linux/include/net/tcp.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the TCP module.
   8 *
   9 * Version:     @(#)tcp.h       1.0.5   05/23/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/inet_ecn.h>
  41#include <net/dst.h>
  42#include <net/mptcp.h>
  43
  44#include <linux/seq_file.h>
  45#include <linux/memcontrol.h>
  46#include <linux/bpf-cgroup.h>
  47#include <linux/siphash.h>
  48
  49extern struct inet_hashinfo tcp_hashinfo;
  50
  51extern struct percpu_counter tcp_orphan_count;
  52void tcp_time_wait(struct sock *sk, int state, int timeo);
  53
  54#define MAX_TCP_HEADER  L1_CACHE_ALIGN(128 + MAX_HEADER)
  55#define MAX_TCP_OPTION_SPACE 40
  56#define TCP_MIN_SND_MSS         48
  57#define TCP_MIN_GSO_SIZE        (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  58
  59/*
  60 * Never offer a window over 32767 without using window scaling. Some
  61 * poor stacks do signed 16bit maths!
  62 */
  63#define MAX_TCP_WINDOW          32767U
  64
  65/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  66#define TCP_MIN_MSS             88U
  67
  68/* The initial MTU to use for probing */
  69#define TCP_BASE_MSS            1024
  70
  71/* probing interval, default to 10 minutes as per RFC4821 */
  72#define TCP_PROBE_INTERVAL      600
  73
  74/* Specify interval when tcp mtu probing will stop */
  75#define TCP_PROBE_THRESHOLD     8
  76
  77/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  78#define TCP_FASTRETRANS_THRESH 3
  79
  80/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  81#define TCP_MAX_QUICKACKS       16U
  82
  83/* Maximal number of window scale according to RFC1323 */
  84#define TCP_MAX_WSCALE          14U
  85
  86/* urg_data states */
  87#define TCP_URG_VALID   0x0100
  88#define TCP_URG_NOTYET  0x0200
  89#define TCP_URG_READ    0x0400
  90
  91#define TCP_RETR1       3       /*
  92                                 * This is how many retries it does before it
  93                                 * tries to figure out if the gateway is
  94                                 * down. Minimal RFC value is 3; it corresponds
  95                                 * to ~3sec-8min depending on RTO.
  96                                 */
  97
  98#define TCP_RETR2       15      /*
  99                                 * This should take at least
 100                                 * 90 minutes to time out.
 101                                 * RFC1122 says that the limit is 100 sec.
 102                                 * 15 is ~13-30min depending on RTO.
 103                                 */
 104
 105#define TCP_SYN_RETRIES  6      /* This is how many retries are done
 106                                 * when active opening a connection.
 107                                 * RFC1122 says the minimum retry MUST
 108                                 * be at least 180secs.  Nevertheless
 109                                 * this value is corresponding to
 110                                 * 63secs of retransmission with the
 111                                 * current initial RTO.
 112                                 */
 113
 114#define TCP_SYNACK_RETRIES 5    /* This is how may retries are done
 115                                 * when passive opening a connection.
 116                                 * This is corresponding to 31secs of
 117                                 * retransmission with the current
 118                                 * initial RTO.
 119                                 */
 120
 121#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 122                                  * state, about 60 seconds     */
 123#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
 124                                 /* BSD style FIN_WAIT2 deadlock breaker.
 125                                  * It used to be 3min, new value is 60sec,
 126                                  * to combine FIN-WAIT-2 timeout with
 127                                  * TIME-WAIT timer.
 128                                  */
 129#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 130
 131#define TCP_DELACK_MAX  ((unsigned)(HZ/5))      /* maximal time to delay before sending an ACK */
 132#if HZ >= 100
 133#define TCP_DELACK_MIN  ((unsigned)(HZ/25))     /* minimal time to delay before sending an ACK */
 134#define TCP_ATO_MIN     ((unsigned)(HZ/25))
 135#else
 136#define TCP_DELACK_MIN  4U
 137#define TCP_ATO_MIN     4U
 138#endif
 139#define TCP_RTO_MAX     ((unsigned)(120*HZ))
 140#define TCP_RTO_MIN     ((unsigned)(HZ/5))
 141#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
 142#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))     /* RFC6298 2.1 initial RTO value        */
 143#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
 144                                                 * used as a fallback RTO for the
 145                                                 * initial data transmission if no
 146                                                 * valid RTT sample has been acquired,
 147                                                 * most likely due to retrans in 3WHS.
 148                                                 */
 149
 150#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 151                                                         * for local resources.
 152                                                         */
 153#define TCP_KEEPALIVE_TIME      (120*60*HZ)     /* two hours */
 154#define TCP_KEEPALIVE_PROBES    9               /* Max of 9 keepalive probes    */
 155#define TCP_KEEPALIVE_INTVL     (75*HZ)
 156
 157#define MAX_TCP_KEEPIDLE        32767
 158#define MAX_TCP_KEEPINTVL       32767
 159#define MAX_TCP_KEEPCNT         127
 160#define MAX_TCP_SYNCNT          127
 161
 162#define TCP_SYNQ_INTERVAL       (HZ/5)  /* Period of SYNACK timer */
 163
 164#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
 165#define TCP_PAWS_MSL    60              /* Per-host timestamps are invalidated
 166                                         * after this time. It should be equal
 167                                         * (or greater than) TCP_TIMEWAIT_LEN
 168                                         * to provide reliability equal to one
 169                                         * provided by timewait state.
 170                                         */
 171#define TCP_PAWS_WINDOW 1               /* Replay window for per-host
 172                                         * timestamps. It must be less than
 173                                         * minimal timewait lifetime.
 174                                         */
 175/*
 176 *      TCP option
 177 */
 178
 179#define TCPOPT_NOP              1       /* Padding */
 180#define TCPOPT_EOL              0       /* End of options */
 181#define TCPOPT_MSS              2       /* Segment size negotiating */
 182#define TCPOPT_WINDOW           3       /* Window scaling */
 183#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 184#define TCPOPT_SACK             5       /* SACK Block */
 185#define TCPOPT_TIMESTAMP        8       /* Better RTT estimations/PAWS */
 186#define TCPOPT_MD5SIG           19      /* MD5 Signature (RFC2385) */
 187#define TCPOPT_MPTCP            30      /* Multipath TCP (RFC6824) */
 188#define TCPOPT_FASTOPEN         34      /* Fast open (RFC7413) */
 189#define TCPOPT_EXP              254     /* Experimental */
 190/* Magic number to be after the option value for sharing TCP
 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 192 */
 193#define TCPOPT_FASTOPEN_MAGIC   0xF989
 194#define TCPOPT_SMC_MAGIC        0xE2D4C3D9
 195
 196/*
 197 *     TCP option lengths
 198 */
 199
 200#define TCPOLEN_MSS            4
 201#define TCPOLEN_WINDOW         3
 202#define TCPOLEN_SACK_PERM      2
 203#define TCPOLEN_TIMESTAMP      10
 204#define TCPOLEN_MD5SIG         18
 205#define TCPOLEN_FASTOPEN_BASE  2
 206#define TCPOLEN_EXP_FASTOPEN_BASE  4
 207#define TCPOLEN_EXP_SMC_BASE   6
 208
 209/* But this is what stacks really send out. */
 210#define TCPOLEN_TSTAMP_ALIGNED          12
 211#define TCPOLEN_WSCALE_ALIGNED          4
 212#define TCPOLEN_SACKPERM_ALIGNED        4
 213#define TCPOLEN_SACK_BASE               2
 214#define TCPOLEN_SACK_BASE_ALIGNED       4
 215#define TCPOLEN_SACK_PERBLOCK           8
 216#define TCPOLEN_MD5SIG_ALIGNED          20
 217#define TCPOLEN_MSS_ALIGNED             4
 218#define TCPOLEN_EXP_SMC_BASE_ALIGNED    8
 219
 220/* Flags in tp->nonagle */
 221#define TCP_NAGLE_OFF           1       /* Nagle's algo is disabled */
 222#define TCP_NAGLE_CORK          2       /* Socket is corked         */
 223#define TCP_NAGLE_PUSH          4       /* Cork is overridden for already queued data */
 224
 225/* TCP thin-stream limits */
 226#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 227
 228/* TCP initial congestion window as per rfc6928 */
 229#define TCP_INIT_CWND           10
 230
 231/* Bit Flags for sysctl_tcp_fastopen */
 232#define TFO_CLIENT_ENABLE       1
 233#define TFO_SERVER_ENABLE       2
 234#define TFO_CLIENT_NO_COOKIE    4       /* Data in SYN w/o cookie option */
 235
 236/* Accept SYN data w/o any cookie option */
 237#define TFO_SERVER_COOKIE_NOT_REQD      0x200
 238
 239/* Force enable TFO on all listeners, i.e., not requiring the
 240 * TCP_FASTOPEN socket option.
