linux/include/net/sock.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the AF_INET socket handler.
   8 *
   9 * Version:     @(#)sock.h      1.0.4   05/13/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *              Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *              Alan Cox        :       Volatiles in skbuff pointers. See
  18 *                                      skbuff comments. May be overdone,
  19 *                                      better to prove they can be removed
  20 *                                      than the reverse.
  21 *              Alan Cox        :       Added a zapped field for tcp to note
  22 *                                      a socket is reset and must stay shut up
  23 *              Alan Cox        :       New fields for options
  24 *      Pauline Middelink       :       identd support
  25 *              Alan Cox        :       Eliminate low level recv/recvfrom
  26 *              David S. Miller :       New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  29 *                                      protinfo be just a void pointer, as the
  30 *                                      protocol specific parts were moved to
  31 *                                      respective headers and ipv4/v6, etc now
  32 *                                      use private slabcaches for its socks
  33 *              Pedro Hortas    :       New flags field for socket options
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>       /* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/filter.h>
  60#include <linux/rculist_nulls.h>
  61#include <linux/poll.h>
  62#include <linux/sockptr.h>
  63
  64#include <linux/atomic.h>
  65#include <linux/refcount.h>
  66#include <net/dst.h>
  67#include <net/checksum.h>
  68#include <net/tcp_states.h>
  69#include <linux/net_tstamp.h>
  70#include <net/l3mdev.h>
  71
  72/*
  73 * This structure really needs to be cleaned up.
  74 * Most of it is for TCP, and not used by any of
  75 * the other protocols.
  76 */
  77
  78/* Define this to get the SOCK_DBG debugging facility. */
  79#define SOCK_DEBUGGING
  80#ifdef SOCK_DEBUGGING
  81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  82                                        printk(KERN_DEBUG msg); } while (0)
  83#else
  84/* Validate arguments and do nothing */
  85static inline __printf(2, 3)
  86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  87{
  88}
  89#endif
  90
  91/* This is the per-socket lock.  The spinlock provides a synchronization
  92 * between user contexts and software interrupt processing, whereas the
  93 * mini-semaphore synchronizes multiple users amongst themselves.
  94 */
  95typedef struct {
  96        spinlock_t              slock;
  97        int                     owned;
  98        wait_queue_head_t       wq;
  99        /*
 100         * We express the mutex-alike socket_lock semantics
 101         * to the lock validator by explicitly managing
 102         * the slock as a lock variant (in addition to
 103         * the slock itself):
 104         */
 105#ifdef CONFIG_DEBUG_LOCK_ALLOC
 106        struct lockdep_map dep_map;
 107#endif
 108} socket_lock_t;
 109
 110struct sock;
 111struct proto;
 112struct net;
 113
 114typedef __u32 __bitwise __portpair;
 115typedef __u64 __bitwise __addrpair;
 116
 117/**
 118 *      struct sock_common - minimal network layer representation of sockets
 119 *      @skc_daddr: Foreign IPv4 addr
 120 *      @skc_rcv_saddr: Bound local IPv4 addr
 121 *      @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 122 *      @skc_hash: hash value used with various protocol lookup tables
 123 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 124 *      @skc_dport: placeholder for inet_dport/tw_dport
 125 *      @skc_num: placeholder for inet_num/tw_num
 126 *      @skc_portpair: __u32 union of @skc_dport & @skc_num
 127 *      @skc_family: network address family
 128 *      @skc_state: Connection state
 129 *      @skc_reuse: %SO_REUSEADDR setting
 130 *      @skc_reuseport: %SO_REUSEPORT setting
 131 *      @skc_ipv6only: socket is IPV6 only
 132 *      @skc_net_refcnt: socket is using net ref counting
 133 *      @skc_bound_dev_if: bound device index if != 0
 134 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 135 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 136 *      @skc_prot: protocol handlers inside a network family
 137 *      @skc_net: reference to the network namespace of this socket
 138 *      @skc_v6_daddr: IPV6 destination address
 139 *      @skc_v6_rcv_saddr: IPV6 source address
 140 *      @skc_cookie: socket's cookie value
 141 *      @skc_node: main hash linkage for various protocol lookup tables
 142 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 143 *      @skc_tx_queue_mapping: tx queue number for this connection
 144 *      @skc_rx_queue_mapping: rx queue number for this connection
 145 *      @skc_flags: place holder for sk_flags
 146 *              %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 147 *              %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 148 *      @skc_listener: connection request listener socket (aka rsk_listener)
 149 *              [union with @skc_flags]
 150 *      @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 151 *              [union with @skc_flags]
 152 *      @skc_incoming_cpu: record/match cpu processing incoming packets
 153 *      @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 154 *              [union with @skc_incoming_cpu]
 155 *      @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 156 *              [union with @skc_incoming_cpu]
 157 *      @skc_refcnt: reference count
 158 *
 159 *      This is the minimal network layer representation of sockets, the header
 160 *      for struct sock and struct inet_timewait_sock.
 161 */
 162struct sock_common {
 163        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 164         * address on 64bit arches : cf INET_MATCH()
 165         */
 166        union {
 167                __addrpair      skc_addrpair;
 168                struct {
 169                        __be32  skc_daddr;
 170                        __be32  skc_rcv_saddr;
 171                };
 172        };
 173        union  {
 174                unsigned int    skc_hash;
 175                __u16           skc_u16hashes[2];
 176        };
 177        /* skc_dport && skc_num must be grouped as well */
 178        union {
 179                __portpair      skc_portpair;
 180                struct {
 181                        __be16  skc_dport;
 182                        __u16   skc_num;
 183                };
 184        };
 185
 186        unsigned short          skc_family;
 187        volatile unsigned char  skc_state;
 188        unsigned char           skc_reuse:4;
 189        unsigned char           skc_reuseport:1;
 190        unsigned char           skc_ipv6only:1;
 191        unsigned char           skc_net_refcnt:1;
 192        int                     skc_bound_dev_if;
 193        union {
 194                struct hlist_node       skc_bind_node;
 195                struct hlist_node       skc_portaddr_node;
 196        };
 197        struct proto            *skc_prot;
 198        possible_net_t          skc_net;
 199
 200#if IS_ENABLED(CONFIG_IPV6)
 201        struct in6_addr         skc_v6_daddr;
 202        struct in6_addr         skc_v6_rcv_saddr;
 203#endif
 204
 205        atomic64_t              skc_cookie;
 206
 207        /* following fields are padding to force
 208         * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 209         * assuming IPV6 is enabled. We use this padding differently
 210         * for different kind of 'sockets'
 211         */
 212        union {
 213                unsigned long   skc_flags;
 214                struct sock     *skc_listener; /* request_sock */
 215                struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 216        };
 217        /*
 218         * fields between dontcopy_begin/dontcopy_end
 219         * are not copied in sock_copy()
 220         */
 221        /* private: */
 222        int                     skc_dontcopy_begin[0];
 223        /* public: */
 224        union {
 225                struct hlist_node       skc_node;
 226                struct hlist_nulls_node skc_nulls_node;
 227        };
 228        unsigned short          skc_tx_queue_mapping;
 229#ifdef CONFIG_XPS
 230        unsigned short          skc_rx_queue_mapping;
 231#endif
 232        union {
 233                int             skc_incoming_cpu;
 234                u32             skc_rcv_wnd;
 235                u32             skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 236        };
 237
 238        refcount_t              skc_refcnt;
 239        /* private: */
 240        int                     skc_dontcopy_end[0];
 241        union {
 242                u32             skc_rxhash;
 243                u32             skc_window_clamp;
 244                u32             skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 245        };
 246        /* public: */
 247};
 248
 249struct bpf_sk_storage;
 250
 251/**
 252  *     struct sock - network layer representation of sockets
 253  *     @__sk_common: shared layout with inet_timewait_sock
 254  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 255  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 256  *     @sk_lock:       synchronizer
 257  *     @sk_kern_sock: True if sock is using kernel lock classes
 258  *     @sk_rcvbuf: size of receive buffer in bytes
 259  *     @sk_wq: sock wait queue and async head
 260  *     @sk_rx_dst: receive input route used by early demux
 261  *     @sk_dst_cache: destination cache
 262  *     @sk_dst_pending_confirm: need to confirm neighbour
 263  *     @sk_policy: flow policy
 264  *     @sk_rx_skb_cache: cache copy of recently accessed RX skb
 265  *     @sk_receive_queue: incoming packets
 266  *     @sk_wmem_alloc: transmit queue bytes committed
 267  *     @sk_tsq_flags: TCP Small Queues flags
 268  *     @sk_write_queue: Packet sending queue
 269  *     @sk_omem_alloc: "o" is "option" or "other"
 270  *     @sk_wmem_queued: persistent queue size
 271  *     @sk_forward_alloc: space allocated forward
 272  *     @sk_napi_id: id of the last napi context to receive data for sk
 273  *     @sk_ll_usec: usecs to busypoll when there is no data
 274  *     @sk_allocation: allocation mode
 275  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 276  *     @sk_pacing_status: Pacing status (requested, handled by sch_fq)
 277  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 278  *     @sk_sndbuf: size of send buffer in bytes
 279  *     @__sk_flags_offset: empty field used to determine location of bitfield
 280  *     @sk_padding: unused element for alignment
 281  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 282  *     @sk_no_check_rx: allow zero checksum in RX packets
 283  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 284  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 285  *     @sk_route_forced_caps: static, forced route capabilities
 286  *             (set in tcp_init_sock())
 287  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 288  *     @sk_gso_max_size: Maximum GSO segment size to build
 289  *     @sk_gso_max_segs: Maximum number of GSO segments
 290  *     @sk_pacing_shift: scaling factor for TCP Small Queues
 291  *     @sk_lingertime: %SO_LINGER l_linger setting
 292  *     @sk_backlog: always used with the per-socket spinlock held
 293  *     @sk_callback_lock: used with the callbacks in the end of this struct
 294  *     @sk_error_queue: rarely used
