linux/include/linux/skbuff.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 *      Definitions for the 'struct sk_buff' memory handlers.
   4 *
   5 *      Authors:
   6 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   7 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   8 */
   9
  10#ifndef _LINUX_SKBUFF_H
  11#define _LINUX_SKBUFF_H
  12
  13#include <linux/kernel.h>
  14#include <linux/compiler.h>
  15#include <linux/time.h>
  16#include <linux/bug.h>
  17#include <linux/bvec.h>
  18#include <linux/cache.h>
  19#include <linux/rbtree.h>
  20#include <linux/socket.h>
  21#include <linux/refcount.h>
  22
  23#include <linux/atomic.h>
  24#include <asm/types.h>
  25#include <linux/spinlock.h>
  26#include <linux/net.h>
  27#include <linux/textsearch.h>
  28#include <net/checksum.h>
  29#include <linux/rcupdate.h>
  30#include <linux/hrtimer.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/netdev_features.h>
  33#include <linux/sched.h>
  34#include <linux/sched/clock.h>
  35#include <net/flow_dissector.h>
  36#include <linux/splice.h>
  37#include <linux/in6.h>
  38#include <linux/if_packet.h>
  39#include <net/flow.h>
  40#if IS_ENABLED(CONFIG_NF_CONNTRACK)
  41#include <linux/netfilter/nf_conntrack_common.h>
  42#endif
  43
  44/* The interface for checksum offload between the stack and networking drivers
  45 * is as follows...
  46 *
  47 * A. IP checksum related features
  48 *
  49 * Drivers advertise checksum offload capabilities in the features of a device.
  50 * From the stack's point of view these are capabilities offered by the driver.
  51 * A driver typically only advertises features that it is capable of offloading
  52 * to its device.
  53 *
  54 * The checksum related features are:
  55 *
  56 *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
  57 *                        IP (one's complement) checksum for any combination
  58 *                        of protocols or protocol layering. The checksum is
  59 *                        computed and set in a packet per the CHECKSUM_PARTIAL
  60 *                        interface (see below).
  61 *
  62 *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
  63 *                        TCP or UDP packets over IPv4. These are specifically
  64 *                        unencapsulated packets of the form IPv4|TCP or
  65 *                        IPv4|UDP where the Protocol field in the IPv4 header
  66 *                        is TCP or UDP. The IPv4 header may contain IP options.
  67 *                        This feature cannot be set in features for a device
  68 *                        with NETIF_F_HW_CSUM also set. This feature is being
  69 *                        DEPRECATED (see below).
  70 *
  71 *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
  72 *                        TCP or UDP packets over IPv6. These are specifically
  73 *                        unencapsulated packets of the form IPv6|TCP or
  74 *                        IPv6|UDP where the Next Header field in the IPv6
  75 *                        header is either TCP or UDP. IPv6 extension headers
  76 *                        are not supported with this feature. This feature
  77 *                        cannot be set in features for a device with
  78 *                        NETIF_F_HW_CSUM also set. This feature is being
  79 *                        DEPRECATED (see below).
  80 *
  81 *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
  82 *                       This flag is only used to disable the RX checksum
  83 *                       feature for a device. The stack will accept receive
  84 *                       checksum indication in packets received on a device
  85 *                       regardless of whether NETIF_F_RXCSUM is set.
  86 *
  87 * B. Checksumming of received packets by device. Indication of checksum
  88 *    verification is set in skb->ip_summed. Possible values are:
  89 *
  90 * CHECKSUM_NONE:
  91 *
  92 *   Device did not checksum this packet e.g. due to lack of capabilities.
  93 *   The packet contains full (though not verified) checksum in packet but
  94 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  95 *
  96 * CHECKSUM_UNNECESSARY:
  97 *
  98 *   The hardware you're dealing with doesn't calculate the full checksum
  99 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
 100 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 101 *   if their checksums are okay. skb->csum is still undefined in this case
 102 *   though. A driver or device must never modify the checksum field in the
 103 *   packet even if checksum is verified.
 104 *
 105 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 106 *     TCP: IPv6 and IPv4.
 107 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 108 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 109 *       may perform further validation in this case.
 110 *     GRE: only if the checksum is present in the header.
 111 *     SCTP: indicates the CRC in SCTP header has been validated.
 112 *     FCOE: indicates the CRC in FC frame has been validated.
 113 *
 114 *   skb->csum_level indicates the number of consecutive checksums found in
 115 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 116 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 117 *   and a device is able to verify the checksums for UDP (possibly zero),
 118 *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
 119 *   two. If the device were only able to verify the UDP checksum and not
 120 *   GRE, either because it doesn't support GRE checksum or because GRE
 121 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 122 *   not considered in this case).
 123 *
 124 * CHECKSUM_COMPLETE:
 125 *
 126 *   This is the most generic way. The device supplied checksum of the _whole_
 127 *   packet as seen by netif_rx() and fills in skb->csum. This means the
 128 *   hardware doesn't need to parse L3/L4 headers to implement this.
 129 *
 130 *   Notes:
 131 *   - Even if device supports only some protocols, but is able to produce
 132 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 133 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
 134 *
 135 * CHECKSUM_PARTIAL:
 136 *
 137 *   A checksum is set up to be offloaded to a device as described in the
 138 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
 139 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 140 *   on the same host, or it may be set in the input path in GRO or remote
 141 *   checksum offload. For the purposes of checksum verification, the checksum
 142 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 143 *   checksums in the packet are considered verified. Any checksums in the
 144 *   packet that are after the checksum being offloaded are not considered to
 145 *   be verified.
 146 *
 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 148 *    in the skb->ip_summed for a packet. Values are:
 149 *
 150 * CHECKSUM_PARTIAL:
 151 *
 152 *   The driver is required to checksum the packet as seen by hard_start_xmit()
 153 *   from skb->csum_start up to the end, and to record/write the checksum at
 154 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 155 *   csum_start and csum_offset values are valid values given the length and
 156 *   offset of the packet, but it should not attempt to validate that the
 157 *   checksum refers to a legitimate transport layer checksum -- it is the
 158 *   purview of the stack to validate that csum_start and csum_offset are set
 159 *   correctly.
 160 *
 161 *   When the stack requests checksum offload for a packet, the driver MUST
 162 *   ensure that the checksum is set correctly. A driver can either offload the
 163 *   checksum calculation to the device, or call skb_checksum_help (in the case
 164 *   that the device does not support offload for a particular checksum).
 165 *
 166 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 167 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
 168 *   checksum offload capability.
 169 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 170 *   on network device checksumming capabilities: if a packet does not match
 171 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 172 *   csum_not_inet, see item D.) is called to resolve the checksum.
 173 *
 174 * CHECKSUM_NONE:
 175 *
 176 *   The skb was already checksummed by the protocol, or a checksum is not
 177 *   required.
 178 *
 179 * CHECKSUM_UNNECESSARY:
 180 *
 181 *   This has the same meaning as CHECKSUM_NONE for checksum offload on
 182 *   output.
 183 *
 184 * CHECKSUM_COMPLETE:
 185 *   Not used in checksum output. If a driver observes a packet with this value
 186 *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
 187 *
 188 * D. Non-IP checksum (CRC) offloads
 189 *
 190 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 191 *     offloading the SCTP CRC in a packet. To perform this offload the stack
 192 *     will set csum_start and csum_offset accordingly, set ip_summed to
 193 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 194 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 195 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 196 *     must verify which offload is configured for a packet by testing the
 197 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 198 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
 199 *
 200 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 201 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 202 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 203 *     accordingly. Note that there is no indication in the skbuff that the
 204 *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
 205 *     both IP checksum offload and FCOE CRC offload must verify which offload
 206 *     is configured for a packet, presumably by inspecting packet headers.
 207 *
 208 * E. Checksumming on output with GSO.
 209 *
 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 213 * part of the GSO operation is implied. If a checksum is being offloaded
 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
 215 * csum_offset are set to refer to the outermost checksum being offloaded
 216 * (two offloaded checksums are possible with UDP encapsulation).
 217 */
 218
 219/* Don't change this without changing skb_csum_unnecessary! */
 220#define CHECKSUM_NONE           0
 221#define CHECKSUM_UNNECESSARY    1
 222#define CHECKSUM_COMPLETE       2
 223#define CHECKSUM_PARTIAL        3
 224
 225/* Maximum value in skb->csum_level */
 226#define SKB_MAX_CSUM_LEVEL      3
 227
 228#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 229#define SKB_WITH_OVERHEAD(X)    \
 230        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 231#define SKB_MAX_ORDER(X, ORDER) \
 232        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 233#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 234#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 235
 236/* return minimum truesize of one skb containing X bytes of data */
 237#define SKB_TRUESIZE(X) ((X) +                                          \
 238                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 239                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 240
 241struct ahash_request;
 242struct net_device;
 243struct scatterlist;
 244struct pipe_inode_info;
 245struct iov_iter;
 246struct napi_struct;
 247struct bpf_prog;
 248union bpf_attr;
 249struct skb_ext;
 250
 251#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 252struct nf_bridge_info {
 253        enum {
 254                BRNF_PROTO_UNCHANGED,
 255                BRNF_PROTO_8021Q,
 256                BRNF_PROTO_PPPOE
 257        } orig_proto:8;
 258        u8                      pkt_otherhost:1;
 259        u8                      in_prerouting:1;
 260        u8                      bridged_dnat:1;
 261        __u16                   frag_max_size;
 262        struct net_device       *physindev;
 263
 264        /* always valid & non-NULL from FORWARD on, for physdev match */
 265        struct net_device       *physoutdev;
 266        union {
 267                /* prerouting: detect dnat in orig/reply direction */
 268                __be32          ipv4_daddr;
 269                struct in6_addr ipv6_daddr;
 270
 271                /* after prerouting + nat detected: store original source
 272                 * mac since neigh resolution overwrites it, only used while
 273                 * skb is out in neigh layer.
 274                 */
 275                char neigh_header[8];
 276        };
 277};
 278#endif
 279
 280#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
 281/* Chain in tc_skb_ext will be used to share the tc chain with
 282 * ovs recirc_id. It will be set to the current chain by tc
 283 * and read by ovs to recirc_id.
 284 */
 285struct tc_skb_ext {
 286        __u32 chain;
 287        __u16 mru;
 288};
 289#endif
 290
 291struct sk_buff_head {
 292        /* These two members must be first. */
 293        struct sk_buff  *next;
 294        struct sk_buff  *prev;
 295
 296        __u32           qlen;
 297        spinlock_t      lock;
 298};
 299
 300struct sk_buff;
 301
 302/* To allow 64K frame to be packed as single skb without frag_list we
 303 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 304 * buffers which do not start on a page boundary.
 305 *
 306 * Since GRO uses frags we allocate at least 16 regardless of page
 307 * size.
 308 */
 309#if (65536/PAGE_SIZE + 1) < 16
 310#define MAX_SKB_FRAGS 16UL
 311#else
 312#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 313#endif
 314extern int sysctl_max_skb_frags;
 315
 316/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 317 * segment using its current segmentation instead.
 318 */
 319#define GSO_BY_FRAGS    0xFFFF
 320
 321typedef struct bio_vec skb_frag_t;
 322
 323/**
 324 * skb_frag_size() - Returns the size of a skb fragment
 325 * @frag: skb fragment
 326 */
 327static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 328{
 329        return frag->bv_len;
 330}
 331
 332/**
 333 * skb_frag_size_set() - Sets the size of a skb fragment
 334 * @frag: skb fragment
 335 * @size: size of fragment
 336 */
 337static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 338{
 339        frag->bv_len = size;
 340}
 341
 342/**
 343 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
 344 * @frag: skb fragment
 345 * @delta: value to add
 346 */
 347static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 348{
 349        frag->bv_len += delta;
 350}
 351
 352/**
 353 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
 354 * @frag: skb fragment
 355 * @delta: value to subtract
 356 */
 357static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 358{
 359        frag->bv_len -= delta;
 360}
 361
 362/**
 363 * skb_frag_must_loop - Test if %p is a high memory page
 364 * @p: fragment's page
 365 */
 366static inline bool skb_frag_must_loop(struct page *p)
 367{
 368#if defined(CONFIG_HIGHMEM)
 369        if (PageHighMem(p))
 370                return true;
 371#endif
 372        return false;
 373}
 374
 375/**
 376 *      skb_frag_foreach_page - loop over pages in a fragment
 377 *
 378 *      @f:             skb frag to operate on
 379 *      @f_off:         offset from start of f->bv_page
 380 *      @f_len:         length from f_off to loop over
 381 *      @p:             (temp var) current page
 382 *      @p_off:         (temp var) offset from start of current page,
 383 *                                 non-zero only on first page.
 384 *      @p_len:         (temp var) length in current page,
 385 *                                 < PAGE_SIZE only on first and last page.
 386 *      @copied:        (temp var) length so far, excluding current p_len.
 387 *
 388 *      A fragment can hold a compound page, in which case per-page
 389 *      operations, notably kmap_atomic, must be called for each
 390 *      regular page.
 391 */
 392#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
 393        for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),            \
 394             p_off = (f_off) & (PAGE_SIZE - 1),                         \
 395             p_len = skb_frag_must_loop(p) ?                            \
 396             min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
 397             copied = 0;                                                \
 398             copied < f_len;                                            \
 399             copied += p_len, p++, p_off = 0,                           \
 400             p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
 401
 402#define HAVE_HW_TIME_STAMP
 403
 404/**
 405 * struct skb_shared_hwtstamps - hardware time stamps
 406 * @hwtstamp:   hardware time stamp transformed into duration
 407 *              since arbitrary point in time
 408 *
 409 * Software time stamps generated by ktime_get_real() are stored in
 410 * skb->tstamp.
 411 *
 412 * hwtstamps can only be compared against other hwtstamps from
 413 * the same device.
 414 *
 415 * This structure is attached to packets as part of the
 416 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 417 */
 418struct skb_shared_hwtstamps {
 419        ktime_t hwtstamp;
 420};
 421
 422/* Definitions for tx_flags in struct skb_shared_info */
 423enum {
 424        /* generate hardware time stamp */
 425        SKBTX_HW_TSTAMP = 1 << 0,
 426
 427        /* generate software time stamp when queueing packet to NIC */
 428        SKBTX_SW_TSTAMP = 1 << 1,
 429
 430        /* device driver is going to provide hardware time stamp */
 431        SKBTX_IN_PROGRESS = 1 << 2,
 432
 433        /* device driver supports TX zero-copy buffers */
 434        SKBTX_DEV_ZEROCOPY = 1 << 3,
 435
 436        /* generate wifi status information (where possible) */
 437        SKBTX_WIFI_STATUS = 1 << 4,
 438
 439        /* This indicates at least one fragment might be overwritten
 440         * (as in vmsplice(), sendfile() ...)
 441         * If we need to compute a TX checksum, we'll need to copy
 442         * all frags to avoid possible bad checksum
 443         */
 444        SKBTX_SHARED_FRAG = 1 << 5,
 445
 446        /* generate software time stamp when entering packet scheduling */
 447        SKBTX_SCHED_TSTAMP = 1 << 6,
 448};
 449
 450#define SKBTX_ZEROCOPY_FRAG     (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
 451#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 452                                 SKBTX_SCHED_TSTAMP)
 453#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 454
 455/*
 456 * The callback notifies userspace to release buffers when skb DMA is done in
 457 * lower device, the skb last reference should be 0 when calling this.
 458 * The zerocopy_success argument is true if zero copy transmit occurred,
 459 * false on data copy or out of memory error caused by data copy attempt.
 460 * The ctx field is used to track device context.
 461 * The desc field is used to track userspace buffer index.
 462 */
 463struct ubuf_info {
 464        void (*callback)(struct ubuf_info *, bool zerocopy_success);
 465        union {
 466                struct {
 467                        unsigned long desc;
 468                        void *ctx;
 469                };
 470                struct {
 471                        u32 id;
 472                        u16 len;
 473                        u16 zerocopy:1;
 474                        u32 bytelen;
 475                };
 476        };
 477        refcount_t refcnt;
 478
 479        struct mmpin {
 480                struct user_struct *user;
 481                unsigned int num_pg;
 482        } mmp;
 483};
 484
 485#define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
 486
 487int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
 488void mm_unaccount_pinned_pages(struct mmpin *mmp);
 489
 490struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
 491struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
 492                                        struct ubuf_info *uarg);
 493
 494static inline void sock_zerocopy_get(struct ubuf_info *uarg)
 495{
 496        refcount_inc(&uarg->refcnt);
 497}
 498
 499void sock_zerocopy_put(struct ubuf_info *uarg);
 500void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
 501
 502void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
 503
 504int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
 505int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
 506                             struct msghdr *msg, int len,
 507                             struct ubuf_info *uarg);
 508
 509/* This data is invariant across clones and lives at
 510 * the end of the header data, ie. at skb->end.
