linux/kernel/bpf/verifier.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
   5 */
   6#include <uapi/linux/btf.h>
   7#include <linux/kernel.h>
   8#include <linux/types.h>
   9#include <linux/slab.h>
  10#include <linux/bpf.h>
  11#include <linux/btf.h>
  12#include <linux/bpf_verifier.h>
  13#include <linux/filter.h>
  14#include <net/netlink.h>
  15#include <linux/file.h>
  16#include <linux/vmalloc.h>
  17#include <linux/stringify.h>
  18#include <linux/bsearch.h>
  19#include <linux/sort.h>
  20#include <linux/perf_event.h>
  21#include <linux/ctype.h>
  22#include <linux/error-injection.h>
  23#include <linux/bpf_lsm.h>
  24
  25#include "disasm.h"
  26
  27static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
  28#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
  29        [_id] = & _name ## _verifier_ops,
  30#define BPF_MAP_TYPE(_id, _ops)
  31#define BPF_LINK_TYPE(_id, _name)
  32#include <linux/bpf_types.h>
  33#undef BPF_PROG_TYPE
  34#undef BPF_MAP_TYPE
  35#undef BPF_LINK_TYPE
  36};
  37
  38/* bpf_check() is a static code analyzer that walks eBPF program
  39 * instruction by instruction and updates register/stack state.
  40 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
  41 *
  42 * The first pass is depth-first-search to check that the program is a DAG.
  43 * It rejects the following programs:
  44 * - larger than BPF_MAXINSNS insns
  45 * - if loop is present (detected via back-edge)
  46 * - unreachable insns exist (shouldn't be a forest. program = one function)
  47 * - out of bounds or malformed jumps
  48 * The second pass is all possible path descent from the 1st insn.
  49 * Since it's analyzing all pathes through the program, the length of the
  50 * analysis is limited to 64k insn, which may be hit even if total number of
  51 * insn is less then 4K, but there are too many branches that change stack/regs.
  52 * Number of 'branches to be analyzed' is limited to 1k
  53 *
  54 * On entry to each instruction, each register has a type, and the instruction
  55 * changes the types of the registers depending on instruction semantics.
  56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
  57 * copied to R1.
  58 *
  59 * All registers are 64-bit.
  60 * R0 - return register
  61 * R1-R5 argument passing registers
  62 * R6-R9 callee saved registers
  63 * R10 - frame pointer read-only
  64 *
  65 * At the start of BPF program the register R1 contains a pointer to bpf_context
  66 * and has type PTR_TO_CTX.
  67 *
  68 * Verifier tracks arithmetic operations on pointers in case:
  69 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  70 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
  71 * 1st insn copies R10 (which has FRAME_PTR) type into R1
  72 * and 2nd arithmetic instruction is pattern matched to recognize
  73 * that it wants to construct a pointer to some element within stack.
  74 * So after 2nd insn, the register R1 has type PTR_TO_STACK
  75 * (and -20 constant is saved for further stack bounds checking).
  76 * Meaning that this reg is a pointer to stack plus known immediate constant.
  77 *
  78 * Most of the time the registers have SCALAR_VALUE type, which
  79 * means the register has some value, but it's not a valid pointer.
  80 * (like pointer plus pointer becomes SCALAR_VALUE type)
  81 *
  82 * When verifier sees load or store instructions the type of base register
  83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
  84 * four pointer types recognized by check_mem_access() function.
  85 *
  86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
  87 * and the range of [ptr, ptr + map's value_size) is accessible.
  88 *
  89 * registers used to pass values to function calls are checked against
  90 * function argument constraints.
  91 *
  92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
  93 * It means that the register type passed to this function must be
  94 * PTR_TO_STACK and it will be used inside the function as
  95 * 'pointer to map element key'
  96 *
  97 * For example the argument constraints for bpf_map_lookup_elem():
  98 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
  99 *   .arg1_type = ARG_CONST_MAP_PTR,
 100 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 101 *
 102 * ret_type says that this function returns 'pointer to map elem value or null'
 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 104 * 2nd argument should be a pointer to stack, which will be used inside
 105 * the helper function as a pointer to map element key.
 106 *
 107 * On the kernel side the helper function looks like:
 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 109 * {
 110 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 111 *    void *key = (void *) (unsigned long) r2;
 112 *    void *value;
 113 *
 114 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 115 *    [key, key + map->key_size) bytes are valid and were initialized on
 116 *    the stack of eBPF program.
 117 * }
 118 *
 119 * Corresponding eBPF program may look like:
 120 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 121 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 122 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 123 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 124 * here verifier looks at prototype of map_lookup_elem() and sees:
 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 127 *
 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 130 * and were initialized prior to this call.
 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 134 * returns ether pointer to map value or NULL.
 135 *
 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 137 * insn, the register holding that pointer in the true branch changes state to
 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 139 * branch. See check_cond_jmp_op().
 140 *
 141 * After the call R0 is set to return type of the function and registers R1-R5
 142 * are set to NOT_INIT to indicate that they are no longer readable.
 143 *
 144 * The following reference types represent a potential reference to a kernel
 145 * resource which, after first being allocated, must be checked and freed by
 146 * the BPF program:
 147 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
 148 *
 149 * When the verifier sees a helper call return a reference type, it allocates a
 150 * pointer id for the reference and stores it in the current function state.
 151 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
 152 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
 153 * passes through a NULL-check conditional. For the branch wherein the state is
 154 * changed to CONST_IMM, the verifier releases the reference.
 155 *
 156 * For each helper function that allocates a reference, such as
 157 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
 158 * bpf_sk_release(). When a reference type passes into the release function,
 159 * the verifier also releases the reference. If any unchecked or unreleased
 160 * reference remains at the end of the program, the verifier rejects it.
 161 */
 162
 163/* verifier_state + insn_idx are pushed to stack when branch is encountered */
 164struct bpf_verifier_stack_elem {
 165        /* verifer state is 'st'
 166         * before processing instruction 'insn_idx'
 167         * and after processing instruction 'prev_insn_idx'
 168         */
 169        struct bpf_verifier_state st;
 170        int insn_idx;
 171        int prev_insn_idx;
 172        struct bpf_verifier_stack_elem *next;
 173        /* length of verifier log at the time this state was pushed on stack */
 174        u32 log_pos;
 175};
 176
 177#define BPF_COMPLEXITY_LIMIT_JMP_SEQ    8192
 178#define BPF_COMPLEXITY_LIMIT_STATES     64
 179
 180#define BPF_MAP_KEY_POISON      (1ULL << 63)
 181#define BPF_MAP_KEY_SEEN        (1ULL << 62)
 182
 183#define BPF_MAP_PTR_UNPRIV      1UL
 184#define BPF_MAP_PTR_POISON      ((void *)((0xeB9FUL << 1) +     \
 185                                          POISON_POINTER_DELTA))
 186#define BPF_MAP_PTR(X)          ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
 187
 188static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
 189{
 190        return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
 191}
 192
 193static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
 194{
 195        return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
 196}
 197
 198static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
 199                              const struct bpf_map *map, bool unpriv)
 200{
 201        BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
 202        unpriv |= bpf_map_ptr_unpriv(aux);
 203        aux->map_ptr_state = (unsigned long)map |
 204                             (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
 205}
 206
 207static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
 208{
 209        return aux->map_key_state & BPF_MAP_KEY_POISON;
 210}
 211
 212static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
 213{
 214        return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
 215}
 216
 217static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
 218{
 219        return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
 220}
 221
 222static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
 223{
 224        bool poisoned = bpf_map_key_poisoned(aux);
 225
 226        aux->map_key_state = state | BPF_MAP_KEY_SEEN |
 227                             (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
 228}
 229
 230struct bpf_call_arg_meta {
 231        struct bpf_map *map_ptr;
 232        bool raw_mode;
 233        bool pkt_access;
 234        int regno;
 235        int access_size;
 236        int mem_size;
 237        u64 msize_max_value;
 238        int ref_obj_id;
 239        int func_id;
 240        u32 btf_id;
 241};
 242
 243struct btf *btf_vmlinux;
 244
 245static DEFINE_MUTEX(bpf_verifier_lock);
 246
 247static const struct bpf_line_info *
 248find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
 249{
 250        const struct bpf_line_info *linfo;
 251        const struct bpf_prog *prog;
 252        u32 i, nr_linfo;
 253
 254        prog = env->prog;
 255        nr_linfo = prog->aux->nr_linfo;
 256
 257        if (!nr_linfo || insn_off >= prog->len)
 258                return NULL;
 259
 260        linfo = prog->aux->linfo;
 261        for (i = 1; i < nr_linfo; i++)
 262                if (insn_off < linfo[i].insn_off)
 263                        break;
 264
 265        return &linfo[i - 1];
 266}
 267
 268void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
 269                       va_list args)
 270{
 271        unsigned int n;
 272
 273        n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
 274
 275        WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
 276                  "verifier log line truncated - local buffer too short\n");
 277
 278        n = min(log->len_total - log->len_used - 1, n);
 279        log->kbuf[n] = '\0';
 280
 281        if (log->level == BPF_LOG_KERNEL) {
 282                pr_err("BPF:%s\n", log->kbuf);
 283                return;
 284        }
 285        if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
 286                log->len_used += n;
 287        else
 288                log->ubuf = NULL;
 289}
 290
 291static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
 292{
 293        char zero = 0;
 294
 295        if (!bpf_verifier_log_needed(log))
 296                return;
 297
 298        log->len_used = new_pos;
 299        if (put_user(zero, log->ubuf + new_pos))
 300                log->ubuf = NULL;
 301}
 302
 303/* log_level controls verbosity level of eBPF verifier.