 295  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 296  *                       IPV6_ADDRFORM for instance)
 297  *     @sk_err: last error
 298  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 299  *                   persistent failure not just 'timed out'
 300  *     @sk_drops: raw/udp drops counter
 301  *     @sk_ack_backlog: current listen backlog
 302  *     @sk_max_ack_backlog: listen backlog set in listen()
 303  *     @sk_uid: user id of owner
 304  *     @sk_priority: %SO_PRIORITY setting
 305  *     @sk_type: socket type (%SOCK_STREAM, etc)
 306  *     @sk_protocol: which protocol this socket belongs in this network family
 307  *     @sk_peer_pid: &struct pid for this socket's peer
 308  *     @sk_peer_cred: %SO_PEERCRED setting
 309  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 310  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 311  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 312  *     @sk_txhash: computed flow hash for use on transmit
 313  *     @sk_filter: socket filtering instructions
 314  *     @sk_timer: sock cleanup timer
 315  *     @sk_stamp: time stamp of last packet received
 316  *     @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 317  *     @sk_tsflags: SO_TIMESTAMPING socket options
 318  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 319  *     @sk_zckey: counter to order MSG_ZEROCOPY notifications
 320  *     @sk_socket: Identd and reporting IO signals
 321  *     @sk_user_data: RPC layer private data
 322  *     @sk_frag: cached page frag
 323  *     @sk_peek_off: current peek_offset value
 324  *     @sk_send_head: front of stuff to transmit
 325  *     @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
 326  *     @sk_tx_skb_cache: cache copy of recently accessed TX skb
 327  *     @sk_security: used by security modules
 328  *     @sk_mark: generic packet mark
 329  *     @sk_cgrp_data: cgroup data for this cgroup
 330  *     @sk_memcg: this socket's memory cgroup association
 331  *     @sk_write_pending: a write to stream socket waits to start
 332  *     @sk_state_change: callback to indicate change in the state of the sock
 333  *     @sk_data_ready: callback to indicate there is data to be processed
 334  *     @sk_write_space: callback to indicate there is bf sending space available
 335  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 336  *     @sk_backlog_rcv: callback to process the backlog
 337  *     @sk_validate_xmit_skb: ptr to an optional validate function
 338  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 339  *     @sk_reuseport_cb: reuseport group container
 340  *     @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
 341  *     @sk_rcu: used during RCU grace period
 342  *     @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 343  *     @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 344  *     @sk_txtime_report_errors: set report errors mode for SO_TXTIME
 345  *     @sk_txtime_unused: unused txtime flags
 346  */
 347struct sock {
 348        /*
 349         * Now struct inet_timewait_sock also uses sock_common, so please just
 350         * don't add nothing before this first member (__sk_common) --acme
 351         */
 352        struct sock_common      __sk_common;
 353#define sk_node                 __sk_common.skc_node
 354#define sk_nulls_node           __sk_common.skc_nulls_node
 355#define sk_refcnt               __sk_common.skc_refcnt
 356#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 357#ifdef CONFIG_XPS
 358#define sk_rx_queue_mapping     __sk_common.skc_rx_queue_mapping
 359#endif
 360
 361#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 362#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 363#define sk_hash                 __sk_common.skc_hash
 364#define sk_portpair             __sk_common.skc_portpair
 365#define sk_num                  __sk_common.skc_num
 366#define sk_dport                __sk_common.skc_dport
 367#define sk_addrpair             __sk_common.skc_addrpair
 368#define sk_daddr                __sk_common.skc_daddr
 369#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 370#define sk_family               __sk_common.skc_family
 371#define sk_state                __sk_common.skc_state
 372#define sk_reuse                __sk_common.skc_reuse
 373#define sk_reuseport            __sk_common.skc_reuseport
 374#define sk_ipv6only             __sk_common.skc_ipv6only
 375#define sk_net_refcnt           __sk_common.skc_net_refcnt
 376#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 377#define sk_bind_node            __sk_common.skc_bind_node
 378#define sk_prot                 __sk_common.skc_prot
 379#define sk_net                  __sk_common.skc_net
 380#define sk_v6_daddr             __sk_common.skc_v6_daddr
 381#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 382#define sk_cookie               __sk_common.skc_cookie
 383#define sk_incoming_cpu         __sk_common.skc_incoming_cpu
 384#define sk_flags                __sk_common.skc_flags
 385#define sk_rxhash               __sk_common.skc_rxhash
 386
 387        socket_lock_t           sk_lock;
 388        atomic_t                sk_drops;
 389        int                     sk_rcvlowat;
 390        struct sk_buff_head     sk_error_queue;
 391        struct sk_buff          *sk_rx_skb_cache;
 392        struct sk_buff_head     sk_receive_queue;
 393        /*
 394         * The backlog queue is special, it is always used with
 395         * the per-socket spinlock held and requires low latency
 396         * access. Therefore we special case it's implementation.
 397         * Note : rmem_alloc is in this structure to fill a hole
 398         * on 64bit arches, not because its logically part of
 399         * backlog.
 400         */
 401        struct {
 402                atomic_t        rmem_alloc;
 403                int             len;
 404                struct sk_buff  *head;
 405                struct sk_buff  *tail;
 406        } sk_backlog;
 407#define sk_rmem_alloc sk_backlog.rmem_alloc
 408
 409        int                     sk_forward_alloc;
 410#ifdef CONFIG_NET_RX_BUSY_POLL
 411        unsigned int            sk_ll_usec;
 412        /* ===== mostly read cache line ===== */
 413        unsigned int            sk_napi_id;
 414#endif
 415        int                     sk_rcvbuf;
 416
 417        struct sk_filter __rcu  *sk_filter;
 418        union {
 419                struct socket_wq __rcu  *sk_wq;
 420                /* private: */
 421                struct socket_wq        *sk_wq_raw;
 422                /* public: */
 423        };
 424#ifdef CONFIG_XFRM
 425        struct xfrm_policy __rcu *sk_policy[2];
 426#endif
 427        struct dst_entry        *sk_rx_dst;
 428        struct dst_entry __rcu  *sk_dst_cache;
 429        atomic_t                sk_omem_alloc;
 430        int                     sk_sndbuf;
 431
 432        /* ===== cache line for TX ===== */
 433        int                     sk_wmem_queued;
 434        refcount_t              sk_wmem_alloc;
 435        unsigned long           sk_tsq_flags;
 436        union {
 437                struct sk_buff  *sk_send_head;
 438                struct rb_root  tcp_rtx_queue;
 439        };
 440        struct sk_buff          *sk_tx_skb_cache;
 441        struct sk_buff_head     sk_write_queue;
 442        __s32                   sk_peek_off;
 443        int                     sk_write_pending;
 444        __u32                   sk_dst_pending_confirm;
 445        u32                     sk_pacing_status; /* see enum sk_pacing */
 446        long                    sk_sndtimeo;
 447        struct timer_list       sk_timer;
 448        __u32                   sk_priority;
 449        __u32                   sk_mark;
 450        unsigned long           sk_pacing_rate; /* bytes per second */
 451        unsigned long           sk_max_pacing_rate;
 452        struct page_frag        sk_frag;
 453        netdev_features_t       sk_route_caps;
 454        netdev_features_t       sk_route_nocaps;
 455        netdev_features_t       sk_route_forced_caps;
 456        int                     sk_gso_type;
 457        unsigned int            sk_gso_max_size;
 458        gfp_t                   sk_allocation;
 459        __u32                   sk_txhash;
 460
 461        /*
 462         * Because of non atomicity rules, all
 463         * changes are protected by socket lock.
 464         */
 465        u8                      sk_padding : 1,
 466                                sk_kern_sock : 1,
 467                                sk_no_check_tx : 1,
 468                                sk_no_check_rx : 1,
 469                                sk_userlocks : 4;
 470        u8                      sk_pacing_shift;
 471        u16                     sk_type;
 472        u16                     sk_protocol;
 473        u16                     sk_gso_max_segs;
 474        unsigned long           sk_lingertime;
 475        struct proto            *sk_prot_creator;
 476        rwlock_t                sk_callback_lock;
 477        int                     sk_err,
 478                                sk_err_soft;
 479        u32                     sk_ack_backlog;
 480        u32                     sk_max_ack_backlog;
 481        kuid_t                  sk_uid;
 482        struct pid              *sk_peer_pid;
 483        const struct cred       *sk_peer_cred;
 484        long                    sk_rcvtimeo;
 485        ktime_t                 sk_stamp;
 486#if BITS_PER_LONG==32
 487        seqlock_t               sk_stamp_seq;
 488#endif
 489        u16                     sk_tsflags;
 490        u8                      sk_shutdown;
 491        u32                     sk_tskey;
 492        atomic_t                sk_zckey;
 493
 494        u8                      sk_clockid;
 495        u8                      sk_txtime_deadline_mode : 1,
 496                                sk_txtime_report_errors : 1,
 497                                sk_txtime_unused : 6;
 498
 499        struct socket           *sk_socket;
 500        void                    *sk_user_data;
 501#ifdef CONFIG_SECURITY
 502        void                    *sk_security;
 503#endif
 504        struct sock_cgroup_data sk_cgrp_data;
 505        struct mem_cgroup       *sk_memcg;
 506        void                    (*sk_state_change)(struct sock *sk);
 507        void                    (*sk_data_ready)(struct sock *sk);
 508        void                    (*sk_write_space)(struct sock *sk);
 509        void                    (*sk_error_report)(struct sock *sk);
 510        int                     (*sk_backlog_rcv)(struct sock *sk,
 511                                                  struct sk_buff *skb);
 512#ifdef CONFIG_SOCK_VALIDATE_XMIT
 513        struct sk_buff*         (*sk_validate_xmit_skb)(struct sock *sk,
 514                                                        struct net_device *dev,
 515                                                        struct sk_buff *skb);
 516#endif
 517        void                    (*sk_destruct)(struct sock *sk);
 518        struct sock_reuseport __rcu     *sk_reuseport_cb;
 519#ifdef CONFIG_BPF_SYSCALL
 520        struct bpf_sk_storage __rcu     *sk_bpf_storage;
 521#endif
 522        struct rcu_head         sk_rcu;
 523};
 524
 525enum sk_pacing {
 526        SK_PACING_NONE          = 0,
 527        SK_PACING_NEEDED        = 1,
 528        SK_PACING_FQ            = 2,
 529};
 530
 531/* Pointer stored in sk_user_data might not be suitable for copying
 532 * when cloning the socket. For instance, it can point to a reference
 533 * counted object. sk_user_data bottom bit is set if pointer must not
 534 * be copied.