 511 */
 512struct skb_shared_info {
 513        __u8            __unused;
 514        __u8            meta_len;
 515        __u8            nr_frags;
 516        __u8            tx_flags;
 517        unsigned short  gso_size;
 518        /* Warning: this field is not always filled in (UFO)! */
 519        unsigned short  gso_segs;
 520        struct sk_buff  *frag_list;
 521        struct skb_shared_hwtstamps hwtstamps;
 522        unsigned int    gso_type;
 523        u32             tskey;
 524
 525        /*
 526         * Warning : all fields before dataref are cleared in __alloc_skb()
 527         */
 528        atomic_t        dataref;
 529
 530        /* Intermediate layers must ensure that destructor_arg
 531         * remains valid until skb destructor */
 532        void *          destructor_arg;
 533
 534        /* must be last field, see pskb_expand_head() */
 535        skb_frag_t      frags[MAX_SKB_FRAGS];
 536};
 537
 538/* We divide dataref into two halves.  The higher 16 bits hold references
 539 * to the payload part of skb->data.  The lower 16 bits hold references to
 540 * the entire skb->data.  A clone of a headerless skb holds the length of
 541 * the header in skb->hdr_len.
 542 *
 543 * All users must obey the rule that the skb->data reference count must be
 544 * greater than or equal to the payload reference count.
 545 *
 546 * Holding a reference to the payload part means that the user does not
 547 * care about modifications to the header part of skb->data.
 548 */
 549#define SKB_DATAREF_SHIFT 16
 550#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 551
 552
 553enum {
 554        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 555        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 556        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 557};
 558
 559enum {
 560        SKB_GSO_TCPV4 = 1 << 0,
 561
 562        /* This indicates the skb is from an untrusted source. */
 563        SKB_GSO_DODGY = 1 << 1,
 564
 565        /* This indicates the tcp segment has CWR set. */
 566        SKB_GSO_TCP_ECN = 1 << 2,
 567
 568        SKB_GSO_TCP_FIXEDID = 1 << 3,
 569
 570        SKB_GSO_TCPV6 = 1 << 4,
 571
 572        SKB_GSO_FCOE = 1 << 5,
 573
 574        SKB_GSO_GRE = 1 << 6,
 575
 576        SKB_GSO_GRE_CSUM = 1 << 7,
 577
 578        SKB_GSO_IPXIP4 = 1 << 8,
 579
 580        SKB_GSO_IPXIP6 = 1 << 9,
 581
 582        SKB_GSO_UDP_TUNNEL = 1 << 10,
 583
 584        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
 585
 586        SKB_GSO_PARTIAL = 1 << 12,
 587
 588        SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
 589
 590        SKB_GSO_SCTP = 1 << 14,
 591
 592        SKB_GSO_ESP = 1 << 15,
 593
 594        SKB_GSO_UDP = 1 << 16,
 595
 596        SKB_GSO_UDP_L4 = 1 << 17,
 597
 598        SKB_GSO_FRAGLIST = 1 << 18,
 599};
 600
 601#if BITS_PER_LONG > 32
 602#define NET_SKBUFF_DATA_USES_OFFSET 1
 603#endif
 604
 605#ifdef NET_SKBUFF_DATA_USES_OFFSET
 606typedef unsigned int sk_buff_data_t;
 607#else
 608typedef unsigned char *sk_buff_data_t;
 609#endif
 610
 611/**
 612 *      struct sk_buff - socket buffer
 613 *      @next: Next buffer in list
 614 *      @prev: Previous buffer in list
 615 *      @tstamp: Time we arrived/left
 616 *      @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
 617 *              for retransmit timer
 618 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 619 *      @list: queue head
 620 *      @sk: Socket we are owned by
 621 *      @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
 622 *              fragmentation management
 623 *      @dev: Device we arrived on/are leaving by
 624 *      @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
 625 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 626 *      @_skb_refdst: destination entry (with norefcount bit)
 627 *      @sp: the security path, used for xfrm
 628 *      @len: Length of actual data
 629 *      @data_len: Data length
 630 *      @mac_len: Length of link layer header
 631 *      @hdr_len: writable header length of cloned skb
 632 *      @csum: Checksum (must include start/offset pair)
 633 *      @csum_start: Offset from skb->head where checksumming should start
 634 *      @csum_offset: Offset from csum_start where checksum should be stored
 635 *      @priority: Packet queueing priority
 636 *      @ignore_df: allow local fragmentation
 637 *      @cloned: Head may be cloned (check refcnt to be sure)
 638 *      @ip_summed: Driver fed us an IP checksum
 639 *      @nohdr: Payload reference only, must not modify header
 640 *      @pkt_type: Packet class
 641 *      @fclone: skbuff clone status
 642 *      @ipvs_property: skbuff is owned by ipvs
 643 *      @inner_protocol_type: whether the inner protocol is
 644 *              ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
 645 *      @remcsum_offload: remote checksum offload is enabled
 646 *      @offload_fwd_mark: Packet was L2-forwarded in hardware
 647 *      @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
 648 *      @tc_skip_classify: do not classify packet. set by IFB device
 649 *      @tc_at_ingress: used within tc_classify to distinguish in/egress
 650 *      @redirected: packet was redirected by packet classifier
 651 *      @from_ingress: packet was redirected from the ingress path
 652 *      @peeked: this packet has been seen already, so stats have been
 653 *              done for it, don't do them again
 654 *      @nf_trace: netfilter packet trace flag
 655 *      @protocol: Packet protocol from driver
 656 *      @destructor: Destruct function
 657 *      @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
 658 *      @_nfct: Associated connection, if any (with nfctinfo bits)
 659 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 660 *      @skb_iif: ifindex of device we arrived on
 661 *      @tc_index: Traffic control index
 662 *      @hash: the packet hash
 663 *      @queue_mapping: Queue mapping for multiqueue devices
 664 *      @head_frag: skb was allocated from page fragments,
 665 *              not allocated by kmalloc() or vmalloc().
 666 *      @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
 667 *      @active_extensions: active extensions (skb_ext_id types)
 668 *      @ndisc_nodetype: router type (from link layer)
 669 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 670 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 671 *              ports.
 672 *      @sw_hash: indicates hash was computed in software stack
 673 *      @wifi_acked_valid: wifi_acked was set
 674 *      @wifi_acked: whether frame was acked on wifi or not
 675 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 676 *      @encapsulation: indicates the inner headers in the skbuff are valid
 677 *      @encap_hdr_csum: software checksum is needed
 678 *      @csum_valid: checksum is already valid
 679 *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
 680 *      @csum_complete_sw: checksum was completed by software
 681 *      @csum_level: indicates the number of consecutive checksums found in
 682 *              the packet minus one that have been verified as
 683 *              CHECKSUM_UNNECESSARY (max 3)
 684 *      @dst_pending_confirm: need to confirm neighbour
 685 *      @decrypted: Decrypted SKB
 686 *      @napi_id: id of the NAPI struct this skb came from
 687 *      @sender_cpu: (aka @napi_id) source CPU in XPS
 688 *      @secmark: security marking
 689 *      @mark: Generic packet mark
 690 *      @reserved_tailroom: (aka @mark) number of bytes of free space available
 691 *              at the tail of an sk_buff
 692 *      @vlan_present: VLAN tag is present
 693 *      @vlan_proto: vlan encapsulation protocol
 694 *      @vlan_tci: vlan tag control information
 695 *      @inner_protocol: Protocol (encapsulation)
 696 *      @inner_ipproto: (aka @inner_protocol) stores ipproto when
 697 *              skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
 698 *      @inner_transport_header: Inner transport layer header (encapsulation)
 699 *      @inner_network_header: Network layer header (encapsulation)
 700 *      @inner_mac_header: Link layer header (encapsulation)
 701 *      @transport_header: Transport layer header
 702 *      @network_header: Network layer header
 703 *      @mac_header: Link layer header
 704 *      @tail: Tail pointer
 705 *      @end: End pointer
 706 *      @head: Head of buffer
 707 *      @data: Data head pointer
 708 *      @truesize: Buffer size
 709 *      @users: User count - see {datagram,tcp}.c
 710 *      @extensions: allocated extensions, valid if active_extensions is nonzero
 711 */
 712
 713struct sk_buff {
 714        union {
 715                struct {
 716                        /* These two members must be first. */
 717                        struct sk_buff          *next;
 718                        struct sk_buff          *prev;
 719
 720                        union {
 721                                struct net_device       *dev;
 722                                /* Some protocols might use this space to store information,
 723                                 * while device pointer would be NULL.
 724                                 * UDP receive path is one user.
 725                                 */
 726                                unsigned long           dev_scratch;
 727                        };
 728                };
 729                struct rb_node          rbnode; /* used in netem, ip4 defrag, and tcp stack */
 730                struct list_head        list;
 731        };
 732
 733        union {
 734                struct sock             *sk;
 735                int                     ip_defrag_offset;
 736        };
 737
 738        union {
 739                ktime_t         tstamp;
 740                u64             skb_mstamp_ns; /* earliest departure time */
 741        };
 742        /*
 743         * This is the control buffer. It is free to use for every
 744         * layer. Please put your private variables there. If you
 745         * want to keep them across layers you have to do a skb_clone()
 746         * first. This is owned by whoever has the skb queued ATM.
 747         */
 748        char                    cb[48] __aligned(8);
 749
 750        union {
 751                struct {
 752                        unsigned long   _skb_refdst;
 753                        void            (*destructor)(struct sk_buff *skb);
 754                };
 755                struct list_head        tcp_tsorted_anchor;
 756        };
 757
 758#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 759        unsigned long            _nfct;
 760#endif
 761        unsigned int            len,
 762                                data_len;
 763        __u16                   mac_len,
 764                                hdr_len;
 765
 766        /* Following fields are _not_ copied in __copy_skb_header()
 767         * Note that queue_mapping is here mostly to fill a hole.
 768         */
 769        __u16                   queue_mapping;
 770
 771/* if you move cloned around you also must adapt those constants */
 772#ifdef __BIG_ENDIAN_BITFIELD
 773#define CLONED_MASK     (1 << 7)
 774#else
 775#define CLONED_MASK     1
 776#endif
 777#define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
 778
 779        /* private: */
 780        __u8                    __cloned_offset[0];
 781        /* public: */
 782        __u8                    cloned:1,
 783                                nohdr:1,
 784                                fclone:2,
 785                                peeked:1,
 786                                head_frag:1,
 787                                pfmemalloc:1;
 788#ifdef CONFIG_SKB_EXTENSIONS
 789        __u8                    active_extensions;
 790#endif
 791        /* fields enclosed in headers_start/headers_end are copied
 792         * using a single memcpy() in __copy_skb_header()
 793         */
 794        /* private: */
 795        __u32                   headers_start[0];
 796        /* public: */
 797
 798/* if you move pkt_type around you also must adapt those constants */
 799#ifdef __BIG_ENDIAN_BITFIELD
 800#define PKT_TYPE_MAX    (7 << 5)
 801#else
 802#define PKT_TYPE_MAX    7
 803#endif
 804#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 805
 806        /* private: */
 807        __u8                    __pkt_type_offset[0];
 808        /* public: */
 809        __u8                    pkt_type:3;
 810        __u8                    ignore_df:1;
 811        __u8                    nf_trace:1;
 812        __u8                    ip_summed:2;
 813        __u8                    ooo_okay:1;
 814
 815        __u8                    l4_hash:1;
 816        __u8                    sw_hash:1;
 817        __u8                    wifi_acked_valid:1;
 818        __u8                    wifi_acked:1;
 819        __u8                    no_fcs:1;
 820        /* Indicates the inner headers are valid in the skbuff. */
 821        __u8                    encapsulation:1;
 822        __u8                    encap_hdr_csum:1;
 823        __u8                    csum_valid:1;
 824
 825#ifdef __BIG_ENDIAN_BITFIELD
 826#define PKT_VLAN_PRESENT_BIT    7
 827#else
 828#define PKT_VLAN_PRESENT_BIT    0
 829#endif
 830#define PKT_VLAN_PRESENT_OFFSET()       offsetof(struct sk_buff, __pkt_vlan_present_offset)
 831        /* private: */
 832        __u8                    __pkt_vlan_present_offset[0];
 833        /* public: */
 834        __u8                    vlan_present:1;
 835        __u8                    csum_complete_sw:1;
 836        __u8                    csum_level:2;
 837        __u8                    csum_not_inet:1;
 838        __u8                    dst_pending_confirm:1;
 839#ifdef CONFIG_IPV6_NDISC_NODETYPE
 840        __u8                    ndisc_nodetype:2;
 841#endif
 842
 843        __u8                    ipvs_property:1;
 844        __u8                    inner_protocol_type:1;
 845        __u8                    remcsum_offload:1;
 846#ifdef CONFIG_NET_SWITCHDEV
 847        __u8                    offload_fwd_mark:1;
 848        __u8                    offload_l3_fwd_mark:1;
 849#endif
 850#ifdef CONFIG_NET_CLS_ACT
 851        __u8                    tc_skip_classify:1;
 852        __u8                    tc_at_ingress:1;
 853#endif
 854#ifdef CONFIG_NET_REDIRECT
 855        __u8                    redirected:1;
 856        __u8                    from_ingress:1;
 857#endif
 858#ifdef CONFIG_TLS_DEVICE
 859        __u8                    decrypted:1;
 860#endif
 861
 862#ifdef CONFIG_NET_SCHED
 863        __u16                   tc_index;       /* traffic control index */
 864#endif
 865
 866        union {
 867                __wsum          csum;
 868                struct {
 869                        __u16   csum_start;
 870                        __u16   csum_offset;
 871                };
 872        };
 873        __u32                   priority;
 874        int                     skb_iif;
 875        __u32                   hash;
 876        __be16                  vlan_proto;
 877        __u16                   vlan_tci;
 878#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 879        union {
 880                unsigned int    napi_id;
 881                unsigned int    sender_cpu;
 882        };
 883#endif
 884#ifdef CONFIG_NETWORK_SECMARK
 885        __u32           secmark;
 886#endif
 887
 888        union {
 889                __u32           mark;
 890                __u32           reserved_tailroom;
 891        };
 892
 893        union {
 894                __be16          inner_protocol;
 895                __u8            inner_ipproto;
 896        };
 897
 898        __u16                   inner_transport_header;
 899        __u16                   inner_network_header;
 900        __u16                   inner_mac_header;
 901
 902        __be16                  protocol;
 903        __u16                   transport_header;
 904        __u16                   network_header;
 905        __u16                   mac_header;
 906
 907        /* private: */
 908        __u32                   headers_end[0];
 909        /* public: */
 910
 911        /* These elements must be at the end, see alloc_skb() for details.  */
 912        sk_buff_data_t          tail;
 913        sk_buff_data_t          end;
 914        unsigned char           *head,
 915                                *data;
 916        unsigned int            truesize;
 917        refcount_t              users;
 918
 919#ifdef CONFIG_SKB_EXTENSIONS
 920        /* only useable after checking ->active_extensions != 0 */
 921        struct skb_ext          *extensions;
 922#endif
 923};
 924
 925#ifdef __KERNEL__
 926/*
 927 *      Handling routines are only of interest to the kernel
 928 */
 929
 930#define SKB_ALLOC_FCLONE        0x01
 931#define SKB_ALLOC_RX            0x02
 932#define SKB_ALLOC_NAPI          0x04
 933
 934/**
 935 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
 936 * @skb: buffer
 937 */
 938static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 939{
 940        return unlikely(skb->pfmemalloc);
 941}
 942
 943/*
 944 * skb might have a dst pointer attached, refcounted or not.
 945 * _skb_refdst low order bit is set if refcount was _not_ taken
 946 */
 947#define SKB_DST_NOREF   1UL
 948#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 949
 950/**
 951 * skb_dst - returns skb dst_entry
 952 * @skb: buffer
 953 *
 954 * Returns skb dst_entry, regardless of reference taken or not.
 955 */
 956static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 957{
 958        /* If refdst was not refcounted, check we still are in a
 959         * rcu_read_lock section
 960         */
 961        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 962                !rcu_read_lock_held() &&
 963                !rcu_read_lock_bh_held());
 964        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 965}
 966
 967/**
 968 * skb_dst_set - sets skb dst
 969 * @skb: buffer
 970 * @dst: dst entry
 971 *
 972 * Sets skb dst, assuming a reference was taken on dst and should
 973 * be released by skb_dst_drop()
 974 */
 975static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 976{
 977        skb->_skb_refdst = (unsigned long)dst;
 978}
 979
 980/**
 981 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 982 * @skb: buffer
 983 * @dst: dst entry
 984 *
 985 * Sets skb dst, assuming a reference was not taken on dst.
