linux/include/linux/page-flags.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Macros for manipulating and testing page->flags
   4 */
   5
   6#ifndef PAGE_FLAGS_H
   7#define PAGE_FLAGS_H
   8
   9#include <linux/types.h>
  10#include <linux/bug.h>
  11#include <linux/mmdebug.h>
  12#ifndef __GENERATING_BOUNDS_H
  13#include <linux/mm_types.h>
  14#include <generated/bounds.h>
  15#endif /* !__GENERATING_BOUNDS_H */
  16
  17/*
  18 * Various page->flags bits:
  19 *
  20 * PG_reserved is set for special pages. The "struct page" of such a page
  21 * should in general not be touched (e.g. set dirty) except by its owner.
  22 * Pages marked as PG_reserved include:
  23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
  24 *   initrd, HW tables)
  25 * - Pages reserved or allocated early during boot (before the page allocator
  26 *   was initialized). This includes (depending on the architecture) the
  27 *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
  28 *   much more. Once (if ever) freed, PG_reserved is cleared and they will
  29 *   be given to the page allocator.
  30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
  31 *   to read/write these pages might end badly. Don't touch!
  32 * - The zero page(s)
  33 * - Pages not added to the page allocator when onlining a section because
  34 *   they were excluded via the online_page_callback() or because they are
  35 *   PG_hwpoison.
  36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
  37 *   control pages, vmcoreinfo)
  38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
  39 *   not marked PG_reserved (as they might be in use by somebody else who does
  40 *   not respect the caching strategy).
  41 * - Pages part of an offline section (struct pages of offline sections should
  42 *   not be trusted as they will be initialized when first onlined).
  43 * - MCA pages on ia64
  44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
  45 * - Device memory (e.g. PMEM, DAX, HMM)
  46 * Some PG_reserved pages will be excluded from the hibernation image.
  47 * PG_reserved does in general not hinder anybody from dumping or swapping
  48 * and is no longer required for remap_pfn_range(). ioremap might require it.
  49 * Consequently, PG_reserved for a page mapped into user space can indicate
  50 * the zero page, the vDSO, MMIO pages or device memory.
  51 *
  52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
  53 * specific data (which is normally at page->private). It can be used by
  54 * private allocations for its own usage.
  55 *
  56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
  57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
  58 * is set before writeback starts and cleared when it finishes.
  59 *
  60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
  61 * while it is held.
  62 *
  63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
  64 * to become unlocked.
  65 *
  66 * PG_swapbacked is set when a page uses swap as a backing storage.  This are
  67 * usually PageAnon or shmem pages but please note that even anonymous pages
  68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
  69 * a result of MADV_FREE).
  70 *
  71 * PG_uptodate tells whether the page's contents is valid.  When a read
  72 * completes, the page becomes uptodate, unless a disk I/O error happened.
  73 *
  74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
  75 * file-backed pagecache (see mm/vmscan.c).
  76 *
  77 * PG_error is set to indicate that an I/O error occurred on this page.
  78 *
  79 * PG_arch_1 is an architecture specific page state bit.  The generic code
  80 * guarantees that this bit is cleared for a page when it first is entered into
  81 * the page cache.
  82 *
  83 * PG_hwpoison indicates that a page got corrupted in hardware and contains
  84 * data with incorrect ECC bits that triggered a machine check. Accessing is
  85 * not safe since it may cause another machine check. Don't touch!
  86 */
  87
  88/*
  89 * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
  90 * locked- and dirty-page accounting.
  91 *
  92 * The page flags field is split into two parts, the main flags area
  93 * which extends from the low bits upwards, and the fields area which
  94 * extends from the high bits downwards.
