1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/binfmts.h>
67#include <linux/highmem.h>
68#include <linux/syscalls.h>
69#include <asm/syscall.h>
70#include <linux/capability.h>
71#include <linux/fs_struct.h>
72#include <linux/compat.h>
73#include <linux/ctype.h>
74#include <linux/string.h>
75#include <linux/uaccess.h>
76#include <linux/fsnotify_backend.h>
77#include <uapi/linux/limits.h>
78#include <uapi/linux/netfilter/nf_tables.h>
79
80#include "audit.h"
81
82
83#define AUDITSC_INVALID 0
84#define AUDITSC_SUCCESS 1
85#define AUDITSC_FAILURE 2
86
87
88
89#define MAX_EXECVE_AUDIT_LEN 7500
90
91
92#define MAX_PROCTITLE_AUDIT_LEN 128
93
94
95int audit_n_rules;
96
97
98int audit_signals;
99
100struct audit_aux_data {
101 struct audit_aux_data *next;
102 int type;
103};
104
105#define AUDIT_AUX_IPCPERM 0
106
107
108#define AUDIT_AUX_PIDS 16
109
110struct audit_aux_data_pids {
111 struct audit_aux_data d;
112 pid_t target_pid[AUDIT_AUX_PIDS];
113 kuid_t target_auid[AUDIT_AUX_PIDS];
114 kuid_t target_uid[AUDIT_AUX_PIDS];
115 unsigned int target_sessionid[AUDIT_AUX_PIDS];
116 u32 target_sid[AUDIT_AUX_PIDS];
117 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
118 int pid_count;
119};
120
121struct audit_aux_data_bprm_fcaps {
122 struct audit_aux_data d;
123 struct audit_cap_data fcap;
124 unsigned int fcap_ver;
125 struct audit_cap_data old_pcap;
126 struct audit_cap_data new_pcap;
127};
128
129struct audit_tree_refs {
130 struct audit_tree_refs *next;
131 struct audit_chunk *c[31];
132};
133
134struct audit_nfcfgop_tab {
135 enum audit_nfcfgop op;
136 const char *s;
137};
138
139static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
140 { AUDIT_XT_OP_REGISTER, "xt_register" },
141 { AUDIT_XT_OP_REPLACE, "xt_replace" },
142 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
143 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
144 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
145 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
146 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
147 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
148 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
149 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
150 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
151 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
152 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
153 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
154 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
155 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
156 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
157 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
158 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
159 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
160};
161
162static int audit_match_perm(struct audit_context *ctx, int mask)
163{
164 unsigned n;
165 if (unlikely(!ctx))
166 return 0;
167 n = ctx->major;
168
169 switch (audit_classify_syscall(ctx->arch, n)) {
170 case 0:
171 if ((mask & AUDIT_PERM_WRITE) &&
172 audit_match_class(AUDIT_CLASS_WRITE, n))
173 return 1;
174 if ((mask & AUDIT_PERM_READ) &&
175 audit_match_class(AUDIT_CLASS_READ, n))
176 return 1;
177 if ((mask & AUDIT_PERM_ATTR) &&
178 audit_match_class(AUDIT_CLASS_CHATTR, n))
179 return 1;
180 return 0;
181 case 1:
182 if ((mask & AUDIT_PERM_WRITE) &&
183 audit_match_class(AUDIT_CLASS_WRITE_32, n))
184 return 1;
185 if ((mask & AUDIT_PERM_READ) &&
186 audit_match_class(AUDIT_CLASS_READ_32, n))
187 return 1;
188 if ((mask & AUDIT_PERM_ATTR) &&
189 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
190 return 1;
191 return 0;
192 case 2:
193 return mask & ACC_MODE(ctx->argv[1]);
194 case 3:
195 return mask & ACC_MODE(ctx->argv[2]);
196 case 4:
197 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
198 case 5:
199 return mask & AUDIT_PERM_EXEC;
200 default:
201 return 0;
202 }
203}
204
205static int audit_match_filetype(struct audit_context *ctx, int val)
206{
207 struct audit_names *n;
208 umode_t mode = (umode_t)val;
209
210 if (unlikely(!ctx))
211 return 0;
212
213 list_for_each_entry(n, &ctx->names_list, list) {
214 if ((n->ino != AUDIT_INO_UNSET) &&
215 ((n->mode & S_IFMT) == mode))
216 return 1;
217 }
218
219 return 0;
220}
221
222
223
224
225
226
227
228
229
230
231
232static void audit_set_auditable(struct audit_context *ctx)
233{
234 if (!ctx->prio) {
235 ctx->prio = 1;
236 ctx->current_state = AUDIT_RECORD_CONTEXT;
237 }
238}
239
240static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
241{
242 struct audit_tree_refs *p = ctx->trees;
243 int left = ctx->tree_count;
244 if (likely(left)) {
245 p->c[--left] = chunk;
246 ctx->tree_count = left;
247 return 1;
248 }
249 if (!p)
250 return 0;
251 p = p->next;
252 if (p) {
253 p->c[30] = chunk;
254 ctx->trees = p;
255 ctx->tree_count = 30;
256 return 1;
257 }
258 return 0;
259}
260
261static int grow_tree_refs(struct audit_context *ctx)
262{
263 struct audit_tree_refs *p = ctx->trees;
264 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
265 if (!ctx->trees) {
266 ctx->trees = p;
267 return 0;
268 }
269 if (p)
270 p->next = ctx->trees;
271 else
272 ctx->first_trees = ctx->trees;
273 ctx->tree_count = 31;
274 return 1;
275}
276
277static void unroll_tree_refs(struct audit_context *ctx,
278 struct audit_tree_refs *p, int count)
279{
280 struct audit_tree_refs *q;
281 int n;
282 if (!p) {
283
284 p = ctx->first_trees;
285 count = 31;
286
287 if (!p)
288 return;
289 }
290 n = count;
291 for (q = p; q != ctx->trees; q = q->next, n = 31) {
292 while (n--) {
293 audit_put_chunk(q->c[n]);
294 q->c[n] = NULL;
295 }
296 }
297 while (n-- > ctx->tree_count) {
298 audit_put_chunk(q->c[n]);
299 q->c[n] = NULL;
300 }
301 ctx->trees = p;
302 ctx->tree_count = count;
303}
304
305static void free_tree_refs(struct audit_context *ctx)
306{
307 struct audit_tree_refs *p, *q;
308 for (p = ctx->first_trees; p; p = q) {
309 q = p->next;
310 kfree(p);
311 }
312}
313
314static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
315{
316 struct audit_tree_refs *p;
317 int n;
318 if (!tree)
319 return 0;
320
321 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
322 for (n = 0; n < 31; n++)
323 if (audit_tree_match(p->c[n], tree))
324 return 1;
325 }
326
327 if (p) {
328 for (n = ctx->tree_count; n < 31; n++)
329 if (audit_tree_match(p->c[n], tree))
330 return 1;
331 }
332 return 0;
333}
334
335static int audit_compare_uid(kuid_t uid,
336 struct audit_names *name,
337 struct audit_field *f,
338 struct audit_context *ctx)
339{
340 struct audit_names *n;
341 int rc;
342
343 if (name) {
344 rc = audit_uid_comparator(uid, f->op, name->uid);
345 if (rc)
346 return rc;
347 }
348
349 if (ctx) {
350 list_for_each_entry(n, &ctx->names_list, list) {
351 rc = audit_uid_comparator(uid, f->op, n->uid);
352 if (rc)
353 return rc;
354 }
355 }
356 return 0;
357}
358
359static int audit_compare_gid(kgid_t gid,
360 struct audit_names *name,
361 struct audit_field *f,
362 struct audit_context *ctx)
363{
364 struct audit_names *n;
365 int rc;
366
367 if (name) {
368 rc = audit_gid_comparator(gid, f->op, name->gid);
369 if (rc)
370 return rc;
371 }
372
373 if (ctx) {
374 list_for_each_entry(n, &ctx->names_list, list) {
375 rc = audit_gid_comparator(gid, f->op, n->gid);
376 if (rc)
377 return rc;
378 }
379 }
380 return 0;
381}
382
383static int audit_field_compare(struct task_struct *tsk,
384 const struct cred *cred,
385 struct audit_field *f,
386 struct audit_context *ctx,
387 struct audit_names *name)
388{
389 switch (f->val) {
390
391 case AUDIT_COMPARE_UID_TO_OBJ_UID:
392 return audit_compare_uid(cred->uid, name, f, ctx);
393 case AUDIT_COMPARE_GID_TO_OBJ_GID:
394 return audit_compare_gid(cred->gid, name, f, ctx);
395 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
396 return audit_compare_uid(cred->euid, name, f, ctx);
397 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
398 return audit_compare_gid(cred->egid, name, f, ctx);
399 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
400 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
401 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
402 return audit_compare_uid(cred->suid, name, f, ctx);
403 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
