linux/kernel/audit.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* audit.c -- Auditing support
   3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   4 * System-call specific features have moved to auditsc.c
   5 *
   6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   7 * All Rights Reserved.
   8 *
   9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  10 *
  11 * Goals: 1) Integrate fully with Security Modules.
  12 *        2) Minimal run-time overhead:
  13 *           a) Minimal when syscall auditing is disabled (audit_enable=0).
  14 *           b) Small when syscall auditing is enabled and no audit record
  15 *              is generated (defer as much work as possible to record
  16 *              generation time):
  17 *              i) context is allocated,
  18 *              ii) names from getname are stored without a copy, and
  19 *              iii) inode information stored from path_lookup.
  20 *        3) Ability to disable syscall auditing at boot time (audit=0).
  21 *        4) Usable by other parts of the kernel (if audit_log* is called,
  22 *           then a syscall record will be generated automatically for the
  23 *           current syscall).
  24 *        5) Netlink interface to user-space.
  25 *        6) Support low-overhead kernel-based filtering to minimize the
  26 *           information that must be passed to user-space.
  27 *
  28 * Audit userspace, documentation, tests, and bug/issue trackers:
  29 *      https://github.com/linux-audit
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/file.h>
  35#include <linux/init.h>
  36#include <linux/types.h>
  37#include <linux/atomic.h>
  38#include <linux/mm.h>
  39#include <linux/export.h>
  40#include <linux/slab.h>
  41#include <linux/err.h>
  42#include <linux/kthread.h>
  43#include <linux/kernel.h>
  44#include <linux/syscalls.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/mutex.h>
  48#include <linux/gfp.h>
  49#include <linux/pid.h>
  50
  51#include <linux/audit.h>
  52
  53#include <net/sock.h>
  54#include <net/netlink.h>
  55#include <linux/skbuff.h>
  56#ifdef CONFIG_SECURITY
  57#include <linux/security.h>
  58#endif
  59#include <linux/freezer.h>
  60#include <linux/pid_namespace.h>
  61#include <net/netns/generic.h>
  62
  63#include "audit.h"
  64
  65/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  66 * (Initialization happens after skb_init is called.) */
  67#define AUDIT_DISABLED          -1
  68#define AUDIT_UNINITIALIZED     0
  69#define AUDIT_INITIALIZED       1
  70static int      audit_initialized;
  71
  72u32             audit_enabled = AUDIT_OFF;
  73bool            audit_ever_enabled = !!AUDIT_OFF;
  74
  75EXPORT_SYMBOL_GPL(audit_enabled);
  76
  77/* Default state when kernel boots without any parameters. */
  78static u32      audit_default = AUDIT_OFF;
  79
  80/* If auditing cannot proceed, audit_failure selects what happens. */
  81static u32      audit_failure = AUDIT_FAIL_PRINTK;
  82
  83/* private audit network namespace index */
  84static unsigned int audit_net_id;
  85
  86/**
  87 * struct audit_net - audit private network namespace data
  88 * @sk: communication socket
  89 */
  90struct audit_net {
  91        struct sock *sk;
  92};
  93
  94/**
  95 * struct auditd_connection - kernel/auditd connection state
  96 * @pid: auditd PID
  97 * @portid: netlink portid
  98 * @net: the associated network namespace
  99 * @rcu: RCU head
 100 *
 101 * Description:
 102 * This struct is RCU protected; you must either hold the RCU lock for reading
 103 * or the associated spinlock for writing.
 104 */
 105struct auditd_connection {
 106        struct pid *pid;
 107        u32 portid;
 108        struct net *net;
 109        struct rcu_head rcu;
 110};
 111static struct auditd_connection __rcu *auditd_conn;
 112static DEFINE_SPINLOCK(auditd_conn_lock);
 113
 114/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 115 * to that number per second.  This prevents DoS attacks, but results in
 116 * audit records being dropped. */
 117static u32      audit_rate_limit;
 118
 119/* Number of outstanding audit_buffers allowed.
 120 * When set to zero, this means unlimited. */
 121static u32      audit_backlog_limit = 64;
 122#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 123static u32      audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 124
 125/* The identity of the user shutting down the audit system. */
 126kuid_t          audit_sig_uid = INVALID_UID;
 127pid_t           audit_sig_pid = -1;
 128u32             audit_sig_sid = 0;
 129
 130/* Records can be lost in several ways:
 131   0) [suppressed in audit_alloc]
 132   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 133   2) out of memory in audit_log_move [alloc_skb]
 134   3) suppressed due to audit_rate_limit
 135   4) suppressed due to audit_backlog_limit
 136*/
 137static atomic_t audit_lost = ATOMIC_INIT(0);
 138
 139/* Monotonically increasing sum of time the kernel has spent
 140 * waiting while the backlog limit is exceeded.
 141 */
 142static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
 143
 144/* Hash for inode-based rules */
 145struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 146
 147static struct kmem_cache *audit_buffer_cache;
 148
 149/* queue msgs to send via kauditd_task */
 150static struct sk_buff_head audit_queue;
 151/* queue msgs due to temporary unicast send problems */
 152static struct sk_buff_head audit_retry_queue;
 153/* queue msgs waiting for new auditd connection */
 154static struct sk_buff_head audit_hold_queue;
 155
 156/* queue servicing thread */
 157static struct task_struct *kauditd_task;
 158static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 159
 160/* waitqueue for callers who are blocked on the audit backlog */
 161static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 162
 163static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 164                                   .mask = -1,
 165                                   .features = 0,
 166                                   .lock = 0,};
 167
 168static char *audit_feature_names[2] = {
 169        "only_unset_loginuid",
 170        "loginuid_immutable",
 171};
 172
 173/**
 174 * struct audit_ctl_mutex - serialize requests from userspace
 175 * @lock: the mutex used for locking
 176 * @owner: the task which owns the lock
 177 *
 178 * Description:
 179 * This is the lock struct used to ensure we only process userspace requests
 180 * in an orderly fashion.  We can't simply use a mutex/lock here because we
 181 * need to track lock ownership so we don't end up blocking the lock owner in
 182 * audit_log_start() or similar.
 183 */
 184static struct audit_ctl_mutex {
 185        struct mutex lock;
 186        void *owner;
 187} audit_cmd_mutex;
 188
 189/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 190 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 191 * should be at least that large. */
 192#define AUDIT_BUFSIZ 1024
 193
 194/* The audit_buffer is used when formatting an audit record.  The caller
 195 * locks briefly to get the record off the freelist or to allocate the
 196 * buffer, and locks briefly to send the buffer to the netlink layer or
 197 * to place it on a transmit queue.  Multiple audit_buffers can be in
 198 * use simultaneously. */
 199struct audit_buffer {
 200        struct sk_buff       *skb;      /* formatted skb ready to send */
 201        struct audit_context *ctx;      /* NULL or associated context */
 202        gfp_t                gfp_mask;
 203};
 204
 205struct audit_reply {
 206        __u32 portid;
 207        struct net *net;
 208        struct sk_buff *skb;
 209};
 210
 211/**
 212 * auditd_test_task - Check to see if a given task is an audit daemon
 213 * @task: the task to check
 214 *
 215 * Description:
 216 * Return 1 if the task is a registered audit daemon, 0 otherwise.
 217 */
 218int auditd_test_task(struct task_struct *task)
 219{
 220        int rc;
 221        struct auditd_connection *ac;
 222
 223        rcu_read_lock();
 224        ac = rcu_dereference(auditd_conn);
 225        rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
 226        rcu_read_unlock();
 227
 228        return rc;
 229}
 230
 231/**
 232 * audit_ctl_lock - Take the audit control lock
 233 */
 234void audit_ctl_lock(void)
 235{
 236        mutex_lock(&audit_cmd_mutex.lock);
 237        audit_cmd_mutex.owner = current;
 238}
 239
 240/**
 241 * audit_ctl_unlock - Drop the audit control lock
 242 */
 243void audit_ctl_unlock(void)
 244{
 245        audit_cmd_mutex.owner = NULL;
 246        mutex_unlock(&audit_cmd_mutex.lock);
 247}
 248
 249/**
 250 * audit_ctl_owner_current - Test to see if the current task owns the lock
 251 *
 252 * Description:
 253 * Return true if the current task owns the audit control lock, false if it
 254 * doesn't own the lock.
 255 */
 256static bool audit_ctl_owner_current(void)
 257{
 258        return (current == audit_cmd_mutex.owner);
 259}
 260
 261/**
 262 * auditd_pid_vnr - Return the auditd PID relative to the namespace
 263 *
 264 * Description:
 265 * Returns the PID in relation to the namespace, 0 on failure.
 266 */
 267static pid_t auditd_pid_vnr(void)
 268{
 269        pid_t pid;
 270        const struct auditd_connection *ac;
 271
 272        rcu_read_lock();
 273        ac = rcu_dereference(auditd_conn);
 274        if (!ac || !ac->pid)
 275                pid = 0;
 276        else
 277                pid = pid_vnr(ac->pid);
 278        rcu_read_unlock();
 279
 280        return pid;
 281}
 282
 283/**
 284 * audit_get_sk - Return the audit socket for the given network namespace
 285 * @net: the destination network namespace
 286 *
 287 * Description:
 288 * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
 289 * that a reference is held for the network namespace while the sock is in use.