  95 *
  96 *  | FIELD | ... | FLAGS |
  97 *  N-1           ^       0
  98 *               (NR_PAGEFLAGS)
  99 *
 100 * The fields area is reserved for fields mapping zone, node (for NUMA) and
 101 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
 102 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
 103 */
 104enum pageflags {
 105        PG_locked,              /* Page is locked. Don't touch. */
 106        PG_referenced,
 107        PG_uptodate,
 108        PG_dirty,
 109        PG_lru,
 110        PG_active,
 111        PG_workingset,
 112        PG_waiters,             /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
 113        PG_error,
 114        PG_slab,
 115        PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
 116        PG_arch_1,
 117        PG_reserved,
 118        PG_private,             /* If pagecache, has fs-private data */
 119        PG_private_2,           /* If pagecache, has fs aux data */
 120        PG_writeback,           /* Page is under writeback */
 121        PG_head,                /* A head page */
 122        PG_mappedtodisk,        /* Has blocks allocated on-disk */
 123        PG_reclaim,             /* To be reclaimed asap */
 124        PG_swapbacked,          /* Page is backed by RAM/swap */
 125        PG_unevictable,         /* Page is "unevictable"  */
 126#ifdef CONFIG_MMU
 127        PG_mlocked,             /* Page is vma mlocked */
 128#endif
 129#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 130        PG_uncached,            /* Page has been mapped as uncached */
 131#endif
 132#ifdef CONFIG_MEMORY_FAILURE
 133        PG_hwpoison,            /* hardware poisoned page. Don't touch */
 134#endif
 135#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 136        PG_young,
 137        PG_idle,
 138#endif
 139        __NR_PAGEFLAGS,
 140
 141        /* Filesystems */
 142        PG_checked = PG_owner_priv_1,
 143
 144        /* SwapBacked */
 145        PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
 146
 147        /* Two page bits are conscripted by FS-Cache to maintain local caching
 148         * state.  These bits are set on pages belonging to the netfs's inodes
 149         * when those inodes are being locally cached.
 150         */
 151        PG_fscache = PG_private_2,      /* page backed by cache */
 152
 153        /* XEN */
 154        /* Pinned in Xen as a read-only pagetable page. */
 155        PG_pinned = PG_owner_priv_1,
 156        /* Pinned as part of domain save (see xen_mm_pin_all()). */
 157        PG_savepinned = PG_dirty,
 158        /* Has a grant mapping of another (foreign) domain's page. */
 159        PG_foreign = PG_owner_priv_1,
 160        /* Remapped by swiotlb-xen. */
 161        PG_xen_remapped = PG_owner_priv_1,
 162
 163        /* SLOB */
 164        PG_slob_free = PG_private,
 165
 166        /* Compound pages. Stored in first tail page's flags */
 167        PG_double_map = PG_private_2,
 168
 169        /* non-lru isolated movable page */
 170        PG_isolated = PG_reclaim,
 171
 172        /* Only valid for buddy pages. Used to track pages that are reported */
 173        PG_reported = PG_uptodate,
 174};
 175
 176#ifndef __GENERATING_BOUNDS_H
 177
 178struct page;    /* forward declaration */
 179
 180static inline struct page *compound_head(struct page *page)
 181{
 182        unsigned long head = READ_ONCE(page->compound_head);
 183
 184        if (unlikely(head & 1))
 185                return (struct page *) (head - 1);
 186        return page;
 187}
 188
 189static __always_inline int PageTail(struct page *page)
 190{
 191        return READ_ONCE(page->compound_head) & 1;
 192}
 193
 194static __always_inline int PageCompound(struct page *page)
 195{
 196        return test_bit(PG_head, &page->flags) || PageTail(page);
 197}
 198
 199#define PAGE_POISON_PATTERN     -1l
 200static inline int PagePoisoned(const struct page *page)
 201{
 202        return page->flags == PAGE_POISON_PATTERN;
 203}
 204
 205#ifdef CONFIG_DEBUG_VM
 206void page_init_poison(struct page *page, size_t size);
 207#else
 208static inline void page_init_poison(struct page *page, size_t size)
 209{
 210}
 211#endif
 212
 213/*
 214 * Page flags policies wrt compound pages
 215 *
 216 * PF_POISONED_CHECK
 217 *     check if this struct page poisoned/uninitialized
 218 *
 219 * PF_ANY:
 220 *     the page flag is relevant for small, head and tail pages.