 986 * If dst entry is cached, we do not take reference and dst_release
 987 * will be avoided by refdst_drop. If dst entry is not cached, we take
 988 * reference, so that last dst_release can destroy the dst immediately.
 989 */
 990static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
 991{
 992        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 993        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
 994}
 995
 996/**
 997 * skb_dst_is_noref - Test if skb dst isn't refcounted
 998 * @skb: buffer
 999 */
1000static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1001{
1002        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1003}
1004
1005/**
1006 * skb_rtable - Returns the skb &rtable
1007 * @skb: buffer
1008 */
1009static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1010{
1011        return (struct rtable *)skb_dst(skb);
1012}
1013
1014/* For mangling skb->pkt_type from user space side from applications
1015 * such as nft, tc, etc, we only allow a conservative subset of
1016 * possible pkt_types to be set.
1017*/
1018static inline bool skb_pkt_type_ok(u32 ptype)
1019{
1020        return ptype <= PACKET_OTHERHOST;
1021}
1022
1023/**
1024 * skb_napi_id - Returns the skb's NAPI id
1025 * @skb: buffer
1026 */
1027static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1028{
1029#ifdef CONFIG_NET_RX_BUSY_POLL
1030        return skb->napi_id;
1031#else
1032        return 0;
1033#endif
1034}
1035
1036/**
1037 * skb_unref - decrement the skb's reference count
1038 * @skb: buffer
1039 *
1040 * Returns true if we can free the skb.
1041 */
1042static inline bool skb_unref(struct sk_buff *skb)
1043{
1044        if (unlikely(!skb))
1045                return false;
1046        if (likely(refcount_read(&skb->users) == 1))
1047                smp_rmb();
1048        else if (likely(!refcount_dec_and_test(&skb->users)))
1049                return false;
1050
1051        return true;
1052}
1053
1054void skb_release_head_state(struct sk_buff *skb);
1055void kfree_skb(struct sk_buff *skb);
1056void kfree_skb_list(struct sk_buff *segs);
1057void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1058void skb_tx_error(struct sk_buff *skb);
1059
1060#ifdef CONFIG_TRACEPOINTS
1061void consume_skb(struct sk_buff *skb);
1062#else
1063static inline void consume_skb(struct sk_buff *skb)
1064{
1065        return kfree_skb(skb);
1066}
1067#endif
1068
1069void __consume_stateless_skb(struct sk_buff *skb);
1070void  __kfree_skb(struct sk_buff *skb);
1071extern struct kmem_cache *skbuff_head_cache;
1072
1073void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1074bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1075                      bool *fragstolen, int *delta_truesize);
1076
1077struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1078                            int node);
1079struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1080struct sk_buff *build_skb(void *data, unsigned int frag_size);
1081struct sk_buff *build_skb_around(struct sk_buff *skb,
1082                                 void *data, unsigned int frag_size);
1083
1084/**
1085 * alloc_skb - allocate a network buffer
1086 * @size: size to allocate
1087 * @priority: allocation mask
1088 *
1089 * This function is a convenient wrapper around __alloc_skb().
1090 */
1091static inline struct sk_buff *alloc_skb(unsigned int size,
1092                                        gfp_t priority)
1093{
1094        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1095}
1096
1097struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1098                                     unsigned long data_len,
1099                                     int max_page_order,
1100                                     int *errcode,
1101                                     gfp_t gfp_mask);
1102struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1103
1104/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1105struct sk_buff_fclones {
1106        struct sk_buff  skb1;
1107
1108        struct sk_buff  skb2;
1109
1110        refcount_t      fclone_ref;
1111};
1112
1113/**
1114 *      skb_fclone_busy - check if fclone is busy
1115 *      @sk: socket
1116 *      @skb: buffer
1117 *
1118 * Returns true if skb is a fast clone, and its clone is not freed.
1119 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1120 * so we also check that this didnt happen.
1121 */
1122static inline bool skb_fclone_busy(const struct sock *sk,
1123                                   const struct sk_buff *skb)
1124{
1125        const struct sk_buff_fclones *fclones;
1126
1127        fclones = container_of(skb, struct sk_buff_fclones, skb1);
1128
1129        return skb->fclone == SKB_FCLONE_ORIG &&
1130               refcount_read(&fclones->fclone_ref) > 1 &&
1131               fclones->skb2.sk == sk;
1132}
1133
1134/**
1135 * alloc_skb_fclone - allocate a network buffer from fclone cache
1136 * @size: size to allocate
1137 * @priority: allocation mask
1138 *
1139 * This function is a convenient wrapper around __alloc_skb().
1140 */
1141static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1142                                               gfp_t priority)
1143{
1144        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1145}
1146
1147struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1148void skb_headers_offset_update(struct sk_buff *skb, int off);
1149int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1150struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1151void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1152struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1153struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1154                                   gfp_t gfp_mask, bool fclone);
1155static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1156                                          gfp_t gfp_mask)
1157{
1158        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1159}
1160
1161int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1162struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1163                                     unsigned int headroom);
1164struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1165                                int newtailroom, gfp_t priority);
1166int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1167                                     int offset, int len);
1168int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1169                              int offset, int len);
1170int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1171int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1172
1173/**
1174 *      skb_pad                 -       zero pad the tail of an skb
1175 *      @skb: buffer to pad
1176 *      @pad: space to pad
1177 *
1178 *      Ensure that a buffer is followed by a padding area that is zero
1179 *      filled. Used by network drivers which may DMA or transfer data
1180 *      beyond the buffer end onto the wire.
1181 *
1182 *      May return error in out of memory cases. The skb is freed on error.
1183 */
1184static inline int skb_pad(struct sk_buff *skb, int pad)
1185{
1186        return __skb_pad(skb, pad, true);
1187}
1188#define dev_kfree_skb(a)        consume_skb(a)
1189
1190int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1191                         int offset, size_t size);
1192
1193struct skb_seq_state {
1194        __u32           lower_offset;
1195        __u32           upper_offset;
1196        __u32           frag_idx;
1197        __u32           stepped_offset;
1198        struct sk_buff  *root_skb;
1199        struct sk_buff  *cur_skb;
1200        __u8            *frag_data;
1201};
1202
1203void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1204                          unsigned int to, struct skb_seq_state *st);
1205unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1206                          struct skb_seq_state *st);
1207void skb_abort_seq_read(struct skb_seq_state *st);
1208
1209unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1210                           unsigned int to, struct ts_config *config);
1211
1212/*
1213 * Packet hash types specify the type of hash in skb_set_hash.
1214 *
1215 * Hash types refer to the protocol layer addresses which are used to
1216 * construct a packet's hash. The hashes are used to differentiate or identify
1217 * flows of the protocol layer for the hash type. Hash types are either
1218 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1219 *
1220 * Properties of hashes:
1221 *
1222 * 1) Two packets in different flows have different hash values
1223 * 2) Two packets in the same flow should have the same hash value
1224 *
1225 * A hash at a higher layer is considered to be more specific. A driver should
1226 * set the most specific hash possible.
1227 *
1228 * A driver cannot indicate a more specific hash than the layer at which a hash
1229 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1230 *
1231 * A driver may indicate a hash level which is less specific than the
1232 * actual layer the hash was computed on. For instance, a hash computed
1233 * at L4 may be considered an L3 hash. This should only be done if the
1234 * driver can't unambiguously determine that the HW computed the hash at
1235 * the higher layer. Note that the "should" in the second property above
1236 * permits this.
1237 */
1238enum pkt_hash_types {
1239        PKT_HASH_TYPE_NONE,     /* Undefined type */
1240        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1241        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1242        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1243};
1244
1245static inline void skb_clear_hash(struct sk_buff *skb)
1246{
1247        skb->hash = 0;
1248        skb->sw_hash = 0;
1249        skb->l4_hash = 0;
1250}
1251
1252static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1253{
1254        if (!skb->l4_hash)
1255                skb_clear_hash(skb);
1256}
1257
1258static inline void
1259__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1260{
1261        skb->l4_hash = is_l4;
1262        skb->sw_hash = is_sw;
1263        skb->hash = hash;
1264}
1265
1266static inline void
1267skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1268{
1269        /* Used by drivers to set hash from HW */
1270        __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1271}
1272
1273static inline void
1274__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1275{
1276        __skb_set_hash(skb, hash, true, is_l4);
1277}
1278
1279void __skb_get_hash(struct sk_buff *skb);
1280u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1281u32 skb_get_poff(const struct sk_buff *skb);
1282u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1283                   const struct flow_keys_basic *keys, int hlen);
1284__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1285                            void *data, int hlen_proto);
1286
1287static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1288                                        int thoff, u8 ip_proto)
1289{
1290        return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1291}
1292
1293void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1294                             const struct flow_dissector_key *key,
1295                             unsigned int key_count);
1296
1297struct bpf_flow_dissector;
1298bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1299                      __be16 proto, int nhoff, int hlen, unsigned int flags);
1300
1301bool __skb_flow_dissect(const struct net *net,
1302                        const struct sk_buff *skb,
1303                        struct flow_dissector *flow_dissector,
1304                        void *target_container,
1305                        void *data, __be16 proto, int nhoff, int hlen,
1306                        unsigned int flags);
1307
1308static inline bool skb_flow_dissect(const struct sk_buff *skb,
1309                                    struct flow_dissector *flow_dissector,
1310                                    void *target_container, unsigned int flags)
1311{
1312        return __skb_flow_dissect(NULL, skb, flow_dissector,
1313                                  target_container, NULL, 0, 0, 0, flags);
1314}
1315
1316static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1317                                              struct flow_keys *flow,
1318                                              unsigned int flags)
1319{
1320        memset(flow, 0, sizeof(*flow));
1321        return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1322                                  flow, NULL, 0, 0, 0, flags);
1323}
1324
1325static inline bool
1326skb_flow_dissect_flow_keys_basic(const struct net *net,
1327                                 const struct sk_buff *skb,
1328                                 struct flow_keys_basic *flow, void *data,
1329                                 __be16 proto, int nhoff, int hlen,
1330                                 unsigned int flags)
1331{
1332        memset(flow, 0, sizeof(*flow));
1333        return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1334                                  data, proto, nhoff, hlen, flags);
1335}
1336
1337void skb_flow_dissect_meta(const struct sk_buff *skb,
1338                           struct flow_dissector *flow_dissector,
1339                           void *target_container);
1340
1341/* Gets a skb connection tracking info, ctinfo map should be a
1342 * map of mapsize to translate enum ip_conntrack_info states
1343 * to user states.
1344 */
1345void
1346skb_flow_dissect_ct(const struct sk_buff *skb,
1347                    struct flow_dissector *flow_dissector,
1348                    void *target_container,
1349                    u16 *ctinfo_map,
1350                    size_t mapsize);
1351void
1352skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1353                             struct flow_dissector *flow_dissector,
1354                             void *target_container);
1355
1356void skb_flow_dissect_hash(const struct sk_buff *skb,
1357                           struct flow_dissector *flow_dissector,
1358                           void *target_container);
1359
1360static inline __u32 skb_get_hash(struct sk_buff *skb)
1361{
1362        if (!skb->l4_hash && !skb->sw_hash)
1363                __skb_get_hash(skb);
1364
1365        return skb->hash;
1366}
1367
1368static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1369{
1370        if (!skb->l4_hash && !skb->sw_hash) {
1371                struct flow_keys keys;
1372                __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1373
1374                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1375        }
1376
1377        return skb->hash;
1378}
1379
1380__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1381                           const siphash_key_t *perturb);
1382
1383static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1384{
1385        return skb->hash;
1386}
1387
1388static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1389{
1390        to->hash = from->hash;
1391        to->sw_hash = from->sw_hash;
1392        to->l4_hash = from->l4_hash;
1393};
1394
1395static inline void skb_copy_decrypted(struct sk_buff *to,
1396                                      const struct sk_buff *from)
1397{
1398#ifdef CONFIG_TLS_DEVICE
1399        to->decrypted = from->decrypted;
1400#endif
1401}
1402
1403#ifdef NET_SKBUFF_DATA_USES_OFFSET
1404static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1405{
1406        return skb->head + skb->end;
1407}
1408
1409static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1410{
1411        return skb->end;
1412}
1413#else
1414static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1415{
1416        return skb->end;
1417}
1418
1419static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1420{
1421        return skb->end - skb->head;
1422}
1423#endif
1424
1425/* Internal */
1426#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1427
1428static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1429{
1430        return &skb_shinfo(skb)->hwtstamps;
1431}
1432
1433static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1434{
1435        bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1436
1437        return is_zcopy ? skb_uarg(skb) : NULL;
1438}
1439
1440static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1441                                 bool *have_ref)
1442{
1443        if (skb && uarg && !skb_zcopy(skb)) {
1444                if (unlikely(have_ref && *have_ref))
1445                        *have_ref = false;
1446                else
1447                        sock_zerocopy_get(uarg);
1448                skb_shinfo(skb)->destructor_arg = uarg;
1449                skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1450        }
1451}
1452
1453static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1454{
1455        skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1456        skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1457}
1458
1459static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1460{
1461        return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1462}
1463
1464static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1465{
1466        return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1467}
1468
1469/* Release a reference on a zerocopy structure */
1470static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1471{
1472        struct ubuf_info *uarg = skb_zcopy(skb);
1473
1474        if (uarg) {
1475                if (skb_zcopy_is_nouarg(skb)) {
1476                        /* no notification callback */
1477                } else if (uarg->callback == sock_zerocopy_callback) {
1478                        uarg->zerocopy = uarg->zerocopy && zerocopy;
1479                        sock_zerocopy_put(uarg);
1480                } else {
1481                        uarg->callback(uarg, zerocopy);
1482                }
1483
1484                skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1485        }
1486}
1487
1488/* Abort a zerocopy operation and revert zckey on error in send syscall */
1489static inline void skb_zcopy_abort(struct sk_buff *skb)
1490{
1491        struct ubuf_info *uarg = skb_zcopy(skb);
1492
1493        if (uarg) {
1494                sock_zerocopy_put_abort(uarg, false);
1495                skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1496        }
1497}
1498
1499static inline void skb_mark_not_on_list(struct sk_buff *skb)
1500{
1501        skb->next = NULL;
1502}
1503
1504/* Iterate through singly-linked GSO fragments of an skb. */
1505#define skb_list_walk_safe(first, skb, next_skb)                               \
1506        for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1507             (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1508
1509static inline void skb_list_del_init(struct sk_buff *skb)
1510{
1511        __list_del_entry(&skb->list);
1512        skb_mark_not_on_list(skb);
1513}
1514
1515/**
1516 *      skb_queue_empty - check if a queue is empty
1517 *      @list: queue head
1518 *
1519 *      Returns true if the queue is empty, false otherwise.
1520 */
1521static inline int skb_queue_empty(const struct sk_buff_head *list)
1522{
1523        return list->next == (const struct sk_buff *) list;
1524}
1525
1526/**
1527 *      skb_queue_empty_lockless - check if a queue is empty
1528 *      @list: queue head
1529 *
1530 *      Returns true if the queue is empty, false otherwise.
1531 *      This variant can be used in lockless contexts.
1532 */
1533static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1534{
1535        return READ_ONCE(list->next) == (const struct sk_buff *) list;
1536}
1537
1538
1539/**
1540 *      skb_queue_is_last - check if skb is the last entry in the queue
1541 *      @list: queue head
1542 *      @skb: buffer
1543 *
1544 *      Returns true if @skb is the last buffer on the list.
1545 */
1546static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1547                                     const struct sk_buff *skb)
1548{
1549        return skb->next == (const struct sk_buff *) list;
1550}
1551
1552/**
1553 *      skb_queue_is_first - check if skb is the first entry in the queue
1554 *      @list: queue head
1555 *      @skb: buffer
1556 *
1557 *      Returns true if @skb is the first buffer on the list.
1558 */
1559static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1560                                      const struct sk_buff *skb)
1561{
1562        return skb->prev == (const struct sk_buff *) list;
1563}
1564
1565/**
1566 *      skb_queue_next - return the next packet in the queue
1567 *      @list: queue head
1568 *      @skb: current buffer
1569 *
1570 *      Return the next packet in @list after @skb.  It is only valid to
1571 *      call this if skb_queue_is_last() evaluates to false.
1572 */
1573static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1574                                             const struct sk_buff *skb)
1575{
1576        /* This BUG_ON may seem severe, but if we just return then we
1577         * are going to dereference garbage.
1578         */
1579        BUG_ON(skb_queue_is_last(list, skb));
1580        return skb->next;
1581}
1582
1583/**
1584 *      skb_queue_prev - return the prev packet in the queue
1585 *      @list: queue head
1586 *      @skb: current buffer
1587 *
1588 *      Return the prev packet in @list before @skb.  It is only valid to
1589 *      call this if skb_queue_is_first() evaluates to false.