 241 */
 242#define TFO_SERVER_WO_SOCKOPT1  0x400
 243
 244
 245/* sysctl variables for tcp */
 246extern int sysctl_tcp_max_orphans;
 247extern long sysctl_tcp_mem[3];
 248
 249#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 250#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 251#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 252
 253extern atomic_long_t tcp_memory_allocated;
 254extern struct percpu_counter tcp_sockets_allocated;
 255extern unsigned long tcp_memory_pressure;
 256
 257/* optimized version of sk_under_memory_pressure() for TCP sockets */
 258static inline bool tcp_under_memory_pressure(const struct sock *sk)
 259{
 260        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 261            mem_cgroup_under_socket_pressure(sk->sk_memcg))
 262                return true;
 263
 264        return READ_ONCE(tcp_memory_pressure);
 265}
 266/*
 267 * The next routines deal with comparing 32 bit unsigned ints
 268 * and worry about wraparound (automatic with unsigned arithmetic).
 269 */
 270
 271static inline bool before(__u32 seq1, __u32 seq2)
 272{
 273        return (__s32)(seq1-seq2) < 0;
 274}
 275#define after(seq2, seq1)       before(seq1, seq2)
 276
 277/* is s2<=s1<=s3 ? */
 278static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 279{
 280        return seq3 - seq2 >= seq1 - seq2;
 281}
 282
 283static inline bool tcp_out_of_memory(struct sock *sk)
 284{
 285        if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 286            sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 287                return true;
 288        return false;
 289}
 290
 291void sk_forced_mem_schedule(struct sock *sk, int size);
 292
 293static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 294{
 295        struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 296        int orphans = percpu_counter_read_positive(ocp);
 297
 298        if (orphans << shift > sysctl_tcp_max_orphans) {
 299                orphans = percpu_counter_sum_positive(ocp);
 300                if (orphans << shift > sysctl_tcp_max_orphans)
 301                        return true;
 302        }
 303        return false;
 304}
 305
 306bool tcp_check_oom(struct sock *sk, int shift);
 307
 308
 309extern struct proto tcp_prot;
 310
 311#define TCP_INC_STATS(net, field)       SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 312#define __TCP_INC_STATS(net, field)     __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 313#define TCP_DEC_STATS(net, field)       SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 314#define TCP_ADD_STATS(net, field, val)  SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 315
 316void tcp_tasklet_init(void);
 317
 318int tcp_v4_err(struct sk_buff *skb, u32);
 319
 320void tcp_shutdown(struct sock *sk, int how);
 321
 322int tcp_v4_early_demux(struct sk_buff *skb);
 323int tcp_v4_rcv(struct sk_buff *skb);
 324
 325int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 326int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 327int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 328int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 329                 int flags);
 330int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 331                        size_t size, int flags);
 332ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 333                 size_t size, int flags);
 334int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 335void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 336              int size_goal);
 337void tcp_release_cb(struct sock *sk);
 338void tcp_wfree(struct sk_buff *skb);
 339void tcp_write_timer_handler(struct sock *sk);
 340void tcp_delack_timer_handler(struct sock *sk);
 341int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 342int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 343void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 344void tcp_rcv_space_adjust(struct sock *sk);
 345int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 346void tcp_twsk_destructor(struct sock *sk);
 347ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 348                        struct pipe_inode_info *pipe, size_t len,
 349                        unsigned int flags);
 350
 351void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 352static inline void tcp_dec_quickack_mode(struct sock *sk,
 353                                         const unsigned int pkts)
 354{
 355        struct inet_connection_sock *icsk = inet_csk(sk);
 356
 357        if (icsk->icsk_ack.quick) {
 358                if (pkts >= icsk->icsk_ack.quick) {
 359                        icsk->icsk_ack.quick = 0;
 360                        /* Leaving quickack mode we deflate ATO. */
 361                        icsk->icsk_ack.ato   = TCP_ATO_MIN;
 362                } else
 363                        icsk->icsk_ack.quick -= pkts;
 364        }
 365}
 366
 367#define TCP_ECN_OK              1
 368#define TCP_ECN_QUEUE_CWR       2
 369#define TCP_ECN_DEMAND_CWR      4
 370#define TCP_ECN_SEEN            8
 371
 372enum tcp_tw_status {
 373        TCP_TW_SUCCESS = 0,
 374        TCP_TW_RST = 1,
 375        TCP_TW_ACK = 2,
 376        TCP_TW_SYN = 3
 377};
 378
 379
 380enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 381                                              struct sk_buff *skb,
 382                                              const struct tcphdr *th);
 383struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 384                           struct request_sock *req, bool fastopen,
 385                           bool *lost_race);
 386int tcp_child_process(struct sock *parent, struct sock *child,
 387                      struct sk_buff *skb);
 388void tcp_enter_loss(struct sock *sk);
 389void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
 390void tcp_clear_retrans(struct tcp_sock *tp);
 391void tcp_update_metrics(struct sock *sk);
 392void tcp_init_metrics(struct sock *sk);
 393void tcp_metrics_init(void);
 394bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 395void tcp_close(struct sock *sk, long timeout);
 396void tcp_init_sock(struct sock *sk);
 397void tcp_init_transfer(struct sock *sk, int bpf_op);
 398__poll_t tcp_poll(struct file *file, struct socket *sock,
 399                      struct poll_table_struct *wait);
 400int tcp_getsockopt(struct sock *sk, int level, int optname,
 401                   char __user *optval, int __user *optlen);
 402int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 403                   unsigned int optlen);
 404void tcp_set_keepalive(struct sock *sk, int val);
 405void tcp_syn_ack_timeout(const struct request_sock *req);
 406int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 407                int flags, int *addr_len);
 408int tcp_set_rcvlowat(struct sock *sk, int val);
 409void tcp_data_ready(struct sock *sk);
 410#ifdef CONFIG_MMU
 411int tcp_mmap(struct file *file, struct socket *sock,
 412             struct vm_area_struct *vma);
 413#endif
 414void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 415                       struct tcp_options_received *opt_rx,
 416                       int estab, struct tcp_fastopen_cookie *foc);
 417const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 418
 419/*
 420 *      BPF SKB-less helpers
 421 */
 422u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 423                         struct tcphdr *th, u32 *cookie);
 424u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 425                         struct tcphdr *th, u32 *cookie);
 426u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 427                          const struct tcp_request_sock_ops *af_ops,
 428                          struct sock *sk, struct tcphdr *th);
 429/*
 430 *      TCP v4 functions exported for the inet6 API
 431 */
 432
 433void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 434void tcp_v4_mtu_reduced(struct sock *sk);
 435void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 436void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 437int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 438struct sock *tcp_create_openreq_child(const struct sock *sk,
 439                                      struct request_sock *req,
 440                                      struct sk_buff *skb);
 441void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 442struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 443                                  struct request_sock *req,
 444                                  struct dst_entry *dst,
 445                                  struct request_sock *req_unhash,
 446                                  bool *own_req);
 447int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 448int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 449int tcp_connect(struct sock *sk);
 450enum tcp_synack_type {
 451        TCP_SYNACK_NORMAL,
 452        TCP_SYNACK_FASTOPEN,
 453        TCP_SYNACK_COOKIE,
 454};
 455struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 456                                struct request_sock *req,
 457                                struct tcp_fastopen_cookie *foc,
 458                                enum tcp_synack_type synack_type);
 459int tcp_disconnect(struct sock *sk, int flags);
 460
 461void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 462int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 463void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 464
 465/* From syncookies.c */
 466struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 467                                 struct request_sock *req,
 468                                 struct dst_entry *dst, u32 tsoff);
 469int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 470                      u32 cookie);
 471struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 472struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 473                                            struct sock *sk, struct sk_buff *skb);
 474#ifdef CONFIG_SYN_COOKIES
 475
 476/* Syncookies use a monotonic timer which increments every 60 seconds.
 477 * This counter is used both as a hash input and partially encoded into
 478 * the cookie value.  A cookie is only validated further if the delta
 479 * between the current counter value and the encoded one is less than this,
 480 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 481 * the counter advances immediately after a cookie is generated).
 482 */
 483#define MAX_SYNCOOKIE_AGE       2
 484#define TCP_SYNCOOKIE_PERIOD    (60 * HZ)
 485#define TCP_SYNCOOKIE_VALID     (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 486
 487/* syncookies: remember time of last synqueue overflow
 488 * But do not dirty this field too often (once per second is enough)
 489 * It is racy as we do not hold a lock, but race is very minor.
 490 */
 491static inline void tcp_synq_overflow(const struct sock *sk)
 492{
 493        unsigned int last_overflow;
 494        unsigned int now = jiffies;
 495
 496        if (sk->sk_reuseport) {
 497                struct sock_reuseport *reuse;
 498
 499                reuse = rcu_dereference(sk->sk_reuseport_cb);
 500                if (likely(reuse)) {
 501                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 502                        if (!time_between32(now, last_overflow,
 503                                            last_overflow + HZ))
 504                                WRITE_ONCE(reuse->synq_overflow_ts, now);
 505                        return;
 506                }
 507        }
 508
 509        last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 510        if (!time_between32(now, last_overflow, last_overflow + HZ))
 511                WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
 512}
 513
 514/* syncookies: no recent synqueue overflow on this listening socket? */
 515static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 516{
 517        unsigned int last_overflow;
 518        unsigned int now = jiffies;
 519
 520        if (sk->sk_reuseport) {
 521                struct sock_reuseport *reuse;
 522
 523                reuse = rcu_dereference(sk->sk_reuseport_cb);
 524                if (likely(reuse)) {
 525                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 526                        return !time_between32(now, last_overflow - HZ,
 527                                               last_overflow +
 528                                               TCP_SYNCOOKIE_VALID);
 529                }
 530        }
 531
 532        last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 533
 534        /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 535         * then we're under synflood. However, we have to use
 536         * 'last_overflow - HZ' as lower bound. That's because a concurrent
 537         * tcp_synq_overflow() could update .ts_recent_stamp after we read
 538         * jiffies but before we store .ts_recent_stamp into last_overflow,
 539         * which could lead to rejecting a valid syncookie.
