linux/include/linux/xarray.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2#ifndef _LINUX_XARRAY_H
   3#define _LINUX_XARRAY_H
   4/*
   5 * eXtensible Arrays
   6 * Copyright (c) 2017 Microsoft Corporation
   7 * Author: Matthew Wilcox <willy@infradead.org>
   8 *
   9 * See Documentation/core-api/xarray.rst for how to use the XArray.
  10 */
  11
  12#include <linux/bug.h>
  13#include <linux/compiler.h>
  14#include <linux/gfp.h>
  15#include <linux/kconfig.h>
  16#include <linux/kernel.h>
  17#include <linux/rcupdate.h>
  18#include <linux/spinlock.h>
  19#include <linux/types.h>
  20
  21/*
  22 * The bottom two bits of the entry determine how the XArray interprets
  23 * the contents:
  24 *
  25 * 00: Pointer entry
  26 * 10: Internal entry
  27 * x1: Value entry or tagged pointer
  28 *
  29 * Attempting to store internal entries in the XArray is a bug.
  30 *
  31 * Most internal entries are pointers to the next node in the tree.
  32 * The following internal entries have a special meaning:
  33 *
  34 * 0-62: Sibling entries
  35 * 256: Retry entry
  36 * 257: Zero entry
  37 *
  38 * Errors are also represented as internal entries, but use the negative
  39 * space (-4094 to -2).  They're never stored in the slots array; only
  40 * returned by the normal API.
  41 */
  42
  43#define BITS_PER_XA_VALUE       (BITS_PER_LONG - 1)
  44
  45/**
  46 * xa_mk_value() - Create an XArray entry from an integer.
  47 * @v: Value to store in XArray.
  48 *
  49 * Context: Any context.
  50 * Return: An entry suitable for storing in the XArray.
  51 */
  52static inline void *xa_mk_value(unsigned long v)
  53{
  54        WARN_ON((long)v < 0);
  55        return (void *)((v << 1) | 1);
  56}
  57
  58/**
  59 * xa_to_value() - Get value stored in an XArray entry.
  60 * @entry: XArray entry.
  61 *
  62 * Context: Any context.
  63 * Return: The value stored in the XArray entry.
  64 */
  65static inline unsigned long xa_to_value(const void *entry)
  66{
  67        return (unsigned long)entry >> 1;
  68}
  69
  70/**
  71 * xa_is_value() - Determine if an entry is a value.
  72 * @entry: XArray entry.
  73 *
  74 * Context: Any context.
  75 * Return: True if the entry is a value, false if it is a pointer.
  76 */
  77static inline bool xa_is_value(const void *entry)
  78{
  79        return (unsigned long)entry & 1;
  80}
  81
  82/**
  83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
  84 * @p: Plain pointer.
  85 * @tag: Tag value (0, 1 or 3).
  86 *
  87 * If the user of the XArray prefers, they can tag their pointers instead
  88 * of storing value entries.  Three tags are available (0, 1 and 3).
  89 * These are distinct from the xa_mark_t as they are not replicated up
  90 * through the array and cannot be searched for.
  91 *
  92 * Context: Any context.
  93 * Return: An XArray entry.
  94 */
  95static inline void *xa_tag_pointer(void *p, unsigned long tag)
  96{
  97        return (void *)((unsigned long)p | tag);
  98}
  99
 100/**
 101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
 102 * @entry: XArray entry.
 103 *
 104 * If you have stored a tagged pointer in the XArray, call this function
 105 * to get the untagged version of the pointer.
 106 *
 107 * Context: Any context.
 108 * Return: A pointer.
 109 */
 110static inline void *xa_untag_pointer(void *entry)
 111{
 112        return (void *)((unsigned long)entry & ~3UL);
 113}
 114
 115/**
 116 * xa_pointer_tag() - Get the tag stored in an XArray entry.
 117 * @entry: XArray entry.
 118 *
 119 * If you have stored a tagged pointer in the XArray, call this function
 120 * to get the tag of that pointer.
 121 *
 122 * Context: Any context.
 123 * Return: A tag.
 124 */
 125static inline unsigned int xa_pointer_tag(void *entry)
 126{
 127        return (unsigned long)entry & 3UL;
 128}
 129
 130/*
 131 * xa_mk_internal() - Create an internal entry.
 132 * @v: Value to turn into an internal entry.
 133 *
 134 * Internal entries are used for a number of purposes.  Entries 0-255 are
 135 * used for sibling entries (only 0-62 are used by the current code).  256
 136 * is used for the retry entry.  257 is used for the reserved / zero entry.
 137 * Negative internal entries are used to represent errnos.  Node pointers
 138 * are also tagged as internal entries in some situations.
 139 *
 140 * Context: Any context.
 141 * Return: An XArray internal entry corresponding to this value.
 142 */
 143static inline void *xa_mk_internal(unsigned long v)
 144{
 145        return (void *)((v << 2) | 2);
 146}
 147
 148/*
 149 * xa_to_internal() - Extract the value from an internal entry.
 150 * @entry: XArray entry.
 151 *
 152 * Context: Any context.
 153 * Return: The value which was stored in the internal entry.
 154 */
 155static inline unsigned long xa_to_internal(const void *entry)
 156{
 157        return (unsigned long)entry >> 2;
 158}
 159
 160/*
 161 * xa_is_internal() - Is the entry an internal entry?
 162 * @entry: XArray entry.
 163 *
 164 * Context: Any context.
 165 * Return: %true if the entry is an internal entry.
 166 */
 167static inline bool xa_is_internal(const void *entry)
 168{
 169        return ((unsigned long)entry & 3) == 2;
 170}
 171
 172#define XA_ZERO_ENTRY           xa_mk_internal(257)
 173
 174/**
 175 * xa_is_zero() - Is the entry a zero entry?
 176 * @entry: Entry retrieved from the XArray
 177 *
 178 * The normal API will return NULL as the contents of a slot containing
 179 * a zero entry.  You can only see zero entries by using the advanced API.
 180 *
 181 * Return: %true if the entry is a zero entry.
 182 */
 183static inline bool xa_is_zero(const void *entry)
 184{
 185        return unlikely(entry == XA_ZERO_ENTRY);
 186}
 187
 188/**
 189 * xa_is_err() - Report whether an XArray operation returned an error
 190 * @entry: Result from calling an XArray function
 191 *
 192 * If an XArray operation cannot complete an operation, it will return
 193 * a special value indicating an error.  This function tells you
 194 * whether an error occurred; xa_err() tells you which error occurred.
 195 *
 196 * Context: Any context.
 197 * Return: %true if the entry indicates an error.
 198 */
 199static inline bool xa_is_err(const void *entry)
 200{
 201        return unlikely(xa_is_internal(entry) &&
 202                        entry >= xa_mk_internal(-MAX_ERRNO));
 203}
 204
 205/**
 206 * xa_err() - Turn an XArray result into an errno.
 207 * @entry: Result from calling an XArray function.
 208 *
 209 * If an XArray operation cannot complete an operation, it will return
 210 * a special pointer value which encodes an errno.  This function extracts
 211 * the errno from the pointer value, or returns 0 if the pointer does not
 212 * represent an errno.
 213 *
 214 * Context: Any context.
 215 * Return: A negative errno or 0.
 216 */
 217static inline int xa_err(void *entry)
 218{
 219        /* xa_to_internal() would not do sign extension. */
 220        if (xa_is_err(entry))
 221                return (long)entry >> 2;
 222        return 0;
 223}
 224
 225/**
 226 * struct xa_limit - Represents a range of IDs.
 227 * @min: The lowest ID to allocate (inclusive).
 228 * @max: The maximum ID to allocate (inclusive).
 229 *
 230 * This structure is used either directly or via the XA_LIMIT() macro
 231 * to communicate the range of IDs that are valid for allocation.