 535 */
 536#define SK_USER_DATA_NOCOPY     1UL
 537#define SK_USER_DATA_BPF        2UL     /* Managed by BPF */
 538#define SK_USER_DATA_PTRMASK    ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
 539
 540/**
 541 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 542 * @sk: socket
 543 */
 544static inline bool sk_user_data_is_nocopy(const struct sock *sk)
 545{
 546        return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
 547}
 548
 549#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 550
 551#define rcu_dereference_sk_user_data(sk)                                \
 552({                                                                      \
 553        void *__tmp = rcu_dereference(__sk_user_data((sk)));            \
 554        (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);              \
 555})
 556#define rcu_assign_sk_user_data(sk, ptr)                                \
 557({                                                                      \
 558        uintptr_t __tmp = (uintptr_t)(ptr);                             \
 559        WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);                    \
 560        rcu_assign_pointer(__sk_user_data((sk)), __tmp);                \
 561})
 562#define rcu_assign_sk_user_data_nocopy(sk, ptr)                         \
 563({                                                                      \
 564        uintptr_t __tmp = (uintptr_t)(ptr);                             \
 565        WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);                    \
 566        rcu_assign_pointer(__sk_user_data((sk)),                        \
 567                           __tmp | SK_USER_DATA_NOCOPY);                \
 568})
 569
 570/*
 571 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 572 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 573 * on a socket means that the socket will reuse everybody else's port
 574 * without looking at the other's sk_reuse value.
 575 */
 576
 577#define SK_NO_REUSE     0
 578#define SK_CAN_REUSE    1
 579#define SK_FORCE_REUSE  2
 580
 581int sk_set_peek_off(struct sock *sk, int val);
 582
 583static inline int sk_peek_offset(struct sock *sk, int flags)
 584{
 585        if (unlikely(flags & MSG_PEEK)) {
 586                return READ_ONCE(sk->sk_peek_off);
 587        }
 588
 589        return 0;
 590}
 591
 592static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 593{
 594        s32 off = READ_ONCE(sk->sk_peek_off);
 595
 596        if (unlikely(off >= 0)) {
 597                off = max_t(s32, off - val, 0);
 598                WRITE_ONCE(sk->sk_peek_off, off);
 599        }
 600}
 601
 602static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 603{
 604        sk_peek_offset_bwd(sk, -val);
 605}
 606
 607/*
 608 * Hashed lists helper routines
 609 */
 610static inline struct sock *sk_entry(const struct hlist_node *node)
 611{
 612        return hlist_entry(node, struct sock, sk_node);
 613}
 614
 615static inline struct sock *__sk_head(const struct hlist_head *head)
 616{
 617        return hlist_entry(head->first, struct sock, sk_node);
 618}
 619
 620static inline struct sock *sk_head(const struct hlist_head *head)
 621{
 622        return hlist_empty(head) ? NULL : __sk_head(head);
 623}
 624
 625static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 626{
 627        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 628}
 629
 630static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 631{
 632        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 633}
 634
 635static inline struct sock *sk_next(const struct sock *sk)
 636{
 637        return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 638}
 639
 640static inline struct sock *sk_nulls_next(const struct sock *sk)
 641{
 642        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 643                hlist_nulls_entry(sk->sk_nulls_node.next,
 644                                  struct sock, sk_nulls_node) :
 645                NULL;
 646}
 647
 648static inline bool sk_unhashed(const struct sock *sk)
 649{
 650        return hlist_unhashed(&sk->sk_node);
 651}
 652
 653static inline bool sk_hashed(const struct sock *sk)
 654{
 655        return !sk_unhashed(sk);
 656}
 657
 658static inline void sk_node_init(struct hlist_node *node)
 659{
 660        node->pprev = NULL;
 661}
 662
 663static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 664{
 665        node->pprev = NULL;
 666}
 667
 668static inline void __sk_del_node(struct sock *sk)
 669{
 670        __hlist_del(&sk->sk_node);
 671}
 672
 673/* NB: equivalent to hlist_del_init_rcu */
 674static inline bool __sk_del_node_init(struct sock *sk)
 675{
 676        if (sk_hashed(sk)) {
 677                __sk_del_node(sk);
 678                sk_node_init(&sk->sk_node);
 679                return true;
 680        }
 681        return false;
 682}
 683
 684/* Grab socket reference count. This operation is valid only
 685   when sk is ALREADY grabbed f.e. it is found in hash table
 686   or a list and the lookup is made under lock preventing hash table
 687   modifications.
 688 */
 689
 690static __always_inline void sock_hold(struct sock *sk)
 691{
 692        refcount_inc(&sk->sk_refcnt);
 693}
 694
 695/* Ungrab socket in the context, which assumes that socket refcnt
 696   cannot hit zero, f.e. it is true in context of any socketcall.
 697 */
 698static __always_inline void __sock_put(struct sock *sk)
 699{
 700        refcount_dec(&sk->sk_refcnt);
 701}
 702
 703static inline bool sk_del_node_init(struct sock *sk)
 704{
 705        bool rc = __sk_del_node_init(sk);
 706
 707        if (rc) {
 708                /* paranoid for a while -acme */
 709                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 710                __sock_put(sk);
 711        }
 712        return rc;
 713}
 714#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 715
 716static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 717{
 718        if (sk_hashed(sk)) {
 719                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 720                return true;
 721        }
 722        return false;
 723}
 724
 725static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 726{
 727        bool rc = __sk_nulls_del_node_init_rcu(sk);
 728
 729        if (rc) {
 730                /* paranoid for a while -acme */
 731                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 732                __sock_put(sk);
 733        }
 734        return rc;
 735}
 736
 737static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 738{
 739        hlist_add_head(&sk->sk_node, list);
 740}
 741
 742static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 743{
 744        sock_hold(sk);
 745        __sk_add_node(sk, list);
 746}
 747
 748static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 749{
 750        sock_hold(sk);
 751        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 752            sk->sk_family == AF_INET6)
 753                hlist_add_tail_rcu(&sk->sk_node, list);
 754        else
 755                hlist_add_head_rcu(&sk->sk_node, list);
 756}
 757
 758static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 759{
 760        sock_hold(sk);
 761        hlist_add_tail_rcu(&sk->sk_node, list);
 762}
 763
 764static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 765{
 766        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 767}
 768
 769static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
 770{
 771        hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 772}
 773
 774static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 775{
 776        sock_hold(sk);
 777        __sk_nulls_add_node_rcu(sk, list);
 778}
 779
 780static inline void __sk_del_bind_node(struct sock *sk)
 781{
 782        __hlist_del(&sk->sk_bind_node);
 783}
 784
 785static inline void sk_add_bind_node(struct sock *sk,
 786                                        struct hlist_head *list)
 787{
 788        hlist_add_head(&sk->sk_bind_node, list);
 789}
 790
 791#define sk_for_each(__sk, list) \
 792        hlist_for_each_entry(__sk, list, sk_node)
 793#define sk_for_each_rcu(__sk, list) \
 794        hlist_for_each_entry_rcu(__sk, list, sk_node)
 795#define sk_nulls_for_each(__sk, node, list) \
 796        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 797#define sk_nulls_for_each_rcu(__sk, node, list) \
 798        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 799#define sk_for_each_from(__sk) \
 800        hlist_for_each_entry_from(__sk, sk_node)
 801#define sk_nulls_for_each_from(__sk, node) \
 802        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 803                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 804#define sk_for_each_safe(__sk, tmp, list) \
 805        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 806#define sk_for_each_bound(__sk, list) \
 807        hlist_for_each_entry(__sk, list, sk_bind_node)
 808
 809/**
 810 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 811 * @tpos:       the type * to use as a loop cursor.
 812 * @pos:        the &struct hlist_node to use as a loop cursor.
 813 * @head:       the head for your list.
 814 * @offset:     offset of hlist_node within the struct.
 815 *
 816 */
 817#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
 818        for (pos = rcu_dereference(hlist_first_rcu(head));                     \
 819             pos != NULL &&                                                    \
 820                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 821             pos = rcu_dereference(hlist_next_rcu(pos)))
 822
 823static inline struct user_namespace *sk_user_ns(struct sock *sk)
 824{
 825        /* Careful only use this in a context where these parameters
 826         * can not change and must all be valid, such as recvmsg from
 827         * userspace.
 828         */
 829        return sk->sk_socket->file->f_cred->user_ns;
 830}
 831
 832/* Sock flags */
 833enum sock_flags {
 834        SOCK_DEAD,
 835        SOCK_DONE,
 836        SOCK_URGINLINE,
 837        SOCK_KEEPOPEN,
 838        SOCK_LINGER,
 839        SOCK_DESTROY,
 840        SOCK_BROADCAST,
 841        SOCK_TIMESTAMP,
 842        SOCK_ZAPPED,
 843        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 844        SOCK_DBG, /* %SO_DEBUG setting */
 845        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 846        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 847        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 848        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 849        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 850        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 851        SOCK_FASYNC, /* fasync() active */
 852        SOCK_RXQ_OVFL,
 853        SOCK_ZEROCOPY, /* buffers from userspace */
 854        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 855        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 856                     * Will use last 4 bytes of packet sent from
 857                     * user-space instead.
 858                     */
 859        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 860        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 861        SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 862        SOCK_TXTIME,
 863        SOCK_XDP, /* XDP is attached */
 864        SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 865};
 866
 867#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 868
 869static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 870{
 871        nsk->sk_flags = osk->sk_flags;
 872}
 873
 874static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 875{
 876        __set_bit(flag, &sk->sk_flags);
 877}
 878
 879static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 880{
 881        __clear_bit(flag, &sk->sk_flags);
 882}
 883
 884static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
 885                                     int valbool)
 886{
 887        if (valbool)
 888                sock_set_flag(sk, bit);
 889        else
 890                sock_reset_flag(sk, bit);
 891}
 892
 893static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 894{
 895        return test_bit(flag, &sk->sk_flags);
 896}
 897
 898#ifdef CONFIG_NET
 899DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 900static inline int sk_memalloc_socks(void)
 901{
 902        return static_branch_unlikely(&memalloc_socks_key);
 903}
 904
 905void __receive_sock(struct file *file);
 906#else
 907
 908static inline int sk_memalloc_socks(void)
 909{
 910        return 0;
 911}
 912
 913static inline void __receive_sock(struct file *file)
 914{ }
 915#endif
 916
 917static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 918{
 919        return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 920}
 921
 922static inline void sk_acceptq_removed(struct sock *sk)
 923{
 924        WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
 925}
 926
 927static inline void sk_acceptq_added(struct sock *sk)
 928{
 929        WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
 930}
 931
 932static inline bool sk_acceptq_is_full(const struct sock *sk)
 933{
 934        return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
 935}
 936
 937/*
 938 * Compute minimal free write space needed to queue new packets.