 540         */
 541        return !time_between32(now, last_overflow - HZ,
 542                               last_overflow + TCP_SYNCOOKIE_VALID);
 543}
 544
 545static inline u32 tcp_cookie_time(void)
 546{
 547        u64 val = get_jiffies_64();
 548
 549        do_div(val, TCP_SYNCOOKIE_PERIOD);
 550        return val;
 551}
 552
 553u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 554                              u16 *mssp);
 555__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 556u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 557bool cookie_timestamp_decode(const struct net *net,
 558                             struct tcp_options_received *opt);
 559bool cookie_ecn_ok(const struct tcp_options_received *opt,
 560                   const struct net *net, const struct dst_entry *dst);
 561
 562/* From net/ipv6/syncookies.c */
 563int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 564                      u32 cookie);
 565struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 566
 567u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 568                              const struct tcphdr *th, u16 *mssp);
 569__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 570#endif
 571/* tcp_output.c */
 572
 573void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 574                               int nonagle);
 575int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 576int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 577void tcp_retransmit_timer(struct sock *sk);
 578void tcp_xmit_retransmit_queue(struct sock *);
 579void tcp_simple_retransmit(struct sock *);
 580void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 581int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 582enum tcp_queue {
 583        TCP_FRAG_IN_WRITE_QUEUE,
 584        TCP_FRAG_IN_RTX_QUEUE,
 585};
 586int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 587                 struct sk_buff *skb, u32 len,
 588                 unsigned int mss_now, gfp_t gfp);
 589
 590void tcp_send_probe0(struct sock *);
 591void tcp_send_partial(struct sock *);
 592int tcp_write_wakeup(struct sock *, int mib);
 593void tcp_send_fin(struct sock *sk);
 594void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 595int tcp_send_synack(struct sock *);
 596void tcp_push_one(struct sock *, unsigned int mss_now);
 597void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 598void tcp_send_ack(struct sock *sk);
 599void tcp_send_delayed_ack(struct sock *sk);
 600void tcp_send_loss_probe(struct sock *sk);
 601bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 602void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 603                             const struct sk_buff *next_skb);
 604
 605/* tcp_input.c */
 606void tcp_rearm_rto(struct sock *sk);
 607void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 608void tcp_reset(struct sock *sk);
 609void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 610void tcp_fin(struct sock *sk);
 611
 612/* tcp_timer.c */
 613void tcp_init_xmit_timers(struct sock *);
 614static inline void tcp_clear_xmit_timers(struct sock *sk)
 615{
 616        if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 617                __sock_put(sk);
 618
 619        if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 620                __sock_put(sk);
 621
 622        inet_csk_clear_xmit_timers(sk);
 623}
 624
 625unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 626unsigned int tcp_current_mss(struct sock *sk);
 627
 628/* Bound MSS / TSO packet size with the half of the window */
 629static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 630{
 631        int cutoff;
 632
 633        /* When peer uses tiny windows, there is no use in packetizing
 634         * to sub-MSS pieces for the sake of SWS or making sure there
 635         * are enough packets in the pipe for fast recovery.
 636         *
 637         * On the other hand, for extremely large MSS devices, handling
 638         * smaller than MSS windows in this way does make sense.
 639         */
 640        if (tp->max_window > TCP_MSS_DEFAULT)
 641                cutoff = (tp->max_window >> 1);
 642        else
 643                cutoff = tp->max_window;
 644
 645        if (cutoff && pktsize > cutoff)
 646                return max_t(int, cutoff, 68U - tp->tcp_header_len);
 647        else
 648                return pktsize;
 649}
 650
 651/* tcp.c */
 652void tcp_get_info(struct sock *, struct tcp_info *);
 653
 654/* Read 'sendfile()'-style from a TCP socket */
 655int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 656                  sk_read_actor_t recv_actor);
 657
 658void tcp_initialize_rcv_mss(struct sock *sk);
 659
 660int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 661int tcp_mss_to_mtu(struct sock *sk, int mss);
 662void tcp_mtup_init(struct sock *sk);
 663
 664static inline void tcp_bound_rto(const struct sock *sk)
 665{
 666        if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 667                inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 668}
 669
 670static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 671{
 672        return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 673}
 674
 675static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 676{
 677        tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 678                               ntohl(TCP_FLAG_ACK) |
 679                               snd_wnd);
 680}
 681
 682static inline void tcp_fast_path_on(struct tcp_sock *tp)
 683{
 684        __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 685}
 686
 687static inline void tcp_fast_path_check(struct sock *sk)
 688{
 689        struct tcp_sock *tp = tcp_sk(sk);
 690
 691        if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 692            tp->rcv_wnd &&
 693            atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 694            !tp->urg_data)
 695                tcp_fast_path_on(tp);
 696}
 697
 698/* Compute the actual rto_min value */
 699static inline u32 tcp_rto_min(struct sock *sk)
 700{
 701        const struct dst_entry *dst = __sk_dst_get(sk);
 702        u32 rto_min = TCP_RTO_MIN;
 703
 704        if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 705                rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 706        return rto_min;
 707}
 708
 709static inline u32 tcp_rto_min_us(struct sock *sk)
 710{
 711        return jiffies_to_usecs(tcp_rto_min(sk));
 712}
 713
 714static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 715{
 716        return dst_metric_locked(dst, RTAX_CC_ALGO);
 717}
 718
 719/* Minimum RTT in usec. ~0 means not available. */
 720static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 721{
 722        return minmax_get(&tp->rtt_min);
 723}
 724
 725/* Compute the actual receive window we are currently advertising.
 726 * Rcv_nxt can be after the window if our peer push more data
 727 * than the offered window.
 728 */
 729static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 730{
 731        s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 732
 733        if (win < 0)
 734                win = 0;
 735        return (u32) win;
 736}
 737
 738/* Choose a new window, without checks for shrinking, and without
 739 * scaling applied to the result.  The caller does these things
 740 * if necessary.  This is a "raw" window selection.
 741 */
 742u32 __tcp_select_window(struct sock *sk);
 743
 744void tcp_send_window_probe(struct sock *sk);
 745
 746/* TCP uses 32bit jiffies to save some space.
 747 * Note that this is different from tcp_time_stamp, which
 748 * historically has been the same until linux-4.13.
 749 */
 750#define tcp_jiffies32 ((u32)jiffies)
 751
 752/*
 753 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 754 * It is no longer tied to jiffies, but to 1 ms clock.
 755 * Note: double check if you want to use tcp_jiffies32 instead of this.
 756 */
 757#define TCP_TS_HZ       1000
 758
 759static inline u64 tcp_clock_ns(void)
 760{
 761        return ktime_get_ns();
 762}
 763
 764static inline u64 tcp_clock_us(void)
 765{
 766        return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 767}
 768
 769/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 770static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 771{
 772        return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 773}
 774
 775/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
 776static inline u32 tcp_ns_to_ts(u64 ns)
 777{
 778        return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
 779}
 780
 781/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 782static inline u32 tcp_time_stamp_raw(void)
 783{
 784        return tcp_ns_to_ts(tcp_clock_ns());
 785}
 786
 787void tcp_mstamp_refresh(struct tcp_sock *tp);
 788
 789static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 790{
 791        return max_t(s64, t1 - t0, 0);
 792}
 793
 794static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 795{
 796        return tcp_ns_to_ts(skb->skb_mstamp_ns);
 797}
 798
 799/* provide the departure time in us unit */
 800static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 801{
 802        return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 803}
 804
 805
 806#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 807
 808#define TCPHDR_FIN 0x01
 809#define TCPHDR_SYN 0x02
 810#define TCPHDR_RST 0x04
 811#define TCPHDR_PSH 0x08
 812#define TCPHDR_ACK 0x10
 813#define TCPHDR_URG 0x20
 814#define TCPHDR_ECE 0x40
 815#define TCPHDR_CWR 0x80
 816
 817#define TCPHDR_SYN_ECN  (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 818
 819/* This is what the send packet queuing engine uses to pass
 820 * TCP per-packet control information to the transmission code.
 821 * We also store the host-order sequence numbers in here too.
 822 * This is 44 bytes if IPV6 is enabled.
