linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
  76#include <linux/fsnotify_backend.h>
  77#include <uapi/linux/limits.h>
  78#include <uapi/linux/netfilter/nf_tables.h>
  79
  80#include "audit.h"
  81
  82/* flags stating the success for a syscall */
  83#define AUDITSC_INVALID 0
  84#define AUDITSC_SUCCESS 1
  85#define AUDITSC_FAILURE 2
  86
  87/* no execve audit message should be longer than this (userspace limits),
  88 * see the note near the top of audit_log_execve_info() about this value */
  89#define MAX_EXECVE_AUDIT_LEN 7500
  90
  91/* max length to print of cmdline/proctitle value during audit */
  92#define MAX_PROCTITLE_AUDIT_LEN 128
  93
  94/* number of audit rules */
  95int audit_n_rules;
  96
  97/* determines whether we collect data for signals sent */
  98int audit_signals;
  99
 100struct audit_aux_data {
 101        struct audit_aux_data   *next;
 102        int                     type;
 103};
 104
 105#define AUDIT_AUX_IPCPERM       0
 106
 107/* Number of target pids per aux struct. */
 108#define AUDIT_AUX_PIDS  16
 109
 110struct audit_aux_data_pids {
 111        struct audit_aux_data   d;
 112        pid_t                   target_pid[AUDIT_AUX_PIDS];
 113        kuid_t                  target_auid[AUDIT_AUX_PIDS];
 114        kuid_t                  target_uid[AUDIT_AUX_PIDS];
 115        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 116        u32                     target_sid[AUDIT_AUX_PIDS];
 117        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 118        int                     pid_count;
 119};
 120
 121struct audit_aux_data_bprm_fcaps {
 122        struct audit_aux_data   d;
 123        struct audit_cap_data   fcap;
 124        unsigned int            fcap_ver;
 125        struct audit_cap_data   old_pcap;
 126        struct audit_cap_data   new_pcap;
 127};
 128
 129struct audit_tree_refs {
 130        struct audit_tree_refs *next;
 131        struct audit_chunk *c[31];
 132};
 133
 134struct audit_nfcfgop_tab {
 135        enum audit_nfcfgop      op;
 136        const char              *s;
 137};
 138
 139static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 140        { AUDIT_XT_OP_REGISTER,                 "xt_register"              },
 141        { AUDIT_XT_OP_REPLACE,                  "xt_replace"               },
 142        { AUDIT_XT_OP_UNREGISTER,               "xt_unregister"            },
 143        { AUDIT_NFT_OP_TABLE_REGISTER,          "nft_register_table"       },
 144        { AUDIT_NFT_OP_TABLE_UNREGISTER,        "nft_unregister_table"     },
 145        { AUDIT_NFT_OP_CHAIN_REGISTER,          "nft_register_chain"       },
 146        { AUDIT_NFT_OP_CHAIN_UNREGISTER,        "nft_unregister_chain"     },
 147        { AUDIT_NFT_OP_RULE_REGISTER,           "nft_register_rule"        },
 148        { AUDIT_NFT_OP_RULE_UNREGISTER,         "nft_unregister_rule"      },
 149        { AUDIT_NFT_OP_SET_REGISTER,            "nft_register_set"         },
 150        { AUDIT_NFT_OP_SET_UNREGISTER,          "nft_unregister_set"       },
 151        { AUDIT_NFT_OP_SETELEM_REGISTER,        "nft_register_setelem"     },
 152        { AUDIT_NFT_OP_SETELEM_UNREGISTER,      "nft_unregister_setelem"   },
 153        { AUDIT_NFT_OP_GEN_REGISTER,            "nft_register_gen"         },
 154        { AUDIT_NFT_OP_OBJ_REGISTER,            "nft_register_obj"         },
 155        { AUDIT_NFT_OP_OBJ_UNREGISTER,          "nft_unregister_obj"       },
 156        { AUDIT_NFT_OP_OBJ_RESET,               "nft_reset_obj"            },
 157        { AUDIT_NFT_OP_FLOWTABLE_REGISTER,      "nft_register_flowtable"   },
 158        { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,    "nft_unregister_flowtable" },
 159        { AUDIT_NFT_OP_INVALID,                 "nft_invalid"              },
 160};
 161
 162static int audit_match_perm(struct audit_context *ctx, int mask)
 163{
 164        unsigned n;
 165        if (unlikely(!ctx))
 166                return 0;
 167        n = ctx->major;
 168
 169        switch (audit_classify_syscall(ctx->arch, n)) {
 170        case 0: /* native */
 171                if ((mask & AUDIT_PERM_WRITE) &&
 172                     audit_match_class(AUDIT_CLASS_WRITE, n))
 173                        return 1;
 174                if ((mask & AUDIT_PERM_READ) &&
 175                     audit_match_class(AUDIT_CLASS_READ, n))
 176                        return 1;
 177                if ((mask & AUDIT_PERM_ATTR) &&
 178                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 179                        return 1;
 180                return 0;
 181        case 1: /* 32bit on biarch */
 182                if ((mask & AUDIT_PERM_WRITE) &&
 183                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 184                        return 1;
 185                if ((mask & AUDIT_PERM_READ) &&
 186                     audit_match_class(AUDIT_CLASS_READ_32, n))
 187                        return 1;
 188                if ((mask & AUDIT_PERM_ATTR) &&
 189                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 190                        return 1;
 191                return 0;
 192        case 2: /* open */
 193                return mask & ACC_MODE(ctx->argv[1]);
 194        case 3: /* openat */
 195                return mask & ACC_MODE(ctx->argv[2]);
 196        case 4: /* socketcall */
 197                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 198        case 5: /* execve */
 199                return mask & AUDIT_PERM_EXEC;
 200        default:
 201                return 0;
 202        }
 203}
 204
 205static int audit_match_filetype(struct audit_context *ctx, int val)
 206{
 207        struct audit_names *n;
 208        umode_t mode = (umode_t)val;
 209
 210        if (unlikely(!ctx))
 211                return 0;
 212
 213        list_for_each_entry(n, &ctx->names_list, list) {
 214                if ((n->ino != AUDIT_INO_UNSET) &&
 215                    ((n->mode & S_IFMT) == mode))
 216                        return 1;
 217        }
 218
 219        return 0;
 220}
 221
 222/*
 223 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 224 * ->first_trees points to its beginning, ->trees - to the current end of data.
 225 * ->tree_count is the number of free entries in array pointed to by ->trees.
 226 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 227 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 228 * it's going to remain 1-element for almost any setup) until we free context itself.
 229 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 230 */
 231
 232static void audit_set_auditable(struct audit_context *ctx)
 233{
 234        if (!ctx->prio) {
 235                ctx->prio = 1;
 236                ctx->current_state = AUDIT_RECORD_CONTEXT;
 237        }
 238}
 239
 240static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 241{
 242        struct audit_tree_refs *p = ctx->trees;
 243        int left = ctx->tree_count;
 244        if (likely(left)) {
 245                p->c[--left] = chunk;
 246                ctx->tree_count = left;
 247                return 1;
 248        }
 249        if (!p)
 250                return 0;
 251        p = p->next;
 252        if (p) {
 253                p->c[30] = chunk;
 254                ctx->trees = p;
 255                ctx->tree_count = 30;
 256                return 1;
 257        }
 258        return 0;
 259}
 260
 261static int grow_tree_refs(struct audit_context *ctx)
 262{
 263        struct audit_tree_refs *p = ctx->trees;
 264        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 265        if (!ctx->trees) {
 266                ctx->trees = p;
 267                return 0;
 268        }
 269        if (p)
 270                p->next = ctx->trees;
 271        else
 272                ctx->first_trees = ctx->trees;
 273        ctx->tree_count = 31;
 274        return 1;
 275}
 276
 277static void unroll_tree_refs(struct audit_context *ctx,
 278                      struct audit_tree_refs *p, int count)
 279{
 280        struct audit_tree_refs *q;
 281        int n;
 282        if (!p) {
 283                /* we started with empty chain */
 284                p = ctx->first_trees;
 285                count = 31;
 286                /* if the very first allocation has failed, nothing to do */
 287                if (!p)
 288                        return;
 289        }
 290        n = count;
 291        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 292                while (n--) {
 293                        audit_put_chunk(q->c[n]);
 294                        q->c[n] = NULL;
 295                }
 296        }
 297        while (n-- > ctx->tree_count) {
 298                audit_put_chunk(q->c[n]);
 299                q->c[n] = NULL;
 300        }
 301        ctx->trees = p;
 302        ctx->tree_count = count;
 303}
 304
 305static void free_tree_refs(struct audit_context *ctx)
 306{
 307        struct audit_tree_refs *p, *q;
 308        for (p = ctx->first_trees; p; p = q) {
 309                q = p->next;
 310                kfree(p);
 311        }
 312}
 313
 314static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 315{
 316        struct audit_tree_refs *p;
 317        int n;
 318        if (!tree)
 319                return 0;
 320        /* full ones */
 321        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 322                for (n = 0; n < 31; n++)
 323                        if (audit_tree_match(p->c[n], tree))
 324                                return 1;
 325        }
 326        /* partial */
 327        if (p) {
 328                for (n = ctx->tree_count; n < 31; n++)
 329                        if (audit_tree_match(p->c[n], tree))
 330                                return 1;
 331        }
 332        return 0;
 333}
 334
 335static int audit_compare_uid(kuid_t uid,
 336                             struct audit_names *name,
 337                             struct audit_field *f,
 338                             struct audit_context *ctx)
 339{
 340        struct audit_names *n;
 341        int rc;
 342 
 343        if (name) {
 344                rc = audit_uid_comparator(uid, f->op, name->uid);
 345                if (rc)
 346                        return rc;
 347        }
 348 
 349        if (ctx) {
 350                list_for_each_entry(n, &ctx->names_list, list) {
 351                        rc = audit_uid_comparator(uid, f->op, n->uid);
 352                        if (rc)
 353                                return rc;
 354                }
 355        }
 356        return 0;
 357}
 358
 359static int audit_compare_gid(kgid_t gid,
 360                             struct audit_names *name,
 361                             struct audit_field *f,
 362                             struct audit_context *ctx)
 363{
 364        struct audit_names *n;
 365        int rc;
 366 
 367        if (name) {
 368                rc = audit_gid_comparator(gid, f->op, name->gid);
 369                if (rc)
 370                        return rc;
 371        }
 372 
 373        if (ctx) {
 374                list_for_each_entry(n, &ctx->names_list, list) {
 375                        rc = audit_gid_comparator(gid, f->op, n->gid);
 376                        if (rc)
 377                                return rc;
 378                }
 379        }
 380        return 0;
 381}
 382
 383static int audit_field_compare(struct task_struct *tsk,
 384                               const struct cred *cred,
 385                               struct audit_field *f,
 386                               struct audit_context *ctx,
 387                               struct audit_names *name)
 388{
 389        switch (f->val) {
 390        /* process to file object comparisons */
 391        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 392                return audit_compare_uid(cred->uid, name, f, ctx);
 393        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 394                return audit_compare_gid(cred->gid, name, f, ctx);
 395        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 396                return audit_compare_uid(cred->euid, name, f, ctx);
 397        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 398                return audit_compare_gid(cred->egid, name, f, ctx);
 399        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 400                return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 401        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 402                return audit_compare_uid(cred->suid, name, f, ctx);
 403        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 404                return audit_compare_gid(cred->sgid, name, f, ctx);
 405        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 406                return audit_compare_uid(cred->fsuid, name, f, ctx);
 407        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 408                return audit_compare_gid(cred->fsgid, name, f, ctx);
 409        /* uid comparisons */
 410        case AUDIT_COMPARE_UID_TO_AUID:
 411                return audit_uid_comparator(cred->uid, f->op,
 412                                            audit_get_loginuid(tsk));
 413        case AUDIT_COMPARE_UID_TO_EUID:
 414                return audit_uid_comparator(cred->uid, f->op, cred->euid);
 415        case AUDIT_COMPARE_UID_TO_SUID:
 416                return audit_uid_comparator(cred->uid, f->op, cred->suid);
 417        case AUDIT_COMPARE_UID_TO_FSUID:
 418                return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 419        /* auid comparisons */
 420        case AUDIT_COMPARE_AUID_TO_EUID:
 421                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422                                            cred->euid);
 423        case AUDIT_COMPARE_AUID_TO_SUID:
 424                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 425                                            cred->suid);
 426        case AUDIT_COMPARE_AUID_TO_FSUID:
 427                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 428                                            cred->fsuid);
 429        /* euid comparisons */
 430        case AUDIT_COMPARE_EUID_TO_SUID:
 431                return audit_uid_comparator(cred->euid, f->op, cred->suid);
 432        case AUDIT_COMPARE_EUID_TO_FSUID:
 433                return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 434        /* suid comparisons */
 435        case AUDIT_COMPARE_SUID_TO_FSUID:
 436                return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 437        /* gid comparisons */
 438        case AUDIT_COMPARE_GID_TO_EGID:
 439                return audit_gid_comparator(cred->gid, f->op, cred->egid);
 440        case AUDIT_COMPARE_GID_TO_SGID:
 441                return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 442        case AUDIT_COMPARE_GID_TO_FSGID:
 443                return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 444        /* egid comparisons */
 445        case AUDIT_COMPARE_EGID_TO_SGID:
 446                return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 447        case AUDIT_COMPARE_EGID_TO_FSGID:
 448                return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 449        /* sgid comparison */
 450        case AUDIT_COMPARE_SGID_TO_FSGID:
 451                return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 452        default:
 453                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 454                return 0;
 455        }
 456        return 0;
 457}
 458
 459/* Determine if any context name data matches a rule's watch data */
 460/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 461 * otherwise.
