linux/include/linux/spi/spi-mem.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Copyright (C) 2018 Exceet Electronics GmbH
   4 * Copyright (C) 2018 Bootlin
   5 *
   6 * Author:
   7 *      Peter Pan <peterpandong@micron.com>
   8 *      Boris Brezillon <boris.brezillon@bootlin.com>
   9 */
  10
  11#ifndef __LINUX_SPI_MEM_H
  12#define __LINUX_SPI_MEM_H
  13
  14#include <linux/spi/spi.h>
  15
  16#define SPI_MEM_OP_CMD(__opcode, __buswidth)                    \
  17        {                                                       \
  18                .buswidth = __buswidth,                         \
  19                .opcode = __opcode,                             \
  20                .nbytes = 1,                                    \
  21        }
  22
  23#define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth)            \
  24        {                                                       \
  25                .nbytes = __nbytes,                             \
  26                .val = __val,                                   \
  27                .buswidth = __buswidth,                         \
  28        }
  29
  30#define SPI_MEM_OP_NO_ADDR      { }
  31
  32#define SPI_MEM_OP_DUMMY(__nbytes, __buswidth)                  \
  33        {                                                       \
  34                .nbytes = __nbytes,                             \
  35                .buswidth = __buswidth,                         \
  36        }
  37
  38#define SPI_MEM_OP_NO_DUMMY     { }
  39
  40#define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth)         \
  41        {                                                       \
  42                .dir = SPI_MEM_DATA_IN,                         \
  43                .nbytes = __nbytes,                             \
  44                .buf.in = __buf,                                \
  45                .buswidth = __buswidth,                         \
  46        }
  47
  48#define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth)        \
  49        {                                                       \
  50                .dir = SPI_MEM_DATA_OUT,                        \
  51                .nbytes = __nbytes,                             \
  52                .buf.out = __buf,                               \
  53                .buswidth = __buswidth,                         \
  54        }
  55
  56#define SPI_MEM_OP_NO_DATA      { }
  57
  58/**
  59 * enum spi_mem_data_dir - describes the direction of a SPI memory data
  60 *                         transfer from the controller perspective
  61 * @SPI_MEM_NO_DATA: no data transferred
  62 * @SPI_MEM_DATA_IN: data coming from the SPI memory
  63 * @SPI_MEM_DATA_OUT: data sent to the SPI memory
  64 */
  65enum spi_mem_data_dir {
  66        SPI_MEM_NO_DATA,
  67        SPI_MEM_DATA_IN,
  68        SPI_MEM_DATA_OUT,
  69};
  70
  71/**
  72 * struct spi_mem_op - describes a SPI memory operation
  73 * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
  74 *              sent MSB-first.
  75 * @cmd.buswidth: number of IO lines used to transmit the command
  76 * @cmd.opcode: operation opcode
  77 * @cmd.dtr: whether the command opcode should be sent in DTR mode or not
  78 * @addr.nbytes: number of address bytes to send. Can be zero if the operation
  79 *               does not need to send an address
  80 * @addr.buswidth: number of IO lines used to transmit the address cycles
  81 * @addr.dtr: whether the address should be sent in DTR mode or not
  82 * @addr.val: address value. This value is always sent MSB first on the bus.
  83 *            Note that only @addr.nbytes are taken into account in this
  84 *            address value, so users should make sure the value fits in the
  85 *            assigned number of bytes.
  86 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
  87 *                be zero if the operation does not require dummy bytes
  88 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
  89 * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
  90 * @data.buswidth: number of IO lanes used to send/receive the data
  91 * @data.dtr: whether the data should be sent in DTR mode or not
  92 * @data.dir: direction of the transfer
  93 * @data.nbytes: number of data bytes to send/receive. Can be zero if the
  94 *               operation does not involve transferring data
  95 * @data.buf.in: input buffer (must be DMA-able)
  96 * @data.buf.out: output buffer (must be DMA-able)
  97 */
  98struct spi_mem_op {
  99        struct {
 100                u8 nbytes;
 101                u8 buswidth;
 102                u8 dtr : 1;
 103                u16 opcode;
 104        } cmd;
 105
 106        struct {
 107                u8 nbytes;
 108                u8 buswidth;
 109                u8 dtr : 1;
 110                u64 val;
 111        } addr;
 112
 113        struct {
 114                u8 nbytes;
 115                u8 buswidth;
 116                u8 dtr : 1;
 117        } dummy;
 118
 119        struct {
 120                u8 buswidth;
 121                u8 dtr : 1;
 122                enum spi_mem_data_dir dir;
 123                unsigned int nbytes;
 124                union {
 125                        void *in;
 126                        const void *out;
 127                } buf;
 128        } data;
 129};
 130
 131#define SPI_MEM_OP(__cmd, __addr, __dummy, __data)              \
 132        {                                                       \
 133                .cmd = __cmd,                                   \
 134                .addr = __addr,                                 \
 135                .dummy = __dummy,                               \
 136                .data = __data,                                 \
 137        }
 138
 139/**
 140 * struct spi_mem_dirmap_info - Direct mapping information
 141 * @op_tmpl: operation template that should be used by the direct mapping when
 142 *           the memory device is accessed
 143 * @offset: absolute offset this direct mapping is pointing to
 144 * @length: length in byte of this direct mapping
 145 *
 146 * These information are used by the controller specific implementation to know
 147 * the portion of memory that is directly mapped and the spi_mem_op that should
 148 * be used to access the device.