 304 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 305 * so the user can figure out what's wrong with the program
 306 */
 307__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
 308                                           const char *fmt, ...)
 309{
 310        va_list args;
 311
 312        if (!bpf_verifier_log_needed(&env->log))
 313                return;
 314
 315        va_start(args, fmt);
 316        bpf_verifier_vlog(&env->log, fmt, args);
 317        va_end(args);
 318}
 319EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
 320
 321__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
 322{
 323        struct bpf_verifier_env *env = private_data;
 324        va_list args;
 325
 326        if (!bpf_verifier_log_needed(&env->log))
 327                return;
 328
 329        va_start(args, fmt);
 330        bpf_verifier_vlog(&env->log, fmt, args);
 331        va_end(args);
 332}
 333
 334__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
 335                            const char *fmt, ...)
 336{
 337        va_list args;
 338
 339        if (!bpf_verifier_log_needed(log))
 340                return;
 341
 342        va_start(args, fmt);
 343        bpf_verifier_vlog(log, fmt, args);
 344        va_end(args);
 345}
 346
 347static const char *ltrim(const char *s)
 348{
 349        while (isspace(*s))
 350                s++;
 351
 352        return s;
 353}
 354
 355__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
 356                                         u32 insn_off,
 357                                         const char *prefix_fmt, ...)
 358{
 359        const struct bpf_line_info *linfo;
 360
 361        if (!bpf_verifier_log_needed(&env->log))
 362                return;
 363
 364        linfo = find_linfo(env, insn_off);
 365        if (!linfo || linfo == env->prev_linfo)
 366                return;
 367
 368        if (prefix_fmt) {
 369                va_list args;
 370
 371                va_start(args, prefix_fmt);
 372                bpf_verifier_vlog(&env->log, prefix_fmt, args);
 373                va_end(args);
 374        }
 375
 376        verbose(env, "%s\n",
 377                ltrim(btf_name_by_offset(env->prog->aux->btf,
 378                                         linfo->line_off)));
 379
 380        env->prev_linfo = linfo;
 381}
 382
 383static bool type_is_pkt_pointer(enum bpf_reg_type type)
 384{
 385        return type == PTR_TO_PACKET ||
 386               type == PTR_TO_PACKET_META;
 387}
 388
 389static bool type_is_sk_pointer(enum bpf_reg_type type)
 390{
 391        return type == PTR_TO_SOCKET ||
 392                type == PTR_TO_SOCK_COMMON ||
 393                type == PTR_TO_TCP_SOCK ||
 394                type == PTR_TO_XDP_SOCK;
 395}
 396
 397static bool reg_type_not_null(enum bpf_reg_type type)
 398{
 399        return type == PTR_TO_SOCKET ||
 400                type == PTR_TO_TCP_SOCK ||
 401                type == PTR_TO_MAP_VALUE ||
 402                type == PTR_TO_SOCK_COMMON;
 403}
 404
 405static bool reg_type_may_be_null(enum bpf_reg_type type)
 406{
 407        return type == PTR_TO_MAP_VALUE_OR_NULL ||
 408               type == PTR_TO_SOCKET_OR_NULL ||
 409               type == PTR_TO_SOCK_COMMON_OR_NULL ||
 410               type == PTR_TO_TCP_SOCK_OR_NULL ||
 411               type == PTR_TO_BTF_ID_OR_NULL ||
 412               type == PTR_TO_MEM_OR_NULL ||
 413               type == PTR_TO_RDONLY_BUF_OR_NULL ||
 414               type == PTR_TO_RDWR_BUF_OR_NULL;
 415}
 416
 417static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
 418{
 419        return reg->type == PTR_TO_MAP_VALUE &&
 420                map_value_has_spin_lock(reg->map_ptr);
 421}
 422
 423static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
 424{
 425        return type == PTR_TO_SOCKET ||
 426                type == PTR_TO_SOCKET_OR_NULL ||
 427                type == PTR_TO_TCP_SOCK ||
 428                type == PTR_TO_TCP_SOCK_OR_NULL ||
 429                type == PTR_TO_MEM ||
 430                type == PTR_TO_MEM_OR_NULL;
 431}
 432
 433static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
 434{
 435        return type == ARG_PTR_TO_SOCK_COMMON;
 436}
 437
 438/* Determine whether the function releases some resources allocated by another
 439 * function call. The first reference type argument will be assumed to be
 440 * released by release_reference().
 441 */
 442static bool is_release_function(enum bpf_func_id func_id)
 443{
 444        return func_id == BPF_FUNC_sk_release ||
 445               func_id == BPF_FUNC_ringbuf_submit ||
 446               func_id == BPF_FUNC_ringbuf_discard;
 447}
 448
 449static bool may_be_acquire_function(enum bpf_func_id func_id)
 450{
 451        return func_id == BPF_FUNC_sk_lookup_tcp ||
 452                func_id == BPF_FUNC_sk_lookup_udp ||
 453                func_id == BPF_FUNC_skc_lookup_tcp ||
 454                func_id == BPF_FUNC_map_lookup_elem ||
 455                func_id == BPF_FUNC_ringbuf_reserve;
 456}
 457
 458static bool is_acquire_function(enum bpf_func_id func_id,
 459                                const struct bpf_map *map)
 460{
 461        enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
 462
 463        if (func_id == BPF_FUNC_sk_lookup_tcp ||
 464            func_id == BPF_FUNC_sk_lookup_udp ||
 465            func_id == BPF_FUNC_skc_lookup_tcp ||
 466            func_id == BPF_FUNC_ringbuf_reserve)
 467                return true;
 468
 469        if (func_id == BPF_FUNC_map_lookup_elem &&
 470            (map_type == BPF_MAP_TYPE_SOCKMAP ||
 471             map_type == BPF_MAP_TYPE_SOCKHASH))
 472                return true;
 473
 474        return false;
 475}
 476
 477static bool is_ptr_cast_function(enum bpf_func_id func_id)
 478{
 479        return func_id == BPF_FUNC_tcp_sock ||
 480                func_id == BPF_FUNC_sk_fullsock;
 481}
 482
 483/* string representation of 'enum bpf_reg_type' */
 484static const char * const reg_type_str[] = {
 485        [NOT_INIT]              = "?",
 486        [SCALAR_VALUE]          = "inv",
 487        [PTR_TO_CTX]            = "ctx",
 488        [CONST_PTR_TO_MAP]      = "map_ptr",
 489        [PTR_TO_MAP_VALUE]      = "map_value",
 490        [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
 491        [PTR_TO_STACK]          = "fp",
 492        [PTR_TO_PACKET]         = "pkt",
 493        [PTR_TO_PACKET_META]    = "pkt_meta",
 494        [PTR_TO_PACKET_END]     = "pkt_end",
 495        [PTR_TO_FLOW_KEYS]      = "flow_keys",
 496        [PTR_TO_SOCKET]         = "sock",
 497        [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
 498        [PTR_TO_SOCK_COMMON]    = "sock_common",
 499        [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
 500        [PTR_TO_TCP_SOCK]       = "tcp_sock",
 501        [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
 502        [PTR_TO_TP_BUFFER]      = "tp_buffer",
 503        [PTR_TO_XDP_SOCK]       = "xdp_sock",
 504        [PTR_TO_BTF_ID]         = "ptr_",
 505        [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
 506        [PTR_TO_MEM]            = "mem",
 507        [PTR_TO_MEM_OR_NULL]    = "mem_or_null",
 508        [PTR_TO_RDONLY_BUF]     = "rdonly_buf",
 509        [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
 510        [PTR_TO_RDWR_BUF]       = "rdwr_buf",
 511        [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
 512};
 513
 514static char slot_type_char[] = {
 515        [STACK_INVALID] = '?',
 516        [STACK_SPILL]   = 'r',
 517        [STACK_MISC]    = 'm',
 518        [STACK_ZERO]    = '0',
 519};
 520
 521static void print_liveness(struct bpf_verifier_env *env,
 522                           enum bpf_reg_liveness live)
 523{
 524        if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
 525            verbose(env, "_");
 526        if (live & REG_LIVE_READ)
 527                verbose(env, "r");
 528        if (live & REG_LIVE_WRITTEN)
 529                verbose(env, "w");
 530        if (live & REG_LIVE_DONE)
 531                verbose(env, "D");
 532}
 533
 534static struct bpf_func_state *func(struct bpf_verifier_env *env,
 535                                   const struct bpf_reg_state *reg)
 536{
 537        struct bpf_verifier_state *cur = env->cur_state;
 538
 539        return cur->frame[reg->frameno];
 540}
 541
 542const char *kernel_type_name(u32 id)
 543{
 544        return btf_name_by_offset(btf_vmlinux,
 545                                  btf_type_by_id(btf_vmlinux, id)->name_off);
 546}
 547
 548static void print_verifier_state(struct bpf_verifier_env *env,
 549                                 const struct bpf_func_state *state)
 550{
 551        const struct bpf_reg_state *reg;
 552        enum bpf_reg_type t;
 553        int i;
 554
 555        if (state->frameno)
 556                verbose(env, " frame%d:", state->frameno);
 557        for (i = 0; i < MAX_BPF_REG; i++) {
 558                reg = &state->regs[i];
 559                t = reg->type;
 560                if (t == NOT_INIT)
 561                        continue;
 562                verbose(env, " R%d", i);
 563                print_liveness(env, reg->live);
 564                verbose(env, "=%s", reg_type_str[t]);
 565                if (t == SCALAR_VALUE && reg->precise)
 566                        verbose(env, "P");
 567                if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
 568                    tnum_is_const(reg->var_off)) {
 569                        /* reg->off should be 0 for SCALAR_VALUE */
 570                        verbose(env, "%lld", reg->var_off.value + reg->off);
 571                } else {
 572                        if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL)
 573                                verbose(env, "%s", kernel_type_name(reg->btf_id));
 574                        verbose(env, "(id=%d", reg->id);
 575                        if (reg_type_may_be_refcounted_or_null(t))
 576                                verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
 577                        if (t != SCALAR_VALUE)
 578                                verbose(env, ",off=%d", reg->off);
 579                        if (type_is_pkt_pointer(t))
 580                                verbose(env, ",r=%d", reg->range);
 581                        else if (t == CONST_PTR_TO_MAP ||
 582                                 t == PTR_TO_MAP_VALUE ||