 462 *
 463 * If task_creation is true, this is an explicit indication that we are
 464 * filtering a task rule at task creation time.  This and tsk == current are
 465 * the only situations where tsk->cred may be accessed without an rcu read lock.
 466 */
 467static int audit_filter_rules(struct task_struct *tsk,
 468                              struct audit_krule *rule,
 469                              struct audit_context *ctx,
 470                              struct audit_names *name,
 471                              enum audit_state *state,
 472                              bool task_creation)
 473{
 474        const struct cred *cred;
 475        int i, need_sid = 1;
 476        u32 sid;
 477        unsigned int sessionid;
 478
 479        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 480
 481        for (i = 0; i < rule->field_count; i++) {
 482                struct audit_field *f = &rule->fields[i];
 483                struct audit_names *n;
 484                int result = 0;
 485                pid_t pid;
 486
 487                switch (f->type) {
 488                case AUDIT_PID:
 489                        pid = task_tgid_nr(tsk);
 490                        result = audit_comparator(pid, f->op, f->val);
 491                        break;
 492                case AUDIT_PPID:
 493                        if (ctx) {
 494                                if (!ctx->ppid)
 495                                        ctx->ppid = task_ppid_nr(tsk);
 496                                result = audit_comparator(ctx->ppid, f->op, f->val);
 497                        }
 498                        break;
 499                case AUDIT_EXE:
 500                        result = audit_exe_compare(tsk, rule->exe);
 501                        if (f->op == Audit_not_equal)
 502                                result = !result;
 503                        break;
 504                case AUDIT_UID:
 505                        result = audit_uid_comparator(cred->uid, f->op, f->uid);
 506                        break;
 507                case AUDIT_EUID:
 508                        result = audit_uid_comparator(cred->euid, f->op, f->uid);
 509                        break;
 510                case AUDIT_SUID:
 511                        result = audit_uid_comparator(cred->suid, f->op, f->uid);
 512                        break;
 513                case AUDIT_FSUID:
 514                        result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 515                        break;
 516                case AUDIT_GID:
 517                        result = audit_gid_comparator(cred->gid, f->op, f->gid);
 518                        if (f->op == Audit_equal) {
 519                                if (!result)
 520                                        result = groups_search(cred->group_info, f->gid);
 521                        } else if (f->op == Audit_not_equal) {
 522                                if (result)
 523                                        result = !groups_search(cred->group_info, f->gid);
 524                        }
 525                        break;
 526                case AUDIT_EGID:
 527                        result = audit_gid_comparator(cred->egid, f->op, f->gid);
 528                        if (f->op == Audit_equal) {
 529                                if (!result)
 530                                        result = groups_search(cred->group_info, f->gid);
 531                        } else if (f->op == Audit_not_equal) {
 532                                if (result)
 533                                        result = !groups_search(cred->group_info, f->gid);
 534                        }
 535                        break;
 536                case AUDIT_SGID:
 537                        result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 538                        break;
 539                case AUDIT_FSGID:
 540                        result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 541                        break;
 542                case AUDIT_SESSIONID:
 543                        sessionid = audit_get_sessionid(tsk);
 544                        result = audit_comparator(sessionid, f->op, f->val);
 545                        break;
 546                case AUDIT_PERS:
 547                        result = audit_comparator(tsk->personality, f->op, f->val);
 548                        break;
 549                case AUDIT_ARCH:
 550                        if (ctx)
 551                                result = audit_comparator(ctx->arch, f->op, f->val);
 552                        break;
 553
 554                case AUDIT_EXIT:
 555                        if (ctx && ctx->return_valid)
 556                                result = audit_comparator(ctx->return_code, f->op, f->val);
 557                        break;
 558                case AUDIT_SUCCESS:
 559                        if (ctx && ctx->return_valid) {
 560                                if (f->val)
 561                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 562                                else
 563                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 564                        }
 565                        break;
 566                case AUDIT_DEVMAJOR:
 567                        if (name) {
 568                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 569                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 570                                        ++result;
 571                        } else if (ctx) {
 572                                list_for_each_entry(n, &ctx->names_list, list) {
 573                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 574                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 575                                                ++result;
 576                                                break;
 577                                        }
 578                                }
 579                        }
 580                        break;
 581                case AUDIT_DEVMINOR:
 582                        if (name) {
 583                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 584                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 585                                        ++result;
 586                        } else if (ctx) {
 587                                list_for_each_entry(n, &ctx->names_list, list) {
 588                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 589                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 590                                                ++result;
 591                                                break;
 592                                        }
 593                                }
 594                        }
 595                        break;
 596                case AUDIT_INODE:
 597                        if (name)
 598                                result = audit_comparator(name->ino, f->op, f->val);
 599                        else if (ctx) {
 600                                list_for_each_entry(n, &ctx->names_list, list) {
 601                                        if (audit_comparator(n->ino, f->op, f->val)) {
 602                                                ++result;
 603                                                break;
 604                                        }
 605                                }
 606                        }
 607                        break;
 608                case AUDIT_OBJ_UID:
 609                        if (name) {
 610                                result = audit_uid_comparator(name->uid, f->op, f->uid);
 611                        } else if (ctx) {
 612                                list_for_each_entry(n, &ctx->names_list, list) {
 613                                        if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 614                                                ++result;
 615                                                break;
 616                                        }
 617                                }
 618                        }
 619                        break;
 620                case AUDIT_OBJ_GID:
 621                        if (name) {
 622                                result = audit_gid_comparator(name->gid, f->op, f->gid);
 623                        } else if (ctx) {
 624                                list_for_each_entry(n, &ctx->names_list, list) {
 625                                        if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 626                                                ++result;
 627                                                break;
 628                                        }
 629                                }
 630                        }
 631                        break;
 632                case AUDIT_WATCH:
 633                        if (name) {
 634                                result = audit_watch_compare(rule->watch,
 635                                                             name->ino,
 636                                                             name->dev);
 637                                if (f->op == Audit_not_equal)
 638                                        result = !result;
 639                        }
 640                        break;
 641                case AUDIT_DIR:
 642                        if (ctx) {
 643                                result = match_tree_refs(ctx, rule->tree);
 644                                if (f->op == Audit_not_equal)
 645                                        result = !result;
 646                        }
 647                        break;
 648                case AUDIT_LOGINUID:
 649                        result = audit_uid_comparator(audit_get_loginuid(tsk),
 650                                                      f->op, f->uid);
 651                        break;
 652                case AUDIT_LOGINUID_SET:
 653                        result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 654                        break;
 655                case AUDIT_SADDR_FAM:
 656                        if (ctx->sockaddr)
 657                                result = audit_comparator(ctx->sockaddr->ss_family,
 658                                                          f->op, f->val);
 659                        break;
 660                case AUDIT_SUBJ_USER:
 661                case AUDIT_SUBJ_ROLE:
 662                case AUDIT_SUBJ_TYPE:
 663                case AUDIT_SUBJ_SEN:
 664                case AUDIT_SUBJ_CLR:
 665                        /* NOTE: this may return negative values indicating
 666                           a temporary error.  We simply treat this as a
 667                           match for now to avoid losing information that
 668                           may be wanted.   An error message will also be
 669                           logged upon error */
 670                        if (f->lsm_rule) {
 671                                if (need_sid) {
 672                                        security_task_getsecid(tsk, &sid);
 673                                        need_sid = 0;
 674                                }
 675                                result = security_audit_rule_match(sid, f->type,
 676                                                                   f->op,
 677                                                                   f->lsm_rule);
 678                        }
 679                        break;
 680                case AUDIT_OBJ_USER:
 681                case AUDIT_OBJ_ROLE:
 682                case AUDIT_OBJ_TYPE:
 683                case AUDIT_OBJ_LEV_LOW:
 684                case AUDIT_OBJ_LEV_HIGH:
 685                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 686                           also applies here */
 687                        if (f->lsm_rule) {
 688                                /* Find files that match */
 689                                if (name) {
 690                                        result = security_audit_rule_match(
 691                                                                name->osid,
 692                                                                f->type,
 693                                                                f->op,
 694                                                                f->lsm_rule);
 695                                } else if (ctx) {
 696                                        list_for_each_entry(n, &ctx->names_list, list) {
 697                                                if (security_audit_rule_match(
 698                                                                n->osid,
 699                                                                f->type,
 700                                                                f->op,
 701                                                                f->lsm_rule)) {
 702                                                        ++result;
 703                                                        break;
 704                                                }
 705                                        }
 706                                }
 707                                /* Find ipc objects that match */
 708                                if (!ctx || ctx->type != AUDIT_IPC)
 709                                        break;
 710                                if (security_audit_rule_match(ctx->ipc.osid,
 711                                                              f->type, f->op,
 712                                                              f->lsm_rule))
 713                                        ++result;
 714                        }
 715                        break;
 716                case AUDIT_ARG0:
 717                case AUDIT_ARG1:
 718                case AUDIT_ARG2:
 719                case AUDIT_ARG3:
 720                        if (ctx)
 721                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 722                        break;
 723                case AUDIT_FILTERKEY:
 724                        /* ignore this field for filtering */
 725                        result = 1;
 726                        break;
 727                case AUDIT_PERM:
 728                        result = audit_match_perm(ctx, f->val);
 729                        if (f->op == Audit_not_equal)
 730                                result = !result;
 731                        break;
 732                case AUDIT_FILETYPE:
 733                        result = audit_match_filetype(ctx, f->val);
 734                        if (f->op == Audit_not_equal)
 735                                result = !result;
 736                        break;
 737                case AUDIT_FIELD_COMPARE:
 738                        result = audit_field_compare(tsk, cred, f, ctx, name);
 739                        break;
 740                }
 741                if (!result)
 742                        return 0;
 743        }
 744
 745        if (ctx) {
 746                if (rule->prio <= ctx->prio)
 747                        return 0;
 748                if (rule->filterkey) {
 749                        kfree(ctx->filterkey);
 750                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 751                }
 752                ctx->prio = rule->prio;
 753        }
 754        switch (rule->action) {
 755        case AUDIT_NEVER:
 756                *state = AUDIT_DISABLED;
 757                break;
 758        case AUDIT_ALWAYS:
 759                *state = AUDIT_RECORD_CONTEXT;
 760                break;
 761        }
 762        return 1;
 763}
 764
 765/* At process creation time, we can determine if system-call auditing is
 766 * completely disabled for this task.  Since we only have the task
 767 * structure at this point, we can only check uid and gid.