 221 *
 222 * PF_HEAD:
 223 *     for compound page all operations related to the page flag applied to
 224 *     head page.
 225 *
 226 * PF_ONLY_HEAD:
 227 *     for compound page, callers only ever operate on the head page.
 228 *
 229 * PF_NO_TAIL:
 230 *     modifications of the page flag must be done on small or head pages,
 231 *     checks can be done on tail pages too.
 232 *
 233 * PF_NO_COMPOUND:
 234 *     the page flag is not relevant for compound pages.
 235 */
 236#define PF_POISONED_CHECK(page) ({                                      \
 237                VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);            \
 238                page; })
 239#define PF_ANY(page, enforce)   PF_POISONED_CHECK(page)
 240#define PF_HEAD(page, enforce)  PF_POISONED_CHECK(compound_head(page))
 241#define PF_ONLY_HEAD(page, enforce) ({                                  \
 242                VM_BUG_ON_PGFLAGS(PageTail(page), page);                \
 243                PF_POISONED_CHECK(page); })
 244#define PF_NO_TAIL(page, enforce) ({                                    \
 245                VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);     \
 246                PF_POISONED_CHECK(compound_head(page)); })
 247#define PF_NO_COMPOUND(page, enforce) ({                                \
 248                VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
 249                PF_POISONED_CHECK(page); })
 250
 251/*
 252 * Macros to create function definitions for page flags
 253 */
 254#define TESTPAGEFLAG(uname, lname, policy)                              \
 255static __always_inline int Page##uname(struct page *page)               \
 256        { return test_bit(PG_##lname, &policy(page, 0)->flags); }
 257
 258#define SETPAGEFLAG(uname, lname, policy)                               \
 259static __always_inline void SetPage##uname(struct page *page)           \
 260        { set_bit(PG_##lname, &policy(page, 1)->flags); }
 261
 262#define CLEARPAGEFLAG(uname, lname, policy)                             \
 263static __always_inline void ClearPage##uname(struct page *page)         \
 264        { clear_bit(PG_##lname, &policy(page, 1)->flags); }
 265
 266#define __SETPAGEFLAG(uname, lname, policy)                             \
 267static __always_inline void __SetPage##uname(struct page *page)         \
 268        { __set_bit(PG_##lname, &policy(page, 1)->flags); }
 269
 270#define __CLEARPAGEFLAG(uname, lname, policy)                           \
 271static __always_inline void __ClearPage##uname(struct page *page)       \
 272        { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
 273
 274#define TESTSETFLAG(uname, lname, policy)                               \
 275static __always_inline int TestSetPage##uname(struct page *page)        \
 276        { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
 277
 278#define TESTCLEARFLAG(uname, lname, policy)                             \
 279static __always_inline int TestClearPage##uname(struct page *page)      \
 280        { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
 281
 282#define PAGEFLAG(uname, lname, policy)                                  \
 283        TESTPAGEFLAG(uname, lname, policy)                              \
 284        SETPAGEFLAG(uname, lname, policy)                               \
 285        CLEARPAGEFLAG(uname, lname, policy)
 286
 287#define __PAGEFLAG(uname, lname, policy)                                \
 288        TESTPAGEFLAG(uname, lname, policy)                              \
 289        __SETPAGEFLAG(uname, lname, policy)                             \
 290        __CLEARPAGEFLAG(uname, lname, policy)
 291
 292#define TESTSCFLAG(uname, lname, policy)                                \
 293        TESTSETFLAG(uname, lname, policy)                               \
 294        TESTCLEARFLAG(uname, lname, policy)
 295
 296#define TESTPAGEFLAG_FALSE(uname)                                       \
 297static inline int Page##uname(const struct page *page) { return 0; }
 298
 299#define SETPAGEFLAG_NOOP(uname)                                         \
 300static inline void SetPage##uname(struct page *page) {  }
 301
 302#define CLEARPAGEFLAG_NOOP(uname)                                       \
 303static inline void ClearPage##uname(struct page *page) {  }
 304
 305#define __CLEARPAGEFLAG_NOOP(uname)                                     \
 306static inline void __ClearPage##uname(struct page *page) {  }
 307
 308#define TESTSETFLAG_FALSE(uname)                                        \
 309static inline int TestSetPage##uname(struct page *page) { return 0; }
 310
 311#define TESTCLEARFLAG_FALSE(uname)                                      \
 312static inline int TestClearPage##uname(struct page *page) { return 0; }
 313
 314#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)                 \
 315        SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
 316
 317#define TESTSCFLAG_FALSE(uname)                                         \
 318        TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
 319
 320__PAGEFLAG(Locked, locked, PF_NO_TAIL)
