linux/include/uapi/linux/btrfs_tree.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2#ifndef _BTRFS_CTREE_H_
   3#define _BTRFS_CTREE_H_
   4
   5#include <linux/btrfs.h>
   6#include <linux/types.h>
   7
   8/*
   9 * This header contains the structure definitions and constants used
  10 * by file system objects that can be retrieved using
  11 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
  12 * is needed to describe a leaf node's key or item contents.
  13 */
  14
  15/* holds pointers to all of the tree roots */
  16#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  17
  18/* stores information about which extents are in use, and reference counts */
  19#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  20
  21/*
  22 * chunk tree stores translations from logical -> physical block numbering
  23 * the super block points to the chunk tree
  24 */
  25#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  26
  27/*
  28 * stores information about which areas of a given device are in use.
  29 * one per device.  The tree of tree roots points to the device tree
  30 */
  31#define BTRFS_DEV_TREE_OBJECTID 4ULL
  32
  33/* one per subvolume, storing files and directories */
  34#define BTRFS_FS_TREE_OBJECTID 5ULL
  35
  36/* directory objectid inside the root tree */
  37#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  38
  39/* holds checksums of all the data extents */
  40#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  41
  42/* holds quota configuration and tracking */
  43#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
  44
  45/* for storing items that use the BTRFS_UUID_KEY* types */
  46#define BTRFS_UUID_TREE_OBJECTID 9ULL
  47
  48/* tracks free space in block groups. */
  49#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
  50
  51/* device stats in the device tree */
  52#define BTRFS_DEV_STATS_OBJECTID 0ULL
  53
  54/* for storing balance parameters in the root tree */
  55#define BTRFS_BALANCE_OBJECTID -4ULL
  56
  57/* orhpan objectid for tracking unlinked/truncated files */
  58#define BTRFS_ORPHAN_OBJECTID -5ULL
  59
  60/* does write ahead logging to speed up fsyncs */
  61#define BTRFS_TREE_LOG_OBJECTID -6ULL
  62#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
  63
  64/* for space balancing */
  65#define BTRFS_TREE_RELOC_OBJECTID -8ULL
  66#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
  67
  68/*
  69 * extent checksums all have this objectid
  70 * this allows them to share the logging tree
  71 * for fsyncs
  72 */
  73#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
  74
  75/* For storing free space cache */
  76#define BTRFS_FREE_SPACE_OBJECTID -11ULL
  77
  78/*
  79 * The inode number assigned to the special inode for storing
  80 * free ino cache
  81 */
  82#define BTRFS_FREE_INO_OBJECTID -12ULL
  83
  84/* dummy objectid represents multiple objectids */
  85#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
  86
  87/*
  88 * All files have objectids in this range.
  89 */
  90#define BTRFS_FIRST_FREE_OBJECTID 256ULL
  91#define BTRFS_LAST_FREE_OBJECTID -256ULL
  92#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
  93
  94
  95/*
  96 * the device items go into the chunk tree.  The key is in the form
  97 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
  98 */
  99#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 100
 101#define BTRFS_BTREE_INODE_OBJECTID 1
 102
 103#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 104
 105#define BTRFS_DEV_REPLACE_DEVID 0ULL
 106
 107/*
 108 * inode items have the data typically returned from stat and store other
 109 * info about object characteristics.  There is one for every file and dir in
 110 * the FS
 111 */
 112#define BTRFS_INODE_ITEM_KEY            1
 113#define BTRFS_INODE_REF_KEY             12
 114#define BTRFS_INODE_EXTREF_KEY          13
 115#define BTRFS_XATTR_ITEM_KEY            24
 116#define BTRFS_ORPHAN_ITEM_KEY           48
 117/* reserve 2-15 close to the inode for later flexibility */
 118
 119/*
 120 * dir items are the name -> inode pointers in a directory.  There is one
 121 * for every name in a directory.