 939 */
 940static inline int sk_stream_min_wspace(const struct sock *sk)
 941{
 942        return READ_ONCE(sk->sk_wmem_queued) >> 1;
 943}
 944
 945static inline int sk_stream_wspace(const struct sock *sk)
 946{
 947        return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
 948}
 949
 950static inline void sk_wmem_queued_add(struct sock *sk, int val)
 951{
 952        WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
 953}
 954
 955void sk_stream_write_space(struct sock *sk);
 956
 957/* OOB backlog add */
 958static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 959{
 960        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 961        skb_dst_force(skb);
 962
 963        if (!sk->sk_backlog.tail)
 964                WRITE_ONCE(sk->sk_backlog.head, skb);
 965        else
 966                sk->sk_backlog.tail->next = skb;
 967
 968        WRITE_ONCE(sk->sk_backlog.tail, skb);
 969        skb->next = NULL;
 970}
 971
 972/*
 973 * Take into account size of receive queue and backlog queue
 974 * Do not take into account this skb truesize,
 975 * to allow even a single big packet to come.
 976 */
 977static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 978{
 979        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 980
 981        return qsize > limit;
 982}
 983
 984/* The per-socket spinlock must be held here. */
 985static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 986                                              unsigned int limit)
 987{
 988        if (sk_rcvqueues_full(sk, limit))
 989                return -ENOBUFS;
 990
 991        /*
 992         * If the skb was allocated from pfmemalloc reserves, only
 993         * allow SOCK_MEMALLOC sockets to use it as this socket is
 994         * helping free memory
 995         */
 996        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 997                return -ENOMEM;
 998
 999        __sk_add_backlog(sk, skb);
1000        sk->sk_backlog.len += skb->truesize;
1001        return 0;
1002}
1003
1004int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1005
1006static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1007{
1008        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1009                return __sk_backlog_rcv(sk, skb);
1010
1011        return sk->sk_backlog_rcv(sk, skb);
1012}
1013
1014static inline void sk_incoming_cpu_update(struct sock *sk)
1015{
1016        int cpu = raw_smp_processor_id();
1017
1018        if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1019                WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1020}
1021
1022static inline void sock_rps_record_flow_hash(__u32 hash)
1023{
1024#ifdef CONFIG_RPS
1025        struct rps_sock_flow_table *sock_flow_table;
1026
1027        rcu_read_lock();
1028        sock_flow_table = rcu_dereference(rps_sock_flow_table);
1029        rps_record_sock_flow(sock_flow_table, hash);
1030        rcu_read_unlock();
1031#endif
1032}
1033
1034static inline void sock_rps_record_flow(const struct sock *sk)
1035{
1036#ifdef CONFIG_RPS
1037        if (static_branch_unlikely(&rfs_needed)) {
1038                /* Reading sk->sk_rxhash might incur an expensive cache line
1039                 * miss.
1040                 *
1041                 * TCP_ESTABLISHED does cover almost all states where RFS
1042                 * might be useful, and is cheaper [1] than testing :
1043                 *      IPv4: inet_sk(sk)->inet_daddr
1044                 *      IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1045                 * OR   an additional socket flag
1046                 * [1] : sk_state and sk_prot are in the same cache line.
1047                 */
1048                if (sk->sk_state == TCP_ESTABLISHED)
1049                        sock_rps_record_flow_hash(sk->sk_rxhash);
1050        }
1051#endif
1052}
1053
1054static inline void sock_rps_save_rxhash(struct sock *sk,
1055                                        const struct sk_buff *skb)
1056{
1057#ifdef CONFIG_RPS
1058        if (unlikely(sk->sk_rxhash != skb->hash))
1059                sk->sk_rxhash = skb->hash;
1060#endif
1061}
1062
1063static inline void sock_rps_reset_rxhash(struct sock *sk)
1064{
1065#ifdef CONFIG_RPS
1066        sk->sk_rxhash = 0;
1067#endif
1068}
1069
1070#define sk_wait_event(__sk, __timeo, __condition, __wait)               \
1071        ({      int __rc;                                               \
1072                release_sock(__sk);                                     \
1073                __rc = __condition;                                     \
1074                if (!__rc) {                                            \
1075                        *(__timeo) = wait_woken(__wait,                 \
1076                                                TASK_INTERRUPTIBLE,     \
1077                                                *(__timeo));            \
1078                }                                                       \
1079                sched_annotate_sleep();                                 \
1080                lock_sock(__sk);                                        \
1081                __rc = __condition;                                     \
1082                __rc;                                                   \
1083        })
1084
1085int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1086int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1087void sk_stream_wait_close(struct sock *sk, long timeo_p);
1088int sk_stream_error(struct sock *sk, int flags, int err);
1089void sk_stream_kill_queues(struct sock *sk);
1090void sk_set_memalloc(struct sock *sk);
1091void sk_clear_memalloc(struct sock *sk);
1092
1093void __sk_flush_backlog(struct sock *sk);
1094
1095static inline bool sk_flush_backlog(struct sock *sk)
1096{
1097        if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1098                __sk_flush_backlog(sk);
1099                return true;
1100        }
1101        return false;
1102}
1103
1104int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1105
1106struct request_sock_ops;
1107struct timewait_sock_ops;
1108struct inet_hashinfo;
1109struct raw_hashinfo;
1110struct smc_hashinfo;
1111struct module;
1112
1113/*
1114 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1115 * un-modified. Special care is taken when initializing object to zero.
1116 */
1117static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1118{
1119        if (offsetof(struct sock, sk_node.next) != 0)
1120                memset(sk, 0, offsetof(struct sock, sk_node.next));
1121        memset(&sk->sk_node.pprev, 0,
1122               size - offsetof(struct sock, sk_node.pprev));
1123}
1124
1125/* Networking protocol blocks we attach to sockets.
1126 * socket layer -> transport layer interface
1127 */
1128struct proto {
1129        void                    (*close)(struct sock *sk,
1130                                        long timeout);
1131        int                     (*pre_connect)(struct sock *sk,
1132                                        struct sockaddr *uaddr,
1133                                        int addr_len);
1134        int                     (*connect)(struct sock *sk,
1135                                        struct sockaddr *uaddr,
1136                                        int addr_len);
1137        int                     (*disconnect)(struct sock *sk, int flags);
1138
1139        struct sock *           (*accept)(struct sock *sk, int flags, int *err,
1140                                          bool kern);
1141
1142        int                     (*ioctl)(struct sock *sk, int cmd,
1143                                         unsigned long arg);
1144        int                     (*init)(struct sock *sk);
1145        void                    (*destroy)(struct sock *sk);
1146        void                    (*shutdown)(struct sock *sk, int how);
1147        int                     (*setsockopt)(struct sock *sk, int level,
1148                                        int optname, sockptr_t optval,
1149                                        unsigned int optlen);
1150        int                     (*getsockopt)(struct sock *sk, int level,
1151                                        int optname, char __user *optval,
1152                                        int __user *option);
1153        void                    (*keepalive)(struct sock *sk, int valbool);
1154#ifdef CONFIG_COMPAT
1155        int                     (*compat_ioctl)(struct sock *sk,
1156                                        unsigned int cmd, unsigned long arg);
1157#endif
1158        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
1159                                           size_t len);
1160        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
1161                                           size_t len, int noblock, int flags,
1162                                           int *addr_len);
1163        int                     (*sendpage)(struct sock *sk, struct page *page,
1164                                        int offset, size_t size, int flags);
1165        int                     (*bind)(struct sock *sk,
1166                                        struct sockaddr *addr, int addr_len);
1167        int                     (*bind_add)(struct sock *sk,
1168                                        struct sockaddr *addr, int addr_len);
1169
1170        int                     (*backlog_rcv) (struct sock *sk,
1171                                                struct sk_buff *skb);
1172
1173        void            (*release_cb)(struct sock *sk);
1174
1175        /* Keeping track of sk's, looking them up, and port selection methods. */
1176        int                     (*hash)(struct sock *sk);
1177        void                    (*unhash)(struct sock *sk);
1178        void                    (*rehash)(struct sock *sk);
1179        int                     (*get_port)(struct sock *sk, unsigned short snum);
1180
1181        /* Keeping track of sockets in use */
1182#ifdef CONFIG_PROC_FS
1183        unsigned int            inuse_idx;
1184#endif
1185
1186        bool                    (*stream_memory_free)(const struct sock *sk, int wake);
1187        bool                    (*stream_memory_read)(const struct sock *sk);
1188        /* Memory pressure */
1189        void                    (*enter_memory_pressure)(struct sock *sk);
1190        void                    (*leave_memory_pressure)(struct sock *sk);
1191        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1192        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1193        /*
1194         * Pressure flag: try to collapse.
1195         * Technical note: it is used by multiple contexts non atomically.
1196         * All the __sk_mem_schedule() is of this nature: accounting
1197         * is strict, actions are advisory and have some latency.