 768 */
 769static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 770{
 771        struct audit_entry *e;
 772        enum audit_state   state;
 773
 774        rcu_read_lock();
 775        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 776                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 777                                       &state, true)) {
 778                        if (state == AUDIT_RECORD_CONTEXT)
 779                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 780                        rcu_read_unlock();
 781                        return state;
 782                }
 783        }
 784        rcu_read_unlock();
 785        return AUDIT_BUILD_CONTEXT;
 786}
 787
 788static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 789{
 790        int word, bit;
 791
 792        if (val > 0xffffffff)
 793                return false;
 794
 795        word = AUDIT_WORD(val);
 796        if (word >= AUDIT_BITMASK_SIZE)
 797                return false;
 798
 799        bit = AUDIT_BIT(val);
 800
 801        return rule->mask[word] & bit;
 802}
 803
 804/* At syscall entry and exit time, this filter is called if the
 805 * audit_state is not low enough that auditing cannot take place, but is
 806 * also not high enough that we already know we have to write an audit
 807 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 808 */
 809static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 810                                             struct audit_context *ctx,
 811                                             struct list_head *list)
 812{
 813        struct audit_entry *e;
 814        enum audit_state state;
 815
 816        if (auditd_test_task(tsk))
 817                return AUDIT_DISABLED;
 818
 819        rcu_read_lock();
 820        list_for_each_entry_rcu(e, list, list) {
 821                if (audit_in_mask(&e->rule, ctx->major) &&
 822                    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 823                                       &state, false)) {
 824                        rcu_read_unlock();
 825                        ctx->current_state = state;
 826                        return state;
 827                }
 828        }
 829        rcu_read_unlock();
 830        return AUDIT_BUILD_CONTEXT;
 831}
 832
 833/*
 834 * Given an audit_name check the inode hash table to see if they match.
 835 * Called holding the rcu read lock to protect the use of audit_inode_hash
 836 */
 837static int audit_filter_inode_name(struct task_struct *tsk,
 838                                   struct audit_names *n,
 839                                   struct audit_context *ctx) {
 840        int h = audit_hash_ino((u32)n->ino);
 841        struct list_head *list = &audit_inode_hash[h];
 842        struct audit_entry *e;
 843        enum audit_state state;
 844
 845        list_for_each_entry_rcu(e, list, list) {
 846                if (audit_in_mask(&e->rule, ctx->major) &&
 847                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 848                        ctx->current_state = state;
 849                        return 1;
 850                }
 851        }
 852        return 0;
 853}
 854
 855/* At syscall exit time, this filter is called if any audit_names have been
 856 * collected during syscall processing.  We only check rules in sublists at hash
 857 * buckets applicable to the inode numbers in audit_names.
 858 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 859 */
 860void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 861{
 862        struct audit_names *n;
 863
 864        if (auditd_test_task(tsk))
 865                return;
 866
 867        rcu_read_lock();
 868
 869        list_for_each_entry(n, &ctx->names_list, list) {
 870                if (audit_filter_inode_name(tsk, n, ctx))
 871                        break;
 872        }
 873        rcu_read_unlock();
 874}
 875
 876static inline void audit_proctitle_free(struct audit_context *context)
 877{
 878        kfree(context->proctitle.value);
 879        context->proctitle.value = NULL;
 880        context->proctitle.len = 0;
 881}
 882
 883static inline void audit_free_module(struct audit_context *context)
 884{
 885        if (context->type == AUDIT_KERN_MODULE) {
 886                kfree(context->module.name);
 887                context->module.name = NULL;
 888        }
 889}
 890static inline void audit_free_names(struct audit_context *context)
 891{
 892        struct audit_names *n, *next;
 893
 894        list_for_each_entry_safe(n, next, &context->names_list, list) {
 895                list_del(&n->list);
 896                if (n->name)
 897                        putname(n->name);
 898                if (n->should_free)
 899                        kfree(n);
 900        }
 901        context->name_count = 0;
 902        path_put(&context->pwd);
 903        context->pwd.dentry = NULL;
 904        context->pwd.mnt = NULL;
 905}
 906
 907static inline void audit_free_aux(struct audit_context *context)
 908{
 909        struct audit_aux_data *aux;
 910
 911        while ((aux = context->aux)) {
 912                context->aux = aux->next;
 913                kfree(aux);
 914        }
 915        while ((aux = context->aux_pids)) {
 916                context->aux_pids = aux->next;
 917                kfree(aux);
 918        }
 919}
 920
 921static inline struct audit_context *audit_alloc_context(enum audit_state state)
 922{
 923        struct audit_context *context;
 924
 925        context = kzalloc(sizeof(*context), GFP_KERNEL);
 926        if (!context)
 927                return NULL;
 928        context->state = state;
 929        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 930        INIT_LIST_HEAD(&context->killed_trees);
 931        INIT_LIST_HEAD(&context->names_list);
 932        return context;
 933}
 934
 935/**
 936 * audit_alloc - allocate an audit context block for a task
 937 * @tsk: task
 938 *
 939 * Filter on the task information and allocate a per-task audit context
 940 * if necessary.  Doing so turns on system call auditing for the
 941 * specified task.  This is called from copy_process, so no lock is
 942 * needed.
 943 */
 944int audit_alloc(struct task_struct *tsk)
 945{
 946        struct audit_context *context;
 947        enum audit_state     state;
 948        char *key = NULL;
 949
 950        if (likely(!audit_ever_enabled))
 951                return 0; /* Return if not auditing. */
 952
 953        state = audit_filter_task(tsk, &key);
 954        if (state == AUDIT_DISABLED) {
 955                clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 956                return 0;
 957        }
 958
 959        if (!(context = audit_alloc_context(state))) {
 960                kfree(key);
 961                audit_log_lost("out of memory in audit_alloc");
 962                return -ENOMEM;
 963        }
 964        context->filterkey = key;
 965
 966        audit_set_context(tsk, context);
 967        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 968        return 0;
 969}
 970
 971static inline void audit_free_context(struct audit_context *context)
 972{
 973        audit_free_module(context);
 974        audit_free_names(context);
 975        unroll_tree_refs(context, NULL, 0);
 976        free_tree_refs(context);
 977        audit_free_aux(context);
 978        kfree(context->filterkey);
 979        kfree(context->sockaddr);
 980        audit_proctitle_free(context);
 981        kfree(context);
 982}
 983
 984static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 985                                 kuid_t auid, kuid_t uid, unsigned int sessionid,
 986                                 u32 sid, char *comm)
 987{
 988        struct audit_buffer *ab;
 989        char *ctx = NULL;
 990        u32 len;
 991        int rc = 0;
 992
 993        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 994        if (!ab)
 995                return rc;
 996
 997        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 998                         from_kuid(&init_user_ns, auid),
 999                         from_kuid(&init_user_ns, uid), sessionid);
1000        if (sid) {
1001                if (security_secid_to_secctx(sid, &ctx, &len)) {
1002                        audit_log_format(ab, " obj=(none)");
1003                        rc = 1;
1004                } else {
1005                        audit_log_format(ab, " obj=%s", ctx);
1006                        security_release_secctx(ctx, len);
1007                }
1008        }
1009        audit_log_format(ab, " ocomm=");
1010        audit_log_untrustedstring(ab, comm);
1011        audit_log_end(ab);
1012
1013        return rc;
1014}
1015
1016static void audit_log_execve_info(struct audit_context *context,
1017                                  struct audit_buffer **ab)
1018{
1019        long len_max;
1020        long len_rem;
1021        long len_full;
1022        long len_buf;
1023        long len_abuf = 0;
1024        long len_tmp;
1025        bool require_data;
1026        bool encode;
1027        unsigned int iter;
1028        unsigned int arg;
1029        char *buf_head;
1030        char *buf;
1031        const char __user *p = (const char __user *)current->mm->arg_start;
1032
1033        /* NOTE: this buffer needs to be large enough to hold all the non-arg
1034         *       data we put in the audit record for this argument (see the
1035         *       code below) ... at this point in time 96 is plenty */
1036        char abuf[96];
1037
1038        /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1039         *       current value of 7500 is not as important as the fact that it
1040         *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1041         *       room if we go over a little bit in the logging below */
1042        WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1043        len_max = MAX_EXECVE_AUDIT_LEN;
1044
1045        /* scratch buffer to hold the userspace args */
1046        buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1047        if (!buf_head) {
1048                audit_panic("out of memory for argv string");
1049                return;
1050        }
1051        buf = buf_head;
1052
1053        audit_log_format(*ab, "argc=%d", context->execve.argc);
1054
1055        len_rem = len_max;
1056        len_buf = 0;
1057        len_full = 0;
1058        require_data = true;
1059        encode = false;
1060        iter = 0;
1061        arg = 0;
1062        do {
1063                /* NOTE: we don't ever want to trust this value for anything
1064                 *       serious, but the audit record format insists we
1065                 *       provide an argument length for really long arguments,
1066                 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1067                 *       to use strncpy_from_user() to obtain this value for
1068                 *       recording in the log, although we don't use it
1069                 *       anywhere here to avoid a double-fetch problem */
1070                if (len_full == 0)
1071                        len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1072
1073                /* read more data from userspace */
1074                if (require_data) {
1075                        /* can we make more room in the buffer? */
1076                        if (buf != buf_head) {
1077                                memmove(buf_head, buf, len_buf);
1078                                buf = buf_head;
1079                        }
1080
1081                        /* fetch as much as we can of the argument */
1082                        len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1083                                                    len_max - len_buf);
1084                        if (len_tmp == -EFAULT) {
1085                                /* unable to copy from userspace */
1086                                send_sig(SIGKILL, current, 0);
1087                                goto out;
1088                        } else if (len_tmp == (len_max - len_buf)) {
1089                                /* buffer is not large enough */
1090                                require_data = true;
1091                                /* NOTE: if we are going to span multiple
1092                                 *       buffers force the encoding so we stand
1093                                 *       a chance at a sane len_full value and
1094                                 *       consistent record encoding */
1095                                encode = true;
1096                                len_full = len_full * 2;
1097                                p += len_tmp;
1098                        } else {
1099                                require_data = false;
1100                                if (!encode)
1101                                        encode = audit_string_contains_control(
1102                                                                buf, len_tmp);
1103                                /* try to use a trusted value for len_full */
1104                                if (len_full < len_max)
1105                                        len_full = (encode ?