 122 */
 123#define BTRFS_DIR_LOG_ITEM_KEY  60
 124#define BTRFS_DIR_LOG_INDEX_KEY 72
 125#define BTRFS_DIR_ITEM_KEY      84
 126#define BTRFS_DIR_INDEX_KEY     96
 127/*
 128 * extent data is for file data
 129 */
 130#define BTRFS_EXTENT_DATA_KEY   108
 131
 132/*
 133 * extent csums are stored in a separate tree and hold csums for
 134 * an entire extent on disk.
 135 */
 136#define BTRFS_EXTENT_CSUM_KEY   128
 137
 138/*
 139 * root items point to tree roots.  They are typically in the root
 140 * tree used by the super block to find all the other trees
 141 */
 142#define BTRFS_ROOT_ITEM_KEY     132
 143
 144/*
 145 * root backrefs tie subvols and snapshots to the directory entries that
 146 * reference them
 147 */
 148#define BTRFS_ROOT_BACKREF_KEY  144
 149
 150/*
 151 * root refs make a fast index for listing all of the snapshots and
 152 * subvolumes referenced by a given root.  They point directly to the
 153 * directory item in the root that references the subvol
 154 */
 155#define BTRFS_ROOT_REF_KEY      156
 156
 157/*
 158 * extent items are in the extent map tree.  These record which blocks
 159 * are used, and how many references there are to each block
 160 */
 161#define BTRFS_EXTENT_ITEM_KEY   168
 162
 163/*
 164 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
 165 * the length, so we save the level in key->offset instead of the length.
 166 */
 167#define BTRFS_METADATA_ITEM_KEY 169
 168
 169#define BTRFS_TREE_BLOCK_REF_KEY        176
 170
 171#define BTRFS_EXTENT_DATA_REF_KEY       178
 172
 173#define BTRFS_EXTENT_REF_V0_KEY         180
 174
 175#define BTRFS_SHARED_BLOCK_REF_KEY      182
 176
 177#define BTRFS_SHARED_DATA_REF_KEY       184
 178
 179/*
 180 * block groups give us hints into the extent allocation trees.  Which
 181 * blocks are free etc etc
 182 */
 183#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
 184
 185/*
 186 * Every block group is represented in the free space tree by a free space info
 187 * item, which stores some accounting information. It is keyed on
 188 * (block_group_start, FREE_SPACE_INFO, block_group_length).
 189 */
 190#define BTRFS_FREE_SPACE_INFO_KEY 198
 191
 192/*
 193 * A free space extent tracks an extent of space that is free in a block group.
 194 * It is keyed on (start, FREE_SPACE_EXTENT, length).
 195 */
 196#define BTRFS_FREE_SPACE_EXTENT_KEY 199
 197
 198/*
 199 * When a block group becomes very fragmented, we convert it to use bitmaps
 200 * instead of extents. A free space bitmap is keyed on
 201 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
 202 * (length / sectorsize) bits.
 203 */
 204#define BTRFS_FREE_SPACE_BITMAP_KEY 200
 205
 206#define BTRFS_DEV_EXTENT_KEY    204
 207#define BTRFS_DEV_ITEM_KEY      216
 208#define BTRFS_CHUNK_ITEM_KEY    228
 209
 210/*
 211 * Records the overall state of the qgroups.
 212 * There's only one instance of this key present,
 213 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
 214 */
 215#define BTRFS_QGROUP_STATUS_KEY         240
 216/*
 217 * Records the currently used space of the qgroup.
 218 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
 219 */
 220#define BTRFS_QGROUP_INFO_KEY           242
 221/*
 222 * Contains the user configured limits for the qgroup.
 223 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
 224 */
 225#define BTRFS_QGROUP_LIMIT_KEY          244
 226/*
 227 * Records the child-parent relationship of qgroups. For
 228 * each relation, 2 keys are present:
 229 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
 230 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
 231 */
 232#define BTRFS_QGROUP_RELATION_KEY       246
 233
 234/*
 235 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
 236 */
 237#define BTRFS_BALANCE_ITEM_KEY  248
 238
 239/*
 240 * The key type for tree items that are stored persistently, but do not need to
 241 * exist for extended period of time. The items can exist in any tree.