404 return audit_compare_gid(cred->sgid, name, f, ctx);
405 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
406 return audit_compare_uid(cred->fsuid, name, f, ctx);
407 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
408 return audit_compare_gid(cred->fsgid, name, f, ctx);
409
410 case AUDIT_COMPARE_UID_TO_AUID:
411 return audit_uid_comparator(cred->uid, f->op,
412 audit_get_loginuid(tsk));
413 case AUDIT_COMPARE_UID_TO_EUID:
414 return audit_uid_comparator(cred->uid, f->op, cred->euid);
415 case AUDIT_COMPARE_UID_TO_SUID:
416 return audit_uid_comparator(cred->uid, f->op, cred->suid);
417 case AUDIT_COMPARE_UID_TO_FSUID:
418 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
419
420 case AUDIT_COMPARE_AUID_TO_EUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->euid);
423 case AUDIT_COMPARE_AUID_TO_SUID:
424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
425 cred->suid);
426 case AUDIT_COMPARE_AUID_TO_FSUID:
427 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
428 cred->fsuid);
429
430 case AUDIT_COMPARE_EUID_TO_SUID:
431 return audit_uid_comparator(cred->euid, f->op, cred->suid);
432 case AUDIT_COMPARE_EUID_TO_FSUID:
433 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
434
435 case AUDIT_COMPARE_SUID_TO_FSUID:
436 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
437
438 case AUDIT_COMPARE_GID_TO_EGID:
439 return audit_gid_comparator(cred->gid, f->op, cred->egid);
440 case AUDIT_COMPARE_GID_TO_SGID:
441 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
442 case AUDIT_COMPARE_GID_TO_FSGID:
443 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
444
445 case AUDIT_COMPARE_EGID_TO_SGID:
446 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
447 case AUDIT_COMPARE_EGID_TO_FSGID:
448 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
449
450 case AUDIT_COMPARE_SGID_TO_FSGID:
451 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
452 default:
453 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
454 return 0;
455 }
456 return 0;
457}
458
459
460
461
462
463
464
465
466
467static int audit_filter_rules(struct task_struct *tsk,
468 struct audit_krule *rule,
469 struct audit_context *ctx,
470 struct audit_names *name,
471 enum audit_state *state,
472 bool task_creation)
473{
474 const struct cred *cred;
475 int i, need_sid = 1;
476 u32 sid;
477 unsigned int sessionid;
478
479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
480
481 for (i = 0; i < rule->field_count; i++) {
482 struct audit_field *f = &rule->fields[i];
483 struct audit_names *n;
484 int result = 0;
485 pid_t pid;
486
487 switch (f->type) {
488 case AUDIT_PID:
489 pid = task_tgid_nr(tsk);
490 result = audit_comparator(pid, f->op, f->val);
491 break;
492 case AUDIT_PPID:
493 if (ctx) {
494 if (!ctx->ppid)
495 ctx->ppid = task_ppid_nr(tsk);
496 result = audit_comparator(ctx->ppid, f->op, f->val);
497 }
498 break;
499 case AUDIT_EXE:
500 result = audit_exe_compare(tsk, rule->exe);
501 if (f->op == Audit_not_equal)
502 result = !result;
503 break;
504 case AUDIT_UID:
505 result = audit_uid_comparator(cred->uid, f->op, f->uid);
506 break;
507 case AUDIT_EUID:
508 result = audit_uid_comparator(cred->euid, f->op, f->uid);
509 break;
510 case AUDIT_SUID:
511 result = audit_uid_comparator(cred->suid, f->op, f->uid);
512 break;
513 case AUDIT_FSUID:
514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515 break;
516 case AUDIT_GID:
517 result = audit_gid_comparator(cred->gid, f->op, f->gid);
518 if (f->op == Audit_equal) {
519 if (!result)
520 result = groups_search(cred->group_info, f->gid);
521 } else if (f->op == Audit_not_equal) {
522 if (result)
523 result = !groups_search(cred->group_info, f->gid);
524 }
525 break;
526 case AUDIT_EGID:
527 result = audit_gid_comparator(cred->egid, f->op, f->gid);
528 if (f->op == Audit_equal) {
529 if (!result)
530 result = groups_search(cred->group_info, f->gid);
531 } else if (f->op == Audit_not_equal) {
532 if (result)
533 result = !groups_search(cred->group_info, f->gid);
534 }
535 break;
536 case AUDIT_SGID:
537 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538 break;
539 case AUDIT_FSGID:
540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
541 break;
542 case AUDIT_SESSIONID:
543 sessionid = audit_get_sessionid(tsk);
544 result = audit_comparator(sessionid, f->op, f->val);
545 break;
546 case AUDIT_PERS:
547 result = audit_comparator(tsk->personality, f->op, f->val);
548 break;
549 case AUDIT_ARCH:
550 if (ctx)
551 result = audit_comparator(ctx->arch, f->op, f->val);
552 break;
553
554 case AUDIT_EXIT:
555 if (ctx && ctx->return_valid)
556 result = audit_comparator(ctx->return_code, f->op, f->val);
557 break;
558 case AUDIT_SUCCESS:
559 if (ctx && ctx->return_valid) {
560 if (f->val)
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
562 else
563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
564 }
565 break;
566 case AUDIT_DEVMAJOR:
567 if (name) {
568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569 audit_comparator(MAJOR(name->rdev), f->op, f->val))
570 ++result;
571 } else if (ctx) {
572 list_for_each_entry(n, &ctx->names_list, list) {
573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
581 case AUDIT_DEVMINOR:
582 if (name) {
583 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584 audit_comparator(MINOR(name->rdev), f->op, f->val))
585 ++result;
586 } else if (ctx) {
587 list_for_each_entry(n, &ctx->names_list, list) {
588 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
590 ++result;
591 break;
592 }
593 }
594 }
595 break;
596 case AUDIT_INODE:
597 if (name)
598 result = audit_comparator(name->ino, f->op, f->val);
599 else if (ctx) {
600 list_for_each_entry(n, &ctx->names_list, list) {
601 if (audit_comparator(n->ino, f->op, f->val)) {
602 ++result;
603 break;
604 }
605 }
606 }
607 break;
608 case AUDIT_OBJ_UID:
609 if (name) {
610 result = audit_uid_comparator(name->uid, f->op, f->uid);
611 } else if (ctx) {
612 list_for_each_entry(n, &ctx->names_list, list) {
613 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
614 ++result;
615 break;
616 }
617 }
618 }
619 break;
620 case AUDIT_OBJ_GID:
621 if (name) {
622 result = audit_gid_comparator(name->gid, f->op, f->gid);
623 } else if (ctx) {
624 list_for_each_entry(n, &ctx->names_list, list) {
625 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
626 ++result;
627 break;
628 }
629 }
630 }
631 break;
632 case AUDIT_WATCH:
633 if (name) {
634 result = audit_watch_compare(rule->watch,
635 name->ino,
636 name->dev);
637 if (f->op == Audit_not_equal)
638 result = !result;
639 }
640 break;
641 case AUDIT_DIR:
642 if (ctx) {
643 result = match_tree_refs(ctx, rule->tree);
644 if (f->op == Audit_not_equal)
645 result = !result;
646 }
647 break;
648 case AUDIT_LOGINUID:
649 result = audit_uid_comparator(audit_get_loginuid(tsk),
650 f->op, f->uid);
651 break;
652 case AUDIT_LOGINUID_SET:
653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
654 break;
655 case AUDIT_SADDR_FAM:
656 if (ctx->sockaddr)
657 result = audit_comparator(ctx->sockaddr->ss_family,
658 f->op, f->val);
659 break;
660 case AUDIT_SUBJ_USER:
661 case AUDIT_SUBJ_ROLE:
662 case AUDIT_SUBJ_TYPE:
663 case AUDIT_SUBJ_SEN:
664 case AUDIT_SUBJ_CLR:
665
666
667
668
669
670 if (f->lsm_rule) {
671 if (need_sid) {
672 security_task_getsecid(tsk, &sid);
673 need_sid = 0;
674 }
675 result = security_audit_rule_match(sid, f->type,
676 f->op,
677 f->lsm_rule);
678 }
679 break;
680 case AUDIT_OBJ_USER:
681 case AUDIT_OBJ_ROLE:
682 case AUDIT_OBJ_TYPE:
683 case AUDIT_OBJ_LEV_LOW:
684 case AUDIT_OBJ_LEV_HIGH:
685
686
687 if (f->lsm_rule) {
688
689 if (name) {
690 result = security_audit_rule_match(
691 name->osid,
692 f->type,
693 f->op,
694 f->lsm_rule);
695 } else if (ctx) {
696 list_for_each_entry(n, &ctx->names_list, list) {
697 if (security_audit_rule_match(
698 n->osid,
699 f->type,
700 f->op,
701 f->lsm_rule)) {
702 ++result;
703 break;
704 }
705 }
706 }
707
708 if (!ctx || ctx->type != AUDIT_IPC)
709 break;
710 if (security_audit_rule_match(ctx->ipc.osid,
711 f->type, f->op,
712 f->lsm_rule))
713 ++result;
714 }
715 break;
716 case AUDIT_ARG0:
717 case AUDIT_ARG1:
718 case AUDIT_ARG2:
719 case AUDIT_ARG3:
720 if (ctx)
721 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
722 break;
723 case AUDIT_FILTERKEY:
724
725 result = 1;
726 break;