1106                                                    len_tmp * 2 : len_tmp);
1107                                p += len_tmp + 1;
1108                        }
1109                        len_buf += len_tmp;
1110                        buf_head[len_buf] = '\0';
1111
1112                        /* length of the buffer in the audit record? */
1113                        len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1114                }
1115
1116                /* write as much as we can to the audit log */
1117                if (len_buf >= 0) {
1118                        /* NOTE: some magic numbers here - basically if we
1119                         *       can't fit a reasonable amount of data into the
1120                         *       existing audit buffer, flush it and start with
1121                         *       a new buffer */
1122                        if ((sizeof(abuf) + 8) > len_rem) {
1123                                len_rem = len_max;
1124                                audit_log_end(*ab);
1125                                *ab = audit_log_start(context,
1126                                                      GFP_KERNEL, AUDIT_EXECVE);
1127                                if (!*ab)
1128                                        goto out;
1129                        }
1130
1131                        /* create the non-arg portion of the arg record */
1132                        len_tmp = 0;
1133                        if (require_data || (iter > 0) ||
1134                            ((len_abuf + sizeof(abuf)) > len_rem)) {
1135                                if (iter == 0) {
1136                                        len_tmp += snprintf(&abuf[len_tmp],
1137                                                        sizeof(abuf) - len_tmp,
1138                                                        " a%d_len=%lu",
1139                                                        arg, len_full);
1140                                }
1141                                len_tmp += snprintf(&abuf[len_tmp],
1142                                                    sizeof(abuf) - len_tmp,
1143                                                    " a%d[%d]=", arg, iter++);
1144                        } else
1145                                len_tmp += snprintf(&abuf[len_tmp],
1146                                                    sizeof(abuf) - len_tmp,
1147                                                    " a%d=", arg);
1148                        WARN_ON(len_tmp >= sizeof(abuf));
1149                        abuf[sizeof(abuf) - 1] = '\0';
1150
1151                        /* log the arg in the audit record */
1152                        audit_log_format(*ab, "%s", abuf);
1153                        len_rem -= len_tmp;
1154                        len_tmp = len_buf;
1155                        if (encode) {
1156                                if (len_abuf > len_rem)
1157                                        len_tmp = len_rem / 2; /* encoding */
1158                                audit_log_n_hex(*ab, buf, len_tmp);
1159                                len_rem -= len_tmp * 2;
1160                                len_abuf -= len_tmp * 2;
1161                        } else {
1162                                if (len_abuf > len_rem)
1163                                        len_tmp = len_rem - 2; /* quotes */
1164                                audit_log_n_string(*ab, buf, len_tmp);
1165                                len_rem -= len_tmp + 2;
1166                                /* don't subtract the "2" because we still need
1167                                 * to add quotes to the remaining string */
1168                                len_abuf -= len_tmp;
1169                        }
1170                        len_buf -= len_tmp;
1171                        buf += len_tmp;
1172                }
1173
1174                /* ready to move to the next argument? */
1175                if ((len_buf == 0) && !require_data) {
1176                        arg++;
1177                        iter = 0;
1178                        len_full = 0;
1179                        require_data = true;
1180                        encode = false;
1181                }
1182        } while (arg < context->execve.argc);
1183
1184        /* NOTE: the caller handles the final audit_log_end() call */
1185
1186out:
1187        kfree(buf_head);
1188}
1189
1190static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1191                          kernel_cap_t *cap)
1192{
1193        int i;
1194
1195        if (cap_isclear(*cap)) {
1196                audit_log_format(ab, " %s=0", prefix);
1197                return;
1198        }
1199        audit_log_format(ab, " %s=", prefix);
1200        CAP_FOR_EACH_U32(i)
1201                audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1202}
1203
1204static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205{
1206        if (name->fcap_ver == -1) {
1207                audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1208                return;
1209        }
1210        audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1211        audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1212        audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1213                         name->fcap.fE, name->fcap_ver,
1214                         from_kuid(&init_user_ns, name->fcap.rootid));
1215}
1216
1217static void show_special(struct audit_context *context, int *call_panic)
1218{
1219        struct audit_buffer *ab;
1220        int i;
1221
1222        ab = audit_log_start(context, GFP_KERNEL, context->type);
1223        if (!ab)
1224                return;
1225
1226        switch (context->type) {
1227        case AUDIT_SOCKETCALL: {
1228                int nargs = context->socketcall.nargs;
1229                audit_log_format(ab, "nargs=%d", nargs);
1230                for (i = 0; i < nargs; i++)
1231                        audit_log_format(ab, " a%d=%lx", i,
1232                                context->socketcall.args[i]);
1233                break; }
1234        case AUDIT_IPC: {
1235                u32 osid = context->ipc.osid;
1236
1237                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1238                                 from_kuid(&init_user_ns, context->ipc.uid),
1239                                 from_kgid(&init_user_ns, context->ipc.gid),
1240                                 context->ipc.mode);
1241                if (osid) {
1242                        char *ctx = NULL;
1243                        u32 len;
1244                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1245                                audit_log_format(ab, " osid=%u", osid);
1246                                *call_panic = 1;
1247                        } else {
1248                                audit_log_format(ab, " obj=%s", ctx);
1249                                security_release_secctx(ctx, len);
1250                        }
1251                }
1252                if (context->ipc.has_perm) {
1253                        audit_log_end(ab);
1254                        ab = audit_log_start(context, GFP_KERNEL,
1255                                             AUDIT_IPC_SET_PERM);
1256                        if (unlikely(!ab))
1257                                return;
1258                        audit_log_format(ab,
1259                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1260                                context->ipc.qbytes,
1261                                context->ipc.perm_uid,
1262                                context->ipc.perm_gid,
1263                                context->ipc.perm_mode);
1264                }
1265                break; }
1266        case AUDIT_MQ_OPEN:
1267                audit_log_format(ab,
1268                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1269                        "mq_msgsize=%ld mq_curmsgs=%ld",
1270                        context->mq_open.oflag, context->mq_open.mode,
1271                        context->mq_open.attr.mq_flags,
1272                        context->mq_open.attr.mq_maxmsg,
1273                        context->mq_open.attr.mq_msgsize,
1274                        context->mq_open.attr.mq_curmsgs);
1275                break;
1276        case AUDIT_MQ_SENDRECV:
1277                audit_log_format(ab,
1278                        "mqdes=%d msg_len=%zd msg_prio=%u "
1279                        "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1280                        context->mq_sendrecv.mqdes,
1281                        context->mq_sendrecv.msg_len,
1282                        context->mq_sendrecv.msg_prio,
1283                        (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1284                        context->mq_sendrecv.abs_timeout.tv_nsec);
1285                break;
1286        case AUDIT_MQ_NOTIFY:
1287                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1288                                context->mq_notify.mqdes,
1289                                context->mq_notify.sigev_signo);
1290                break;
1291        case AUDIT_MQ_GETSETATTR: {
1292                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1293                audit_log_format(ab,
1294                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1295                        "mq_curmsgs=%ld ",
1296                        context->mq_getsetattr.mqdes,
1297                        attr->mq_flags, attr->mq_maxmsg,
1298                        attr->mq_msgsize, attr->mq_curmsgs);
1299                break; }
1300        case AUDIT_CAPSET:
1301                audit_log_format(ab, "pid=%d", context->capset.pid);
1302                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1303                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1304                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1305                audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1306                break;
1307        case AUDIT_MMAP:
1308                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1309                                 context->mmap.flags);
1310                break;
1311        case AUDIT_EXECVE:
1312                audit_log_execve_info(context, &ab);
1313                break;
1314        case AUDIT_KERN_MODULE:
1315                audit_log_format(ab, "name=");
1316                if (context->module.name) {
1317                        audit_log_untrustedstring(ab, context->module.name);
1318                } else
1319                        audit_log_format(ab, "(null)");
1320
1321                break;
1322        }
1323        audit_log_end(ab);
1324}
1325
1326static inline int audit_proctitle_rtrim(char *proctitle, int len)
1327{
1328        char *end = proctitle + len - 1;
1329        while (end > proctitle && !isprint(*end))
1330                end--;
1331
1332        /* catch the case where proctitle is only 1 non-print character */
1333        len = end - proctitle + 1;
1334        len -= isprint(proctitle[len-1]) == 0;
1335        return len;
1336}
1337
1338/*
1339 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1340 * @context: audit_context for the task
1341 * @n: audit_names structure with reportable details
1342 * @path: optional path to report instead of audit_names->name
1343 * @record_num: record number to report when handling a list of names
1344 * @call_panic: optional pointer to int that will be updated if secid fails
1345 */
1346static void audit_log_name(struct audit_context *context, struct audit_names *n,
1347                    const struct path *path, int record_num, int *call_panic)
1348{
1349        struct audit_buffer *ab;
1350
1351        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1352        if (!ab)
1353                return;
1354
1355        audit_log_format(ab, "item=%d", record_num);
1356
1357        if (path)
1358                audit_log_d_path(ab, " name=", path);
1359        else if (n->name) {
1360                switch (n->name_len) {
1361                case AUDIT_NAME_FULL:
1362                        /* log the full path */
1363                        audit_log_format(ab, " name=");
1364                        audit_log_untrustedstring(ab, n->name->name);
1365                        break;
1366                case 0:
1367                        /* name was specified as a relative path and the
1368                         * directory component is the cwd
1369                         */
1370                        audit_log_d_path(ab, " name=", &context->pwd);
1371                        break;
1372                default:
1373                        /* log the name's directory component */
1374                        audit_log_format(ab, " name=");
1375                        audit_log_n_untrustedstring(ab, n->name->name,
1376                                                    n->name_len);
1377                }
1378        } else
1379                audit_log_format(ab, " name=(null)");
1380
1381        if (n->ino != AUDIT_INO_UNSET)
1382                audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1383                                 n->ino,