 149 * A direct mapping is only valid for one direction (read or write) and this
 150 * direction is directly encoded in the ->op_tmpl.data.dir field.
 151 */
 152struct spi_mem_dirmap_info {
 153        struct spi_mem_op op_tmpl;
 154        u64 offset;
 155        u64 length;
 156};
 157
 158/**
 159 * struct spi_mem_dirmap_desc - Direct mapping descriptor
 160 * @mem: the SPI memory device this direct mapping is attached to
 161 * @info: information passed at direct mapping creation time
 162 * @nodirmap: set to 1 if the SPI controller does not implement
 163 *            ->mem_ops->dirmap_create() or when this function returned an
 164 *            error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
 165 *            calls will use spi_mem_exec_op() to access the memory. This is a
 166 *            degraded mode that allows spi_mem drivers to use the same code
 167 *            no matter whether the controller supports direct mapping or not
 168 * @priv: field pointing to controller specific data
 169 *
 170 * Common part of a direct mapping descriptor. This object is created by
 171 * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
 172 * can create/attach direct mapping resources to the descriptor in the ->priv
 173 * field.
 174 */
 175struct spi_mem_dirmap_desc {
 176        struct spi_mem *mem;
 177        struct spi_mem_dirmap_info info;
 178        unsigned int nodirmap;
 179        void *priv;
 180};
 181
 182/**
 183 * struct spi_mem - describes a SPI memory device
 184 * @spi: the underlying SPI device
 185 * @drvpriv: spi_mem_driver private data
 186 * @name: name of the SPI memory device
 187 *
 188 * Extra information that describe the SPI memory device and may be needed by
 189 * the controller to properly handle this device should be placed here.
 190 *
 191 * One example would be the device size since some controller expose their SPI
 192 * mem devices through a io-mapped region.
 193 */
 194struct spi_mem {
 195        struct spi_device *spi;
 196        void *drvpriv;
 197        const char *name;
 198};
 199
 200/**
 201 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
 202 *                                device
 203 * @mem: memory device
 204 * @data: data to attach to the memory device
 205 */
 206static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
 207{
 208        mem->drvpriv = data;
 209}
 210
 211/**
 212 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
 213 *                                device
 214 * @mem: memory device
 215 *
 216 * Return: the data attached to the mem device.
 217 */
 218static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
 219{
 220        return mem->drvpriv;
 221}
 222
 223/**
 224 * struct spi_controller_mem_ops - SPI memory operations
 225 * @adjust_op_size: shrink the data xfer of an operation to match controller's
 226 *                  limitations (can be alignment of max RX/TX size
 227 *                  limitations)
 228 * @supports_op: check if an operation is supported by the controller
 229 * @exec_op: execute a SPI memory operation
 230 * @get_name: get a custom name for the SPI mem device from the controller.
 231 *            This might be needed if the controller driver has been ported
 232 *            to use the SPI mem layer and a custom name is used to keep
 233 *            mtdparts compatible.
 234 *            Note that if the implementation of this function allocates memory
 235 *            dynamically, then it should do so with devm_xxx(), as we don't
 236 *            have a ->free_name() function.
 237 * @dirmap_create: create a direct mapping descriptor that can later be used to
 238 *                 access the memory device. This method is optional
 239 * @dirmap_destroy: destroy a memory descriptor previous created by
 240 *                  ->dirmap_create()
 241 * @dirmap_read: read data from the memory device using the direct mapping
 242 *               created by ->dirmap_create(). The function can return less
 243 *               data than requested (for example when the request is crossing
 244 *               the currently mapped area), and the caller of
 245 *               spi_mem_dirmap_read() is responsible for calling it again in
 246 *               this case.