 823 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 824 */
 825struct tcp_skb_cb {
 826        __u32           seq;            /* Starting sequence number     */
 827        __u32           end_seq;        /* SEQ + FIN + SYN + datalen    */
 828        union {
 829                /* Note : tcp_tw_isn is used in input path only
 830                 *        (isn chosen by tcp_timewait_state_process())
 831                 *
 832                 *        tcp_gso_segs/size are used in write queue only,
 833                 *        cf tcp_skb_pcount()/tcp_skb_mss()
 834                 */
 835                __u32           tcp_tw_isn;
 836                struct {
 837                        u16     tcp_gso_segs;
 838                        u16     tcp_gso_size;
 839                };
 840        };
 841        __u8            tcp_flags;      /* TCP header flags. (tcp[13])  */
 842
 843        __u8            sacked;         /* State flags for SACK.        */
 844#define TCPCB_SACKED_ACKED      0x01    /* SKB ACK'd by a SACK block    */
 845#define TCPCB_SACKED_RETRANS    0x02    /* SKB retransmitted            */
 846#define TCPCB_LOST              0x04    /* SKB is lost                  */
 847#define TCPCB_TAGBITS           0x07    /* All tag bits                 */
 848#define TCPCB_REPAIRED          0x10    /* SKB repaired (no skb_mstamp_ns)      */
 849#define TCPCB_EVER_RETRANS      0x80    /* Ever retransmitted frame     */
 850#define TCPCB_RETRANS           (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 851                                TCPCB_REPAIRED)
 852
 853        __u8            ip_dsfield;     /* IPv4 tos or IPv6 dsfield     */
 854        __u8            txstamp_ack:1,  /* Record TX timestamp for ack? */
 855                        eor:1,          /* Is skb MSG_EOR marked? */
 856                        has_rxtstamp:1, /* SKB has a RX timestamp       */
 857                        unused:5;
 858        __u32           ack_seq;        /* Sequence number ACK'd        */
 859        union {
 860                struct {
 861                        /* There is space for up to 24 bytes */
 862                        __u32 in_flight:30,/* Bytes in flight at transmit */
 863                              is_app_limited:1, /* cwnd not fully used? */
 864                              unused:1;
 865                        /* pkts S/ACKed so far upon tx of skb, incl retrans: */
 866                        __u32 delivered;
 867                        /* start of send pipeline phase */
 868                        u64 first_tx_mstamp;
 869                        /* when we reached the "delivered" count */
 870                        u64 delivered_mstamp;
 871                } tx;   /* only used for outgoing skbs */
 872                union {
 873                        struct inet_skb_parm    h4;
 874#if IS_ENABLED(CONFIG_IPV6)
 875                        struct inet6_skb_parm   h6;
 876#endif
 877                } header;       /* For incoming skbs */
 878                struct {
 879                        __u32 flags;
 880                        struct sock *sk_redir;
 881                        void *data_end;
 882                } bpf;
 883        };
 884};
 885
 886#define TCP_SKB_CB(__skb)       ((struct tcp_skb_cb *)&((__skb)->cb[0]))
 887
 888static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
 889{
 890        TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
 891}
 892
 893static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
 894{
 895        return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
 896}
 897
 898static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
 899{
 900        return TCP_SKB_CB(skb)->bpf.sk_redir;
 901}
 902
 903static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
 904{
 905        TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
 906}
 907
 908extern const struct inet_connection_sock_af_ops ipv4_specific;
 909
 910#if IS_ENABLED(CONFIG_IPV6)
 911/* This is the variant of inet6_iif() that must be used by TCP,
 912 * as TCP moves IP6CB into a different location in skb->cb[]
 913 */
 914static inline int tcp_v6_iif(const struct sk_buff *skb)
 915{
 916        return TCP_SKB_CB(skb)->header.h6.iif;
 917}
 918
 919static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 920{
 921        bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 922
 923        return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 924}
 925
 926/* TCP_SKB_CB reference means this can not be used from early demux */
 927static inline int tcp_v6_sdif(const struct sk_buff *skb)
 928{
 929#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 930        if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 931                return TCP_SKB_CB(skb)->header.h6.iif;
 932#endif
 933        return 0;
 934}
 935
 936extern const struct inet_connection_sock_af_ops ipv6_specific;
 937
 938INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 939INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 940INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
 941
 942#endif
 943
 944static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
 945{
 946#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 947        if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
 948            skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
 949                return true;
 950#endif
 951        return false;
 952}
 953
 954/* TCP_SKB_CB reference means this can not be used from early demux */
 955static inline int tcp_v4_sdif(struct sk_buff *skb)
 956{
 957#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 958        if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 959                return TCP_SKB_CB(skb)->header.h4.iif;
 960#endif
 961        return 0;
 962}
 963
 964/* Due to TSO, an SKB can be composed of multiple actual
 965 * packets.  To keep these tracked properly, we use this.
 966 */
 967static inline int tcp_skb_pcount(const struct sk_buff *skb)
 968{
 969        return TCP_SKB_CB(skb)->tcp_gso_segs;
 970}
 971
 972static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 973{
 974        TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 975}
 976
 977static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 978{
 979        TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 980}
 981
 982/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 983static inline int tcp_skb_mss(const struct sk_buff *skb)
 984{
 985        return TCP_SKB_CB(skb)->tcp_gso_size;
 986}
 987
 988static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 989{
 990        return likely(!TCP_SKB_CB(skb)->eor);
 991}
 992
 993static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
 994                                        const struct sk_buff *from)
 995{
 996        return likely(tcp_skb_can_collapse_to(to) &&
 997                      mptcp_skb_can_collapse(to, from));
 998}
 999
1000/* Events passed to congestion control interface */
1001enum tcp_ca_event {
1002        CA_EVENT_TX_START,      /* first transmit when no packets in flight */
1003        CA_EVENT_CWND_RESTART,  /* congestion window restart */
1004        CA_EVENT_COMPLETE_CWR,  /* end of congestion recovery */
1005        CA_EVENT_LOSS,          /* loss timeout */
1006        CA_EVENT_ECN_NO_CE,     /* ECT set, but not CE marked */
1007        CA_EVENT_ECN_IS_CE,     /* received CE marked IP packet */
1008};
1009
1010/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1011enum tcp_ca_ack_event_flags {
1012        CA_ACK_SLOWPATH         = (1 << 0),     /* In slow path processing */
1013        CA_ACK_WIN_UPDATE       = (1 << 1),     /* ACK updated window */
1014        CA_ACK_ECE              = (1 << 2),     /* ECE bit is set on ack */
1015};
1016
1017/*
1018 * Interface for adding new TCP congestion control handlers
1019 */
1020#define TCP_CA_NAME_MAX 16
1021#define TCP_CA_MAX      128
1022#define TCP_CA_BUF_MAX  (TCP_CA_NAME_MAX*TCP_CA_MAX)
1023
1024#define TCP_CA_UNSPEC   0
1025
1026/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1027#define TCP_CONG_NON_RESTRICTED 0x1
1028/* Requires ECN/ECT set on all packets */
1029#define TCP_CONG_NEEDS_ECN      0x2
1030#define TCP_CONG_MASK   (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1031
1032union tcp_cc_info;
1033
1034struct ack_sample {
1035        u32 pkts_acked;
1036        s32 rtt_us;
1037        u32 in_flight;
1038};
1039
1040/* A rate sample measures the number of (original/retransmitted) data
1041 * packets delivered "delivered" over an interval of time "interval_us".
1042 * The tcp_rate.c code fills in the rate sample, and congestion
1043 * control modules that define a cong_control function to run at the end
1044 * of ACK processing can optionally chose to consult this sample when
1045 * setting cwnd and pacing rate.
1046 * A sample is invalid if "delivered" or "interval_us" is negative.