1198         */
1199        unsigned long           *memory_pressure;
1200        long                    *sysctl_mem;
1201
1202        int                     *sysctl_wmem;
1203        int                     *sysctl_rmem;
1204        u32                     sysctl_wmem_offset;
1205        u32                     sysctl_rmem_offset;
1206
1207        int                     max_header;
1208        bool                    no_autobind;
1209
1210        struct kmem_cache       *slab;
1211        unsigned int            obj_size;
1212        slab_flags_t            slab_flags;
1213        unsigned int            useroffset;     /* Usercopy region offset */
1214        unsigned int            usersize;       /* Usercopy region size */
1215
1216        struct percpu_counter   *orphan_count;
1217
1218        struct request_sock_ops *rsk_prot;
1219        struct timewait_sock_ops *twsk_prot;
1220
1221        union {
1222                struct inet_hashinfo    *hashinfo;
1223                struct udp_table        *udp_table;
1224                struct raw_hashinfo     *raw_hash;
1225                struct smc_hashinfo     *smc_hash;
1226        } h;
1227
1228        struct module           *owner;
1229
1230        char                    name[32];
1231
1232        struct list_head        node;
1233#ifdef SOCK_REFCNT_DEBUG
1234        atomic_t                socks;
1235#endif
1236        int                     (*diag_destroy)(struct sock *sk, int err);
1237} __randomize_layout;
1238
1239int proto_register(struct proto *prot, int alloc_slab);
1240void proto_unregister(struct proto *prot);
1241int sock_load_diag_module(int family, int protocol);
1242
1243#ifdef SOCK_REFCNT_DEBUG
1244static inline void sk_refcnt_debug_inc(struct sock *sk)
1245{
1246        atomic_inc(&sk->sk_prot->socks);
1247}
1248
1249static inline void sk_refcnt_debug_dec(struct sock *sk)
1250{
1251        atomic_dec(&sk->sk_prot->socks);
1252        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1253               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1254}
1255
1256static inline void sk_refcnt_debug_release(const struct sock *sk)
1257{
1258        if (refcount_read(&sk->sk_refcnt) != 1)
1259                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1260                       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1261}
1262#else /* SOCK_REFCNT_DEBUG */
1263#define sk_refcnt_debug_inc(sk) do { } while (0)
1264#define sk_refcnt_debug_dec(sk) do { } while (0)
1265#define sk_refcnt_debug_release(sk) do { } while (0)
1266#endif /* SOCK_REFCNT_DEBUG */
1267
1268static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1269{
1270        if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1271                return false;
1272
1273        return sk->sk_prot->stream_memory_free ?
1274                sk->sk_prot->stream_memory_free(sk, wake) : true;
1275}
1276
1277static inline bool sk_stream_memory_free(const struct sock *sk)
1278{
1279        return __sk_stream_memory_free(sk, 0);
1280}
1281
1282static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1283{
1284        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1285               __sk_stream_memory_free(sk, wake);
1286}
1287
1288static inline bool sk_stream_is_writeable(const struct sock *sk)
1289{
1290        return __sk_stream_is_writeable(sk, 0);
1291}
1292
1293static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1294                                            struct cgroup *ancestor)
1295{
1296#ifdef CONFIG_SOCK_CGROUP_DATA
1297        return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1298                                    ancestor);
1299#else
1300        return -ENOTSUPP;
1301#endif
1302}
1303
1304static inline bool sk_has_memory_pressure(const struct sock *sk)
1305{
1306        return sk->sk_prot->memory_pressure != NULL;
1307}
1308
1309static inline bool sk_under_memory_pressure(const struct sock *sk)
1310{
1311        if (!sk->sk_prot->memory_pressure)
1312                return false;
1313
1314        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1315            mem_cgroup_under_socket_pressure(sk->sk_memcg))
1316                return true;
1317
1318        return !!*sk->sk_prot->memory_pressure;
1319}
1320
1321static inline long
1322sk_memory_allocated(const struct sock *sk)
1323{
1324        return atomic_long_read(sk->sk_prot->memory_allocated);
1325}
1326
1327static inline long
1328sk_memory_allocated_add(struct sock *sk, int amt)
1329{
1330        return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1331}
1332
1333static inline void
1334sk_memory_allocated_sub(struct sock *sk, int amt)
1335{
1336        atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1337}
1338
1339static inline void sk_sockets_allocated_dec(struct sock *sk)
1340{
1341        percpu_counter_dec(sk->sk_prot->sockets_allocated);
1342}
1343
1344static inline void sk_sockets_allocated_inc(struct sock *sk)
1345{
1346        percpu_counter_inc(sk->sk_prot->sockets_allocated);
1347}
1348
1349static inline u64
1350sk_sockets_allocated_read_positive(struct sock *sk)
1351{
1352        return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1353}
1354
1355static inline int
1356proto_sockets_allocated_sum_positive(struct proto *prot)
1357{
1358        return percpu_counter_sum_positive(prot->sockets_allocated);
1359}
1360
1361static inline long
1362proto_memory_allocated(struct proto *prot)
1363{
1364        return atomic_long_read(prot->memory_allocated);
1365}
1366
1367static inline bool
1368proto_memory_pressure(struct proto *prot)
1369{
1370        if (!prot->memory_pressure)
1371                return false;
1372        return !!*prot->memory_pressure;
1373}
1374
1375
1376#ifdef CONFIG_PROC_FS
1377/* Called with local bh disabled */
1378void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1379int sock_prot_inuse_get(struct net *net, struct proto *proto);
1380int sock_inuse_get(struct net *net);
1381#else
1382static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1383                int inc)
1384{
1385}
1386#endif
1387
1388
1389/* With per-bucket locks this operation is not-atomic, so that
1390 * this version is not worse.
1391 */
1392static inline int __sk_prot_rehash(struct sock *sk)
1393{
1394        sk->sk_prot->unhash(sk);
1395        return sk->sk_prot->hash(sk);
1396}
1397
1398/* About 10 seconds */
1399#define SOCK_DESTROY_TIME (10*HZ)
1400
1401/* Sockets 0-1023 can't be bound to unless you are superuser */
1402#define PROT_SOCK       1024
1403
1404#define SHUTDOWN_MASK   3
1405#define RCV_SHUTDOWN    1
1406#define SEND_SHUTDOWN   2
1407
1408#define SOCK_SNDBUF_LOCK        1
1409#define SOCK_RCVBUF_LOCK        2
1410#define SOCK_BINDADDR_LOCK      4
1411#define SOCK_BINDPORT_LOCK      8
1412
1413struct socket_alloc {
1414        struct socket socket;
1415        struct inode vfs_inode;
1416};
1417
1418static inline struct socket *SOCKET_I(struct inode *inode)
1419{
1420        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1421}
1422
1423static inline struct inode *SOCK_INODE(struct socket *socket)
1424{
1425        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1426}
1427
1428/*
1429 * Functions for memory accounting
1430 */
1431int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1432int __sk_mem_schedule(struct sock *sk, int size, int kind);
1433void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1434void __sk_mem_reclaim(struct sock *sk, int amount);
1435
1436/* We used to have PAGE_SIZE here, but systems with 64KB pages
1437 * do not necessarily have 16x time more memory than 4KB ones.
1438 */
1439#define SK_MEM_QUANTUM 4096
1440#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1441#define SK_MEM_SEND     0
1442#define SK_MEM_RECV     1
1443
1444/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1445static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1446{
1447        long val = sk->sk_prot->sysctl_mem[index];
1448
1449#if PAGE_SIZE > SK_MEM_QUANTUM
1450        val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1451#elif PAGE_SIZE < SK_MEM_QUANTUM
1452        val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1453#endif
1454        return val;
1455}
1456
1457static inline int sk_mem_pages(int amt)
1458{
1459        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1460}
1461
1462static inline bool sk_has_account(struct sock *sk)
1463{
1464        /* return true if protocol supports memory accounting */
1465        return !!sk->sk_prot->memory_allocated;
1466}
1467
1468static inline bool sk_wmem_schedule(struct sock *sk, int size)
1469{
1470        if (!sk_has_account(sk))
1471                return true;
1472        return size <= sk->sk_forward_alloc ||
1473                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1474}
1475
1476static inline bool
1477sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1478{
1479        if (!sk_has_account(sk))
1480                return true;
1481        return size<= sk->sk_forward_alloc ||
1482                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1483                skb_pfmemalloc(skb);
1484}
1485
1486static inline void sk_mem_reclaim(struct sock *sk)
1487{
1488        if (!sk_has_account(sk))
1489                return;
1490        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1491                __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1492}
1493
1494static inline void sk_mem_reclaim_partial(struct sock *sk)
1495{
1496        if (!sk_has_account(sk))
1497                return;
1498        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1499                __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1500}
1501
1502static inline void sk_mem_charge(struct sock *sk, int size)
1503{
1504        if (!sk_has_account(sk))
1505                return;
1506        sk->sk_forward_alloc -= size;
1507}
1508
1509static inline void sk_mem_uncharge(struct sock *sk, int size)
1510{
1511        if (!sk_has_account(sk))
1512                return;
1513        sk->sk_forward_alloc += size;
1514
1515        /* Avoid a possible overflow.
1516         * TCP send queues can make this happen, if sk_mem_reclaim()
1517         * is not called and more than 2 GBytes are released at once.
1518         *
1519         * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1520         * no need to hold that much forward allocation anyway.
1521         */
1522        if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1523                __sk_mem_reclaim(sk, 1 << 20);
1524}
1525
1526DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1527static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1528{
1529        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1530        sk_wmem_queued_add(sk, -skb->truesize);
1531        sk_mem_uncharge(sk, skb->truesize);
1532        if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1533            !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1534                skb_ext_reset(skb);
1535                skb_zcopy_clear(skb, true);
1536                sk->sk_tx_skb_cache = skb;
1537                return;
1538        }
1539        __kfree_skb(skb);
1540}
1541
1542static inline void sock_release_ownership(struct sock *sk)
1543{
1544        if (sk->sk_lock.owned) {
1545                sk->sk_lock.owned = 0;
1546
1547                /* The sk_lock has mutex_unlock() semantics: */
1548                mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1549        }
1550}
1551
1552/*
1553 * Macro so as to not evaluate some arguments when
1554 * lockdep is not enabled.
1555 *
1556 * Mark both the sk_lock and the sk_lock.slock as a
1557 * per-address-family lock class.
1558 */
1559#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1560do {                                                                    \
1561        sk->sk_lock.owned = 0;                                          \
1562        init_waitqueue_head(&sk->sk_lock.wq);                           \
1563        spin_lock_init(&(sk)->sk_lock.slock);                           \
1564        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1565                        sizeof((sk)->sk_lock));                         \
1566        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1567                                (skey), (sname));                               \
1568        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1569} while (0)
1570
1571#ifdef CONFIG_LOCKDEP
1572static inline bool lockdep_sock_is_held(const struct sock *sk)
1573{
1574        return lockdep_is_held(&sk->sk_lock) ||
1575               lockdep_is_held(&sk->sk_lock.slock);
1576}
1577#endif
1578
1579void lock_sock_nested(struct sock *sk, int subclass);
1580
1581static inline void lock_sock(struct sock *sk)
1582{
1583        lock_sock_nested(sk, 0);
1584}
1585
1586void __release_sock(struct sock *sk);
1587void release_sock(struct sock *sk);
1588
1589/* BH context may only use the following locking interface. */
1590#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1591#define bh_lock_sock_nested(__sk) \
1592                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1593                                SINGLE_DEPTH_NESTING)
1594#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1595
1596bool lock_sock_fast(struct sock *sk);
1597/**
1598 * unlock_sock_fast - complement of lock_sock_fast
1599 * @sk: socket
1600 * @slow: slow mode
1601 *
1602 * fast unlock socket for user context.