727 case AUDIT_PERM:
728 result = audit_match_perm(ctx, f->val);
729 if (f->op == Audit_not_equal)
730 result = !result;
731 break;
732 case AUDIT_FILETYPE:
733 result = audit_match_filetype(ctx, f->val);
734 if (f->op == Audit_not_equal)
735 result = !result;
736 break;
737 case AUDIT_FIELD_COMPARE:
738 result = audit_field_compare(tsk, cred, f, ctx, name);
739 break;
740 }
741 if (!result)
742 return 0;
743 }
744
745 if (ctx) {
746 if (rule->prio <= ctx->prio)
747 return 0;
748 if (rule->filterkey) {
749 kfree(ctx->filterkey);
750 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
751 }
752 ctx->prio = rule->prio;
753 }
754 switch (rule->action) {
755 case AUDIT_NEVER:
756 *state = AUDIT_DISABLED;
757 break;
758 case AUDIT_ALWAYS:
759 *state = AUDIT_RECORD_CONTEXT;
760 break;
761 }
762 return 1;
763}
764
765
766
767
768
769static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
770{
771 struct audit_entry *e;
772 enum audit_state state;
773
774 rcu_read_lock();
775 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
776 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
777 &state, true)) {
778 if (state == AUDIT_RECORD_CONTEXT)
779 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
780 rcu_read_unlock();
781 return state;
782 }
783 }
784 rcu_read_unlock();
785 return AUDIT_BUILD_CONTEXT;
786}
787
788static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
789{
790 int word, bit;
791
792 if (val > 0xffffffff)
793 return false;
794
795 word = AUDIT_WORD(val);
796 if (word >= AUDIT_BITMASK_SIZE)
797 return false;
798
799 bit = AUDIT_BIT(val);
800
801 return rule->mask[word] & bit;
802}
803
804
805
806
807
808
809static enum audit_state audit_filter_syscall(struct task_struct *tsk,
810 struct audit_context *ctx,
811 struct list_head *list)
812{
813 struct audit_entry *e;
814 enum audit_state state;
815
816 if (auditd_test_task(tsk))
817 return AUDIT_DISABLED;
818
819 rcu_read_lock();
820 list_for_each_entry_rcu(e, list, list) {
821 if (audit_in_mask(&e->rule, ctx->major) &&
822 audit_filter_rules(tsk, &e->rule, ctx, NULL,
823 &state, false)) {
824 rcu_read_unlock();
825 ctx->current_state = state;
826 return state;
827 }
828 }
829 rcu_read_unlock();
830 return AUDIT_BUILD_CONTEXT;
831}
832
833
834
835
836
837static int audit_filter_inode_name(struct task_struct *tsk,
838 struct audit_names *n,
839 struct audit_context *ctx) {
840 int h = audit_hash_ino((u32)n->ino);
841 struct list_head *list = &audit_inode_hash[h];
842 struct audit_entry *e;
843 enum audit_state state;
844
845 list_for_each_entry_rcu(e, list, list) {
846 if (audit_in_mask(&e->rule, ctx->major) &&
847 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
848 ctx->current_state = state;
849 return 1;
850 }
851 }
852 return 0;
853}
854
855
856
857
858
859
860void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
861{
862 struct audit_names *n;
863
864 if (auditd_test_task(tsk))
865 return;
866
867 rcu_read_lock();
868
869 list_for_each_entry(n, &ctx->names_list, list) {
870 if (audit_filter_inode_name(tsk, n, ctx))
871 break;
872 }
873 rcu_read_unlock();
874}
875
876static inline void audit_proctitle_free(struct audit_context *context)
877{
878 kfree(context->proctitle.value);
879 context->proctitle.value = NULL;
880 context->proctitle.len = 0;
881}
882
883static inline void audit_free_module(struct audit_context *context)
884{
885 if (context->type == AUDIT_KERN_MODULE) {
886 kfree(context->module.name);
887 context->module.name = NULL;
888 }
889}
890static inline void audit_free_names(struct audit_context *context)
891{
892 struct audit_names *n, *next;
893
894 list_for_each_entry_safe(n, next, &context->names_list, list) {
895 list_del(&n->list);
896 if (n->name)
897 putname(n->name);
898 if (n->should_free)
899 kfree(n);
900 }
901 context->name_count = 0;
902 path_put(&context->pwd);
903 context->pwd.dentry = NULL;
904 context->pwd.mnt = NULL;
905}
906
907static inline void audit_free_aux(struct audit_context *context)
908{
909 struct audit_aux_data *aux;
910
911 while ((aux = context->aux)) {
912 context->aux = aux->next;
913 kfree(aux);
914 }
915 while ((aux = context->aux_pids)) {
916 context->aux_pids = aux->next;
917 kfree(aux);
918 }
919}
920
921static inline struct audit_context *audit_alloc_context(enum audit_state state)
922{
923 struct audit_context *context;
924
925 context = kzalloc(sizeof(*context), GFP_KERNEL);
926 if (!context)
927 return NULL;
928 context->state = state;
929 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
930 INIT_LIST_HEAD(&context->killed_trees);
931 INIT_LIST_HEAD(&context->names_list);
932 return context;
933}
934
935
936
937
938
939
940
941
942
943
944int audit_alloc(struct task_struct *tsk)
945{
946 struct audit_context *context;
947 enum audit_state state;
948 char *key = NULL;
949
950 if (likely(!audit_ever_enabled))
951 return 0;
952
953 state = audit_filter_task(tsk, &key);
954 if (state == AUDIT_DISABLED) {
955 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
956 return 0;
957 }
958
959 if (!(context = audit_alloc_context(state))) {
960 kfree(key);
961 audit_log_lost("out of memory in audit_alloc");
962 return -ENOMEM;
963 }
964 context->filterkey = key;
965
966 audit_set_context(tsk, context);
967 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
968 return 0;
969}
970
971static inline void audit_free_context(struct audit_context *context)
972{
973 audit_free_module(context);
974 audit_free_names(context);
975 unroll_tree_refs(context, NULL, 0);
976 free_tree_refs(context);
977 audit_free_aux(context);
978 kfree(context->filterkey);
979 kfree(context->sockaddr);
980 audit_proctitle_free(context);
981 kfree(context);
982}
983
984static int audit_log_pid_context(struct audit_context *context, pid_t pid,
985 kuid_t auid, kuid_t uid, unsigned int sessionid,
986 u32 sid, char *comm)
987{
988 struct audit_buffer *ab;
989 char *ctx = NULL;
990 u32 len;
991 int rc = 0;
992
993 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
994 if (!ab)
995 return rc;
996
997 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
998 from_kuid(&init_user_ns, auid),
999 from_kuid(&init_user_ns, uid), sessionid);
1000 if (sid) {
1001 if (security_secid_to_secctx(sid, &ctx, &len)) {
1002 audit_log_format(ab, " obj=(none)");
1003 rc = 1;
1004 } else {
1005 audit_log_format(ab, " obj=%s", ctx);
1006 security_release_secctx(ctx, len);
1007 }
1008 }
1009 audit_log_format(ab, " ocomm=");
1010 audit_log_untrustedstring(ab, comm);
1011 audit_log_end(ab);
1012
1013 return rc;
1014}
1015
1016static void audit_log_execve_info(struct audit_context *context,
1017 struct audit_buffer **ab)
1018{
1019 long len_max;
1020 long len_rem;
1021 long len_full;
1022 long len_buf;
1023 long len_abuf = 0;
1024 long len_tmp;
1025 bool require_data;
1026 bool encode;
1027 unsigned int iter;
1028 unsigned int arg;
1029 char *buf_head;
1030 char *buf;
1031 const char __user *p = (const char __user *)current->mm->arg_start;
1032
1033
1034
1035
1036 char abuf[96];
1037
1038
1039
1040
1041
1042 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1043 len_max = MAX_EXECVE_AUDIT_LEN;
1044
1045
1046 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1047 if (!buf_head) {
1048 audit_panic("out of memory for argv string");
1049 return;
1050 }
1051 buf = buf_head;
1052
1053 audit_log_format(*ab, "argc=%d", context->execve.argc);
1054
1055 len_rem = len_max;
1056 len_buf = 0;
1057 len_full = 0;
1058 require_data = true;
1059 encode = false;
1060 iter = 0;
1061 arg = 0;
1062 do {
1063
1064
1065
1066
1067
1068
1069
1070 if (len_full == 0)
1071 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1072
1073
1074 if (require_data) {
1075
1076 if (buf != buf_head) {
1077 memmove(buf_head, buf, len_buf);
1078 buf = buf_head;
1079 }
1080
1081
1082 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1083 len_max - len_buf);
1084 if (len_tmp == -EFAULT) {
1085
1086 send_sig(SIGKILL, current, 0);
1087 goto out;
1088 } else if (len_tmp == (len_max - len_buf)) {
1089
1090 require_data = true;
1091
1092
1093
1094
1095 encode = true;
1096 len_full = len_full * 2;
1097 p += len_tmp;
1098 } else {
1099 require_data = false;
1100 if (!encode)
1101 encode = audit_string_contains_control(
1102 buf, len_tmp);
1103
1104 if (len_full < len_max)
1105 len_full = (encode ?