1047 */
1048struct rate_sample {
1049        u64  prior_mstamp; /* starting timestamp for interval */
1050        u32  prior_delivered;   /* tp->delivered at "prior_mstamp" */
1051        s32  delivered;         /* number of packets delivered over interval */
1052        long interval_us;       /* time for tp->delivered to incr "delivered" */
1053        u32 snd_interval_us;    /* snd interval for delivered packets */
1054        u32 rcv_interval_us;    /* rcv interval for delivered packets */
1055        long rtt_us;            /* RTT of last (S)ACKed packet (or -1) */
1056        int  losses;            /* number of packets marked lost upon ACK */
1057        u32  acked_sacked;      /* number of packets newly (S)ACKed upon ACK */
1058        u32  prior_in_flight;   /* in flight before this ACK */
1059        bool is_app_limited;    /* is sample from packet with bubble in pipe? */
1060        bool is_retrans;        /* is sample from retransmission? */
1061        bool is_ack_delayed;    /* is this (likely) a delayed ACK? */
1062};
1063
1064struct tcp_congestion_ops {
1065        struct list_head        list;
1066        u32 key;
1067        u32 flags;
1068
1069        /* initialize private data (optional) */
1070        void (*init)(struct sock *sk);
1071        /* cleanup private data  (optional) */
1072        void (*release)(struct sock *sk);
1073
1074        /* return slow start threshold (required) */
1075        u32 (*ssthresh)(struct sock *sk);
1076        /* do new cwnd calculation (required) */
1077        void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1078        /* call before changing ca_state (optional) */
1079        void (*set_state)(struct sock *sk, u8 new_state);
1080        /* call when cwnd event occurs (optional) */
1081        void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1082        /* call when ack arrives (optional) */
1083        void (*in_ack_event)(struct sock *sk, u32 flags);
1084        /* new value of cwnd after loss (required) */
1085        u32  (*undo_cwnd)(struct sock *sk);
1086        /* hook for packet ack accounting (optional) */
1087        void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1088        /* override sysctl_tcp_min_tso_segs */
1089        u32 (*min_tso_segs)(struct sock *sk);
1090        /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1091        u32 (*sndbuf_expand)(struct sock *sk);
1092        /* call when packets are delivered to update cwnd and pacing rate,
1093         * after all the ca_state processing. (optional)
1094         */
1095        void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1096        /* get info for inet_diag (optional) */
1097        size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1098                           union tcp_cc_info *info);
1099
1100        char            name[TCP_CA_NAME_MAX];
1101        struct module   *owner;
1102};
1103
1104int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1105void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1106
1107void tcp_assign_congestion_control(struct sock *sk);
1108void tcp_init_congestion_control(struct sock *sk);
1109void tcp_cleanup_congestion_control(struct sock *sk);
1110int tcp_set_default_congestion_control(struct net *net, const char *name);
1111void tcp_get_default_congestion_control(struct net *net, char *name);
1112void tcp_get_available_congestion_control(char *buf, size_t len);
1113void tcp_get_allowed_congestion_control(char *buf, size_t len);
1114int tcp_set_allowed_congestion_control(char *allowed);
1115int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1116                               bool reinit, bool cap_net_admin);
1117u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1118void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1119
1120u32 tcp_reno_ssthresh(struct sock *sk);
1121u32 tcp_reno_undo_cwnd(struct sock *sk);
1122void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1123extern struct tcp_congestion_ops tcp_reno;
1124
1125struct tcp_congestion_ops *tcp_ca_find(const char *name);
1126struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1127u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1128#ifdef CONFIG_INET
1129char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1130#else
1131static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1132{
1133        return NULL;
1134}
1135#endif
1136
1137static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1138{
1139        const struct inet_connection_sock *icsk = inet_csk(sk);
1140
1141        return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1142}
1143
1144static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1145{
1146        struct inet_connection_sock *icsk = inet_csk(sk);
1147
1148        if (icsk->icsk_ca_ops->set_state)
1149                icsk->icsk_ca_ops->set_state(sk, ca_state);
1150        icsk->icsk_ca_state = ca_state;
1151}
1152
1153static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1154{
1155        const struct inet_connection_sock *icsk = inet_csk(sk);
1156
1157        if (icsk->icsk_ca_ops->cwnd_event)
1158                icsk->icsk_ca_ops->cwnd_event(sk, event);
1159}
1160
1161/* From tcp_rate.c */
1162void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1163void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1164                            struct rate_sample *rs);
1165void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1166                  bool is_sack_reneg, struct rate_sample *rs);
1167void tcp_rate_check_app_limited(struct sock *sk);
1168
1169/* These functions determine how the current flow behaves in respect of SACK
1170 * handling. SACK is negotiated with the peer, and therefore it can vary
1171 * between different flows.
1172 *
1173 * tcp_is_sack - SACK enabled
1174 * tcp_is_reno - No SACK
1175 */
1176static inline int tcp_is_sack(const struct tcp_sock *tp)
1177{
1178        return likely(tp->rx_opt.sack_ok);
1179}
1180
1181static inline bool tcp_is_reno(const struct tcp_sock *tp)
1182{
1183        return !tcp_is_sack(tp);
1184}
1185
1186static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1187{
1188        return tp->sacked_out + tp->lost_out;
1189}
1190
1191/* This determines how many packets are "in the network" to the best
1192 * of our knowledge.  In many cases it is conservative, but where
1193 * detailed information is available from the receiver (via SACK
1194 * blocks etc.) we can make more aggressive calculations.
1195 *
1196 * Use this for decisions involving congestion control, use just
1197 * tp->packets_out to determine if the send queue is empty or not.
1198 *
1199 * Read this equation as:
1200 *
1201 *      "Packets sent once on transmission queue" MINUS
1202 *      "Packets left network, but not honestly ACKed yet" PLUS
1203 *      "Packets fast retransmitted"
1204 */
1205static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1206{
1207        return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1208}
1209
1210#define TCP_INFINITE_SSTHRESH   0x7fffffff
1211
1212static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1213{
1214        return tp->snd_cwnd < tp->snd_ssthresh;
1215}
1216
1217static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1218{
1219        return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1220}
1221
1222static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1223{
1224        return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1225               (1 << inet_csk(sk)->icsk_ca_state);
1226}
1227
1228/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1229 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1230 * ssthresh.
1231 */
1232static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1233{
1234        const struct tcp_sock *tp = tcp_sk(sk);
1235
1236        if (tcp_in_cwnd_reduction(sk))
1237                return tp->snd_ssthresh;
1238        else
1239                return max(tp->snd_ssthresh,
1240                           ((tp->snd_cwnd >> 1) +
1241                            (tp->snd_cwnd >> 2)));
1242}
1243
1244/* Use define here intentionally to get WARN_ON location shown at the caller */
1245#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1246
1247void tcp_enter_cwr(struct sock *sk);
1248__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1249
1250/* The maximum number of MSS of available cwnd for which TSO defers
1251 * sending if not using sysctl_tcp_tso_win_divisor.
1252 */
1253static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1254{
1255        return 3;
1256}
1257
1258/* Returns end sequence number of the receiver's advertised window */
1259static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1260{
1261        return tp->snd_una + tp->snd_wnd;
1262}
1263
1264/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1265 * flexible approach. The RFC suggests cwnd should not be raised unless
1266 * it was fully used previously. And that's exactly what we do in
1267 * congestion avoidance mode. But in slow start we allow cwnd to grow
1268 * as long as the application has used half the cwnd.
1269 * Example :
1270 *    cwnd is 10 (IW10), but application sends 9 frames.
1271 *    We allow cwnd to reach 18 when all frames are ACKed.
1272 * This check is safe because it's as aggressive as slow start which already
1273 * risks 100% overshoot. The advantage is that we discourage application to
1274 * either send more filler packets or data to artificially blow up the cwnd
1275 * usage, and allow application-limited process to probe bw more aggressively.
1276 */
1277static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1278{
1279        const struct tcp_sock *tp = tcp_sk(sk);
1280
1281        /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1282        if (tcp_in_slow_start(tp))
1283                return tp->snd_cwnd < 2 * tp->max_packets_out;
1284
1285        return tp->is_cwnd_limited;
1286}
1287
1288/* BBR congestion control needs pacing.
1289 * Same remark for SO_MAX_PACING_RATE.
1290 * sch_fq packet scheduler is efficiently handling pacing,
1291 * but is not always installed/used.
1292 * Return true if TCP stack should pace packets itself.
1293 */
1294static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1295{
1296        return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1297}
1298
1299/* Estimates in how many jiffies next packet for this flow can be sent.
1300 * Scheduling a retransmit timer too early would be silly.
1301 */
1302static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1303{
1304        s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1305
1306        return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1307}
1308
1309static inline void tcp_reset_xmit_timer(struct sock *sk,
1310                                        const int what,
1311                                        unsigned long when,
1312                                        const unsigned long max_when)
1313{
1314        inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1315                                  max_when);
1316}
1317
1318/* Something is really bad, we could not queue an additional packet,
1319 * because qdisc is full or receiver sent a 0 window, or we are paced.
1320 * We do not want to add fuel to the fire, or abort too early,
1321 * so make sure the timer we arm now is at least 200ms in the future,
1322 * regardless of current icsk_rto value (as it could be ~2ms)
1323 */
1324static inline unsigned long tcp_probe0_base(const struct sock *sk)
1325{
1326        return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1327}
1328
1329/* Variant of inet_csk_rto_backoff() used for zero window probes */
1330static inline unsigned long tcp_probe0_when(const struct sock *sk,
1331                                            unsigned long max_when)
1332{
1333        u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1334
1335        return (unsigned long)min_t(u64, when, max_when);
1336}
1337
1338static inline void tcp_check_probe_timer(struct sock *sk)
1339{
1340        if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1341                tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1342                                     tcp_probe0_base(sk), TCP_RTO_MAX);
1343}
1344
1345static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1346{
1347        tp->snd_wl1 = seq;
1348}
1349
1350static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1351{
1352        tp->snd_wl1 = seq;
1353}
1354
1355/*
1356 * Calculate(/check) TCP checksum
1357 */
1358static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1359                                   __be32 daddr, __wsum base)
1360{
1361        return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1362}
1363
1364static inline bool tcp_checksum_complete(struct sk_buff *skb)
1365{
1366        return !skb_csum_unnecessary(skb) &&
1367                __skb_checksum_complete(skb);
1368}
1369
1370bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1371int tcp_filter(struct sock *sk, struct sk_buff *skb);
1372void tcp_set_state(struct sock *sk, int state);
1373void tcp_done(struct sock *sk);
1374int tcp_abort(struct sock *sk, int err);
1375
1376static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1377{
1378        rx_opt->dsack = 0;
1379        rx_opt->num_sacks = 0;
1380}
1381
1382void tcp_cwnd_restart(struct sock *sk, s32 delta);
1383
1384static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1385{
1386        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1387        struct tcp_sock *tp = tcp_sk(sk);
1388        s32 delta;
1389
1390        if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1391            ca_ops->cong_control)
1392                return;
1393        delta = tcp_jiffies32 - tp->lsndtime;
1394        if (delta > inet_csk(sk)->icsk_rto)
1395                tcp_cwnd_restart(sk, delta);
1396}
1397
1398/* Determine a window scaling and initial window to offer. */
1399void tcp_select_initial_window(const struct sock *sk, int __space,
1400                               __u32 mss, __u32 *rcv_wnd,
1401                               __u32 *window_clamp, int wscale_ok,
1402                               __u8 *rcv_wscale, __u32 init_rcv_wnd);
1403
1404static inline int tcp_win_from_space(const struct sock *sk, int space)
1405{
1406        int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1407
1408        return tcp_adv_win_scale <= 0 ?