 242 *
 243 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
 244 *
 245 * Existing items:
 246 *
 247 * - balance status item
 248 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
 249 */
 250#define BTRFS_TEMPORARY_ITEM_KEY        248
 251
 252/*
 253 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
 254 */
 255#define BTRFS_DEV_STATS_KEY             249
 256
 257/*
 258 * The key type for tree items that are stored persistently and usually exist
 259 * for a long period, eg. filesystem lifetime. The item kinds can be status
 260 * information, stats or preference values. The item can exist in any tree.
 261 *
 262 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
 263 *
 264 * Existing items:
 265 *
 266 * - device statistics, store IO stats in the device tree, one key for all
 267 *   stats
 268 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
 269 */
 270#define BTRFS_PERSISTENT_ITEM_KEY       249
 271
 272/*
 273 * Persistantly stores the device replace state in the device tree.
 274 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
 275 */
 276#define BTRFS_DEV_REPLACE_KEY   250
 277
 278/*
 279 * Stores items that allow to quickly map UUIDs to something else.
 280 * These items are part of the filesystem UUID tree.
 281 * The key is built like this:
 282 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
 283 */
 284#if BTRFS_UUID_SIZE != 16
 285#error "UUID items require BTRFS_UUID_SIZE == 16!"
 286#endif
 287#define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
 288#define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
 289                                                 * received subvols */
 290
 291/*
 292 * string items are for debugging.  They just store a short string of
 293 * data in the FS
 294 */
 295#define BTRFS_STRING_ITEM_KEY   253
 296
 297
 298
 299/* 32 bytes in various csum fields */
 300#define BTRFS_CSUM_SIZE 32
 301
 302/* csum types */
 303enum btrfs_csum_type {
 304        BTRFS_CSUM_TYPE_CRC32   = 0,
 305        BTRFS_CSUM_TYPE_XXHASH  = 1,
 306        BTRFS_CSUM_TYPE_SHA256  = 2,
 307        BTRFS_CSUM_TYPE_BLAKE2  = 3,
 308};
 309
 310/*
 311 * flags definitions for directory entry item type
 312 *
 313 * Used by:
 314 * struct btrfs_dir_item.type
 315 *
 316 * Values 0..7 must match common file type values in fs_types.h.
 317 */
 318#define BTRFS_FT_UNKNOWN        0
 319#define BTRFS_FT_REG_FILE       1
 320#define BTRFS_FT_DIR            2
 321#define BTRFS_FT_CHRDEV         3
 322#define BTRFS_FT_BLKDEV         4
 323#define BTRFS_FT_FIFO           5
 324#define BTRFS_FT_SOCK           6
 325#define BTRFS_FT_SYMLINK        7
 326#define BTRFS_FT_XATTR          8
 327#define BTRFS_FT_MAX            9
 328
 329/*
 330 * The key defines the order in the tree, and so it also defines (optimal)
 331 * block layout.
 332 *
 333 * objectid corresponds to the inode number.
 334 *
 335 * type tells us things about the object, and is a kind of stream selector.
 336 * so for a given inode, keys with type of 1 might refer to the inode data,
 337 * type of 2 may point to file data in the btree and type == 3 may point to
 338 * extents.
 339 *
 340 * offset is the starting byte offset for this key in the stream.