 583                                 t == PTR_TO_MAP_VALUE_OR_NULL)
 584                                verbose(env, ",ks=%d,vs=%d",
 585                                        reg->map_ptr->key_size,
 586                                        reg->map_ptr->value_size);
 587                        if (tnum_is_const(reg->var_off)) {
 588                                /* Typically an immediate SCALAR_VALUE, but
 589                                 * could be a pointer whose offset is too big
 590                                 * for reg->off
 591                                 */
 592                                verbose(env, ",imm=%llx", reg->var_off.value);
 593                        } else {
 594                                if (reg->smin_value != reg->umin_value &&
 595                                    reg->smin_value != S64_MIN)
 596                                        verbose(env, ",smin_value=%lld",
 597                                                (long long)reg->smin_value);
 598                                if (reg->smax_value != reg->umax_value &&
 599                                    reg->smax_value != S64_MAX)
 600                                        verbose(env, ",smax_value=%lld",
 601                                                (long long)reg->smax_value);
 602                                if (reg->umin_value != 0)
 603                                        verbose(env, ",umin_value=%llu",
 604                                                (unsigned long long)reg->umin_value);
 605                                if (reg->umax_value != U64_MAX)
 606                                        verbose(env, ",umax_value=%llu",
 607                                                (unsigned long long)reg->umax_value);
 608                                if (!tnum_is_unknown(reg->var_off)) {
 609                                        char tn_buf[48];
 610
 611                                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 612                                        verbose(env, ",var_off=%s", tn_buf);
 613                                }
 614                                if (reg->s32_min_value != reg->smin_value &&
 615                                    reg->s32_min_value != S32_MIN)
 616                                        verbose(env, ",s32_min_value=%d",
 617                                                (int)(reg->s32_min_value));
 618                                if (reg->s32_max_value != reg->smax_value &&
 619                                    reg->s32_max_value != S32_MAX)
 620                                        verbose(env, ",s32_max_value=%d",
 621                                                (int)(reg->s32_max_value));
 622                                if (reg->u32_min_value != reg->umin_value &&
 623                                    reg->u32_min_value != U32_MIN)
 624                                        verbose(env, ",u32_min_value=%d",
 625                                                (int)(reg->u32_min_value));
 626                                if (reg->u32_max_value != reg->umax_value &&
 627                                    reg->u32_max_value != U32_MAX)
 628                                        verbose(env, ",u32_max_value=%d",
 629                                                (int)(reg->u32_max_value));
 630                        }
 631                        verbose(env, ")");
 632                }
 633        }
 634        for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
 635                char types_buf[BPF_REG_SIZE + 1];
 636                bool valid = false;
 637                int j;
 638
 639                for (j = 0; j < BPF_REG_SIZE; j++) {
 640                        if (state->stack[i].slot_type[j] != STACK_INVALID)
 641                                valid = true;
 642                        types_buf[j] = slot_type_char[
 643                                        state->stack[i].slot_type[j]];
 644                }
 645                types_buf[BPF_REG_SIZE] = 0;
 646                if (!valid)
 647                        continue;
 648                verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
 649                print_liveness(env, state->stack[i].spilled_ptr.live);
 650                if (state->stack[i].slot_type[0] == STACK_SPILL) {
 651                        reg = &state->stack[i].spilled_ptr;
 652                        t = reg->type;
 653                        verbose(env, "=%s", reg_type_str[t]);
 654                        if (t == SCALAR_VALUE && reg->precise)
 655                                verbose(env, "P");
 656                        if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
 657                                verbose(env, "%lld", reg->var_off.value + reg->off);
 658                } else {
 659                        verbose(env, "=%s", types_buf);
 660                }
 661        }
 662        if (state->acquired_refs && state->refs[0].id) {
 663                verbose(env, " refs=%d", state->refs[0].id);
 664                for (i = 1; i < state->acquired_refs; i++)
 665                        if (state->refs[i].id)
 666                                verbose(env, ",%d", state->refs[i].id);
 667        }
 668        verbose(env, "\n");
 669}
 670
 671#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)                         \
 672static int copy_##NAME##_state(struct bpf_func_state *dst,              \
 673                               const struct bpf_func_state *src)        \
 674{                                                                       \
 675        if (!src->FIELD)                                                \
 676                return 0;                                               \
 677        if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {                    \
 678                /* internal bug, make state invalid to reject the program */ \
 679                memset(dst, 0, sizeof(*dst));                           \
 680                return -EFAULT;                                         \
 681        }                                                               \
 682        memcpy(dst->FIELD, src->FIELD,                                  \
 683               sizeof(*src->FIELD) * (src->COUNT / SIZE));              \
 684        return 0;                                                       \
 685}
 686/* copy_reference_state() */
 687COPY_STATE_FN(reference, acquired_refs, refs, 1)
 688/* copy_stack_state() */
 689COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
 690#undef COPY_STATE_FN
 691
 692#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)                      \
 693static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
 694                                  bool copy_old)                        \
 695{                                                                       \
 696        u32 old_size = state->COUNT;                                    \
 697        struct bpf_##NAME##_state *new_##FIELD;                         \
 698        int slot = size / SIZE;                                         \
 699                                                                        \
 700        if (size <= old_size || !size) {                                \
 701                if (copy_old)                                           \
 702                        return 0;                                       \
 703                state->COUNT = slot * SIZE;                             \
 704                if (!size && old_size) {                                \
 705                        kfree(state->FIELD);                            \
 706                        state->FIELD = NULL;                            \
 707                }                                                       \
 708                return 0;                                               \
 709        }                                                               \
 710        new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
 711                                    GFP_KERNEL);                        \
 712        if (!new_##FIELD)                                               \
 713                return -ENOMEM;                                         \
 714        if (copy_old) {                                                 \
 715                if (state->FIELD)                                       \
 716                        memcpy(new_##FIELD, state->FIELD,               \
 717                               sizeof(*new_##FIELD) * (old_size / SIZE)); \
 718                memset(new_##FIELD + old_size / SIZE, 0,                \
 719                       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
 720        }                                                               \
 721        state->COUNT = slot * SIZE;                                     \
 722        kfree(state->FIELD);                                            \
 723        state->FIELD = new_##FIELD;                                     \
 724        return 0;                                                       \
 725}
 726/* realloc_reference_state() */
 727REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
 728/* realloc_stack_state() */
 729REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
 730#undef REALLOC_STATE_FN
 731
 732/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 733 * make it consume minimal amount of memory. check_stack_write() access from
 734 * the program calls into realloc_func_state() to grow the stack size.
 735 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 736 * which realloc_stack_state() copies over. It points to previous
 737 * bpf_verifier_state which is never reallocated.
 738 */
 739static int realloc_func_state(struct bpf_func_state *state, int stack_size,
 740                              int refs_size, bool copy_old)
 741{
 742        int err = realloc_reference_state(state, refs_size, copy_old);
 743        if (err)
 744                return err;
 745        return realloc_stack_state(state, stack_size, copy_old);
 746}
 747
 748/* Acquire a pointer id from the env and update the state->refs to include
 749 * this new pointer reference.
 750 * On success, returns a valid pointer id to associate with the register
 751 * On failure, returns a negative errno.
