linux/include/linux/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_H
   3#define _LINUX_SCHED_H
   4
   5/*
   6 * Define 'struct task_struct' and provide the main scheduler
   7 * APIs (schedule(), wakeup variants, etc.)
   8 */
   9
  10#include <uapi/linux/sched.h>
  11
  12#include <asm/current.h>
  13
  14#include <linux/pid.h>
  15#include <linux/sem.h>
  16#include <linux/shm.h>
  17#include <linux/kcov.h>
  18#include <linux/mutex.h>
  19#include <linux/plist.h>
  20#include <linux/hrtimer.h>
  21#include <linux/irqflags.h>
  22#include <linux/seccomp.h>
  23#include <linux/nodemask.h>
  24#include <linux/rcupdate.h>
  25#include <linux/refcount.h>
  26#include <linux/resource.h>
  27#include <linux/latencytop.h>
  28#include <linux/sched/prio.h>
  29#include <linux/sched/types.h>
  30#include <linux/signal_types.h>
  31#include <linux/mm_types_task.h>
  32#include <linux/task_io_accounting.h>
  33#include <linux/posix-timers.h>
  34#include <linux/rseq.h>
  35#include <linux/seqlock.h>
  36#include <linux/kcsan.h>
  37
  38/* task_struct member predeclarations (sorted alphabetically): */
  39struct audit_context;
  40struct backing_dev_info;
  41struct bio_list;
  42struct blk_plug;
  43struct capture_control;
  44struct cfs_rq;
  45struct fs_struct;
  46struct futex_pi_state;
  47struct io_context;
  48struct mempolicy;
  49struct nameidata;
  50struct nsproxy;
  51struct perf_event_context;
  52struct pid_namespace;
  53struct pipe_inode_info;
  54struct rcu_node;
  55struct reclaim_state;
  56struct robust_list_head;
  57struct root_domain;
  58struct rq;
  59struct sched_attr;
  60struct sched_param;
  61struct seq_file;
  62struct sighand_struct;
  63struct signal_struct;
  64struct task_delay_info;
  65struct task_group;
  66
  67/*
  68 * Task state bitmask. NOTE! These bits are also
  69 * encoded in fs/proc/array.c: get_task_state().
  70 *
  71 * We have two separate sets of flags: task->state
  72 * is about runnability, while task->exit_state are
  73 * about the task exiting. Confusing, but this way
  74 * modifying one set can't modify the other one by
  75 * mistake.
  76 */
  77
  78/* Used in tsk->state: */
  79#define TASK_RUNNING                    0x0000
  80#define TASK_INTERRUPTIBLE              0x0001
  81#define TASK_UNINTERRUPTIBLE            0x0002
  82#define __TASK_STOPPED                  0x0004
  83#define __TASK_TRACED                   0x0008
  84/* Used in tsk->exit_state: */
  85#define EXIT_DEAD                       0x0010
  86#define EXIT_ZOMBIE                     0x0020
  87#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
  88/* Used in tsk->state again: */
  89#define TASK_PARKED                     0x0040
  90#define TASK_DEAD                       0x0080
  91#define TASK_WAKEKILL                   0x0100
  92#define TASK_WAKING                     0x0200
  93#define TASK_NOLOAD                     0x0400
  94#define TASK_NEW                        0x0800
  95#define TASK_STATE_MAX                  0x1000
  96
  97/* Convenience macros for the sake of set_current_state: */
  98#define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
  99#define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
 100#define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
 101
 102#define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 103
 104/* Convenience macros for the sake of wake_up(): */
 105#define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 106
 107/* get_task_state(): */
 108#define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 109                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 110                                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 111                                         TASK_PARKED)
 112
 113#define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
 114
 115#define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
 116
 117#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 118
 119#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 120
 121/*
 122 * Special states are those that do not use the normal wait-loop pattern. See
 123 * the comment with set_special_state().
 124 */
 125#define is_special_task_state(state)                            \
 126        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
 127
 128#define __set_current_state(state_value)                        \
 129        do {                                                    \
 130                WARN_ON_ONCE(is_special_task_state(state_value));\
 131                current->task_state_change = _THIS_IP_;         \
 132                current->state = (state_value);                 \
 133        } while (0)
 134
 135#define set_current_state(state_value)                          \
 136        do {                                                    \
 137                WARN_ON_ONCE(is_special_task_state(state_value));\
 138                current->task_state_change = _THIS_IP_;         \
 139                smp_store_mb(current->state, (state_value));    \
 140        } while (0)
 141
 142#define set_special_state(state_value)                                  \
 143        do {                                                            \
 144                unsigned long flags; /* may shadow */                   \
 145                WARN_ON_ONCE(!is_special_task_state(state_value));      \
 146                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 147                current->task_state_change = _THIS_IP_;                 \
 148                current->state = (state_value);                         \
 149                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 150        } while (0)
 151#else
 152/*
 153 * set_current_state() includes a barrier so that the write of current->state
 154 * is correctly serialised wrt the caller's subsequent test of whether to
 155 * actually sleep:
 156 *
 157 *   for (;;) {
 158 *      set_current_state(TASK_UNINTERRUPTIBLE);
 159 *      if (CONDITION)
 160 *         break;
 161 *
 162 *      schedule();
 163 *   }
 164 *   __set_current_state(TASK_RUNNING);
 165 *
 166 * If the caller does not need such serialisation (because, for instance, the
 167 * CONDITION test and condition change and wakeup are under the same lock) then
 168 * use __set_current_state().
 169 *
 170 * The above is typically ordered against the wakeup, which does:
 171 *
 172 *   CONDITION = 1;
 173 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 174 *
 175 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 176 * accessing p->state.
 177 *
 178 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 179 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 180 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 181 *
 182 * However, with slightly different timing the wakeup TASK_RUNNING store can
 183 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
 184 * a problem either because that will result in one extra go around the loop
 185 * and our @cond test will save the day.
 186 *
 187 * Also see the comments of try_to_wake_up().
 188 */
 189#define __set_current_state(state_value)                                \
 190        current->state = (state_value)
 191
 192#define set_current_state(state_value)                                  \
 193        smp_store_mb(current->state, (state_value))
 194
 195/*
 196 * set_special_state() should be used for those states when the blocking task
 197 * can not use the regular condition based wait-loop. In that case we must
 198 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 199 * will not collide with our state change.
 200 */
 201#define set_special_state(state_value)                                  \
 202        do {                                                            \
 203                unsigned long flags; /* may shadow */                   \
 204                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 205                current->state = (state_value);                         \
 206                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 207        } while (0)
 208
 209#endif
 210
 211/* Task command name length: */
 212#define TASK_COMM_LEN                   16
 213
 214extern void scheduler_tick(void);
 215
 216#define MAX_SCHEDULE_TIMEOUT            LONG_MAX
 217
 218extern long schedule_timeout(long timeout);
 219extern long schedule_timeout_interruptible(long timeout);
 220extern long schedule_timeout_killable(long timeout);
 221extern long schedule_timeout_uninterruptible(long timeout);
 222extern long schedule_timeout_idle(long timeout);
 223asmlinkage void schedule(void);
 224extern void schedule_preempt_disabled(void);
 225asmlinkage void preempt_schedule_irq(void);
 226
 227extern int __must_check io_schedule_prepare(void);
 228extern void io_schedule_finish(int token);
 229extern long io_schedule_timeout(long timeout);
 230extern void io_schedule(void);
 231
 232/**
 233 * struct prev_cputime - snapshot of system and user cputime
 234 * @utime: time spent in user mode
 235 * @stime: time spent in system mode
 236 * @lock: protects the above two fields
 237 *
 238 * Stores previous user/system time values such that we can guarantee
 239 * monotonicity.