1384                                 MAJOR(n->dev),
1385                                 MINOR(n->dev),
1386                                 n->mode,
1387                                 from_kuid(&init_user_ns, n->uid),
1388                                 from_kgid(&init_user_ns, n->gid),
1389                                 MAJOR(n->rdev),
1390                                 MINOR(n->rdev));
1391        if (n->osid != 0) {
1392                char *ctx = NULL;
1393                u32 len;
1394
1395                if (security_secid_to_secctx(
1396                        n->osid, &ctx, &len)) {
1397                        audit_log_format(ab, " osid=%u", n->osid);
1398                        if (call_panic)
1399                                *call_panic = 2;
1400                } else {
1401                        audit_log_format(ab, " obj=%s", ctx);
1402                        security_release_secctx(ctx, len);
1403                }
1404        }
1405
1406        /* log the audit_names record type */
1407        switch (n->type) {
1408        case AUDIT_TYPE_NORMAL:
1409                audit_log_format(ab, " nametype=NORMAL");
1410                break;
1411        case AUDIT_TYPE_PARENT:
1412                audit_log_format(ab, " nametype=PARENT");
1413                break;
1414        case AUDIT_TYPE_CHILD_DELETE:
1415                audit_log_format(ab, " nametype=DELETE");
1416                break;
1417        case AUDIT_TYPE_CHILD_CREATE:
1418                audit_log_format(ab, " nametype=CREATE");
1419                break;
1420        default:
1421                audit_log_format(ab, " nametype=UNKNOWN");
1422                break;
1423        }
1424
1425        audit_log_fcaps(ab, n);
1426        audit_log_end(ab);
1427}
1428
1429static void audit_log_proctitle(void)
1430{
1431        int res;
1432        char *buf;
1433        char *msg = "(null)";
1434        int len = strlen(msg);
1435        struct audit_context *context = audit_context();
1436        struct audit_buffer *ab;
1437
1438        if (!context || context->dummy)
1439                return;
1440
1441        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1442        if (!ab)
1443                return; /* audit_panic or being filtered */
1444
1445        audit_log_format(ab, "proctitle=");
1446
1447        /* Not  cached */
1448        if (!context->proctitle.value) {
1449                buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1450                if (!buf)
1451                        goto out;
1452                /* Historically called this from procfs naming */
1453                res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1454                if (res == 0) {
1455                        kfree(buf);
1456                        goto out;
1457                }
1458                res = audit_proctitle_rtrim(buf, res);
1459                if (res == 0) {
1460                        kfree(buf);
1461                        goto out;
1462                }
1463                context->proctitle.value = buf;
1464                context->proctitle.len = res;
1465        }
1466        msg = context->proctitle.value;
1467        len = context->proctitle.len;
1468out:
1469        audit_log_n_untrustedstring(ab, msg, len);
1470        audit_log_end(ab);
1471}
1472
1473static void audit_log_exit(void)
1474{
1475        int i, call_panic = 0;
1476        struct audit_context *context = audit_context();
1477        struct audit_buffer *ab;
1478        struct audit_aux_data *aux;
1479        struct audit_names *n;
1480
1481        context->personality = current->personality;
1482
1483        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1484        if (!ab)
1485                return;         /* audit_panic has been called */
1486        audit_log_format(ab, "arch=%x syscall=%d",
1487                         context->arch, context->major);
1488        if (context->personality != PER_LINUX)
1489                audit_log_format(ab, " per=%lx", context->personality);
1490        if (context->return_valid)
1491                audit_log_format(ab, " success=%s exit=%ld",
1492                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1493                                 context->return_code);
1494
1495        audit_log_format(ab,
1496                         " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1497                         context->argv[0],
1498                         context->argv[1],
1499                         context->argv[2],
1500                         context->argv[3],
1501                         context->name_count);
1502
1503        audit_log_task_info(ab);
1504        audit_log_key(ab, context->filterkey);
1505        audit_log_end(ab);
1506
1507        for (aux = context->aux; aux; aux = aux->next) {
1508
1509                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1510                if (!ab)
1511                        continue; /* audit_panic has been called */
1512
1513                switch (aux->type) {
1514
1515                case AUDIT_BPRM_FCAPS: {
1516                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1517                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1518                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1519                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1520                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1521                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1522                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1523                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1524                        audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1525                        audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1526                        audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1527                        audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1528                        audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1529                        audit_log_format(ab, " frootid=%d",
1530                                         from_kuid(&init_user_ns,
1531                                                   axs->fcap.rootid));
1532                        break; }
1533
1534                }
1535                audit_log_end(ab);
1536        }
1537
1538        if (context->type)
1539                show_special(context, &call_panic);
1540
1541        if (context->fds[0] >= 0) {
1542                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1543                if (ab) {
1544                        audit_log_format(ab, "fd0=%d fd1=%d",
1545                                        context->fds[0], context->fds[1]);
1546                        audit_log_end(ab);
1547                }
1548        }
1549
1550        if (context->sockaddr_len) {
1551                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1552                if (ab) {
1553                        audit_log_format(ab, "saddr=");
1554                        audit_log_n_hex(ab, (void *)context->sockaddr,
1555                                        context->sockaddr_len);
1556                        audit_log_end(ab);
1557                }
1558        }
1559
1560        for (aux = context->aux_pids; aux; aux = aux->next) {
1561                struct audit_aux_data_pids *axs = (void *)aux;
1562
1563                for (i = 0; i < axs->pid_count; i++)
1564                        if (audit_log_pid_context(context, axs->target_pid[i],
1565                                                  axs->target_auid[i],
1566                                                  axs->target_uid[i],
1567                                                  axs->target_sessionid[i],
1568                                                  axs->target_sid[i],
1569                                                  axs->target_comm[i]))
1570                                call_panic = 1;
1571        }
1572
1573        if (context->target_pid &&
1574            audit_log_pid_context(context, context->target_pid,
1575                                  context->target_auid, context->target_uid,
1576                                  context->target_sessionid,
1577                                  context->target_sid, context->target_comm))
1578                        call_panic = 1;
1579
1580        if (context->pwd.dentry && context->pwd.mnt) {
1581                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1582                if (ab) {
1583                        audit_log_d_path(ab, "cwd=", &context->pwd);
1584                        audit_log_end(ab);
1585                }
1586        }
1587
1588        i = 0;
1589        list_for_each_entry(n, &context->names_list, list) {
1590                if (n->hidden)
1591                        continue;
1592                audit_log_name(context, n, NULL, i++, &call_panic);
1593        }
1594
1595        audit_log_proctitle();
1596
1597        /* Send end of event record to help user space know we are finished */
1598        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1599        if (ab)
1600                audit_log_end(ab);
1601        if (call_panic)
1602                audit_panic("error converting sid to string");
1603}
1604
1605/**
1606 * __audit_free - free a per-task audit context
1607 * @tsk: task whose audit context block to free
1608 *
1609 * Called from copy_process and do_exit
1610 */
1611void __audit_free(struct task_struct *tsk)
1612{
1613        struct audit_context *context = tsk->audit_context;
1614
1615        if (!context)
1616                return;
1617
1618        if (!list_empty(&context->killed_trees))
1619                audit_kill_trees(context);
1620
1621        /* We are called either by do_exit() or the fork() error handling code;
1622         * in the former case tsk == current and in the latter tsk is a
1623         * random task_struct that doesn't doesn't have any meaningful data we
1624         * need to log via audit_log_exit().
1625         */
1626        if (tsk == current && !context->dummy && context->in_syscall) {
1627                context->return_valid = 0;
1628                context->return_code = 0;
1629
1630                audit_filter_syscall(tsk, context,
1631                                     &audit_filter_list[AUDIT_FILTER_EXIT]);
1632                audit_filter_inodes(tsk, context);
1633                if (context->current_state == AUDIT_RECORD_CONTEXT)
1634                        audit_log_exit();
1635        }
1636
1637        audit_set_context(tsk, NULL);
1638        audit_free_context(context);
1639}
1640
1641/**
1642 * __audit_syscall_entry - fill in an audit record at syscall entry
1643 * @major: major syscall type (function)
1644 * @a1: additional syscall register 1
1645 * @a2: additional syscall register 2
1646 * @a3: additional syscall register 3
1647 * @a4: additional syscall register 4
1648 *
1649 * Fill in audit context at syscall entry.  This only happens if the
1650 * audit context was created when the task was created and the state or
1651 * filters demand the audit context be built.  If the state from the
1652 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1653 * then the record will be written at syscall exit time (otherwise, it
1654 * will only be written if another part of the kernel requests that it
1655 * be written).
1656 */
1657void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1658                           unsigned long a3, unsigned long a4)
1659{
1660        struct audit_context *context = audit_context();
1661        enum audit_state     state;
1662
1663        if (!audit_enabled || !context)
1664                return;
1665
1666        BUG_ON(context->in_syscall || context->name_count);
1667
1668        state = context->state;
1669        if (state == AUDIT_DISABLED)
1670                return;
1671
1672        context->dummy = !audit_n_rules;
1673        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1674                context->prio = 0;
1675                if (auditd_test_task(current))
1676                        return;
1677        }
1678
1679        context->arch       = syscall_get_arch(current);
1680        context->major      = major;
1681        context->argv[0]    = a1;
1682        context->argv[1]    = a2;
1683        context->argv[2]    = a3;
1684        context->argv[3]    = a4;
1685        context->serial     = 0;
1686        context->in_syscall = 1;
1687        context->current_state  = state;
1688        context->ppid       = 0;
1689        ktime_get_coarse_real_ts64(&context->ctime);
1690}
1691
1692/**
1693 * __audit_syscall_exit - deallocate audit context after a system call
1694 * @success: success value of the syscall
1695 * @return_code: return value of the syscall
1696 *
1697 * Tear down after system call.  If the audit context has been marked as
1698 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1699 * filtering, or because some other part of the kernel wrote an audit
1700 * message), then write out the syscall information.  In call cases,
1701 * free the names stored from getname().