1106 len_tmp * 2 : len_tmp);
1107 p += len_tmp + 1;
1108 }
1109 len_buf += len_tmp;
1110 buf_head[len_buf] = '\0';
1111
1112
1113 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1114 }
1115
1116
1117 if (len_buf >= 0) {
1118
1119
1120
1121
1122 if ((sizeof(abuf) + 8) > len_rem) {
1123 len_rem = len_max;
1124 audit_log_end(*ab);
1125 *ab = audit_log_start(context,
1126 GFP_KERNEL, AUDIT_EXECVE);
1127 if (!*ab)
1128 goto out;
1129 }
1130
1131
1132 len_tmp = 0;
1133 if (require_data || (iter > 0) ||
1134 ((len_abuf + sizeof(abuf)) > len_rem)) {
1135 if (iter == 0) {
1136 len_tmp += snprintf(&abuf[len_tmp],
1137 sizeof(abuf) - len_tmp,
1138 " a%d_len=%lu",
1139 arg, len_full);
1140 }
1141 len_tmp += snprintf(&abuf[len_tmp],
1142 sizeof(abuf) - len_tmp,
1143 " a%d[%d]=", arg, iter++);
1144 } else
1145 len_tmp += snprintf(&abuf[len_tmp],
1146 sizeof(abuf) - len_tmp,
1147 " a%d=", arg);
1148 WARN_ON(len_tmp >= sizeof(abuf));
1149 abuf[sizeof(abuf) - 1] = '\0';
1150
1151
1152 audit_log_format(*ab, "%s", abuf);
1153 len_rem -= len_tmp;
1154 len_tmp = len_buf;
1155 if (encode) {
1156 if (len_abuf > len_rem)
1157 len_tmp = len_rem / 2;
1158 audit_log_n_hex(*ab, buf, len_tmp);
1159 len_rem -= len_tmp * 2;
1160 len_abuf -= len_tmp * 2;
1161 } else {
1162 if (len_abuf > len_rem)
1163 len_tmp = len_rem - 2;
1164 audit_log_n_string(*ab, buf, len_tmp);
1165 len_rem -= len_tmp + 2;
1166
1167
1168 len_abuf -= len_tmp;
1169 }
1170 len_buf -= len_tmp;
1171 buf += len_tmp;
1172 }
1173
1174
1175 if ((len_buf == 0) && !require_data) {
1176 arg++;
1177 iter = 0;
1178 len_full = 0;
1179 require_data = true;
1180 encode = false;
1181 }
1182 } while (arg < context->execve.argc);
1183
1184
1185
1186out:
1187 kfree(buf_head);
1188}
1189
1190static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1191 kernel_cap_t *cap)
1192{
1193 int i;
1194
1195 if (cap_isclear(*cap)) {
1196 audit_log_format(ab, " %s=0", prefix);
1197 return;
1198 }
1199 audit_log_format(ab, " %s=", prefix);
1200 CAP_FOR_EACH_U32(i)
1201 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1202}
1203
1204static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205{
1206 if (name->fcap_ver == -1) {
1207 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1208 return;
1209 }
1210 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1211 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1212 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1213 name->fcap.fE, name->fcap_ver,
1214 from_kuid(&init_user_ns, name->fcap.rootid));
1215}
1216
1217static void show_special(struct audit_context *context, int *call_panic)
1218{
1219 struct audit_buffer *ab;
1220 int i;
1221
1222 ab = audit_log_start(context, GFP_KERNEL, context->type);
1223 if (!ab)
1224 return;
1225
1226 switch (context->type) {
1227 case AUDIT_SOCKETCALL: {
1228 int nargs = context->socketcall.nargs;
1229 audit_log_format(ab, "nargs=%d", nargs);
1230 for (i = 0; i < nargs; i++)
1231 audit_log_format(ab, " a%d=%lx", i,
1232 context->socketcall.args[i]);
1233 break; }
1234 case AUDIT_IPC: {
1235 u32 osid = context->ipc.osid;
1236
1237 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1238 from_kuid(&init_user_ns, context->ipc.uid),
1239 from_kgid(&init_user_ns, context->ipc.gid),
1240 context->ipc.mode);
1241 if (osid) {
1242 char *ctx = NULL;
1243 u32 len;
1244 if (security_secid_to_secctx(osid, &ctx, &len)) {
1245 audit_log_format(ab, " osid=%u", osid);
1246 *call_panic = 1;
1247 } else {
1248 audit_log_format(ab, " obj=%s", ctx);
1249 security_release_secctx(ctx, len);
1250 }
1251 }
1252 if (context->ipc.has_perm) {
1253 audit_log_end(ab);
1254 ab = audit_log_start(context, GFP_KERNEL,
1255 AUDIT_IPC_SET_PERM);
1256 if (unlikely(!ab))
1257 return;
1258 audit_log_format(ab,
1259 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1260 context->ipc.qbytes,
1261 context->ipc.perm_uid,
1262 context->ipc.perm_gid,
1263 context->ipc.perm_mode);
1264 }
1265 break; }
1266 case AUDIT_MQ_OPEN:
1267 audit_log_format(ab,
1268 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1269 "mq_msgsize=%ld mq_curmsgs=%ld",
1270 context->mq_open.oflag, context->mq_open.mode,
1271 context->mq_open.attr.mq_flags,
1272 context->mq_open.attr.mq_maxmsg,
1273 context->mq_open.attr.mq_msgsize,
1274 context->mq_open.attr.mq_curmsgs);
1275 break;
1276 case AUDIT_MQ_SENDRECV:
1277 audit_log_format(ab,
1278 "mqdes=%d msg_len=%zd msg_prio=%u "
1279 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1280 context->mq_sendrecv.mqdes,
1281 context->mq_sendrecv.msg_len,
1282 context->mq_sendrecv.msg_prio,
1283 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1284 context->mq_sendrecv.abs_timeout.tv_nsec);
1285 break;
1286 case AUDIT_MQ_NOTIFY:
1287 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1288 context->mq_notify.mqdes,
1289 context->mq_notify.sigev_signo);
1290 break;
1291 case AUDIT_MQ_GETSETATTR: {
1292 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1293 audit_log_format(ab,
1294 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1295 "mq_curmsgs=%ld ",
1296 context->mq_getsetattr.mqdes,
1297 attr->mq_flags, attr->mq_maxmsg,
1298 attr->mq_msgsize, attr->mq_curmsgs);
1299 break; }
1300 case AUDIT_CAPSET:
1301 audit_log_format(ab, "pid=%d", context->capset.pid);
1302 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1303 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1304 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1305 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1306 break;
1307 case AUDIT_MMAP:
1308 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1309 context->mmap.flags);
1310 break;
1311 case AUDIT_EXECVE:
1312 audit_log_execve_info(context, &ab);
1313 break;
1314 case AUDIT_KERN_MODULE:
1315 audit_log_format(ab, "name=");
1316 if (context->module.name) {
1317 audit_log_untrustedstring(ab, context->module.name);
1318 } else
1319 audit_log_format(ab, "(null)");
1320
1321 break;
1322 }
1323 audit_log_end(ab);
1324}
1325
1326static inline int audit_proctitle_rtrim(char *proctitle, int len)
1327{
1328 char *end = proctitle + len - 1;
1329 while (end > proctitle && !isprint(*end))
1330 end--;
1331
1332
1333 len = end - proctitle + 1;
1334 len -= isprint(proctitle[len-1]) == 0;
1335 return len;
1336}
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346static void audit_log_name(struct audit_context *context, struct audit_names *n,
1347 const struct path *path, int record_num, int *call_panic)
1348{
1349 struct audit_buffer *ab;
1350
1351 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1352 if (!ab)
1353 return;
1354
1355 audit_log_format(ab, "item=%d", record_num);
1356
1357 if (path)
1358 audit_log_d_path(ab, " name=", path);
1359 else if (n->name) {
1360 switch (n->name_len) {
1361 case AUDIT_NAME_FULL:
1362
1363 audit_log_format(ab, " name=");
1364 audit_log_untrustedstring(ab, n->name->name);
1365 break;
1366 case 0:
1367
1368
1369
1370 audit_log_d_path(ab, " name=", &context->pwd);
1371 break;
1372 default:
1373
1374 audit_log_format(ab, " name=");
1375 audit_log_n_untrustedstring(ab, n->name->name,
1376 n->name_len);
1377 }
1378 } else
1379 audit_log_format(ab, " name=(null)");
1380
1381 if (n->ino != AUDIT_INO_UNSET)
1382 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1383 n->ino,
1384 MAJOR(n->dev),
1385 MINOR(n->dev),
1386 n->mode,
1387 from_kuid(&init_user_ns, n->uid),
1388 from_kgid(&init_user_ns, n->gid),
1389 MAJOR(n->rdev),
1390 MINOR(n->rdev));
1391 if (n->osid != 0) {
1392 char *ctx = NULL;
1393 u32 len;
1394
1395 if (security_secid_to_secctx(
1396 n->osid, &ctx, &len)) {
1397 audit_log_format(ab, " osid=%u", n->osid);
1398 if (call_panic)
1399 *call_panic = 2;
1400 } else {