 321PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
 322PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
 323PAGEFLAG(Referenced, referenced, PF_HEAD)
 324        TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
 325        __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
 326PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
 327        __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
 328PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
 329PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
 330        TESTCLEARFLAG(Active, active, PF_HEAD)
 331PAGEFLAG(Workingset, workingset, PF_HEAD)
 332        TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
 333__PAGEFLAG(Slab, slab, PF_NO_TAIL)
 334__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
 335PAGEFLAG(Checked, checked, PF_NO_COMPOUND)         /* Used by some filesystems */
 336
 337/* Xen */
 338PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
 339        TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
 340PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
 341PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
 342PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
 343        TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
 344
 345PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 346        __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 347        __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 348PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 349        __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 350        __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 351
 352/*
 353 * Private page markings that may be used by the filesystem that owns the page
 354 * for its own purposes.
 355 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
 356 */
 357PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
 358        __CLEARPAGEFLAG(Private, private, PF_ANY)
 359PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
 360PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 361        TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 362
 363/*
 364 * Only test-and-set exist for PG_writeback.  The unconditional operators are
 365 * risky: they bypass page accounting.
 366 */
 367TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
 368        TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
 369PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
 370
 371/* PG_readahead is only used for reads; PG_reclaim is only for writes */
 372PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
 373        TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
 374PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 375        TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 376
 377#ifdef CONFIG_HIGHMEM
 378/*
 379 * Must use a macro here due to header dependency issues. page_zone() is not
 380 * available at this point.
 381 */
 382#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
 383#else
 384PAGEFLAG_FALSE(HighMem)
 385#endif
 386
 387#ifdef CONFIG_SWAP
 388static __always_inline int PageSwapCache(struct page *page)
 389{
 390#ifdef CONFIG_THP_SWAP
 391        page = compound_head(page);
 392#endif
 393        return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
 394
 395}
 396SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 397CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 398#else
 399PAGEFLAG_FALSE(SwapCache)
 400#endif
 401
 402PAGEFLAG(Unevictable, unevictable, PF_HEAD)
 403        __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
 404        TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
 405
 406#ifdef CONFIG_MMU
 407PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 408        __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 409        TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
 410#else
 411PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
 412        TESTSCFLAG_FALSE(Mlocked)
 413#endif
 414
 415#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 416PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
 417#else
 418PAGEFLAG_FALSE(Uncached)
 419#endif
 420
 421#ifdef CONFIG_MEMORY_FAILURE
 422PAGEFLAG(HWPoison, hwpoison, PF_ANY)
 423TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
 424#define __PG_HWPOISON (1UL << PG_hwpoison)
 425extern bool set_hwpoison_free_buddy_page(struct page *page);
 426#else
 427PAGEFLAG_FALSE(HWPoison)
 428static inline bool set_hwpoison_free_buddy_page(struct page *page)
 429{
 430        return 0;
 431}
 432#define __PG_HWPOISON 0
 433#endif
 434
 435#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 436TESTPAGEFLAG(Young, young, PF_ANY)
 437SETPAGEFLAG(Young, young, PF_ANY)
 438TESTCLEARFLAG(Young, young, PF_ANY)
 439PAGEFLAG(Idle, idle, PF_ANY)
 440#endif
 441
 442/*
 443 * PageReported() is used to track reported free pages within the Buddy
 444 * allocator. We can use the non-atomic version of the test and set
 445 * operations as both should be shielded with the zone lock to prevent
 446 * any possible races on the setting or clearing of the bit.