 290 */
 291static struct sock *audit_get_sk(const struct net *net)
 292{
 293        struct audit_net *aunet;
 294
 295        if (!net)
 296                return NULL;
 297
 298        aunet = net_generic(net, audit_net_id);
 299        return aunet->sk;
 300}
 301
 302void audit_panic(const char *message)
 303{
 304        switch (audit_failure) {
 305        case AUDIT_FAIL_SILENT:
 306                break;
 307        case AUDIT_FAIL_PRINTK:
 308                if (printk_ratelimit())
 309                        pr_err("%s\n", message);
 310                break;
 311        case AUDIT_FAIL_PANIC:
 312                panic("audit: %s\n", message);
 313                break;
 314        }
 315}
 316
 317static inline int audit_rate_check(void)
 318{
 319        static unsigned long    last_check = 0;
 320        static int              messages   = 0;
 321        static DEFINE_SPINLOCK(lock);
 322        unsigned long           flags;
 323        unsigned long           now;
 324        unsigned long           elapsed;
 325        int                     retval     = 0;
 326
 327        if (!audit_rate_limit) return 1;
 328
 329        spin_lock_irqsave(&lock, flags);
 330        if (++messages < audit_rate_limit) {
 331                retval = 1;
 332        } else {
 333                now     = jiffies;
 334                elapsed = now - last_check;
 335                if (elapsed > HZ) {
 336                        last_check = now;
 337                        messages   = 0;
 338                        retval     = 1;
 339                }
 340        }
 341        spin_unlock_irqrestore(&lock, flags);
 342
 343        return retval;
 344}
 345
 346/**
 347 * audit_log_lost - conditionally log lost audit message event
 348 * @message: the message stating reason for lost audit message
 349 *
 350 * Emit at least 1 message per second, even if audit_rate_check is
 351 * throttling.
 352 * Always increment the lost messages counter.
 353*/
 354void audit_log_lost(const char *message)
 355{
 356        static unsigned long    last_msg = 0;
 357        static DEFINE_SPINLOCK(lock);
 358        unsigned long           flags;
 359        unsigned long           now;
 360        int                     print;
 361
 362        atomic_inc(&audit_lost);
 363
 364        print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 365
 366        if (!print) {
 367                spin_lock_irqsave(&lock, flags);
 368                now = jiffies;
 369                if (now - last_msg > HZ) {
 370                        print = 1;
 371                        last_msg = now;
 372                }
 373                spin_unlock_irqrestore(&lock, flags);
 374        }
 375
 376        if (print) {
 377                if (printk_ratelimit())
 378                        pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 379                                atomic_read(&audit_lost),
 380                                audit_rate_limit,
 381                                audit_backlog_limit);
 382                audit_panic(message);
 383        }
 384}
 385
 386static int audit_log_config_change(char *function_name, u32 new, u32 old,
 387                                   int allow_changes)
 388{
 389        struct audit_buffer *ab;
 390        int rc = 0;
 391
 392        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 393        if (unlikely(!ab))
 394                return rc;
 395        audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
 396        audit_log_session_info(ab);
 397        rc = audit_log_task_context(ab);
 398        if (rc)
 399                allow_changes = 0; /* Something weird, deny request */
 400        audit_log_format(ab, " res=%d", allow_changes);
 401        audit_log_end(ab);
 402        return rc;
 403}
 404
 405static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 406{
 407        int allow_changes, rc = 0;
 408        u32 old = *to_change;
 409
 410        /* check if we are locked */
 411        if (audit_enabled == AUDIT_LOCKED)
 412                allow_changes = 0;
 413        else
 414                allow_changes = 1;
 415
 416        if (audit_enabled != AUDIT_OFF) {
 417                rc = audit_log_config_change(function_name, new, old, allow_changes);
 418                if (rc)
 419                        allow_changes = 0;
 420        }
 421
 422        /* If we are allowed, make the change */
 423        if (allow_changes == 1)
 424                *to_change = new;
 425        /* Not allowed, update reason */
 426        else if (rc == 0)
 427                rc = -EPERM;
 428        return rc;
 429}
 430
 431static int audit_set_rate_limit(u32 limit)
 432{
 433        return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 434}
 435
 436static int audit_set_backlog_limit(u32 limit)
 437{
 438        return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 439}
 440
 441static int audit_set_backlog_wait_time(u32 timeout)
 442{
 443        return audit_do_config_change("audit_backlog_wait_time",
 444                                      &audit_backlog_wait_time, timeout);
 445}
 446
 447static int audit_set_enabled(u32 state)
 448{
 449        int rc;
 450        if (state > AUDIT_LOCKED)
 451                return -EINVAL;
 452
 453        rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 454        if (!rc)
 455                audit_ever_enabled |= !!state;
 456
 457        return rc;
 458}
 459
 460static int audit_set_failure(u32 state)
 461{
 462        if (state != AUDIT_FAIL_SILENT
 463            && state != AUDIT_FAIL_PRINTK
 464            && state != AUDIT_FAIL_PANIC)
 465                return -EINVAL;
 466
 467        return audit_do_config_change("audit_failure", &audit_failure, state);
 468}
 469
 470/**
 471 * auditd_conn_free - RCU helper to release an auditd connection struct
 472 * @rcu: RCU head
 473 *
 474 * Description:
 475 * Drop any references inside the auditd connection tracking struct and free
 476 * the memory.
 477 */
 478static void auditd_conn_free(struct rcu_head *rcu)
 479{
 480        struct auditd_connection *ac;
 481
 482        ac = container_of(rcu, struct auditd_connection, rcu);
 483        put_pid(ac->pid);
 484        put_net(ac->net);
 485        kfree(ac);
 486}
 487
 488/**
 489 * auditd_set - Set/Reset the auditd connection state
 490 * @pid: auditd PID
 491 * @portid: auditd netlink portid
 492 * @net: auditd network namespace pointer
 493 *
 494 * Description:
 495 * This function will obtain and drop network namespace references as
 496 * necessary.  Returns zero on success, negative values on failure.
 497 */
 498static int auditd_set(struct pid *pid, u32 portid, struct net *net)
 499{
 500        unsigned long flags;
 501        struct auditd_connection *ac_old, *ac_new;
 502
 503        if (!pid || !net)
 504                return -EINVAL;
 505
 506        ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
 507        if (!ac_new)
 508                return -ENOMEM;
 509        ac_new->pid = get_pid(pid);
 510        ac_new->portid = portid;
 511        ac_new->net = get_net(net);
 512
 513        spin_lock_irqsave(&auditd_conn_lock, flags);
 514        ac_old = rcu_dereference_protected(auditd_conn,
 515                                           lockdep_is_held(&auditd_conn_lock));
 516        rcu_assign_pointer(auditd_conn, ac_new);
 517        spin_unlock_irqrestore(&auditd_conn_lock, flags);
 518
 519        if (ac_old)
 520                call_rcu(&ac_old->rcu, auditd_conn_free);
 521
 522        return 0;
 523}
 524
 525/**
 526 * kauditd_print_skb - Print the audit record to the ring buffer
 527 * @skb: audit record
 528 *
 529 * Whatever the reason, this packet may not make it to the auditd connection
 530 * so write it via printk so the information isn't completely lost.
 531 */
 532static void kauditd_printk_skb(struct sk_buff *skb)
 533{
 534        struct nlmsghdr *nlh = nlmsg_hdr(skb);
 535        char *data = nlmsg_data(nlh);
 536
 537        if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
 538                pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 539}
 540
 541/**
 542 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
 543 * @skb: audit record
 544 *
 545 * Description:
 546 * This should only be used by the kauditd_thread when it fails to flush the
 547 * hold queue.
 548 */
 549static void kauditd_rehold_skb(struct sk_buff *skb)
 550{
 551        /* put the record back in the queue at the same place */
 552        skb_queue_head(&audit_hold_queue, skb);
 553}
 554
 555/**
 556 * kauditd_hold_skb - Queue an audit record, waiting for auditd
 557 * @skb: audit record
 558 *
 559 * Description:
 560 * Queue the audit record, waiting for an instance of auditd.  When this
 561 * function is called we haven't given up yet on sending the record, but things
 562 * are not looking good.  The first thing we want to do is try to write the
 563 * record via printk and then see if we want to try and hold on to the record
 564 * and queue it, if we have room.  If we want to hold on to the record, but we
 565 * don't have room, record a record lost message.
 566 */
 567static void kauditd_hold_skb(struct sk_buff *skb)
 568{
 569        /* at this point it is uncertain if we will ever send this to auditd so
 570         * try to send the message via printk before we go any further */
 571        kauditd_printk_skb(skb);
 572
 573        /* can we just silently drop the message? */
 574        if (!audit_default) {
 575                kfree_skb(skb);
 576                return;
 577        }
 578
 579        /* if we have room, queue the message */
 580        if (!audit_backlog_limit ||
 581            skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
 582                skb_queue_tail(&audit_hold_queue, skb);
 583                return;
 584        }
 585
 586        /* we have no other options - drop the message */
 587        audit_log_lost("kauditd hold queue overflow");
 588        kfree_skb(skb);
 589}
 590
 591/**
 592 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
 593 * @skb: audit record
 594 *
 595 * Description:
 596 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
 597 * but for some reason we are having problems sending it audit records so
 598 * queue the given record and attempt to resend.
 599 */
 600static void kauditd_retry_skb(struct sk_buff *skb)
 601{
 602        /* NOTE: because records should only live in the retry queue for a
 603         * short period of time, before either being sent or moved to the hold
 604         * queue, we don't currently enforce a limit on this queue */
 605        skb_queue_tail(&audit_retry_queue, skb);
 606}
 607
 608/**
 609 * auditd_reset - Disconnect the auditd connection
 610 * @ac: auditd connection state
 611 *
 612 * Description:
 613 * Break the auditd/kauditd connection and move all the queued records into the
 614 * hold queue in case auditd reconnects.  It is important to note that the @ac
 615 * pointer should never be dereferenced inside this function as it may be NULL
 616 * or invalid, you can only compare the memory address!  If @ac is NULL then
 617 * the connection will always be reset.