1409                (space>>(-tcp_adv_win_scale)) :
1410                space - (space>>tcp_adv_win_scale);
1411}
1412
1413/* Note: caller must be prepared to deal with negative returns */
1414static inline int tcp_space(const struct sock *sk)
1415{
1416        return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1417                                  READ_ONCE(sk->sk_backlog.len) -
1418                                  atomic_read(&sk->sk_rmem_alloc));
1419}
1420
1421static inline int tcp_full_space(const struct sock *sk)
1422{
1423        return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1424}
1425
1426/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1427 * If 87.5 % (7/8) of the space has been consumed, we want to override
1428 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1429 * len/truesize ratio.
1430 */
1431static inline bool tcp_rmem_pressure(const struct sock *sk)
1432{
1433        int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1434        int threshold = rcvbuf - (rcvbuf >> 3);
1435
1436        return atomic_read(&sk->sk_rmem_alloc) > threshold;
1437}
1438
1439extern void tcp_openreq_init_rwin(struct request_sock *req,
1440                                  const struct sock *sk_listener,
1441                                  const struct dst_entry *dst);
1442
1443void tcp_enter_memory_pressure(struct sock *sk);
1444void tcp_leave_memory_pressure(struct sock *sk);
1445
1446static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1447{
1448        struct net *net = sock_net((struct sock *)tp);
1449
1450        return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1451}
1452
1453static inline int keepalive_time_when(const struct tcp_sock *tp)
1454{
1455        struct net *net = sock_net((struct sock *)tp);
1456
1457        return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1458}
1459
1460static inline int keepalive_probes(const struct tcp_sock *tp)
1461{
1462        struct net *net = sock_net((struct sock *)tp);
1463
1464        return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1465}
1466
1467static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1468{
1469        const struct inet_connection_sock *icsk = &tp->inet_conn;
1470
1471        return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1472                          tcp_jiffies32 - tp->rcv_tstamp);
1473}
1474
1475static inline int tcp_fin_time(const struct sock *sk)
1476{
1477        int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1478        const int rto = inet_csk(sk)->icsk_rto;
1479
1480        if (fin_timeout < (rto << 2) - (rto >> 1))
1481                fin_timeout = (rto << 2) - (rto >> 1);
1482
1483        return fin_timeout;
1484}
1485
1486static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1487                                  int paws_win)
1488{
1489        if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1490                return true;
1491        if (unlikely(!time_before32(ktime_get_seconds(),
1492                                    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1493                return true;
1494        /*
1495         * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1496         * then following tcp messages have valid values. Ignore 0 value,
1497         * or else 'negative' tsval might forbid us to accept their packets.
1498         */
1499        if (!rx_opt->ts_recent)
1500                return true;
1501        return false;
1502}
1503
1504static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1505                                   int rst)
1506{
1507        if (tcp_paws_check(rx_opt, 0))
1508                return false;
1509
1510        /* RST segments are not recommended to carry timestamp,
1511           and, if they do, it is recommended to ignore PAWS because
1512           "their cleanup function should take precedence over timestamps."
1513           Certainly, it is mistake. It is necessary to understand the reasons
1514           of this constraint to relax it: if peer reboots, clock may go
1515           out-of-sync and half-open connections will not be reset.
1516           Actually, the problem would be not existing if all
1517           the implementations followed draft about maintaining clock
1518           via reboots. Linux-2.2 DOES NOT!
1519
1520           However, we can relax time bounds for RST segments to MSL.
1521         */
1522        if (rst && !time_before32(ktime_get_seconds(),
1523                                  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1524                return false;
1525        return true;
1526}
1527
1528bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1529                          int mib_idx, u32 *last_oow_ack_time);
1530
1531static inline void tcp_mib_init(struct net *net)
1532{
1533        /* See RFC 2012 */
1534        TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1535        TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1536        TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1537        TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1538}
1539
1540/* from STCP */
1541static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1542{
1543        tp->lost_skb_hint = NULL;
1544}
1545
1546static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1547{
1548        tcp_clear_retrans_hints_partial(tp);
1549        tp->retransmit_skb_hint = NULL;
1550}
1551
1552union tcp_md5_addr {
1553        struct in_addr  a4;
1554#if IS_ENABLED(CONFIG_IPV6)
1555        struct in6_addr a6;
1556#endif
1557};
1558
1559/* - key database */
1560struct tcp_md5sig_key {
1561        struct hlist_node       node;
1562        u8                      keylen;
1563        u8                      family; /* AF_INET or AF_INET6 */
1564        u8                      prefixlen;
1565        union tcp_md5_addr      addr;
1566        int                     l3index; /* set if key added with L3 scope */
1567        u8                      key[TCP_MD5SIG_MAXKEYLEN];
1568        struct rcu_head         rcu;
1569};
1570
1571/* - sock block */
1572struct tcp_md5sig_info {
1573        struct hlist_head       head;
1574        struct rcu_head         rcu;
1575};
1576
1577/* - pseudo header */
1578struct tcp4_pseudohdr {
1579        __be32          saddr;
1580        __be32          daddr;
1581        __u8            pad;
1582        __u8            protocol;
1583        __be16          len;
1584};
1585
1586struct tcp6_pseudohdr {
1587        struct in6_addr saddr;
1588        struct in6_addr daddr;
1589        __be32          len;
1590        __be32          protocol;       /* including padding */
1591};
1592
1593union tcp_md5sum_block {
1594        struct tcp4_pseudohdr ip4;
1595#if IS_ENABLED(CONFIG_IPV6)
1596        struct tcp6_pseudohdr ip6;
1597#endif
1598};
1599
1600/* - pool: digest algorithm, hash description and scratch buffer */
1601struct tcp_md5sig_pool {
1602        struct ahash_request    *md5_req;
1603        void                    *scratch;
1604};
1605
1606/* - functions */
1607int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1608                        const struct sock *sk, const struct sk_buff *skb);
1609int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1610                   int family, u8 prefixlen, int l3index,
1611                   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1612int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1613                   int family, u8 prefixlen, int l3index);
1614struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1615                                         const struct sock *addr_sk);
1616
1617#ifdef CONFIG_TCP_MD5SIG
1618#include <linux/jump_label.h>
1619extern struct static_key_false tcp_md5_needed;
1620struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1621                                           const union tcp_md5_addr *addr,
1622                                           int family);
1623static inline struct tcp_md5sig_key *
1624tcp_md5_do_lookup(const struct sock *sk, int l3index,
1625                  const union tcp_md5_addr *addr, int family)
1626{
1627        if (!static_branch_unlikely(&tcp_md5_needed))
1628                return NULL;
1629        return __tcp_md5_do_lookup(sk, l3index, addr, family);
1630}
1631
1632#define tcp_twsk_md5_key(twsk)  ((twsk)->tw_md5_key)
1633#else
1634static inline struct tcp_md5sig_key *
1635tcp_md5_do_lookup(const struct sock *sk, int l3index,
1636                  const union tcp_md5_addr *addr, int family)
1637{
1638        return NULL;
1639}
1640#define tcp_twsk_md5_key(twsk)  NULL
1641#endif
1642
1643bool tcp_alloc_md5sig_pool(void);
1644
1645struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1646static inline void tcp_put_md5sig_pool(void)
1647{
1648        local_bh_enable();
1649}
1650
1651int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1652                          unsigned int header_len);
1653int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1654                     const struct tcp_md5sig_key *key);
1655
1656/* From tcp_fastopen.c */
1657void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1658                            struct tcp_fastopen_cookie *cookie);
1659void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1660                            struct tcp_fastopen_cookie *cookie, bool syn_lost,
1661                            u16 try_exp);
1662struct tcp_fastopen_request {
1663        /* Fast Open cookie. Size 0 means a cookie request */
1664        struct tcp_fastopen_cookie      cookie;
1665        struct msghdr                   *data;  /* data in MSG_FASTOPEN */
1666        size_t                          size;
1667        int                             copied; /* queued in tcp_connect() */
1668        struct ubuf_info                *uarg;
1669};
1670void tcp_free_fastopen_req(struct tcp_sock *tp);
1671void tcp_fastopen_destroy_cipher(struct sock *sk);
1672void tcp_fastopen_ctx_destroy(struct net *net);
1673int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1674                              void *primary_key, void *backup_key);
1675int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1676                            u64 *key);
1677void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1678struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1679                              struct request_sock *req,
1680                              struct tcp_fastopen_cookie *foc,
1681                              const struct dst_entry *dst);
1682void tcp_fastopen_init_key_once(struct net *net);
1683bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1684                             struct tcp_fastopen_cookie *cookie);
1685bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1686#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1687#define TCP_FASTOPEN_KEY_MAX 2
1688#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1689        (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1690
1691/* Fastopen key context */
1692struct tcp_fastopen_context {
1693        siphash_key_t   key[TCP_FASTOPEN_KEY_MAX];
1694        int             num;
1695        struct rcu_head rcu;
1696};
1697
1698extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1699void tcp_fastopen_active_disable(struct sock *sk);
1700bool tcp_fastopen_active_should_disable(struct sock *sk);
1701void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1702void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1703
1704/* Caller needs to wrap with rcu_read_(un)lock() */
1705static inline
1706struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1707{
1708        struct tcp_fastopen_context *ctx;
1709
1710        ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1711        if (!ctx)
1712                ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1713        return ctx;
1714}
1715
1716static inline
1717bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1718                               const struct tcp_fastopen_cookie *orig)
1719{
1720        if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1721            orig->len == foc->len &&
1722            !memcmp(orig->val, foc->val, foc->len))
1723                return true;
1724        return false;
1725}
1726
1727static inline
1728int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1729{
1730        return ctx->num;
1731}
1732
1733/* Latencies incurred by various limits for a sender. They are
1734 * chronograph-like stats that are mutually exclusive.