1702 */
1703void __audit_syscall_exit(int success, long return_code)
1704{
1705        struct audit_context *context;
1706
1707        context = audit_context();
1708        if (!context)
1709                return;
1710
1711        if (!list_empty(&context->killed_trees))
1712                audit_kill_trees(context);
1713
1714        if (!context->dummy && context->in_syscall) {
1715                if (success)
1716                        context->return_valid = AUDITSC_SUCCESS;
1717                else
1718                        context->return_valid = AUDITSC_FAILURE;
1719
1720                /*
1721                 * we need to fix up the return code in the audit logs if the
1722                 * actual return codes are later going to be fixed up by the
1723                 * arch specific signal handlers
1724                 *
1725                 * This is actually a test for:
1726                 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1727                 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1728                 *
1729                 * but is faster than a bunch of ||
1730                 */
1731                if (unlikely(return_code <= -ERESTARTSYS) &&
1732                    (return_code >= -ERESTART_RESTARTBLOCK) &&
1733                    (return_code != -ENOIOCTLCMD))
1734                        context->return_code = -EINTR;
1735                else
1736                        context->return_code  = return_code;
1737
1738                audit_filter_syscall(current, context,
1739                                     &audit_filter_list[AUDIT_FILTER_EXIT]);
1740                audit_filter_inodes(current, context);
1741                if (context->current_state == AUDIT_RECORD_CONTEXT)
1742                        audit_log_exit();
1743        }
1744
1745        context->in_syscall = 0;
1746        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1747
1748        audit_free_module(context);
1749        audit_free_names(context);
1750        unroll_tree_refs(context, NULL, 0);
1751        audit_free_aux(context);
1752        context->aux = NULL;
1753        context->aux_pids = NULL;
1754        context->target_pid = 0;
1755        context->target_sid = 0;
1756        context->sockaddr_len = 0;
1757        context->type = 0;
1758        context->fds[0] = -1;
1759        if (context->state != AUDIT_RECORD_CONTEXT) {
1760                kfree(context->filterkey);
1761                context->filterkey = NULL;
1762        }
1763}
1764
1765static inline void handle_one(const struct inode *inode)
1766{
1767        struct audit_context *context;
1768        struct audit_tree_refs *p;
1769        struct audit_chunk *chunk;
1770        int count;
1771        if (likely(!inode->i_fsnotify_marks))
1772                return;
1773        context = audit_context();
1774        p = context->trees;
1775        count = context->tree_count;
1776        rcu_read_lock();
1777        chunk = audit_tree_lookup(inode);
1778        rcu_read_unlock();
1779        if (!chunk)
1780                return;
1781        if (likely(put_tree_ref(context, chunk)))
1782                return;
1783        if (unlikely(!grow_tree_refs(context))) {
1784                pr_warn("out of memory, audit has lost a tree reference\n");
1785                audit_set_auditable(context);
1786                audit_put_chunk(chunk);
1787                unroll_tree_refs(context, p, count);
1788                return;
1789        }
1790        put_tree_ref(context, chunk);
1791}
1792
1793static void handle_path(const struct dentry *dentry)
1794{
1795        struct audit_context *context;
1796        struct audit_tree_refs *p;
1797        const struct dentry *d, *parent;
1798        struct audit_chunk *drop;
1799        unsigned long seq;
1800        int count;
1801
1802        context = audit_context();
1803        p = context->trees;
1804        count = context->tree_count;
1805retry:
1806        drop = NULL;
1807        d = dentry;
1808        rcu_read_lock();
1809        seq = read_seqbegin(&rename_lock);
1810        for(;;) {
1811                struct inode *inode = d_backing_inode(d);
1812                if (inode && unlikely(inode->i_fsnotify_marks)) {
1813                        struct audit_chunk *chunk;
1814                        chunk = audit_tree_lookup(inode);
1815                        if (chunk) {
1816                                if (unlikely(!put_tree_ref(context, chunk))) {
1817                                        drop = chunk;
1818                                        break;
1819                                }
1820                        }
1821                }
1822                parent = d->d_parent;
1823                if (parent == d)
1824                        break;
1825                d = parent;
1826        }
1827        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1828                rcu_read_unlock();
1829                if (!drop) {
1830                        /* just a race with rename */
1831                        unroll_tree_refs(context, p, count);
1832                        goto retry;
1833                }
1834                audit_put_chunk(drop);
1835                if (grow_tree_refs(context)) {
1836                        /* OK, got more space */
1837                        unroll_tree_refs(context, p, count);
1838                        goto retry;
1839                }
1840                /* too bad */
1841                pr_warn("out of memory, audit has lost a tree reference\n");
1842                unroll_tree_refs(context, p, count);
1843                audit_set_auditable(context);
1844                return;
1845        }
1846        rcu_read_unlock();
1847}
1848
1849static struct audit_names *audit_alloc_name(struct audit_context *context,
1850                                                unsigned char type)
1851{
1852        struct audit_names *aname;
1853
1854        if (context->name_count < AUDIT_NAMES) {
1855                aname = &context->preallocated_names[context->name_count];
1856                memset(aname, 0, sizeof(*aname));
1857        } else {
1858                aname = kzalloc(sizeof(*aname), GFP_NOFS);
1859                if (!aname)
1860                        return NULL;
1861                aname->should_free = true;
1862        }
1863
1864        aname->ino = AUDIT_INO_UNSET;
1865        aname->type = type;
1866        list_add_tail(&aname->list, &context->names_list);
1867
1868        context->name_count++;
1869        return aname;
1870}
1871
1872/**
1873 * __audit_reusename - fill out filename with info from existing entry
1874 * @uptr: userland ptr to pathname
1875 *
1876 * Search the audit_names list for the current audit context. If there is an
1877 * existing entry with a matching "uptr" then return the filename
1878 * associated with that audit_name. If not, return NULL.
1879 */
1880struct filename *
1881__audit_reusename(const __user char *uptr)
1882{
1883        struct audit_context *context = audit_context();
1884        struct audit_names *n;
1885
1886        list_for_each_entry(n, &context->names_list, list) {
1887                if (!n->name)
1888                        continue;
1889                if (n->name->uptr == uptr) {
1890                        n->name->refcnt++;
1891                        return n->name;
1892                }
1893        }
1894        return NULL;
1895}
1896
1897inline void _audit_getcwd(struct audit_context *context)
1898{
1899        if (!context->pwd.dentry)
1900                get_fs_pwd(current->fs, &context->pwd);
1901}
1902
1903void __audit_getcwd(void)
1904{
1905        struct audit_context *context = audit_context();
1906
1907        if (context->in_syscall)
1908                _audit_getcwd(context);
1909}
1910
1911/**
1912 * __audit_getname - add a name to the list
1913 * @name: name to add
1914 *
1915 * Add a name to the list of audit names for this context.
1916 * Called from fs/namei.c:getname().
1917 */
1918void __audit_getname(struct filename *name)
1919{
1920        struct audit_context *context = audit_context();
1921        struct audit_names *n;
1922
1923        if (!context->in_syscall)
1924                return;
1925
1926        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1927        if (!n)
1928                return;
1929
1930        n->name = name;
1931        n->name_len = AUDIT_NAME_FULL;
1932        name->aname = n;
1933        name->refcnt++;
1934
1935        _audit_getcwd(context);
1936}
1937
1938static inline int audit_copy_fcaps(struct audit_names *name,
1939                                   const struct dentry *dentry)
1940{
1941        struct cpu_vfs_cap_data caps;
1942        int rc;
1943
1944        if (!dentry)
1945                return 0;
1946
1947        rc = get_vfs_caps_from_disk(dentry, &caps);
1948        if (rc)
1949                return rc;
1950
1951        name->fcap.permitted = caps.permitted;
1952        name->fcap.inheritable = caps.inheritable;
1953        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1954        name->fcap.rootid = caps.rootid;
1955        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1956                                VFS_CAP_REVISION_SHIFT;
1957
1958        return 0;
1959}
1960
1961/* Copy inode data into an audit_names. */
1962static void audit_copy_inode(struct audit_names *name,
1963                             const struct dentry *dentry,
1964                             struct inode *inode, unsigned int flags)
1965{
1966        name->ino   = inode->i_ino;
1967        name->dev   = inode->i_sb->s_dev;
1968        name->mode  = inode->i_mode;
1969        name->uid   = inode->i_uid;
1970        name->gid   = inode->i_gid;
1971        name->rdev  = inode->i_rdev;
1972        security_inode_getsecid(inode, &name->osid);
1973        if (flags & AUDIT_INODE_NOEVAL) {
1974                name->fcap_ver = -1;
1975                return;
1976        }
1977        audit_copy_fcaps(name, dentry);
1978}
1979
1980/**
1981 * __audit_inode - store the inode and device from a lookup
1982 * @name: name being audited
1983 * @dentry: dentry being audited
1984 * @flags: attributes for this particular entry
1985 */
1986void __audit_inode(struct filename *name, const struct dentry *dentry,
1987                   unsigned int flags)
1988{
1989        struct audit_context *context = audit_context();
1990        struct inode *inode = d_backing_inode(dentry);
1991        struct audit_names *n;
1992        bool parent = flags & AUDIT_INODE_PARENT;
1993        struct audit_entry *e;
1994        struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1995        int i;
1996
1997        if (!context->in_syscall)
1998                return;
1999
2000        rcu_read_lock();
2001        list_for_each_entry_rcu(e, list, list) {
2002                for (i = 0; i < e->rule.field_count; i++) {
2003                        struct audit_field *f = &e->rule.fields[i];
2004
2005                        if (f->type == AUDIT_FSTYPE
2006                            && audit_comparator(inode->i_sb->s_magic,
2007                                                f->op, f->val)
2008                            && e->rule.action == AUDIT_NEVER) {
2009                                rcu_read_unlock();
2010                                return;
2011                        }
2012                }
2013        }
2014        rcu_read_unlock();
2015
2016        if (!name)
2017                goto out_alloc;
2018
2019        /*
2020         * If we have a pointer to an audit_names entry already, then we can
2021         * just use it directly if the type is correct.