 618 */
 619static void auditd_reset(const struct auditd_connection *ac)
 620{
 621        unsigned long flags;
 622        struct sk_buff *skb;
 623        struct auditd_connection *ac_old;
 624
 625        /* if it isn't already broken, break the connection */
 626        spin_lock_irqsave(&auditd_conn_lock, flags);
 627        ac_old = rcu_dereference_protected(auditd_conn,
 628                                           lockdep_is_held(&auditd_conn_lock));
 629        if (ac && ac != ac_old) {
 630                /* someone already registered a new auditd connection */
 631                spin_unlock_irqrestore(&auditd_conn_lock, flags);
 632                return;
 633        }
 634        rcu_assign_pointer(auditd_conn, NULL);
 635        spin_unlock_irqrestore(&auditd_conn_lock, flags);
 636
 637        if (ac_old)
 638                call_rcu(&ac_old->rcu, auditd_conn_free);
 639
 640        /* flush the retry queue to the hold queue, but don't touch the main
 641         * queue since we need to process that normally for multicast */
 642        while ((skb = skb_dequeue(&audit_retry_queue)))
 643                kauditd_hold_skb(skb);
 644}
 645
 646/**
 647 * auditd_send_unicast_skb - Send a record via unicast to auditd
 648 * @skb: audit record
 649 *
 650 * Description:
 651 * Send a skb to the audit daemon, returns positive/zero values on success and
 652 * negative values on failure; in all cases the skb will be consumed by this
 653 * function.  If the send results in -ECONNREFUSED the connection with auditd
 654 * will be reset.  This function may sleep so callers should not hold any locks
 655 * where this would cause a problem.
 656 */
 657static int auditd_send_unicast_skb(struct sk_buff *skb)
 658{
 659        int rc;
 660        u32 portid;
 661        struct net *net;
 662        struct sock *sk;
 663        struct auditd_connection *ac;
 664
 665        /* NOTE: we can't call netlink_unicast while in the RCU section so
 666         *       take a reference to the network namespace and grab local
 667         *       copies of the namespace, the sock, and the portid; the
 668         *       namespace and sock aren't going to go away while we hold a
 669         *       reference and if the portid does become invalid after the RCU
 670         *       section netlink_unicast() should safely return an error */
 671
 672        rcu_read_lock();
 673        ac = rcu_dereference(auditd_conn);
 674        if (!ac) {
 675                rcu_read_unlock();
 676                kfree_skb(skb);
 677                rc = -ECONNREFUSED;
 678                goto err;
 679        }
 680        net = get_net(ac->net);
 681        sk = audit_get_sk(net);
 682        portid = ac->portid;
 683        rcu_read_unlock();
 684
 685        rc = netlink_unicast(sk, skb, portid, 0);
 686        put_net(net);
 687        if (rc < 0)
 688                goto err;
 689
 690        return rc;
 691
 692err:
 693        if (ac && rc == -ECONNREFUSED)
 694                auditd_reset(ac);
 695        return rc;
 696}
 697
 698/**
 699 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
 700 * @sk: the sending sock
 701 * @portid: the netlink destination
 702 * @queue: the skb queue to process
 703 * @retry_limit: limit on number of netlink unicast failures
 704 * @skb_hook: per-skb hook for additional processing
 705 * @err_hook: hook called if the skb fails the netlink unicast send
 706 *
 707 * Description:
 708 * Run through the given queue and attempt to send the audit records to auditd,
 709 * returns zero on success, negative values on failure.  It is up to the caller
 710 * to ensure that the @sk is valid for the duration of this function.
 711 *
 712 */
 713static int kauditd_send_queue(struct sock *sk, u32 portid,
 714                              struct sk_buff_head *queue,
 715                              unsigned int retry_limit,
 716                              void (*skb_hook)(struct sk_buff *skb),
 717                              void (*err_hook)(struct sk_buff *skb))
 718{
 719        int rc = 0;
 720        struct sk_buff *skb;
 721        static unsigned int failed = 0;
 722
 723        /* NOTE: kauditd_thread takes care of all our locking, we just use
 724         *       the netlink info passed to us (e.g. sk and portid) */
 725
 726        while ((skb = skb_dequeue(queue))) {
 727                /* call the skb_hook for each skb we touch */
 728                if (skb_hook)
 729                        (*skb_hook)(skb);
 730
 731                /* can we send to anyone via unicast? */
 732                if (!sk) {
 733                        if (err_hook)
 734                                (*err_hook)(skb);
 735                        continue;
 736                }
 737
 738                /* grab an extra skb reference in case of error */
 739                skb_get(skb);
 740                rc = netlink_unicast(sk, skb, portid, 0);
 741                if (rc < 0) {
 742                        /* fatal failure for our queue flush attempt? */
 743                        if (++failed >= retry_limit ||
 744                            rc == -ECONNREFUSED || rc == -EPERM) {
 745                                /* yes - error processing for the queue */
 746                                sk = NULL;
 747                                if (err_hook)
 748                                        (*err_hook)(skb);
 749                                if (!skb_hook)
 750                                        goto out;
 751                                /* keep processing with the skb_hook */
 752                                continue;
 753                        } else
 754                                /* no - requeue to preserve ordering */
 755                                skb_queue_head(queue, skb);
 756                } else {
 757                        /* it worked - drop the extra reference and continue */
 758                        consume_skb(skb);
 759                        failed = 0;
 760                }
 761        }
 762
 763out:
 764        return (rc >= 0 ? 0 : rc);
 765}
 766
 767/*
 768 * kauditd_send_multicast_skb - Send a record to any multicast listeners
 769 * @skb: audit record
 770 *
 771 * Description:
 772 * Write a multicast message to anyone listening in the initial network
 773 * namespace.  This function doesn't consume an skb as might be expected since
 774 * it has to copy it anyways.
 775 */
 776static void kauditd_send_multicast_skb(struct sk_buff *skb)
 777{
 778        struct sk_buff *copy;
 779        struct sock *sock = audit_get_sk(&init_net);
 780        struct nlmsghdr *nlh;
 781
 782        /* NOTE: we are not taking an additional reference for init_net since
 783         *       we don't have to worry about it going away */
 784
 785        if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 786                return;
 787
 788        /*
 789         * The seemingly wasteful skb_copy() rather than bumping the refcount
 790         * using skb_get() is necessary because non-standard mods are made to
 791         * the skb by the original kaudit unicast socket send routine.  The
 792         * existing auditd daemon assumes this breakage.  Fixing this would
 793         * require co-ordinating a change in the established protocol between
 794         * the kaudit kernel subsystem and the auditd userspace code.  There is
 795         * no reason for new multicast clients to continue with this
 796         * non-compliance.
 797         */
 798        copy = skb_copy(skb, GFP_KERNEL);
 799        if (!copy)
 800                return;
 801        nlh = nlmsg_hdr(copy);
 802        nlh->nlmsg_len = skb->len;
 803
 804        nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
 805}
 806
 807/**
 808 * kauditd_thread - Worker thread to send audit records to userspace
 809 * @dummy: unused
 810 */
 811static int kauditd_thread(void *dummy)
 812{
 813        int rc;
 814        u32 portid = 0;
 815        struct net *net = NULL;
 816        struct sock *sk = NULL;
 817        struct auditd_connection *ac;
 818
 819#define UNICAST_RETRIES 5
 820
 821        set_freezable();
 822        while (!kthread_should_stop()) {
 823                /* NOTE: see the lock comments in auditd_send_unicast_skb() */
 824                rcu_read_lock();
 825                ac = rcu_dereference(auditd_conn);
 826                if (!ac) {
 827                        rcu_read_unlock();
 828                        goto main_queue;
 829                }
 830                net = get_net(ac->net);
 831                sk = audit_get_sk(net);
 832                portid = ac->portid;
 833                rcu_read_unlock();
 834
 835                /* attempt to flush the hold queue */
 836                rc = kauditd_send_queue(sk, portid,
 837                                        &audit_hold_queue, UNICAST_RETRIES,
 838                                        NULL, kauditd_rehold_skb);
 839                if (rc < 0) {
 840                        sk = NULL;
 841                        auditd_reset(ac);
 842                        goto main_queue;
 843                }
 844
 845                /* attempt to flush the retry queue */
 846                rc = kauditd_send_queue(sk, portid,
 847                                        &audit_retry_queue, UNICAST_RETRIES,
 848                                        NULL, kauditd_hold_skb);
 849                if (rc < 0) {
 850                        sk = NULL;
 851                        auditd_reset(ac);
 852                        goto main_queue;
 853                }
 854
 855main_queue:
 856                /* process the main queue - do the multicast send and attempt
 857                 * unicast, dump failed record sends to the retry queue; if
 858                 * sk == NULL due to previous failures we will just do the
 859                 * multicast send and move the record to the hold queue */
 860                rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
 861                                        kauditd_send_multicast_skb,
 862                                        (sk ?