1603 * If slow mode is on, we call regular release_sock()
1604 */
1605static inline void unlock_sock_fast(struct sock *sk, bool slow)
1606{
1607        if (slow)
1608                release_sock(sk);
1609        else
1610                spin_unlock_bh(&sk->sk_lock.slock);
1611}
1612
1613/* Used by processes to "lock" a socket state, so that
1614 * interrupts and bottom half handlers won't change it
1615 * from under us. It essentially blocks any incoming
1616 * packets, so that we won't get any new data or any
1617 * packets that change the state of the socket.
1618 *
1619 * While locked, BH processing will add new packets to
1620 * the backlog queue.  This queue is processed by the
1621 * owner of the socket lock right before it is released.
1622 *
1623 * Since ~2.3.5 it is also exclusive sleep lock serializing
1624 * accesses from user process context.
1625 */
1626
1627static inline void sock_owned_by_me(const struct sock *sk)
1628{
1629#ifdef CONFIG_LOCKDEP
1630        WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1631#endif
1632}
1633
1634static inline bool sock_owned_by_user(const struct sock *sk)
1635{
1636        sock_owned_by_me(sk);
1637        return sk->sk_lock.owned;
1638}
1639
1640static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1641{
1642        return sk->sk_lock.owned;
1643}
1644
1645/* no reclassification while locks are held */
1646static inline bool sock_allow_reclassification(const struct sock *csk)
1647{
1648        struct sock *sk = (struct sock *)csk;
1649
1650        return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1651}
1652
1653struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1654                      struct proto *prot, int kern);
1655void sk_free(struct sock *sk);
1656void sk_destruct(struct sock *sk);
1657struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1658void sk_free_unlock_clone(struct sock *sk);
1659
1660struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1661                             gfp_t priority);
1662void __sock_wfree(struct sk_buff *skb);
1663void sock_wfree(struct sk_buff *skb);
1664struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1665                             gfp_t priority);
1666void skb_orphan_partial(struct sk_buff *skb);
1667void sock_rfree(struct sk_buff *skb);
1668void sock_efree(struct sk_buff *skb);
1669#ifdef CONFIG_INET
1670void sock_edemux(struct sk_buff *skb);
1671void sock_pfree(struct sk_buff *skb);
1672#else
1673#define sock_edemux sock_efree
1674#endif
1675
1676int sock_setsockopt(struct socket *sock, int level, int op,
1677                    sockptr_t optval, unsigned int optlen);
1678
1679int sock_getsockopt(struct socket *sock, int level, int op,
1680                    char __user *optval, int __user *optlen);
1681int sock_gettstamp(struct socket *sock, void __user *userstamp,
1682                   bool timeval, bool time32);
1683struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1684                                    int noblock, int *errcode);
1685struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1686                                     unsigned long data_len, int noblock,
1687                                     int *errcode, int max_page_order);
1688void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1689void sock_kfree_s(struct sock *sk, void *mem, int size);
1690void sock_kzfree_s(struct sock *sk, void *mem, int size);
1691void sk_send_sigurg(struct sock *sk);
1692
1693struct sockcm_cookie {
1694        u64 transmit_time;
1695        u32 mark;
1696        u16 tsflags;
1697};
1698
1699static inline void sockcm_init(struct sockcm_cookie *sockc,
1700                               const struct sock *sk)
1701{
1702        *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1703}
1704
1705int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1706                     struct sockcm_cookie *sockc);
1707int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1708                   struct sockcm_cookie *sockc);
1709
1710/*
1711 * Functions to fill in entries in struct proto_ops when a protocol
1712 * does not implement a particular function.
1713 */
1714int sock_no_bind(struct socket *, struct sockaddr *, int);
1715int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1716int sock_no_socketpair(struct socket *, struct socket *);
1717int sock_no_accept(struct socket *, struct socket *, int, bool);
1718int sock_no_getname(struct socket *, struct sockaddr *, int);
1719int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1720int sock_no_listen(struct socket *, int);
1721int sock_no_shutdown(struct socket *, int);
1722int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1723int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1724int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1725int sock_no_mmap(struct file *file, struct socket *sock,
1726                 struct vm_area_struct *vma);
1727ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1728                         size_t size, int flags);
1729ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1730                                int offset, size_t size, int flags);
1731
1732/*
1733 * Functions to fill in entries in struct proto_ops when a protocol
1734 * uses the inet style.
1735 */
1736int sock_common_getsockopt(struct socket *sock, int level, int optname,
1737                                  char __user *optval, int __user *optlen);
1738int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1739                        int flags);
1740int sock_common_setsockopt(struct socket *sock, int level, int optname,
1741                           sockptr_t optval, unsigned int optlen);
1742
1743void sk_common_release(struct sock *sk);
1744
1745/*
1746 *      Default socket callbacks and setup code
1747 */
1748
1749/* Initialise core socket variables */
1750void sock_init_data(struct socket *sock, struct sock *sk);
1751
1752/*
1753 * Socket reference counting postulates.
1754 *
1755 * * Each user of socket SHOULD hold a reference count.
1756 * * Each access point to socket (an hash table bucket, reference from a list,
1757 *   running timer, skb in flight MUST hold a reference count.
1758 * * When reference count hits 0, it means it will never increase back.
1759 * * When reference count hits 0, it means that no references from
1760 *   outside exist to this socket and current process on current CPU
1761 *   is last user and may/should destroy this socket.
1762 * * sk_free is called from any context: process, BH, IRQ. When
1763 *   it is called, socket has no references from outside -> sk_free
1764 *   may release descendant resources allocated by the socket, but
1765 *   to the time when it is called, socket is NOT referenced by any
1766 *   hash tables, lists etc.
1767 * * Packets, delivered from outside (from network or from another process)
1768 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1769 *   when they sit in queue. Otherwise, packets will leak to hole, when
1770 *   socket is looked up by one cpu and unhasing is made by another CPU.
1771 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1772 *   (leak to backlog). Packet socket does all the processing inside
1773 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1774 *   use separate SMP lock, so that they are prone too.
1775 */
1776
1777/* Ungrab socket and destroy it, if it was the last reference. */
1778static inline void sock_put(struct sock *sk)
1779{
1780        if (refcount_dec_and_test(&sk->sk_refcnt))
1781                sk_free(sk);
1782}
1783/* Generic version of sock_put(), dealing with all sockets
1784 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1785 */
1786void sock_gen_put(struct sock *sk);
1787
1788int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1789                     unsigned int trim_cap, bool refcounted);
1790static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1791                                 const int nested)
1792{
1793        return __sk_receive_skb(sk, skb, nested, 1, true);
1794}
1795
1796static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1797{
1798        /* sk_tx_queue_mapping accept only upto a 16-bit value */
1799        if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1800                return;
1801        sk->sk_tx_queue_mapping = tx_queue;
1802}
1803
1804#define NO_QUEUE_MAPPING        USHRT_MAX
1805
1806static inline void sk_tx_queue_clear(struct sock *sk)
1807{
1808        sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1809}
1810
1811static inline int sk_tx_queue_get(const struct sock *sk)
1812{
1813        if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1814                return sk->sk_tx_queue_mapping;
1815
1816        return -1;
1817}
1818
1819static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1820{
1821#ifdef CONFIG_XPS
1822        if (skb_rx_queue_recorded(skb)) {
1823                u16 rx_queue = skb_get_rx_queue(skb);
1824
1825                if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1826                        return;
1827
1828                sk->sk_rx_queue_mapping = rx_queue;
1829        }
1830#endif
1831}
1832
1833static inline void sk_rx_queue_clear(struct sock *sk)
1834{
1835#ifdef CONFIG_XPS
1836        sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1837#endif
1838}
1839
1840#ifdef CONFIG_XPS
1841static inline int sk_rx_queue_get(const struct sock *sk)
1842{
1843        if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1844                return sk->sk_rx_queue_mapping;
1845
1846        return -1;
1847}
1848#endif
1849
1850static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1851{
1852        sk->sk_socket = sock;
1853}
1854
1855static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1856{
1857        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1858        return &rcu_dereference_raw(sk->sk_wq)->wait;
1859}
1860/* Detach socket from process context.
1861 * Announce socket dead, detach it from wait queue and inode.
1862 * Note that parent inode held reference count on this struct sock,
1863 * we do not release it in this function, because protocol
1864 * probably wants some additional cleanups or even continuing
1865 * to work with this socket (TCP).