1590 */
1591static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1592                                             const struct sk_buff *skb)
1593{
1594        /* This BUG_ON may seem severe, but if we just return then we
1595         * are going to dereference garbage.
1596         */
1597        BUG_ON(skb_queue_is_first(list, skb));
1598        return skb->prev;
1599}
1600
1601/**
1602 *      skb_get - reference buffer
1603 *      @skb: buffer to reference
1604 *
1605 *      Makes another reference to a socket buffer and returns a pointer
1606 *      to the buffer.
1607 */
1608static inline struct sk_buff *skb_get(struct sk_buff *skb)
1609{
1610        refcount_inc(&skb->users);
1611        return skb;
1612}
1613
1614/*
1615 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1616 */
1617
1618/**
1619 *      skb_cloned - is the buffer a clone
1620 *      @skb: buffer to check
1621 *
1622 *      Returns true if the buffer was generated with skb_clone() and is
1623 *      one of multiple shared copies of the buffer. Cloned buffers are
1624 *      shared data so must not be written to under normal circumstances.
1625 */
1626static inline int skb_cloned(const struct sk_buff *skb)
1627{
1628        return skb->cloned &&
1629               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1630}
1631
1632static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1633{
1634        might_sleep_if(gfpflags_allow_blocking(pri));
1635
1636        if (skb_cloned(skb))
1637                return pskb_expand_head(skb, 0, 0, pri);
1638
1639        return 0;
1640}
1641
1642/**
1643 *      skb_header_cloned - is the header a clone
1644 *      @skb: buffer to check
1645 *
1646 *      Returns true if modifying the header part of the buffer requires
1647 *      the data to be copied.
1648 */
1649static inline int skb_header_cloned(const struct sk_buff *skb)
1650{
1651        int dataref;
1652
1653        if (!skb->cloned)
1654                return 0;
1655
1656        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1657        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1658        return dataref != 1;
1659}
1660
1661static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1662{
1663        might_sleep_if(gfpflags_allow_blocking(pri));
1664
1665        if (skb_header_cloned(skb))
1666                return pskb_expand_head(skb, 0, 0, pri);
1667
1668        return 0;
1669}
1670
1671/**
1672 *      __skb_header_release - release reference to header
1673 *      @skb: buffer to operate on
1674 */
1675static inline void __skb_header_release(struct sk_buff *skb)
1676{
1677        skb->nohdr = 1;
1678        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1679}
1680
1681
1682/**
1683 *      skb_shared - is the buffer shared
1684 *      @skb: buffer to check
1685 *
1686 *      Returns true if more than one person has a reference to this
1687 *      buffer.
1688 */
1689static inline int skb_shared(const struct sk_buff *skb)
1690{
1691        return refcount_read(&skb->users) != 1;
1692}
1693
1694/**
1695 *      skb_share_check - check if buffer is shared and if so clone it
1696 *      @skb: buffer to check
1697 *      @pri: priority for memory allocation
1698 *
1699 *      If the buffer is shared the buffer is cloned and the old copy
1700 *      drops a reference. A new clone with a single reference is returned.
1701 *      If the buffer is not shared the original buffer is returned. When
1702 *      being called from interrupt status or with spinlocks held pri must
1703 *      be GFP_ATOMIC.
1704 *
1705 *      NULL is returned on a memory allocation failure.
1706 */
1707static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1708{
1709        might_sleep_if(gfpflags_allow_blocking(pri));
1710        if (skb_shared(skb)) {
1711                struct sk_buff *nskb = skb_clone(skb, pri);
1712
1713                if (likely(nskb))
1714                        consume_skb(skb);
1715                else
1716                        kfree_skb(skb);
1717                skb = nskb;
1718        }
1719        return skb;
1720}
1721
1722/*
1723 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1724 *      packets to handle cases where we have a local reader and forward
1725 *      and a couple of other messy ones. The normal one is tcpdumping
1726 *      a packet thats being forwarded.
1727 */
1728
1729/**
1730 *      skb_unshare - make a copy of a shared buffer
1731 *      @skb: buffer to check
1732 *      @pri: priority for memory allocation
1733 *
1734 *      If the socket buffer is a clone then this function creates a new
1735 *      copy of the data, drops a reference count on the old copy and returns
1736 *      the new copy with the reference count at 1. If the buffer is not a clone
1737 *      the original buffer is returned. When called with a spinlock held or
1738 *      from interrupt state @pri must be %GFP_ATOMIC
1739 *
1740 *      %NULL is returned on a memory allocation failure.
1741 */
1742static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1743                                          gfp_t pri)
1744{
1745        might_sleep_if(gfpflags_allow_blocking(pri));
1746        if (skb_cloned(skb)) {
1747                struct sk_buff *nskb = skb_copy(skb, pri);
1748
1749                /* Free our shared copy */
1750                if (likely(nskb))
1751                        consume_skb(skb);
1752                else
1753                        kfree_skb(skb);
1754                skb = nskb;
1755        }
1756        return skb;
1757}
1758
1759/**
1760 *      skb_peek - peek at the head of an &sk_buff_head
1761 *      @list_: list to peek at
1762 *
1763 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1764 *      be careful with this one. A peek leaves the buffer on the
1765 *      list and someone else may run off with it. You must hold
1766 *      the appropriate locks or have a private queue to do this.
1767 *
1768 *      Returns %NULL for an empty list or a pointer to the head element.
1769 *      The reference count is not incremented and the reference is therefore
1770 *      volatile. Use with caution.
1771 */
1772static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1773{
1774        struct sk_buff *skb = list_->next;
1775
1776        if (skb == (struct sk_buff *)list_)
1777                skb = NULL;
1778        return skb;
1779}
1780
1781/**
1782 *      __skb_peek - peek at the head of a non-empty &sk_buff_head
1783 *      @list_: list to peek at
1784 *
1785 *      Like skb_peek(), but the caller knows that the list is not empty.
1786 */
1787static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1788{
1789        return list_->next;
1790}
1791
1792/**
1793 *      skb_peek_next - peek skb following the given one from a queue
1794 *      @skb: skb to start from
1795 *      @list_: list to peek at
1796 *
1797 *      Returns %NULL when the end of the list is met or a pointer to the
1798 *      next element. The reference count is not incremented and the
1799 *      reference is therefore volatile. Use with caution.
1800 */
1801static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1802                const struct sk_buff_head *list_)
1803{
1804        struct sk_buff *next = skb->next;
1805
1806        if (next == (struct sk_buff *)list_)
1807                next = NULL;
1808        return next;
1809}
1810
1811/**
1812 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1813 *      @list_: list to peek at
1814 *
1815 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1816 *      be careful with this one. A peek leaves the buffer on the
1817 *      list and someone else may run off with it. You must hold
1818 *      the appropriate locks or have a private queue to do this.
1819 *
1820 *      Returns %NULL for an empty list or a pointer to the tail element.
1821 *      The reference count is not incremented and the reference is therefore
1822 *      volatile. Use with caution.
1823 */
1824static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1825{
1826        struct sk_buff *skb = READ_ONCE(list_->prev);
1827
1828        if (skb == (struct sk_buff *)list_)
1829                skb = NULL;
1830        return skb;
1831
1832}
1833
1834/**
1835 *      skb_queue_len   - get queue length
1836 *      @list_: list to measure
1837 *
1838 *      Return the length of an &sk_buff queue.
1839 */
1840static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1841{
1842        return list_->qlen;
1843}
1844
1845/**
1846 *      skb_queue_len_lockless  - get queue length
1847 *      @list_: list to measure
1848 *
1849 *      Return the length of an &sk_buff queue.
1850 *      This variant can be used in lockless contexts.
1851 */
1852static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1853{
1854        return READ_ONCE(list_->qlen);
1855}
1856
1857/**
1858 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1859 *      @list: queue to initialize
1860 *
1861 *      This initializes only the list and queue length aspects of
1862 *      an sk_buff_head object.  This allows to initialize the list
1863 *      aspects of an sk_buff_head without reinitializing things like
1864 *      the spinlock.  It can also be used for on-stack sk_buff_head
1865 *      objects where the spinlock is known to not be used.
1866 */
1867static inline void __skb_queue_head_init(struct sk_buff_head *list)
1868{
1869        list->prev = list->next = (struct sk_buff *)list;
1870        list->qlen = 0;
1871}
1872
1873/*
1874 * This function creates a split out lock class for each invocation;
1875 * this is needed for now since a whole lot of users of the skb-queue
1876 * infrastructure in drivers have different locking usage (in hardirq)
1877 * than the networking core (in softirq only). In the long run either the
1878 * network layer or drivers should need annotation to consolidate the
1879 * main types of usage into 3 classes.
1880 */
1881static inline void skb_queue_head_init(struct sk_buff_head *list)
1882{
1883        spin_lock_init(&list->lock);
1884        __skb_queue_head_init(list);
1885}
1886
1887static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1888                struct lock_class_key *class)
1889{
1890        skb_queue_head_init(list);
1891        lockdep_set_class(&list->lock, class);
1892}
1893
1894/*
1895 *      Insert an sk_buff on a list.
1896 *
1897 *      The "__skb_xxxx()" functions are the non-atomic ones that
1898 *      can only be called with interrupts disabled.
1899 */
1900static inline void __skb_insert(struct sk_buff *newsk,
1901                                struct sk_buff *prev, struct sk_buff *next,
1902                                struct sk_buff_head *list)
1903{
1904        /* See skb_queue_empty_lockless() and skb_peek_tail()
1905         * for the opposite READ_ONCE()
1906         */
1907        WRITE_ONCE(newsk->next, next);
1908        WRITE_ONCE(newsk->prev, prev);
1909        WRITE_ONCE(next->prev, newsk);
1910        WRITE_ONCE(prev->next, newsk);
1911        list->qlen++;
1912}
1913
1914static inline void __skb_queue_splice(const struct sk_buff_head *list,
1915                                      struct sk_buff *prev,
1916                                      struct sk_buff *next)
1917{
1918        struct sk_buff *first = list->next;
1919        struct sk_buff *last = list->prev;
1920
1921        WRITE_ONCE(first->prev, prev);
1922        WRITE_ONCE(prev->next, first);
1923
1924        WRITE_ONCE(last->next, next);
1925        WRITE_ONCE(next->prev, last);
1926}
1927
1928/**
1929 *      skb_queue_splice - join two skb lists, this is designed for stacks
1930 *      @list: the new list to add
1931 *      @head: the place to add it in the first list
1932 */
1933static inline void skb_queue_splice(const struct sk_buff_head *list,
1934                                    struct sk_buff_head *head)
1935{
1936        if (!skb_queue_empty(list)) {
1937                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1938                head->qlen += list->qlen;
1939        }
1940}
1941
1942/**
1943 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1944 *      @list: the new list to add
1945 *      @head: the place to add it in the first list
1946 *
1947 *      The list at @list is reinitialised
1948 */
1949static inline void skb_queue_splice_init(struct sk_buff_head *list,
1950                                         struct sk_buff_head *head)
1951{
1952        if (!skb_queue_empty(list)) {
1953                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1954                head->qlen += list->qlen;
1955                __skb_queue_head_init(list);
1956        }
1957}
1958
1959/**
1960 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1961 *      @list: the new list to add
1962 *      @head: the place to add it in the first list
1963 */
1964static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1965                                         struct sk_buff_head *head)
1966{
1967        if (!skb_queue_empty(list)) {
1968                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1969                head->qlen += list->qlen;
1970        }
1971}
1972
1973/**
1974 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1975 *      @list: the new list to add
1976 *      @head: the place to add it in the first list
1977 *
1978 *      Each of the lists is a queue.
1979 *      The list at @list is reinitialised
1980 */
1981static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1982                                              struct sk_buff_head *head)
1983{
1984        if (!skb_queue_empty(list)) {
1985                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1986                head->qlen += list->qlen;
1987                __skb_queue_head_init(list);
1988        }
1989}
1990
1991/**
1992 *      __skb_queue_after - queue a buffer at the list head
1993 *      @list: list to use
1994 *      @prev: place after this buffer
1995 *      @newsk: buffer to queue
1996 *
1997 *      Queue a buffer int the middle of a list. This function takes no locks
1998 *      and you must therefore hold required locks before calling it.
1999 *
2000 *      A buffer cannot be placed on two lists at the same time.
2001 */
2002static inline void __skb_queue_after(struct sk_buff_head *list,
2003                                     struct sk_buff *prev,
2004                                     struct sk_buff *newsk)
2005{
2006        __skb_insert(newsk, prev, prev->next, list);
2007}
2008
2009void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2010                struct sk_buff_head *list);
2011
2012static inline void __skb_queue_before(struct sk_buff_head *list,
2013                                      struct sk_buff *next,
2014                                      struct sk_buff *newsk)
2015{
2016        __skb_insert(newsk, next->prev, next, list);
2017}
2018
2019/**
2020 *      __skb_queue_head - queue a buffer at the list head
2021 *      @list: list to use
2022 *      @newsk: buffer to queue
2023 *
2024 *      Queue a buffer at the start of a list. This function takes no locks
2025 *      and you must therefore hold required locks before calling it.
2026 *
2027 *      A buffer cannot be placed on two lists at the same time.
2028 */
2029static inline void __skb_queue_head(struct sk_buff_head *list,
2030                                    struct sk_buff *newsk)
2031{
2032        __skb_queue_after(list, (struct sk_buff *)list, newsk);
2033}
2034void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2035
2036/**
2037 *      __skb_queue_tail - queue a buffer at the list tail
2038 *      @list: list to use
2039 *      @newsk: buffer to queue
2040 *
2041 *      Queue a buffer at the end of a list. This function takes no locks
2042 *      and you must therefore hold required locks before calling it.
2043 *
2044 *      A buffer cannot be placed on two lists at the same time.
2045 */
2046static inline void __skb_queue_tail(struct sk_buff_head *list,
2047                                   struct sk_buff *newsk)
2048{
2049        __skb_queue_before(list, (struct sk_buff *)list, newsk);
2050}
2051void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2052
2053/*
2054 * remove sk_buff from list. _Must_ be called atomically, and with
2055 * the list known..
2056 */
2057void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2058static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2059{
2060        struct sk_buff *next, *prev;
2061
2062        WRITE_ONCE(list->qlen, list->qlen - 1);
2063        next       = skb->next;
2064        prev       = skb->prev;
2065        skb->next  = skb->prev = NULL;
2066        WRITE_ONCE(next->prev, prev);
2067        WRITE_ONCE(prev->next, next);
2068}
2069
2070/**
2071 *      __skb_dequeue - remove from the head of the queue
2072 *      @list: list to dequeue from
2073 *
2074 *      Remove the head of the list. This function does not take any locks
2075 *      so must be used with appropriate locks held only. The head item is
2076 *      returned or %NULL if the list is empty.
2077 */
2078static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2079{
2080        struct sk_buff *skb = skb_peek(list);
2081        if (skb)
2082                __skb_unlink(skb, list);
2083        return skb;
2084}
2085struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2086
2087/**
2088 *      __skb_dequeue_tail - remove from the tail of the queue
2089 *      @list: list to dequeue from
2090 *
2091 *      Remove the tail of the list. This function does not take any locks
2092 *      so must be used with appropriate locks held only. The tail item is
2093 *      returned or %NULL if the list is empty.
2094 */
2095static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2096{
2097        struct sk_buff *skb = skb_peek_tail(list);
2098        if (skb)
2099                __skb_unlink(skb, list);
2100        return skb;
2101}
2102struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2103
2104
2105static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2106{
2107        return skb->data_len;
2108}
2109
2110static inline unsigned int skb_headlen(const struct sk_buff *skb)
2111{
2112        return skb->len - skb->data_len;
2113}
2114
2115static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2116{
2117        unsigned int i, len = 0;
2118
2119        for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2120                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2121        return len;
2122}
2123
2124static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2125{
2126        return skb_headlen(skb) + __skb_pagelen(skb);
2127}
2128
2129/**
2130 * __skb_fill_page_desc - initialise a paged fragment in an skb
2131 * @skb: buffer containing fragment to be initialised
2132 * @i: paged fragment index to initialise
2133 * @page: the page to use for this fragment
2134 * @off: the offset to the data with @page
2135 * @size: the length of the data
2136 *
2137 * Initialises the @i'th fragment of @skb to point to &size bytes at
2138 * offset @off within @page.
2139 *
2140 * Does not take any additional reference on the fragment.
2141 */
2142static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2143                                        struct page *page, int off, int size)
2144{
2145        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2146
2147        /*
2148         * Propagate page pfmemalloc to the skb if we can. The problem is
2149         * that not all callers have unique ownership of the page but rely
2150         * on page_is_pfmemalloc doing the right thing(tm).