 232 * Two common ranges are predefined for you:
 233 * * xa_limit_32b       - [0 - UINT_MAX]
 234 * * xa_limit_31b       - [0 - INT_MAX]
 235 */
 236struct xa_limit {
 237        u32 max;
 238        u32 min;
 239};
 240
 241#define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
 242
 243#define xa_limit_32b    XA_LIMIT(0, UINT_MAX)
 244#define xa_limit_31b    XA_LIMIT(0, INT_MAX)
 245
 246typedef unsigned __bitwise xa_mark_t;
 247#define XA_MARK_0               ((__force xa_mark_t)0U)
 248#define XA_MARK_1               ((__force xa_mark_t)1U)
 249#define XA_MARK_2               ((__force xa_mark_t)2U)
 250#define XA_PRESENT              ((__force xa_mark_t)8U)
 251#define XA_MARK_MAX             XA_MARK_2
 252#define XA_FREE_MARK            XA_MARK_0
 253
 254enum xa_lock_type {
 255        XA_LOCK_IRQ = 1,
 256        XA_LOCK_BH = 2,
 257};
 258
 259/*
 260 * Values for xa_flags.  The radix tree stores its GFP flags in the xa_flags,
 261 * and we remain compatible with that.
 262 */
 263#define XA_FLAGS_LOCK_IRQ       ((__force gfp_t)XA_LOCK_IRQ)
 264#define XA_FLAGS_LOCK_BH        ((__force gfp_t)XA_LOCK_BH)
 265#define XA_FLAGS_TRACK_FREE     ((__force gfp_t)4U)
 266#define XA_FLAGS_ZERO_BUSY      ((__force gfp_t)8U)
 267#define XA_FLAGS_ALLOC_WRAPPED  ((__force gfp_t)16U)
 268#define XA_FLAGS_ACCOUNT        ((__force gfp_t)32U)
 269#define XA_FLAGS_MARK(mark)     ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
 270                                                (__force unsigned)(mark)))
 271
 272/* ALLOC is for a normal 0-based alloc.  ALLOC1 is for an 1-based alloc */
 273#define XA_FLAGS_ALLOC  (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
 274#define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
 275
 276/**
 277 * struct xarray - The anchor of the XArray.
 278 * @xa_lock: Lock that protects the contents of the XArray.
 279 *
 280 * To use the xarray, define it statically or embed it in your data structure.
 281 * It is a very small data structure, so it does not usually make sense to
 282 * allocate it separately and keep a pointer to it in your data structure.
 283 *
 284 * You may use the xa_lock to protect your own data structures as well.
 285 */
 286/*
 287 * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
 288 * If the only non-NULL entry in the array is at index 0, @xa_head is that
 289 * entry.  If any other entry in the array is non-NULL, @xa_head points
 290 * to an @xa_node.
 291 */
 292struct xarray {
 293        spinlock_t      xa_lock;
 294/* private: The rest of the data structure is not to be used directly. */
 295        gfp_t           xa_flags;
 296        void __rcu *    xa_head;
 297};
 298
 299#define XARRAY_INIT(name, flags) {                              \
 300        .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock),          \
 301        .xa_flags = flags,                                      \
 302        .xa_head = NULL,                                        \
 303}
 304
 305/**
 306 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
 307 * @name: A string that names your XArray.
 308 * @flags: XA_FLAG values.
 309 *
 310 * This is intended for file scope definitions of XArrays.  It declares
 311 * and initialises an empty XArray with the chosen name and flags.  It is
 312 * equivalent to calling xa_init_flags() on the array, but it does the
 313 * initialisation at compiletime instead of runtime.
 314 */
 315#define DEFINE_XARRAY_FLAGS(name, flags)                                \
 316        struct xarray name = XARRAY_INIT(name, flags)
 317
 318/**
 319 * DEFINE_XARRAY() - Define an XArray.
 320 * @name: A string that names your XArray.
 321 *
 322 * This is intended for file scope definitions of XArrays.  It declares
 323 * and initialises an empty XArray with the chosen name.  It is equivalent
 324 * to calling xa_init() on the array, but it does the initialisation at
 325 * compiletime instead of runtime.
 326 */
 327#define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
 328
 329/**
 330 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
 331 * @name: A string that names your XArray.
 332 *
 333 * This is intended for file scope definitions of allocating XArrays.
 334 * See also DEFINE_XARRAY().
 335 */
 336#define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
 337
 338/**
 339 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
 340 * @name: A string that names your XArray.
 341 *
 342 * This is intended for file scope definitions of allocating XArrays.
 343 * See also DEFINE_XARRAY().
 344 */
 345#define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
 346
 347void *xa_load(struct xarray *, unsigned long index);
 348void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
 349void *xa_erase(struct xarray *, unsigned long index);
 350void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
 351                        void *entry, gfp_t);
 352bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
 353void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
 354void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
 355void *xa_find(struct xarray *xa, unsigned long *index,
 356                unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
 357void *xa_find_after(struct xarray *xa, unsigned long *index,
 358                unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
 359unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
 360                unsigned long max, unsigned int n, xa_mark_t);
 361void xa_destroy(struct xarray *);
 362
 363/**
 364 * xa_init_flags() - Initialise an empty XArray with flags.
 365 * @xa: XArray.
 366 * @flags: XA_FLAG values.
 367 *
 368 * If you need to initialise an XArray with special flags (eg you need
 369 * to take the lock from interrupt context), use this function instead
 370 * of xa_init().
 371 *
 372 * Context: Any context.
 373 */
 374static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
 375{
 376        spin_lock_init(&xa->xa_lock);
 377        xa->xa_flags = flags;
 378        xa->xa_head = NULL;
 379}
 380
 381/**
 382 * xa_init() - Initialise an empty XArray.
 383 * @xa: XArray.
 384 *
 385 * An empty XArray is full of NULL entries.
 386 *
 387 * Context: Any context.
 388 */
 389static inline void xa_init(struct xarray *xa)
 390{
 391        xa_init_flags(xa, 0);
 392}
 393
 394/**
 395 * xa_empty() - Determine if an array has any present entries.
 396 * @xa: XArray.
 397 *
 398 * Context: Any context.
 399 * Return: %true if the array contains only NULL pointers.
 400 */
 401static inline bool xa_empty(const struct xarray *xa)
 402{
 403        return xa->xa_head == NULL;
 404}
 405
 406/**
 407 * xa_marked() - Inquire whether any entry in this array has a mark set
 408 * @xa: Array
 409 * @mark: Mark value
 410 *
 411 * Context: Any context.
 412 * Return: %true if any entry has this mark set.
 413 */
 414static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
 415{
 416        return xa->xa_flags & XA_FLAGS_MARK(mark);
 417}
 418
 419/**
 420 * xa_for_each_range() - Iterate over a portion of an XArray.
 421 * @xa: XArray.
 422 * @index: Index of @entry.
 423 * @entry: Entry retrieved from array.
 424 * @start: First index to retrieve from array.
 425 * @last: Last index to retrieve from array.
 426 *
 427 * During the iteration, @entry will have the value of the entry stored
 428 * in @xa at @index.  You may modify @index during the iteration if you
 429 * want to skip or reprocess indices.  It is safe to modify the array
 430 * during the iteration.  At the end of the iteration, @entry will be set
 431 * to NULL and @index will have a value less than or equal to max.
 432 *
 433 * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n).  You have
 434 * to handle your own locking with xas_for_each(), and if you have to unlock
 435 * after each iteration, it will also end up being O(n.log(n)).
 436 * xa_for_each_range() will spin if it hits a retry entry; if you intend to
 437 * see retry entries, you should use the xas_for_each() iterator instead.
 438 * The xas_for_each() iterator will expand into more inline code than
 439 * xa_for_each_range().
 440 *
 441 * Context: Any context.  Takes and releases the RCU lock.
 442 */
 443#define xa_for_each_range(xa, index, entry, start, last)                \
 444        for (index = start,                                             \
 445             entry = xa_find(xa, &index, last, XA_PRESENT);             \
 446             entry;                                                     \
 447             entry = xa_find_after(xa, &index, last, XA_PRESENT))
 448
 449/**
 450 * xa_for_each_start() - Iterate over a portion of an XArray.
 451 * @xa: XArray.