 863                                         kauditd_retry_skb : kauditd_hold_skb));
 864                if (ac && rc < 0)
 865                        auditd_reset(ac);
 866                sk = NULL;
 867
 868                /* drop our netns reference, no auditd sends past this line */
 869                if (net) {
 870                        put_net(net);
 871                        net = NULL;
 872                }
 873
 874                /* we have processed all the queues so wake everyone */
 875                wake_up(&audit_backlog_wait);
 876
 877                /* NOTE: we want to wake up if there is anything on the queue,
 878                 *       regardless of if an auditd is connected, as we need to
 879                 *       do the multicast send and rotate records from the
 880                 *       main queue to the retry/hold queues */
 881                wait_event_freezable(kauditd_wait,
 882                                     (skb_queue_len(&audit_queue) ? 1 : 0));
 883        }
 884
 885        return 0;
 886}
 887
 888int audit_send_list_thread(void *_dest)
 889{
 890        struct audit_netlink_list *dest = _dest;
 891        struct sk_buff *skb;
 892        struct sock *sk = audit_get_sk(dest->net);
 893
 894        /* wait for parent to finish and send an ACK */
 895        audit_ctl_lock();
 896        audit_ctl_unlock();
 897
 898        while ((skb = __skb_dequeue(&dest->q)) != NULL)
 899                netlink_unicast(sk, skb, dest->portid, 0);
 900
 901        put_net(dest->net);
 902        kfree(dest);
 903
 904        return 0;
 905}
 906
 907struct sk_buff *audit_make_reply(int seq, int type, int done,
 908                                 int multi, const void *payload, int size)
 909{
 910        struct sk_buff  *skb;
 911        struct nlmsghdr *nlh;
 912        void            *data;
 913        int             flags = multi ? NLM_F_MULTI : 0;
 914        int             t     = done  ? NLMSG_DONE  : type;
 915
 916        skb = nlmsg_new(size, GFP_KERNEL);
 917        if (!skb)
 918                return NULL;
 919
 920        nlh     = nlmsg_put(skb, 0, seq, t, size, flags);
 921        if (!nlh)
 922                goto out_kfree_skb;
 923        data = nlmsg_data(nlh);
 924        memcpy(data, payload, size);
 925        return skb;
 926
 927out_kfree_skb:
 928        kfree_skb(skb);
 929        return NULL;
 930}
 931
 932static void audit_free_reply(struct audit_reply *reply)
 933{
 934        if (!reply)
 935                return;
 936
 937        if (reply->skb)
 938                kfree_skb(reply->skb);
 939        if (reply->net)
 940                put_net(reply->net);
 941        kfree(reply);
 942}
 943
 944static int audit_send_reply_thread(void *arg)
 945{
 946        struct audit_reply *reply = (struct audit_reply *)arg;
 947
 948        audit_ctl_lock();
 949        audit_ctl_unlock();
 950
 951        /* Ignore failure. It'll only happen if the sender goes away,
 952           because our timeout is set to infinite. */
 953        netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
 954        reply->skb = NULL;
 955        audit_free_reply(reply);
 956        return 0;
 957}
 958
 959/**
 960 * audit_send_reply - send an audit reply message via netlink
 961 * @request_skb: skb of request we are replying to (used to target the reply)
 962 * @seq: sequence number
 963 * @type: audit message type
 964 * @done: done (last) flag
 965 * @multi: multi-part message flag
 966 * @payload: payload data
 967 * @size: payload size
 968 *
 969 * Allocates a skb, builds the netlink message, and sends it to the port id.
 970 */
 971static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 972                             int multi, const void *payload, int size)
 973{
 974        struct task_struct *tsk;
 975        struct audit_reply *reply;
 976
 977        reply = kzalloc(sizeof(*reply), GFP_KERNEL);
 978        if (!reply)
 979                return;
 980
 981        reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
 982        if (!reply->skb)
 983                goto err;
 984        reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
 985        reply->portid = NETLINK_CB(request_skb).portid;
 986
 987        tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 988        if (IS_ERR(tsk))
 989                goto err;
 990
 991        return;
 992
 993err:
 994        audit_free_reply(reply);
 995}
 996
 997/*
 998 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 999 * control messages.
1000 */
1001static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1002{
1003        int err = 0;
1004
1005        /* Only support initial user namespace for now. */
1006        /*
1007         * We return ECONNREFUSED because it tricks userspace into thinking
1008         * that audit was not configured into the kernel.  Lots of users
1009         * configure their PAM stack (because that's what the distro does)
1010         * to reject login if unable to send messages to audit.  If we return
1011         * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1012         * configured in and will let login proceed.  If we return EPERM
1013         * userspace will reject all logins.  This should be removed when we
1014         * support non init namespaces!!
1015         */
1016        if (current_user_ns() != &init_user_ns)
1017                return -ECONNREFUSED;
1018
1019        switch (msg_type) {
1020        case AUDIT_LIST:
1021        case AUDIT_ADD:
1022        case AUDIT_DEL:
1023                return -EOPNOTSUPP;
1024        case AUDIT_GET:
1025        case AUDIT_SET:
1026        case AUDIT_GET_FEATURE:
1027        case AUDIT_SET_FEATURE:
1028        case AUDIT_LIST_RULES:
1029        case AUDIT_ADD_RULE:
1030        case AUDIT_DEL_RULE:
1031        case AUDIT_SIGNAL_INFO:
1032        case AUDIT_TTY_GET:
1033        case AUDIT_TTY_SET:
1034        case AUDIT_TRIM:
1035        case AUDIT_MAKE_EQUIV:
1036                /* Only support auditd and auditctl in initial pid namespace
1037                 * for now. */
1038                if (task_active_pid_ns(current) != &init_pid_ns)
1039                        return -EPERM;
1040
1041                if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1042                        err = -EPERM;
1043                break;
1044        case AUDIT_USER:
1045        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1046        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1047                if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1048                        err = -EPERM;
1049                break;
1050        default:  /* bad msg */
1051                err = -EINVAL;
1052        }
1053
1054        return err;
1055}
1056
1057static void audit_log_common_recv_msg(struct audit_context *context,
1058                                        struct audit_buffer **ab, u16 msg_type)
1059{
1060        uid_t uid = from_kuid(&init_user_ns, current_uid());
1061        pid_t pid = task_tgid_nr(current);
1062
1063        if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1064                *ab = NULL;
1065                return;
1066        }
1067
1068        *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1069        if (unlikely(!*ab))
1070                return;
1071        audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1072        audit_log_session_info(*ab);
1073        audit_log_task_context(*ab);
1074}
1075
1076static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1077                                           u16 msg_type)
1078{
1079        audit_log_common_recv_msg(NULL, ab, msg_type);
1080}
1081
1082int is_audit_feature_set(int i)
1083{
1084        return af.features & AUDIT_FEATURE_TO_MASK(i);
1085}
1086
1087
1088static int audit_get_feature(struct sk_buff *skb)
1089{
1090        u32 seq;
1091
1092        seq = nlmsg_hdr(skb)->nlmsg_seq;
1093
1094        audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1095
1096        return 0;
1097}
1098
1099static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1100                                     u32 old_lock, u32 new_lock, int res)
1101{
1102        struct audit_buffer *ab;
1103
1104        if (audit_enabled == AUDIT_OFF)
1105                return;
1106
1107        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1108        if (!ab)
1109                return;
1110        audit_log_task_info(ab);
1111        audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1112                         audit_feature_names[which], !!old_feature, !!new_feature,
1113                         !!old_lock, !!new_lock, res);
1114        audit_log_end(ab);
1115}
1116
1117static int audit_set_feature(struct audit_features *uaf)
1118{
1119        int i;
1120
1121        BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1122
1123        /* if there is ever a version 2 we should handle that here */
1124
1125        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1126                u32 feature = AUDIT_FEATURE_TO_MASK(i);
1127                u32 old_feature, new_feature, old_lock, new_lock;
1128
1129                /* if we are not changing this feature, move along */
1130                if (!(feature & uaf->mask))
1131                        continue;
1132
1133                old_feature = af.features & feature;
1134                new_feature = uaf->features & feature;
1135                new_lock = (uaf->lock | af.lock) & feature;
1136                old_lock = af.lock & feature;
1137
1138                /* are we changing a locked feature? */
1139                if (old_lock && (new_feature != old_feature)) {
1140                        audit_log_feature_change(i, old_feature, new_feature,
1141                                                 old_lock, new_lock, 0);
1142                        return -EPERM;
1143                }
1144        }
1145        /* nothing invalid, do the changes */
1146        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1147                u32 feature = AUDIT_FEATURE_TO_MASK(i);
1148                u32 old_feature, new_feature, old_lock, new_lock;
1149
1150                /* if we are not changing this feature, move along */
1151                if (!(feature & uaf->mask))
1152                        continue;
1153
1154                old_feature = af.features & feature;
1155                new_feature = uaf->features & feature;
1156                old_lock = af.lock & feature;
1157                new_lock = (uaf->lock | af.lock) & feature;
1158
1159                if (new_feature != old_feature)
1160                        audit_log_feature_change(i, old_feature, new_feature,
1161                                                 old_lock, new_lock, 1);
1162
1163                if (new_feature)
1164                        af.features |= feature;
1165                else
1166                        af.features &= ~feature;
1167                af.lock |= new_lock;
1168        }
1169
1170        return 0;
1171}
1172
1173static int audit_replace(struct pid *pid)
1174{
1175        pid_t pvnr;
1176        struct sk_buff *skb;
1177
1178        pvnr = pid_vnr(pid);
1179        skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1180        if (!skb)
1181                return -ENOMEM;
1182        return auditd_send_unicast_skb(skb);
1183}
1184
1185static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1186{
1187        u32                     seq;
1188        void                    *data;
1189        int                     data_len;
1190        int                     err;
1191        struct audit_buffer     *ab;
1192        u16                     msg_type = nlh->nlmsg_type;
1193        struct audit_sig_info   *sig_data;
1194        char                    *ctx = NULL;
1195        u32                     len;
1196
1197        err = audit_netlink_ok(skb, msg_type);
1198        if (err)
1199                return err;
1200
1201        seq  = nlh->nlmsg_seq;
1202        data = nlmsg_data(nlh);
1203        data_len = nlmsg_len(nlh);
1204
1205        switch (msg_type) {
1206        case AUDIT_GET: {
1207                struct audit_status     s;
1208                memset(&s, 0, sizeof(s));
1209                s.enabled                  = audit_enabled;
1210                s.failure                  = audit_failure;
1211                /* NOTE: use pid_vnr() so the PID is relative to the current
1212                 *       namespace */
1213                s.pid                      = auditd_pid_vnr();
1214                s.rate_limit               = audit_rate_limit;
1215                s.backlog_limit            = audit_backlog_limit;
1216                s.lost                     = atomic_read(&audit_lost);
1217                s.backlog                  = skb_queue_len(&audit_queue);
1218                s.feature_bitmap           = AUDIT_FEATURE_BITMAP_ALL;
1219                s.backlog_wait_time        = audit_backlog_wait_time;
1220                s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1221                audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1222                break;
1223        }
1224        case AUDIT_SET: {
1225                struct audit_status     s;
1226                memset(&s, 0, sizeof(s));
1227                /* guard against past and future API changes */
1228                memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1229                if (s.mask & AUDIT_STATUS_ENABLED) {
1230                        err = audit_set_enabled(s.enabled);
1231                        if (err < 0)
1232                                return err;
1233                }
1234                if (s.mask & AUDIT_STATUS_FAILURE) {
1235                        err = audit_set_failure(s.failure);
1236                        if (err < 0)
1237                                return err;
1238                }