1866 */
1867static inline void sock_orphan(struct sock *sk)
1868{
1869        write_lock_bh(&sk->sk_callback_lock);
1870        sock_set_flag(sk, SOCK_DEAD);
1871        sk_set_socket(sk, NULL);
1872        sk->sk_wq  = NULL;
1873        write_unlock_bh(&sk->sk_callback_lock);
1874}
1875
1876static inline void sock_graft(struct sock *sk, struct socket *parent)
1877{
1878        WARN_ON(parent->sk);
1879        write_lock_bh(&sk->sk_callback_lock);
1880        rcu_assign_pointer(sk->sk_wq, &parent->wq);
1881        parent->sk = sk;
1882        sk_set_socket(sk, parent);
1883        sk->sk_uid = SOCK_INODE(parent)->i_uid;
1884        security_sock_graft(sk, parent);
1885        write_unlock_bh(&sk->sk_callback_lock);
1886}
1887
1888kuid_t sock_i_uid(struct sock *sk);
1889unsigned long sock_i_ino(struct sock *sk);
1890
1891static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1892{
1893        return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1894}
1895
1896static inline u32 net_tx_rndhash(void)
1897{
1898        u32 v = prandom_u32();
1899
1900        return v ?: 1;
1901}
1902
1903static inline void sk_set_txhash(struct sock *sk)
1904{
1905        sk->sk_txhash = net_tx_rndhash();
1906}
1907
1908static inline void sk_rethink_txhash(struct sock *sk)
1909{
1910        if (sk->sk_txhash)
1911                sk_set_txhash(sk);
1912}
1913
1914static inline struct dst_entry *
1915__sk_dst_get(struct sock *sk)
1916{
1917        return rcu_dereference_check(sk->sk_dst_cache,
1918                                     lockdep_sock_is_held(sk));
1919}
1920
1921static inline struct dst_entry *
1922sk_dst_get(struct sock *sk)
1923{
1924        struct dst_entry *dst;
1925
1926        rcu_read_lock();
1927        dst = rcu_dereference(sk->sk_dst_cache);
1928        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1929                dst = NULL;
1930        rcu_read_unlock();
1931        return dst;
1932}
1933
1934static inline void dst_negative_advice(struct sock *sk)
1935{
1936        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1937
1938        sk_rethink_txhash(sk);
1939
1940        if (dst && dst->ops->negative_advice) {
1941                ndst = dst->ops->negative_advice(dst);
1942
1943                if (ndst != dst) {
1944                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1945                        sk_tx_queue_clear(sk);
1946                        sk->sk_dst_pending_confirm = 0;
1947                }
1948        }
1949}
1950
1951static inline void
1952__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1953{
1954        struct dst_entry *old_dst;
1955
1956        sk_tx_queue_clear(sk);
1957        sk->sk_dst_pending_confirm = 0;
1958        old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1959                                            lockdep_sock_is_held(sk));
1960        rcu_assign_pointer(sk->sk_dst_cache, dst);
1961        dst_release(old_dst);
1962}
1963
1964static inline void
1965sk_dst_set(struct sock *sk, struct dst_entry *dst)
1966{
1967        struct dst_entry *old_dst;
1968
1969        sk_tx_queue_clear(sk);
1970        sk->sk_dst_pending_confirm = 0;
1971        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1972        dst_release(old_dst);
1973}
1974
1975static inline void
1976__sk_dst_reset(struct sock *sk)
1977{
1978        __sk_dst_set(sk, NULL);
1979}
1980
1981static inline void
1982sk_dst_reset(struct sock *sk)
1983{
1984        sk_dst_set(sk, NULL);
1985}
1986
1987struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1988
1989struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1990
1991static inline void sk_dst_confirm(struct sock *sk)
1992{
1993        if (!READ_ONCE(sk->sk_dst_pending_confirm))
1994                WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1995}
1996
1997static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1998{
1999        if (skb_get_dst_pending_confirm(skb)) {
2000                struct sock *sk = skb->sk;
2001                unsigned long now = jiffies;
2002
2003                /* avoid dirtying neighbour */
2004                if (READ_ONCE(n->confirmed) != now)
2005                        WRITE_ONCE(n->confirmed, now);
2006                if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2007                        WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2008        }
2009}
2010
2011bool sk_mc_loop(struct sock *sk);
2012
2013static inline bool sk_can_gso(const struct sock *sk)
2014{
2015        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2016}
2017
2018void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2019
2020static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2021{
2022        sk->sk_route_nocaps |= flags;
2023        sk->sk_route_caps &= ~flags;
2024}
2025
2026static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2027                                           struct iov_iter *from, char *to,
2028                                           int copy, int offset)
2029{
2030        if (skb->ip_summed == CHECKSUM_NONE) {
2031                __wsum csum = 0;
2032                if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2033                        return -EFAULT;
2034                skb->csum = csum_block_add(skb->csum, csum, offset);
2035        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2036                if (!copy_from_iter_full_nocache(to, copy, from))
2037                        return -EFAULT;
2038        } else if (!copy_from_iter_full(to, copy, from))
2039                return -EFAULT;
2040
2041        return 0;
2042}
2043
2044static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2045                                       struct iov_iter *from, int copy)
2046{
2047        int err, offset = skb->len;
2048
2049        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2050                                       copy, offset);
2051        if (err)
2052                __skb_trim(skb, offset);
2053
2054        return err;
2055}
2056
2057static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2058                                           struct sk_buff *skb,
2059                                           struct page *page,
2060                                           int off, int copy)
2061{
2062        int err;
2063
2064        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2065                                       copy, skb->len);
2066        if (err)
2067                return err;
2068
2069        skb->len             += copy;
2070        skb->data_len        += copy;
2071        skb->truesize        += copy;
2072        sk_wmem_queued_add(sk, copy);
2073        sk_mem_charge(sk, copy);
2074        return 0;
2075}
2076
2077/**
2078 * sk_wmem_alloc_get - returns write allocations
2079 * @sk: socket
2080 *
2081 * Return: sk_wmem_alloc minus initial offset of one
2082 */
2083static inline int sk_wmem_alloc_get(const struct sock *sk)
2084{
2085        return refcount_read(&sk->sk_wmem_alloc) - 1;
2086}
2087
2088/**
2089 * sk_rmem_alloc_get - returns read allocations
2090 * @sk: socket
2091 *
2092 * Return: sk_rmem_alloc
2093 */
2094static inline int sk_rmem_alloc_get(const struct sock *sk)
2095{
2096        return atomic_read(&sk->sk_rmem_alloc);
2097}
2098
2099/**
2100 * sk_has_allocations - check if allocations are outstanding
2101 * @sk: socket
2102 *
2103 * Return: true if socket has write or read allocations
2104 */
2105static inline bool sk_has_allocations(const struct sock *sk)
2106{
2107        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2108}
2109
2110/**
2111 * skwq_has_sleeper - check if there are any waiting processes
2112 * @wq: struct socket_wq
2113 *
2114 * Return: true if socket_wq has waiting processes
2115 *
2116 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2117 * barrier call. They were added due to the race found within the tcp code.
2118 *
2119 * Consider following tcp code paths::
2120 *
2121 *   CPU1                CPU2
2122 *   sys_select          receive packet
2123 *   ...                 ...
2124 *   __add_wait_queue    update tp->rcv_nxt
2125 *   ...                 ...
2126 *   tp->rcv_nxt check   sock_def_readable
2127 *   ...                 {
2128 *   schedule               rcu_read_lock();
2129 *                          wq = rcu_dereference(sk->sk_wq);
2130 *                          if (wq && waitqueue_active(&wq->wait))
2131 *                              wake_up_interruptible(&wq->wait)
2132 *                          ...
2133 *                       }
2134 *
2135 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2136 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2137 * could then endup calling schedule and sleep forever if there are no more
2138 * data on the socket.
2139 *
2140 */
2141static inline bool skwq_has_sleeper(struct socket_wq *wq)
2142{
2143        return wq && wq_has_sleeper(&wq->wait);
2144}
2145
2146/**
2147 * sock_poll_wait - place memory barrier behind the poll_wait call.
2148 * @filp:           file
2149 * @sock:           socket to wait on
2150 * @p:              poll_table
2151 *
2152 * See the comments in the wq_has_sleeper function.
2153 */
2154static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2155                                  poll_table *p)
2156{
2157        if (!poll_does_not_wait(p)) {
2158                poll_wait(filp, &sock->wq.wait, p);
2159                /* We need to be sure we are in sync with the
2160                 * socket flags modification.
2161                 *
2162                 * This memory barrier is paired in the wq_has_sleeper.
2163                 */
2164                smp_mb();
2165        }
2166}
2167
2168static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2169{
2170        if (sk->sk_txhash) {
2171                skb->l4_hash = 1;
2172                skb->hash = sk->sk_txhash;
2173        }
2174}
2175
2176void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2177
2178/*
2179 *      Queue a received datagram if it will fit. Stream and sequenced
2180 *      protocols can't normally use this as they need to fit buffers in
2181 *      and play with them.
2182 *
2183 *      Inlined as it's very short and called for pretty much every
2184 *      packet ever received.
2185 */
2186static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2187{
2188        skb_orphan(skb);
2189        skb->sk = sk;
2190        skb->destructor = sock_rfree;
2191        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2192        sk_mem_charge(sk, skb->truesize);
2193}
2194
2195void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2196                    unsigned long expires);
2197
2198void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2199
2200int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2201                        struct sk_buff *skb, unsigned int flags,
2202                        void (*destructor)(struct sock *sk,
2203                                           struct sk_buff *skb));
2204int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2205int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2206
2207int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2208struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2209
2210/*
2211 *      Recover an error report and clear atomically
2212 */
2213
2214static inline int sock_error(struct sock *sk)
2215{
2216        int err;
2217        if (likely(!sk->sk_err))
2218                return 0;
2219        err = xchg(&sk->sk_err, 0);
2220        return -err;
2221}
2222
2223static inline unsigned long sock_wspace(struct sock *sk)
2224{
2225        int amt = 0;
2226
2227        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2228                amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2229                if (amt < 0)
2230                        amt = 0;
2231        }
2232        return amt;
2233}
2234
2235/* Note:
2236 *  We use sk->sk_wq_raw, from contexts knowing this
2237 *  pointer is not NULL and cannot disappear/change.
2238 */
2239static inline void sk_set_bit(int nr, struct sock *sk)
2240{
2241        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2242            !sock_flag(sk, SOCK_FASYNC))
2243                return;
2244
2245        set_bit(nr, &sk->sk_wq_raw->flags);
2246}
2247
2248static inline void sk_clear_bit(int nr, struct sock *sk)
2249{
2250        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2251            !sock_flag(sk, SOCK_FASYNC))
2252                return;
2253
2254        clear_bit(nr, &sk->sk_wq_raw->flags);
2255}
2256
2257static inline void sk_wake_async(const struct sock *sk, int how, int band)
2258{
2259        if (sock_flag(sk, SOCK_FASYNC)) {
2260                rcu_read_lock();
2261                sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2262                rcu_read_unlock();
2263        }
2264}
2265
2266/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2267 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2268 * Note: for send buffers, TCP works better if we can build two skbs at
2269 * minimum.
2270 */
2271#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2272
2273#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2274#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2275
2276static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2277{
2278        u32 val;
2279
2280        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2281                return;
2282
2283        val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2284
2285        WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2286}
2287
2288struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2289                                    bool force_schedule);
2290
2291/**
2292 * sk_page_frag - return an appropriate page_frag
2293 * @sk: socket
2294 *
2295 * Use the per task page_frag instead of the per socket one for
2296 * optimization when we know that we're in the normal context and owns
2297 * everything that's associated with %current.
2298 *
2299 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2300 * inside other socket operations and end up recursing into sk_page_frag()
2301 * while it's already in use.
2302 *
2303 * Return: a per task page_frag if context allows that,
2304 * otherwise a per socket one.