 452 * @index: Index of @entry.
 453 * @entry: Entry retrieved from array.
 454 * @start: First index to retrieve from array.
 455 *
 456 * During the iteration, @entry will have the value of the entry stored
 457 * in @xa at @index.  You may modify @index during the iteration if you
 458 * want to skip or reprocess indices.  It is safe to modify the array
 459 * during the iteration.  At the end of the iteration, @entry will be set
 460 * to NULL and @index will have a value less than or equal to max.
 461 *
 462 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n).  You have
 463 * to handle your own locking with xas_for_each(), and if you have to unlock
 464 * after each iteration, it will also end up being O(n.log(n)).
 465 * xa_for_each_start() will spin if it hits a retry entry; if you intend to
 466 * see retry entries, you should use the xas_for_each() iterator instead.
 467 * The xas_for_each() iterator will expand into more inline code than
 468 * xa_for_each_start().
 469 *
 470 * Context: Any context.  Takes and releases the RCU lock.
 471 */
 472#define xa_for_each_start(xa, index, entry, start) \
 473        xa_for_each_range(xa, index, entry, start, ULONG_MAX)
 474
 475/**
 476 * xa_for_each() - Iterate over present entries in an XArray.
 477 * @xa: XArray.
 478 * @index: Index of @entry.
 479 * @entry: Entry retrieved from array.
 480 *
 481 * During the iteration, @entry will have the value of the entry stored
 482 * in @xa at @index.  You may modify @index during the iteration if you want
 483 * to skip or reprocess indices.  It is safe to modify the array during the
 484 * iteration.  At the end of the iteration, @entry will be set to NULL and
 485 * @index will have a value less than or equal to max.
 486 *
 487 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n).  You have
 488 * to handle your own locking with xas_for_each(), and if you have to unlock
 489 * after each iteration, it will also end up being O(n.log(n)).  xa_for_each()
 490 * will spin if it hits a retry entry; if you intend to see retry entries,
 491 * you should use the xas_for_each() iterator instead.  The xas_for_each()
 492 * iterator will expand into more inline code than xa_for_each().
 493 *
 494 * Context: Any context.  Takes and releases the RCU lock.
 495 */
 496#define xa_for_each(xa, index, entry) \
 497        xa_for_each_start(xa, index, entry, 0)
 498
 499/**
 500 * xa_for_each_marked() - Iterate over marked entries in an XArray.
 501 * @xa: XArray.
 502 * @index: Index of @entry.
 503 * @entry: Entry retrieved from array.
 504 * @filter: Selection criterion.
 505 *
 506 * During the iteration, @entry will have the value of the entry stored
 507 * in @xa at @index.  The iteration will skip all entries in the array
 508 * which do not match @filter.  You may modify @index during the iteration
 509 * if you want to skip or reprocess indices.  It is safe to modify the array
 510 * during the iteration.  At the end of the iteration, @entry will be set to
 511 * NULL and @index will have a value less than or equal to max.
 512 *
 513 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
 514 * You have to handle your own locking with xas_for_each(), and if you have
 515 * to unlock after each iteration, it will also end up being O(n.log(n)).
 516 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to
 517 * see retry entries, you should use the xas_for_each_marked() iterator
 518 * instead.  The xas_for_each_marked() iterator will expand into more inline
 519 * code than xa_for_each_marked().
 520 *
 521 * Context: Any context.  Takes and releases the RCU lock.
 522 */
 523#define xa_for_each_marked(xa, index, entry, filter) \
 524        for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
 525             entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
 526
 527#define xa_trylock(xa)          spin_trylock(&(xa)->xa_lock)
 528#define xa_lock(xa)             spin_lock(&(xa)->xa_lock)
 529#define xa_unlock(xa)           spin_unlock(&(xa)->xa_lock)
 530#define xa_lock_bh(xa)          spin_lock_bh(&(xa)->xa_lock)
 531#define xa_unlock_bh(xa)        spin_unlock_bh(&(xa)->xa_lock)
 532#define xa_lock_irq(xa)         spin_lock_irq(&(xa)->xa_lock)
 533#define xa_unlock_irq(xa)       spin_unlock_irq(&(xa)->xa_lock)
 534#define xa_lock_irqsave(xa, flags) \
 535                                spin_lock_irqsave(&(xa)->xa_lock, flags)
 536#define xa_unlock_irqrestore(xa, flags) \
 537                                spin_unlock_irqrestore(&(xa)->xa_lock, flags)
 538#define xa_lock_nested(xa, subclass) \
 539                                spin_lock_nested(&(xa)->xa_lock, subclass)
 540#define xa_lock_bh_nested(xa, subclass) \
 541                                spin_lock_bh_nested(&(xa)->xa_lock, subclass)
 542#define xa_lock_irq_nested(xa, subclass) \
 543                                spin_lock_irq_nested(&(xa)->xa_lock, subclass)
 544#define xa_lock_irqsave_nested(xa, flags, subclass) \
 545                spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass)
 546
 547/*
 548 * Versions of the normal API which require the caller to hold the
 549 * xa_lock.  If the GFP flags allow it, they will drop the lock to
 550 * allocate memory, then reacquire it afterwards.  These functions
 551 * may also re-enable interrupts if the XArray flags indicate the
 552 * locking should be interrupt safe.
 553 */
 554void *__xa_erase(struct xarray *, unsigned long index);
 555void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
 556void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
 557                void *entry, gfp_t);
 558int __must_check __xa_insert(struct xarray *, unsigned long index,
 559                void *entry, gfp_t);
 560int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
 561                struct xa_limit, gfp_t);
 562int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
 563                struct xa_limit, u32 *next, gfp_t);
 564void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
 565void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
 566
 567/**
 568 * xa_store_bh() - Store this entry in the XArray.
 569 * @xa: XArray.
 570 * @index: Index into array.
 571 * @entry: New entry.
 572 * @gfp: Memory allocation flags.
 573 *
 574 * This function is like calling xa_store() except it disables softirqs
 575 * while holding the array lock.
 576 *
 577 * Context: Any context.  Takes and releases the xa_lock while
 578 * disabling softirqs.
 579 * Return: The old entry at this index or xa_err() if an error happened.
 580 */
 581static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
 582                void *entry, gfp_t gfp)
 583{
 584        void *curr;
 585
 586        xa_lock_bh(xa);
 587        curr = __xa_store(xa, index, entry, gfp);
 588        xa_unlock_bh(xa);
 589
 590        return curr;
 591}
 592
 593/**
 594 * xa_store_irq() - Store this entry in the XArray.
 595 * @xa: XArray.
 596 * @index: Index into array.
 597 * @entry: New entry.
 598 * @gfp: Memory allocation flags.
 599 *
 600 * This function is like calling xa_store() except it disables interrupts
 601 * while holding the array lock.
 602 *
 603 * Context: Process context.  Takes and releases the xa_lock while
 604 * disabling interrupts.
 605 * Return: The old entry at this index or xa_err() if an error happened.
 606 */
 607static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
 608                void *entry, gfp_t gfp)
 609{
 610        void *curr;
 611
 612        xa_lock_irq(xa);
 613        curr = __xa_store(xa, index, entry, gfp);
 614        xa_unlock_irq(xa);
 615
 616        return curr;
 617}
 618
 619/**
 620 * xa_erase_bh() - Erase this entry from the XArray.
 621 * @xa: XArray.
 622 * @index: Index of entry.
 623 *
 624 * After this function returns, loading from @index will return %NULL.
 625 * If the index is part of a multi-index entry, all indices will be erased
 626 * and none of the entries will be part of a multi-index entry.
 627 *
 628 * Context: Any context.  Takes and releases the xa_lock while
 629 * disabling softirqs.
 630 * Return: The entry which used to be at this index.
 631 */
 632static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
 633{
 634        void *entry;
 635
 636        xa_lock_bh(xa);
 637        entry = __xa_erase(xa, index);
 638        xa_unlock_bh(xa);
 639
 640        return entry;
 641}
 642
 643/**
 644 * xa_erase_irq() - Erase this entry from the XArray.