1239                if (s.mask & AUDIT_STATUS_PID) {
1240                        /* NOTE: we are using the vnr PID functions below
1241                         *       because the s.pid value is relative to the
1242                         *       namespace of the caller; at present this
1243                         *       doesn't matter much since you can really only
1244                         *       run auditd from the initial pid namespace, but
1245                         *       something to keep in mind if this changes */
1246                        pid_t new_pid = s.pid;
1247                        pid_t auditd_pid;
1248                        struct pid *req_pid = task_tgid(current);
1249
1250                        /* Sanity check - PID values must match. Setting
1251                         * pid to 0 is how auditd ends auditing. */
1252                        if (new_pid && (new_pid != pid_vnr(req_pid)))
1253                                return -EINVAL;
1254
1255                        /* test the auditd connection */
1256                        audit_replace(req_pid);
1257
1258                        auditd_pid = auditd_pid_vnr();
1259                        if (auditd_pid) {
1260                                /* replacing a healthy auditd is not allowed */
1261                                if (new_pid) {
1262                                        audit_log_config_change("audit_pid",
1263                                                        new_pid, auditd_pid, 0);
1264                                        return -EEXIST;
1265                                }
1266                                /* only current auditd can unregister itself */
1267                                if (pid_vnr(req_pid) != auditd_pid) {
1268                                        audit_log_config_change("audit_pid",
1269                                                        new_pid, auditd_pid, 0);
1270                                        return -EACCES;
1271                                }
1272                        }
1273
1274                        if (new_pid) {
1275                                /* register a new auditd connection */
1276                                err = auditd_set(req_pid,
1277                                                 NETLINK_CB(skb).portid,
1278                                                 sock_net(NETLINK_CB(skb).sk));
1279                                if (audit_enabled != AUDIT_OFF)
1280                                        audit_log_config_change("audit_pid",
1281                                                                new_pid,
1282                                                                auditd_pid,
1283                                                                err ? 0 : 1);
1284                                if (err)
1285                                        return err;
1286
1287                                /* try to process any backlog */
1288                                wake_up_interruptible(&kauditd_wait);
1289                        } else {
1290                                if (audit_enabled != AUDIT_OFF)
1291                                        audit_log_config_change("audit_pid",
1292                                                                new_pid,
1293                                                                auditd_pid, 1);
1294
1295                                /* unregister the auditd connection */
1296                                auditd_reset(NULL);
1297                        }
1298                }
1299                if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1300                        err = audit_set_rate_limit(s.rate_limit);
1301                        if (err < 0)
1302                                return err;
1303                }
1304                if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1305                        err = audit_set_backlog_limit(s.backlog_limit);
1306                        if (err < 0)
1307                                return err;
1308                }
1309                if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1310                        if (sizeof(s) > (size_t)nlh->nlmsg_len)
1311                                return -EINVAL;
1312                        if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1313                                return -EINVAL;
1314                        err = audit_set_backlog_wait_time(s.backlog_wait_time);
1315                        if (err < 0)
1316                                return err;
1317                }
1318                if (s.mask == AUDIT_STATUS_LOST) {
1319                        u32 lost = atomic_xchg(&audit_lost, 0);
1320
1321                        audit_log_config_change("lost", 0, lost, 1);
1322                        return lost;
1323                }
1324                if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1325                        u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1326
1327                        audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1328                        return actual;
1329                }
1330                break;
1331        }
1332        case AUDIT_GET_FEATURE:
1333                err = audit_get_feature(skb);
1334                if (err)
1335                        return err;
1336                break;
1337        case AUDIT_SET_FEATURE:
1338                if (data_len < sizeof(struct audit_features))
1339                        return -EINVAL;
1340                err = audit_set_feature(data);
1341                if (err)
1342                        return err;
1343                break;
1344        case AUDIT_USER:
1345        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1346        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1347                if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1348                        return 0;
1349                /* exit early if there isn't at least one character to print */
1350                if (data_len < 2)
1351                        return -EINVAL;
1352
1353                err = audit_filter(msg_type, AUDIT_FILTER_USER);
1354                if (err == 1) { /* match or error */
1355                        char *str = data;
1356
1357                        err = 0;
1358                        if (msg_type == AUDIT_USER_TTY) {
1359                                err = tty_audit_push();
1360                                if (err)
1361                                        break;
1362                        }
1363                        audit_log_user_recv_msg(&ab, msg_type);
1364                        if (msg_type != AUDIT_USER_TTY) {
1365                                /* ensure NULL termination */
1366                                str[data_len - 1] = '\0';
1367                                audit_log_format(ab, " msg='%.*s'",
1368                                                 AUDIT_MESSAGE_TEXT_MAX,
1369                                                 str);
1370                        } else {
1371                                audit_log_format(ab, " data=");
1372                                if (data_len > 0 && str[data_len - 1] == '\0')
1373                                        data_len--;
1374                                audit_log_n_untrustedstring(ab, str, data_len);
1375                        }
1376                        audit_log_end(ab);
1377                }
1378                break;
1379        case AUDIT_ADD_RULE:
1380        case AUDIT_DEL_RULE:
1381                if (data_len < sizeof(struct audit_rule_data))
1382                        return -EINVAL;
1383                if (audit_enabled == AUDIT_LOCKED) {
1384                        audit_log_common_recv_msg(audit_context(), &ab,
1385                                                  AUDIT_CONFIG_CHANGE);
1386                        audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1387                                         msg_type == AUDIT_ADD_RULE ?
1388                                                "add_rule" : "remove_rule",
1389                                         audit_enabled);
1390                        audit_log_end(ab);
1391                        return -EPERM;
1392                }
1393                err = audit_rule_change(msg_type, seq, data, data_len);
1394                break;
1395        case AUDIT_LIST_RULES:
1396                err = audit_list_rules_send(skb, seq);
1397                break;
1398        case AUDIT_TRIM:
1399                audit_trim_trees();
1400                audit_log_common_recv_msg(audit_context(), &ab,
1401                                          AUDIT_CONFIG_CHANGE);
1402                audit_log_format(ab, " op=trim res=1");
1403                audit_log_end(ab);
1404                break;
1405        case AUDIT_MAKE_EQUIV: {
1406                void *bufp = data;
1407                u32 sizes[2];
1408                size_t msglen = data_len;
1409                char *old, *new;
1410
1411                err = -EINVAL;
1412                if (msglen < 2 * sizeof(u32))
1413                        break;
1414                memcpy(sizes, bufp, 2 * sizeof(u32));
1415                bufp += 2 * sizeof(u32);
1416                msglen -= 2 * sizeof(u32);
1417                old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1418                if (IS_ERR(old)) {
1419                        err = PTR_ERR(old);
1420                        break;
1421                }
1422                new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1423                if (IS_ERR(new)) {
1424                        err = PTR_ERR(new);
1425                        kfree(old);
1426                        break;
1427                }
1428                /* OK, here comes... */
1429                err = audit_tag_tree(old, new);
1430
1431                audit_log_common_recv_msg(audit_context(), &ab,
1432                                          AUDIT_CONFIG_CHANGE);
1433                audit_log_format(ab, " op=make_equiv old=");
1434                audit_log_untrustedstring(ab, old);
1435                audit_log_format(ab, " new=");
1436                audit_log_untrustedstring(ab, new);
1437                audit_log_format(ab, " res=%d", !err);
1438                audit_log_end(ab);
1439                kfree(old);
1440                kfree(new);
1441                break;
1442        }
1443        case AUDIT_SIGNAL_INFO:
1444                len = 0;
1445                if (audit_sig_sid) {
1446                        err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1447                        if (err)
1448                                return err;
1449                }
1450                sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1451                if (!sig_data) {
1452                        if (audit_sig_sid)
1453                                security_release_secctx(ctx, len);
1454                        return -ENOMEM;
1455                }
1456                sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1457                sig_data->pid = audit_sig_pid;
1458                if (audit_sig_sid) {
1459                        memcpy(sig_data->ctx, ctx, len);
1460                        security_release_secctx(ctx, len);
1461                }
1462                audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1463                                 sig_data, sizeof(*sig_data) + len);
1464                kfree(sig_data);
1465                break;
1466        case AUDIT_TTY_GET: {
1467                struct audit_tty_status s;
1468                unsigned int t;
1469
1470                t = READ_ONCE(current->signal->audit_tty);
1471                s.enabled = t & AUDIT_TTY_ENABLE;
1472                s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1473
1474                audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1475                break;
1476        }
1477        case AUDIT_TTY_SET: {
1478                struct audit_tty_status s, old;
1479                struct audit_buffer     *ab;
1480                unsigned int t;
1481
1482                memset(&s, 0, sizeof(s));
1483                /* guard against past and future API changes */
1484                memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1485                /* check if new data is valid */
1486                if ((s.enabled != 0 && s.enabled != 1) ||
1487                    (s.log_passwd != 0 && s.log_passwd != 1))
1488                        err = -EINVAL;
1489
1490                if (err)
1491                        t = READ_ONCE(current->signal->audit_tty);
1492                else {
1493                        t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1494                        t = xchg(&current->signal->audit_tty, t);
1495                }
1496                old.enabled = t & AUDIT_TTY_ENABLE;
1497                old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1498
1499                audit_log_common_recv_msg(audit_context(), &ab,
1500                                          AUDIT_CONFIG_CHANGE);
1501                audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1502                                 " old-log_passwd=%d new-log_passwd=%d res=%d",
1503                                 old.enabled, s.enabled, old.log_passwd,
1504                                 s.log_passwd, !err);
1505                audit_log_end(ab);
1506                break;
1507        }
1508        default:
1509                err = -EINVAL;
1510                break;
1511        }
1512
1513        return err < 0 ? err : 0;
1514}
1515
1516/**
1517 * audit_receive - receive messages from a netlink control socket
1518 * @skb: the message buffer
1519 *
1520 * Parse the provided skb and deal with any messages that may be present,
1521 * malformed skbs are discarded.