1735 */
1736enum tcp_chrono {
1737        TCP_CHRONO_UNSPEC,
1738        TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1739        TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1740        TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1741        __TCP_CHRONO_MAX,
1742};
1743
1744void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1745void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1746
1747/* This helper is needed, because skb->tcp_tsorted_anchor uses
1748 * the same memory storage than skb->destructor/_skb_refdst
1749 */
1750static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1751{
1752        skb->destructor = NULL;
1753        skb->_skb_refdst = 0UL;
1754}
1755
1756#define tcp_skb_tsorted_save(skb) {             \
1757        unsigned long _save = skb->_skb_refdst; \
1758        skb->_skb_refdst = 0UL;
1759
1760#define tcp_skb_tsorted_restore(skb)            \
1761        skb->_skb_refdst = _save;               \
1762}
1763
1764void tcp_write_queue_purge(struct sock *sk);
1765
1766static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1767{
1768        return skb_rb_first(&sk->tcp_rtx_queue);
1769}
1770
1771static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1772{
1773        return skb_rb_last(&sk->tcp_rtx_queue);
1774}
1775
1776static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1777{
1778        return skb_peek(&sk->sk_write_queue);
1779}
1780
1781static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1782{
1783        return skb_peek_tail(&sk->sk_write_queue);
1784}
1785
1786#define tcp_for_write_queue_from_safe(skb, tmp, sk)                     \
1787        skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1788
1789static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1790{
1791        return skb_peek(&sk->sk_write_queue);
1792}
1793
1794static inline bool tcp_skb_is_last(const struct sock *sk,
1795                                   const struct sk_buff *skb)
1796{
1797        return skb_queue_is_last(&sk->sk_write_queue, skb);
1798}
1799
1800/**
1801 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1802 * @sk: socket
1803 *
1804 * Since the write queue can have a temporary empty skb in it,
1805 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1806 */
1807static inline bool tcp_write_queue_empty(const struct sock *sk)
1808{
1809        const struct tcp_sock *tp = tcp_sk(sk);
1810
1811        return tp->write_seq == tp->snd_nxt;
1812}
1813
1814static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1815{
1816        return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1817}
1818
1819static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1820{
1821        return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1822}
1823
1824static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1825{
1826        __skb_queue_tail(&sk->sk_write_queue, skb);
1827
1828        /* Queue it, remembering where we must start sending. */
1829        if (sk->sk_write_queue.next == skb)
1830                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1831}
1832
1833/* Insert new before skb on the write queue of sk.  */
1834static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1835                                                  struct sk_buff *skb,
1836                                                  struct sock *sk)
1837{
1838        __skb_queue_before(&sk->sk_write_queue, skb, new);
1839}
1840
1841static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1842{
1843        tcp_skb_tsorted_anchor_cleanup(skb);
1844        __skb_unlink(skb, &sk->sk_write_queue);
1845}
1846
1847void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1848
1849static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1850{
1851        tcp_skb_tsorted_anchor_cleanup(skb);
1852        rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1853}
1854
1855static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1856{
1857        list_del(&skb->tcp_tsorted_anchor);
1858        tcp_rtx_queue_unlink(skb, sk);
1859        sk_wmem_free_skb(sk, skb);
1860}
1861
1862static inline void tcp_push_pending_frames(struct sock *sk)
1863{
1864        if (tcp_send_head(sk)) {
1865                struct tcp_sock *tp = tcp_sk(sk);
1866
1867                __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1868        }
1869}
1870
1871/* Start sequence of the skb just after the highest skb with SACKed
1872 * bit, valid only if sacked_out > 0 or when the caller has ensured
1873 * validity by itself.
1874 */
1875static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1876{
1877        if (!tp->sacked_out)
1878                return tp->snd_una;
1879
1880        if (tp->highest_sack == NULL)
1881                return tp->snd_nxt;
1882
1883        return TCP_SKB_CB(tp->highest_sack)->seq;
1884}
1885
1886static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1887{
1888        tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1889}
1890
1891static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1892{
1893        return tcp_sk(sk)->highest_sack;
1894}
1895
1896static inline void tcp_highest_sack_reset(struct sock *sk)
1897{
1898        tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1899}
1900
1901/* Called when old skb is about to be deleted and replaced by new skb */
1902static inline void tcp_highest_sack_replace(struct sock *sk,
1903                                            struct sk_buff *old,
1904                                            struct sk_buff *new)
1905{
1906        if (old == tcp_highest_sack(sk))
1907                tcp_sk(sk)->highest_sack = new;
1908}
1909
1910/* This helper checks if socket has IP_TRANSPARENT set */
1911static inline bool inet_sk_transparent(const struct sock *sk)
1912{
1913        switch (sk->sk_state) {
1914        case TCP_TIME_WAIT:
1915                return inet_twsk(sk)->tw_transparent;
1916        case TCP_NEW_SYN_RECV:
1917                return inet_rsk(inet_reqsk(sk))->no_srccheck;
1918        }
1919        return inet_sk(sk)->transparent;
1920}
1921
1922/* Determines whether this is a thin stream (which may suffer from
1923 * increased latency). Used to trigger latency-reducing mechanisms.
1924 */
1925static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1926{
1927        return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1928}
1929
1930/* /proc */
1931enum tcp_seq_states {
1932        TCP_SEQ_STATE_LISTENING,
1933        TCP_SEQ_STATE_ESTABLISHED,
1934};
1935
1936void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1937void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1938void tcp_seq_stop(struct seq_file *seq, void *v);
1939
1940struct tcp_seq_afinfo {
1941        sa_family_t                     family;
1942};
1943
1944struct tcp_iter_state {
1945        struct seq_net_private  p;
1946        enum tcp_seq_states     state;
1947        struct sock             *syn_wait_sk;
1948        struct tcp_seq_afinfo   *bpf_seq_afinfo;
1949        int                     bucket, offset, sbucket, num;
1950        loff_t                  last_pos;
1951};
1952
1953extern struct request_sock_ops tcp_request_sock_ops;
1954extern struct request_sock_ops tcp6_request_sock_ops;
1955
1956void tcp_v4_destroy_sock(struct sock *sk);
1957
1958struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1959                                netdev_features_t features);
1960struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1961INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1962INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1963INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1964INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1965int tcp_gro_complete(struct sk_buff *skb);
1966
1967void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1968
1969static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1970{
1971        struct net *net = sock_net((struct sock *)tp);
1972        return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1973}
1974
1975/* @wake is one when sk_stream_write_space() calls us.
1976 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1977 * This mimics the strategy used in sock_def_write_space().