 240 */
 241struct prev_cputime {
 242#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 243        u64                             utime;
 244        u64                             stime;
 245        raw_spinlock_t                  lock;
 246#endif
 247};
 248
 249enum vtime_state {
 250        /* Task is sleeping or running in a CPU with VTIME inactive: */
 251        VTIME_INACTIVE = 0,
 252        /* Task is idle */
 253        VTIME_IDLE,
 254        /* Task runs in kernelspace in a CPU with VTIME active: */
 255        VTIME_SYS,
 256        /* Task runs in userspace in a CPU with VTIME active: */
 257        VTIME_USER,
 258        /* Task runs as guests in a CPU with VTIME active: */
 259        VTIME_GUEST,
 260};
 261
 262struct vtime {
 263        seqcount_t              seqcount;
 264        unsigned long long      starttime;
 265        enum vtime_state        state;
 266        unsigned int            cpu;
 267        u64                     utime;
 268        u64                     stime;
 269        u64                     gtime;
 270};
 271
 272/*
 273 * Utilization clamp constraints.
 274 * @UCLAMP_MIN: Minimum utilization
 275 * @UCLAMP_MAX: Maximum utilization
 276 * @UCLAMP_CNT: Utilization clamp constraints count
 277 */
 278enum uclamp_id {
 279        UCLAMP_MIN = 0,
 280        UCLAMP_MAX,
 281        UCLAMP_CNT
 282};
 283
 284#ifdef CONFIG_SMP
 285extern struct root_domain def_root_domain;
 286extern struct mutex sched_domains_mutex;
 287#endif
 288
 289struct sched_info {
 290#ifdef CONFIG_SCHED_INFO
 291        /* Cumulative counters: */
 292
 293        /* # of times we have run on this CPU: */
 294        unsigned long                   pcount;
 295
 296        /* Time spent waiting on a runqueue: */
 297        unsigned long long              run_delay;
 298
 299        /* Timestamps: */
 300
 301        /* When did we last run on a CPU? */
 302        unsigned long long              last_arrival;
 303
 304        /* When were we last queued to run? */
 305        unsigned long long              last_queued;
 306
 307#endif /* CONFIG_SCHED_INFO */
 308};
 309
 310/*
 311 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 312 * has a few: load, load_avg, util_avg, freq, and capacity.
 313 *
 314 * We define a basic fixed point arithmetic range, and then formalize
 315 * all these metrics based on that basic range.
 316 */
 317# define SCHED_FIXEDPOINT_SHIFT         10
 318# define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
 319
 320/* Increase resolution of cpu_capacity calculations */
 321# define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
 322# define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
 323
 324struct load_weight {
 325        unsigned long                   weight;
 326        u32                             inv_weight;
 327};
 328
 329/**
 330 * struct util_est - Estimation utilization of FAIR tasks
 331 * @enqueued: instantaneous estimated utilization of a task/cpu
 332 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 333 *            utilization of a task
 334 *
 335 * Support data structure to track an Exponential Weighted Moving Average
 336 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 337 * average each time a task completes an activation. Sample's weight is chosen
 338 * so that the EWMA will be relatively insensitive to transient changes to the
 339 * task's workload.
 340 *
 341 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 342 * - task:   the task's util_avg at last task dequeue time
 343 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 344 * Thus, the util_est.enqueued of a task represents the contribution on the
 345 * estimated utilization of the CPU where that task is currently enqueued.
 346 *
 347 * Only for tasks we track a moving average of the past instantaneous
 348 * estimated utilization. This allows to absorb sporadic drops in utilization
 349 * of an otherwise almost periodic task.
 350 */
 351struct util_est {
 352        unsigned int                    enqueued;
 353        unsigned int                    ewma;
 354#define UTIL_EST_WEIGHT_SHIFT           2
 355} __attribute__((__aligned__(sizeof(u64))));
 356
 357/*
 358 * The load/runnable/util_avg accumulates an infinite geometric series
 359 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
 360 *
 361 * [load_avg definition]
 362 *
 363 *   load_avg = runnable% * scale_load_down(load)
 364 *
 365 * [runnable_avg definition]
 366 *
 367 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
 368 *
 369 * [util_avg definition]
 370 *
 371 *   util_avg = running% * SCHED_CAPACITY_SCALE
 372 *
 373 * where runnable% is the time ratio that a sched_entity is runnable and
 374 * running% the time ratio that a sched_entity is running.
 375 *
 376 * For cfs_rq, they are the aggregated values of all runnable and blocked
 377 * sched_entities.
 378 *
 379 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
 380 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 381 * for computing those signals (see update_rq_clock_pelt())
 382 *
 383 * N.B., the above ratios (runnable% and running%) themselves are in the
 384 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 385 * to as large a range as necessary. This is for example reflected by
 386 * util_avg's SCHED_CAPACITY_SCALE.
 387 *
 388 * [Overflow issue]
 389 *
 390 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 391 * with the highest load (=88761), always runnable on a single cfs_rq,
 392 * and should not overflow as the number already hits PID_MAX_LIMIT.
 393 *
 394 * For all other cases (including 32-bit kernels), struct load_weight's
 395 * weight will overflow first before we do, because:
 396 *
 397 *    Max(load_avg) <= Max(load.weight)
 398 *
 399 * Then it is the load_weight's responsibility to consider overflow
 400 * issues.
 401 */
 402struct sched_avg {
 403        u64                             last_update_time;
 404        u64                             load_sum;
 405        u64                             runnable_sum;
 406        u32                             util_sum;
 407        u32                             period_contrib;
 408        unsigned long                   load_avg;
 409        unsigned long                   runnable_avg;
 410        unsigned long                   util_avg;
 411        struct util_est                 util_est;
 412} ____cacheline_aligned;
 413
 414struct sched_statistics {
 415#ifdef CONFIG_SCHEDSTATS
 416        u64                             wait_start;
 417        u64                             wait_max;
 418        u64                             wait_count;
 419        u64                             wait_sum;
 420        u64                             iowait_count;
 421        u64                             iowait_sum;
 422
 423        u64                             sleep_start;
 424        u64                             sleep_max;
 425        s64                             sum_sleep_runtime;
 426
 427        u64                             block_start;
 428        u64                             block_max;
 429        u64                             exec_max;
 430        u64                             slice_max;
 431
 432        u64                             nr_migrations_cold;
 433        u64                             nr_failed_migrations_affine;
 434        u64                             nr_failed_migrations_running;
 435        u64                             nr_failed_migrations_hot;
 436        u64                             nr_forced_migrations;
 437
 438        u64                             nr_wakeups;
 439        u64                             nr_wakeups_sync;
 440        u64                             nr_wakeups_migrate;
 441        u64                             nr_wakeups_local;
 442        u64                             nr_wakeups_remote;
 443        u64                             nr_wakeups_affine;
 444        u64                             nr_wakeups_affine_attempts;
 445        u64                             nr_wakeups_passive;
 446        u64                             nr_wakeups_idle;
 447#endif
 448};
 449
 450struct sched_entity {
 451        /* For load-balancing: */
 452        struct load_weight              load;
 453        struct rb_node                  run_node;
 454        struct list_head                group_node;
 455        unsigned int                    on_rq;
 456
 457        u64                             exec_start;
 458        u64                             sum_exec_runtime;
 459        u64                             vruntime;
 460        u64                             prev_sum_exec_runtime;
 461
 462        u64                             nr_migrations;
 463
 464        struct sched_statistics         statistics;
 465
 466#ifdef CONFIG_FAIR_GROUP_SCHED
 467        int                             depth;
 468        struct sched_entity             *parent;
 469        /* rq on which this entity is (to be) queued: */
 470        struct cfs_rq                   *cfs_rq;
 471        /* rq "owned" by this entity/group: */
 472        struct cfs_rq                   *my_q;
 473        /* cached value of my_q->h_nr_running */
 474        unsigned long                   runnable_weight;
 475#endif
 476
 477#ifdef CONFIG_SMP
 478        /*
 479         * Per entity load average tracking.
 480         *
 481         * Put into separate cache line so it does not
 482         * collide with read-mostly values above.