 447 */
 448__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
 449
 450/*
 451 * On an anonymous page mapped into a user virtual memory area,
 452 * page->mapping points to its anon_vma, not to a struct address_space;
 453 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 454 *
 455 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 456 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
 457 * bit; and then page->mapping points, not to an anon_vma, but to a private
 458 * structure which KSM associates with that merged page.  See ksm.h.
 459 *
 460 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
 461 * page and then page->mapping points a struct address_space.
 462 *
 463 * Please note that, confusingly, "page_mapping" refers to the inode
 464 * address_space which maps the page from disk; whereas "page_mapped"
 465 * refers to user virtual address space into which the page is mapped.
 466 */
 467#define PAGE_MAPPING_ANON       0x1
 468#define PAGE_MAPPING_MOVABLE    0x2
 469#define PAGE_MAPPING_KSM        (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 470#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 471
 472static __always_inline int PageMappingFlags(struct page *page)
 473{
 474        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
 475}
 476
 477static __always_inline int PageAnon(struct page *page)
 478{
 479        page = compound_head(page);
 480        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 481}
 482
 483static __always_inline int __PageMovable(struct page *page)
 484{
 485        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 486                                PAGE_MAPPING_MOVABLE;
 487}
 488
 489#ifdef CONFIG_KSM
 490/*
 491 * A KSM page is one of those write-protected "shared pages" or "merged pages"
 492 * which KSM maps into multiple mms, wherever identical anonymous page content
 493 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
 494 * anon_vma, but to that page's node of the stable tree.
 495 */
 496static __always_inline int PageKsm(struct page *page)
 497{
 498        page = compound_head(page);
 499        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 500                                PAGE_MAPPING_KSM;
 501}
 502#else
 503TESTPAGEFLAG_FALSE(Ksm)
 504#endif
 505
 506u64 stable_page_flags(struct page *page);
 507
 508static inline int PageUptodate(struct page *page)
 509{
 510        int ret;
 511        page = compound_head(page);
 512        ret = test_bit(PG_uptodate, &(page)->flags);
 513        /*
 514         * Must ensure that the data we read out of the page is loaded
 515         * _after_ we've loaded page->flags to check for PageUptodate.
 516         * We can skip the barrier if the page is not uptodate, because
 517         * we wouldn't be reading anything from it.
 518         *
 519         * See SetPageUptodate() for the other side of the story.
 520         */
 521        if (ret)
 522                smp_rmb();
 523
 524        return ret;
 525}
 526
 527static __always_inline void __SetPageUptodate(struct page *page)
 528{
 529        VM_BUG_ON_PAGE(PageTail(page), page);
 530        smp_wmb();
 531        __set_bit(PG_uptodate, &page->flags);
 532}
 533
 534static __always_inline void SetPageUptodate(struct page *page)
 535{
 536        VM_BUG_ON_PAGE(PageTail(page), page);
 537        /*
 538         * Memory barrier must be issued before setting the PG_uptodate bit,
 539         * so that all previous stores issued in order to bring the page
 540         * uptodate are actually visible before PageUptodate becomes true.