2022         */
2023        n = name->aname;
2024        if (n) {
2025                if (parent) {
2026                        if (n->type == AUDIT_TYPE_PARENT ||
2027                            n->type == AUDIT_TYPE_UNKNOWN)
2028                                goto out;
2029                } else {
2030                        if (n->type != AUDIT_TYPE_PARENT)
2031                                goto out;
2032                }
2033        }
2034
2035        list_for_each_entry_reverse(n, &context->names_list, list) {
2036                if (n->ino) {
2037                        /* valid inode number, use that for the comparison */
2038                        if (n->ino != inode->i_ino ||
2039                            n->dev != inode->i_sb->s_dev)
2040                                continue;
2041                } else if (n->name) {
2042                        /* inode number has not been set, check the name */
2043                        if (strcmp(n->name->name, name->name))
2044                                continue;
2045                } else
2046                        /* no inode and no name (?!) ... this is odd ... */
2047                        continue;
2048
2049                /* match the correct record type */
2050                if (parent) {
2051                        if (n->type == AUDIT_TYPE_PARENT ||
2052                            n->type == AUDIT_TYPE_UNKNOWN)
2053                                goto out;
2054                } else {
2055                        if (n->type != AUDIT_TYPE_PARENT)
2056                                goto out;
2057                }
2058        }
2059
2060out_alloc:
2061        /* unable to find an entry with both a matching name and type */
2062        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2063        if (!n)
2064                return;
2065        if (name) {
2066                n->name = name;
2067                name->refcnt++;
2068        }
2069
2070out:
2071        if (parent) {
2072                n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2073                n->type = AUDIT_TYPE_PARENT;
2074                if (flags & AUDIT_INODE_HIDDEN)
2075                        n->hidden = true;
2076        } else {
2077                n->name_len = AUDIT_NAME_FULL;
2078                n->type = AUDIT_TYPE_NORMAL;
2079        }
2080        handle_path(dentry);
2081        audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2082}
2083
2084void __audit_file(const struct file *file)
2085{
2086        __audit_inode(NULL, file->f_path.dentry, 0);
2087}
2088
2089/**
2090 * __audit_inode_child - collect inode info for created/removed objects
2091 * @parent: inode of dentry parent
2092 * @dentry: dentry being audited
2093 * @type:   AUDIT_TYPE_* value that we're looking for
2094 *
2095 * For syscalls that create or remove filesystem objects, audit_inode
2096 * can only collect information for the filesystem object's parent.
2097 * This call updates the audit context with the child's information.
2098 * Syscalls that create a new filesystem object must be hooked after
2099 * the object is created.  Syscalls that remove a filesystem object
2100 * must be hooked prior, in order to capture the target inode during
2101 * unsuccessful attempts.
2102 */
2103void __audit_inode_child(struct inode *parent,
2104                         const struct dentry *dentry,
2105                         const unsigned char type)
2106{
2107        struct audit_context *context = audit_context();
2108        struct inode *inode = d_backing_inode(dentry);
2109        const struct qstr *dname = &dentry->d_name;
2110        struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2111        struct audit_entry *e;
2112        struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2113        int i;
2114
2115        if (!context->in_syscall)
2116                return;
2117
2118        rcu_read_lock();
2119        list_for_each_entry_rcu(e, list, list) {
2120                for (i = 0; i < e->rule.field_count; i++) {
2121                        struct audit_field *f = &e->rule.fields[i];
2122
2123                        if (f->type == AUDIT_FSTYPE
2124                            && audit_comparator(parent->i_sb->s_magic,
2125                                                f->op, f->val)
2126                            && e->rule.action == AUDIT_NEVER) {
2127                                rcu_read_unlock();
2128                                return;
2129                        }
2130                }
2131        }
2132        rcu_read_unlock();
2133
2134        if (inode)
2135                handle_one(inode);
2136
2137        /* look for a parent entry first */
2138        list_for_each_entry(n, &context->names_list, list) {
2139                if (!n->name ||
2140                    (n->type != AUDIT_TYPE_PARENT &&
2141                     n->type != AUDIT_TYPE_UNKNOWN))
2142                        continue;
2143
2144                if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2145                    !audit_compare_dname_path(dname,
2146                                              n->name->name, n->name_len)) {
2147                        if (n->type == AUDIT_TYPE_UNKNOWN)
2148                                n->type = AUDIT_TYPE_PARENT;
2149                        found_parent = n;
2150                        break;
2151                }
2152        }
2153
2154        /* is there a matching child entry? */
2155        list_for_each_entry(n, &context->names_list, list) {
2156                /* can only match entries that have a name */
2157                if (!n->name ||
2158                    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2159                        continue;
2160
2161                if (!strcmp(dname->name, n->name->name) ||
2162                    !audit_compare_dname_path(dname, n->name->name,
2163                                                found_parent ?
2164                                                found_parent->name_len :
2165                                                AUDIT_NAME_FULL)) {
2166                        if (n->type == AUDIT_TYPE_UNKNOWN)
2167                                n->type = type;
2168                        found_child = n;
2169                        break;
2170                }
2171        }
2172
2173        if (!found_parent) {
2174                /* create a new, "anonymous" parent record */
2175                n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2176                if (!n)
2177                        return;
2178                audit_copy_inode(n, NULL, parent, 0);
2179        }
2180
2181        if (!found_child) {
2182                found_child = audit_alloc_name(context, type);
2183                if (!found_child)
2184                        return;
2185
2186                /* Re-use the name belonging to the slot for a matching parent
2187                 * directory. All names for this context are relinquished in
2188                 * audit_free_names() */
2189                if (found_parent) {
2190                        found_child->name = found_parent->name;
2191                        found_child->name_len = AUDIT_NAME_FULL;
2192                        found_child->name->refcnt++;
2193                }
2194        }
2195
2196        if (inode)
2197                audit_copy_inode(found_child, dentry, inode, 0);
2198        else
2199                found_child->ino = AUDIT_INO_UNSET;
2200}
2201EXPORT_SYMBOL_GPL(__audit_inode_child);
2202
2203/**
2204 * auditsc_get_stamp - get local copies of audit_context values
2205 * @ctx: audit_context for the task
2206 * @t: timespec64 to store time recorded in the audit_context
2207 * @serial: serial value that is recorded in the audit_context
2208 *
2209 * Also sets the context as auditable.
2210 */
2211int auditsc_get_stamp(struct audit_context *ctx,
2212                       struct timespec64 *t, unsigned int *serial)
2213{
2214        if (!ctx->in_syscall)
2215                return 0;
2216        if (!ctx->serial)
2217                ctx->serial = audit_serial();
2218        t->tv_sec  = ctx->ctime.tv_sec;
2219        t->tv_nsec = ctx->ctime.tv_nsec;
2220        *serial    = ctx->serial;
2221        if (!ctx->prio) {
2222                ctx->prio = 1;
2223                ctx->current_state = AUDIT_RECORD_CONTEXT;
2224        }
2225        return 1;
2226}
2227
2228/**
2229 * __audit_mq_open - record audit data for a POSIX MQ open
2230 * @oflag: open flag
2231 * @mode: mode bits
2232 * @attr: queue attributes
2233 *
2234 */
2235void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2236{
2237        struct audit_context *context = audit_context();
2238
2239        if (attr)
2240                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2241        else
2242                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2243
2244        context->mq_open.oflag = oflag;
2245        context->mq_open.mode = mode;
2246
2247        context->type = AUDIT_MQ_OPEN;
2248}
2249
2250/**
2251 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2252 * @mqdes: MQ descriptor
2253 * @msg_len: Message length
2254 * @msg_prio: Message priority
2255 * @abs_timeout: Message timeout in absolute time
2256 *
2257 */
2258void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2259                        const struct timespec64 *abs_timeout)
2260{
2261        struct audit_context *context = audit_context();
2262        struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2263
2264        if (abs_timeout)
2265                memcpy(p, abs_timeout, sizeof(*p));
2266        else
2267                memset(p, 0, sizeof(*p));
2268
2269        context->mq_sendrecv.mqdes = mqdes;
2270        context->mq_sendrecv.msg_len = msg_len;
2271        context->mq_sendrecv.msg_prio = msg_prio;
2272
2273        context->type = AUDIT_MQ_SENDRECV;
2274}
2275
2276/**
2277 * __audit_mq_notify - record audit data for a POSIX MQ notify
2278 * @mqdes: MQ descriptor
2279 * @notification: Notification event
2280 *
2281 */
2282
2283void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2284{
2285        struct audit_context *context = audit_context();
2286
2287        if (notification)
2288                context->mq_notify.sigev_signo = notification->sigev_signo;
2289        else
2290                context->mq_notify.sigev_signo = 0;
2291
2292        context->mq_notify.mqdes = mqdes;
2293        context->type = AUDIT_MQ_NOTIFY;
2294}
2295
2296/**
2297 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2298 * @mqdes: MQ descriptor
2299 * @mqstat: MQ flags
2300 *
2301 */
2302void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2303{
2304        struct audit_context *context = audit_context();
2305        context->mq_getsetattr.mqdes = mqdes;
2306        context->mq_getsetattr.mqstat = *mqstat;
2307        context->type = AUDIT_MQ_GETSETATTR;
2308}
2309
2310/**
2311 * __audit_ipc_obj - record audit data for ipc object
2312 * @ipcp: ipc permissions
2313 *
2314 */
2315void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2316{
2317        struct audit_context *context = audit_context();
2318        context->ipc.uid = ipcp->uid;
2319        context->ipc.gid = ipcp->gid;
2320        context->ipc.mode = ipcp->mode;
2321        context->ipc.has_perm = 0;
2322        security_ipc_getsecid(ipcp, &context->ipc.osid);
2323        context->type = AUDIT_IPC;
2324}
2325
2326/**
2327 * __audit_ipc_set_perm - record audit data for new ipc permissions
2328 * @qbytes: msgq bytes
2329 * @uid: msgq user id
2330 * @gid: msgq group id
2331 * @mode: msgq mode (permissions)
2332 *
2333 * Called only after audit_ipc_obj().
2334 */
2335void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2336{
2337        struct audit_context *context = audit_context();
2338
2339        context->ipc.qbytes = qbytes;
2340        context->ipc.perm_uid = uid;
2341        context->ipc.perm_gid = gid;
2342        context->ipc.perm_mode = mode;
2343        context->ipc.has_perm = 1;
2344}
2345
2346void __audit_bprm(struct linux_binprm *bprm)
2347{
2348        struct audit_context *context = audit_context();
2349
2350        context->type = AUDIT_EXECVE;
2351        context->execve.argc = bprm->argc;
2352}
2353
2354
2355/**
2356 * __audit_socketcall - record audit data for sys_socketcall
2357 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2358 * @args: args array
2359 *
2360 */
2361int __audit_socketcall(int nargs, unsigned long *args)
2362{
2363        struct audit_context *context = audit_context();
2364
2365        if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2366                return -EINVAL;
2367        context->type = AUDIT_SOCKETCALL;
2368        context->socketcall.nargs = nargs;
2369        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2370        return 0;
2371}
2372
2373/**
2374 * __audit_fd_pair - record audit data for pipe and socketpair
2375 * @fd1: the first file descriptor
2376 * @fd2: the second file descriptor
2377 *
2378 */
2379void __audit_fd_pair(int fd1, int fd2)
2380{
2381        struct audit_context *context = audit_context();
2382        context->fds[0] = fd1;
2383        context->fds[1] = fd2;
2384}
2385
2386/**
2387 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2388 * @len: data length in user space
2389 * @a: data address in kernel space
2390 *
2391 * Returns 0 for success or NULL context or < 0 on error.