 483         */
 484        struct sched_avg                avg;
 485#endif
 486};
 487
 488struct sched_rt_entity {
 489        struct list_head                run_list;
 490        unsigned long                   timeout;
 491        unsigned long                   watchdog_stamp;
 492        unsigned int                    time_slice;
 493        unsigned short                  on_rq;
 494        unsigned short                  on_list;
 495
 496        struct sched_rt_entity          *back;
 497#ifdef CONFIG_RT_GROUP_SCHED
 498        struct sched_rt_entity          *parent;
 499        /* rq on which this entity is (to be) queued: */
 500        struct rt_rq                    *rt_rq;
 501        /* rq "owned" by this entity/group: */
 502        struct rt_rq                    *my_q;
 503#endif
 504} __randomize_layout;
 505
 506struct sched_dl_entity {
 507        struct rb_node                  rb_node;
 508
 509        /*
 510         * Original scheduling parameters. Copied here from sched_attr
 511         * during sched_setattr(), they will remain the same until
 512         * the next sched_setattr().
 513         */
 514        u64                             dl_runtime;     /* Maximum runtime for each instance    */
 515        u64                             dl_deadline;    /* Relative deadline of each instance   */
 516        u64                             dl_period;      /* Separation of two instances (period) */
 517        u64                             dl_bw;          /* dl_runtime / dl_period               */
 518        u64                             dl_density;     /* dl_runtime / dl_deadline             */
 519
 520        /*
 521         * Actual scheduling parameters. Initialized with the values above,
 522         * they are continuously updated during task execution. Note that
 523         * the remaining runtime could be < 0 in case we are in overrun.
 524         */
 525        s64                             runtime;        /* Remaining runtime for this instance  */
 526        u64                             deadline;       /* Absolute deadline for this instance  */
 527        unsigned int                    flags;          /* Specifying the scheduler behaviour   */
 528
 529        /*
 530         * Some bool flags:
 531         *
 532         * @dl_throttled tells if we exhausted the runtime. If so, the
 533         * task has to wait for a replenishment to be performed at the
 534         * next firing of dl_timer.
 535         *
 536         * @dl_boosted tells if we are boosted due to DI. If so we are
 537         * outside bandwidth enforcement mechanism (but only until we
 538         * exit the critical section);
 539         *
 540         * @dl_yielded tells if task gave up the CPU before consuming
 541         * all its available runtime during the last job.
 542         *
 543         * @dl_non_contending tells if the task is inactive while still
 544         * contributing to the active utilization. In other words, it
 545         * indicates if the inactive timer has been armed and its handler
 546         * has not been executed yet. This flag is useful to avoid race
 547         * conditions between the inactive timer handler and the wakeup
 548         * code.
 549         *
 550         * @dl_overrun tells if the task asked to be informed about runtime
 551         * overruns.
 552         */
 553        unsigned int                    dl_throttled      : 1;
 554        unsigned int                    dl_boosted        : 1;
 555        unsigned int                    dl_yielded        : 1;
 556        unsigned int                    dl_non_contending : 1;
 557        unsigned int                    dl_overrun        : 1;
 558
 559        /*
 560         * Bandwidth enforcement timer. Each -deadline task has its
 561         * own bandwidth to be enforced, thus we need one timer per task.
 562         */
 563        struct hrtimer                  dl_timer;
 564
 565        /*
 566         * Inactive timer, responsible for decreasing the active utilization
 567         * at the "0-lag time". When a -deadline task blocks, it contributes
 568         * to GRUB's active utilization until the "0-lag time", hence a
 569         * timer is needed to decrease the active utilization at the correct
 570         * time.
 571         */
 572        struct hrtimer inactive_timer;
 573};
 574
 575#ifdef CONFIG_UCLAMP_TASK
 576/* Number of utilization clamp buckets (shorter alias) */
 577#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
 578
 579/*
 580 * Utilization clamp for a scheduling entity
 581 * @value:              clamp value "assigned" to a se
 582 * @bucket_id:          bucket index corresponding to the "assigned" value
 583 * @active:             the se is currently refcounted in a rq's bucket
 584 * @user_defined:       the requested clamp value comes from user-space
 585 *
 586 * The bucket_id is the index of the clamp bucket matching the clamp value
 587 * which is pre-computed and stored to avoid expensive integer divisions from
 588 * the fast path.
 589 *
 590 * The active bit is set whenever a task has got an "effective" value assigned,
 591 * which can be different from the clamp value "requested" from user-space.
 592 * This allows to know a task is refcounted in the rq's bucket corresponding
 593 * to the "effective" bucket_id.
 594 *
 595 * The user_defined bit is set whenever a task has got a task-specific clamp
 596 * value requested from userspace, i.e. the system defaults apply to this task
 597 * just as a restriction. This allows to relax default clamps when a less
 598 * restrictive task-specific value has been requested, thus allowing to
 599 * implement a "nice" semantic. For example, a task running with a 20%
 600 * default boost can still drop its own boosting to 0%.
 601 */
 602struct uclamp_se {
 603        unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
 604        unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
 605        unsigned int active             : 1;
 606        unsigned int user_defined       : 1;
 607};
 608#endif /* CONFIG_UCLAMP_TASK */
 609
 610union rcu_special {
 611        struct {
 612                u8                      blocked;
 613                u8                      need_qs;
 614                u8                      exp_hint; /* Hint for performance. */
 615                u8                      need_mb; /* Readers need smp_mb(). */
 616        } b; /* Bits. */
 617        u32 s; /* Set of bits. */
 618};
 619
 620enum perf_event_task_context {
 621        perf_invalid_context = -1,
 622        perf_hw_context = 0,
 623        perf_sw_context,
 624        perf_nr_task_contexts,
 625};
 626
 627struct wake_q_node {
 628        struct wake_q_node *next;
 629};
 630
 631struct task_struct {
 632#ifdef CONFIG_THREAD_INFO_IN_TASK
 633        /*
 634         * For reasons of header soup (see current_thread_info()), this
 635         * must be the first element of task_struct.
 636         */
 637        struct thread_info              thread_info;
 638#endif
 639        /* -1 unrunnable, 0 runnable, >0 stopped: */
 640        volatile long                   state;
 641
 642        /*
 643         * This begins the randomizable portion of task_struct. Only
 644         * scheduling-critical items should be added above here.
 645         */
 646        randomized_struct_fields_start
 647
 648        void                            *stack;
 649        refcount_t                      usage;
 650        /* Per task flags (PF_*), defined further below: */
 651        unsigned int                    flags;
 652        unsigned int                    ptrace;
 653
 654#ifdef CONFIG_SMP
 655        int                             on_cpu;
 656        struct __call_single_node       wake_entry;
 657#ifdef CONFIG_THREAD_INFO_IN_TASK
 658        /* Current CPU: */
 659        unsigned int                    cpu;
 660#endif
 661        unsigned int                    wakee_flips;
 662        unsigned long                   wakee_flip_decay_ts;
 663        struct task_struct              *last_wakee;
 664
 665        /*
 666         * recent_used_cpu is initially set as the last CPU used by a task
 667         * that wakes affine another task. Waker/wakee relationships can
 668         * push tasks around a CPU where each wakeup moves to the next one.
 669         * Tracking a recently used CPU allows a quick search for a recently
 670         * used CPU that may be idle.
 671         */
 672        int                             recent_used_cpu;
 673        int                             wake_cpu;
 674#endif
 675        int                             on_rq;
 676
 677        int                             prio;
 678        int                             static_prio;
 679        int                             normal_prio;
 680        unsigned int                    rt_priority;
 681
 682        const struct sched_class        *sched_class;
 683        struct sched_entity             se;
 684        struct sched_rt_entity          rt;
 685#ifdef CONFIG_CGROUP_SCHED
 686        struct task_group               *sched_task_group;
 687#endif
 688        struct sched_dl_entity          dl;
 689
 690#ifdef CONFIG_UCLAMP_TASK
 691        /*
 692         * Clamp values requested for a scheduling entity.
 693         * Must be updated with task_rq_lock() held.
 694         */
 695        struct uclamp_se                uclamp_req[UCLAMP_CNT];
 696        /*
 697         * Effective clamp values used for a scheduling entity.
 698         * Must be updated with task_rq_lock() held.