 341 *
 342 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 343 * in cpu native order.  Otherwise they are identical and their sizes
 344 * should be the same (ie both packed)
 345 */
 346struct btrfs_disk_key {
 347        __le64 objectid;
 348        __u8 type;
 349        __le64 offset;
 350} __attribute__ ((__packed__));
 351
 352struct btrfs_key {
 353        __u64 objectid;
 354        __u8 type;
 355        __u64 offset;
 356} __attribute__ ((__packed__));
 357
 358struct btrfs_dev_item {
 359        /* the internal btrfs device id */
 360        __le64 devid;
 361
 362        /* size of the device */
 363        __le64 total_bytes;
 364
 365        /* bytes used */
 366        __le64 bytes_used;
 367
 368        /* optimal io alignment for this device */
 369        __le32 io_align;
 370
 371        /* optimal io width for this device */
 372        __le32 io_width;
 373
 374        /* minimal io size for this device */
 375        __le32 sector_size;
 376
 377        /* type and info about this device */
 378        __le64 type;
 379
 380        /* expected generation for this device */
 381        __le64 generation;
 382
 383        /*
 384         * starting byte of this partition on the device,
 385         * to allow for stripe alignment in the future
 386         */
 387        __le64 start_offset;
 388
 389        /* grouping information for allocation decisions */
 390        __le32 dev_group;
 391
 392        /* seek speed 0-100 where 100 is fastest */
 393        __u8 seek_speed;
 394
 395        /* bandwidth 0-100 where 100 is fastest */
 396        __u8 bandwidth;
 397
 398        /* btrfs generated uuid for this device */
 399        __u8 uuid[BTRFS_UUID_SIZE];
 400
 401        /* uuid of FS who owns this device */
 402        __u8 fsid[BTRFS_UUID_SIZE];
 403} __attribute__ ((__packed__));
 404
 405struct btrfs_stripe {
 406        __le64 devid;
 407        __le64 offset;
 408        __u8 dev_uuid[BTRFS_UUID_SIZE];
 409} __attribute__ ((__packed__));
 410
 411struct btrfs_chunk {
 412        /* size of this chunk in bytes */
 413        __le64 length;
 414
 415        /* objectid of the root referencing this chunk */
 416        __le64 owner;
 417
 418        __le64 stripe_len;
 419        __le64 type;
 420
 421        /* optimal io alignment for this chunk */
 422        __le32 io_align;
 423
 424        /* optimal io width for this chunk */
 425        __le32 io_width;
 426
 427        /* minimal io size for this chunk */
 428        __le32 sector_size;
 429
 430        /* 2^16 stripes is quite a lot, a second limit is the size of a single
 431         * item in the btree
 432         */
 433        __le16 num_stripes;
 434
 435        /* sub stripes only matter for raid10 */
 436        __le16 sub_stripes;
 437        struct btrfs_stripe stripe;
 438        /* additional stripes go here */
 439} __attribute__ ((__packed__));
 440
 441#define BTRFS_FREE_SPACE_EXTENT 1
 442#define BTRFS_FREE_SPACE_BITMAP 2
 443
 444struct btrfs_free_space_entry {
 445        __le64 offset;
 446        __le64 bytes;
 447        __u8 type;
 448} __attribute__ ((__packed__));
 449
 450struct btrfs_free_space_header {
 451        struct btrfs_disk_key location;
 452        __le64 generation;
 453        __le64 num_entries;
 454        __le64 num_bitmaps;
 455} __attribute__ ((__packed__));
 456
 457#define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
 458#define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
 459
 460/* Super block flags */
 461/* Errors detected */
 462#define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
 463
 464#define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
 465#define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
 466#define BTRFS_SUPER_FLAG_METADUMP_V2    (1ULL << 34)
 467#define BTRFS_SUPER_FLAG_CHANGING_FSID  (1ULL << 35)
 468#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
 469
 470
 471/*
 472 * items in the extent btree are used to record the objectid of the
 473 * owner of the block and the number of references
 474 */
 475
 476struct btrfs_extent_item {
 477        __le64 refs;
 478        __le64 generation;
 479        __le64 flags;
 480} __attribute__ ((__packed__));
 481