1401 audit_log_format(ab, " obj=%s", ctx);
1402 security_release_secctx(ctx, len);
1403 }
1404 }
1405
1406
1407 switch (n->type) {
1408 case AUDIT_TYPE_NORMAL:
1409 audit_log_format(ab, " nametype=NORMAL");
1410 break;
1411 case AUDIT_TYPE_PARENT:
1412 audit_log_format(ab, " nametype=PARENT");
1413 break;
1414 case AUDIT_TYPE_CHILD_DELETE:
1415 audit_log_format(ab, " nametype=DELETE");
1416 break;
1417 case AUDIT_TYPE_CHILD_CREATE:
1418 audit_log_format(ab, " nametype=CREATE");
1419 break;
1420 default:
1421 audit_log_format(ab, " nametype=UNKNOWN");
1422 break;
1423 }
1424
1425 audit_log_fcaps(ab, n);
1426 audit_log_end(ab);
1427}
1428
1429static void audit_log_proctitle(void)
1430{
1431 int res;
1432 char *buf;
1433 char *msg = "(null)";
1434 int len = strlen(msg);
1435 struct audit_context *context = audit_context();
1436 struct audit_buffer *ab;
1437
1438 if (!context || context->dummy)
1439 return;
1440
1441 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1442 if (!ab)
1443 return;
1444
1445 audit_log_format(ab, "proctitle=");
1446
1447
1448 if (!context->proctitle.value) {
1449 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1450 if (!buf)
1451 goto out;
1452
1453 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1454 if (res == 0) {
1455 kfree(buf);
1456 goto out;
1457 }
1458 res = audit_proctitle_rtrim(buf, res);
1459 if (res == 0) {
1460 kfree(buf);
1461 goto out;
1462 }
1463 context->proctitle.value = buf;
1464 context->proctitle.len = res;
1465 }
1466 msg = context->proctitle.value;
1467 len = context->proctitle.len;
1468out:
1469 audit_log_n_untrustedstring(ab, msg, len);
1470 audit_log_end(ab);
1471}
1472
1473static void audit_log_exit(void)
1474{
1475 int i, call_panic = 0;
1476 struct audit_context *context = audit_context();
1477 struct audit_buffer *ab;
1478 struct audit_aux_data *aux;
1479 struct audit_names *n;
1480
1481 context->personality = current->personality;
1482
1483 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1484 if (!ab)
1485 return;
1486 audit_log_format(ab, "arch=%x syscall=%d",
1487 context->arch, context->major);
1488 if (context->personality != PER_LINUX)
1489 audit_log_format(ab, " per=%lx", context->personality);
1490 if (context->return_valid)
1491 audit_log_format(ab, " success=%s exit=%ld",
1492 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1493 context->return_code);
1494
1495 audit_log_format(ab,
1496 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1497 context->argv[0],
1498 context->argv[1],
1499 context->argv[2],
1500 context->argv[3],
1501 context->name_count);
1502
1503 audit_log_task_info(ab);
1504 audit_log_key(ab, context->filterkey);
1505 audit_log_end(ab);
1506
1507 for (aux = context->aux; aux; aux = aux->next) {
1508
1509 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1510 if (!ab)
1511 continue;
1512
1513 switch (aux->type) {
1514
1515 case AUDIT_BPRM_FCAPS: {
1516 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1517 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1518 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1519 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1520 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1521 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1522 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1523 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1524 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1525 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1526 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1527 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1528 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1529 audit_log_format(ab, " frootid=%d",
1530 from_kuid(&init_user_ns,
1531 axs->fcap.rootid));
1532 break; }
1533
1534 }
1535 audit_log_end(ab);
1536 }
1537
1538 if (context->type)
1539 show_special(context, &call_panic);
1540
1541 if (context->fds[0] >= 0) {
1542 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1543 if (ab) {
1544 audit_log_format(ab, "fd0=%d fd1=%d",
1545 context->fds[0], context->fds[1]);
1546 audit_log_end(ab);
1547 }
1548 }
1549
1550 if (context->sockaddr_len) {
1551 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1552 if (ab) {
1553 audit_log_format(ab, "saddr=");
1554 audit_log_n_hex(ab, (void *)context->sockaddr,
1555 context->sockaddr_len);
1556 audit_log_end(ab);
1557 }
1558 }
1559
1560 for (aux = context->aux_pids; aux; aux = aux->next) {
1561 struct audit_aux_data_pids *axs = (void *)aux;
1562
1563 for (i = 0; i < axs->pid_count; i++)
1564 if (audit_log_pid_context(context, axs->target_pid[i],
1565 axs->target_auid[i],
1566 axs->target_uid[i],
1567 axs->target_sessionid[i],
1568 axs->target_sid[i],
1569 axs->target_comm[i]))
1570 call_panic = 1;
1571 }
1572
1573 if (context->target_pid &&
1574 audit_log_pid_context(context, context->target_pid,
1575 context->target_auid, context->target_uid,
1576 context->target_sessionid,
1577 context->target_sid, context->target_comm))
1578 call_panic = 1;
1579
1580 if (context->pwd.dentry && context->pwd.mnt) {
1581 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1582 if (ab) {
1583 audit_log_d_path(ab, "cwd=", &context->pwd);
1584 audit_log_end(ab);
1585 }
1586 }
1587
1588 i = 0;
1589 list_for_each_entry(n, &context->names_list, list) {
1590 if (n->hidden)
1591 continue;
1592 audit_log_name(context, n, NULL, i++, &call_panic);
1593 }
1594
1595 audit_log_proctitle();
1596
1597
1598 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1599 if (ab)
1600 audit_log_end(ab);
1601 if (call_panic)
1602 audit_panic("error converting sid to string");
1603}
1604
1605
1606
1607
1608
1609
1610
1611void __audit_free(struct task_struct *tsk)
1612{
1613 struct audit_context *context = tsk->audit_context;
1614
1615 if (!context)
1616 return;
1617
1618 if (!list_empty(&context->killed_trees))
1619 audit_kill_trees(context);
1620
1621
1622
1623
1624
1625
1626 if (tsk == current && !context->dummy && context->in_syscall) {
1627 context->return_valid = 0;
1628 context->return_code = 0;
1629
1630 audit_filter_syscall(tsk, context,
1631 &audit_filter_list[AUDIT_FILTER_EXIT]);
1632 audit_filter_inodes(tsk, context);
1633 if (context->current_state == AUDIT_RECORD_CONTEXT)
1634 audit_log_exit();
1635 }
1636
1637 audit_set_context(tsk, NULL);
1638 audit_free_context(context);
1639}
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1658 unsigned long a3, unsigned long a4)
1659{
1660 struct audit_context *context = audit_context();
1661 enum audit_state state;
1662
1663 if (!audit_enabled || !context)
1664 return;
1665
1666 BUG_ON(context->in_syscall || context->name_count);
1667
1668 state = context->state;
1669 if (state == AUDIT_DISABLED)
1670 return;
1671
1672 context->dummy = !audit_n_rules;
1673 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1674 context->prio = 0;
1675 if (auditd_test_task(current))
1676 return;
1677 }
1678
1679 context->arch = syscall_get_arch(current);
1680 context->major = major;
1681 context->argv[0] = a1;
1682 context->argv[1] = a2;
1683 context->argv[2] = a3;
1684 context->argv[3] = a4;
1685 context->serial = 0;
1686 context->in_syscall = 1;
1687 context->current_state = state;
1688 context->ppid = 0;
1689 ktime_get_coarse_real_ts64(&context->ctime);
1690}
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703void __audit_syscall_exit(int success, long return_code)
1704{
1705 struct audit_context *context;
1706
1707 context = audit_context();
1708 if (!context)
1709 return;
1710
1711 if (!list_empty(&context->killed_trees))
1712 audit_kill_trees(context);
1713
1714 if (!context->dummy && context->in_syscall) {
1715 if (success)
1716 context->return_valid = AUDITSC_SUCCESS;
1717 else