 699         */
 700        struct uclamp_se                uclamp[UCLAMP_CNT];
 701#endif
 702
 703#ifdef CONFIG_PREEMPT_NOTIFIERS
 704        /* List of struct preempt_notifier: */
 705        struct hlist_head               preempt_notifiers;
 706#endif
 707
 708#ifdef CONFIG_BLK_DEV_IO_TRACE
 709        unsigned int                    btrace_seq;
 710#endif
 711
 712        unsigned int                    policy;
 713        int                             nr_cpus_allowed;
 714        const cpumask_t                 *cpus_ptr;
 715        cpumask_t                       cpus_mask;
 716
 717#ifdef CONFIG_PREEMPT_RCU
 718        int                             rcu_read_lock_nesting;
 719        union rcu_special               rcu_read_unlock_special;
 720        struct list_head                rcu_node_entry;
 721        struct rcu_node                 *rcu_blocked_node;
 722#endif /* #ifdef CONFIG_PREEMPT_RCU */
 723
 724#ifdef CONFIG_TASKS_RCU
 725        unsigned long                   rcu_tasks_nvcsw;
 726        u8                              rcu_tasks_holdout;
 727        u8                              rcu_tasks_idx;
 728        int                             rcu_tasks_idle_cpu;
 729        struct list_head                rcu_tasks_holdout_list;
 730#endif /* #ifdef CONFIG_TASKS_RCU */
 731
 732#ifdef CONFIG_TASKS_TRACE_RCU
 733        int                             trc_reader_nesting;
 734        int                             trc_ipi_to_cpu;
 735        union rcu_special               trc_reader_special;
 736        bool                            trc_reader_checked;
 737        struct list_head                trc_holdout_list;
 738#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 739
 740        struct sched_info               sched_info;
 741
 742        struct list_head                tasks;
 743#ifdef CONFIG_SMP
 744        struct plist_node               pushable_tasks;
 745        struct rb_node                  pushable_dl_tasks;
 746#endif
 747
 748        struct mm_struct                *mm;
 749        struct mm_struct                *active_mm;
 750
 751        /* Per-thread vma caching: */
 752        struct vmacache                 vmacache;
 753
 754#ifdef SPLIT_RSS_COUNTING
 755        struct task_rss_stat            rss_stat;
 756#endif
 757        int                             exit_state;
 758        int                             exit_code;
 759        int                             exit_signal;
 760        /* The signal sent when the parent dies: */
 761        int                             pdeath_signal;
 762        /* JOBCTL_*, siglock protected: */
 763        unsigned long                   jobctl;
 764
 765        /* Used for emulating ABI behavior of previous Linux versions: */
 766        unsigned int                    personality;
 767
 768        /* Scheduler bits, serialized by scheduler locks: */
 769        unsigned                        sched_reset_on_fork:1;
 770        unsigned                        sched_contributes_to_load:1;
 771        unsigned                        sched_migrated:1;
 772        unsigned                        sched_remote_wakeup:1;
 773#ifdef CONFIG_PSI
 774        unsigned                        sched_psi_wake_requeue:1;
 775#endif
 776
 777        /* Force alignment to the next boundary: */
 778        unsigned                        :0;
 779
 780        /* Unserialized, strictly 'current' */
 781
 782        /* Bit to tell LSMs we're in execve(): */
 783        unsigned                        in_execve:1;
 784        unsigned                        in_iowait:1;
 785#ifndef TIF_RESTORE_SIGMASK
 786        unsigned                        restore_sigmask:1;
 787#endif
 788#ifdef CONFIG_MEMCG
 789        unsigned                        in_user_fault:1;
 790#endif
 791#ifdef CONFIG_COMPAT_BRK
 792        unsigned                        brk_randomized:1;
 793#endif
 794#ifdef CONFIG_CGROUPS
 795        /* disallow userland-initiated cgroup migration */
 796        unsigned                        no_cgroup_migration:1;
 797        /* task is frozen/stopped (used by the cgroup freezer) */
 798        unsigned                        frozen:1;
 799#endif
 800#ifdef CONFIG_BLK_CGROUP
 801        unsigned                        use_memdelay:1;
 802#endif
 803#ifdef CONFIG_PSI
 804        /* Stalled due to lack of memory */
 805        unsigned                        in_memstall:1;
 806#endif
 807
 808        unsigned long                   atomic_flags; /* Flags requiring atomic access. */
 809
 810        struct restart_block            restart_block;
 811
 812        pid_t                           pid;
 813        pid_t                           tgid;
 814
 815#ifdef CONFIG_STACKPROTECTOR
 816        /* Canary value for the -fstack-protector GCC feature: */
 817        unsigned long                   stack_canary;
 818#endif
 819        /*
 820         * Pointers to the (original) parent process, youngest child, younger sibling,
 821         * older sibling, respectively.  (p->father can be replaced with
 822         * p->real_parent->pid)
 823         */
 824
 825        /* Real parent process: */
 826        struct task_struct __rcu        *real_parent;
 827
 828        /* Recipient of SIGCHLD, wait4() reports: */
 829        struct task_struct __rcu        *parent;
 830
 831        /*
 832         * Children/sibling form the list of natural children:
 833         */
 834        struct list_head                children;
 835        struct list_head                sibling;
 836        struct task_struct              *group_leader;
 837
 838        /*
 839         * 'ptraced' is the list of tasks this task is using ptrace() on.
 840         *
 841         * This includes both natural children and PTRACE_ATTACH targets.
 842         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 843         */
 844        struct list_head                ptraced;
 845        struct list_head                ptrace_entry;
 846
 847        /* PID/PID hash table linkage. */
 848        struct pid                      *thread_pid;
 849        struct hlist_node               pid_links[PIDTYPE_MAX];
 850        struct list_head                thread_group;
 851        struct list_head                thread_node;
 852
 853        struct completion               *vfork_done;
 854
 855        /* CLONE_CHILD_SETTID: */
 856        int __user                      *set_child_tid;
 857
 858        /* CLONE_CHILD_CLEARTID: */
 859        int __user                      *clear_child_tid;
 860
 861        u64                             utime;
 862        u64                             stime;
 863#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 864        u64                             utimescaled;
 865        u64                             stimescaled;
 866#endif
 867        u64                             gtime;
 868        struct prev_cputime             prev_cputime;
 869#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 870        struct vtime                    vtime;
 871#endif
 872
 873#ifdef CONFIG_NO_HZ_FULL
 874        atomic_t                        tick_dep_mask;
 875#endif
 876        /* Context switch counts: */
 877        unsigned long                   nvcsw;
 878        unsigned long                   nivcsw;
 879
 880        /* Monotonic time in nsecs: */
 881        u64                             start_time;
 882
 883        /* Boot based time in nsecs: */
 884        u64                             start_boottime;
 885
 886        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
 887        unsigned long                   min_flt;
 888        unsigned long                   maj_flt;
 889
 890        /* Empty if CONFIG_POSIX_CPUTIMERS=n */
 891        struct posix_cputimers          posix_cputimers;
 892
 893#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
 894        struct posix_cputimers_work     posix_cputimers_work;
 895#endif
 896
 897        /* Process credentials: */
 898
 899        /* Tracer's credentials at attach: */
 900        const struct cred __rcu         *ptracer_cred;
 901
 902        /* Objective and real subjective task credentials (COW): */
 903        const struct cred __rcu         *real_cred;
 904
 905        /* Effective (overridable) subjective task credentials (COW): */
 906        const struct cred __rcu         *cred;
 907
 908#ifdef CONFIG_KEYS
 909        /* Cached requested key. */
 910        struct key                      *cached_requested_key;
 911#endif
 912
 913        /*
 914         * executable name, excluding path.