 482struct btrfs_extent_item_v0 {
 483        __le32 refs;
 484} __attribute__ ((__packed__));
 485
 486
 487#define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
 488#define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
 489
 490/* following flags only apply to tree blocks */
 491
 492/* use full backrefs for extent pointers in the block */
 493#define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
 494
 495/*
 496 * this flag is only used internally by scrub and may be changed at any time
 497 * it is only declared here to avoid collisions
 498 */
 499#define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
 500
 501struct btrfs_tree_block_info {
 502        struct btrfs_disk_key key;
 503        __u8 level;
 504} __attribute__ ((__packed__));
 505
 506struct btrfs_extent_data_ref {
 507        __le64 root;
 508        __le64 objectid;
 509        __le64 offset;
 510        __le32 count;
 511} __attribute__ ((__packed__));
 512
 513struct btrfs_shared_data_ref {
 514        __le32 count;
 515} __attribute__ ((__packed__));
 516
 517struct btrfs_extent_inline_ref {
 518        __u8 type;
 519        __le64 offset;
 520} __attribute__ ((__packed__));
 521
 522/* dev extents record free space on individual devices.  The owner
 523 * field points back to the chunk allocation mapping tree that allocated
 524 * the extent.  The chunk tree uuid field is a way to double check the owner
 525 */
 526struct btrfs_dev_extent {
 527        __le64 chunk_tree;
 528        __le64 chunk_objectid;
 529        __le64 chunk_offset;
 530        __le64 length;
 531        __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 532} __attribute__ ((__packed__));
 533
 534struct btrfs_inode_ref {
 535        __le64 index;
 536        __le16 name_len;
 537        /* name goes here */
 538} __attribute__ ((__packed__));
 539
 540struct btrfs_inode_extref {
 541        __le64 parent_objectid;
 542        __le64 index;
 543        __le16 name_len;
 544        __u8   name[0];
 545        /* name goes here */
 546} __attribute__ ((__packed__));
 547
 548struct btrfs_timespec {
 549        __le64 sec;
 550        __le32 nsec;
 551} __attribute__ ((__packed__));
 552
 553struct btrfs_inode_item {
 554        /* nfs style generation number */
 555        __le64 generation;
 556        /* transid that last touched this inode */
 557        __le64 transid;
 558        __le64 size;
 559        __le64 nbytes;
 560        __le64 block_group;
 561        __le32 nlink;
 562        __le32 uid;
 563        __le32 gid;
 564        __le32 mode;
 565        __le64 rdev;
 566        __le64 flags;
 567
 568        /* modification sequence number for NFS */
 569        __le64 sequence;
 570
 571        /*
 572         * a little future expansion, for more than this we can
 573         * just grow the inode item and version it
 574         */
 575        __le64 reserved[4];
 576        struct btrfs_timespec atime;
 577        struct btrfs_timespec ctime;
 578        struct btrfs_timespec mtime;
 579        struct btrfs_timespec otime;
 580} __attribute__ ((__packed__));
 581
 582struct btrfs_dir_log_item {
 583        __le64 end;
 584} __attribute__ ((__packed__));
 585
 586struct btrfs_dir_item {
 587        struct btrfs_disk_key location;
 588        __le64 transid;
 589        __le16 data_len;
 590        __le16 name_len;
 591        __u8 type;
 592} __attribute__ ((__packed__));
 593
 594#define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
 595
 596/*
 597 * Internal in-memory flag that a subvolume has been marked for deletion but
 598 * still visible as a directory
 599 */
 600#define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
 601
 602struct btrfs_root_item {
 603        struct btrfs_inode_item inode;
 604        __le64 generation;
 605        __le64 root_dirid;
 606        __le64 bytenr;
 607        __le64 byte_limit;
 608        __le64 bytes_used;
 609        __le64 last_snapshot;
 610        __le64 flags;
 611        __le32 refs;
 612        struct btrfs_disk_key drop_progress;
 613        __u8 drop_level;
 614        __u8 level;
 615
 616        /*
 617         * The following fields appear after subvol_uuids+subvol_times
 618         * were introduced.