 645 * @xa: XArray.
 646 * @index: Index of entry.
 647 *
 648 * After this function returns, loading from @index will return %NULL.
 649 * If the index is part of a multi-index entry, all indices will be erased
 650 * and none of the entries will be part of a multi-index entry.
 651 *
 652 * Context: Process context.  Takes and releases the xa_lock while
 653 * disabling interrupts.
 654 * Return: The entry which used to be at this index.
 655 */
 656static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
 657{
 658        void *entry;
 659
 660        xa_lock_irq(xa);
 661        entry = __xa_erase(xa, index);
 662        xa_unlock_irq(xa);
 663
 664        return entry;
 665}
 666
 667/**
 668 * xa_cmpxchg() - Conditionally replace an entry in the XArray.
 669 * @xa: XArray.
 670 * @index: Index into array.
 671 * @old: Old value to test against.
 672 * @entry: New value to place in array.
 673 * @gfp: Memory allocation flags.
 674 *
 675 * If the entry at @index is the same as @old, replace it with @entry.
 676 * If the return value is equal to @old, then the exchange was successful.
 677 *
 678 * Context: Any context.  Takes and releases the xa_lock.  May sleep
 679 * if the @gfp flags permit.
 680 * Return: The old value at this index or xa_err() if an error happened.
 681 */
 682static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
 683                        void *old, void *entry, gfp_t gfp)
 684{
 685        void *curr;
 686
 687        xa_lock(xa);
 688        curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 689        xa_unlock(xa);
 690
 691        return curr;
 692}
 693
 694/**
 695 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
 696 * @xa: XArray.
 697 * @index: Index into array.
 698 * @old: Old value to test against.
 699 * @entry: New value to place in array.
 700 * @gfp: Memory allocation flags.
 701 *
 702 * This function is like calling xa_cmpxchg() except it disables softirqs
 703 * while holding the array lock.
 704 *
 705 * Context: Any context.  Takes and releases the xa_lock while
 706 * disabling softirqs.  May sleep if the @gfp flags permit.
 707 * Return: The old value at this index or xa_err() if an error happened.
 708 */
 709static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
 710                        void *old, void *entry, gfp_t gfp)
 711{
 712        void *curr;
 713
 714        xa_lock_bh(xa);
 715        curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 716        xa_unlock_bh(xa);
 717
 718        return curr;
 719}
 720
 721/**
 722 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
 723 * @xa: XArray.
 724 * @index: Index into array.
 725 * @old: Old value to test against.
 726 * @entry: New value to place in array.
 727 * @gfp: Memory allocation flags.
 728 *
 729 * This function is like calling xa_cmpxchg() except it disables interrupts
 730 * while holding the array lock.
 731 *
 732 * Context: Process context.  Takes and releases the xa_lock while
 733 * disabling interrupts.  May sleep if the @gfp flags permit.
 734 * Return: The old value at this index or xa_err() if an error happened.
 735 */
 736static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
 737                        void *old, void *entry, gfp_t gfp)
 738{
 739        void *curr;
 740
 741        xa_lock_irq(xa);
 742        curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 743        xa_unlock_irq(xa);
 744
 745        return curr;
 746}
 747
 748/**
 749 * xa_insert() - Store this entry in the XArray unless another entry is
 750 *                      already present.
 751 * @xa: XArray.
 752 * @index: Index into array.
 753 * @entry: New entry.
 754 * @gfp: Memory allocation flags.
 755 *
 756 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 757 * if no entry is present.  Inserting will fail if a reserved entry is
 758 * present, even though loading from this index will return NULL.
 759 *
 760 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 761 * the @gfp flags permit.
 762 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 763 * -ENOMEM if memory could not be allocated.
 764 */
 765static inline int __must_check xa_insert(struct xarray *xa,
 766                unsigned long index, void *entry, gfp_t gfp)
 767{
 768        int err;
 769
 770        xa_lock(xa);
 771        err = __xa_insert(xa, index, entry, gfp);
 772        xa_unlock(xa);
 773
 774        return err;
 775}
 776
 777/**
 778 * xa_insert_bh() - Store this entry in the XArray unless another entry is
 779 *                      already present.
 780 * @xa: XArray.
 781 * @index: Index into array.
 782 * @entry: New entry.
 783 * @gfp: Memory allocation flags.
 784 *
 785 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 786 * if no entry is present.  Inserting will fail if a reserved entry is
 787 * present, even though loading from this index will return NULL.
 788 *
 789 * Context: Any context.  Takes and releases the xa_lock while
 790 * disabling softirqs.  May sleep if the @gfp flags permit.
 791 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 792 * -ENOMEM if memory could not be allocated.
 793 */
 794static inline int __must_check xa_insert_bh(struct xarray *xa,
 795                unsigned long index, void *entry, gfp_t gfp)
 796{
 797        int err;
 798
 799        xa_lock_bh(xa);
 800        err = __xa_insert(xa, index, entry, gfp);
 801        xa_unlock_bh(xa);
 802
 803        return err;
 804}
 805
 806/**
 807 * xa_insert_irq() - Store this entry in the XArray unless another entry is
 808 *                      already present.
 809 * @xa: XArray.
 810 * @index: Index into array.
 811 * @entry: New entry.
 812 * @gfp: Memory allocation flags.
 813 *
 814 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 815 * if no entry is present.  Inserting will fail if a reserved entry is
 816 * present, even though loading from this index will return NULL.
 817 *
 818 * Context: Process context.  Takes and releases the xa_lock while
 819 * disabling interrupts.  May sleep if the @gfp flags permit.
 820 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 821 * -ENOMEM if memory could not be allocated.
 822 */
 823static inline int __must_check xa_insert_irq(struct xarray *xa,
 824                unsigned long index, void *entry, gfp_t gfp)
 825{
 826        int err;
 827
 828        xa_lock_irq(xa);
 829        err = __xa_insert(xa, index, entry, gfp);
 830        xa_unlock_irq(xa);
 831
 832        return err;
 833}
 834
 835/**
 836 * xa_alloc() - Find somewhere to store this entry in the XArray.
 837 * @xa: XArray.
 838 * @id: Pointer to ID.
 839 * @entry: New entry.
 840 * @limit: Range of ID to allocate.
 841 * @gfp: Memory allocation flags.
 842 *
 843 * Finds an empty entry in @xa between @limit.min and @limit.max,
 844 * stores the index into the @id pointer, then stores the entry at
 845 * that index.  A concurrent lookup will not see an uninitialised @id.
 846 *
 847 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 848 * the @gfp flags permit.
 849 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 850 * -EBUSY if there are no free entries in @limit.
 851 */
 852static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
 853                void *entry, struct xa_limit limit, gfp_t gfp)
 854{
 855        int err;
 856
 857        xa_lock(xa);
 858        err = __xa_alloc(xa, id, entry, limit, gfp);
 859        xa_unlock(xa);
 860
 861        return err;
 862}
 863
 864/**
 865 * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
 866 * @xa: XArray.
 867 * @id: Pointer to ID.
 868 * @entry: New entry.
 869 * @limit: Range of ID to allocate.
 870 * @gfp: Memory allocation flags.
 871 *
 872 * Finds an empty entry in @xa between @limit.min and @limit.max,
 873 * stores the index into the @id pointer, then stores the entry at
 874 * that index.  A concurrent lookup will not see an uninitialised @id.
 875 *
 876 * Context: Any context.  Takes and releases the xa_lock while
 877 * disabling softirqs.  May sleep if the @gfp flags permit.
 878 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 879 * -EBUSY if there are no free entries in @limit.
 880 */
 881static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
 882                void *entry, struct xa_limit limit, gfp_t gfp)
 883{
 884        int err;
 885
 886        xa_lock_bh(xa);
 887        err = __xa_alloc(xa, id, entry, limit, gfp);
 888        xa_unlock_bh(xa);
 889
 890        return err;
 891}
 892
 893/**
 894 * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
 895 * @xa: XArray.
 896 * @id: Pointer to ID.
 897 * @entry: New entry.