 752 */
 753static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
 754{
 755        struct bpf_func_state *state = cur_func(env);
 756        int new_ofs = state->acquired_refs;
 757        int id, err;
 758
 759        err = realloc_reference_state(state, state->acquired_refs + 1, true);
 760        if (err)
 761                return err;
 762        id = ++env->id_gen;
 763        state->refs[new_ofs].id = id;
 764        state->refs[new_ofs].insn_idx = insn_idx;
 765
 766        return id;
 767}
 768
 769/* release function corresponding to acquire_reference_state(). Idempotent. */
 770static int release_reference_state(struct bpf_func_state *state, int ptr_id)
 771{
 772        int i, last_idx;
 773
 774        last_idx = state->acquired_refs - 1;
 775        for (i = 0; i < state->acquired_refs; i++) {
 776                if (state->refs[i].id == ptr_id) {
 777                        if (last_idx && i != last_idx)
 778                                memcpy(&state->refs[i], &state->refs[last_idx],
 779                                       sizeof(*state->refs));
 780                        memset(&state->refs[last_idx], 0, sizeof(*state->refs));
 781                        state->acquired_refs--;
 782                        return 0;
 783                }
 784        }
 785        return -EINVAL;
 786}
 787
 788static int transfer_reference_state(struct bpf_func_state *dst,
 789                                    struct bpf_func_state *src)
 790{
 791        int err = realloc_reference_state(dst, src->acquired_refs, false);
 792        if (err)
 793                return err;
 794        err = copy_reference_state(dst, src);
 795        if (err)
 796                return err;
 797        return 0;
 798}
 799
 800static void free_func_state(struct bpf_func_state *state)
 801{
 802        if (!state)
 803                return;
 804        kfree(state->refs);
 805        kfree(state->stack);
 806        kfree(state);
 807}
 808
 809static void clear_jmp_history(struct bpf_verifier_state *state)
 810{
 811        kfree(state->jmp_history);
 812        state->jmp_history = NULL;
 813        state->jmp_history_cnt = 0;
 814}
 815
 816static void free_verifier_state(struct bpf_verifier_state *state,
 817                                bool free_self)
 818{
 819        int i;
 820
 821        for (i = 0; i <= state->curframe; i++) {
 822                free_func_state(state->frame[i]);
 823                state->frame[i] = NULL;
 824        }
 825        clear_jmp_history(state);
 826        if (free_self)
 827                kfree(state);
 828}
 829
 830/* copy verifier state from src to dst growing dst stack space
 831 * when necessary to accommodate larger src stack
 832 */
 833static int copy_func_state(struct bpf_func_state *dst,
 834                           const struct bpf_func_state *src)
 835{
 836        int err;
 837
 838        err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
 839                                 false);
 840        if (err)
 841                return err;
 842        memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
 843        err = copy_reference_state(dst, src);
 844        if (err)
 845                return err;
 846        return copy_stack_state(dst, src);
 847}
 848
 849static int copy_verifier_state(struct bpf_verifier_state *dst_state,
 850                               const struct bpf_verifier_state *src)
 851{
 852        struct bpf_func_state *dst;
 853        u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
 854        int i, err;
 855
 856        if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
 857                kfree(dst_state->jmp_history);
 858                dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
 859                if (!dst_state->jmp_history)
 860                        return -ENOMEM;
 861        }
 862        memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
 863        dst_state->jmp_history_cnt = src->jmp_history_cnt;
 864
 865        /* if dst has more stack frames then src frame, free them */
 866        for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
 867                free_func_state(dst_state->frame[i]);
 868                dst_state->frame[i] = NULL;
 869        }
 870        dst_state->speculative = src->speculative;
 871        dst_state->curframe = src->curframe;
 872        dst_state->active_spin_lock = src->active_spin_lock;
 873        dst_state->branches = src->branches;
 874        dst_state->parent = src->parent;
 875        dst_state->first_insn_idx = src->first_insn_idx;
 876        dst_state->last_insn_idx = src->last_insn_idx;
 877        for (i = 0; i <= src->curframe; i++) {
 878                dst = dst_state->frame[i];
 879                if (!dst) {
 880                        dst = kzalloc(sizeof(*dst), GFP_KERNEL);
 881                        if (!dst)
 882                                return -ENOMEM;
 883                        dst_state->frame[i] = dst;
 884                }
 885                err = copy_func_state(dst, src->frame[i]);
 886                if (err)
 887                        return err;
 888        }
 889        return 0;
 890}
 891
 892static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
 893{
 894        while (st) {
 895                u32 br = --st->branches;
 896
 897                /* WARN_ON(br > 1) technically makes sense here,
 898                 * but see comment in push_stack(), hence:
 899                 */
 900                WARN_ONCE((int)br < 0,
 901                          "BUG update_branch_counts:branches_to_explore=%d\n",
 902                          br);
 903                if (br)
 904                        break;
 905                st = st->parent;
 906        }
 907}
 908
 909static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
 910                     int *insn_idx, bool pop_log)
 911{
 912        struct bpf_verifier_state *cur = env->cur_state;
 913        struct bpf_verifier_stack_elem *elem, *head = env->head;
 914        int err;
 915
 916        if (env->head == NULL)
 917                return -ENOENT;
 918
 919        if (cur) {
 920                err = copy_verifier_state(cur, &head->st);
 921                if (err)
 922                        return err;
 923        }
 924        if (pop_log)
 925                bpf_vlog_reset(&env->log, head->log_pos);
 926        if (insn_idx)
 927                *insn_idx = head->insn_idx;
 928        if (prev_insn_idx)
 929                *prev_insn_idx = head->prev_insn_idx;
 930        elem = head->next;
 931        free_verifier_state(&head->st, false);
 932        kfree(head);
 933        env->head = elem;
 934        env->stack_size--;
 935        return 0;
 936}
 937
 938static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
 939                                             int insn_idx, int prev_insn_idx,
 940                                             bool speculative)
 941{
 942        struct bpf_verifier_state *cur = env->cur_state;
 943        struct bpf_verifier_stack_elem *elem;
 944        int err;
 945
 946        elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
 947        if (!elem)
 948                goto err;
 949
 950        elem->insn_idx = insn_idx;
 951        elem->prev_insn_idx = prev_insn_idx;
 952        elem->next = env->head;
 953        elem->log_pos = env->log.len_used;
 954        env->head = elem;
 955        env->stack_size++;
 956        err = copy_verifier_state(&elem->st, cur);
 957        if (err)
 958                goto err;
 959        elem->st.speculative |= speculative;
 960        if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
 961                verbose(env, "The sequence of %d jumps is too complex.\n",
 962                        env->stack_size);
 963                goto err;
 964        }
 965        if (elem->st.parent) {
 966                ++elem->st.parent->branches;
 967                /* WARN_ON(branches > 2) technically makes sense here,
 968                 * but
 969                 * 1. speculative states will bump 'branches' for non-branch
 970                 * instructions
 971                 * 2. is_state_visited() heuristics may decide not to create
 972                 * a new state for a sequence of branches and all such current
 973                 * and cloned states will be pointing to a single parent state
 974                 * which might have large 'branches' count.
 975                 */
 976        }
 977        return &elem->st;
 978err:
 979        free_verifier_state(env->cur_state, true);
 980        env->cur_state = NULL;
 981        /* pop all elements and return */
 982        while (!pop_stack(env, NULL, NULL, false));
 983        return NULL;
 984}
 985
 986#define CALLER_SAVED_REGS 6
 987static const int caller_saved[CALLER_SAVED_REGS] = {
 988        BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
 989};
 990
 991static void __mark_reg_not_init(const struct bpf_verifier_env *env,
 992                                struct bpf_reg_state *reg);
 993
 994/* Mark the unknown part of a register (variable offset or scalar value) as
 995 * known to have the value @imm.
 996 */
 997static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
 998{
 999        /* Clear id, off, and union(map_ptr, range) */
1000        memset(((u8 *)reg) + sizeof(reg->type), 0,
1001               offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1002        reg->var_off = tnum_const(imm);
1003        reg->smin_value = (s64)imm;
1004        reg->smax_value = (s64)imm;
1005        reg->umin_value = imm;
1006        reg->umax_value = imm;
1007
1008        reg->s32_min_value = (s32)imm;
1009        reg->s32_max_value = (s32)imm;
1010        reg->u32_min_value = (u32)imm;
1011        reg->u32_max_value = (u32)imm;
1012}
1013
1014static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1015{
1016        reg->var_off = tnum_const_subreg(reg->var_off, imm);
1017        reg->s32_min_value = (s32)imm;
1018        reg->s32_max_value = (s32)imm;
1019        reg->u32_min_value = (u32)imm;
1020        reg->u32_max_value = (u32)imm;
1021}
1022
1023/* Mark the 'variable offset' part of a register as zero.  This should be
1024 * used only on registers holding a pointer type.
1025 */
1026static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1027{
1028        __mark_reg_known(reg, 0);
1029}
1030
1031static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1032{
1033        __mark_reg_known(reg, 0);
1034        reg->type = SCALAR_VALUE;
1035}
1036
1037static void mark_reg_known_zero(struct bpf_verifier_env *env,
1038                                struct bpf_reg_state *regs, u32 regno)
1039{
1040        if (WARN_ON(regno >= MAX_BPF_REG)) {
1041                verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1042                /* Something bad happened, let's kill all regs */
1043                for (regno = 0; regno < MAX_BPF_REG; regno++)
1044                        __mark_reg_not_init(env, regs + regno);
1045                return;
1046        }
1047        __mark_reg_known_zero(regs + regno);
1048}
1049
1050static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1051{
1052        return type_is_pkt_pointer(reg->type);
1053}
1054
1055static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1056{
1057        return reg_is_pkt_pointer(reg) ||
1058               reg->type == PTR_TO_PACKET_END;
1059}
1060
1061/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1062static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1063                                    enum bpf_reg_type which)
1064{
1065        /* The register can already have a range from prior markings.
1066         * This is fine as long as it hasn't been advanced from its
1067         * origin.
1068         */
1069        return reg->type == which &&
1070               reg->id == 0 &&
1071               reg->off == 0 &&
1072               tnum_equals_const(reg->var_off, 0);
1073}
1074
1075/* Reset the min/max bounds of a register */
1076static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1077{
1078        reg->smin_value = S64_MIN;
1079        reg->smax_value = S64_MAX;
1080        reg->umin_value = 0;
1081        reg->umax_value = U64_MAX;
1082
1083        reg->s32_min_value = S32_MIN;
1084        reg->s32_max_value = S32_MAX;
1085        reg->u32_min_value = 0;
1086        reg->u32_max_value = U32_MAX;
1087}
1088
1089static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1090{
1091        reg->smin_value = S64_MIN;
1092        reg->smax_value = S64_MAX;
1093        reg->umin_value = 0;
1094        reg->umax_value = U64_MAX;
1095}
1096
1097static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1098{
1099        reg->s32_min_value = S32_MIN;
1100        reg->s32_max_value = S32_MAX;
1101        reg->u32_min_value = 0;
1102        reg->u32_max_value = U32_MAX;
1103}
1104
1105static void __update_reg32_bounds(struct bpf_reg_state *reg)
1106{
1107        struct tnum var32_off = tnum_subreg(reg->var_off);
1108
1109        /* min signed is max(sign bit) | min(other bits) */
1110        reg->s32_min_value = max_t(s32, reg->s32_min_value,
1111                        var32_off.value | (var32_off.mask & S32_MIN));
1112        /* max signed is min(sign bit) | max(other bits) */
1113        reg->s32_max_value = min_t(s32, reg->s32_max_value,
1114                        var32_off.value | (var32_off.mask & S32_MAX));
1115        reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1116        reg->u32_max_value = min(reg->u32_max_value,
1117                                 (u32)(var32_off.value | var32_off.mask));
1118}
1119
1120static void __update_reg64_bounds(struct bpf_reg_state *reg)
1121{
1122        /* min signed is max(sign bit) | min(other bits) */
1123        reg->smin_value = max_t(s64, reg->smin_value,
1124                                reg->var_off.value | (reg->var_off.mask & S64_MIN));
1125        /* max signed is min(sign bit) | max(other bits) */
1126        reg->smax_value = min_t(s64, reg->smax_value,
1127                                reg->var_off.value | (reg->var_off.mask & S64_MAX));
1128        reg->umin_value = max(reg->umin_value, reg->var_off.value);
1129        reg->umax_value = min(reg->umax_value,
1130                              reg->var_off.value | reg->var_off.mask);
1131}
1132
1133static void __update_reg_bounds(struct bpf_reg_state *reg)
1134{
1135        __update_reg32_bounds(reg);
1136        __update_reg64_bounds(reg);
1137}
1138
1139/* Uses signed min/max values to inform unsigned, and vice-versa */
1140static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1141{
1142        /* Learn sign from signed bounds.