2151         */
2152        frag->bv_page             = page;
2153        frag->bv_offset           = off;
2154        skb_frag_size_set(frag, size);
2155
2156        page = compound_head(page);
2157        if (page_is_pfmemalloc(page))
2158                skb->pfmemalloc = true;
2159}
2160
2161/**
2162 * skb_fill_page_desc - initialise a paged fragment in an skb
2163 * @skb: buffer containing fragment to be initialised
2164 * @i: paged fragment index to initialise
2165 * @page: the page to use for this fragment
2166 * @off: the offset to the data with @page
2167 * @size: the length of the data
2168 *
2169 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2170 * @skb to point to @size bytes at offset @off within @page. In
2171 * addition updates @skb such that @i is the last fragment.
2172 *
2173 * Does not take any additional reference on the fragment.
2174 */
2175static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2176                                      struct page *page, int off, int size)
2177{
2178        __skb_fill_page_desc(skb, i, page, off, size);
2179        skb_shinfo(skb)->nr_frags = i + 1;
2180}
2181
2182void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2183                     int size, unsigned int truesize);
2184
2185void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2186                          unsigned int truesize);
2187
2188#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2189
2190#ifdef NET_SKBUFF_DATA_USES_OFFSET
2191static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2192{
2193        return skb->head + skb->tail;
2194}
2195
2196static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2197{
2198        skb->tail = skb->data - skb->head;
2199}
2200
2201static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2202{
2203        skb_reset_tail_pointer(skb);
2204        skb->tail += offset;
2205}
2206
2207#else /* NET_SKBUFF_DATA_USES_OFFSET */
2208static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2209{
2210        return skb->tail;
2211}
2212
2213static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2214{
2215        skb->tail = skb->data;
2216}
2217
2218static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2219{
2220        skb->tail = skb->data + offset;
2221}
2222
2223#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2224
2225/*
2226 *      Add data to an sk_buff
2227 */
2228void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2229void *skb_put(struct sk_buff *skb, unsigned int len);
2230static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2231{
2232        void *tmp = skb_tail_pointer(skb);
2233        SKB_LINEAR_ASSERT(skb);
2234        skb->tail += len;
2235        skb->len  += len;
2236        return tmp;
2237}
2238
2239static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2240{
2241        void *tmp = __skb_put(skb, len);
2242
2243        memset(tmp, 0, len);
2244        return tmp;
2245}
2246
2247static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2248                                   unsigned int len)
2249{
2250        void *tmp = __skb_put(skb, len);
2251
2252        memcpy(tmp, data, len);
2253        return tmp;
2254}
2255
2256static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2257{
2258        *(u8 *)__skb_put(skb, 1) = val;
2259}
2260
2261static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2262{
2263        void *tmp = skb_put(skb, len);
2264
2265        memset(tmp, 0, len);
2266
2267        return tmp;
2268}
2269
2270static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2271                                 unsigned int len)
2272{
2273        void *tmp = skb_put(skb, len);
2274
2275        memcpy(tmp, data, len);
2276
2277        return tmp;
2278}
2279
2280static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2281{
2282        *(u8 *)skb_put(skb, 1) = val;
2283}
2284
2285void *skb_push(struct sk_buff *skb, unsigned int len);
2286static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2287{
2288        skb->data -= len;
2289        skb->len  += len;
2290        return skb->data;
2291}
2292
2293void *skb_pull(struct sk_buff *skb, unsigned int len);
2294static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2295{
2296        skb->len -= len;
2297        BUG_ON(skb->len < skb->data_len);
2298        return skb->data += len;
2299}
2300
2301static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2302{
2303        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2304}
2305
2306void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2307
2308static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2309{
2310        if (len > skb_headlen(skb) &&
2311            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2312                return NULL;
2313        skb->len -= len;
2314        return skb->data += len;
2315}
2316
2317static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2318{
2319        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2320}
2321
2322static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2323{
2324        if (likely(len <= skb_headlen(skb)))
2325                return true;
2326        if (unlikely(len > skb->len))
2327                return false;
2328        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2329}
2330
2331void skb_condense(struct sk_buff *skb);
2332
2333/**
2334 *      skb_headroom - bytes at buffer head
2335 *      @skb: buffer to check
2336 *
2337 *      Return the number of bytes of free space at the head of an &sk_buff.
2338 */
2339static inline unsigned int skb_headroom(const struct sk_buff *skb)
2340{
2341        return skb->data - skb->head;
2342}
2343
2344/**
2345 *      skb_tailroom - bytes at buffer end
2346 *      @skb: buffer to check
2347 *
2348 *      Return the number of bytes of free space at the tail of an sk_buff
2349 */
2350static inline int skb_tailroom(const struct sk_buff *skb)
2351{
2352        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2353}
2354
2355/**
2356 *      skb_availroom - bytes at buffer end
2357 *      @skb: buffer to check
2358 *
2359 *      Return the number of bytes of free space at the tail of an sk_buff
2360 *      allocated by sk_stream_alloc()
2361 */
2362static inline int skb_availroom(const struct sk_buff *skb)
2363{
2364        if (skb_is_nonlinear(skb))
2365                return 0;
2366
2367        return skb->end - skb->tail - skb->reserved_tailroom;
2368}
2369
2370/**
2371 *      skb_reserve - adjust headroom
2372 *      @skb: buffer to alter
2373 *      @len: bytes to move
2374 *
2375 *      Increase the headroom of an empty &sk_buff by reducing the tail
2376 *      room. This is only allowed for an empty buffer.
2377 */
2378static inline void skb_reserve(struct sk_buff *skb, int len)
2379{
2380        skb->data += len;
2381        skb->tail += len;
2382}
2383
2384/**
2385 *      skb_tailroom_reserve - adjust reserved_tailroom
2386 *      @skb: buffer to alter
2387 *      @mtu: maximum amount of headlen permitted
2388 *      @needed_tailroom: minimum amount of reserved_tailroom
2389 *
2390 *      Set reserved_tailroom so that headlen can be as large as possible but
2391 *      not larger than mtu and tailroom cannot be smaller than
2392 *      needed_tailroom.
2393 *      The required headroom should already have been reserved before using
2394 *      this function.
2395 */
2396static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2397                                        unsigned int needed_tailroom)
2398{
2399        SKB_LINEAR_ASSERT(skb);
2400        if (mtu < skb_tailroom(skb) - needed_tailroom)
2401                /* use at most mtu */
2402                skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2403        else
2404                /* use up to all available space */
2405                skb->reserved_tailroom = needed_tailroom;
2406}
2407
2408#define ENCAP_TYPE_ETHER        0
2409#define ENCAP_TYPE_IPPROTO      1
2410
2411static inline void skb_set_inner_protocol(struct sk_buff *skb,
2412                                          __be16 protocol)
2413{
2414        skb->inner_protocol = protocol;
2415        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2416}
2417
2418static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2419                                         __u8 ipproto)
2420{
2421        skb->inner_ipproto = ipproto;
2422        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2423}
2424
2425static inline void skb_reset_inner_headers(struct sk_buff *skb)
2426{
2427        skb->inner_mac_header = skb->mac_header;
2428        skb->inner_network_header = skb->network_header;
2429        skb->inner_transport_header = skb->transport_header;
2430}
2431
2432static inline void skb_reset_mac_len(struct sk_buff *skb)
2433{
2434        skb->mac_len = skb->network_header - skb->mac_header;
2435}
2436
2437static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2438                                                        *skb)
2439{
2440        return skb->head + skb->inner_transport_header;
2441}
2442
2443static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2444{
2445        return skb_inner_transport_header(skb) - skb->data;
2446}
2447
2448static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2449{
2450        skb->inner_transport_header = skb->data - skb->head;
2451}
2452
2453static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2454                                                   const int offset)
2455{
2456        skb_reset_inner_transport_header(skb);
2457        skb->inner_transport_header += offset;
2458}
2459
2460static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2461{
2462        return skb->head + skb->inner_network_header;
2463}
2464
2465static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2466{
2467        skb->inner_network_header = skb->data - skb->head;
2468}
2469
2470static inline void skb_set_inner_network_header(struct sk_buff *skb,
2471                                                const int offset)
2472{
2473        skb_reset_inner_network_header(skb);
2474        skb->inner_network_header += offset;
2475}
2476
2477static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2478{
2479        return skb->head + skb->inner_mac_header;
2480}
2481
2482static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2483{
2484        skb->inner_mac_header = skb->data - skb->head;
2485}
2486
2487static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2488                                            const int offset)
2489{
2490        skb_reset_inner_mac_header(skb);
2491        skb->inner_mac_header += offset;
2492}
2493static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2494{
2495        return skb->transport_header != (typeof(skb->transport_header))~0U;
2496}
2497
2498static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2499{
2500        return skb->head + skb->transport_header;
2501}
2502
2503static inline void skb_reset_transport_header(struct sk_buff *skb)
2504{
2505        skb->transport_header = skb->data - skb->head;
2506}
2507
2508static inline void skb_set_transport_header(struct sk_buff *skb,
2509                                            const int offset)
2510{
2511        skb_reset_transport_header(skb);
2512        skb->transport_header += offset;
2513}
2514
2515static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2516{
2517        return skb->head + skb->network_header;
2518}
2519
2520static inline void skb_reset_network_header(struct sk_buff *skb)
2521{
2522        skb->network_header = skb->data - skb->head;
2523}
2524
2525static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2526{
2527        skb_reset_network_header(skb);
2528        skb->network_header += offset;
2529}
2530
2531static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2532{
2533        return skb->head + skb->mac_header;
2534}
2535
2536static inline int skb_mac_offset(const struct sk_buff *skb)
2537{
2538        return skb_mac_header(skb) - skb->data;
2539}
2540
2541static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2542{
2543        return skb->network_header - skb->mac_header;
2544}
2545
2546static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2547{
2548        return skb->mac_header != (typeof(skb->mac_header))~0U;
2549}
2550
2551static inline void skb_reset_mac_header(struct sk_buff *skb)
2552{
2553        skb->mac_header = skb->data - skb->head;
2554}
2555
2556static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2557{
2558        skb_reset_mac_header(skb);
2559        skb->mac_header += offset;
2560}
2561
2562static inline void skb_pop_mac_header(struct sk_buff *skb)
2563{
2564        skb->mac_header = skb->network_header;
2565}
2566
2567static inline void skb_probe_transport_header(struct sk_buff *skb)
2568{
2569        struct flow_keys_basic keys;
2570
2571        if (skb_transport_header_was_set(skb))
2572                return;
2573
2574        if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2575                                             NULL, 0, 0, 0, 0))
2576                skb_set_transport_header(skb, keys.control.thoff);
2577}
2578
2579static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2580{
2581        if (skb_mac_header_was_set(skb)) {
2582                const unsigned char *old_mac = skb_mac_header(skb);
2583
2584                skb_set_mac_header(skb, -skb->mac_len);
2585                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2586        }
2587}
2588
2589static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2590{
2591        return skb->csum_start - skb_headroom(skb);
2592}
2593
2594static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2595{
2596        return skb->head + skb->csum_start;
2597}
2598
2599static inline int skb_transport_offset(const struct sk_buff *skb)
2600{
2601        return skb_transport_header(skb) - skb->data;
2602}
2603
2604static inline u32 skb_network_header_len(const struct sk_buff *skb)
2605{
2606        return skb->transport_header - skb->network_header;
2607}
2608
2609static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2610{
2611        return skb->inner_transport_header - skb->inner_network_header;
2612}
2613
2614static inline int skb_network_offset(const struct sk_buff *skb)
2615{
2616        return skb_network_header(skb) - skb->data;
2617}
2618
2619static inline int skb_inner_network_offset(const struct sk_buff *skb)
2620{
2621        return skb_inner_network_header(skb) - skb->data;
2622}
2623
2624static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2625{
2626        return pskb_may_pull(skb, skb_network_offset(skb) + len);
2627}
2628
2629/*
2630 * CPUs often take a performance hit when accessing unaligned memory
2631 * locations. The actual performance hit varies, it can be small if the
2632 * hardware handles it or large if we have to take an exception and fix it
2633 * in software.
2634 *
2635 * Since an ethernet header is 14 bytes network drivers often end up with
2636 * the IP header at an unaligned offset. The IP header can be aligned by
2637 * shifting the start of the packet by 2 bytes. Drivers should do this
2638 * with:
2639 *
2640 * skb_reserve(skb, NET_IP_ALIGN);
2641 *
2642 * The downside to this alignment of the IP header is that the DMA is now
2643 * unaligned. On some architectures the cost of an unaligned DMA is high
2644 * and this cost outweighs the gains made by aligning the IP header.
2645 *
2646 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2647 * to be overridden.
2648 */
2649#ifndef NET_IP_ALIGN
2650#define NET_IP_ALIGN    2
2651#endif
2652
2653/*
2654 * The networking layer reserves some headroom in skb data (via
2655 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2656 * the header has to grow. In the default case, if the header has to grow
2657 * 32 bytes or less we avoid the reallocation.
2658 *
2659 * Unfortunately this headroom changes the DMA alignment of the resulting
2660 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2661 * on some architectures. An architecture can override this value,
2662 * perhaps setting it to a cacheline in size (since that will maintain
2663 * cacheline alignment of the DMA). It must be a power of 2.
2664 *
2665 * Various parts of the networking layer expect at least 32 bytes of
2666 * headroom, you should not reduce this.
2667 *
2668 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2669 * to reduce average number of cache lines per packet.
2670 * get_rps_cpu() for example only access one 64 bytes aligned block :
2671 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2672 */
2673#ifndef NET_SKB_PAD
2674#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2675#endif
2676
2677int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2678
2679static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2680{
2681        if (WARN_ON(skb_is_nonlinear(skb)))
2682                return;
2683        skb->len = len;
2684        skb_set_tail_pointer(skb, len);
2685}
2686
2687static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2688{
2689        __skb_set_length(skb, len);
2690}
2691
2692void skb_trim(struct sk_buff *skb, unsigned int len);
2693
2694static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2695{
2696        if (skb->data_len)
2697                return ___pskb_trim(skb, len);
2698        __skb_trim(skb, len);
2699        return 0;
2700}
2701
2702static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2703{
2704        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2705}
2706
2707/**
2708 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2709 *      @skb: buffer to alter
2710 *      @len: new length
2711 *
2712 *      This is identical to pskb_trim except that the caller knows that
2713 *      the skb is not cloned so we should never get an error due to out-
2714 *      of-memory.
2715 */
2716static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2717{
2718        int err = pskb_trim(skb, len);
2719        BUG_ON(err);
2720}
2721
2722static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2723{
2724        unsigned int diff = len - skb->len;
2725
2726        if (skb_tailroom(skb) < diff) {
2727                int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2728                                           GFP_ATOMIC);
2729                if (ret)
2730                        return ret;
2731        }
2732        __skb_set_length(skb, len);
2733        return 0;
2734}
2735
2736/**
2737 *      skb_orphan - orphan a buffer
2738 *      @skb: buffer to orphan
2739 *
2740 *      If a buffer currently has an owner then we call the owner's
2741 *      destructor function and make the @skb unowned. The buffer continues
2742 *      to exist but is no longer charged to its former owner.
2743 */
2744static inline void skb_orphan(struct sk_buff *skb)
2745{
2746        if (skb->destructor) {
2747                skb->destructor(skb);
2748                skb->destructor = NULL;
2749                skb->sk         = NULL;
2750        } else {
2751                BUG_ON(skb->sk);
2752        }
2753}
2754
2755/**
2756 *      skb_orphan_frags - orphan the frags contained in a buffer
2757 *      @skb: buffer to orphan frags from
2758 *      @gfp_mask: allocation mask for replacement pages
2759 *
2760 *      For each frag in the SKB which needs a destructor (i.e. has an
2761 *      owner) create a copy of that frag and release the original
2762 *      page by calling the destructor.
2763 */
2764static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2765{
2766        if (likely(!skb_zcopy(skb)))
2767                return 0;
2768        if (!skb_zcopy_is_nouarg(skb) &&
2769            skb_uarg(skb)->callback == sock_zerocopy_callback)
2770                return 0;
2771        return skb_copy_ubufs(skb, gfp_mask);
2772}
2773
2774/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2775static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2776{
2777        if (likely(!skb_zcopy(skb)))
2778                return 0;
2779        return skb_copy_ubufs(skb, gfp_mask);
2780}
2781
2782/**
2783 *      __skb_queue_purge - empty a list
2784 *      @list: list to empty
2785 *
2786 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2787 *      the list and one reference dropped. This function does not take the
2788 *      list lock and the caller must hold the relevant locks to use it.