 898 * @limit: Range of ID to allocate.
 899 * @gfp: Memory allocation flags.
 900 *
 901 * Finds an empty entry in @xa between @limit.min and @limit.max,
 902 * stores the index into the @id pointer, then stores the entry at
 903 * that index.  A concurrent lookup will not see an uninitialised @id.
 904 *
 905 * Context: Process context.  Takes and releases the xa_lock while
 906 * disabling interrupts.  May sleep if the @gfp flags permit.
 907 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 908 * -EBUSY if there are no free entries in @limit.
 909 */
 910static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
 911                void *entry, struct xa_limit limit, gfp_t gfp)
 912{
 913        int err;
 914
 915        xa_lock_irq(xa);
 916        err = __xa_alloc(xa, id, entry, limit, gfp);
 917        xa_unlock_irq(xa);
 918
 919        return err;
 920}
 921
 922/**
 923 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
 924 * @xa: XArray.
 925 * @id: Pointer to ID.
 926 * @entry: New entry.
 927 * @limit: Range of allocated ID.
 928 * @next: Pointer to next ID to allocate.
 929 * @gfp: Memory allocation flags.
 930 *
 931 * Finds an empty entry in @xa between @limit.min and @limit.max,
 932 * stores the index into the @id pointer, then stores the entry at
 933 * that index.  A concurrent lookup will not see an uninitialised @id.
 934 * The search for an empty entry will start at @next and will wrap
 935 * around if necessary.
 936 *
 937 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 938 * the @gfp flags permit.
 939 * Return: 0 if the allocation succeeded without wrapping.  1 if the
 940 * allocation succeeded after wrapping, -ENOMEM if memory could not be
 941 * allocated or -EBUSY if there are no free entries in @limit.
 942 */
 943static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
 944                struct xa_limit limit, u32 *next, gfp_t gfp)
 945{
 946        int err;
 947
 948        xa_lock(xa);
 949        err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
 950        xa_unlock(xa);
 951
 952        return err;
 953}
 954
 955/**
 956 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
 957 * @xa: XArray.
 958 * @id: Pointer to ID.
 959 * @entry: New entry.
 960 * @limit: Range of allocated ID.
 961 * @next: Pointer to next ID to allocate.
 962 * @gfp: Memory allocation flags.
 963 *
 964 * Finds an empty entry in @xa between @limit.min and @limit.max,
 965 * stores the index into the @id pointer, then stores the entry at
 966 * that index.  A concurrent lookup will not see an uninitialised @id.
 967 * The search for an empty entry will start at @next and will wrap
 968 * around if necessary.
 969 *
 970 * Context: Any context.  Takes and releases the xa_lock while
 971 * disabling softirqs.  May sleep if the @gfp flags permit.
 972 * Return: 0 if the allocation succeeded without wrapping.  1 if the
 973 * allocation succeeded after wrapping, -ENOMEM if memory could not be
 974 * allocated or -EBUSY if there are no free entries in @limit.
 975 */
 976static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
 977                struct xa_limit limit, u32 *next, gfp_t gfp)
 978{
 979        int err;
 980
 981        xa_lock_bh(xa);
 982        err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
 983        xa_unlock_bh(xa);
 984
 985        return err;
 986}
 987
 988/**
 989 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
 990 * @xa: XArray.
 991 * @id: Pointer to ID.
 992 * @entry: New entry.
 993 * @limit: Range of allocated ID.
 994 * @next: Pointer to next ID to allocate.
 995 * @gfp: Memory allocation flags.
 996 *
 997 * Finds an empty entry in @xa between @limit.min and @limit.max,
 998 * stores the index into the @id pointer, then stores the entry at
 999 * that index.  A concurrent lookup will not see an uninitialised @id.
1000 * The search for an empty entry will start at @next and will wrap
1001 * around if necessary.
1002 *
1003 * Context: Process context.  Takes and releases the xa_lock while
1004 * disabling interrupts.  May sleep if the @gfp flags permit.
1005 * Return: 0 if the allocation succeeded without wrapping.  1 if the
1006 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1007 * allocated or -EBUSY if there are no free entries in @limit.
1008 */
1009static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
1010                struct xa_limit limit, u32 *next, gfp_t gfp)
1011{
1012        int err;
1013
1014        xa_lock_irq(xa);
1015        err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
1016        xa_unlock_irq(xa);
1017
1018        return err;
1019}
1020
1021/**
1022 * xa_reserve() - Reserve this index in the XArray.
1023 * @xa: XArray.
1024 * @index: Index into array.
1025 * @gfp: Memory allocation flags.
1026 *
1027 * Ensures there is somewhere to store an entry at @index in the array.
1028 * If there is already something stored at @index, this function does
1029 * nothing.  If there was nothing there, the entry is marked as reserved.
1030 * Loading from a reserved entry returns a %NULL pointer.
1031 *
1032 * If you do not use the entry that you have reserved, call xa_release()
1033 * or xa_erase() to free any unnecessary memory.
1034 *
1035 * Context: Any context.  Takes and releases the xa_lock.
1036 * May sleep if the @gfp flags permit.
1037 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1038 */
1039static inline __must_check
1040int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1041{
1042        return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1043}
1044
1045/**
1046 * xa_reserve_bh() - Reserve this index in the XArray.
1047 * @xa: XArray.
1048 * @index: Index into array.
1049 * @gfp: Memory allocation flags.
1050 *
1051 * A softirq-disabling version of xa_reserve().
1052 *
1053 * Context: Any context.  Takes and releases the xa_lock while
1054 * disabling softirqs.
1055 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1056 */
1057static inline __must_check
1058int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
1059{
1060        return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1061}
1062
1063/**
1064 * xa_reserve_irq() - Reserve this index in the XArray.
1065 * @xa: XArray.
1066 * @index: Index into array.
1067 * @gfp: Memory allocation flags.
1068 *
1069 * An interrupt-disabling version of xa_reserve().
1070 *
1071 * Context: Process context.  Takes and releases the xa_lock while
1072 * disabling interrupts.
1073 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1074 */
1075static inline __must_check
1076int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
1077{
1078        return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1079}
1080
1081/**
1082 * xa_release() - Release a reserved entry.
1083 * @xa: XArray.
1084 * @index: Index of entry.
1085 *
1086 * After calling xa_reserve(), you can call this function to release the
1087 * reservation.  If the entry at @index has been stored to, this function
1088 * will do nothing.
1089 */
1090static inline void xa_release(struct xarray *xa, unsigned long index)
1091{
1092        xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
1093}
1094
1095/* Everything below here is the Advanced API.  Proceed with caution. */
1096
1097/*
1098 * The xarray is constructed out of a set of 'chunks' of pointers.  Choosing
1099 * the best chunk size requires some tradeoffs.  A power of two recommends
1100 * itself so that we can walk the tree based purely on shifts and masks.
1101 * Generally, the larger the better; as the number of slots per level of the
1102 * tree increases, the less tall the tree needs to be.  But that needs to be
1103 * balanced against the memory consumption of each node.  On a 64-bit system,
1104 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page.  If we
1105 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
1106 */
1107#ifndef XA_CHUNK_SHIFT
1108#define XA_CHUNK_SHIFT          (CONFIG_BASE_SMALL ? 4 : 6)
1109#endif
1110#define XA_CHUNK_SIZE           (1UL << XA_CHUNK_SHIFT)
1111#define XA_CHUNK_MASK           (XA_CHUNK_SIZE - 1)
1112#define XA_MAX_MARKS            3
1113#define XA_MARK_LONGS           DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
1114
1115/*
1116 * @count is the count of every non-NULL element in the ->slots array
1117 * whether that is a value entry, a retry entry, a user pointer,
1118 * a sibling entry or a pointer to the next level of the tree.
1119 * @nr_values is the count of every element in ->slots which is
1120 * either a value entry or a sibling of a value entry.