1718 context->return_valid = AUDITSC_FAILURE;
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731 if (unlikely(return_code <= -ERESTARTSYS) &&
1732 (return_code >= -ERESTART_RESTARTBLOCK) &&
1733 (return_code != -ENOIOCTLCMD))
1734 context->return_code = -EINTR;
1735 else
1736 context->return_code = return_code;
1737
1738 audit_filter_syscall(current, context,
1739 &audit_filter_list[AUDIT_FILTER_EXIT]);
1740 audit_filter_inodes(current, context);
1741 if (context->current_state == AUDIT_RECORD_CONTEXT)
1742 audit_log_exit();
1743 }
1744
1745 context->in_syscall = 0;
1746 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1747
1748 audit_free_module(context);
1749 audit_free_names(context);
1750 unroll_tree_refs(context, NULL, 0);
1751 audit_free_aux(context);
1752 context->aux = NULL;
1753 context->aux_pids = NULL;
1754 context->target_pid = 0;
1755 context->target_sid = 0;
1756 context->sockaddr_len = 0;
1757 context->type = 0;
1758 context->fds[0] = -1;
1759 if (context->state != AUDIT_RECORD_CONTEXT) {
1760 kfree(context->filterkey);
1761 context->filterkey = NULL;
1762 }
1763}
1764
1765static inline void handle_one(const struct inode *inode)
1766{
1767 struct audit_context *context;
1768 struct audit_tree_refs *p;
1769 struct audit_chunk *chunk;
1770 int count;
1771 if (likely(!inode->i_fsnotify_marks))
1772 return;
1773 context = audit_context();
1774 p = context->trees;
1775 count = context->tree_count;
1776 rcu_read_lock();
1777 chunk = audit_tree_lookup(inode);
1778 rcu_read_unlock();
1779 if (!chunk)
1780 return;
1781 if (likely(put_tree_ref(context, chunk)))
1782 return;
1783 if (unlikely(!grow_tree_refs(context))) {
1784 pr_warn("out of memory, audit has lost a tree reference\n");
1785 audit_set_auditable(context);
1786 audit_put_chunk(chunk);
1787 unroll_tree_refs(context, p, count);
1788 return;
1789 }
1790 put_tree_ref(context, chunk);
1791}
1792
1793static void handle_path(const struct dentry *dentry)
1794{
1795 struct audit_context *context;
1796 struct audit_tree_refs *p;
1797 const struct dentry *d, *parent;
1798 struct audit_chunk *drop;
1799 unsigned long seq;
1800 int count;
1801
1802 context = audit_context();
1803 p = context->trees;
1804 count = context->tree_count;
1805retry:
1806 drop = NULL;
1807 d = dentry;
1808 rcu_read_lock();
1809 seq = read_seqbegin(&rename_lock);
1810 for(;;) {
1811 struct inode *inode = d_backing_inode(d);
1812 if (inode && unlikely(inode->i_fsnotify_marks)) {
1813 struct audit_chunk *chunk;
1814 chunk = audit_tree_lookup(inode);
1815 if (chunk) {
1816 if (unlikely(!put_tree_ref(context, chunk))) {
1817 drop = chunk;
1818 break;
1819 }
1820 }
1821 }
1822 parent = d->d_parent;
1823 if (parent == d)
1824 break;
1825 d = parent;
1826 }
1827 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {
1828 rcu_read_unlock();
1829 if (!drop) {
1830
1831 unroll_tree_refs(context, p, count);
1832 goto retry;
1833 }
1834 audit_put_chunk(drop);
1835 if (grow_tree_refs(context)) {
1836
1837 unroll_tree_refs(context, p, count);
1838 goto retry;
1839 }
1840
1841 pr_warn("out of memory, audit has lost a tree reference\n");
1842 unroll_tree_refs(context, p, count);
1843 audit_set_auditable(context);
1844 return;
1845 }
1846 rcu_read_unlock();
1847}
1848
1849static struct audit_names *audit_alloc_name(struct audit_context *context,
1850 unsigned char type)
1851{
1852 struct audit_names *aname;
1853
1854 if (context->name_count < AUDIT_NAMES) {
1855 aname = &context->preallocated_names[context->name_count];
1856 memset(aname, 0, sizeof(*aname));
1857 } else {
1858 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1859 if (!aname)
1860 return NULL;
1861 aname->should_free = true;
1862 }
1863
1864 aname->ino = AUDIT_INO_UNSET;
1865 aname->type = type;
1866 list_add_tail(&aname->list, &context->names_list);
1867
1868 context->name_count++;
1869 return aname;
1870}
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880struct filename *
1881__audit_reusename(const __user char *uptr)
1882{
1883 struct audit_context *context = audit_context();
1884 struct audit_names *n;
1885
1886 list_for_each_entry(n, &context->names_list, list) {
1887 if (!n->name)
1888 continue;
1889 if (n->name->uptr == uptr) {
1890 n->name->refcnt++;
1891 return n->name;
1892 }
1893 }
1894 return NULL;
1895}
1896
1897inline void _audit_getcwd(struct audit_context *context)
1898{
1899 if (!context->pwd.dentry)
1900 get_fs_pwd(current->fs, &context->pwd);
1901}
1902
1903void __audit_getcwd(void)
1904{
1905 struct audit_context *context = audit_context();
1906
1907 if (context->in_syscall)
1908 _audit_getcwd(context);
1909}
1910
1911
1912
1913
1914
1915
1916
1917
1918void __audit_getname(struct filename *name)
1919{
1920 struct audit_context *context = audit_context();
1921 struct audit_names *n;
1922
1923 if (!context->in_syscall)
1924 return;
1925
1926 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1927 if (!n)
1928 return;
1929
1930 n->name = name;
1931 n->name_len = AUDIT_NAME_FULL;
1932 name->aname = n;
1933 name->refcnt++;
1934
1935 _audit_getcwd(context);
1936}
1937
1938static inline int audit_copy_fcaps(struct audit_names *name,
1939 const struct dentry *dentry)
1940{
1941 struct cpu_vfs_cap_data caps;
1942 int rc;
1943
1944 if (!dentry)
1945 return 0;
1946
1947 rc = get_vfs_caps_from_disk(dentry, &caps);
1948 if (rc)
1949 return rc;
1950
1951 name->fcap.permitted = caps.permitted;
1952 name->fcap.inheritable = caps.inheritable;
1953 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1954 name->fcap.rootid = caps.rootid;
1955 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1956 VFS_CAP_REVISION_SHIFT;
1957
1958 return 0;
1959}
1960
1961
1962static void audit_copy_inode(struct audit_names *name,
1963 const struct dentry *dentry,
1964 struct inode *inode, unsigned int flags)
1965{
1966 name->ino = inode->i_ino;
1967 name->dev = inode->i_sb->s_dev;
1968 name->mode = inode->i_mode;
1969 name->uid = inode->i_uid;
1970 name->gid = inode->i_gid;
1971 name->rdev = inode->i_rdev;
1972 security_inode_getsecid(inode, &name->osid);
1973 if (flags & AUDIT_INODE_NOEVAL) {
1974 name->fcap_ver = -1;
1975 return;
1976 }
1977 audit_copy_fcaps(name, dentry);
1978}
1979
1980
1981
1982
1983
1984
1985
1986void __audit_inode(struct filename *name, const struct dentry *dentry,
1987 unsigned int flags)
1988{
1989 struct audit_context *context = audit_context();
1990 struct inode *inode = d_backing_inode(dentry);
1991 struct audit_names *n;
1992 bool parent = flags & AUDIT_INODE_PARENT;
1993 struct audit_entry *e;
1994 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1995 int i;
1996
1997 if (!context->in_syscall)
1998 return;
1999
2000 rcu_read_lock();
2001 list_for_each_entry_rcu(e, list, list) {
2002 for (i = 0; i < e->rule.field_count; i++) {
2003 struct audit_field *f = &e->rule.fields[i];
2004
2005 if (f->type == AUDIT_FSTYPE
2006 && audit_comparator(inode->i_sb->s_magic,
2007 f->op, f->val)
2008 && e->rule.action == AUDIT_NEVER) {
2009 rcu_read_unlock();
2010 return;
2011 }
2012 }
2013 }
2014 rcu_read_unlock();
2015
2016 if (!name)
2017 goto out_alloc;
2018
2019
2020
2021
2022
2023 n = name->aname;
2024 if (n) {
2025 if (parent) {
2026 if (n->type == AUDIT_TYPE_PARENT ||
2027 n->type == AUDIT_TYPE_UNKNOWN)
2028 goto out;
2029 } else {
2030 if (n->type != AUDIT_TYPE_PARENT)
2031 goto out;
2032 }
2033 }
2034
2035 list_for_each_entry_reverse(n, &context->names_list, list) {
2036 if (n->ino) {
2037
2038 if (n->ino != inode->i_ino ||
2039 n->dev != inode->i_sb->s_dev)
2040 continue;
2041 } else if (n->name) {
2042
2043 if (strcmp(n->name->name, name->name))
2044 continue;
2045 } else
2046
2047 continue;
2048
2049
2050 if (parent) {