 915         *
 916         * - normally initialized setup_new_exec()
 917         * - access it with [gs]et_task_comm()
 918         * - lock it with task_lock()
 919         */
 920        char                            comm[TASK_COMM_LEN];
 921
 922        struct nameidata                *nameidata;
 923
 924#ifdef CONFIG_SYSVIPC
 925        struct sysv_sem                 sysvsem;
 926        struct sysv_shm                 sysvshm;
 927#endif
 928#ifdef CONFIG_DETECT_HUNG_TASK
 929        unsigned long                   last_switch_count;
 930        unsigned long                   last_switch_time;
 931#endif
 932        /* Filesystem information: */
 933        struct fs_struct                *fs;
 934
 935        /* Open file information: */
 936        struct files_struct             *files;
 937
 938        /* Namespaces: */
 939        struct nsproxy                  *nsproxy;
 940
 941        /* Signal handlers: */
 942        struct signal_struct            *signal;
 943        struct sighand_struct __rcu             *sighand;
 944        sigset_t                        blocked;
 945        sigset_t                        real_blocked;
 946        /* Restored if set_restore_sigmask() was used: */
 947        sigset_t                        saved_sigmask;
 948        struct sigpending               pending;
 949        unsigned long                   sas_ss_sp;
 950        size_t                          sas_ss_size;
 951        unsigned int                    sas_ss_flags;
 952
 953        struct callback_head            *task_works;
 954
 955#ifdef CONFIG_AUDIT
 956#ifdef CONFIG_AUDITSYSCALL
 957        struct audit_context            *audit_context;
 958#endif
 959        kuid_t                          loginuid;
 960        unsigned int                    sessionid;
 961#endif
 962        struct seccomp                  seccomp;
 963
 964        /* Thread group tracking: */
 965        u64                             parent_exec_id;
 966        u64                             self_exec_id;
 967
 968        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
 969        spinlock_t                      alloc_lock;
 970
 971        /* Protection of the PI data structures: */
 972        raw_spinlock_t                  pi_lock;
 973
 974        struct wake_q_node              wake_q;
 975
 976#ifdef CONFIG_RT_MUTEXES
 977        /* PI waiters blocked on a rt_mutex held by this task: */
 978        struct rb_root_cached           pi_waiters;
 979        /* Updated under owner's pi_lock and rq lock */
 980        struct task_struct              *pi_top_task;
 981        /* Deadlock detection and priority inheritance handling: */
 982        struct rt_mutex_waiter          *pi_blocked_on;
 983#endif
 984
 985#ifdef CONFIG_DEBUG_MUTEXES
 986        /* Mutex deadlock detection: */
 987        struct mutex_waiter             *blocked_on;
 988#endif
 989
 990#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 991        int                             non_block_count;
 992#endif
 993
 994#ifdef CONFIG_TRACE_IRQFLAGS
 995        struct irqtrace_events          irqtrace;
 996        unsigned int                    hardirq_threaded;
 997        u64                             hardirq_chain_key;
 998        int                             softirqs_enabled;
 999        int                             softirq_context;
1000        int                             irq_config;
1001#endif
1002
1003#ifdef CONFIG_LOCKDEP
1004# define MAX_LOCK_DEPTH                 48UL
1005        u64                             curr_chain_key;
1006        int                             lockdep_depth;
1007        unsigned int                    lockdep_recursion;
1008        struct held_lock                held_locks[MAX_LOCK_DEPTH];
1009#endif
1010
1011#ifdef CONFIG_UBSAN
1012        unsigned int                    in_ubsan;
1013#endif
1014
1015        /* Journalling filesystem info: */
1016        void                            *journal_info;
1017
1018        /* Stacked block device info: */
1019        struct bio_list                 *bio_list;
1020
1021#ifdef CONFIG_BLOCK
1022        /* Stack plugging: */
1023        struct blk_plug                 *plug;
1024#endif
1025
1026        /* VM state: */
1027        struct reclaim_state            *reclaim_state;
1028
1029        struct backing_dev_info         *backing_dev_info;
1030
1031        struct io_context               *io_context;
1032
1033#ifdef CONFIG_COMPACTION
1034        struct capture_control          *capture_control;
1035#endif
1036        /* Ptrace state: */
1037        unsigned long                   ptrace_message;
1038        kernel_siginfo_t                *last_siginfo;
1039
1040        struct task_io_accounting       ioac;
1041#ifdef CONFIG_PSI
1042        /* Pressure stall state */
1043        unsigned int                    psi_flags;
1044#endif
1045#ifdef CONFIG_TASK_XACCT
1046        /* Accumulated RSS usage: */
1047        u64                             acct_rss_mem1;
1048        /* Accumulated virtual memory usage: */
1049        u64                             acct_vm_mem1;
1050        /* stime + utime since last update: */
1051        u64                             acct_timexpd;
1052#endif
1053#ifdef CONFIG_CPUSETS
1054        /* Protected by ->alloc_lock: */
1055        nodemask_t                      mems_allowed;
1056        /* Seqence number to catch updates: */
1057        seqcount_spinlock_t             mems_allowed_seq;
1058        int                             cpuset_mem_spread_rotor;
1059        int                             cpuset_slab_spread_rotor;
1060#endif
1061#ifdef CONFIG_CGROUPS
1062        /* Control Group info protected by css_set_lock: */
1063        struct css_set __rcu            *cgroups;
1064        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1065        struct list_head                cg_list;
1066#endif
1067#ifdef CONFIG_X86_CPU_RESCTRL
1068        u32                             closid;
1069        u32                             rmid;
1070#endif
1071#ifdef CONFIG_FUTEX
1072        struct robust_list_head __user  *robust_list;
1073#ifdef CONFIG_COMPAT
1074        struct compat_robust_list_head __user *compat_robust_list;
1075#endif
1076        struct list_head                pi_state_list;
1077        struct futex_pi_state           *pi_state_cache;
1078        struct mutex                    futex_exit_mutex;
1079        unsigned int                    futex_state;
1080#endif
1081#ifdef CONFIG_PERF_EVENTS
1082        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1083        struct mutex                    perf_event_mutex;
1084        struct list_head                perf_event_list;
1085#endif
1086#ifdef CONFIG_DEBUG_PREEMPT
1087        unsigned long                   preempt_disable_ip;
1088#endif
1089#ifdef CONFIG_NUMA
1090        /* Protected by alloc_lock: */
1091        struct mempolicy                *mempolicy;
1092        short                           il_prev;
1093        short                           pref_node_fork;
1094#endif
1095#ifdef CONFIG_NUMA_BALANCING
1096        int                             numa_scan_seq;
1097        unsigned int                    numa_scan_period;
1098        unsigned int                    numa_scan_period_max;
1099        int                             numa_preferred_nid;
1100        unsigned long                   numa_migrate_retry;
1101        /* Migration stamp: */
1102        u64                             node_stamp;
1103        u64                             last_task_numa_placement;
1104        u64                             last_sum_exec_runtime;
1105        struct callback_head            numa_work;
1106
1107        /*
1108         * This pointer is only modified for current in syscall and
1109         * pagefault context (and for tasks being destroyed), so it can be read
1110         * from any of the following contexts:
1111         *  - RCU read-side critical section
1112         *  - current->numa_group from everywhere
1113         *  - task's runqueue locked, task not running
1114         */
1115        struct numa_group __rcu         *numa_group;
1116
1117        /*
1118         * numa_faults is an array split into four regions:
1119         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1120         * in this precise order.
1121         *
1122         * faults_memory: Exponential decaying average of faults on a per-node
1123         * basis. Scheduling placement decisions are made based on these
1124         * counts. The values remain static for the duration of a PTE scan.
1125         * faults_cpu: Track the nodes the process was running on when a NUMA
1126         * hinting fault was incurred.
1127         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1128         * during the current scan window. When the scan completes, the counts
1129         * in faults_memory and faults_cpu decay and these values are copied.
1130         */
1131        unsigned long                   *numa_faults;
1132        unsigned long                   total_numa_faults;
1133
1134        /*
1135         * numa_faults_locality tracks if faults recorded during the last
1136         * scan window were remote/local or failed to migrate. The task scan
1137         * period is adapted based on the locality of the faults with different
1138         * weights depending on whether they were shared or private faults
1139         */
1140        unsigned long                   numa_faults_locality[3];
1141
1142        unsigned long                   numa_pages_migrated;
1143#endif /* CONFIG_NUMA_BALANCING */
1144
1145#ifdef CONFIG_RSEQ
1146        struct rseq __user *rseq;
1147        u32 rseq_sig;
1148        /*
1149         * RmW on rseq_event_mask must be performed atomically
1150         * with respect to preemption.