2305 */
2306static inline struct page_frag *sk_page_frag(struct sock *sk)
2307{
2308        if (gfpflags_normal_context(sk->sk_allocation))
2309                return &current->task_frag;
2310
2311        return &sk->sk_frag;
2312}
2313
2314bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2315
2316/*
2317 *      Default write policy as shown to user space via poll/select/SIGIO
2318 */
2319static inline bool sock_writeable(const struct sock *sk)
2320{
2321        return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2322}
2323
2324static inline gfp_t gfp_any(void)
2325{
2326        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2327}
2328
2329static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2330{
2331        return noblock ? 0 : sk->sk_rcvtimeo;
2332}
2333
2334static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2335{
2336        return noblock ? 0 : sk->sk_sndtimeo;
2337}
2338
2339static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2340{
2341        int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2342
2343        return v ?: 1;
2344}
2345
2346/* Alas, with timeout socket operations are not restartable.
2347 * Compare this to poll().
2348 */
2349static inline int sock_intr_errno(long timeo)
2350{
2351        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2352}
2353
2354struct sock_skb_cb {
2355        u32 dropcount;
2356};
2357
2358/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2359 * using skb->cb[] would keep using it directly and utilize its
2360 * alignement guarantee.
2361 */
2362#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2363                            sizeof(struct sock_skb_cb)))
2364
2365#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2366                            SOCK_SKB_CB_OFFSET))
2367
2368#define sock_skb_cb_check_size(size) \
2369        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2370
2371static inline void
2372sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2373{
2374        SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2375                                                atomic_read(&sk->sk_drops) : 0;
2376}
2377
2378static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2379{
2380        int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2381
2382        atomic_add(segs, &sk->sk_drops);
2383}
2384
2385static inline ktime_t sock_read_timestamp(struct sock *sk)
2386{
2387#if BITS_PER_LONG==32
2388        unsigned int seq;
2389        ktime_t kt;
2390
2391        do {
2392                seq = read_seqbegin(&sk->sk_stamp_seq);
2393                kt = sk->sk_stamp;
2394        } while (read_seqretry(&sk->sk_stamp_seq, seq));
2395
2396        return kt;
2397#else
2398        return READ_ONCE(sk->sk_stamp);
2399#endif
2400}
2401
2402static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2403{
2404#if BITS_PER_LONG==32
2405        write_seqlock(&sk->sk_stamp_seq);
2406        sk->sk_stamp = kt;
2407        write_sequnlock(&sk->sk_stamp_seq);
2408#else
2409        WRITE_ONCE(sk->sk_stamp, kt);
2410#endif
2411}
2412
2413void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2414                           struct sk_buff *skb);
2415void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2416                             struct sk_buff *skb);
2417
2418static inline void
2419sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2420{
2421        ktime_t kt = skb->tstamp;
2422        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2423
2424        /*
2425         * generate control messages if
2426         * - receive time stamping in software requested
2427         * - software time stamp available and wanted
2428         * - hardware time stamps available and wanted
2429         */
2430        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2431            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2432            (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2433            (hwtstamps->hwtstamp &&
2434             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2435                __sock_recv_timestamp(msg, sk, skb);
2436        else
2437                sock_write_timestamp(sk, kt);
2438
2439        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2440                __sock_recv_wifi_status(msg, sk, skb);
2441}
2442
2443void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2444                              struct sk_buff *skb);
2445
2446#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2447static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2448                                          struct sk_buff *skb)
2449{
2450#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2451                           (1UL << SOCK_RCVTSTAMP))
2452#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2453                           SOF_TIMESTAMPING_RAW_HARDWARE)
2454
2455        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2456                __sock_recv_ts_and_drops(msg, sk, skb);
2457        else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2458                sock_write_timestamp(sk, skb->tstamp);
2459        else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2460                sock_write_timestamp(sk, 0);
2461}
2462
2463void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2464
2465/**
2466 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2467 * @sk:         socket sending this packet
2468 * @tsflags:    timestamping flags to use
2469 * @tx_flags:   completed with instructions for time stamping
2470 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2471 *
2472 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2473 */
2474static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2475                                      __u8 *tx_flags, __u32 *tskey)
2476{
2477        if (unlikely(tsflags)) {
2478                __sock_tx_timestamp(tsflags, tx_flags);
2479                if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2480                    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2481                        *tskey = sk->sk_tskey++;
2482        }
2483        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2484                *tx_flags |= SKBTX_WIFI_STATUS;
2485}
2486
2487static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2488                                     __u8 *tx_flags)
2489{
2490        _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2491}
2492
2493static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2494{
2495        _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2496                           &skb_shinfo(skb)->tskey);
2497}
2498
2499DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2500/**
2501 * sk_eat_skb - Release a skb if it is no longer needed
2502 * @sk: socket to eat this skb from
2503 * @skb: socket buffer to eat
2504 *
2505 * This routine must be called with interrupts disabled or with the socket
2506 * locked so that the sk_buff queue operation is ok.
2507*/
2508static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2509{
2510        __skb_unlink(skb, &sk->sk_receive_queue);
2511        if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2512            !sk->sk_rx_skb_cache) {
2513                sk->sk_rx_skb_cache = skb;
2514                skb_orphan(skb);
2515                return;
2516        }
2517        __kfree_skb(skb);
2518}
2519
2520static inline
2521struct net *sock_net(const struct sock *sk)
2522{
2523        return read_pnet(&sk->sk_net);
2524}
2525
2526static inline
2527void sock_net_set(struct sock *sk, struct net *net)
2528{
2529        write_pnet(&sk->sk_net, net);
2530}
2531
2532static inline bool
2533skb_sk_is_prefetched(struct sk_buff *skb)
2534{
2535#ifdef CONFIG_INET
2536        return skb->destructor == sock_pfree;
2537#else
2538        return false;
2539#endif /* CONFIG_INET */
2540}
2541
2542/* This helper checks if a socket is a full socket,
2543 * ie _not_ a timewait or request socket.
2544 */
2545static inline bool sk_fullsock(const struct sock *sk)
2546{
2547        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2548}
2549
2550static inline bool
2551sk_is_refcounted(struct sock *sk)
2552{
2553        /* Only full sockets have sk->sk_flags. */
2554        return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2555}
2556
2557/**
2558 * skb_steal_sock - steal a socket from an sk_buff
2559 * @skb: sk_buff to steal the socket from
2560 * @refcounted: is set to true if the socket is reference-counted
2561 */
2562static inline struct sock *
2563skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2564{
2565        if (skb->sk) {
2566                struct sock *sk = skb->sk;
2567
2568                *refcounted = true;
2569                if (skb_sk_is_prefetched(skb))
2570                        *refcounted = sk_is_refcounted(sk);
2571                skb->destructor = NULL;
2572                skb->sk = NULL;
2573                return sk;
2574        }
2575        *refcounted = false;
2576        return NULL;
2577}
2578
2579/* Checks if this SKB belongs to an HW offloaded socket
2580 * and whether any SW fallbacks are required based on dev.
2581 * Check decrypted mark in case skb_orphan() cleared socket.
2582 */
2583static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2584                                                   struct net_device *dev)
2585{
2586#ifdef CONFIG_SOCK_VALIDATE_XMIT
2587        struct sock *sk = skb->sk;
2588
2589        if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2590                skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2591#ifdef CONFIG_TLS_DEVICE
2592        } else if (unlikely(skb->decrypted)) {
2593                pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2594                kfree_skb(skb);
2595                skb = NULL;
2596#endif
2597        }
2598#endif
2599
2600        return skb;
2601}
2602
2603/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2604 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2605 */
2606static inline bool sk_listener(const struct sock *sk)
2607{
2608        return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2609}
2610
2611void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2612int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2613                       int type);
2614
2615bool sk_ns_capable(const struct sock *sk,
2616                   struct user_namespace *user_ns, int cap);
2617bool sk_capable(const struct sock *sk, int cap);
2618bool sk_net_capable(const struct sock *sk, int cap);
2619
2620void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2621
2622/* Take into consideration the size of the struct sk_buff overhead in the
2623 * determination of these values, since that is non-constant across
2624 * platforms.  This makes socket queueing behavior and performance
2625 * not depend upon such differences.
2626 */
2627#define _SK_MEM_PACKETS         256
2628#define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
2629#define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2630#define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2631
2632extern __u32 sysctl_wmem_max;
2633extern __u32 sysctl_rmem_max;
2634
2635extern int sysctl_tstamp_allow_data;
2636extern int sysctl_optmem_max;
2637
2638extern __u32 sysctl_wmem_default;
2639extern __u32 sysctl_rmem_default;
2640
2641DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2642
2643static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2644{
2645        /* Does this proto have per netns sysctl_wmem ? */
2646        if (proto->sysctl_wmem_offset)
2647                return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2648
2649        return *proto->sysctl_wmem;
2650}
2651
2652static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2653{
2654        /* Does this proto have per netns sysctl_rmem ? */
2655        if (proto->sysctl_rmem_offset)
2656                return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2657
2658        return *proto->sysctl_rmem;
2659}
2660
2661/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2662 * Some wifi drivers need to tweak it to get more chunks.
2663 * They can use this helper from their ndo_start_xmit()
2664 */
2665static inline void sk_pacing_shift_update(struct sock *sk, int val)
2666{
2667        if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2668                return;
2669        WRITE_ONCE(sk->sk_pacing_shift, val);
2670}
2671
2672/* if a socket is bound to a device, check that the given device
2673 * index is either the same or that the socket is bound to an L3
2674 * master device and the given device index is also enslaved to
2675 * that L3 master
2676 */
2677static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2678{
2679        int mdif;
2680
2681        if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2682                return true;
2683
2684        mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2685        if (mdif && mdif == sk->sk_bound_dev_if)
2686                return true;
2687
2688        return false;
2689}
2690
2691void sock_def_readable(struct sock *sk);
2692
2693int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2694void sock_enable_timestamps(struct sock *sk);
2695void sock_no_linger(struct sock *sk);
2696void sock_set_keepalive(struct sock *sk);
2697void sock_set_priority(struct sock *sk, u32 priority);
2698void sock_set_rcvbuf(struct sock *sk, int val);
2699void sock_set_mark(struct sock *sk, u32 val);
2700void sock_set_reuseaddr(struct sock *sk);
2701void sock_set_reuseport(struct sock *sk);
2702void sock_set_sndtimeo(struct sock *sk, s64 secs);
2703
2704int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2705
2706#endif  /* _SOCK_H */
2707