 247 * @dirmap_write: write data to the memory device using the direct mapping
 248 *                created by ->dirmap_create(). The function can return less
 249 *                data than requested (for example when the request is crossing
 250 *                the currently mapped area), and the caller of
 251 *                spi_mem_dirmap_write() is responsible for calling it again in
 252 *                this case.
 253 *
 254 * This interface should be implemented by SPI controllers providing an
 255 * high-level interface to execute SPI memory operation, which is usually the
 256 * case for QSPI controllers.
 257 *
 258 * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
 259 * mapping from the CPU because doing that can stall the CPU waiting for the
 260 * SPI mem transaction to finish, and this will make real-time maintainers
 261 * unhappy and might make your system less reactive. Instead, drivers should
 262 * use DMA to access this direct mapping.
 263 */
 264struct spi_controller_mem_ops {
 265        int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
 266        bool (*supports_op)(struct spi_mem *mem,
 267                            const struct spi_mem_op *op);
 268        int (*exec_op)(struct spi_mem *mem,
 269                       const struct spi_mem_op *op);
 270        const char *(*get_name)(struct spi_mem *mem);
 271        int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
 272        void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
 273        ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
 274                               u64 offs, size_t len, void *buf);
 275        ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
 276                                u64 offs, size_t len, const void *buf);
 277};
 278
 279/**
 280 * struct spi_mem_driver - SPI memory driver
 281 * @spidrv: inherit from a SPI driver
 282 * @probe: probe a SPI memory. Usually where detection/initialization takes
 283 *         place
 284 * @remove: remove a SPI memory
 285 * @shutdown: take appropriate action when the system is shutdown
 286 *
 287 * This is just a thin wrapper around a spi_driver. The core takes care of
 288 * allocating the spi_mem object and forwarding the probe/remove/shutdown
 289 * request to the spi_mem_driver. The reason we use this wrapper is because
 290 * we might have to stuff more information into the spi_mem struct to let
 291 * SPI controllers know more about the SPI memory they interact with, and
 292 * having this intermediate layer allows us to do that without adding more
 293 * useless fields to the spi_device object.
 294 */
 295struct spi_mem_driver {
 296        struct spi_driver spidrv;
 297        int (*probe)(struct spi_mem *mem);
 298        int (*remove)(struct spi_mem *mem);
 299        void (*shutdown)(struct spi_mem *mem);
 300};
 301
 302#if IS_ENABLED(CONFIG_SPI_MEM)
 303int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
 304                                       const struct spi_mem_op *op,
 305                                       struct sg_table *sg);
 306
 307void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
 308                                          const struct spi_mem_op *op,
 309                                          struct sg_table *sg);
 310
 311bool spi_mem_default_supports_op(struct spi_mem *mem,
 312                                 const struct spi_mem_op *op);
 313
 314#else
 315static inline int
 316spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
 317                                   const struct spi_mem_op *op,
 318                                   struct sg_table *sg)
 319{
 320        return -ENOTSUPP;
 321}
 322
 323static inline void
 324spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
 325                                     const struct spi_mem_op *op,
 326                                     struct sg_table *sg)
 327{
 328}
 329
 330static inline
 331bool spi_mem_default_supports_op(struct spi_mem *mem,
 332                                 const struct spi_mem_op *op)
 333{
 334        return false;
 335}
 336
 337#endif /* CONFIG_SPI_MEM */
 338
 339int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
 340
 341bool spi_mem_supports_op(struct spi_mem *mem,
 342                         const struct spi_mem_op *op);
 343
 344int spi_mem_exec_op(struct spi_mem *mem,
 345                    const struct spi_mem_op *op);
 346
 347const char *spi_mem_get_name(struct spi_mem *mem);
 348
 349struct spi_mem_dirmap_desc *
 350spi_mem_dirmap_create(struct spi_mem *mem,
 351                      const struct spi_mem_dirmap_info *info);
 352void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
 353ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
 354                            u64 offs, size_t len, void *buf);
 355ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
 356                             u64 offs, size_t len, const void *buf);
 357struct spi_mem_dirmap_desc *
 358devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
 359                           const struct spi_mem_dirmap_info *info);
 360void devm_spi_mem_dirmap_destroy(struct device *dev,
 361                                 struct spi_mem_dirmap_desc *desc);
 362
 363int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
 364                                       struct module *owner);
 365
 366void spi_mem_driver_unregister(struct spi_mem_driver *drv);
 367
 368#define spi_mem_driver_register(__drv)                                  \
 369        spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
 370
 371#define module_spi_mem_driver(__drv)                                    \
 372        module_driver(__drv, spi_mem_driver_register,                   \
 373                      spi_mem_driver_unregister)
 374
 375#endif /* __LINUX_SPI_MEM_H */
 376