 541         */
 542        smp_wmb();
 543        set_bit(PG_uptodate, &page->flags);
 544}
 545
 546CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
 547
 548int test_clear_page_writeback(struct page *page);
 549int __test_set_page_writeback(struct page *page, bool keep_write);
 550
 551#define test_set_page_writeback(page)                   \
 552        __test_set_page_writeback(page, false)
 553#define test_set_page_writeback_keepwrite(page) \
 554        __test_set_page_writeback(page, true)
 555
 556static inline void set_page_writeback(struct page *page)
 557{
 558        test_set_page_writeback(page);
 559}
 560
 561static inline void set_page_writeback_keepwrite(struct page *page)
 562{
 563        test_set_page_writeback_keepwrite(page);
 564}
 565
 566__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
 567
 568static __always_inline void set_compound_head(struct page *page, struct page *head)
 569{
 570        WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
 571}
 572
 573static __always_inline void clear_compound_head(struct page *page)
 574{
 575        WRITE_ONCE(page->compound_head, 0);
 576}
 577
 578#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 579static inline void ClearPageCompound(struct page *page)
 580{
 581        BUG_ON(!PageHead(page));
 582        ClearPageHead(page);
 583}
 584#endif
 585
 586#define PG_head_mask ((1UL << PG_head))
 587
 588#ifdef CONFIG_HUGETLB_PAGE
 589int PageHuge(struct page *page);
 590int PageHeadHuge(struct page *page);
 591bool page_huge_active(struct page *page);
 592#else
 593TESTPAGEFLAG_FALSE(Huge)
 594TESTPAGEFLAG_FALSE(HeadHuge)
 595
 596static inline bool page_huge_active(struct page *page)
 597{
 598        return 0;
 599}
 600#endif
 601
 602
 603#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 604/*
 605 * PageHuge() only returns true for hugetlbfs pages, but not for
 606 * normal or transparent huge pages.
 607 *
 608 * PageTransHuge() returns true for both transparent huge and
 609 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
 610 * called only in the core VM paths where hugetlbfs pages can't exist.
 611 */
 612static inline int PageTransHuge(struct page *page)
 613{
 614        VM_BUG_ON_PAGE(PageTail(page), page);
 615        return PageHead(page);
 616}
 617
 618/*
 619 * PageTransCompound returns true for both transparent huge pages
 620 * and hugetlbfs pages, so it should only be called when it's known
 621 * that hugetlbfs pages aren't involved.
 622 */
 623static inline int PageTransCompound(struct page *page)
 624{
 625        return PageCompound(page);
 626}
 627
 628/*
 629 * PageTransCompoundMap is the same as PageTransCompound, but it also
 630 * guarantees the primary MMU has the entire compound page mapped
 631 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
 632 * can also map the entire compound page. This allows the secondary
 633 * MMUs to call get_user_pages() only once for each compound page and
 634 * to immediately map the entire compound page with a single secondary
 635 * MMU fault. If there will be a pmd split later, the secondary MMUs
 636 * will get an update through the MMU notifier invalidation through
 637 * split_huge_pmd().
 638 *
 639 * Unlike PageTransCompound, this is safe to be called only while
 640 * split_huge_pmd() cannot run from under us, like if protected by the
 641 * MMU notifier, otherwise it may result in page->_mapcount check false
 642 * positives.
 643 *
 644 * We have to treat page cache THP differently since every subpage of it
 645 * would get _mapcount inc'ed once it is PMD mapped.  But, it may be PTE
 646 * mapped in the current process so comparing subpage's _mapcount to
 647 * compound_mapcount to filter out PTE mapped case.
 648 */
 649static inline int PageTransCompoundMap(struct page *page)
 650{
 651        struct page *head;
 652
 653        if (!PageTransCompound(page))
 654                return 0;
 655
 656        if (PageAnon(page))
 657                return atomic_read(&page->_mapcount) < 0;
 658
 659        head = compound_head(page);
 660        /* File THP is PMD mapped and not PTE mapped */
 661        return atomic_read(&page->_mapcount) ==
 662               atomic_read(compound_mapcount_ptr(head));
 663}
 664
 665/*
 666 * PageTransTail returns true for both transparent huge pages
 667 * and hugetlbfs pages, so it should only be called when it's known
 668 * that hugetlbfs pages aren't involved.
 669 */
 670static inline int PageTransTail(struct page *page)
 671{
 672        return PageTail(page);
 673}
 674
 675/*
 676 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
 677 * as PMDs.
 678 *
 679 * This is required for optimization of rmap operations for THP: we can postpone
 680 * per small page mapcount accounting (and its overhead from atomic operations)
 681 * until the first PMD split.