 619         */
 620
 621        /*
 622         * This generation number is used to test if the new fields are valid
 623         * and up to date while reading the root item. Every time the root item
 624         * is written out, the "generation" field is copied into this field. If
 625         * anyone ever mounted the fs with an older kernel, we will have
 626         * mismatching generation values here and thus must invalidate the
 627         * new fields. See btrfs_update_root and btrfs_find_last_root for
 628         * details.
 629         * the offset of generation_v2 is also used as the start for the memset
 630         * when invalidating the fields.
 631         */
 632        __le64 generation_v2;
 633        __u8 uuid[BTRFS_UUID_SIZE];
 634        __u8 parent_uuid[BTRFS_UUID_SIZE];
 635        __u8 received_uuid[BTRFS_UUID_SIZE];
 636        __le64 ctransid; /* updated when an inode changes */
 637        __le64 otransid; /* trans when created */
 638        __le64 stransid; /* trans when sent. non-zero for received subvol */
 639        __le64 rtransid; /* trans when received. non-zero for received subvol */
 640        struct btrfs_timespec ctime;
 641        struct btrfs_timespec otime;
 642        struct btrfs_timespec stime;
 643        struct btrfs_timespec rtime;
 644        __le64 reserved[8]; /* for future */
 645} __attribute__ ((__packed__));
 646
 647/*
 648 * this is used for both forward and backward root refs
 649 */
 650struct btrfs_root_ref {
 651        __le64 dirid;
 652        __le64 sequence;
 653        __le16 name_len;
 654} __attribute__ ((__packed__));
 655
 656struct btrfs_disk_balance_args {
 657        /*
 658         * profiles to operate on, single is denoted by
 659         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 660         */
 661        __le64 profiles;
 662
 663        /*
 664         * usage filter
 665         * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
 666         * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
 667         */
 668        union {
 669                __le64 usage;
 670                struct {
 671                        __le32 usage_min;
 672                        __le32 usage_max;
 673                };
 674        };
 675
 676        /* devid filter */
 677        __le64 devid;
 678
 679        /* devid subset filter [pstart..pend) */
 680        __le64 pstart;
 681        __le64 pend;
 682
 683        /* btrfs virtual address space subset filter [vstart..vend) */
 684        __le64 vstart;
 685        __le64 vend;
 686
 687        /*
 688         * profile to convert to, single is denoted by
 689         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 690         */
 691        __le64 target;
 692
 693        /* BTRFS_BALANCE_ARGS_* */
 694        __le64 flags;
 695
 696        /*
 697         * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
 698         * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
 699         * and maximum
 700         */
 701        union {
 702                __le64 limit;
 703                struct {
 704                        __le32 limit_min;
 705                        __le32 limit_max;
 706                };
 707        };
 708
 709        /*
 710         * Process chunks that cross stripes_min..stripes_max devices,
 711         * BTRFS_BALANCE_ARGS_STRIPES_RANGE
 712         */
 713        __le32 stripes_min;
 714        __le32 stripes_max;
 715
 716        __le64 unused[6];
 717} __attribute__ ((__packed__));
 718
 719/*
 720 * store balance parameters to disk so that balance can be properly
 721 * resumed after crash or unmount
 722 */
 723struct btrfs_balance_item {
 724        /* BTRFS_BALANCE_* */
 725        __le64 flags;
 726
 727        struct btrfs_disk_balance_args data;
 728        struct btrfs_disk_balance_args meta;
 729        struct btrfs_disk_balance_args sys;
 730
 731        __le64 unused[4];
 732} __attribute__ ((__packed__));
 733
 734enum {
 735        BTRFS_FILE_EXTENT_INLINE   = 0,
 736        BTRFS_FILE_EXTENT_REG      = 1,
 737        BTRFS_FILE_EXTENT_PREALLOC = 2,
 738        BTRFS_NR_FILE_EXTENT_TYPES = 3,
 739};
 740
 741struct btrfs_file_extent_item {
 742        /*
 743         * transaction id that created this extent
 744         */
 745        __le64 generation;
 746        /*
 747         * max number of bytes to hold this extent in ram
 748         * when we split a compressed extent we can't know how big
 749         * each of the resulting pieces will be.  So, this is
 750         * an upper limit on the size of the extent in ram instead of
 751         * an exact limit.