2392 */
2393int __audit_sockaddr(int len, void *a)
2394{
2395        struct audit_context *context = audit_context();
2396
2397        if (!context->sockaddr) {
2398                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2399                if (!p)
2400                        return -ENOMEM;
2401                context->sockaddr = p;
2402        }
2403
2404        context->sockaddr_len = len;
2405        memcpy(context->sockaddr, a, len);
2406        return 0;
2407}
2408
2409void __audit_ptrace(struct task_struct *t)
2410{
2411        struct audit_context *context = audit_context();
2412
2413        context->target_pid = task_tgid_nr(t);
2414        context->target_auid = audit_get_loginuid(t);
2415        context->target_uid = task_uid(t);
2416        context->target_sessionid = audit_get_sessionid(t);
2417        security_task_getsecid(t, &context->target_sid);
2418        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2419}
2420
2421/**
2422 * audit_signal_info_syscall - record signal info for syscalls
2423 * @t: task being signaled
2424 *
2425 * If the audit subsystem is being terminated, record the task (pid)
2426 * and uid that is doing that.
2427 */
2428int audit_signal_info_syscall(struct task_struct *t)
2429{
2430        struct audit_aux_data_pids *axp;
2431        struct audit_context *ctx = audit_context();
2432        kuid_t t_uid = task_uid(t);
2433
2434        if (!audit_signals || audit_dummy_context())
2435                return 0;
2436
2437        /* optimize the common case by putting first signal recipient directly
2438         * in audit_context */
2439        if (!ctx->target_pid) {
2440                ctx->target_pid = task_tgid_nr(t);
2441                ctx->target_auid = audit_get_loginuid(t);
2442                ctx->target_uid = t_uid;
2443                ctx->target_sessionid = audit_get_sessionid(t);
2444                security_task_getsecid(t, &ctx->target_sid);
2445                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2446                return 0;
2447        }
2448
2449        axp = (void *)ctx->aux_pids;
2450        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2451                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2452                if (!axp)
2453                        return -ENOMEM;
2454
2455                axp->d.type = AUDIT_OBJ_PID;
2456                axp->d.next = ctx->aux_pids;
2457                ctx->aux_pids = (void *)axp;
2458        }
2459        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2460
2461        axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2462        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2463        axp->target_uid[axp->pid_count] = t_uid;
2464        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2465        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2466        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2467        axp->pid_count++;
2468
2469        return 0;
2470}
2471
2472/**
2473 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2474 * @bprm: pointer to the bprm being processed
2475 * @new: the proposed new credentials
2476 * @old: the old credentials
2477 *
2478 * Simply check if the proc already has the caps given by the file and if not
2479 * store the priv escalation info for later auditing at the end of the syscall
2480 *
2481 * -Eric
2482 */
2483int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2484                           const struct cred *new, const struct cred *old)
2485{
2486        struct audit_aux_data_bprm_fcaps *ax;
2487        struct audit_context *context = audit_context();
2488        struct cpu_vfs_cap_data vcaps;
2489
2490        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2491        if (!ax)
2492                return -ENOMEM;
2493
2494        ax->d.type = AUDIT_BPRM_FCAPS;
2495        ax->d.next = context->aux;
2496        context->aux = (void *)ax;
2497
2498        get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2499
2500        ax->fcap.permitted = vcaps.permitted;
2501        ax->fcap.inheritable = vcaps.inheritable;
2502        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2503        ax->fcap.rootid = vcaps.rootid;
2504        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2505
2506        ax->old_pcap.permitted   = old->cap_permitted;
2507        ax->old_pcap.inheritable = old->cap_inheritable;
2508        ax->old_pcap.effective   = old->cap_effective;
2509        ax->old_pcap.ambient     = old->cap_ambient;
2510
2511        ax->new_pcap.permitted   = new->cap_permitted;
2512        ax->new_pcap.inheritable = new->cap_inheritable;
2513        ax->new_pcap.effective   = new->cap_effective;
2514        ax->new_pcap.ambient     = new->cap_ambient;
2515        return 0;
2516}
2517
2518/**
2519 * __audit_log_capset - store information about the arguments to the capset syscall
2520 * @new: the new credentials
2521 * @old: the old (current) credentials
2522 *
2523 * Record the arguments userspace sent to sys_capset for later printing by the
2524 * audit system if applicable
2525 */
2526void __audit_log_capset(const struct cred *new, const struct cred *old)
2527{
2528        struct audit_context *context = audit_context();
2529        context->capset.pid = task_tgid_nr(current);
2530        context->capset.cap.effective   = new->cap_effective;
2531        context->capset.cap.inheritable = new->cap_effective;
2532        context->capset.cap.permitted   = new->cap_permitted;
2533        context->capset.cap.ambient     = new->cap_ambient;
2534        context->type = AUDIT_CAPSET;
2535}
2536
2537void __audit_mmap_fd(int fd, int flags)
2538{
2539        struct audit_context *context = audit_context();
2540        context->mmap.fd = fd;
2541        context->mmap.flags = flags;
2542        context->type = AUDIT_MMAP;
2543}
2544
2545void __audit_log_kern_module(char *name)
2546{
2547        struct audit_context *context = audit_context();
2548
2549        context->module.name = kstrdup(name, GFP_KERNEL);
2550        if (!context->module.name)
2551                audit_log_lost("out of memory in __audit_log_kern_module");
2552        context->type = AUDIT_KERN_MODULE;
2553}
2554
2555void __audit_fanotify(unsigned int response)
2556{
2557        audit_log(audit_context(), GFP_KERNEL,
2558                AUDIT_FANOTIFY, "resp=%u", response);
2559}
2560
2561void __audit_tk_injoffset(struct timespec64 offset)
2562{
2563        audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2564                  "sec=%lli nsec=%li",
2565                  (long long)offset.tv_sec, offset.tv_nsec);
2566}
2567
2568static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2569                              const char *op, enum audit_ntp_type type)
2570{
2571        const struct audit_ntp_val *val = &ad->vals[type];
2572
2573        if (val->newval == val->oldval)
2574                return;
2575
2576        audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2577                  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2578}
2579
2580void __audit_ntp_log(const struct audit_ntp_data *ad)
2581{
2582        audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2583        audit_log_ntp_val(ad, "freq",   AUDIT_NTP_FREQ);
2584        audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2585        audit_log_ntp_val(ad, "tai",    AUDIT_NTP_TAI);
2586        audit_log_ntp_val(ad, "tick",   AUDIT_NTP_TICK);
2587        audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2588}
2589
2590void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2591                       enum audit_nfcfgop op, gfp_t gfp)
2592{
2593        struct audit_buffer *ab;
2594        char comm[sizeof(current->comm)];
2595
2596        ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2597        if (!ab)
2598                return;
2599        audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2600                         name, af, nentries, audit_nfcfgs[op].s);
2601
2602        audit_log_format(ab, " pid=%u", task_pid_nr(current));
2603        audit_log_task_context(ab); /* subj= */
2604        audit_log_format(ab, " comm=");
2605        audit_log_untrustedstring(ab, get_task_comm(comm, current));
2606        audit_log_end(ab);
2607}
2608EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2609
2610static void audit_log_task(struct audit_buffer *ab)
2611{
2612        kuid_t auid, uid;
2613        kgid_t gid;
2614        unsigned int sessionid;
2615        char comm[sizeof(current->comm)];
2616
2617        auid = audit_get_loginuid(current);
2618        sessionid = audit_get_sessionid(current);
2619        current_uid_gid(&uid, &gid);
2620
2621        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2622                         from_kuid(&init_user_ns, auid),
2623                         from_kuid(&init_user_ns, uid),
2624                         from_kgid(&init_user_ns, gid),
2625                         sessionid);
2626        audit_log_task_context(ab);
2627        audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2628        audit_log_untrustedstring(ab, get_task_comm(comm, current));
2629        audit_log_d_path_exe(ab, current->mm);
2630}
2631
2632/**
2633 * audit_core_dumps - record information about processes that end abnormally
2634 * @signr: signal value
2635 *
2636 * If a process ends with a core dump, something fishy is going on and we
2637 * should record the event for investigation.
2638 */
2639void audit_core_dumps(long signr)
2640{
2641        struct audit_buffer *ab;
2642
2643        if (!audit_enabled)
2644                return;
2645
2646        if (signr == SIGQUIT)   /* don't care for those */
2647                return;
2648
2649        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2650        if (unlikely(!ab))
2651                return;
2652        audit_log_task(ab);
2653        audit_log_format(ab, " sig=%ld res=1", signr);
2654        audit_log_end(ab);
2655}
2656
2657/**
2658 * audit_seccomp - record information about a seccomp action
2659 * @syscall: syscall number
2660 * @signr: signal value
2661 * @code: the seccomp action
2662 *
2663 * Record the information associated with a seccomp action. Event filtering for
2664 * seccomp actions that are not to be logged is done in seccomp_log().
2665 * Therefore, this function forces auditing independent of the audit_enabled
2666 * and dummy context state because seccomp actions should be logged even when
2667 * audit is not in use.
2668 */
2669void audit_seccomp(unsigned long syscall, long signr, int code)
2670{
2671        struct audit_buffer *ab;
2672
2673        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2674        if (unlikely(!ab))
2675                return;
2676        audit_log_task(ab);
2677        audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2678                         signr, syscall_get_arch(current), syscall,
2679                         in_compat_syscall(), KSTK_EIP(current), code);
2680        audit_log_end(ab);
2681}
2682
2683void audit_seccomp_actions_logged(const char *names, const char *old_names,
2684                                  int res)
2685{
2686        struct audit_buffer *ab;
2687
2688        if (!audit_enabled)
2689                return;
2690
2691        ab = audit_log_start(audit_context(), GFP_KERNEL,
2692                             AUDIT_CONFIG_CHANGE);
2693        if (unlikely(!ab))
2694                return;
2695
2696        audit_log_format(ab,
2697                         "op=seccomp-logging actions=%s old-actions=%s res=%d",
2698                         names, old_names, res);
2699        audit_log_end(ab);
2700}
2701
2702struct list_head *audit_killed_trees(void)
2703{
2704        struct audit_context *ctx = audit_context();
2705        if (likely(!ctx || !ctx->in_syscall))
2706                return NULL;
2707        return &ctx->killed_trees;
2708}
2709