1143         * If we cannot cross the sign boundary, then signed and unsigned bounds
1144         * are the same, so combine.  This works even in the negative case, e.g.
1145         * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1146         */
1147        if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1148                reg->s32_min_value = reg->u32_min_value =
1149                        max_t(u32, reg->s32_min_value, reg->u32_min_value);
1150                reg->s32_max_value = reg->u32_max_value =
1151                        min_t(u32, reg->s32_max_value, reg->u32_max_value);
1152                return;
1153        }
1154        /* Learn sign from unsigned bounds.  Signed bounds cross the sign
1155         * boundary, so we must be careful.
1156         */
1157        if ((s32)reg->u32_max_value >= 0) {
1158                /* Positive.  We can't learn anything from the smin, but smax
1159                 * is positive, hence safe.
1160                 */
1161                reg->s32_min_value = reg->u32_min_value;
1162                reg->s32_max_value = reg->u32_max_value =
1163                        min_t(u32, reg->s32_max_value, reg->u32_max_value);
1164        } else if ((s32)reg->u32_min_value < 0) {
1165                /* Negative.  We can't learn anything from the smax, but smin
1166                 * is negative, hence safe.
1167                 */
1168                reg->s32_min_value = reg->u32_min_value =
1169                        max_t(u32, reg->s32_min_value, reg->u32_min_value);
1170                reg->s32_max_value = reg->u32_max_value;
1171        }
1172}
1173
1174static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1175{
1176        /* Learn sign from signed bounds.
1177         * If we cannot cross the sign boundary, then signed and unsigned bounds
1178         * are the same, so combine.  This works even in the negative case, e.g.
1179         * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1180         */
1181        if (reg->smin_value >= 0 || reg->smax_value < 0) {
1182                reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1183                                                          reg->umin_value);
1184                reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1185                                                          reg->umax_value);
1186                return;
1187        }
1188        /* Learn sign from unsigned bounds.  Signed bounds cross the sign
1189         * boundary, so we must be careful.
1190         */
1191        if ((s64)reg->umax_value >= 0) {
1192                /* Positive.  We can't learn anything from the smin, but smax
1193                 * is positive, hence safe.
1194                 */
1195                reg->smin_value = reg->umin_value;
1196                reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1197                                                          reg->umax_value);
1198        } else if ((s64)reg->umin_value < 0) {
1199                /* Negative.  We can't learn anything from the smax, but smin
1200                 * is negative, hence safe.
1201                 */
1202                reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1203                                                          reg->umin_value);
1204                reg->smax_value = reg->umax_value;
1205        }
1206}
1207
1208static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1209{
1210        __reg32_deduce_bounds(reg);
1211        __reg64_deduce_bounds(reg);
1212}
1213
1214/* Attempts to improve var_off based on unsigned min/max information */
1215static void __reg_bound_offset(struct bpf_reg_state *reg)
1216{
1217        struct tnum var64_off = tnum_intersect(reg->var_off,
1218                                               tnum_range(reg->umin_value,
1219                                                          reg->umax_value));
1220        struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1221                                                tnum_range(reg->u32_min_value,
1222                                                           reg->u32_max_value));
1223
1224        reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1225}
1226
1227static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1228{
1229        reg->umin_value = reg->u32_min_value;
1230        reg->umax_value = reg->u32_max_value;
1231        /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1232         * but must be positive otherwise set to worse case bounds
1233         * and refine later from tnum.
1234         */
1235        if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1236                reg->smax_value = reg->s32_max_value;
1237        else
1238                reg->smax_value = U32_MAX;
1239        if (reg->s32_min_value >= 0)
1240                reg->smin_value = reg->s32_min_value;
1241        else
1242                reg->smin_value = 0;
1243}
1244
1245static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1246{
1247        /* special case when 64-bit register has upper 32-bit register
1248         * zeroed. Typically happens after zext or <<32, >>32 sequence
1249         * allowing us to use 32-bit bounds directly,
1250         */
1251        if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1252                __reg_assign_32_into_64(reg);
1253        } else {
1254                /* Otherwise the best we can do is push lower 32bit known and
1255                 * unknown bits into register (var_off set from jmp logic)
1256                 * then learn as much as possible from the 64-bit tnum
1257                 * known and unknown bits. The previous smin/smax bounds are
1258                 * invalid here because of jmp32 compare so mark them unknown
1259                 * so they do not impact tnum bounds calculation.
1260                 */
1261                __mark_reg64_unbounded(reg);
1262                __update_reg_bounds(reg);
1263        }
1264
1265        /* Intersecting with the old var_off might have improved our bounds
1266         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1267         * then new var_off is (0; 0x7f...fc) which improves our umax.
1268         */
1269        __reg_deduce_bounds(reg);
1270        __reg_bound_offset(reg);
1271        __update_reg_bounds(reg);
1272}
1273
1274static bool __reg64_bound_s32(s64 a)
1275{
1276        if (a > S32_MIN && a < S32_MAX)
1277                return true;
1278        return false;
1279}
1280
1281static bool __reg64_bound_u32(u64 a)
1282{
1283        if (a > U32_MIN && a < U32_MAX)
1284                return true;
1285        return false;
1286}
1287
1288static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1289{
1290        __mark_reg32_unbounded(reg);
1291
1292        if (__reg64_bound_s32(reg->smin_value))
1293                reg->s32_min_value = (s32)reg->smin_value;
1294        if (__reg64_bound_s32(reg->smax_value))
1295                reg->s32_max_value = (s32)reg->smax_value;
1296        if (__reg64_bound_u32(reg->umin_value))
1297                reg->u32_min_value = (u32)reg->umin_value;
1298        if (__reg64_bound_u32(reg->umax_value))
1299                reg->u32_max_value = (u32)reg->umax_value;
1300
1301        /* Intersecting with the old var_off might have improved our bounds
1302         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1303         * then new var_off is (0; 0x7f...fc) which improves our umax.