1121 */
1122struct xa_node {
1123        unsigned char   shift;          /* Bits remaining in each slot */
1124        unsigned char   offset;         /* Slot offset in parent */
1125        unsigned char   count;          /* Total entry count */
1126        unsigned char   nr_values;      /* Value entry count */
1127        struct xa_node __rcu *parent;   /* NULL at top of tree */
1128        struct xarray   *array;         /* The array we belong to */
1129        union {
1130                struct list_head private_list;  /* For tree user */
1131                struct rcu_head rcu_head;       /* Used when freeing node */
1132        };
1133        void __rcu      *slots[XA_CHUNK_SIZE];
1134        union {
1135                unsigned long   tags[XA_MAX_MARKS][XA_MARK_LONGS];
1136                unsigned long   marks[XA_MAX_MARKS][XA_MARK_LONGS];
1137        };
1138};
1139
1140void xa_dump(const struct xarray *);
1141void xa_dump_node(const struct xa_node *);
1142
1143#ifdef XA_DEBUG
1144#define XA_BUG_ON(xa, x) do {                                   \
1145                if (x) {                                        \
1146                        xa_dump(xa);                            \
1147                        BUG();                                  \
1148                }                                               \
1149        } while (0)
1150#define XA_NODE_BUG_ON(node, x) do {                            \
1151                if (x) {                                        \
1152                        if (node) xa_dump_node(node);           \
1153                        BUG();                                  \
1154                }                                               \
1155        } while (0)
1156#else
1157#define XA_BUG_ON(xa, x)        do { } while (0)
1158#define XA_NODE_BUG_ON(node, x) do { } while (0)
1159#endif
1160
1161/* Private */
1162static inline void *xa_head(const struct xarray *xa)
1163{
1164        return rcu_dereference_check(xa->xa_head,
1165                                                lockdep_is_held(&xa->xa_lock));
1166}
1167
1168/* Private */
1169static inline void *xa_head_locked(const struct xarray *xa)
1170{
1171        return rcu_dereference_protected(xa->xa_head,
1172                                                lockdep_is_held(&xa->xa_lock));
1173}
1174
1175/* Private */
1176static inline void *xa_entry(const struct xarray *xa,
1177                                const struct xa_node *node, unsigned int offset)
1178{
1179        XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1180        return rcu_dereference_check(node->slots[offset],
1181                                                lockdep_is_held(&xa->xa_lock));
1182}
1183
1184/* Private */
1185static inline void *xa_entry_locked(const struct xarray *xa,
1186                                const struct xa_node *node, unsigned int offset)
1187{
1188        XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1189        return rcu_dereference_protected(node->slots[offset],
1190                                                lockdep_is_held(&xa->xa_lock));
1191}
1192
1193/* Private */
1194static inline struct xa_node *xa_parent(const struct xarray *xa,
1195                                        const struct xa_node *node)
1196{
1197        return rcu_dereference_check(node->parent,
1198                                                lockdep_is_held(&xa->xa_lock));
1199}
1200
1201/* Private */
1202static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
1203                                        const struct xa_node *node)
1204{
1205        return rcu_dereference_protected(node->parent,
1206                                                lockdep_is_held(&xa->xa_lock));
1207}
1208
1209/* Private */
1210static inline void *xa_mk_node(const struct xa_node *node)
1211{
1212        return (void *)((unsigned long)node | 2);
1213}
1214
1215/* Private */
1216static inline struct xa_node *xa_to_node(const void *entry)
1217{
1218        return (struct xa_node *)((unsigned long)entry - 2);
1219}
1220
1221/* Private */
1222static inline bool xa_is_node(const void *entry)
1223{
1224        return xa_is_internal(entry) && (unsigned long)entry > 4096;
1225}
1226
1227/* Private */
1228static inline void *xa_mk_sibling(unsigned int offset)
1229{
1230        return xa_mk_internal(offset);
1231}
1232
1233/* Private */
1234static inline unsigned long xa_to_sibling(const void *entry)
1235{
1236        return xa_to_internal(entry);
1237}
1238
1239/**
1240 * xa_is_sibling() - Is the entry a sibling entry?
1241 * @entry: Entry retrieved from the XArray
1242 *
1243 * Return: %true if the entry is a sibling entry.
1244 */
1245static inline bool xa_is_sibling(const void *entry)
1246{
1247        return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
1248                (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
1249}
1250
1251#define XA_RETRY_ENTRY          xa_mk_internal(256)
1252
1253/**
1254 * xa_is_retry() - Is the entry a retry entry?
1255 * @entry: Entry retrieved from the XArray
1256 *
1257 * Return: %true if the entry is a retry entry.
1258 */
1259static inline bool xa_is_retry(const void *entry)
1260{
1261        return unlikely(entry == XA_RETRY_ENTRY);
1262}
1263
1264/**
1265 * xa_is_advanced() - Is the entry only permitted for the advanced API?
1266 * @entry: Entry to be stored in the XArray.
1267 *
1268 * Return: %true if the entry cannot be stored by the normal API.
1269 */
1270static inline bool xa_is_advanced(const void *entry)
1271{
1272        return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
1273}
1274
1275/**
1276 * typedef xa_update_node_t - A callback function from the XArray.
1277 * @node: The node which is being processed
1278 *
1279 * This function is called every time the XArray updates the count of
1280 * present and value entries in a node.  It allows advanced users to
1281 * maintain the private_list in the node.
1282 *
1283 * Context: The xa_lock is held and interrupts may be disabled.
1284 *          Implementations should not drop the xa_lock, nor re-enable
1285 *          interrupts.
1286 */
1287typedef void (*xa_update_node_t)(struct xa_node *node);
1288
1289/*
1290 * The xa_state is opaque to its users.  It contains various different pieces
1291 * of state involved in the current operation on the XArray.  It should be
1292 * declared on the stack and passed between the various internal routines.
1293 * The various elements in it should not be accessed directly, but only
1294 * through the provided accessor functions.  The below documentation is for
1295 * the benefit of those working on the code, not for users of the XArray.
1296 *
1297 * @xa_node usually points to the xa_node containing the slot we're operating
1298 * on (and @xa_offset is the offset in the slots array).  If there is a
1299 * single entry in the array at index 0, there are no allocated xa_nodes to
1300 * point to, and so we store %NULL in @xa_node.  @xa_node is set to
1301 * the value %XAS_RESTART if the xa_state is not walked to the correct
1302 * position in the tree of nodes for this operation.  If an error occurs
1303 * during an operation, it is set to an %XAS_ERROR value.  If we run off the
1304 * end of the allocated nodes, it is set to %XAS_BOUNDS.
1305 */
1306struct xa_state {
1307        struct xarray *xa;
1308        unsigned long xa_index;
1309        unsigned char xa_shift;
1310        unsigned char xa_sibs;
1311        unsigned char xa_offset;
1312        unsigned char xa_pad;           /* Helps gcc generate better code */
1313        struct xa_node *xa_node;
1314        struct xa_node *xa_alloc;
1315        xa_update_node_t xa_update;
1316};
1317
1318/*
1319 * We encode errnos in the xas->xa_node.  If an error has happened, we need to
1320 * drop the lock to fix it, and once we've done so the xa_state is invalid.
1321 */
1322#define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1323#define XAS_BOUNDS      ((struct xa_node *)1UL)
1324#define XAS_RESTART     ((struct xa_node *)3UL)
1325
1326#define __XA_STATE(array, index, shift, sibs)  {        \
1327        .xa = array,                                    \
1328        .xa_index = index,                              \
1329        .xa_shift = shift,                              \
1330        .xa_sibs = sibs,                                \
1331        .xa_offset = 0,                                 \
1332        .xa_pad = 0,                                    \
1333        .xa_node = XAS_RESTART,                         \
1334        .xa_alloc = NULL,                               \
1335        .xa_update = NULL                               \
1336}
1337
1338/**
1339 * XA_STATE() - Declare an XArray operation state.
1340 * @name: Name of this operation state (usually xas).
1341 * @array: Array to operate on.
1342 * @index: Initial index of interest.
1343 *
1344 * Declare and initialise an xa_state on the stack.