1151         */
1152        unsigned long rseq_event_mask;
1153#endif
1154
1155        struct tlbflush_unmap_batch     tlb_ubc;
1156
1157        union {
1158                refcount_t              rcu_users;
1159                struct rcu_head         rcu;
1160        };
1161
1162        /* Cache last used pipe for splice(): */
1163        struct pipe_inode_info          *splice_pipe;
1164
1165        struct page_frag                task_frag;
1166
1167#ifdef CONFIG_TASK_DELAY_ACCT
1168        struct task_delay_info          *delays;
1169#endif
1170
1171#ifdef CONFIG_FAULT_INJECTION
1172        int                             make_it_fail;
1173        unsigned int                    fail_nth;
1174#endif
1175        /*
1176         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1177         * balance_dirty_pages() for a dirty throttling pause:
1178         */
1179        int                             nr_dirtied;
1180        int                             nr_dirtied_pause;
1181        /* Start of a write-and-pause period: */
1182        unsigned long                   dirty_paused_when;
1183
1184#ifdef CONFIG_LATENCYTOP
1185        int                             latency_record_count;
1186        struct latency_record           latency_record[LT_SAVECOUNT];
1187#endif
1188        /*
1189         * Time slack values; these are used to round up poll() and
1190         * select() etc timeout values. These are in nanoseconds.
1191         */
1192        u64                             timer_slack_ns;
1193        u64                             default_timer_slack_ns;
1194
1195#ifdef CONFIG_KASAN
1196        unsigned int                    kasan_depth;
1197#endif
1198
1199#ifdef CONFIG_KCSAN
1200        struct kcsan_ctx                kcsan_ctx;
1201#ifdef CONFIG_TRACE_IRQFLAGS
1202        struct irqtrace_events          kcsan_save_irqtrace;
1203#endif
1204#endif
1205
1206#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1207        /* Index of current stored address in ret_stack: */
1208        int                             curr_ret_stack;
1209        int                             curr_ret_depth;
1210
1211        /* Stack of return addresses for return function tracing: */
1212        struct ftrace_ret_stack         *ret_stack;
1213
1214        /* Timestamp for last schedule: */
1215        unsigned long long              ftrace_timestamp;
1216
1217        /*
1218         * Number of functions that haven't been traced
1219         * because of depth overrun:
1220         */
1221        atomic_t                        trace_overrun;
1222
1223        /* Pause tracing: */
1224        atomic_t                        tracing_graph_pause;
1225#endif
1226
1227#ifdef CONFIG_TRACING
1228        /* State flags for use by tracers: */
1229        unsigned long                   trace;
1230
1231        /* Bitmask and counter of trace recursion: */
1232        unsigned long                   trace_recursion;
1233#endif /* CONFIG_TRACING */
1234
1235#ifdef CONFIG_KCOV
1236        /* See kernel/kcov.c for more details. */
1237
1238        /* Coverage collection mode enabled for this task (0 if disabled): */
1239        unsigned int                    kcov_mode;
1240
1241        /* Size of the kcov_area: */
1242        unsigned int                    kcov_size;
1243
1244        /* Buffer for coverage collection: */
1245        void                            *kcov_area;
1246
1247        /* KCOV descriptor wired with this task or NULL: */
1248        struct kcov                     *kcov;
1249
1250        /* KCOV common handle for remote coverage collection: */
1251        u64                             kcov_handle;
1252
1253        /* KCOV sequence number: */
1254        int                             kcov_sequence;
1255
1256        /* Collect coverage from softirq context: */
1257        unsigned int                    kcov_softirq;
1258#endif
1259
1260#ifdef CONFIG_MEMCG
1261        struct mem_cgroup               *memcg_in_oom;
1262        gfp_t                           memcg_oom_gfp_mask;
1263        int                             memcg_oom_order;
1264
1265        /* Number of pages to reclaim on returning to userland: */
1266        unsigned int                    memcg_nr_pages_over_high;
1267
1268        /* Used by memcontrol for targeted memcg charge: */
1269        struct mem_cgroup               *active_memcg;
1270#endif
1271
1272#ifdef CONFIG_BLK_CGROUP
1273        struct request_queue            *throttle_queue;
1274#endif
1275
1276#ifdef CONFIG_UPROBES
1277        struct uprobe_task              *utask;
1278#endif
1279#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1280        unsigned int                    sequential_io;
1281        unsigned int                    sequential_io_avg;
1282#endif
1283#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1284        unsigned long                   task_state_change;
1285#endif
1286        int                             pagefault_disabled;
1287#ifdef CONFIG_MMU
1288        struct task_struct              *oom_reaper_list;
1289#endif
1290#ifdef CONFIG_VMAP_STACK
1291        struct vm_struct                *stack_vm_area;
1292#endif
1293#ifdef CONFIG_THREAD_INFO_IN_TASK
1294        /* A live task holds one reference: */
1295        refcount_t                      stack_refcount;
1296#endif
1297#ifdef CONFIG_LIVEPATCH
1298        int patch_state;
1299#endif
1300#ifdef CONFIG_SECURITY
1301        /* Used by LSM modules for access restriction: */
1302        void                            *security;
1303#endif
1304
1305#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1306        unsigned long                   lowest_stack;
1307        unsigned long                   prev_lowest_stack;
1308#endif
1309
1310#ifdef CONFIG_X86_MCE
1311        u64                             mce_addr;
1312        __u64                           mce_ripv : 1,
1313                                        mce_whole_page : 1,
1314                                        __mce_reserved : 62;
1315        struct callback_head            mce_kill_me;
1316#endif
1317
1318        /*
1319         * New fields for task_struct should be added above here, so that
1320         * they are included in the randomized portion of task_struct.
1321         */
1322        randomized_struct_fields_end
1323
1324        /* CPU-specific state of this task: */
1325        struct thread_struct            thread;
1326
1327        /*
1328         * WARNING: on x86, 'thread_struct' contains a variable-sized
1329         * structure.  It *MUST* be at the end of 'task_struct'.
1330         *
1331         * Do not put anything below here!
1332         */
1333};
1334
1335static inline struct pid *task_pid(struct task_struct *task)
1336{
1337        return task->thread_pid;
1338}
1339
1340/*
1341 * the helpers to get the task's different pids as they are seen
1342 * from various namespaces
1343 *
1344 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1345 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1346 *                     current.
1347 * task_xid_nr_ns()  : id seen from the ns specified;
1348 *
1349 * see also pid_nr() etc in include/linux/pid.h
1350 */
1351pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1352
1353static inline pid_t task_pid_nr(struct task_struct *tsk)
1354{
1355        return tsk->pid;
1356}
1357
1358static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1359{
1360        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1361}
1362
1363static inline pid_t task_pid_vnr(struct task_struct *tsk)
1364{
1365        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1366}
1367
1368
1369static inline pid_t task_tgid_nr(struct task_struct *tsk)
1370{
1371        return tsk->tgid;
1372}
1373
1374/**
1375 * pid_alive - check that a task structure is not stale
1376 * @p: Task structure to be checked.
1377 *
1378 * Test if a process is not yet dead (at most zombie state)
1379 * If pid_alive fails, then pointers within the task structure
1380 * can be stale and must not be dereferenced.
1381 *
1382 * Return: 1 if the process is alive. 0 otherwise.