2789 */
2790static inline void __skb_queue_purge(struct sk_buff_head *list)
2791{
2792        struct sk_buff *skb;
2793        while ((skb = __skb_dequeue(list)) != NULL)
2794                kfree_skb(skb);
2795}
2796void skb_queue_purge(struct sk_buff_head *list);
2797
2798unsigned int skb_rbtree_purge(struct rb_root *root);
2799
2800void *netdev_alloc_frag(unsigned int fragsz);
2801
2802struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2803                                   gfp_t gfp_mask);
2804
2805/**
2806 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2807 *      @dev: network device to receive on
2808 *      @length: length to allocate
2809 *
2810 *      Allocate a new &sk_buff and assign it a usage count of one. The
2811 *      buffer has unspecified headroom built in. Users should allocate
2812 *      the headroom they think they need without accounting for the
2813 *      built in space. The built in space is used for optimisations.
2814 *
2815 *      %NULL is returned if there is no free memory. Although this function
2816 *      allocates memory it can be called from an interrupt.
2817 */
2818static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2819                                               unsigned int length)
2820{
2821        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2822}
2823
2824/* legacy helper around __netdev_alloc_skb() */
2825static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2826                                              gfp_t gfp_mask)
2827{
2828        return __netdev_alloc_skb(NULL, length, gfp_mask);
2829}
2830
2831/* legacy helper around netdev_alloc_skb() */
2832static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2833{
2834        return netdev_alloc_skb(NULL, length);
2835}
2836
2837
2838static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2839                unsigned int length, gfp_t gfp)
2840{
2841        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2842
2843        if (NET_IP_ALIGN && skb)
2844                skb_reserve(skb, NET_IP_ALIGN);
2845        return skb;
2846}
2847
2848static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2849                unsigned int length)
2850{
2851        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2852}
2853
2854static inline void skb_free_frag(void *addr)
2855{
2856        page_frag_free(addr);
2857}
2858
2859void *napi_alloc_frag(unsigned int fragsz);
2860struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2861                                 unsigned int length, gfp_t gfp_mask);
2862static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2863                                             unsigned int length)
2864{
2865        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2866}
2867void napi_consume_skb(struct sk_buff *skb, int budget);
2868
2869void __kfree_skb_flush(void);
2870void __kfree_skb_defer(struct sk_buff *skb);
2871
2872/**
2873 * __dev_alloc_pages - allocate page for network Rx
2874 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2875 * @order: size of the allocation
2876 *
2877 * Allocate a new page.
2878 *
2879 * %NULL is returned if there is no free memory.
2880*/
2881static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2882                                             unsigned int order)
2883{
2884        /* This piece of code contains several assumptions.
2885         * 1.  This is for device Rx, therefor a cold page is preferred.
2886         * 2.  The expectation is the user wants a compound page.
2887         * 3.  If requesting a order 0 page it will not be compound
2888         *     due to the check to see if order has a value in prep_new_page
2889         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2890         *     code in gfp_to_alloc_flags that should be enforcing this.
2891         */
2892        gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2893
2894        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2895}
2896
2897static inline struct page *dev_alloc_pages(unsigned int order)
2898{
2899        return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2900}
2901
2902/**
2903 * __dev_alloc_page - allocate a page for network Rx
2904 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2905 *
2906 * Allocate a new page.
2907 *
2908 * %NULL is returned if there is no free memory.
2909 */
2910static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2911{
2912        return __dev_alloc_pages(gfp_mask, 0);
2913}
2914
2915static inline struct page *dev_alloc_page(void)
2916{
2917        return dev_alloc_pages(0);
2918}
2919
2920/**
2921 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2922 *      @page: The page that was allocated from skb_alloc_page
2923 *      @skb: The skb that may need pfmemalloc set
2924 */
2925static inline void skb_propagate_pfmemalloc(struct page *page,
2926                                             struct sk_buff *skb)
2927{
2928        if (page_is_pfmemalloc(page))
2929                skb->pfmemalloc = true;
2930}
2931
2932/**
2933 * skb_frag_off() - Returns the offset of a skb fragment
2934 * @frag: the paged fragment
2935 */
2936static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2937{
2938        return frag->bv_offset;
2939}
2940
2941/**
2942 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2943 * @frag: skb fragment
2944 * @delta: value to add
2945 */
2946static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2947{
2948        frag->bv_offset += delta;
2949}
2950
2951/**
2952 * skb_frag_off_set() - Sets the offset of a skb fragment
2953 * @frag: skb fragment
2954 * @offset: offset of fragment
2955 */
2956static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2957{
2958        frag->bv_offset = offset;
2959}
2960
2961/**
2962 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2963 * @fragto: skb fragment where offset is set
2964 * @fragfrom: skb fragment offset is copied from
2965 */
2966static inline void skb_frag_off_copy(skb_frag_t *fragto,
2967                                     const skb_frag_t *fragfrom)
2968{
2969        fragto->bv_offset = fragfrom->bv_offset;
2970}
2971
2972/**
2973 * skb_frag_page - retrieve the page referred to by a paged fragment
2974 * @frag: the paged fragment
2975 *
2976 * Returns the &struct page associated with @frag.
2977 */
2978static inline struct page *skb_frag_page(const skb_frag_t *frag)
2979{
2980        return frag->bv_page;
2981}
2982
2983/**
2984 * __skb_frag_ref - take an addition reference on a paged fragment.
2985 * @frag: the paged fragment
2986 *
2987 * Takes an additional reference on the paged fragment @frag.
2988 */
2989static inline void __skb_frag_ref(skb_frag_t *frag)
2990{
2991        get_page(skb_frag_page(frag));
2992}
2993
2994/**
2995 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2996 * @skb: the buffer
2997 * @f: the fragment offset.
2998 *
2999 * Takes an additional reference on the @f'th paged fragment of @skb.
3000 */
3001static inline void skb_frag_ref(struct sk_buff *skb, int f)
3002{
3003        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3004}
3005
3006/**
3007 * __skb_frag_unref - release a reference on a paged fragment.
3008 * @frag: the paged fragment
3009 *
3010 * Releases a reference on the paged fragment @frag.
3011 */
3012static inline void __skb_frag_unref(skb_frag_t *frag)
3013{
3014        put_page(skb_frag_page(frag));
3015}
3016
3017/**
3018 * skb_frag_unref - release a reference on a paged fragment of an skb.
3019 * @skb: the buffer
3020 * @f: the fragment offset
3021 *
3022 * Releases a reference on the @f'th paged fragment of @skb.
3023 */
3024static inline void skb_frag_unref(struct sk_buff *skb, int f)
3025{
3026        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3027}
3028
3029/**
3030 * skb_frag_address - gets the address of the data contained in a paged fragment
3031 * @frag: the paged fragment buffer
3032 *
3033 * Returns the address of the data within @frag. The page must already
3034 * be mapped.
3035 */
3036static inline void *skb_frag_address(const skb_frag_t *frag)
3037{
3038        return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3039}
3040
3041/**
3042 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3043 * @frag: the paged fragment buffer
3044 *
3045 * Returns the address of the data within @frag. Checks that the page
3046 * is mapped and returns %NULL otherwise.
3047 */
3048static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3049{
3050        void *ptr = page_address(skb_frag_page(frag));
3051        if (unlikely(!ptr))
3052                return NULL;
3053
3054        return ptr + skb_frag_off(frag);
3055}
3056
3057/**
3058 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3059 * @fragto: skb fragment where page is set
3060 * @fragfrom: skb fragment page is copied from
3061 */
3062static inline void skb_frag_page_copy(skb_frag_t *fragto,
3063                                      const skb_frag_t *fragfrom)
3064{
3065        fragto->bv_page = fragfrom->bv_page;
3066}
3067
3068/**
3069 * __skb_frag_set_page - sets the page contained in a paged fragment
3070 * @frag: the paged fragment
3071 * @page: the page to set
3072 *
3073 * Sets the fragment @frag to contain @page.
3074 */
3075static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3076{
3077        frag->bv_page = page;
3078}
3079
3080/**
3081 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3082 * @skb: the buffer
3083 * @f: the fragment offset
3084 * @page: the page to set
3085 *
3086 * Sets the @f'th fragment of @skb to contain @page.
3087 */
3088static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3089                                     struct page *page)
3090{
3091        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3092}
3093
3094bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3095
3096/**
3097 * skb_frag_dma_map - maps a paged fragment via the DMA API
3098 * @dev: the device to map the fragment to
3099 * @frag: the paged fragment to map
3100 * @offset: the offset within the fragment (starting at the
3101 *          fragment's own offset)
3102 * @size: the number of bytes to map
3103 * @dir: the direction of the mapping (``PCI_DMA_*``)
3104 *
3105 * Maps the page associated with @frag to @device.
3106 */
3107static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3108                                          const skb_frag_t *frag,
3109                                          size_t offset, size_t size,
3110                                          enum dma_data_direction dir)
3111{
3112        return dma_map_page(dev, skb_frag_page(frag),
3113                            skb_frag_off(frag) + offset, size, dir);
3114}
3115
3116static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3117                                        gfp_t gfp_mask)
3118{
3119        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3120}
3121
3122
3123static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3124                                                  gfp_t gfp_mask)
3125{
3126        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3127}
3128
3129
3130/**
3131 *      skb_clone_writable - is the header of a clone writable
3132 *      @skb: buffer to check
3133 *      @len: length up to which to write
3134 *
3135 *      Returns true if modifying the header part of the cloned buffer
3136 *      does not requires the data to be copied.
3137 */
3138static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3139{
3140        return !skb_header_cloned(skb) &&
3141               skb_headroom(skb) + len <= skb->hdr_len;
3142}
3143
3144static inline int skb_try_make_writable(struct sk_buff *skb,
3145                                        unsigned int write_len)
3146{
3147        return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3148               pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3149}
3150
3151static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3152                            int cloned)
3153{
3154        int delta = 0;
3155
3156        if (headroom > skb_headroom(skb))
3157                delta = headroom - skb_headroom(skb);
3158
3159        if (delta || cloned)
3160                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3161                                        GFP_ATOMIC);
3162        return 0;
3163}
3164
3165/**
3166 *      skb_cow - copy header of skb when it is required
3167 *      @skb: buffer to cow
3168 *      @headroom: needed headroom
3169 *
3170 *      If the skb passed lacks sufficient headroom or its data part
3171 *      is shared, data is reallocated. If reallocation fails, an error
3172 *      is returned and original skb is not changed.
3173 *
3174 *      The result is skb with writable area skb->head...skb->tail
3175 *      and at least @headroom of space at head.
3176 */
3177static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3178{
3179        return __skb_cow(skb, headroom, skb_cloned(skb));
3180}
3181
3182/**
3183 *      skb_cow_head - skb_cow but only making the head writable
3184 *      @skb: buffer to cow
3185 *      @headroom: needed headroom
3186 *
3187 *      This function is identical to skb_cow except that we replace the
3188 *      skb_cloned check by skb_header_cloned.  It should be used when
3189 *      you only need to push on some header and do not need to modify
3190 *      the data.
3191 */
3192static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3193{
3194        return __skb_cow(skb, headroom, skb_header_cloned(skb));
3195}
3196
3197/**
3198 *      skb_padto       - pad an skbuff up to a minimal size
3199 *      @skb: buffer to pad
3200 *      @len: minimal length
3201 *
3202 *      Pads up a buffer to ensure the trailing bytes exist and are
3203 *      blanked. If the buffer already contains sufficient data it
3204 *      is untouched. Otherwise it is extended. Returns zero on
3205 *      success. The skb is freed on error.
3206 */
3207static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3208{
3209        unsigned int size = skb->len;
3210        if (likely(size >= len))
3211                return 0;
3212        return skb_pad(skb, len - size);
3213}
3214
3215/**
3216 *      __skb_put_padto - increase size and pad an skbuff up to a minimal size
3217 *      @skb: buffer to pad
3218 *      @len: minimal length
3219 *      @free_on_error: free buffer on error
3220 *
3221 *      Pads up a buffer to ensure the trailing bytes exist and are
3222 *      blanked. If the buffer already contains sufficient data it
3223 *      is untouched. Otherwise it is extended. Returns zero on
3224 *      success. The skb is freed on error if @free_on_error is true.
3225 */
3226static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3227                                               unsigned int len,
3228                                               bool free_on_error)
3229{
3230        unsigned int size = skb->len;
3231
3232        if (unlikely(size < len)) {
3233                len -= size;
3234                if (__skb_pad(skb, len, free_on_error))
3235                        return -ENOMEM;
3236                __skb_put(skb, len);
3237        }
3238        return 0;
3239}
3240
3241/**
3242 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
3243 *      @skb: buffer to pad
3244 *      @len: minimal length
3245 *
3246 *      Pads up a buffer to ensure the trailing bytes exist and are
3247 *      blanked. If the buffer already contains sufficient data it
3248 *      is untouched. Otherwise it is extended. Returns zero on
3249 *      success. The skb is freed on error.
3250 */
3251static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3252{
3253        return __skb_put_padto(skb, len, true);
3254}
3255
3256static inline int skb_add_data(struct sk_buff *skb,
3257                               struct iov_iter *from, int copy)
3258{
3259        const int off = skb->len;
3260
3261        if (skb->ip_summed == CHECKSUM_NONE) {
3262                __wsum csum = 0;
3263                if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3264                                                 &csum, from)) {
3265                        skb->csum = csum_block_add(skb->csum, csum, off);
3266                        return 0;
3267                }
3268        } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3269                return 0;
3270
3271        __skb_trim(skb, off);
3272        return -EFAULT;
3273}
3274
3275static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3276                                    const struct page *page, int off)
3277{
3278        if (skb_zcopy(skb))
3279                return false;
3280        if (i) {
3281                const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3282
3283                return page == skb_frag_page(frag) &&
3284                       off == skb_frag_off(frag) + skb_frag_size(frag);
3285        }
3286        return false;
3287}
3288
3289static inline int __skb_linearize(struct sk_buff *skb)
3290{
3291        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3292}
3293
3294/**
3295 *      skb_linearize - convert paged skb to linear one
3296 *      @skb: buffer to linarize
3297 *
3298 *      If there is no free memory -ENOMEM is returned, otherwise zero
3299 *      is returned and the old skb data released.
3300 */
3301static inline int skb_linearize(struct sk_buff *skb)
3302{
3303        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3304}
3305
3306/**
3307 * skb_has_shared_frag - can any frag be overwritten
3308 * @skb: buffer to test
3309 *
3310 * Return true if the skb has at least one frag that might be modified
3311 * by an external entity (as in vmsplice()/sendfile())
3312 */
3313static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3314{
3315        return skb_is_nonlinear(skb) &&
3316               skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3317}
3318
3319/**
3320 *      skb_linearize_cow - make sure skb is linear and writable
3321 *      @skb: buffer to process
3322 *
3323 *      If there is no free memory -ENOMEM is returned, otherwise zero
3324 *      is returned and the old skb data released.
3325 */
3326static inline int skb_linearize_cow(struct sk_buff *skb)
3327{
3328        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3329               __skb_linearize(skb) : 0;
3330}
3331
3332static __always_inline void
3333__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3334                     unsigned int off)
3335{
3336        if (skb->ip_summed == CHECKSUM_COMPLETE)
3337                skb->csum = csum_block_sub(skb->csum,
3338                                           csum_partial(start, len, 0), off);
3339        else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3340                 skb_checksum_start_offset(skb) < 0)
3341                skb->ip_summed = CHECKSUM_NONE;
3342}
3343
3344/**
3345 *      skb_postpull_rcsum - update checksum for received skb after pull
3346 *      @skb: buffer to update
3347 *      @start: start of data before pull
3348 *      @len: length of data pulled
3349 *
3350 *      After doing a pull on a received packet, you need to call this to
3351 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3352 *      CHECKSUM_NONE so that it can be recomputed from scratch.
3353 */
3354static inline void skb_postpull_rcsum(struct sk_buff *skb,
3355                                      const void *start, unsigned int len)
3356{
3357        __skb_postpull_rcsum(skb, start, len, 0);
3358}
3359
3360static __always_inline void
3361__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3362                     unsigned int off)
3363{
3364        if (skb->ip_summed == CHECKSUM_COMPLETE)
3365                skb->csum = csum_block_add(skb->csum,
3366                                           csum_partial(start, len, 0), off);
3367}
3368
3369/**
3370 *      skb_postpush_rcsum - update checksum for received skb after push
3371 *      @skb: buffer to update
3372 *      @start: start of data after push
3373 *      @len: length of data pushed
3374 *
3375 *      After doing a push on a received packet, you need to call this to
3376 *      update the CHECKSUM_COMPLETE checksum.