1345 */
1346#define XA_STATE(name, array, index)                            \
1347        struct xa_state name = __XA_STATE(array, index, 0, 0)
1348
1349/**
1350 * XA_STATE_ORDER() - Declare an XArray operation state.
1351 * @name: Name of this operation state (usually xas).
1352 * @array: Array to operate on.
1353 * @index: Initial index of interest.
1354 * @order: Order of entry.
1355 *
1356 * Declare and initialise an xa_state on the stack.  This variant of
1357 * XA_STATE() allows you to specify the 'order' of the element you
1358 * want to operate on.`
1359 */
1360#define XA_STATE_ORDER(name, array, index, order)               \
1361        struct xa_state name = __XA_STATE(array,                \
1362                        (index >> order) << order,              \
1363                        order - (order % XA_CHUNK_SHIFT),       \
1364                        (1U << (order % XA_CHUNK_SHIFT)) - 1)
1365
1366#define xas_marked(xas, mark)   xa_marked((xas)->xa, (mark))
1367#define xas_trylock(xas)        xa_trylock((xas)->xa)
1368#define xas_lock(xas)           xa_lock((xas)->xa)
1369#define xas_unlock(xas)         xa_unlock((xas)->xa)
1370#define xas_lock_bh(xas)        xa_lock_bh((xas)->xa)
1371#define xas_unlock_bh(xas)      xa_unlock_bh((xas)->xa)
1372#define xas_lock_irq(xas)       xa_lock_irq((xas)->xa)
1373#define xas_unlock_irq(xas)     xa_unlock_irq((xas)->xa)
1374#define xas_lock_irqsave(xas, flags) \
1375                                xa_lock_irqsave((xas)->xa, flags)
1376#define xas_unlock_irqrestore(xas, flags) \
1377                                xa_unlock_irqrestore((xas)->xa, flags)
1378
1379/**
1380 * xas_error() - Return an errno stored in the xa_state.
1381 * @xas: XArray operation state.
1382 *
1383 * Return: 0 if no error has been noted.  A negative errno if one has.
1384 */
1385static inline int xas_error(const struct xa_state *xas)
1386{
1387        return xa_err(xas->xa_node);
1388}
1389
1390/**
1391 * xas_set_err() - Note an error in the xa_state.
1392 * @xas: XArray operation state.
1393 * @err: Negative error number.
1394 *
1395 * Only call this function with a negative @err; zero or positive errors
1396 * will probably not behave the way you think they should.  If you want
1397 * to clear the error from an xa_state, use xas_reset().
1398 */
1399static inline void xas_set_err(struct xa_state *xas, long err)
1400{
1401        xas->xa_node = XA_ERROR(err);
1402}
1403
1404/**
1405 * xas_invalid() - Is the xas in a retry or error state?
1406 * @xas: XArray operation state.
1407 *
1408 * Return: %true if the xas cannot be used for operations.
1409 */
1410static inline bool xas_invalid(const struct xa_state *xas)
1411{
1412        return (unsigned long)xas->xa_node & 3;
1413}
1414
1415/**
1416 * xas_valid() - Is the xas a valid cursor into the array?
1417 * @xas: XArray operation state.
1418 *
1419 * Return: %true if the xas can be used for operations.
1420 */
1421static inline bool xas_valid(const struct xa_state *xas)
1422{
1423        return !xas_invalid(xas);
1424}
1425
1426/**
1427 * xas_is_node() - Does the xas point to a node?
1428 * @xas: XArray operation state.
1429 *
1430 * Return: %true if the xas currently references a node.
1431 */
1432static inline bool xas_is_node(const struct xa_state *xas)
1433{
1434        return xas_valid(xas) && xas->xa_node;
1435}
1436
1437/* True if the pointer is something other than a node */
1438static inline bool xas_not_node(struct xa_node *node)
1439{
1440        return ((unsigned long)node & 3) || !node;
1441}
1442
1443/* True if the node represents RESTART or an error */
1444static inline bool xas_frozen(struct xa_node *node)
1445{
1446        return (unsigned long)node & 2;
1447}
1448
1449/* True if the node represents head-of-tree, RESTART or BOUNDS */
1450static inline bool xas_top(struct xa_node *node)
1451{
1452        return node <= XAS_RESTART;
1453}
1454
1455/**
1456 * xas_reset() - Reset an XArray operation state.
1457 * @xas: XArray operation state.
1458 *
1459 * Resets the error or walk state of the @xas so future walks of the
1460 * array will start from the root.  Use this if you have dropped the
1461 * xarray lock and want to reuse the xa_state.
1462 *
1463 * Context: Any context.
1464 */
1465static inline void xas_reset(struct xa_state *xas)
1466{
1467        xas->xa_node = XAS_RESTART;
1468}
1469
1470/**
1471 * xas_retry() - Retry the operation if appropriate.
1472 * @xas: XArray operation state.
1473 * @entry: Entry from xarray.
1474 *
1475 * The advanced functions may sometimes return an internal entry, such as
1476 * a retry entry or a zero entry.  This function sets up the @xas to restart
1477 * the walk from the head of the array if needed.
1478 *
1479 * Context: Any context.
1480 * Return: true if the operation needs to be retried.
1481 */
1482static inline bool xas_retry(struct xa_state *xas, const void *entry)
1483{
1484        if (xa_is_zero(entry))
1485                return true;
1486        if (!xa_is_retry(entry))
1487                return false;
1488        xas_reset(xas);
1489        return true;
1490}
1491
1492void *xas_load(struct xa_state *);
1493void *xas_store(struct xa_state *, void *entry);
1494void *xas_find(struct xa_state *, unsigned long max);
1495void *xas_find_conflict(struct xa_state *);
1496
1497bool xas_get_mark(const struct xa_state *, xa_mark_t);
1498void xas_set_mark(const struct xa_state *, xa_mark_t);
1499void xas_clear_mark(const struct xa_state *, xa_mark_t);
1500void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1501void xas_init_marks(const struct xa_state *);
1502
1503bool xas_nomem(struct xa_state *, gfp_t);
1504void xas_pause(struct xa_state *);
1505
1506void xas_create_range(struct xa_state *);
1507
1508/**
1509 * xas_reload() - Refetch an entry from the xarray.
1510 * @xas: XArray operation state.
1511 *
1512 * Use this function to check that a previously loaded entry still has
1513 * the same value.  This is useful for the lockless pagecache lookup where
1514 * we walk the array with only the RCU lock to protect us, lock the page,
1515 * then check that the page hasn't moved since we looked it up.
1516 *
1517 * The caller guarantees that @xas is still valid.  If it may be in an
1518 * error or restart state, call xas_load() instead.
1519 *
1520 * Return: The entry at this location in the xarray.
1521 */
1522static inline void *xas_reload(struct xa_state *xas)
1523{
1524        struct xa_node *node = xas->xa_node;
1525
1526        if (node)
1527                return xa_entry(xas->xa, node, xas->xa_offset);
1528        return xa_head(xas->xa);
1529}
1530
1531/**
1532 * xas_set() - Set up XArray operation state for a different index.
1533 * @xas: XArray operation state.
1534 * @index: New index into the XArray.
1535 *
1536 * Move the operation state to refer to a different index.  This will
1537 * have the effect of starting a walk from the top; see xas_next()
1538 * to move to an adjacent index.
1539 */
1540static inline void xas_set(struct xa_state *xas, unsigned long index)
1541{
1542        xas->xa_index = index;
1543        xas->xa_node = XAS_RESTART;
1544}
1545
1546/**
1547 * xas_set_order() - Set up XArray operation state for a multislot entry.
1548 * @xas: XArray operation state.
1549 * @index: Target of the operation.
1550 * @order: Entry occupies 2^@order indices.
1551 */
1552static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1553                                        unsigned int order)
1554{
1555#ifdef CONFIG_XARRAY_MULTI
1556        xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1557        xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1558        xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1559        xas->xa_node = XAS_RESTART;
1560#else
1561        BUG_ON(order > 0);
1562        xas_set(xas, index);
1563#endif
1564}
1565
1566/**
1567 * xas_set_update() - Set up XArray operation state for a callback.