1383 */
1384static inline int pid_alive(const struct task_struct *p)
1385{
1386        return p->thread_pid != NULL;
1387}
1388
1389static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1390{
1391        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1392}
1393
1394static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1395{
1396        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1397}
1398
1399
1400static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1401{
1402        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1403}
1404
1405static inline pid_t task_session_vnr(struct task_struct *tsk)
1406{
1407        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1408}
1409
1410static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1411{
1412        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1413}
1414
1415static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1416{
1417        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1418}
1419
1420static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1421{
1422        pid_t pid = 0;
1423
1424        rcu_read_lock();
1425        if (pid_alive(tsk))
1426                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1427        rcu_read_unlock();
1428
1429        return pid;
1430}
1431
1432static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1433{
1434        return task_ppid_nr_ns(tsk, &init_pid_ns);
1435}
1436
1437/* Obsolete, do not use: */
1438static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1439{
1440        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1441}
1442
1443#define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1444#define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1445
1446static inline unsigned int task_state_index(struct task_struct *tsk)
1447{
1448        unsigned int tsk_state = READ_ONCE(tsk->state);
1449        unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1450
1451        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1452
1453        if (tsk_state == TASK_IDLE)
1454                state = TASK_REPORT_IDLE;
1455
1456        return fls(state);
1457}
1458
1459static inline char task_index_to_char(unsigned int state)
1460{
1461        static const char state_char[] = "RSDTtXZPI";
1462
1463        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1464
1465        return state_char[state];
1466}
1467
1468static inline char task_state_to_char(struct task_struct *tsk)
1469{
1470        return task_index_to_char(task_state_index(tsk));
1471}
1472
1473/**
1474 * is_global_init - check if a task structure is init. Since init
1475 * is free to have sub-threads we need to check tgid.
1476 * @tsk: Task structure to be checked.
1477 *
1478 * Check if a task structure is the first user space task the kernel created.
1479 *
1480 * Return: 1 if the task structure is init. 0 otherwise.
1481 */
1482static inline int is_global_init(struct task_struct *tsk)
1483{
1484        return task_tgid_nr(tsk) == 1;
1485}
1486
1487extern struct pid *cad_pid;
1488
1489/*
1490 * Per process flags
1491 */
1492#define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1493#define PF_EXITING              0x00000004      /* Getting shut down */
1494#define PF_VCPU                 0x00000010      /* I'm a virtual CPU */
1495#define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1496#define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1497#define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1498#define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1499#define PF_DUMPCORE             0x00000200      /* Dumped core */
1500#define PF_SIGNALED             0x00000400      /* Killed by a signal */
1501#define PF_MEMALLOC             0x00000800      /* Allocating memory */
1502#define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1503#define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1504#define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1505#define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1506#define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1507#define PF_KSWAPD               0x00020000      /* I am kswapd */
1508#define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1509#define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1510#define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1511                                                 * I am cleaning dirty pages from some other bdi. */
1512#define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1513#define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1514#define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1515#define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1516#define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1517#define PF_MEMALLOC_NOCMA       0x10000000      /* All allocation request will have _GFP_MOVABLE cleared */
1518#define PF_IO_WORKER            0x20000000      /* Task is an IO worker */
1519#define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1520#define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1521
1522/*
1523 * Only the _current_ task can read/write to tsk->flags, but other
1524 * tasks can access tsk->flags in readonly mode for example
1525 * with tsk_used_math (like during threaded core dumping).
1526 * There is however an exception to this rule during ptrace
1527 * or during fork: the ptracer task is allowed to write to the
1528 * child->flags of its traced child (same goes for fork, the parent
1529 * can write to the child->flags), because we're guaranteed the
1530 * child is not running and in turn not changing child->flags
1531 * at the same time the parent does it.
1532 */
1533#define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1534#define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1535#define clear_used_math()                       clear_stopped_child_used_math(current)
1536#define set_used_math()                         set_stopped_child_used_math(current)
1537
1538#define conditional_stopped_child_used_math(condition, child) \
1539        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1540
1541#define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1542
1543#define copy_to_stopped_child_used_math(child) \
1544        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1545
1546/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1547#define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1548#define used_math()                             tsk_used_math(current)
1549
1550static inline bool is_percpu_thread(void)
1551{
1552#ifdef CONFIG_SMP
1553        return (current->flags & PF_NO_SETAFFINITY) &&
1554                (current->nr_cpus_allowed  == 1);
1555#else
1556        return true;
1557#endif
1558}
1559
1560/* Per-process atomic flags. */
1561#define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1562#define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1563#define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1564#define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1565#define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1566#define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1567#define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1568#define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1569
1570#define TASK_PFA_TEST(name, func)                                       \
1571        static inline bool task_##func(struct task_struct *p)           \
1572        { return test_bit(PFA_##name, &p->atomic_flags); }
1573
1574#define TASK_PFA_SET(name, func)                                        \
1575        static inline void task_set_##func(struct task_struct *p)       \
1576        { set_bit(PFA_##name, &p->atomic_flags); }
1577
1578#define TASK_PFA_CLEAR(name, func)                                      \
1579        static inline void task_clear_##func(struct task_struct *p)     \
1580        { clear_bit(PFA_##name, &p->atomic_flags); }
1581
1582TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1583TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1584
1585TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1586TASK_PFA_SET(SPREAD_PAGE, spread_page)
1587TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1588
1589TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1590TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1591TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1592
1593TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1594TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1595TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1596
1597TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1598TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1599TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1600
1601TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1602TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1603
1604TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1605TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1606TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1607
1608TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1609TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1610
1611static inline void
1612current_restore_flags(unsigned long orig_flags, unsigned long flags)
1613{
1614        current->flags &= ~flags;
1615        current->flags |= orig_flags & flags;
1616}
1617
1618extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1619extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1620#ifdef CONFIG_SMP
1621extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1622extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1623#else
1624static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1625{
1626}
1627static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1628{
1629        if (!cpumask_test_cpu(0, new_mask))
1630                return -EINVAL;
1631        return 0;
1632}
1633#endif
1634
1635extern int yield_to(struct task_struct *p, bool preempt);
1636extern void set_user_nice(struct task_struct *p, long nice);
1637extern int task_prio(const struct task_struct *p);
1638
1639/**
1640 * task_nice - return the nice value of a given task.
1641 * @p: the task in question.
1642 *
1643 * Return: The nice value [ -20 ... 0 ... 19 ].
1644 */
1645static inline int task_nice(const struct task_struct *p)
1646{
1647        return PRIO_TO_NICE((p)->static_prio);
1648}
1649
1650extern int can_nice(const struct task_struct *p, const int nice);
1651extern int task_curr(const struct task_struct *p);
1652extern int idle_cpu(int cpu);
1653extern int available_idle_cpu(int cpu);
1654extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1655extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1656extern void sched_set_fifo(struct task_struct *p);
1657extern void sched_set_fifo_low(struct task_struct *p);
1658extern void sched_set_normal(struct task_struct *p, int nice);
1659extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1660extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1661extern struct task_struct *idle_task(int cpu);
1662
1663/**
1664 * is_idle_task - is the specified task an idle task?
1665 * @p: the task in question.
1666 *
1667 * Return: 1 if @p is an idle task. 0 otherwise.
1668 */
1669static __always_inline bool is_idle_task(const struct task_struct *p)
1670{
1671        return !!(p->flags & PF_IDLE);
1672}
1673
1674extern struct task_struct *curr_task(int cpu);
1675extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1676
1677void yield(void);
1678
1679union thread_union {
1680#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1681        struct task_struct task;
1682#endif
1683#ifndef CONFIG_THREAD_INFO_IN_TASK
1684        struct thread_info thread_info;
1685#endif
1686        unsigned long stack[THREAD_SIZE/sizeof(long)];
1687};
1688
1689#ifndef CONFIG_THREAD_INFO_IN_TASK
1690extern struct thread_info init_thread_info;
1691#endif
1692
1693extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1694
1695#ifdef CONFIG_THREAD_INFO_IN_TASK
1696static inline struct thread_info *task_thread_info(struct task_struct *task)
1697{
1698        return &task->thread_info;
1699}
1700#elif !defined(__HAVE_THREAD_FUNCTIONS)
1701# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1702#endif
1703
1704/*
1705 * find a task by one of its numerical ids
1706 *
1707 * find_task_by_pid_ns():
1708 *      finds a task by its pid in the specified namespace
1709 * find_task_by_vpid():
1710 *      finds a task by its virtual pid
1711 *
1712 * see also find_vpid() etc in include/linux/pid.h
1713 */
1714
1715extern struct task_struct *find_task_by_vpid(pid_t nr);
1716extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1717
1718/*
1719 * find a task by its virtual pid and get the task struct
1720 */
1721extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1722
1723extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1724extern int wake_up_process(struct task_struct *tsk);
1725extern void wake_up_new_task(struct task_struct *tsk);
1726
1727#ifdef CONFIG_SMP
1728extern void kick_process(struct task_struct *tsk);
1729#else
1730static inline void kick_process(struct task_struct *tsk) { }
1731#endif
1732
1733extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1734
1735static inline void set_task_comm(struct task_struct *tsk, const char *from)
1736{
1737        __set_task_comm(tsk, from, false);
1738}
1739
1740extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1741#define get_task_comm(buf, tsk) ({                      \
1742        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1743        __get_task_comm(buf, sizeof(buf), tsk);         \
1744})
1745
1746#ifdef CONFIG_SMP
1747static __always_inline void scheduler_ipi(void)
1748{
1749        /*
1750         * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1751         * TIF_NEED_RESCHED remotely (for the first time) will also send
1752         * this IPI.