 752         */
 753        __le64 ram_bytes;
 754
 755        /*
 756         * 32 bits for the various ways we might encode the data,
 757         * including compression and encryption.  If any of these
 758         * are set to something a given disk format doesn't understand
 759         * it is treated like an incompat flag for reading and writing,
 760         * but not for stat.
 761         */
 762        __u8 compression;
 763        __u8 encryption;
 764        __le16 other_encoding; /* spare for later use */
 765
 766        /* are we inline data or a real extent? */
 767        __u8 type;
 768
 769        /*
 770         * disk space consumed by the extent, checksum blocks are included
 771         * in these numbers
 772         *
 773         * At this offset in the structure, the inline extent data start.
 774         */
 775        __le64 disk_bytenr;
 776        __le64 disk_num_bytes;
 777        /*
 778         * the logical offset in file blocks (no csums)
 779         * this extent record is for.  This allows a file extent to point
 780         * into the middle of an existing extent on disk, sharing it
 781         * between two snapshots (useful if some bytes in the middle of the
 782         * extent have changed
 783         */
 784        __le64 offset;
 785        /*
 786         * the logical number of file blocks (no csums included).  This
 787         * always reflects the size uncompressed and without encoding.
 788         */
 789        __le64 num_bytes;
 790
 791} __attribute__ ((__packed__));
 792
 793struct btrfs_csum_item {
 794        __u8 csum;
 795} __attribute__ ((__packed__));
 796
 797struct btrfs_dev_stats_item {
 798        /*
 799         * grow this item struct at the end for future enhancements and keep
 800         * the existing values unchanged
 801         */
 802        __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
 803} __attribute__ ((__packed__));
 804
 805#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS     0
 806#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID      1
 807
 808struct btrfs_dev_replace_item {
 809        /*
 810         * grow this item struct at the end for future enhancements and keep
 811         * the existing values unchanged
 812         */
 813        __le64 src_devid;
 814        __le64 cursor_left;
 815        __le64 cursor_right;
 816        __le64 cont_reading_from_srcdev_mode;
 817
 818        __le64 replace_state;
 819        __le64 time_started;
 820        __le64 time_stopped;
 821        __le64 num_write_errors;
 822        __le64 num_uncorrectable_read_errors;
 823} __attribute__ ((__packed__));
 824
 825/* different types of block groups (and chunks) */
 826#define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
 827#define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
 828#define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
 829#define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
 830#define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
 831#define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
 832#define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
 833#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
 834#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
 835#define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
 836#define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
 837#define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
 838                                         BTRFS_SPACE_INFO_GLOBAL_RSV)
 839
 840enum btrfs_raid_types {
 841        BTRFS_RAID_RAID10,
 842        BTRFS_RAID_RAID1,
 843        BTRFS_RAID_DUP,
 844        BTRFS_RAID_RAID0,
 845        BTRFS_RAID_SINGLE,
 846        BTRFS_RAID_RAID5,
 847        BTRFS_RAID_RAID6,
 848        BTRFS_RAID_RAID1C3,
 849        BTRFS_RAID_RAID1C4,
 850        BTRFS_NR_RAID_TYPES
 851};
 852
 853#define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
 854                                         BTRFS_BLOCK_GROUP_SYSTEM |  \
 855                                         BTRFS_BLOCK_GROUP_METADATA)
 856
 857#define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
 858                                         BTRFS_BLOCK_GROUP_RAID1 |   \
 859                                         BTRFS_BLOCK_GROUP_RAID1C3 | \
 860                                         BTRFS_BLOCK_GROUP_RAID1C4 | \
 861                                         BTRFS_BLOCK_GROUP_RAID5 |   \
 862                                         BTRFS_BLOCK_GROUP_RAID6 |   \
 863                                         BTRFS_BLOCK_GROUP_DUP |     \
 864                                         BTRFS_BLOCK_GROUP_RAID10)
 865#define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
 866                                         BTRFS_BLOCK_GROUP_RAID6)
 867
 868#define BTRFS_BLOCK_GROUP_RAID1_MASK    (BTRFS_BLOCK_GROUP_RAID1 |   \
 869                                         BTRFS_BLOCK_GROUP_RAID1C3 | \
 870                                         BTRFS_BLOCK_GROUP_RAID1C4)
 871
 872/*
 873 * We need a bit for restriper to be able to tell when chunks of type
 874 * SINGLE are available.  This "extended" profile format is used in
 875 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 876 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 877 * to avoid remappings between two formats in future.