1568 * @xas: XArray operation state.
1569 * @update: Function to call when updating a node.
1570 *
1571 * The XArray can notify a caller after it has updated an xa_node.
1572 * This is advanced functionality and is only needed by the page cache.
1573 */
1574static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1575{
1576        xas->xa_update = update;
1577}
1578
1579/**
1580 * xas_next_entry() - Advance iterator to next present entry.
1581 * @xas: XArray operation state.
1582 * @max: Highest index to return.
1583 *
1584 * xas_next_entry() is an inline function to optimise xarray traversal for
1585 * speed.  It is equivalent to calling xas_find(), and will call xas_find()
1586 * for all the hard cases.
1587 *
1588 * Return: The next present entry after the one currently referred to by @xas.
1589 */
1590static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1591{
1592        struct xa_node *node = xas->xa_node;
1593        void *entry;
1594
1595        if (unlikely(xas_not_node(node) || node->shift ||
1596                        xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1597                return xas_find(xas, max);
1598
1599        do {
1600                if (unlikely(xas->xa_index >= max))
1601                        return xas_find(xas, max);
1602                if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1603                        return xas_find(xas, max);
1604                entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1605                if (unlikely(xa_is_internal(entry)))
1606                        return xas_find(xas, max);
1607                xas->xa_offset++;
1608                xas->xa_index++;
1609        } while (!entry);
1610
1611        return entry;
1612}
1613
1614/* Private */
1615static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1616                xa_mark_t mark)
1617{
1618        unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1619        unsigned int offset = xas->xa_offset;
1620
1621        if (advance)
1622                offset++;
1623        if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1624                if (offset < XA_CHUNK_SIZE) {
1625                        unsigned long data = *addr & (~0UL << offset);
1626                        if (data)
1627                                return __ffs(data);
1628                }
1629                return XA_CHUNK_SIZE;
1630        }
1631
1632        return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1633}
1634
1635/**
1636 * xas_next_marked() - Advance iterator to next marked entry.
1637 * @xas: XArray operation state.
1638 * @max: Highest index to return.
1639 * @mark: Mark to search for.
1640 *
1641 * xas_next_marked() is an inline function to optimise xarray traversal for
1642 * speed.  It is equivalent to calling xas_find_marked(), and will call
1643 * xas_find_marked() for all the hard cases.
1644 *
1645 * Return: The next marked entry after the one currently referred to by @xas.
1646 */
1647static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1648                                                                xa_mark_t mark)
1649{
1650        struct xa_node *node = xas->xa_node;
1651        void *entry;
1652        unsigned int offset;
1653
1654        if (unlikely(xas_not_node(node) || node->shift))
1655                return xas_find_marked(xas, max, mark);
1656        offset = xas_find_chunk(xas, true, mark);
1657        xas->xa_offset = offset;
1658        xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1659        if (xas->xa_index > max)
1660                return NULL;
1661        if (offset == XA_CHUNK_SIZE)
1662                return xas_find_marked(xas, max, mark);
1663        entry = xa_entry(xas->xa, node, offset);
1664        if (!entry)
1665                return xas_find_marked(xas, max, mark);
1666        return entry;
1667}
1668
1669/*
1670 * If iterating while holding a lock, drop the lock and reschedule
1671 * every %XA_CHECK_SCHED loops.
1672 */
1673enum {
1674        XA_CHECK_SCHED = 4096,
1675};
1676
1677/**
1678 * xas_for_each() - Iterate over a range of an XArray.
1679 * @xas: XArray operation state.
1680 * @entry: Entry retrieved from the array.
1681 * @max: Maximum index to retrieve from array.
1682 *
1683 * The loop body will be executed for each entry present in the xarray
1684 * between the current xas position and @max.  @entry will be set to
1685 * the entry retrieved from the xarray.  It is safe to delete entries
1686 * from the array in the loop body.  You should hold either the RCU lock
1687 * or the xa_lock while iterating.  If you need to drop the lock, call
1688 * xas_pause() first.
1689 */
1690#define xas_for_each(xas, entry, max) \
1691        for (entry = xas_find(xas, max); entry; \
1692             entry = xas_next_entry(xas, max))
1693
1694/**
1695 * xas_for_each_marked() - Iterate over a range of an XArray.
1696 * @xas: XArray operation state.
1697 * @entry: Entry retrieved from the array.
1698 * @max: Maximum index to retrieve from array.
1699 * @mark: Mark to search for.
1700 *
1701 * The loop body will be executed for each marked entry in the xarray
1702 * between the current xas position and @max.  @entry will be set to
1703 * the entry retrieved from the xarray.  It is safe to delete entries
1704 * from the array in the loop body.  You should hold either the RCU lock
1705 * or the xa_lock while iterating.  If you need to drop the lock, call
1706 * xas_pause() first.
1707 */
1708#define xas_for_each_marked(xas, entry, max, mark) \
1709        for (entry = xas_find_marked(xas, max, mark); entry; \
1710             entry = xas_next_marked(xas, max, mark))
1711
1712/**
1713 * xas_for_each_conflict() - Iterate over a range of an XArray.
1714 * @xas: XArray operation state.
1715 * @entry: Entry retrieved from the array.
1716 *
1717 * The loop body will be executed for each entry in the XArray that lies
1718 * within the range specified by @xas.  If the loop completes successfully,
1719 * any entries that lie in this range will be replaced by @entry.  The caller
1720 * may break out of the loop; if they do so, the contents of the XArray will
1721 * be unchanged.  The operation may fail due to an out of memory condition.
1722 * The caller may also call xa_set_err() to exit the loop while setting an
1723 * error to record the reason.
1724 */
1725#define xas_for_each_conflict(xas, entry) \
1726        while ((entry = xas_find_conflict(xas)))
1727
1728void *__xas_next(struct xa_state *);
1729void *__xas_prev(struct xa_state *);
1730
1731/**
1732 * xas_prev() - Move iterator to previous index.
1733 * @xas: XArray operation state.
1734 *
1735 * If the @xas was in an error state, it will remain in an error state
1736 * and this function will return %NULL.  If the @xas has never been walked,
1737 * it will have the effect of calling xas_load().  Otherwise one will be
1738 * subtracted from the index and the state will be walked to the correct
1739 * location in the array for the next operation.
1740 *
1741 * If the iterator was referencing index 0, this function wraps
1742 * around to %ULONG_MAX.
1743 *
1744 * Return: The entry at the new index.  This may be %NULL or an internal
1745 * entry.
1746 */
1747static inline void *xas_prev(struct xa_state *xas)
1748{
1749        struct xa_node *node = xas->xa_node;
1750
1751        if (unlikely(xas_not_node(node) || node->shift ||
1752                                xas->xa_offset == 0))
1753                return __xas_prev(xas);
1754
1755        xas->xa_index--;
1756        xas->xa_offset--;
1757        return xa_entry(xas->xa, node, xas->xa_offset);
1758}
1759
1760/**
1761 * xas_next() - Move state to next index.
1762 * @xas: XArray operation state.
1763 *
1764 * If the @xas was in an error state, it will remain in an error state
1765 * and this function will return %NULL.  If the @xas has never been walked,
1766 * it will have the effect of calling xas_load().  Otherwise one will be
1767 * added to the index and the state will be walked to the correct
1768 * location in the array for the next operation.
1769 *
1770 * If the iterator was referencing index %ULONG_MAX, this function wraps
1771 * around to 0.
1772 *
1773 * Return: The entry at the new index.  This may be %NULL or an internal
1774 * entry.
1775 */
1776static inline void *xas_next(struct xa_state *xas)
1777{
1778        struct xa_node *node = xas->xa_node;
1779
1780        if (unlikely(xas_not_node(node) || node->shift ||
1781                                xas->xa_offset == XA_CHUNK_MASK))
1782                return __xas_next(xas);
1783
1784        xas->xa_index++;
1785        xas->xa_offset++;
1786        return xa_entry(xas->xa, node, xas->xa_offset);
1787}
1788
1789#endif /* _LINUX_XARRAY_H */
1790