2051 if (n->type == AUDIT_TYPE_PARENT ||
2052 n->type == AUDIT_TYPE_UNKNOWN)
2053 goto out;
2054 } else {
2055 if (n->type != AUDIT_TYPE_PARENT)
2056 goto out;
2057 }
2058 }
2059
2060out_alloc:
2061
2062 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2063 if (!n)
2064 return;
2065 if (name) {
2066 n->name = name;
2067 name->refcnt++;
2068 }
2069
2070out:
2071 if (parent) {
2072 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2073 n->type = AUDIT_TYPE_PARENT;
2074 if (flags & AUDIT_INODE_HIDDEN)
2075 n->hidden = true;
2076 } else {
2077 n->name_len = AUDIT_NAME_FULL;
2078 n->type = AUDIT_TYPE_NORMAL;
2079 }
2080 handle_path(dentry);
2081 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2082}
2083
2084void __audit_file(const struct file *file)
2085{
2086 __audit_inode(NULL, file->f_path.dentry, 0);
2087}
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103void __audit_inode_child(struct inode *parent,
2104 const struct dentry *dentry,
2105 const unsigned char type)
2106{
2107 struct audit_context *context = audit_context();
2108 struct inode *inode = d_backing_inode(dentry);
2109 const struct qstr *dname = &dentry->d_name;
2110 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2111 struct audit_entry *e;
2112 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2113 int i;
2114
2115 if (!context->in_syscall)
2116 return;
2117
2118 rcu_read_lock();
2119 list_for_each_entry_rcu(e, list, list) {
2120 for (i = 0; i < e->rule.field_count; i++) {
2121 struct audit_field *f = &e->rule.fields[i];
2122
2123 if (f->type == AUDIT_FSTYPE
2124 && audit_comparator(parent->i_sb->s_magic,
2125 f->op, f->val)
2126 && e->rule.action == AUDIT_NEVER) {
2127 rcu_read_unlock();
2128 return;
2129 }
2130 }
2131 }
2132 rcu_read_unlock();
2133
2134 if (inode)
2135 handle_one(inode);
2136
2137
2138 list_for_each_entry(n, &context->names_list, list) {
2139 if (!n->name ||
2140 (n->type != AUDIT_TYPE_PARENT &&
2141 n->type != AUDIT_TYPE_UNKNOWN))
2142 continue;
2143
2144 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2145 !audit_compare_dname_path(dname,
2146 n->name->name, n->name_len)) {
2147 if (n->type == AUDIT_TYPE_UNKNOWN)
2148 n->type = AUDIT_TYPE_PARENT;
2149 found_parent = n;
2150 break;
2151 }
2152 }
2153
2154
2155 list_for_each_entry(n, &context->names_list, list) {
2156
2157 if (!n->name ||
2158 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2159 continue;
2160
2161 if (!strcmp(dname->name, n->name->name) ||
2162 !audit_compare_dname_path(dname, n->name->name,
2163 found_parent ?
2164 found_parent->name_len :
2165 AUDIT_NAME_FULL)) {
2166 if (n->type == AUDIT_TYPE_UNKNOWN)
2167 n->type = type;
2168 found_child = n;
2169 break;
2170 }
2171 }
2172
2173 if (!found_parent) {
2174
2175 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2176 if (!n)
2177 return;
2178 audit_copy_inode(n, NULL, parent, 0);
2179 }
2180
2181 if (!found_child) {
2182 found_child = audit_alloc_name(context, type);
2183 if (!found_child)
2184 return;
2185
2186
2187
2188
2189 if (found_parent) {
2190 found_child->name = found_parent->name;
2191 found_child->name_len = AUDIT_NAME_FULL;
2192 found_child->name->refcnt++;
2193 }
2194 }
2195
2196 if (inode)
2197 audit_copy_inode(found_child, dentry, inode, 0);
2198 else
2199 found_child->ino = AUDIT_INO_UNSET;
2200}
2201EXPORT_SYMBOL_GPL(__audit_inode_child);
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211int auditsc_get_stamp(struct audit_context *ctx,
2212 struct timespec64 *t, unsigned int *serial)
2213{
2214 if (!ctx->in_syscall)
2215 return 0;
2216 if (!ctx->serial)
2217 ctx->serial = audit_serial();
2218 t->tv_sec = ctx->ctime.tv_sec;
2219 t->tv_nsec = ctx->ctime.tv_nsec;
2220 *serial = ctx->serial;
2221 if (!ctx->prio) {
2222 ctx->prio = 1;
2223 ctx->current_state = AUDIT_RECORD_CONTEXT;
2224 }
2225 return 1;
2226}
2227
2228
2229
2230
2231
2232
2233
2234
2235void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2236{
2237 struct audit_context *context = audit_context();
2238
2239 if (attr)
2240 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2241 else
2242 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2243
2244 context->mq_open.oflag = oflag;
2245 context->mq_open.mode = mode;
2246
2247 context->type = AUDIT_MQ_OPEN;
2248}
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2259 const struct timespec64 *abs_timeout)
2260{
2261 struct audit_context *context = audit_context();
2262 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2263
2264 if (abs_timeout)
2265 memcpy(p, abs_timeout, sizeof(*p));
2266 else
2267 memset(p, 0, sizeof(*p));
2268
2269 context->mq_sendrecv.mqdes = mqdes;
2270 context->mq_sendrecv.msg_len = msg_len;
2271 context->mq_sendrecv.msg_prio = msg_prio;
2272
2273 context->type = AUDIT_MQ_SENDRECV;
2274}
2275
2276
2277
2278
2279
2280
2281
2282
2283void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2284{
2285 struct audit_context *context = audit_context();
2286
2287 if (notification)
2288 context->mq_notify.sigev_signo = notification->sigev_signo;
2289 else
2290 context->mq_notify.sigev_signo = 0;
2291
2292 context->mq_notify.mqdes = mqdes;
2293 context->type = AUDIT_MQ_NOTIFY;
2294}
2295
2296
2297
2298
2299
2300
2301
2302void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2303{
2304 struct audit_context *context = audit_context();
2305 context->mq_getsetattr.mqdes = mqdes;
2306 context->mq_getsetattr.mqstat = *mqstat;
2307 context->type = AUDIT_MQ_GETSETATTR;
2308}
2309
2310
2311
2312
2313
2314
2315void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2316{
2317 struct audit_context *context = audit_context();
2318 context->ipc.uid = ipcp->uid;
2319 context->ipc.gid = ipcp->gid;
2320 context->ipc.mode = ipcp->mode;
2321 context->ipc.has_perm = 0;
2322 security_ipc_getsecid(ipcp, &context->ipc.osid);
2323 context->type = AUDIT_IPC;
2324}
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2336{
2337 struct audit_context *context = audit_context();
2338
2339 context->ipc.qbytes = qbytes;
2340 context->ipc.perm_uid = uid;
2341 context->ipc.perm_gid = gid;
2342 context->ipc.perm_mode = mode;
2343 context->ipc.has_perm = 1;
2344}
2345
2346void __audit_bprm(struct linux_binprm *bprm)
2347{
2348 struct audit_context *context = audit_context();
2349
2350 context->type = AUDIT_EXECVE;
2351 context->execve.argc = bprm->argc;
2352}
2353
2354
2355
2356
2357
2358
2359
2360
2361int __audit_socketcall(int nargs, unsigned long *args)
2362{
2363 struct audit_context *context = audit_context();
2364
2365 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2366 return -EINVAL;
2367 context->type = AUDIT_SOCKETCALL;
2368 context->socketcall.nargs = nargs;
2369 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2370 return 0;
2371}
2372
2373
2374
2375
2376
2377
2378
2379void __audit_fd_pair(int fd1, int fd2)
2380{
2381 struct audit_context *context = audit_context();
2382 context->fds[0] = fd1;
2383 context->fds[1] = fd2;
2384}
2385
2386
2387
2388
2389
2390
2391
2392
2393int __audit_sockaddr(int len, void *a)
2394{
2395 struct audit_context *context = audit_context();
2396
2397 if (!context->sockaddr) {
2398 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2399 if (!p)
2400 return -ENOMEM;
2401 context->sockaddr = p;
2402 }
2403
2404 context->sockaddr_len = len;
2405 memcpy(context->sockaddr, a, len);
2406 return 0;
2407}
2408
2409void __audit_ptrace(struct task_struct *t)
2410{
2411 struct audit_context *context = audit_context();
2412
2413 context->target_pid = task_tgid_nr(t);
2414 context->target_auid = audit_get_loginuid(t);
2415 context->target_uid = task_uid(t);
2416 context->target_sessionid = audit_get_sessionid(t);
2417 security_task_getsecid(t, &context->target_sid);