 682 *
 683 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
 684 * by one. This reference will go away with last compound_mapcount.
 685 *
 686 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
 687 */
 688static inline int PageDoubleMap(struct page *page)
 689{
 690        return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
 691}
 692
 693static inline void SetPageDoubleMap(struct page *page)
 694{
 695        VM_BUG_ON_PAGE(!PageHead(page), page);
 696        set_bit(PG_double_map, &page[1].flags);
 697}
 698
 699static inline void ClearPageDoubleMap(struct page *page)
 700{
 701        VM_BUG_ON_PAGE(!PageHead(page), page);
 702        clear_bit(PG_double_map, &page[1].flags);
 703}
 704static inline int TestSetPageDoubleMap(struct page *page)
 705{
 706        VM_BUG_ON_PAGE(!PageHead(page), page);
 707        return test_and_set_bit(PG_double_map, &page[1].flags);
 708}
 709
 710static inline int TestClearPageDoubleMap(struct page *page)
 711{
 712        VM_BUG_ON_PAGE(!PageHead(page), page);
 713        return test_and_clear_bit(PG_double_map, &page[1].flags);
 714}
 715
 716#else
 717TESTPAGEFLAG_FALSE(TransHuge)
 718TESTPAGEFLAG_FALSE(TransCompound)
 719TESTPAGEFLAG_FALSE(TransCompoundMap)
 720TESTPAGEFLAG_FALSE(TransTail)
 721PAGEFLAG_FALSE(DoubleMap)
 722        TESTSETFLAG_FALSE(DoubleMap)
 723        TESTCLEARFLAG_FALSE(DoubleMap)
 724#endif
 725
 726/*
 727 * For pages that are never mapped to userspace (and aren't PageSlab),
 728 * page_type may be used.  Because it is initialised to -1, we invert the
 729 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
 730 * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
 731 * low bits so that an underflow or overflow of page_mapcount() won't be
 732 * mistaken for a page type value.
 733 */
 734
 735#define PAGE_TYPE_BASE  0xf0000000
 736/* Reserve              0x0000007f to catch underflows of page_mapcount */
 737#define PAGE_MAPCOUNT_RESERVE   -128
 738#define PG_buddy        0x00000080
 739#define PG_offline      0x00000100
 740#define PG_kmemcg       0x00000200
 741#define PG_table        0x00000400
 742#define PG_guard        0x00000800
 743
 744#define PageType(page, flag)                                            \
 745        ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
 746
 747static inline int page_has_type(struct page *page)
 748{
 749        return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
 750}
 751
 752#define PAGE_TYPE_OPS(uname, lname)                                     \
 753static __always_inline int Page##uname(struct page *page)               \
 754{                                                                       \
 755        return PageType(page, PG_##lname);                              \
 756}                                                                       \
 757static __always_inline void __SetPage##uname(struct page *page)         \
 758{                                                                       \
 759        VM_BUG_ON_PAGE(!PageType(page, 0), page);                       \
 760        page->page_type &= ~PG_##lname;                                 \
 761}                                                                       \
 762static __always_inline void __ClearPage##uname(struct page *page)       \
 763{                                                                       \
 764        VM_BUG_ON_PAGE(!Page##uname(page), page);                       \
 765        page->page_type |= PG_##lname;                                  \
 766}
 767
 768/*
 769 * PageBuddy() indicates that the page is free and in the buddy system
 770 * (see mm/page_alloc.c).
 771 */
 772PAGE_TYPE_OPS(Buddy, buddy)
 773
 774/*
 775 * PageOffline() indicates that the page is logically offline although the
 776 * containing section is online. (e.g. inflated in a balloon driver or
 777 * not onlined when onlining the section).
 778 * The content of these pages is effectively stale. Such pages should not
 779 * be touched (read/write/dump/save) except by their owner.