1978 */
1979static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1980{
1981        const struct tcp_sock *tp = tcp_sk(sk);
1982        u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1983                            READ_ONCE(tp->snd_nxt);
1984
1985        return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1986}
1987
1988#ifdef CONFIG_PROC_FS
1989int tcp4_proc_init(void);
1990void tcp4_proc_exit(void);
1991#endif
1992
1993int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1994int tcp_conn_request(struct request_sock_ops *rsk_ops,
1995                     const struct tcp_request_sock_ops *af_ops,
1996                     struct sock *sk, struct sk_buff *skb);
1997
1998/* TCP af-specific functions */
1999struct tcp_sock_af_ops {
2000#ifdef CONFIG_TCP_MD5SIG
2001        struct tcp_md5sig_key   *(*md5_lookup) (const struct sock *sk,
2002                                                const struct sock *addr_sk);
2003        int             (*calc_md5_hash)(char *location,
2004                                         const struct tcp_md5sig_key *md5,
2005                                         const struct sock *sk,
2006                                         const struct sk_buff *skb);
2007        int             (*md5_parse)(struct sock *sk,
2008                                     int optname,
2009                                     sockptr_t optval,
2010                                     int optlen);
2011#endif
2012};
2013
2014struct tcp_request_sock_ops {
2015        u16 mss_clamp;
2016#ifdef CONFIG_TCP_MD5SIG
2017        struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2018                                                 const struct sock *addr_sk);
2019        int             (*calc_md5_hash) (char *location,
2020                                          const struct tcp_md5sig_key *md5,
2021                                          const struct sock *sk,
2022                                          const struct sk_buff *skb);
2023#endif
2024        void (*init_req)(struct request_sock *req,
2025                         const struct sock *sk_listener,
2026                         struct sk_buff *skb);
2027#ifdef CONFIG_SYN_COOKIES
2028        __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2029                                 __u16 *mss);
2030#endif
2031        struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2032                                       const struct request_sock *req);
2033        u32 (*init_seq)(const struct sk_buff *skb);
2034        u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2035        int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2036                           struct flowi *fl, struct request_sock *req,
2037                           struct tcp_fastopen_cookie *foc,
2038                           enum tcp_synack_type synack_type);
2039};
2040
2041extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2042#if IS_ENABLED(CONFIG_IPV6)
2043extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2044#endif
2045
2046#ifdef CONFIG_SYN_COOKIES
2047static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2048                                         const struct sock *sk, struct sk_buff *skb,
2049                                         __u16 *mss)
2050{
2051        tcp_synq_overflow(sk);
2052        __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2053        return ops->cookie_init_seq(skb, mss);
2054}
2055#else
2056static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2057                                         const struct sock *sk, struct sk_buff *skb,
2058                                         __u16 *mss)
2059{
2060        return 0;
2061}
2062#endif
2063
2064int tcpv4_offload_init(void);
2065
2066void tcp_v4_init(void);
2067void tcp_init(void);
2068
2069/* tcp_recovery.c */
2070void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2071void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2072extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2073                                u32 reo_wnd);
2074extern void tcp_rack_mark_lost(struct sock *sk);
2075extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2076                             u64 xmit_time);
2077extern void tcp_rack_reo_timeout(struct sock *sk);
2078extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2079
2080/* At how many usecs into the future should the RTO fire? */
2081static inline s64 tcp_rto_delta_us(const struct sock *sk)
2082{
2083        const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2084        u32 rto = inet_csk(sk)->icsk_rto;
2085        u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2086
2087        return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2088}
2089
2090/*
2091 * Save and compile IPv4 options, return a pointer to it
2092 */
2093static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2094                                                         struct sk_buff *skb)
2095{
2096        const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2097        struct ip_options_rcu *dopt = NULL;
2098
2099        if (opt->optlen) {
2100                int opt_size = sizeof(*dopt) + opt->optlen;
2101
2102                dopt = kmalloc(opt_size, GFP_ATOMIC);
2103                if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2104                        kfree(dopt);
2105                        dopt = NULL;
2106                }
2107        }
2108        return dopt;
2109}
2110
2111/* locally generated TCP pure ACKs have skb->truesize == 2
2112 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2113 * This is much faster than dissecting the packet to find out.
2114 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2115 */
2116static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2117{
2118        return skb->truesize == 2;
2119}
2120
2121static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2122{
2123        skb->truesize = 2;
2124}
2125
2126static inline int tcp_inq(struct sock *sk)
2127{
2128        struct tcp_sock *tp = tcp_sk(sk);
2129        int answ;
2130
2131        if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2132                answ = 0;
2133        } else if (sock_flag(sk, SOCK_URGINLINE) ||
2134                   !tp->urg_data ||
2135                   before(tp->urg_seq, tp->copied_seq) ||
2136                   !before(tp->urg_seq, tp->rcv_nxt)) {
2137
2138                answ = tp->rcv_nxt - tp->copied_seq;
2139
2140                /* Subtract 1, if FIN was received */
2141                if (answ && sock_flag(sk, SOCK_DONE))
2142                        answ--;
2143        } else {
2144                answ = tp->urg_seq - tp->copied_seq;
2145        }
2146
2147        return answ;
2148}
2149
2150int tcp_peek_len(struct socket *sock);
2151
2152static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2153{
2154        u16 segs_in;
2155
2156        segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2157        tp->segs_in += segs_in;
2158        if (skb->len > tcp_hdrlen(skb))
2159                tp->data_segs_in += segs_in;
2160}
2161
2162/*
2163 * TCP listen path runs lockless.
2164 * We forced "struct sock" to be const qualified to make sure
2165 * we don't modify one of its field by mistake.
2166 * Here, we increment sk_drops which is an atomic_t, so we can safely
2167 * make sock writable again.
2168 */
2169static inline void tcp_listendrop(const struct sock *sk)
2170{
2171        atomic_inc(&((struct sock *)sk)->sk_drops);
2172        __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2173}
2174
2175enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2176
2177/*
2178 * Interface for adding Upper Level Protocols over TCP
2179 */
2180
2181#define TCP_ULP_NAME_MAX        16
2182#define TCP_ULP_MAX             128
2183#define TCP_ULP_BUF_MAX         (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2184
2185struct tcp_ulp_ops {
2186        struct list_head        list;
2187
2188        /* initialize ulp */
2189        int (*init)(struct sock *sk);
2190        /* update ulp */
2191        void (*update)(struct sock *sk, struct proto *p,
2192                       void (*write_space)(struct sock *sk));
2193        /* cleanup ulp */
2194        void (*release)(struct sock *sk);
2195        /* diagnostic */
2196        int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2197        size_t (*get_info_size)(const struct sock *sk);
2198        /* clone ulp */
2199        void (*clone)(const struct request_sock *req, struct sock *newsk,
2200                      const gfp_t priority);
2201
2202        char            name[TCP_ULP_NAME_MAX];
2203        struct module   *owner;
2204};
2205int tcp_register_ulp(struct tcp_ulp_ops *type);
2206void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2207int tcp_set_ulp(struct sock *sk, const char *name);
2208void tcp_get_available_ulp(char *buf, size_t len);
2209void tcp_cleanup_ulp(struct sock *sk);
2210void tcp_update_ulp(struct sock *sk, struct proto *p,
2211                    void (*write_space)(struct sock *sk));
2212
2213#define MODULE_ALIAS_TCP_ULP(name)                              \
2214        __MODULE_INFO(alias, alias_userspace, name);            \
2215        __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2216
2217struct sk_msg;
2218struct sk_psock;
2219
2220#ifdef CONFIG_BPF_STREAM_PARSER
2221struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2222void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2223#else
2224static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2225{
2226}
2227#endif /* CONFIG_BPF_STREAM_PARSER */
2228
2229#ifdef CONFIG_NET_SOCK_MSG
2230int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2231                          int flags);
2232int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2233                      struct msghdr *msg, int len, int flags);
2234#endif /* CONFIG_NET_SOCK_MSG */
2235
2236/* Call BPF_SOCK_OPS program that returns an int. If the return value
2237 * is < 0, then the BPF op failed (for example if the loaded BPF
2238 * program does not support the chosen operation or there is no BPF
2239 * program loaded).
2240 */
2241#ifdef CONFIG_BPF
2242static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2243{
2244        struct bpf_sock_ops_kern sock_ops;
2245        int ret;
2246
2247        memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2248        if (sk_fullsock(sk)) {
2249                sock_ops.is_fullsock = 1;
2250                sock_owned_by_me(sk);
2251        }
2252
2253        sock_ops.sk = sk;
2254        sock_ops.op = op;
2255        if (nargs > 0)
2256                memcpy(sock_ops.args, args, nargs * sizeof(*args));
2257
2258        ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2259        if (ret == 0)
2260                ret = sock_ops.reply;
2261        else
2262                ret = -1;
2263        return ret;
2264}
2265
2266static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2267{
2268        u32 args[2] = {arg1, arg2};
2269
2270        return tcp_call_bpf(sk, op, 2, args);
2271}
2272
2273static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2274                                    u32 arg3)
2275{
2276        u32 args[3] = {arg1, arg2, arg3};
2277
2278        return tcp_call_bpf(sk, op, 3, args);
2279}
2280
2281#else
2282static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2283{
2284        return -EPERM;
2285}
2286
2287static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2288{
2289        return -EPERM;
2290}
2291
2292static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2293                                    u32 arg3)
2294{
2295        return -EPERM;
2296}
2297
2298#endif
2299
2300static inline u32 tcp_timeout_init(struct sock *sk)
2301{
2302        int timeout;
2303
2304        timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2305
2306        if (timeout <= 0)
2307                timeout = TCP_TIMEOUT_INIT;
2308        return timeout;
2309}
2310
2311static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2312{
2313        int rwnd;
2314
2315        rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2316
2317        if (rwnd < 0)
2318                rwnd = 0;
2319        return rwnd;
2320}
2321
2322static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2323{
2324        return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2325}
2326
2327static inline void tcp_bpf_rtt(struct sock *sk)
2328{
2329        if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2330                tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2331}
2332
2333#if IS_ENABLED(CONFIG_SMC)
2334extern struct static_key_false tcp_have_smc;
2335#endif
2336
2337#if IS_ENABLED(CONFIG_TLS_DEVICE)
2338void clean_acked_data_enable(struct inet_connection_sock *icsk,
2339                             void (*cad)(struct sock *sk, u32 ack_seq));
2340void clean_acked_data_disable(struct inet_connection_sock *icsk);
2341void clean_acked_data_flush(void);
2342#endif
2343
2344DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2345static inline void tcp_add_tx_delay(struct sk_buff *skb,
2346                                    const struct tcp_sock *tp)
2347{
2348        if (static_branch_unlikely(&tcp_tx_delay_enabled))
2349                skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2350}
2351
2352/* Compute Earliest Departure Time for some control packets
2353 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2354 */
2355static inline u64 tcp_transmit_time(const struct sock *sk)
2356{
2357        if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2358                u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2359                        tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2360
2361                return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2362        }
2363        return 0;
2364}
2365
2366#endif  /* _TCP_H */
2367