1304         */
1305        __reg_deduce_bounds(reg);
1306        __reg_bound_offset(reg);
1307        __update_reg_bounds(reg);
1308}
1309
1310/* Mark a register as having a completely unknown (scalar) value. */
1311static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1312                               struct bpf_reg_state *reg)
1313{
1314        /*
1315         * Clear type, id, off, and union(map_ptr, range) and
1316         * padding between 'type' and union
1317         */
1318        memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1319        reg->type = SCALAR_VALUE;
1320        reg->var_off = tnum_unknown;
1321        reg->frameno = 0;
1322        reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1323        __mark_reg_unbounded(reg);
1324}
1325
1326static void mark_reg_unknown(struct bpf_verifier_env *env,
1327                             struct bpf_reg_state *regs, u32 regno)
1328{
1329        if (WARN_ON(regno >= MAX_BPF_REG)) {
1330                verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1331                /* Something bad happened, let's kill all regs except FP */
1332                for (regno = 0; regno < BPF_REG_FP; regno++)
1333                        __mark_reg_not_init(env, regs + regno);
1334                return;
1335        }
1336        __mark_reg_unknown(env, regs + regno);
1337}
1338
1339static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1340                                struct bpf_reg_state *reg)
1341{
1342        __mark_reg_unknown(env, reg);
1343        reg->type = NOT_INIT;
1344}
1345
1346static void mark_reg_not_init(struct bpf_verifier_env *env,
1347                              struct bpf_reg_state *regs, u32 regno)
1348{
1349        if (WARN_ON(regno >= MAX_BPF_REG)) {
1350                verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1351                /* Something bad happened, let's kill all regs except FP */
1352                for (regno = 0; regno < BPF_REG_FP; regno++)
1353                        __mark_reg_not_init(env, regs + regno);
1354                return;
1355        }
1356        __mark_reg_not_init(env, regs + regno);
1357}
1358
1359static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1360                            struct bpf_reg_state *regs, u32 regno,
1361                            enum bpf_reg_type reg_type, u32 btf_id)
1362{
1363        if (reg_type == SCALAR_VALUE) {
1364                mark_reg_unknown(env, regs, regno);
1365                return;
1366        }
1367        mark_reg_known_zero(env, regs, regno);
1368        regs[regno].type = PTR_TO_BTF_ID;
1369        regs[regno].btf_id = btf_id;
1370}
1371
1372#define DEF_NOT_SUBREG  (0)
1373static void init_reg_state(struct bpf_verifier_env *env,
1374                           struct bpf_func_state *state)
1375{
1376        struct bpf_reg_state *regs = state->regs;
1377        int i;
1378
1379        for (i = 0; i < MAX_BPF_REG; i++) {
1380                mark_reg_not_init(env, regs, i);
1381                regs[i].live = REG_LIVE_NONE;
1382                regs[i].parent = NULL;
1383                regs[i].subreg_def = DEF_NOT_SUBREG;
1384        }
1385
1386        /* frame pointer */
1387        regs[BPF_REG_FP].type = PTR_TO_STACK;
1388        mark_reg_known_zero(env, regs, BPF_REG_FP);
1389        regs[BPF_REG_FP].frameno = state->frameno;
1390}
1391
1392#define BPF_MAIN_FUNC (-1)
1393static void init_func_state(struct bpf_verifier_env *env,
1394                            struct bpf_func_state *state,
1395                            int callsite, int frameno, int subprogno)
1396{
1397        state->callsite = callsite;
1398        state->frameno = frameno;
1399        state->subprogno = subprogno;
1400        init_reg_state(env, state);
1401}
1402
1403enum reg_arg_type {
1404        SRC_OP,         /* register is used as source operand */
1405        DST_OP,         /* register is used as destination operand */
1406        DST_OP_NO_MARK  /* same as above, check only, don't mark */
1407};
1408
1409static int cmp_subprogs(const void *a, const void *b)
1410{
1411        return ((struct bpf_subprog_info *)a)->start -
1412               ((struct bpf_subprog_info *)b)->start;
1413}
1414
1415static int find_subprog(struct bpf_verifier_env *env, int off)
1416{
1417        struct bpf_subprog_info *p;
1418
1419        p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1420                    sizeof(env->subprog_info[0]), cmp_subprogs);
1421        if (!p)
1422                return -ENOENT;
1423        return p - env->subprog_info;
1424
1425}
1426
1427static int add_subprog(struct bpf_verifier_env *env, int off)
1428{
1429        int insn_cnt = env->prog->len;
1430        int ret;
1431
1432        if (off >= insn_cnt || off < 0) {
1433                verbose(env, "call to invalid destination\n");
1434                return -EINVAL;
1435        }
1436        ret = find_subprog(env, off);
1437        if (ret >= 0)
1438                return 0;
1439        if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1440                verbose(env, "too many subprograms\n");
1441                return -E2BIG;
1442        }
1443        env->subprog_info[env->subprog_cnt++].start = off;
1444        sort(env->subprog_info, env->subprog_cnt,
1445             sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1446        return 0;
1447}
1448
1449static int check_subprogs(struct bpf_verifier_env *env)
1450{
1451        int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1452        struct bpf_subprog_info *subprog = env->subprog_info;
1453        struct bpf_insn *insn = env->prog->insnsi;
1454        int insn_cnt = env->prog->len;
1455
1456        /* Add entry function. */
1457        ret = add_subprog(env, 0);
1458        if (ret < 0)
1459                return ret;
1460
1461        /* determine subprog starts. The end is one before the next starts */
1462        for (i = 0; i < insn_cnt; i++) {
1463                if (insn[i].code != (BPF_JMP | BPF_CALL))
1464                        continue;
1465                if (insn[i].src_reg != BPF_PSEUDO_CALL)
1466                        continue;
1467                if (!env->bpf_capable) {
1468                        verbose(env,
1469                                "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1470                        return -EPERM;
1471                }
1472                ret = add_subprog(env, i + insn[i].imm + 1);
1473                if (ret < 0)
1474                        return ret;
1475        }
1476
1477        /* Add a fake 'exit' subprog which could simplify subprog iteration
1478         * logic. 'subprog_cnt' should not be increased.
1479         */
1480        subprog[env->subprog_cnt].start = insn_cnt;
1481
1482        if (env->log.level & BPF_LOG_LEVEL2)
1483                for (i = 0; i < env->subprog_cnt; i++)
1484                        verbose(env, "func#%d @%d\n", i, subprog[i].start);
1485
1486        /* now check that all jumps are within the same subprog */
1487        subprog_start = subprog[cur_subprog].start;
1488        subprog_end = subprog[cur_subprog + 1].start;
1489        for (i = 0; i < insn_cnt; i++) {
1490                u8 code = insn[i].code;
1491
1492                if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1493                        goto next;
1494                if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1495                        goto next;
1496                off = i + insn[i].off + 1;
1497                if (off < subprog_start || off >= subprog_end) {
1498                        verbose(env, "jump out of range from insn %d to %d\n", i, off);
1499                        return -EINVAL;
1500                }
1501next:
1502                if (i == subprog_end - 1) {
1503                        /* to avoid fall-through from one subprog into another
1504                         * the last insn of the subprog should be either exit
1505                         * or unconditional jump back
1506                         */
1507                        if (code != (BPF_JMP | BPF_EXIT) &&
1508                            code != (BPF_JMP | BPF_JA)) {
1509                                verbose(env, "last insn is not an exit or jmp\n");
1510                                return -EINVAL;
1511                        }
1512                        subprog_start = subprog_end;
1513                        cur_subprog++;
1514                        if (cur_subprog < env->subprog_cnt)
1515                                subprog_end = subprog[cur_subprog + 1].start;
1516                }
1517        }
1518        return 0;
1519}
1520
1521/* Parentage chain of this register (or stack slot) should take care of all
1522 * issues like callee-saved registers, stack slot allocation time, etc.
1523 */
1524static int mark_reg_read(struct bpf_verifier_env *env,
1525                         const struct bpf_reg_state *state,
1526                         struct bpf_reg_state *parent, u8 flag)
1527{
1528        bool writes = parent == state->parent; /* Observe write marks */
1529        int cnt = 0;
1530
1531        while (parent) {
1532                /* if read wasn't screened by an earlier write ... */
1533                if (writes && state->live & REG_LIVE_WRITTEN)
1534                        break;
1535                if (parent->live & REG_LIVE_DONE) {
1536                        verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1537                                reg_type_str[parent->type],
1538                                parent->var_off.value, parent->off);
1539                        return -EFAULT;
1540                }
1541                /* The first condition is more likely to be true than the
1542                 * second, checked it first.
1543                 */
1544                if ((parent->live & REG_LIVE_READ) == flag ||
1545                    parent->live & REG_LIVE_READ64)
1546                        /* The parentage chain never changes and
1547                         * this parent was already marked as LIVE_READ.
1548                         * There is no need to keep walking the chain again and
1549                         * keep re-marking all parents as LIVE_READ.
1550                         * This case happens when the same register is read
1551                         * multiple times without writes into it in-between.
1552                         * Also, if parent has the stronger REG_LIVE_READ64 set,
1553                         * then no need to set the weak REG_LIVE_READ32.
1554                         */
1555                        break;
1556                /* ... then we depend on parent's value */
1557                parent->live |= flag;
1558                /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1559                if (flag == REG_LIVE_READ64)
1560                        parent->live &= ~REG_LIVE_READ32;
1561                state = parent;
1562                parent = state->parent;
1563                writes = true;
1564                cnt++;
1565        }
1566
1567        if (env->longest_mark_read_walk < cnt)
1568                env->longest_mark_read_walk = cnt;
1569        return 0;
1570}
1571
1572/* This function is supposed to be used by the following 32-bit optimization
1573 * code only. It returns TRUE if the source or destination register operates
1574 * on 64-bit, otherwise return FALSE.
1575 */
1576static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1577                     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1578{
1579        u8 code, class, op;
1580
1581        code = insn->code;
1582        class = BPF_CLASS(code);
1583        op = BPF_OP(code);
1584        if (class == BPF_JMP) {
1585                /* BPF_EXIT for "main" will reach here. Return TRUE
1586                 * conservatively.
1587                 */
1588                if (op == BPF_EXIT)
1589                        return true;
1590                if (op == BPF_CALL) {
1591                        /* BPF to BPF call will reach here because of marking
1592                         * caller saved clobber with DST_OP_NO_MARK for which we
1593                         * don't care the register def because they are anyway
1594                         * marked as NOT_INIT already.
1595                         */
1596                        if (insn->src_reg == BPF_PSEUDO_CALL)
1597                                return false;
1598                        /* Helper call will reach here because of arg type
1599                         * check, conservatively return TRUE.