1522 */
1523static void audit_receive(struct sk_buff  *skb)
1524{
1525        struct nlmsghdr *nlh;
1526        /*
1527         * len MUST be signed for nlmsg_next to be able to dec it below 0
1528         * if the nlmsg_len was not aligned
1529         */
1530        int len;
1531        int err;
1532
1533        nlh = nlmsg_hdr(skb);
1534        len = skb->len;
1535
1536        audit_ctl_lock();
1537        while (nlmsg_ok(nlh, len)) {
1538                err = audit_receive_msg(skb, nlh);
1539                /* if err or if this message says it wants a response */
1540                if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1541                        netlink_ack(skb, nlh, err, NULL);
1542
1543                nlh = nlmsg_next(nlh, &len);
1544        }
1545        audit_ctl_unlock();
1546}
1547
1548/* Log information about who is connecting to the audit multicast socket */
1549static void audit_log_multicast(int group, const char *op, int err)
1550{
1551        const struct cred *cred;
1552        struct tty_struct *tty;
1553        char comm[sizeof(current->comm)];
1554        struct audit_buffer *ab;
1555
1556        if (!audit_enabled)
1557                return;
1558
1559        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1560        if (!ab)
1561                return;
1562
1563        cred = current_cred();
1564        tty = audit_get_tty();
1565        audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1566                         task_pid_nr(current),
1567                         from_kuid(&init_user_ns, cred->uid),
1568                         from_kuid(&init_user_ns, audit_get_loginuid(current)),
1569                         tty ? tty_name(tty) : "(none)",
1570                         audit_get_sessionid(current));
1571        audit_put_tty(tty);
1572        audit_log_task_context(ab); /* subj= */
1573        audit_log_format(ab, " comm=");
1574        audit_log_untrustedstring(ab, get_task_comm(comm, current));
1575        audit_log_d_path_exe(ab, current->mm); /* exe= */
1576        audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1577        audit_log_end(ab);
1578}
1579
1580/* Run custom bind function on netlink socket group connect or bind requests. */
1581static int audit_multicast_bind(struct net *net, int group)
1582{
1583        int err = 0;
1584
1585        if (!capable(CAP_AUDIT_READ))
1586                err = -EPERM;
1587        audit_log_multicast(group, "connect", err);
1588        return err;
1589}
1590
1591static void audit_multicast_unbind(struct net *net, int group)
1592{
1593        audit_log_multicast(group, "disconnect", 0);
1594}
1595
1596static int __net_init audit_net_init(struct net *net)
1597{
1598        struct netlink_kernel_cfg cfg = {
1599                .input  = audit_receive,
1600                .bind   = audit_multicast_bind,
1601                .unbind = audit_multicast_unbind,
1602                .flags  = NL_CFG_F_NONROOT_RECV,
1603                .groups = AUDIT_NLGRP_MAX,
1604        };
1605
1606        struct audit_net *aunet = net_generic(net, audit_net_id);
1607
1608        aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1609        if (aunet->sk == NULL) {
1610                audit_panic("cannot initialize netlink socket in namespace");
1611                return -ENOMEM;
1612        }
1613        aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1614
1615        return 0;
1616}
1617
1618static void __net_exit audit_net_exit(struct net *net)
1619{
1620        struct audit_net *aunet = net_generic(net, audit_net_id);
1621
1622        /* NOTE: you would think that we would want to check the auditd
1623         * connection and potentially reset it here if it lives in this
1624         * namespace, but since the auditd connection tracking struct holds a
1625         * reference to this namespace (see auditd_set()) we are only ever
1626         * going to get here after that connection has been released */
1627
1628        netlink_kernel_release(aunet->sk);
1629}
1630
1631static struct pernet_operations audit_net_ops __net_initdata = {
1632        .init = audit_net_init,
1633        .exit = audit_net_exit,
1634        .id = &audit_net_id,
1635        .size = sizeof(struct audit_net),
1636};
1637
1638/* Initialize audit support at boot time. */
1639static int __init audit_init(void)
1640{
1641        int i;
1642
1643        if (audit_initialized == AUDIT_DISABLED)
1644                return 0;
1645
1646        audit_buffer_cache = kmem_cache_create("audit_buffer",
1647                                               sizeof(struct audit_buffer),
1648                                               0, SLAB_PANIC, NULL);
1649
1650        skb_queue_head_init(&audit_queue);
1651        skb_queue_head_init(&audit_retry_queue);
1652        skb_queue_head_init(&audit_hold_queue);
1653
1654        for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1655                INIT_LIST_HEAD(&audit_inode_hash[i]);
1656
1657        mutex_init(&audit_cmd_mutex.lock);
1658        audit_cmd_mutex.owner = NULL;
1659
1660        pr_info("initializing netlink subsys (%s)\n",
1661                audit_default ? "enabled" : "disabled");
1662        register_pernet_subsys(&audit_net_ops);
1663
1664        audit_initialized = AUDIT_INITIALIZED;
1665
1666        kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1667        if (IS_ERR(kauditd_task)) {
1668                int err = PTR_ERR(kauditd_task);
1669                panic("audit: failed to start the kauditd thread (%d)\n", err);
1670        }
1671
1672        audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1673                "state=initialized audit_enabled=%u res=1",
1674                 audit_enabled);
1675
1676        return 0;
1677}
1678postcore_initcall(audit_init);
1679
1680/*
1681 * Process kernel command-line parameter at boot time.
1682 * audit={0|off} or audit={1|on}.
1683 */
1684static int __init audit_enable(char *str)
1685{
1686        if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1687                audit_default = AUDIT_OFF;
1688        else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1689                audit_default = AUDIT_ON;
1690        else {
1691                pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1692                audit_default = AUDIT_ON;
1693        }
1694
1695        if (audit_default == AUDIT_OFF)
1696                audit_initialized = AUDIT_DISABLED;
1697        if (audit_set_enabled(audit_default))
1698                pr_err("audit: error setting audit state (%d)\n",
1699                       audit_default);
1700
1701        pr_info("%s\n", audit_default ?
1702                "enabled (after initialization)" : "disabled (until reboot)");
1703
1704        return 1;
1705}
1706__setup("audit=", audit_enable);
1707
1708/* Process kernel command-line parameter at boot time.
1709 * audit_backlog_limit=<n> */
1710static int __init audit_backlog_limit_set(char *str)
1711{
1712        u32 audit_backlog_limit_arg;
1713
1714        pr_info("audit_backlog_limit: ");
1715        if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1716                pr_cont("using default of %u, unable to parse %s\n",
1717                        audit_backlog_limit, str);
1718                return 1;
1719        }
1720
1721        audit_backlog_limit = audit_backlog_limit_arg;
1722        pr_cont("%d\n", audit_backlog_limit);
1723
1724        return 1;
1725}
1726__setup("audit_backlog_limit=", audit_backlog_limit_set);
1727
1728static void audit_buffer_free(struct audit_buffer *ab)
1729{
1730        if (!ab)
1731                return;
1732
1733        kfree_skb(ab->skb);
1734        kmem_cache_free(audit_buffer_cache, ab);
1735}
1736
1737static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1738                                               gfp_t gfp_mask, int type)
1739{
1740        struct audit_buffer *ab;
1741
1742        ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1743        if (!ab)
1744                return NULL;
1745
1746        ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1747        if (!ab->skb)
1748                goto err;
1749        if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1750                goto err;
1751
1752        ab->ctx = ctx;
1753        ab->gfp_mask = gfp_mask;
1754
1755        return ab;
1756
1757err:
1758        audit_buffer_free(ab);
1759        return NULL;
1760}
1761
1762/**
1763 * audit_serial - compute a serial number for the audit record
1764 *
1765 * Compute a serial number for the audit record.  Audit records are
1766 * written to user-space as soon as they are generated, so a complete
1767 * audit record may be written in several pieces.  The timestamp of the
1768 * record and this serial number are used by the user-space tools to
1769 * determine which pieces belong to the same audit record.  The
1770 * (timestamp,serial) tuple is unique for each syscall and is live from
1771 * syscall entry to syscall exit.
1772 *
1773 * NOTE: Another possibility is to store the formatted records off the
1774 * audit context (for those records that have a context), and emit them
1775 * all at syscall exit.  However, this could delay the reporting of
1776 * significant errors until syscall exit (or never, if the system
1777 * halts).
1778 */
1779unsigned int audit_serial(void)
1780{
1781        static atomic_t serial = ATOMIC_INIT(0);
1782
1783        return atomic_add_return(1, &serial);
1784}
1785
1786static inline void audit_get_stamp(struct audit_context *ctx,
1787                                   struct timespec64 *t, unsigned int *serial)
1788{
1789        if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1790                ktime_get_coarse_real_ts64(t);
1791                *serial = audit_serial();
1792        }
1793}
1794
1795/**
1796 * audit_log_start - obtain an audit buffer
1797 * @ctx: audit_context (may be NULL)
1798 * @gfp_mask: type of allocation
1799 * @type: audit message type
1800 *
1801 * Returns audit_buffer pointer on success or NULL on error.