2418 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2419}
2420
2421
2422
2423
2424
2425
2426
2427
2428int audit_signal_info_syscall(struct task_struct *t)
2429{
2430 struct audit_aux_data_pids *axp;
2431 struct audit_context *ctx = audit_context();
2432 kuid_t t_uid = task_uid(t);
2433
2434 if (!audit_signals || audit_dummy_context())
2435 return 0;
2436
2437
2438
2439 if (!ctx->target_pid) {
2440 ctx->target_pid = task_tgid_nr(t);
2441 ctx->target_auid = audit_get_loginuid(t);
2442 ctx->target_uid = t_uid;
2443 ctx->target_sessionid = audit_get_sessionid(t);
2444 security_task_getsecid(t, &ctx->target_sid);
2445 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2446 return 0;
2447 }
2448
2449 axp = (void *)ctx->aux_pids;
2450 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2451 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2452 if (!axp)
2453 return -ENOMEM;
2454
2455 axp->d.type = AUDIT_OBJ_PID;
2456 axp->d.next = ctx->aux_pids;
2457 ctx->aux_pids = (void *)axp;
2458 }
2459 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2460
2461 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2462 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2463 axp->target_uid[axp->pid_count] = t_uid;
2464 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2465 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2466 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2467 axp->pid_count++;
2468
2469 return 0;
2470}
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2484 const struct cred *new, const struct cred *old)
2485{
2486 struct audit_aux_data_bprm_fcaps *ax;
2487 struct audit_context *context = audit_context();
2488 struct cpu_vfs_cap_data vcaps;
2489
2490 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2491 if (!ax)
2492 return -ENOMEM;
2493
2494 ax->d.type = AUDIT_BPRM_FCAPS;
2495 ax->d.next = context->aux;
2496 context->aux = (void *)ax;
2497
2498 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2499
2500 ax->fcap.permitted = vcaps.permitted;
2501 ax->fcap.inheritable = vcaps.inheritable;
2502 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2503 ax->fcap.rootid = vcaps.rootid;
2504 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2505
2506 ax->old_pcap.permitted = old->cap_permitted;
2507 ax->old_pcap.inheritable = old->cap_inheritable;
2508 ax->old_pcap.effective = old->cap_effective;
2509 ax->old_pcap.ambient = old->cap_ambient;
2510
2511 ax->new_pcap.permitted = new->cap_permitted;
2512 ax->new_pcap.inheritable = new->cap_inheritable;
2513 ax->new_pcap.effective = new->cap_effective;
2514 ax->new_pcap.ambient = new->cap_ambient;
2515 return 0;
2516}
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526void __audit_log_capset(const struct cred *new, const struct cred *old)
2527{
2528 struct audit_context *context = audit_context();
2529 context->capset.pid = task_tgid_nr(current);
2530 context->capset.cap.effective = new->cap_effective;
2531 context->capset.cap.inheritable = new->cap_effective;
2532 context->capset.cap.permitted = new->cap_permitted;
2533 context->capset.cap.ambient = new->cap_ambient;
2534 context->type = AUDIT_CAPSET;
2535}
2536
2537void __audit_mmap_fd(int fd, int flags)
2538{
2539 struct audit_context *context = audit_context();
2540 context->mmap.fd = fd;
2541 context->mmap.flags = flags;
2542 context->type = AUDIT_MMAP;
2543}
2544
2545void __audit_log_kern_module(char *name)
2546{
2547 struct audit_context *context = audit_context();
2548
2549 context->module.name = kstrdup(name, GFP_KERNEL);
2550 if (!context->module.name)
2551 audit_log_lost("out of memory in __audit_log_kern_module");
2552 context->type = AUDIT_KERN_MODULE;
2553}
2554
2555void __audit_fanotify(unsigned int response)
2556{
2557 audit_log(audit_context(), GFP_KERNEL,
2558 AUDIT_FANOTIFY, "resp=%u", response);
2559}
2560
2561void __audit_tk_injoffset(struct timespec64 offset)
2562{
2563 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2564 "sec=%lli nsec=%li",
2565 (long long)offset.tv_sec, offset.tv_nsec);
2566}
2567
2568static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2569 const char *op, enum audit_ntp_type type)
2570{
2571 const struct audit_ntp_val *val = &ad->vals[type];
2572
2573 if (val->newval == val->oldval)
2574 return;
2575
2576 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2577 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2578}
2579
2580void __audit_ntp_log(const struct audit_ntp_data *ad)
2581{
2582 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2583 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2584 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2585 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2586 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2587 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2588}
2589
2590void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2591 enum audit_nfcfgop op, gfp_t gfp)
2592{
2593 struct audit_buffer *ab;
2594 char comm[sizeof(current->comm)];
2595
2596 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2597 if (!ab)
2598 return;
2599 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2600 name, af, nentries, audit_nfcfgs[op].s);
2601
2602 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2603 audit_log_task_context(ab);
2604 audit_log_format(ab, " comm=");
2605 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2606 audit_log_end(ab);
2607}
2608EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2609
2610static void audit_log_task(struct audit_buffer *ab)
2611{
2612 kuid_t auid, uid;
2613 kgid_t gid;
2614 unsigned int sessionid;
2615 char comm[sizeof(current->comm)];
2616
2617 auid = audit_get_loginuid(current);
2618 sessionid = audit_get_sessionid(current);
2619 current_uid_gid(&uid, &gid);
2620
2621 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2622 from_kuid(&init_user_ns, auid),
2623 from_kuid(&init_user_ns, uid),
2624 from_kgid(&init_user_ns, gid),
2625 sessionid);
2626 audit_log_task_context(ab);
2627 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2628 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2629 audit_log_d_path_exe(ab, current->mm);
2630}
2631
2632
2633
2634
2635
2636
2637
2638
2639void audit_core_dumps(long signr)
2640{
2641 struct audit_buffer *ab;
2642
2643 if (!audit_enabled)
2644 return;
2645
2646 if (signr == SIGQUIT)
2647 return;
2648
2649 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2650 if (unlikely(!ab))
2651 return;
2652 audit_log_task(ab);
2653 audit_log_format(ab, " sig=%ld res=1", signr);
2654 audit_log_end(ab);
2655}
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669void audit_seccomp(unsigned long syscall, long signr, int code)
2670{
2671 struct audit_buffer *ab;
2672
2673 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2674 if (unlikely(!ab))
2675 return;
2676 audit_log_task(ab);
2677 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2678 signr, syscall_get_arch(current), syscall,
2679 in_compat_syscall(), KSTK_EIP(current), code);
2680 audit_log_end(ab);
2681}
2682
2683void audit_seccomp_actions_logged(const char *names, const char *old_names,
2684 int res)
2685{
2686 struct audit_buffer *ab;
2687
2688 if (!audit_enabled)
2689 return;
2690
2691 ab = audit_log_start(audit_context(), GFP_KERNEL,
2692 AUDIT_CONFIG_CHANGE);
2693 if (unlikely(!ab))
2694 return;
2695
2696 audit_log_format(ab,
2697 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2698 names, old_names, res);
2699 audit_log_end(ab);
2700}
2701
2702struct list_head *audit_killed_trees(void)
2703{
2704 struct audit_context *ctx = audit_context();
2705 if (likely(!ctx || !ctx->in_syscall))
2706 return NULL;
2707 return &ctx->killed_trees;
2708}
2709