1600                         */
1601                        if (t == SRC_OP)
1602                                return true;
1603
1604                        return false;
1605                }
1606        }
1607
1608        if (class == BPF_ALU64 || class == BPF_JMP ||
1609            /* BPF_END always use BPF_ALU class. */
1610            (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1611                return true;
1612
1613        if (class == BPF_ALU || class == BPF_JMP32)
1614                return false;
1615
1616        if (class == BPF_LDX) {
1617                if (t != SRC_OP)
1618                        return BPF_SIZE(code) == BPF_DW;
1619                /* LDX source must be ptr. */
1620                return true;
1621        }
1622
1623        if (class == BPF_STX) {
1624                if (reg->type != SCALAR_VALUE)
1625                        return true;
1626                return BPF_SIZE(code) == BPF_DW;
1627        }
1628
1629        if (class == BPF_LD) {
1630                u8 mode = BPF_MODE(code);
1631
1632                /* LD_IMM64 */
1633                if (mode == BPF_IMM)
1634                        return true;
1635
1636                /* Both LD_IND and LD_ABS return 32-bit data. */
1637                if (t != SRC_OP)
1638                        return  false;
1639
1640                /* Implicit ctx ptr. */
1641                if (regno == BPF_REG_6)
1642                        return true;
1643
1644                /* Explicit source could be any width. */
1645                return true;
1646        }
1647
1648        if (class == BPF_ST)
1649                /* The only source register for BPF_ST is a ptr. */
1650                return true;
1651
1652        /* Conservatively return true at default. */
1653        return true;
1654}
1655
1656/* Return TRUE if INSN doesn't have explicit value define. */
1657static bool insn_no_def(struct bpf_insn *insn)
1658{
1659        u8 class = BPF_CLASS(insn->code);
1660
1661        return (class == BPF_JMP || class == BPF_JMP32 ||
1662                class == BPF_STX || class == BPF_ST);
1663}
1664
1665/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1666static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1667{
1668        if (insn_no_def(insn))
1669                return false;
1670
1671        return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1672}
1673
1674static void mark_insn_zext(struct bpf_verifier_env *env,
1675                           struct bpf_reg_state *reg)
1676{
1677        s32 def_idx = reg->subreg_def;
1678
1679        if (def_idx == DEF_NOT_SUBREG)
1680                return;
1681
1682        env->insn_aux_data[def_idx - 1].zext_dst = true;
1683        /* The dst will be zero extended, so won't be sub-register anymore. */
1684        reg->subreg_def = DEF_NOT_SUBREG;
1685}
1686
1687static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1688                         enum reg_arg_type t)
1689{
1690        struct bpf_verifier_state *vstate = env->cur_state;
1691        struct bpf_func_state *state = vstate->frame[vstate->curframe];
1692        struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1693        struct bpf_reg_state *reg, *regs = state->regs;
1694        bool rw64;
1695
1696        if (regno >= MAX_BPF_REG) {
1697                verbose(env, "R%d is invalid\n", regno);
1698                return -EINVAL;
1699        }
1700
1701        reg = &regs[regno];
1702        rw64 = is_reg64(env, insn, regno, reg, t);
1703        if (t == SRC_OP) {
1704                /* check whether register used as source operand can be read */
1705                if (reg->type == NOT_INIT) {
1706                        verbose(env, "R%d !read_ok\n", regno);
1707                        return -EACCES;
1708                }
1709                /* We don't need to worry about FP liveness because it's read-only */
1710                if (regno == BPF_REG_FP)
1711                        return 0;
1712
1713                if (rw64)
1714                        mark_insn_zext(env, reg);
1715
1716                return mark_reg_read(env, reg, reg->parent,
1717                                     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1718        } else {
1719                /* check whether register used as dest operand can be written to */
1720                if (regno == BPF_REG_FP) {
1721                        verbose(env, "frame pointer is read only\n");
1722                        return -EACCES;
1723                }
1724                reg->live |= REG_LIVE_WRITTEN;
1725                reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1726                if (t == DST_OP)
1727                        mark_reg_unknown(env, regs, regno);
1728        }
1729        return 0;
1730}
1731
1732/* for any branch, call, exit record the history of jmps in the given state */
1733static int push_jmp_history(struct bpf_verifier_env *env,
1734                            struct bpf_verifier_state *cur)
1735{
1736        u32 cnt = cur->jmp_history_cnt;
1737        struct bpf_idx_pair *p;
1738
1739        cnt++;
1740        p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1741        if (!p)
1742                return -ENOMEM;
1743        p[cnt - 1].idx = env->insn_idx;
1744        p[cnt - 1].prev_idx = env->prev_insn_idx;
1745        cur->jmp_history = p;
1746        cur->jmp_history_cnt = cnt;
1747        return 0;
1748}
1749
1750/* Backtrack one insn at a time. If idx is not at the top of recorded
1751 * history then previous instruction came from straight line execution.
1752 */
1753static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1754                             u32 *history)
1755{
1756        u32 cnt = *history;
1757
1758        if (cnt && st->jmp_history[cnt - 1].idx == i) {
1759                i = st->jmp_history[cnt - 1].prev_idx;
1760                (*history)--;
1761        } else {
1762                i--;
1763        }
1764        return i;
1765}
1766
1767/* For given verifier state backtrack_insn() is called from the last insn to
1768 * the first insn. Its purpose is to compute a bitmask of registers and
1769 * stack slots that needs precision in the parent verifier state.
1770 */
1771static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1772                          u32 *reg_mask, u64 *stack_mask)
1773{
1774        const struct bpf_insn_cbs cbs = {
1775                .cb_print       = verbose,
1776                .private_data   = env,
1777        };
1778        struct bpf_insn *insn = env->prog->insnsi + idx;
1779        u8 class = BPF_CLASS(insn->code);
1780        u8 opcode = BPF_OP(insn->code);
1781        u8 mode = BPF_MODE(insn->code);
1782        u32 dreg = 1u << insn->dst_reg;
1783        u32 sreg = 1u << insn->src_reg;
1784        u32 spi;
1785
1786        if (insn->code == 0)
1787                return 0;
1788        if (env->log.level & BPF_LOG_LEVEL) {
1789                verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1790                verbose(env, "%d: ", idx);
1791                print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1792        }
1793
1794        if (class == BPF_ALU || class == BPF_ALU64) {
1795                if (!(*reg_mask & dreg))
1796                        return 0;
1797                if (opcode == BPF_MOV) {
1798                        if (BPF_SRC(insn->code) == BPF_X) {
1799                                /* dreg = sreg
1800                                 * dreg needs precision after this insn
1801                                 * sreg needs precision before this insn
1802                                 */
1803                                *reg_mask &= ~dreg;
1804                                *reg_mask |= sreg;
1805                        } else {
1806                                /* dreg = K
1807                                 * dreg needs precision after this insn.
1808                                 * Corresponding register is already marked
1809                                 * as precise=true in this verifier state.
1810                                 * No further markings in parent are necessary
1811                                 */
1812                                *reg_mask &= ~dreg;
1813                        }
1814                } else {
1815                        if (BPF_SRC(insn->code) == BPF_X) {
1816                                /* dreg += sreg
1817                                 * both dreg and sreg need precision
1818                                 * before this insn
1819                                 */
1820                                *reg_mask |= sreg;
1821                        } /* else dreg += K
1822                           * dreg still needs precision before this insn
1823                           */
1824                }
1825        } else if (class == BPF_LDX) {
1826                if (!(*reg_mask & dreg))
1827                        return 0;
1828                *reg_mask &= ~dreg;
1829
1830                /* scalars can only be spilled into stack w/o losing precision.
1831                 * Load from any other memory can be zero extended.
1832                 * The desire to keep that precision is already indicated
1833                 * by 'precise' mark in corresponding register of this state.
1834                 * No further tracking necessary.
1835                 */
1836                if (insn->src_reg != BPF_REG_FP)
1837                        return 0;
1838                if (BPF_SIZE(insn->code) != BPF_DW)
1839                        return 0;
1840
1841                /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1842                 * that [fp - off] slot contains scalar that needs to be
1843                 * tracked with precision
1844                 */
1845                spi = (-insn->off - 1) / BPF_REG_SIZE;
1846                if (spi >= 64) {
1847                        verbose(env, "BUG spi %d\n", spi);
1848                        WARN_ONCE(1, "verifier backtracking bug");
1849                        return -EFAULT;
1850                }
1851                *stack_mask |= 1ull << spi;
1852        } else if (class == BPF_STX || class == BPF_ST) {
1853                if (*reg_mask & dreg)
1854                        /* stx & st shouldn't be using _scalar_ dst_reg
1855                         * to access memory. It means backtracking
1856                         * encountered a case of pointer subtraction.
1857                         */
1858                        return -ENOTSUPP;
1859                /* scalars can only be spilled into stack */
1860                if (insn->dst_reg != BPF_REG_FP)
1861                        return 0;
1862                if (BPF_SIZE(insn->code) != BPF_DW)
1863                        return 0;
1864                spi = (-insn->off - 1) / BPF_REG_SIZE;
1865                if (spi >= 64) {
1866                        verbose(env, "BUG spi %d\n", spi);
1867                        WARN_ONCE(1, "verifier backtracking bug");
1868                        return -EFAULT;
1869                }
1870                if (!(*stack_mask & (1ull << spi)))
1871                        return 0;
1872                *stack_mask &= ~(1ull << spi);
1873                if (class == BPF_STX)
1874                        *reg_mask |= sreg;
1875        } else if (class == BPF_JMP || class == BPF_JMP32) {
1876                if (opcode == BPF_CALL) {
1877                        if (insn->src_reg == BPF_PSEUDO_CALL)
1878                                return -ENOTSUPP;
1879                        /* regular helper call sets R0 */
1880                        *reg_mask &= ~1;
1881                        if (*reg_mask & 0x3f) {
1882                                /* if backtracing was looking for registers R1-R5
1883                                 * they should have been found already.
1884                                 */
1885                                verbose(env, "BUG regs %x\n", *reg_mask);
1886                                WARN_ONCE(1, "verifier backtracking bug");
1887                                return -EFAULT;
1888                        }
1889                } else if (opcode == BPF_EXIT) {
1890                        return -ENOTSUPP;
1891                }
1892        } else if (class == BPF_LD) {
1893                if (!(*reg_mask & dreg))
1894                        return 0;
1895                *reg_mask &= ~dreg;
1896                /* It's ld_imm64 or ld_abs or ld_ind.
1897                 * For ld_imm64 no further tracking of precision
1898                 * into parent is necessary
1899                 */
1900                if (mode == BPF_IND || mode == BPF_ABS)
1901                        /* to be analyzed */
1902                        return -ENOTSUPP;
1903        }
1904        return 0;
1905}
1906
1907/* the scalar precision tracking algorithm:
1908 * . at the start all registers have precise=false.
1909 * . scalar ranges are tracked as normal through alu and jmp insns.
1910 * . once precise value of the scalar register is used in:
1911 *   .  ptr + scalar alu
1912 *   . if (scalar cond K|scalar)
1913 *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1914 *   backtrack through the verifier states and mark all registers and
1915 *   stack slots with spilled constants that these scalar regisers
1916 *   should be precise.