 780 *
 781 * If a driver wants to allow to offline unmovable PageOffline() pages without
 782 * putting them back to the buddy, it can do so via the memory notifier by
 783 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
 784 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
 785 * pages (now with a reference count of zero) are treated like free pages,
 786 * allowing the containing memory block to get offlined. A driver that
 787 * relies on this feature is aware that re-onlining the memory block will
 788 * require to re-set the pages PageOffline() and not giving them to the
 789 * buddy via online_page_callback_t.
 790 */
 791PAGE_TYPE_OPS(Offline, offline)
 792
 793/*
 794 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
 795 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
 796 */
 797PAGE_TYPE_OPS(Kmemcg, kmemcg)
 798
 799/*
 800 * Marks pages in use as page tables.
 801 */
 802PAGE_TYPE_OPS(Table, table)
 803
 804/*
 805 * Marks guardpages used with debug_pagealloc.
 806 */
 807PAGE_TYPE_OPS(Guard, guard)
 808
 809extern bool is_free_buddy_page(struct page *page);
 810
 811__PAGEFLAG(Isolated, isolated, PF_ANY);
 812
 813/*
 814 * If network-based swap is enabled, sl*b must keep track of whether pages
 815 * were allocated from pfmemalloc reserves.
 816 */
 817static inline int PageSlabPfmemalloc(struct page *page)
 818{
 819        VM_BUG_ON_PAGE(!PageSlab(page), page);
 820        return PageActive(page);
 821}
 822
 823static inline void SetPageSlabPfmemalloc(struct page *page)
 824{
 825        VM_BUG_ON_PAGE(!PageSlab(page), page);
 826        SetPageActive(page);
 827}
 828
 829static inline void __ClearPageSlabPfmemalloc(struct page *page)
 830{
 831        VM_BUG_ON_PAGE(!PageSlab(page), page);
 832        __ClearPageActive(page);
 833}
 834
 835static inline void ClearPageSlabPfmemalloc(struct page *page)
 836{
 837        VM_BUG_ON_PAGE(!PageSlab(page), page);
 838        ClearPageActive(page);
 839}
 840
 841#ifdef CONFIG_MMU
 842#define __PG_MLOCKED            (1UL << PG_mlocked)
 843#else
 844#define __PG_MLOCKED            0
 845#endif
 846
 847/*
 848 * Flags checked when a page is freed.  Pages being freed should not have
 849 * these flags set.  It they are, there is a problem.
 850 */
 851#define PAGE_FLAGS_CHECK_AT_FREE                                \
 852        (1UL << PG_lru          | 1UL << PG_locked      |       \
 853         1UL << PG_private      | 1UL << PG_private_2   |       \
 854         1UL << PG_writeback    | 1UL << PG_reserved    |       \
 855         1UL << PG_slab         | 1UL << PG_active      |       \
 856         1UL << PG_unevictable  | __PG_MLOCKED)
 857
 858/*
 859 * Flags checked when a page is prepped for return by the page allocator.
 860 * Pages being prepped should not have these flags set.  It they are set,
 861 * there has been a kernel bug or struct page corruption.
 862 *
 863 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
 864 * alloc-free cycle to prevent from reusing the page.
 865 */
 866#define PAGE_FLAGS_CHECK_AT_PREP        \
 867        (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
 868
 869#define PAGE_FLAGS_PRIVATE                              \
 870        (1UL << PG_private | 1UL << PG_private_2)
 871/**
 872 * page_has_private - Determine if page has private stuff
 873 * @page: The page to be checked
 874 *
 875 * Determine if a page has private stuff, indicating that release routines
 876 * should be invoked upon it.
 877 */
 878static inline int page_has_private(struct page *page)
 879{
 880        return !!(page->flags & PAGE_FLAGS_PRIVATE);
 881}
 882
 883#undef PF_ANY
 884#undef PF_HEAD
 885#undef PF_ONLY_HEAD
 886#undef PF_NO_TAIL
 887#undef PF_NO_COMPOUND
 888#endif /* !__GENERATING_BOUNDS_H */
 889
 890#endif  /* PAGE_FLAGS_H */
 891