1802 *
1803 * Obtain an audit buffer.  This routine does locking to obtain the
1804 * audit buffer, but then no locking is required for calls to
1805 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1806 * syscall, then the syscall is marked as auditable and an audit record
1807 * will be written at syscall exit.  If there is no associated task, then
1808 * task context (ctx) should be NULL.
1809 */
1810struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1811                                     int type)
1812{
1813        struct audit_buffer *ab;
1814        struct timespec64 t;
1815        unsigned int serial;
1816
1817        if (audit_initialized != AUDIT_INITIALIZED)
1818                return NULL;
1819
1820        if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1821                return NULL;
1822
1823        /* NOTE: don't ever fail/sleep on these two conditions:
1824         * 1. auditd generated record - since we need auditd to drain the
1825         *    queue; also, when we are checking for auditd, compare PIDs using
1826         *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1827         *    using a PID anchored in the caller's namespace
1828         * 2. generator holding the audit_cmd_mutex - we don't want to block
1829         *    while holding the mutex */
1830        if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1831                long stime = audit_backlog_wait_time;
1832
1833                while (audit_backlog_limit &&
1834                       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1835                        /* wake kauditd to try and flush the queue */
1836                        wake_up_interruptible(&kauditd_wait);
1837
1838                        /* sleep if we are allowed and we haven't exhausted our
1839                         * backlog wait limit */
1840                        if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1841                                long rtime = stime;
1842
1843                                DECLARE_WAITQUEUE(wait, current);
1844
1845                                add_wait_queue_exclusive(&audit_backlog_wait,
1846                                                         &wait);
1847                                set_current_state(TASK_UNINTERRUPTIBLE);
1848                                stime = schedule_timeout(rtime);
1849                                atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1850                                remove_wait_queue(&audit_backlog_wait, &wait);
1851                        } else {
1852                                if (audit_rate_check() && printk_ratelimit())
1853                                        pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1854                                                skb_queue_len(&audit_queue),
1855                                                audit_backlog_limit);
1856                                audit_log_lost("backlog limit exceeded");
1857                                return NULL;
1858                        }
1859                }
1860        }
1861
1862        ab = audit_buffer_alloc(ctx, gfp_mask, type);
1863        if (!ab) {
1864                audit_log_lost("out of memory in audit_log_start");
1865                return NULL;
1866        }
1867
1868        audit_get_stamp(ab->ctx, &t, &serial);
1869        audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1870                         (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1871
1872        return ab;
1873}
1874
1875/**
1876 * audit_expand - expand skb in the audit buffer
1877 * @ab: audit_buffer
1878 * @extra: space to add at tail of the skb
1879 *
1880 * Returns 0 (no space) on failed expansion, or available space if
1881 * successful.
1882 */
1883static inline int audit_expand(struct audit_buffer *ab, int extra)
1884{
1885        struct sk_buff *skb = ab->skb;
1886        int oldtail = skb_tailroom(skb);
1887        int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1888        int newtail = skb_tailroom(skb);
1889
1890        if (ret < 0) {
1891                audit_log_lost("out of memory in audit_expand");
1892                return 0;
1893        }
1894
1895        skb->truesize += newtail - oldtail;
1896        return newtail;
1897}
1898
1899/*
1900 * Format an audit message into the audit buffer.  If there isn't enough
1901 * room in the audit buffer, more room will be allocated and vsnprint
1902 * will be called a second time.  Currently, we assume that a printk
1903 * can't format message larger than 1024 bytes, so we don't either.
1904 */
1905static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1906                              va_list args)
1907{
1908        int len, avail;
1909        struct sk_buff *skb;
1910        va_list args2;
1911
1912        if (!ab)
1913                return;
1914
1915        BUG_ON(!ab->skb);
1916        skb = ab->skb;
1917        avail = skb_tailroom(skb);
1918        if (avail == 0) {
1919                avail = audit_expand(ab, AUDIT_BUFSIZ);
1920                if (!avail)
1921                        goto out;
1922        }
1923        va_copy(args2, args);
1924        len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1925        if (len >= avail) {
1926                /* The printk buffer is 1024 bytes long, so if we get
1927                 * here and AUDIT_BUFSIZ is at least 1024, then we can
1928                 * log everything that printk could have logged. */
1929                avail = audit_expand(ab,
1930                        max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1931                if (!avail)
1932                        goto out_va_end;
1933                len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1934        }
1935        if (len > 0)
1936                skb_put(skb, len);
1937out_va_end:
1938        va_end(args2);
1939out:
1940        return;
1941}
1942
1943/**
1944 * audit_log_format - format a message into the audit buffer.
1945 * @ab: audit_buffer
1946 * @fmt: format string
1947 * @...: optional parameters matching @fmt string
1948 *
1949 * All the work is done in audit_log_vformat.
1950 */
1951void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1952{
1953        va_list args;
1954
1955        if (!ab)
1956                return;
1957        va_start(args, fmt);
1958        audit_log_vformat(ab, fmt, args);
1959        va_end(args);
1960}
1961
1962/**
1963 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1964 * @ab: the audit_buffer
1965 * @buf: buffer to convert to hex
1966 * @len: length of @buf to be converted
1967 *
1968 * No return value; failure to expand is silently ignored.
1969 *
1970 * This function will take the passed buf and convert it into a string of
1971 * ascii hex digits. The new string is placed onto the skb.
1972 */
1973void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1974                size_t len)
1975{
1976        int i, avail, new_len;
1977        unsigned char *ptr;
1978        struct sk_buff *skb;
1979
1980        if (!ab)
1981                return;
1982
1983        BUG_ON(!ab->skb);
1984        skb = ab->skb;
1985        avail = skb_tailroom(skb);
1986        new_len = len<<1;
1987        if (new_len >= avail) {
1988                /* Round the buffer request up to the next multiple */
1989                new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1990                avail = audit_expand(ab, new_len);
1991                if (!avail)
1992                        return;
1993        }
1994
1995        ptr = skb_tail_pointer(skb);
1996        for (i = 0; i < len; i++)
1997                ptr = hex_byte_pack_upper(ptr, buf[i]);
1998        *ptr = 0;
1999        skb_put(skb, len << 1); /* new string is twice the old string */
2000}
2001
2002/*
2003 * Format a string of no more than slen characters into the audit buffer,
2004 * enclosed in quote marks.
2005 */
2006void audit_log_n_string(struct audit_buffer *ab, const char *string,
2007                        size_t slen)
2008{
2009        int avail, new_len;
2010        unsigned char *ptr;
2011        struct sk_buff *skb;
2012
2013        if (!ab)
2014                return;
2015
2016        BUG_ON(!ab->skb);
2017        skb = ab->skb;
2018        avail = skb_tailroom(skb);
2019        new_len = slen + 3;     /* enclosing quotes + null terminator */
2020        if (new_len > avail) {
2021                avail = audit_expand(ab, new_len);
2022                if (!avail)
2023                        return;
2024        }
2025        ptr = skb_tail_pointer(skb);
2026        *ptr++ = '"';
2027        memcpy(ptr, string, slen);
2028        ptr += slen;
2029        *ptr++ = '"';
2030        *ptr = 0;
2031        skb_put(skb, slen + 2); /* don't include null terminator */
2032}
2033
2034/**
2035 * audit_string_contains_control - does a string need to be logged in hex
2036 * @string: string to be checked
2037 * @len: max length of the string to check
2038 */
2039bool audit_string_contains_control(const char *string, size_t len)
2040{
2041        const unsigned char *p;
2042        for (p = string; p < (const unsigned char *)string + len; p++) {
2043                if (*p == '"' || *p < 0x21 || *p > 0x7e)
2044                        return true;
2045        }
2046        return false;
2047}
2048
2049/**
2050 * audit_log_n_untrustedstring - log a string that may contain random characters
2051 * @ab: audit_buffer
2052 * @len: length of string (not including trailing null)
2053 * @string: string to be logged
2054 *
2055 * This code will escape a string that is passed to it if the string
2056 * contains a control character, unprintable character, double quote mark,
2057 * or a space. Unescaped strings will start and end with a double quote mark.
2058 * Strings that are escaped are printed in hex (2 digits per char).
2059 *
2060 * The caller specifies the number of characters in the string to log, which may
2061 * or may not be the entire string.
2062 */
2063void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2064                                 size_t len)
2065{
2066        if (audit_string_contains_control(string, len))
2067                audit_log_n_hex(ab, string, len);
2068        else
2069                audit_log_n_string(ab, string, len);
2070}
2071
2072/**
2073 * audit_log_untrustedstring - log a string that may contain random characters
2074 * @ab: audit_buffer
2075 * @string: string to be logged
2076 *
2077 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2078 * determine string length.