3377 */
3378static inline void skb_postpush_rcsum(struct sk_buff *skb,
3379                                      const void *start, unsigned int len)
3380{
3381        __skb_postpush_rcsum(skb, start, len, 0);
3382}
3383
3384void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3385
3386/**
3387 *      skb_push_rcsum - push skb and update receive checksum
3388 *      @skb: buffer to update
3389 *      @len: length of data pulled
3390 *
3391 *      This function performs an skb_push on the packet and updates
3392 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3393 *      receive path processing instead of skb_push unless you know
3394 *      that the checksum difference is zero (e.g., a valid IP header)
3395 *      or you are setting ip_summed to CHECKSUM_NONE.
3396 */
3397static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3398{
3399        skb_push(skb, len);
3400        skb_postpush_rcsum(skb, skb->data, len);
3401        return skb->data;
3402}
3403
3404int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3405/**
3406 *      pskb_trim_rcsum - trim received skb and update checksum
3407 *      @skb: buffer to trim
3408 *      @len: new length
3409 *
3410 *      This is exactly the same as pskb_trim except that it ensures the
3411 *      checksum of received packets are still valid after the operation.
3412 *      It can change skb pointers.
3413 */
3414
3415static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3416{
3417        if (likely(len >= skb->len))
3418                return 0;
3419        return pskb_trim_rcsum_slow(skb, len);
3420}
3421
3422static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3423{
3424        if (skb->ip_summed == CHECKSUM_COMPLETE)
3425                skb->ip_summed = CHECKSUM_NONE;
3426        __skb_trim(skb, len);
3427        return 0;
3428}
3429
3430static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3431{
3432        if (skb->ip_summed == CHECKSUM_COMPLETE)
3433                skb->ip_summed = CHECKSUM_NONE;
3434        return __skb_grow(skb, len);
3435}
3436
3437#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3438#define skb_rb_first(root) rb_to_skb(rb_first(root))
3439#define skb_rb_last(root)  rb_to_skb(rb_last(root))
3440#define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3441#define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3442
3443#define skb_queue_walk(queue, skb) \
3444                for (skb = (queue)->next;                                       \
3445                     skb != (struct sk_buff *)(queue);                          \
3446                     skb = skb->next)
3447
3448#define skb_queue_walk_safe(queue, skb, tmp)                                    \
3449                for (skb = (queue)->next, tmp = skb->next;                      \
3450                     skb != (struct sk_buff *)(queue);                          \
3451                     skb = tmp, tmp = skb->next)
3452
3453#define skb_queue_walk_from(queue, skb)                                         \
3454                for (; skb != (struct sk_buff *)(queue);                        \
3455                     skb = skb->next)
3456
3457#define skb_rbtree_walk(skb, root)                                              \
3458                for (skb = skb_rb_first(root); skb != NULL;                     \
3459                     skb = skb_rb_next(skb))
3460
3461#define skb_rbtree_walk_from(skb)                                               \
3462                for (; skb != NULL;                                             \
3463                     skb = skb_rb_next(skb))
3464
3465#define skb_rbtree_walk_from_safe(skb, tmp)                                     \
3466                for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);      \
3467                     skb = tmp)
3468
3469#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3470                for (tmp = skb->next;                                           \
3471                     skb != (struct sk_buff *)(queue);                          \
3472                     skb = tmp, tmp = skb->next)
3473
3474#define skb_queue_reverse_walk(queue, skb) \
3475                for (skb = (queue)->prev;                                       \
3476                     skb != (struct sk_buff *)(queue);                          \
3477                     skb = skb->prev)
3478
3479#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3480                for (skb = (queue)->prev, tmp = skb->prev;                      \
3481                     skb != (struct sk_buff *)(queue);                          \
3482                     skb = tmp, tmp = skb->prev)
3483
3484#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3485                for (tmp = skb->prev;                                           \
3486                     skb != (struct sk_buff *)(queue);                          \
3487                     skb = tmp, tmp = skb->prev)
3488
3489static inline bool skb_has_frag_list(const struct sk_buff *skb)
3490{
3491        return skb_shinfo(skb)->frag_list != NULL;
3492}
3493
3494static inline void skb_frag_list_init(struct sk_buff *skb)
3495{
3496        skb_shinfo(skb)->frag_list = NULL;
3497}
3498
3499#define skb_walk_frags(skb, iter)       \
3500        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3501
3502
3503int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3504                                int *err, long *timeo_p,
3505                                const struct sk_buff *skb);
3506struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3507                                          struct sk_buff_head *queue,
3508                                          unsigned int flags,
3509                                          int *off, int *err,
3510                                          struct sk_buff **last);
3511struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3512                                        struct sk_buff_head *queue,
3513                                        unsigned int flags, int *off, int *err,
3514                                        struct sk_buff **last);
3515struct sk_buff *__skb_recv_datagram(struct sock *sk,
3516                                    struct sk_buff_head *sk_queue,
3517                                    unsigned int flags, int *off, int *err);
3518struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3519                                  int *err);
3520__poll_t datagram_poll(struct file *file, struct socket *sock,
3521                           struct poll_table_struct *wait);
3522int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3523                           struct iov_iter *to, int size);
3524static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3525                                        struct msghdr *msg, int size)
3526{
3527        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3528}
3529int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3530                                   struct msghdr *msg);
3531int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3532                           struct iov_iter *to, int len,
3533                           struct ahash_request *hash);
3534int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3535                                 struct iov_iter *from, int len);
3536int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3537void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3538void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3539static inline void skb_free_datagram_locked(struct sock *sk,
3540                                            struct sk_buff *skb)
3541{
3542        __skb_free_datagram_locked(sk, skb, 0);
3543}
3544int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3545int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3546int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3547__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3548                              int len, __wsum csum);
3549int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3550                    struct pipe_inode_info *pipe, unsigned int len,
3551                    unsigned int flags);
3552int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3553                         int len);
3554void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3555unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3556int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3557                 int len, int hlen);
3558void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3559int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3560void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3561bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3562bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3563struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3564struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3565                                 unsigned int offset);
3566struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3567int skb_ensure_writable(struct sk_buff *skb, int write_len);
3568int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3569int skb_vlan_pop(struct sk_buff *skb);
3570int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3571int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3572                  int mac_len, bool ethernet);
3573int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3574                 bool ethernet);
3575int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3576int skb_mpls_dec_ttl(struct sk_buff *skb);
3577struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3578                             gfp_t gfp);
3579
3580static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3581{
3582        return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3583}
3584
3585static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3586{
3587        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3588}
3589
3590struct skb_checksum_ops {
3591        __wsum (*update)(const void *mem, int len, __wsum wsum);
3592        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3593};
3594
3595extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3596
3597__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3598                      __wsum csum, const struct skb_checksum_ops *ops);
3599__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3600                    __wsum csum);
3601
3602static inline void * __must_check
3603__skb_header_pointer(const struct sk_buff *skb, int offset,
3604                     int len, void *data, int hlen, void *buffer)
3605{
3606        if (hlen - offset >= len)
3607                return data + offset;
3608
3609        if (!skb ||
3610            skb_copy_bits(skb, offset, buffer, len) < 0)
3611                return NULL;
3612
3613        return buffer;
3614}
3615
3616static inline void * __must_check
3617skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3618{
3619        return __skb_header_pointer(skb, offset, len, skb->data,
3620                                    skb_headlen(skb), buffer);
3621}
3622
3623/**
3624 *      skb_needs_linearize - check if we need to linearize a given skb
3625 *                            depending on the given device features.
3626 *      @skb: socket buffer to check
3627 *      @features: net device features
3628 *
3629 *      Returns true if either:
3630 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3631 *      2. skb is fragmented and the device does not support SG.
3632 */
3633static inline bool skb_needs_linearize(struct sk_buff *skb,
3634                                       netdev_features_t features)
3635{
3636        return skb_is_nonlinear(skb) &&
3637               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3638                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3639}
3640
3641static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3642                                             void *to,
3643                                             const unsigned int len)
3644{
3645        memcpy(to, skb->data, len);
3646}
3647
3648static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3649                                                    const int offset, void *to,
3650                                                    const unsigned int len)
3651{
3652        memcpy(to, skb->data + offset, len);
3653}
3654
3655static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3656                                           const void *from,
3657                                           const unsigned int len)
3658{
3659        memcpy(skb->data, from, len);
3660}
3661
3662static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3663                                                  const int offset,
3664                                                  const void *from,
3665                                                  const unsigned int len)
3666{
3667        memcpy(skb->data + offset, from, len);
3668}
3669
3670void skb_init(void);
3671
3672static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3673{
3674        return skb->tstamp;
3675}
3676
3677/**
3678 *      skb_get_timestamp - get timestamp from a skb
3679 *      @skb: skb to get stamp from
3680 *      @stamp: pointer to struct __kernel_old_timeval to store stamp in
3681 *
3682 *      Timestamps are stored in the skb as offsets to a base timestamp.
3683 *      This function converts the offset back to a struct timeval and stores
3684 *      it in stamp.
3685 */
3686static inline void skb_get_timestamp(const struct sk_buff *skb,
3687                                     struct __kernel_old_timeval *stamp)
3688{
3689        *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3690}
3691
3692static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3693                                         struct __kernel_sock_timeval *stamp)
3694{
3695        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3696
3697        stamp->tv_sec = ts.tv_sec;
3698        stamp->tv_usec = ts.tv_nsec / 1000;
3699}
3700
3701static inline void skb_get_timestampns(const struct sk_buff *skb,
3702                                       struct __kernel_old_timespec *stamp)
3703{
3704        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3705
3706        stamp->tv_sec = ts.tv_sec;
3707        stamp->tv_nsec = ts.tv_nsec;
3708}
3709
3710static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3711                                           struct __kernel_timespec *stamp)
3712{
3713        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3714
3715        stamp->tv_sec = ts.tv_sec;
3716        stamp->tv_nsec = ts.tv_nsec;
3717}
3718
3719static inline void __net_timestamp(struct sk_buff *skb)
3720{
3721        skb->tstamp = ktime_get_real();
3722}
3723
3724static inline ktime_t net_timedelta(ktime_t t)
3725{
3726        return ktime_sub(ktime_get_real(), t);
3727}
3728
3729static inline ktime_t net_invalid_timestamp(void)
3730{
3731        return 0;
3732}
3733
3734static inline u8 skb_metadata_len(const struct sk_buff *skb)
3735{
3736        return skb_shinfo(skb)->meta_len;
3737}
3738
3739static inline void *skb_metadata_end(const struct sk_buff *skb)
3740{
3741        return skb_mac_header(skb);
3742}
3743
3744static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3745                                          const struct sk_buff *skb_b,
3746                                          u8 meta_len)
3747{
3748        const void *a = skb_metadata_end(skb_a);
3749        const void *b = skb_metadata_end(skb_b);
3750        /* Using more efficient varaiant than plain call to memcmp(). */
3751#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3752        u64 diffs = 0;
3753
3754        switch (meta_len) {
3755#define __it(x, op) (x -= sizeof(u##op))
3756#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3757        case 32: diffs |= __it_diff(a, b, 64);
3758                fallthrough;
3759        case 24: diffs |= __it_diff(a, b, 64);
3760                fallthrough;
3761        case 16: diffs |= __it_diff(a, b, 64);
3762                fallthrough;
3763        case  8: diffs |= __it_diff(a, b, 64);
3764                break;
3765        case 28: diffs |= __it_diff(a, b, 64);
3766                fallthrough;
3767        case 20: diffs |= __it_diff(a, b, 64);
3768                fallthrough;
3769        case 12: diffs |= __it_diff(a, b, 64);
3770                fallthrough;
3771        case  4: diffs |= __it_diff(a, b, 32);
3772                break;
3773        }
3774        return diffs;
3775#else
3776        return memcmp(a - meta_len, b - meta_len, meta_len);
3777#endif
3778}
3779
3780static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3781                                        const struct sk_buff *skb_b)
3782{
3783        u8 len_a = skb_metadata_len(skb_a);
3784        u8 len_b = skb_metadata_len(skb_b);
3785
3786        if (!(len_a | len_b))
3787                return false;
3788
3789        return len_a != len_b ?
3790               true : __skb_metadata_differs(skb_a, skb_b, len_a);
3791}
3792
3793static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3794{
3795        skb_shinfo(skb)->meta_len = meta_len;
3796}
3797
3798static inline void skb_metadata_clear(struct sk_buff *skb)
3799{
3800        skb_metadata_set(skb, 0);
3801}
3802
3803struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3804
3805#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3806
3807void skb_clone_tx_timestamp(struct sk_buff *skb);
3808bool skb_defer_rx_timestamp(struct sk_buff *skb);
3809
3810#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3811
3812static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3813{
3814}
3815
3816static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3817{
3818        return false;
3819}
3820
3821#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3822
3823/**
3824 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3825 *
3826 * PHY drivers may accept clones of transmitted packets for
3827 * timestamping via their phy_driver.txtstamp method. These drivers
3828 * must call this function to return the skb back to the stack with a
3829 * timestamp.
3830 *
3831 * @skb: clone of the original outgoing packet
3832 * @hwtstamps: hardware time stamps
3833 *
3834 */
3835void skb_complete_tx_timestamp(struct sk_buff *skb,
3836                               struct skb_shared_hwtstamps *hwtstamps);
3837
3838void __skb_tstamp_tx(struct sk_buff *orig_skb,
3839                     struct skb_shared_hwtstamps *hwtstamps,
3840                     struct sock *sk, int tstype);
3841
3842/**
3843 * skb_tstamp_tx - queue clone of skb with send time stamps
3844 * @orig_skb:   the original outgoing packet
3845 * @hwtstamps:  hardware time stamps, may be NULL if not available
3846 *
3847 * If the skb has a socket associated, then this function clones the
3848 * skb (thus sharing the actual data and optional structures), stores
3849 * the optional hardware time stamping information (if non NULL) or
3850 * generates a software time stamp (otherwise), then queues the clone
3851 * to the error queue of the socket.  Errors are silently ignored.
3852 */
3853void skb_tstamp_tx(struct sk_buff *orig_skb,
3854                   struct skb_shared_hwtstamps *hwtstamps);
3855
3856/**
3857 * skb_tx_timestamp() - Driver hook for transmit timestamping
3858 *
3859 * Ethernet MAC Drivers should call this function in their hard_xmit()
3860 * function immediately before giving the sk_buff to the MAC hardware.
3861 *
3862 * Specifically, one should make absolutely sure that this function is
3863 * called before TX completion of this packet can trigger.  Otherwise
3864 * the packet could potentially already be freed.
3865 *
3866 * @skb: A socket buffer.
3867 */
3868static inline void skb_tx_timestamp(struct sk_buff *skb)
3869{
3870        skb_clone_tx_timestamp(skb);
3871        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3872                skb_tstamp_tx(skb, NULL);
3873}
3874
3875/**
3876 * skb_complete_wifi_ack - deliver skb with wifi status
3877 *
3878 * @skb: the original outgoing packet
3879 * @acked: ack status
3880 *
3881 */
3882void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3883
3884__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3885__sum16 __skb_checksum_complete(struct sk_buff *skb);
3886
3887static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3888{
3889        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3890                skb->csum_valid ||
3891                (skb->ip_summed == CHECKSUM_PARTIAL &&
3892                 skb_checksum_start_offset(skb) >= 0));
3893}
3894
3895/**
3896 *      skb_checksum_complete - Calculate checksum of an entire packet
3897 *      @skb: packet to process
3898 *
3899 *      This function calculates the checksum over the entire packet plus
3900 *      the value of skb->csum.  The latter can be used to supply the
3901 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3902 *      checksum.
3903 *
3904 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
3905 *      this function can be used to verify that checksum on received
3906 *      packets.  In that case the function should return zero if the
3907 *      checksum is correct.  In particular, this function will return zero
3908 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3909 *      hardware has already verified the correctness of the checksum.
3910 */
3911static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3912{
3913        return skb_csum_unnecessary(skb) ?
3914               0 : __skb_checksum_complete(skb);
3915}
3916
3917static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3918{
3919        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3920                if (skb->csum_level == 0)
3921                        skb->ip_summed = CHECKSUM_NONE;
3922                else
3923                        skb->csum_level--;
3924        }
3925}
3926
3927static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3928{
3929        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3930                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3931                        skb->csum_level++;
3932        } else if (skb->ip_summed == CHECKSUM_NONE) {
3933                skb->ip_summed = CHECKSUM_UNNECESSARY;
3934                skb->csum_level = 0;
3935        }
3936}
3937
3938static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3939{
3940        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3941                skb->ip_summed = CHECKSUM_NONE;
3942                skb->csum_level = 0;
3943        }
3944}
3945
3946/* Check if we need to perform checksum complete validation.
3947 *
3948 * Returns true if checksum complete is needed, false otherwise
3949 * (either checksum is unnecessary or zero checksum is allowed).
