX.25
5144 *              0004    802.2
5145 *              8035    RARP
5146 *              0005    SNAP
5147 *              0805    X.25
5148 *              0806    ARP
5149 *              8137    IPX
5150 *              0009    Localtalk
5151 *              86DD    IPv6
5152 */
5153#define PTYPE_HASH_SIZE (16)
5154#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5155
5156extern struct net_device *blackhole_netdev;
5157
5158#endif  /* _LINUX_NETDEVICE_H */
5159