 878 */
 879#define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
 880
 881/*
 882 * A fake block group type that is used to communicate global block reserve
 883 * size to userspace via the SPACE_INFO ioctl.
 884 */
 885#define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
 886
 887#define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
 888                                         BTRFS_AVAIL_ALLOC_BIT_SINGLE)
 889
 890static inline __u64 chunk_to_extended(__u64 flags)
 891{
 892        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
 893                flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 894
 895        return flags;
 896}
 897static inline __u64 extended_to_chunk(__u64 flags)
 898{
 899        return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 900}
 901
 902struct btrfs_block_group_item {
 903        __le64 used;
 904        __le64 chunk_objectid;
 905        __le64 flags;
 906} __attribute__ ((__packed__));
 907
 908struct btrfs_free_space_info {
 909        __le32 extent_count;
 910        __le32 flags;
 911} __attribute__ ((__packed__));
 912
 913#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
 914
 915#define BTRFS_QGROUP_LEVEL_SHIFT                48
 916static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
 917{
 918        return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
 919}
 920
 921/*
 922 * is subvolume quota turned on?
 923 */
 924#define BTRFS_QGROUP_STATUS_FLAG_ON             (1ULL << 0)
 925/*
 926 * RESCAN is set during the initialization phase
 927 */
 928#define BTRFS_QGROUP_STATUS_FLAG_RESCAN         (1ULL << 1)
 929/*
 930 * Some qgroup entries are known to be out of date,
 931 * either because the configuration has changed in a way that
 932 * makes a rescan necessary, or because the fs has been mounted
 933 * with a non-qgroup-aware version.
 934 * Turning qouta off and on again makes it inconsistent, too.
 935 */
 936#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT   (1ULL << 2)
 937
 938#define BTRFS_QGROUP_STATUS_VERSION        1
 939
 940struct btrfs_qgroup_status_item {
 941        __le64 version;
 942        /*
 943         * the generation is updated during every commit. As older
 944         * versions of btrfs are not aware of qgroups, it will be
 945         * possible to detect inconsistencies by checking the
 946         * generation on mount time
 947         */
 948        __le64 generation;
 949
 950        /* flag definitions see above */
 951        __le64 flags;
 952
 953        /*
 954         * only used during scanning to record the progress
 955         * of the scan. It contains a logical address
 956         */
 957        __le64 rescan;
 958} __attribute__ ((__packed__));
 959
 960struct btrfs_qgroup_info_item {
 961        __le64 generation;
 962        __le64 rfer;
 963        __le64 rfer_cmpr;
 964        __le64 excl;
 965        __le64 excl_cmpr;
 966} __attribute__ ((__packed__));
 967
 968struct btrfs_qgroup_limit_item {
 969        /*
 970         * only updated when any of the other values change
 971         */
 972        __le64 flags;
 973        __le64 max_rfer;
 974        __le64 max_excl;
 975        __le64 rsv_rfer;
 976        __le64 rsv_excl;
 977} __attribute__ ((__packed__));
 978
 979#endif /* _BTRFS_CTREE_H_ */
 980