1753         */
1754        preempt_fold_need_resched();
1755}
1756extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1757#else
1758static inline void scheduler_ipi(void) { }
1759static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1760{
1761        return 1;
1762}
1763#endif
1764
1765/*
1766 * Set thread flags in other task's structures.
1767 * See asm/thread_info.h for TIF_xxxx flags available:
1768 */
1769static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1770{
1771        set_ti_thread_flag(task_thread_info(tsk), flag);
1772}
1773
1774static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1775{
1776        clear_ti_thread_flag(task_thread_info(tsk), flag);
1777}
1778
1779static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1780                                          bool value)
1781{
1782        update_ti_thread_flag(task_thread_info(tsk), flag, value);
1783}
1784
1785static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1786{
1787        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1788}
1789
1790static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1791{
1792        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1793}
1794
1795static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1796{
1797        return test_ti_thread_flag(task_thread_info(tsk), flag);
1798}
1799
1800static inline void set_tsk_need_resched(struct task_struct *tsk)
1801{
1802        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1803}
1804
1805static inline void clear_tsk_need_resched(struct task_struct *tsk)
1806{
1807        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1808}
1809
1810static inline int test_tsk_need_resched(struct task_struct *tsk)
1811{
1812        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1813}
1814
1815/*
1816 * cond_resched() and cond_resched_lock(): latency reduction via
1817 * explicit rescheduling in places that are safe. The return
1818 * value indicates whether a reschedule was done in fact.
1819 * cond_resched_lock() will drop the spinlock before scheduling,
1820 */
1821#ifndef CONFIG_PREEMPTION
1822extern int _cond_resched(void);
1823#else
1824static inline int _cond_resched(void) { return 0; }
1825#endif
1826
1827#define cond_resched() ({                       \
1828        ___might_sleep(__FILE__, __LINE__, 0);  \
1829        _cond_resched();                        \
1830})
1831
1832extern int __cond_resched_lock(spinlock_t *lock);
1833
1834#define cond_resched_lock(lock) ({                              \
1835        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1836        __cond_resched_lock(lock);                              \
1837})
1838
1839static inline void cond_resched_rcu(void)
1840{
1841#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1842        rcu_read_unlock();
1843        cond_resched();
1844        rcu_read_lock();
1845#endif
1846}
1847
1848/*
1849 * Does a critical section need to be broken due to another
1850 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1851 * but a general need for low latency)
1852 */
1853static inline int spin_needbreak(spinlock_t *lock)
1854{
1855#ifdef CONFIG_PREEMPTION
1856        return spin_is_contended(lock);
1857#else
1858        return 0;
1859#endif
1860}
1861
1862static __always_inline bool need_resched(void)
1863{
1864        return unlikely(tif_need_resched());
1865}
1866
1867/*
1868 * Wrappers for p->thread_info->cpu access. No-op on UP.
1869 */
1870#ifdef CONFIG_SMP
1871
1872static inline unsigned int task_cpu(const struct task_struct *p)
1873{
1874#ifdef CONFIG_THREAD_INFO_IN_TASK
1875        return READ_ONCE(p->cpu);
1876#else
1877        return READ_ONCE(task_thread_info(p)->cpu);
1878#endif
1879}
1880
1881extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1882
1883#else
1884
1885static inline unsigned int task_cpu(const struct task_struct *p)
1886{
1887        return 0;
1888}
1889
1890static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1891{
1892}
1893
1894#endif /* CONFIG_SMP */
1895
1896/*
1897 * In order to reduce various lock holder preemption latencies provide an
1898 * interface to see if a vCPU is currently running or not.
1899 *
1900 * This allows us to terminate optimistic spin loops and block, analogous to
1901 * the native optimistic spin heuristic of testing if the lock owner task is
1902 * running or not.
1903 */
1904#ifndef vcpu_is_preempted
1905static inline bool vcpu_is_preempted(int cpu)
1906{
1907        return false;
1908}
1909#endif
1910
1911extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1912extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1913
1914#ifndef TASK_SIZE_OF
1915#define TASK_SIZE_OF(tsk)       TASK_SIZE
1916#endif
1917
1918#ifdef CONFIG_RSEQ
1919
1920/*
1921 * Map the event mask on the user-space ABI enum rseq_cs_flags
1922 * for direct mask checks.
1923 */
1924enum rseq_event_mask_bits {
1925        RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1926        RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1927        RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1928};
1929
1930enum rseq_event_mask {
1931        RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
1932        RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
1933        RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
1934};
1935
1936static inline void rseq_set_notify_resume(struct task_struct *t)
1937{
1938        if (t->rseq)
1939                set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1940}
1941
1942void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1943
1944static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1945                                             struct pt_regs *regs)
1946{
1947        if (current->rseq)
1948                __rseq_handle_notify_resume(ksig, regs);
1949}
1950
1951static inline void rseq_signal_deliver(struct ksignal *ksig,
1952                                       struct pt_regs *regs)
1953{
1954        preempt_disable();
1955        __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1956        preempt_enable();
1957        rseq_handle_notify_resume(ksig, regs);
1958}
1959
1960/* rseq_preempt() requires preemption to be disabled. */
1961static inline void rseq_preempt(struct task_struct *t)
1962{
1963        __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1964        rseq_set_notify_resume(t);
1965}
1966
1967/* rseq_migrate() requires preemption to be disabled. */
1968static inline void rseq_migrate(struct task_struct *t)
1969{
1970        __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1971        rseq_set_notify_resume(t);
1972}
1973
1974/*
1975 * If parent process has a registered restartable sequences area, the
1976 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1977 */
1978static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1979{
1980        if (clone_flags & CLONE_VM) {
1981                t->rseq = NULL;
1982                t->rseq_sig = 0;
1983                t->rseq_event_mask = 0;
1984        } else {
1985                t->rseq = current->rseq;
1986                t->rseq_sig = current->rseq_sig;
1987                t->rseq_event_mask = current->rseq_event_mask;
1988        }
1989}
1990
1991static inline void rseq_execve(struct task_struct *t)
1992{
1993        t->rseq = NULL;
1994        t->rseq_sig = 0;
1995        t->rseq_event_mask = 0;
1996}
1997
1998#else
1999
2000static inline void rseq_set_notify_resume(struct task_struct *t)
2001{
2002}
2003static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2004                                             struct pt_regs *regs)
2005{
2006}
2007static inline void rseq_signal_deliver(struct ksignal *ksig,
2008                                       struct pt_regs *regs)
2009{
2010}
2011static inline void rseq_preempt(struct task_struct *t)
2012{
2013}
2014static inline void rseq_migrate(struct task_struct *t)
2015{
2016}
2017static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2018{
2019}
2020static inline void rseq_execve(struct task_struct *t)
2021{
2022}
2023
2024#endif
2025
2026#ifdef CONFIG_DEBUG_RSEQ
2027
2028void rseq_syscall(struct pt_regs *regs);
2029
2030#else
2031
2032static inline void rseq_syscall(struct pt_regs *regs)
2033{
2034}
2035
2036#endif
2037
2038const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2039char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2040int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2041
2042const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2043const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2044const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2045
2046int sched_trace_rq_cpu(struct rq *rq);
2047int sched_trace_rq_nr_running(struct rq *rq);
2048
2049const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2050
2051#endif
2052