2079 */
2080void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2081{
2082        audit_log_n_untrustedstring(ab, string, strlen(string));
2083}
2084
2085/* This is a helper-function to print the escaped d_path */
2086void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2087                      const struct path *path)
2088{
2089        char *p, *pathname;
2090
2091        if (prefix)
2092                audit_log_format(ab, "%s", prefix);
2093
2094        /* We will allow 11 spaces for ' (deleted)' to be appended */
2095        pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2096        if (!pathname) {
2097                audit_log_format(ab, "\"<no_memory>\"");
2098                return;
2099        }
2100        p = d_path(path, pathname, PATH_MAX+11);
2101        if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2102                /* FIXME: can we save some information here? */
2103                audit_log_format(ab, "\"<too_long>\"");
2104        } else
2105                audit_log_untrustedstring(ab, p);
2106        kfree(pathname);
2107}
2108
2109void audit_log_session_info(struct audit_buffer *ab)
2110{
2111        unsigned int sessionid = audit_get_sessionid(current);
2112        uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2113
2114        audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2115}
2116
2117void audit_log_key(struct audit_buffer *ab, char *key)
2118{
2119        audit_log_format(ab, " key=");
2120        if (key)
2121                audit_log_untrustedstring(ab, key);
2122        else
2123                audit_log_format(ab, "(null)");
2124}
2125
2126int audit_log_task_context(struct audit_buffer *ab)
2127{
2128        char *ctx = NULL;
2129        unsigned len;
2130        int error;
2131        u32 sid;
2132
2133        security_task_getsecid(current, &sid);
2134        if (!sid)
2135                return 0;
2136
2137        error = security_secid_to_secctx(sid, &ctx, &len);
2138        if (error) {
2139                if (error != -EINVAL)
2140                        goto error_path;
2141                return 0;
2142        }
2143
2144        audit_log_format(ab, " subj=%s", ctx);
2145        security_release_secctx(ctx, len);
2146        return 0;
2147
2148error_path:
2149        audit_panic("error in audit_log_task_context");
2150        return error;
2151}
2152EXPORT_SYMBOL(audit_log_task_context);
2153
2154void audit_log_d_path_exe(struct audit_buffer *ab,
2155                          struct mm_struct *mm)
2156{
2157        struct file *exe_file;
2158
2159        if (!mm)
2160                goto out_null;
2161
2162        exe_file = get_mm_exe_file(mm);
2163        if (!exe_file)
2164                goto out_null;
2165
2166        audit_log_d_path(ab, " exe=", &exe_file->f_path);
2167        fput(exe_file);
2168        return;
2169out_null:
2170        audit_log_format(ab, " exe=(null)");
2171}
2172
2173struct tty_struct *audit_get_tty(void)
2174{
2175        struct tty_struct *tty = NULL;
2176        unsigned long flags;
2177
2178        spin_lock_irqsave(&current->sighand->siglock, flags);
2179        if (current->signal)
2180                tty = tty_kref_get(current->signal->tty);
2181        spin_unlock_irqrestore(&current->sighand->siglock, flags);
2182        return tty;
2183}
2184
2185void audit_put_tty(struct tty_struct *tty)
2186{
2187        tty_kref_put(tty);
2188}
2189
2190void audit_log_task_info(struct audit_buffer *ab)
2191{
2192        const struct cred *cred;
2193        char comm[sizeof(current->comm)];
2194        struct tty_struct *tty;
2195
2196        if (!ab)
2197                return;
2198
2199        cred = current_cred();
2200        tty = audit_get_tty();
2201        audit_log_format(ab,
2202                         " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2203                         " euid=%u suid=%u fsuid=%u"
2204                         " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2205                         task_ppid_nr(current),
2206                         task_tgid_nr(current),
2207                         from_kuid(&init_user_ns, audit_get_loginuid(current)),
2208                         from_kuid(&init_user_ns, cred->uid),
2209                         from_kgid(&init_user_ns, cred->gid),
2210                         from_kuid(&init_user_ns, cred->euid),
2211                         from_kuid(&init_user_ns, cred->suid),
2212                         from_kuid(&init_user_ns, cred->fsuid),
2213                         from_kgid(&init_user_ns, cred->egid),
2214                         from_kgid(&init_user_ns, cred->sgid),
2215                         from_kgid(&init_user_ns, cred->fsgid),
2216                         tty ? tty_name(tty) : "(none)",
2217                         audit_get_sessionid(current));
2218        audit_put_tty(tty);
2219        audit_log_format(ab, " comm=");
2220        audit_log_untrustedstring(ab, get_task_comm(comm, current));
2221        audit_log_d_path_exe(ab, current->mm);
2222        audit_log_task_context(ab);
2223}
2224EXPORT_SYMBOL(audit_log_task_info);
2225
2226/**
2227 * audit_log_path_denied - report a path restriction denial
2228 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2229 * @operation: specific operation name
2230 */
2231void audit_log_path_denied(int type, const char *operation)
2232{
2233        struct audit_buffer *ab;
2234
2235        if (!audit_enabled || audit_dummy_context())
2236                return;
2237
2238        /* Generate log with subject, operation, outcome. */
2239        ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2240        if (!ab)
2241                return;
2242        audit_log_format(ab, "op=%s", operation);
2243        audit_log_task_info(ab);
2244        audit_log_format(ab, " res=0");
2245        audit_log_end(ab);
2246}
2247
2248/* global counter which is incremented every time something logs in */
2249static atomic_t session_id = ATOMIC_INIT(0);
2250
2251static int audit_set_loginuid_perm(kuid_t loginuid)
2252{
2253        /* if we are unset, we don't need privs */
2254        if (!audit_loginuid_set(current))
2255                return 0;
2256        /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2257        if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2258                return -EPERM;
2259        /* it is set, you need permission */
2260        if (!capable(CAP_AUDIT_CONTROL))
2261                return -EPERM;
2262        /* reject if this is not an unset and we don't allow that */
2263        if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2264                                 && uid_valid(loginuid))
2265                return -EPERM;
2266        return 0;
2267}
2268
2269static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2270                                   unsigned int oldsessionid,
2271                                   unsigned int sessionid, int rc)
2272{
2273        struct audit_buffer *ab;
2274        uid_t uid, oldloginuid, loginuid;
2275        struct tty_struct *tty;
2276
2277        if (!audit_enabled)
2278                return;
2279
2280        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2281        if (!ab)
2282                return;
2283
2284        uid = from_kuid(&init_user_ns, task_uid(current));
2285        oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2286        loginuid = from_kuid(&init_user_ns, kloginuid),
2287        tty = audit_get_tty();
2288
2289        audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2290        audit_log_task_context(ab);
2291        audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2292                         oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2293                         oldsessionid, sessionid, !rc);
2294        audit_put_tty(tty);
2295        audit_log_end(ab);
2296}
2297
2298/**
2299 * audit_set_loginuid - set current task's loginuid
2300 * @loginuid: loginuid value
2301 *
2302 * Returns 0.
2303 *
2304 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2305 */
2306int audit_set_loginuid(kuid_t loginuid)
2307{
2308        unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2309        kuid_t oldloginuid;
2310        int rc;
2311
2312        oldloginuid = audit_get_loginuid(current);
2313        oldsessionid = audit_get_sessionid(current);
2314
2315        rc = audit_set_loginuid_perm(loginuid);
2316        if (rc)
2317                goto out;
2318
2319        /* are we setting or clearing? */
2320        if (uid_valid(loginuid)) {
2321                sessionid = (unsigned int)atomic_inc_return(&session_id);
2322                if (unlikely(sessionid == AUDIT_SID_UNSET))
2323                        sessionid = (unsigned int)atomic_inc_return(&session_id);
2324        }
2325
2326        current->sessionid = sessionid;
2327        current->loginuid = loginuid;
2328out:
2329        audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2330        return rc;
2331}
2332
2333/**
2334 * audit_signal_info - record signal info for shutting down audit subsystem
2335 * @sig: signal value
2336 * @t: task being signaled
2337 *
2338 * If the audit subsystem is being terminated, record the task (pid)
2339 * and uid that is doing that.
2340 */
2341int audit_signal_info(int sig, struct task_struct *t)
2342{
2343        kuid_t uid = current_uid(), auid;
2344
2345        if (auditd_test_task(t) &&
2346            (sig == SIGTERM || sig == SIGHUP ||
2347             sig == SIGUSR1 || sig == SIGUSR2)) {
2348                audit_sig_pid = task_tgid_nr(current);
2349                auid = audit_get_loginuid(current);
2350                if (uid_valid(auid))
2351                        audit_sig_uid = auid;
2352                else
2353                        audit_sig_uid = uid;
2354                security_task_getsecid(current, &audit_sig_sid);
2355        }
2356
2357        return audit_signal_info_syscall(t);
2358}
2359
2360/**
2361 * audit_log_end - end one audit record
2362 * @ab: the audit_buffer
2363 *
2364 * We can not do a netlink send inside an irq context because it blocks (last
2365 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2366 * queue and a tasklet is scheduled to remove them from the queue outside the
2367 * irq context.  May be called in any context.
2368 */
2369void audit_log_end(struct audit_buffer *ab)
2370{
2371        struct sk_buff *skb;
2372        struct nlmsghdr *nlh;
2373
2374        if (!ab)
2375                return;
2376
2377        if (audit_rate_check()) {
2378                skb = ab->skb;
2379                ab->skb = NULL;
2380
2381                /* setup the netlink header, see the comments in
2382                 * kauditd_send_multicast_skb() for length quirks */
2383                nlh = nlmsg_hdr(skb);
2384                nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2385
2386                /* queue the netlink packet and poke the kauditd thread */
2387                skb_queue_tail(&audit_queue, skb);
2388                wake_up_interruptible(&kauditd_wait);
2389        } else
2390                audit_log_lost("rate limit exceeded");
2391
2392        audit_buffer_free(ab);
2393}
2394
2395/**
2396 * audit_log - Log an audit record
2397 * @ctx: audit context
2398 * @gfp_mask: type of allocation
2399 * @type: audit message type
2400 * @fmt: format string to use
2401 * @...: variable parameters matching the format string
2402 *
2403 * This is a convenience function that calls audit_log_start,
2404 * audit_log_vformat, and audit_log_end.  It may be called
2405 * in any context.
2406 */
2407void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2408               const char *fmt, ...)
2409{
2410        struct audit_buffer *ab;
2411        va_list args;
2412
2413        ab = audit_log_start(ctx, gfp_mask, type);
2414        if (ab) {
2415                va_start(args, fmt);
2416                audit_log_vformat(ab, fmt, args);
2417                va_end(args);
2418                audit_log_end(ab);
2419        }
2420}
2421
2422EXPORT_SYMBOL(audit_log_start);
2423EXPORT_SYMBOL(audit_log_end);
2424EXPORT_SYMBOL(audit_log_format);
2425EXPORT_SYMBOL(audit_log);
2426