3950 */
3951static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3952                                                  bool zero_okay,
3953                                                  __sum16 check)
3954{
3955        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3956                skb->csum_valid = 1;
3957                __skb_decr_checksum_unnecessary(skb);
3958                return false;
3959        }
3960
3961        return true;
3962}
3963
3964/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3965 * in checksum_init.
3966 */
3967#define CHECKSUM_BREAK 76
3968
3969/* Unset checksum-complete
3970 *
3971 * Unset checksum complete can be done when packet is being modified
3972 * (uncompressed for instance) and checksum-complete value is
3973 * invalidated.
3974 */
3975static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3976{
3977        if (skb->ip_summed == CHECKSUM_COMPLETE)
3978                skb->ip_summed = CHECKSUM_NONE;
3979}
3980
3981/* Validate (init) checksum based on checksum complete.
3982 *
3983 * Return values:
3984 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3985 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3986 *      checksum is stored in skb->csum for use in __skb_checksum_complete
3987 *   non-zero: value of invalid checksum
3988 *
3989 */
3990static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3991                                                       bool complete,
3992                                                       __wsum psum)
3993{
3994        if (skb->ip_summed == CHECKSUM_COMPLETE) {
3995                if (!csum_fold(csum_add(psum, skb->csum))) {
3996                        skb->csum_valid = 1;
3997                        return 0;
3998                }
3999        }
4000
4001        skb->csum = psum;
4002
4003        if (complete || skb->len <= CHECKSUM_BREAK) {
4004                __sum16 csum;
4005
4006                csum = __skb_checksum_complete(skb);
4007                skb->csum_valid = !csum;
4008                return csum;
4009        }
4010
4011        return 0;
4012}
4013
4014static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4015{
4016        return 0;
4017}
4018
4019/* Perform checksum validate (init). Note that this is a macro since we only
4020 * want to calculate the pseudo header which is an input function if necessary.
4021 * First we try to validate without any computation (checksum unnecessary) and
4022 * then calculate based on checksum complete calling the function to compute
4023 * pseudo header.
4024 *
4025 * Return values:
4026 *   0: checksum is validated or try to in skb_checksum_complete
4027 *   non-zero: value of invalid checksum
4028 */
4029#define __skb_checksum_validate(skb, proto, complete,                   \
4030                                zero_okay, check, compute_pseudo)       \
4031({                                                                      \
4032        __sum16 __ret = 0;                                              \
4033        skb->csum_valid = 0;                                            \
4034        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
4035                __ret = __skb_checksum_validate_complete(skb,           \
4036                                complete, compute_pseudo(skb, proto));  \
4037        __ret;                                                          \
4038})
4039
4040#define skb_checksum_init(skb, proto, compute_pseudo)                   \
4041        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4042
4043#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4044        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4045
4046#define skb_checksum_validate(skb, proto, compute_pseudo)               \
4047        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4048
4049#define skb_checksum_validate_zero_check(skb, proto, check,             \
4050                                         compute_pseudo)                \
4051        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4052
4053#define skb_checksum_simple_validate(skb)                               \
4054        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4055
4056static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4057{
4058        return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4059}
4060
4061static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4062{
4063        skb->csum = ~pseudo;
4064        skb->ip_summed = CHECKSUM_COMPLETE;
4065}
4066
4067#define skb_checksum_try_convert(skb, proto, compute_pseudo)    \
4068do {                                                                    \
4069        if (__skb_checksum_convert_check(skb))                          \
4070                __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4071} while (0)
4072
4073static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4074                                              u16 start, u16 offset)
4075{
4076        skb->ip_summed = CHECKSUM_PARTIAL;
4077        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4078        skb->csum_offset = offset - start;
4079}
4080
4081/* Update skbuf and packet to reflect the remote checksum offload operation.
4082 * When called, ptr indicates the starting point for skb->csum when
4083 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4084 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4085 */
4086static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4087                                       int start, int offset, bool nopartial)
4088{
4089        __wsum delta;
4090
4091        if (!nopartial) {
4092                skb_remcsum_adjust_partial(skb, ptr, start, offset);
4093                return;
4094        }
4095
4096         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4097                __skb_checksum_complete(skb);
4098                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4099        }
4100
4101        delta = remcsum_adjust(ptr, skb->csum, start, offset);
4102
4103        /* Adjust skb->csum since we changed the packet */
4104        skb->csum = csum_add(skb->csum, delta);
4105}
4106
4107static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4108{
4109#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4110        return (void *)(skb->_nfct & NFCT_PTRMASK);
4111#else
4112        return NULL;
4113#endif
4114}
4115
4116static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4117{
4118#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4119        return skb->_nfct;
4120#else
4121        return 0UL;
4122#endif
4123}
4124
4125static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4126{
4127#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4128        skb->_nfct = nfct;
4129#endif
4130}
4131
4132#ifdef CONFIG_SKB_EXTENSIONS
4133enum skb_ext_id {
4134#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4135        SKB_EXT_BRIDGE_NF,
4136#endif
4137#ifdef CONFIG_XFRM
4138        SKB_EXT_SEC_PATH,
4139#endif
4140#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4141        TC_SKB_EXT,
4142#endif
4143#if IS_ENABLED(CONFIG_MPTCP)
4144        SKB_EXT_MPTCP,
4145#endif
4146        SKB_EXT_NUM, /* must be last */
4147};
4148
4149/**
4150 *      struct skb_ext - sk_buff extensions
4151 *      @refcnt: 1 on allocation, deallocated on 0
4152 *      @offset: offset to add to @data to obtain extension address
4153 *      @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4154 *      @data: start of extension data, variable sized
4155 *
4156 *      Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4157 *      to use 'u8' types while allowing up to 2kb worth of extension data.
4158 */
4159struct skb_ext {
4160        refcount_t refcnt;
4161        u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4162        u8 chunks;              /* same */
4163        char data[] __aligned(8);
4164};
4165
4166struct skb_ext *__skb_ext_alloc(gfp_t flags);
4167void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4168                    struct skb_ext *ext);
4169void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4170void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4171void __skb_ext_put(struct skb_ext *ext);
4172
4173static inline void skb_ext_put(struct sk_buff *skb)
4174{
4175        if (skb->active_extensions)
4176                __skb_ext_put(skb->extensions);
4177}
4178
4179static inline void __skb_ext_copy(struct sk_buff *dst,
4180                                  const struct sk_buff *src)
4181{
4182        dst->active_extensions = src->active_extensions;
4183
4184        if (src->active_extensions) {
4185                struct skb_ext *ext = src->extensions;
4186
4187                refcount_inc(&ext->refcnt);
4188                dst->extensions = ext;
4189        }
4190}
4191
4192static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4193{
4194        skb_ext_put(dst);
4195        __skb_ext_copy(dst, src);
4196}
4197
4198static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4199{
4200        return !!ext->offset[i];
4201}
4202
4203static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4204{
4205        return skb->active_extensions & (1 << id);
4206}
4207
4208static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4209{
4210        if (skb_ext_exist(skb, id))
4211                __skb_ext_del(skb, id);
4212}
4213
4214static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4215{
4216        if (skb_ext_exist(skb, id)) {
4217                struct skb_ext *ext = skb->extensions;
4218
4219                return (void *)ext + (ext->offset[id] << 3);
4220        }
4221
4222        return NULL;
4223}
4224
4225static inline void skb_ext_reset(struct sk_buff *skb)
4226{
4227        if (unlikely(skb->active_extensions)) {
4228                __skb_ext_put(skb->extensions);
4229                skb->active_extensions = 0;
4230        }
4231}
4232
4233static inline bool skb_has_extensions(struct sk_buff *skb)
4234{
4235        return unlikely(skb->active_extensions);
4236}
4237#else
4238static inline void skb_ext_put(struct sk_buff *skb) {}
4239static inline void skb_ext_reset(struct sk_buff *skb) {}
4240static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4241static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4242static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4243static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4244#endif /* CONFIG_SKB_EXTENSIONS */
4245
4246static inline void nf_reset_ct(struct sk_buff *skb)
4247{
4248#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4249        nf_conntrack_put(skb_nfct(skb));
4250        skb->_nfct = 0;
4251#endif
4252}
4253
4254static inline void nf_reset_trace(struct sk_buff *skb)
4255{
4256#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4257        skb->nf_trace = 0;
4258#endif
4259}
4260
4261static inline void ipvs_reset(struct sk_buff *skb)
4262{
4263#if IS_ENABLED(CONFIG_IP_VS)
4264        skb->ipvs_property = 0;
4265#endif
4266}
4267
4268/* Note: This doesn't put any conntrack info in dst. */
4269static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4270                             bool copy)
4271{
4272#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4273        dst->_nfct = src->_nfct;
4274        nf_conntrack_get(skb_nfct(src));
4275#endif
4276#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4277        if (copy)
4278                dst->nf_trace = src->nf_trace;
4279#endif
4280}
4281
4282static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4283{
4284#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4285        nf_conntrack_put(skb_nfct(dst));
4286#endif
4287        __nf_copy(dst, src, true);
4288}
4289
4290#ifdef CONFIG_NETWORK_SECMARK
4291static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4292{
4293        to->secmark = from->secmark;
4294}
4295
4296static inline void skb_init_secmark(struct sk_buff *skb)
4297{
4298        skb->secmark = 0;
4299}
4300#else
4301static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4302{ }
4303
4304static inline void skb_init_secmark(struct sk_buff *skb)
4305{ }
4306#endif
4307
4308static inline int secpath_exists(const struct sk_buff *skb)
4309{
4310#ifdef CONFIG_XFRM
4311        return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4312#else
4313        return 0;
4314#endif
4315}
4316
4317static inline bool skb_irq_freeable(const struct sk_buff *skb)
4318{
4319        return !skb->destructor &&
4320                !secpath_exists(skb) &&
4321                !skb_nfct(skb) &&
4322                !skb->_skb_refdst &&
4323                !skb_has_frag_list(skb);
4324}
4325
4326static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4327{
4328        skb->queue_mapping = queue_mapping;
4329}
4330
4331static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4332{
4333        return skb->queue_mapping;
4334}
4335
4336static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4337{
4338        to->queue_mapping = from->queue_mapping;
4339}
4340
4341static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4342{
4343        skb->queue_mapping = rx_queue + 1;
4344}
4345
4346static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4347{
4348        return skb->queue_mapping - 1;
4349}
4350
4351static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4352{
4353        return skb->queue_mapping != 0;
4354}
4355
4356static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4357{
4358        skb->dst_pending_confirm = val;
4359}
4360
4361static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4362{
4363        return skb->dst_pending_confirm != 0;
4364}
4365
4366static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4367{
4368#ifdef CONFIG_XFRM
4369        return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4370#else
4371        return NULL;
4372#endif
4373}
4374
4375/* Keeps track of mac header offset relative to skb->head.
4376 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4377 * For non-tunnel skb it points to skb_mac_header() and for
4378 * tunnel skb it points to outer mac header.
4379 * Keeps track of level of encapsulation of network headers.
4380 */
4381struct skb_gso_cb {
4382        union {
4383                int     mac_offset;
4384                int     data_offset;
4385        };
4386        int     encap_level;
4387        __wsum  csum;
4388        __u16   csum_start;
4389};
4390#define SKB_GSO_CB_OFFSET       32
4391#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4392
4393static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4394{
4395        return (skb_mac_header(inner_skb) - inner_skb->head) -
4396                SKB_GSO_CB(inner_skb)->mac_offset;
4397}
4398
4399static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4400{
4401        int new_headroom, headroom;
4402        int ret;
4403
4404        headroom = skb_headroom(skb);
4405        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4406        if (ret)
4407                return ret;
4408
4409        new_headroom = skb_headroom(skb);
4410        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4411        return 0;
4412}
4413
4414static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4415{
4416        /* Do not update partial checksums if remote checksum is enabled. */
4417        if (skb->remcsum_offload)
4418                return;
4419
4420        SKB_GSO_CB(skb)->csum = res;
4421        SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4422}
4423
4424/* Compute the checksum for a gso segment. First compute the checksum value
4425 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4426 * then add in skb->csum (checksum from csum_start to end of packet).
4427 * skb->csum and csum_start are then updated to reflect the checksum of the
4428 * resultant packet starting from the transport header-- the resultant checksum
4429 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4430 * header.
4431 */
4432static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4433{
4434        unsigned char *csum_start = skb_transport_header(skb);
4435        int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4436        __wsum partial = SKB_GSO_CB(skb)->csum;
4437
4438        SKB_GSO_CB(skb)->csum = res;
4439        SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4440
4441        return csum_fold(csum_partial(csum_start, plen, partial));
4442}
4443
4444static inline bool skb_is_gso(const struct sk_buff *skb)
4445{
4446        return skb_shinfo(skb)->gso_size;
4447}
4448
4449/* Note: Should be called only if skb_is_gso(skb) is true */
4450static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4451{
4452        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4453}
4454
4455/* Note: Should be called only if skb_is_gso(skb) is true */
4456static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4457{
4458        return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4459}
4460
4461/* Note: Should be called only if skb_is_gso(skb) is true */
4462static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4463{
4464        return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4465}
4466
4467static inline void skb_gso_reset(struct sk_buff *skb)
4468{
4469        skb_shinfo(skb)->gso_size = 0;
4470        skb_shinfo(skb)->gso_segs = 0;
4471        skb_shinfo(skb)->gso_type = 0;
4472}
4473
4474static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4475                                         u16 increment)
4476{
4477        if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4478                return;
4479        shinfo->gso_size += increment;
4480}
4481
4482static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4483                                         u16 decrement)
4484{
4485        if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4486                return;
4487        shinfo->gso_size -= decrement;
4488}
4489
4490void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4491
4492static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4493{
4494        /* LRO sets gso_size but not gso_type, whereas if GSO is really
4495         * wanted then gso_type will be set. */
4496        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4497
4498        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4499            unlikely(shinfo->gso_type == 0)) {
4500                __skb_warn_lro_forwarding(skb);
4501                return true;
4502        }
4503        return false;
4504}
4505
4506static inline void skb_forward_csum(struct sk_buff *skb)
4507{
4508        /* Unfortunately we don't support this one.  Any brave souls? */
4509        if (skb->ip_summed == CHECKSUM_COMPLETE)
4510                skb->ip_summed = CHECKSUM_NONE;
4511}
4512
4513/**
4514 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4515 * @skb: skb to check
4516 *
4517 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4518 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4519 * use this helper, to document places where we make this assertion.
4520 */
4521static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4522{
4523#ifdef DEBUG
4524        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4525#endif
4526}
4527
4528bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4529
4530int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4531struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4532                                     unsigned int transport_len,
4533                                     __sum16(*skb_chkf)(struct sk_buff *skb));
4534
4535/**
4536 * skb_head_is_locked - Determine if the skb->head is locked down
4537 * @skb: skb to check
4538 *
4539 * The head on skbs build around a head frag can be removed if they are
4540 * not cloned.  This function returns true if the skb head is locked down
4541 * due to either being allocated via kmalloc, or by being a clone with
4542 * multiple references to the head.
4543 */
4544static inline bool skb_head_is_locked(const struct sk_buff *skb)
4545{
4546        return !skb->head_frag || skb_cloned(skb);
4547}
4548
4549/* Local Checksum Offload.
4550 * Compute outer checksum based on the assumption that the
4551 * inner checksum will be offloaded later.
4552 * See Documentation/networking/checksum-offloads.rst for
4553 * explanation of how this works.
4554 * Fill in outer checksum adjustment (e.g. with sum of outer
4555 * pseudo-header) before calling.
4556 * Also ensure that inner checksum is in linear data area.
4557 */
4558static inline __wsum lco_csum(struct sk_buff *skb)
4559{
4560        unsigned char *csum_start = skb_checksum_start(skb);
4561        unsigned char *l4_hdr = skb_transport_header(skb);
4562        __wsum partial;
4563
4564        /* Start with complement of inner checksum adjustment */
4565        partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4566                                                    skb->csum_offset));
4567
4568        /* Add in checksum of our headers (incl. outer checksum
4569         * adjustment filled in by caller) and return result.
4570         */
4571        return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4572}
4573
4574static inline bool skb_is_redirected(const struct sk_buff *skb)
4575{
4576#ifdef CONFIG_NET_REDIRECT
4577        return skb->redirected;
4578#else
4579        return false;
4580#endif
4581}
4582
4583static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4584{
4585#ifdef CONFIG_NET_REDIRECT
4586        skb->redirected = 1;
4587        skb->from_ingress = from_ingress;
4588        if (skb->from_ingress)
4589                skb->tstamp = 0;
4590#endif
4591}
4592
4593static inline void skb_reset_redirect(struct sk_buff *skb)
4594{
4595#ifdef CONFIG_NET_REDIRECT
4596        skb->redirected = 0;
4597#endif
4598}
4599
4600#endif  /* __KERNEL__ */
4601#endif  /* _LINUX_SKBUFF_H */
4602