1917 * . during state pruning two registers (or spilled stack slots)
1918 *   are equivalent if both are not precise.
1919 *
1920 * Note the verifier cannot simply walk register parentage chain,
1921 * since many different registers and stack slots could have been
1922 * used to compute single precise scalar.
1923 *
1924 * The approach of starting with precise=true for all registers and then
1925 * backtrack to mark a register as not precise when the verifier detects
1926 * that program doesn't care about specific value (e.g., when helper
1927 * takes register as ARG_ANYTHING parameter) is not safe.
1928 *
1929 * It's ok to walk single parentage chain of the verifier states.
1930 * It's possible that this backtracking will go all the way till 1st insn.
1931 * All other branches will be explored for needing precision later.
1932 *
1933 * The backtracking needs to deal with cases like:
1934 *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1935 * r9 -= r8
1936 * r5 = r9
1937 * if r5 > 0x79f goto pc+7
1938 *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1939 * r5 += 1
1940 * ...
1941 * call bpf_perf_event_output#25
1942 *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1943 *
1944 * and this case:
1945 * r6 = 1
1946 * call foo // uses callee's r6 inside to compute r0
1947 * r0 += r6
1948 * if r0 == 0 goto
1949 *
1950 * to track above reg_mask/stack_mask needs to be independent for each frame.
1951 *
1952 * Also if parent's curframe > frame where backtracking started,
1953 * the verifier need to mark registers in both frames, otherwise callees
1954 * may incorrectly prune callers. This is similar to
1955 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1956 *
1957 * For now backtracking falls back into conservative marking.
1958 */
1959static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1960                                     struct bpf_verifier_state *st)
1961{
1962        struct bpf_func_state *func;
1963        struct bpf_reg_state *reg;
1964        int i, j;
1965
1966        /* big hammer: mark all scalars precise in this path.
1967         * pop_stack may still get !precise scalars.
1968         */
1969        for (; st; st = st->parent)
1970                for (i = 0; i <= st->curframe; i++) {
1971                        func = st->frame[i];
1972                        for (j = 0; j < BPF_REG_FP; j++) {
1973                                reg = &func->regs[j];
1974                                if (reg->type != SCALAR_VALUE)
1975                                        continue;
1976                                reg->precise = true;
1977                        }
1978                        for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1979                                if (func->stack[j].slot_type[0] != STACK_SPILL)
1980                                        continue;
1981                                reg = &func->stack[j].spilled_ptr;
1982                                if (reg->type != SCALAR_VALUE)
1983                                        continue;
1984                                reg->precise = true;
1985                        }
1986                }
1987}
1988
1989static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1990                                  int spi)
1991{
1992        struct bpf_verifier_state *st = env->cur_state;
1993        int first_idx = st->first_insn_idx;
1994        int last_idx = env->insn_idx;
1995        struct bpf_func_state *func;
1996        struct bpf_reg_state *reg;
1997        u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1998        u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1999        bool skip_first = true;
2000        bool new_marks = false;
2001        int i, err;
2002
2003        if (!env->bpf_capable)
2004                return 0;
2005
2006        func = st->frame[st->curframe];
2007        if (regno >= 0) {
2008                reg = &func->regs[regno];
2009                if (reg->type != SCALAR_VALUE) {
2010                        WARN_ONCE(1, "backtracing misuse");
2011                        return -EFAULT;
2012                }
2013                if (!reg->precise)
2014                        new_marks = true;
2015                else
2016                        reg_mask = 0;
2017                reg->precise = true;
2018        }
2019
2020        while (spi >= 0) {
2021                if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2022                        stack_mask = 0;
2023                        break;
2024                }
2025                reg = &func->stack[spi].spilled_ptr;
2026                if (reg->type != SCALAR_VALUE) {
2027                        stack_mask = 0;
2028                        break;
2029                }
2030                if (!reg->precise)
2031                        new_marks = true;
2032                else
2033                        stack_mask = 0;
2034                reg->precise = true;
2035                break;
2036        }
2037
2038        if (!new_marks)
2039                return 0;
2040        if (!reg_mask && !stack_mask)
2041                return 0;
2042        for (;;) {
2043                DECLARE_BITMAP(mask, 64);
2044                u32 history = st->jmp_history_cnt;
2045
2046                if (env->log.level & BPF_LOG_LEVEL)
2047                        verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2048                for (i = last_idx;;) {
2049                        if (skip_first) {
2050                                err = 0;
2051                                skip_first = false;
2052                        } else {
2053                                err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2054                        }
2055                        if (err == -ENOTSUPP) {
2056                                mark_all_scalars_precise(env, st);
2057                                return 0;
2058                        } else if (err) {
2059                                return err;
2060                        }
2061                        if (!reg_mask && !stack_mask)
2062                                /* Found assignment(s) into tracked register in this state.
2063                                 * Since this state is already marked, just return.
2064                                 * Nothing to be tracked further in the parent state.
2065                                 */
2066                                return 0;
2067                        if (i == first_idx)
2068                                break;
2069                        i = get_prev_insn_idx(st, i, &history);
2070                        if (i >= env->prog->len) {
2071                                /* This can happen if backtracking reached insn 0
2072                                 * and there are still reg_mask or stack_mask
2073                                 * to backtrack.
2074                                 * It means the backtracking missed the spot where
2075                                 * particular register was initialized with a constant.
2076                                 */
2077                                verbose(env, "BUG backtracking idx %d\n", i);
2078                                WARN_ONCE(1, "verifier backtracking bug");
2079                                return -EFAULT;
2080                        }
2081                }
2082                st = st->parent;
2083                if (!st)
2084                        break;
2085
2086                new_marks = false;
2087                func = st->frame[st->curframe];
2088                bitmap_from_u64(mask, reg_mask);
2089                for_each_set_bit(i, mask, 32) {
2090                        reg = &func->regs[i];
2091                        if (reg->type != SCALAR_VALUE) {
2092                                reg_mask &= ~(1u << i);
2093                                continue;
2094                        }
2095                        if (!reg->precise)
2096                                new_marks = true;
2097                        reg->precise = true;
2098                }
2099
2100                bitmap_from_u64(mask, stack_mask);
2101                for_each_set_bit(i, mask, 64) {
2102                        if (i >= func->allocated_stack / BPF_REG_SIZE) {
2103                                /* the sequence of instructions:
2104                                 * 2: (bf) r3 = r10
2105                                 * 3: (7b) *(u64 *)(r3 -8) = r0
2106                                 * 4: (79) r4 = *(u64 *)(r10 -8)
2107                                 * doesn't contain jmps. It's backtracked
2108                                 * as a single block.
2109                                 * During backtracking insn 3 is not recognized as
2110                                 * stack access, so at the end of backtracking
2111                                 * stack slot fp-8 is still marked in stack_mask.
2112                                 * However the parent state may not have accessed
2113                                 * fp-8 and it's "unallocated" stack space.
2114                                 * In such case fallback to conservative.
2115                                 */
2116                                mark_all_scalars_precise(env, st);
2117                                return 0;
2118                        }
2119
2120                        if (func->stack[i].slot_type[0] != STACK_SPILL) {
2121                                stack_mask &= ~(1ull << i);
2122                                continue;
2123                        }
2124                        reg = &func->stack[i].spilled_ptr;
2125                        if (reg->type != SCALAR_VALUE) {
2126                                stack_mask &= ~(1ull << i);
2127                                continue;
2128                        }
2129                        if (!reg->precise)
2130                                new_marks = true;
2131                        reg->precise = true;
2132                }
2133                if (env->log.level & BPF_LOG_LEVEL) {
2134                        print_verifier_state(env, func);
2135                        verbose(env, "parent %s regs=%x stack=%llx marks\n",
2136                                new_marks ? "didn't have" : "already had",
2137                                reg_mask, stack_mask);
2138                }
2139
2140                if (!reg_mask && !stack_mask)
2141                        break;
2142                if (!new_marks)
2143                        break;
2144
2145                last_idx = st->last_insn_idx;
2146                first_idx = st->first_insn_idx;
2147        }
2148        return 0;
2149}
2150
2151static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2152{
2153        return __mark_chain_precision(env, regno, -1);
2154}
2155
2156static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2157{
2158        return __mark_chain_precision(env, -1, spi);
2159}
2160
2161static bool is_spillable_regtype(enum bpf_reg_type type)
2162{
2163        switch (type) {
2164        case PTR_TO_MAP_VALUE:
2165        case PTR_TO_MAP_VALUE_OR_NULL:
2166        case PTR_TO_STACK:
2167        case PTR_TO_CTX:
2168        case PTR_TO_PACKET:
2169        case PTR_TO_PACKET_META:
2170        case PTR_TO_PACKET_END:
2171        case PTR_TO_FLOW_KEYS:
2172        case CONST_PTR_TO_MAP:
2173        case PTR_TO_SOCKET:
2174        case PTR_TO_SOCKET_OR_NULL:
2175        case PTR_TO_SOCK_COMMON:
2176        case PTR_TO_SOCK_COMMON_OR_NULL:
2177        case PTR_TO_TCP_SOCK:
2178        case PTR_TO_TCP_SOCK_OR_NULL:
2179        case PTR_TO_XDP_SOCK:
2180        case PTR_TO_BTF_ID:
2181        case PTR_TO_BTF_ID_OR_NULL:
2182        case PTR_TO_RDONLY_BUF:
2183        case PTR_TO_RDONLY_BUF_OR_NULL:
2184        case PTR_TO_RDWR_BUF:
2185        case PTR_TO_RDWR_BUF_OR_NULL:
2186                return true;
2187        default:
2188                return false;
2189        }
2190}
2191
2192/* Does this register contain a constant zero? */
2193static bool register_is_null(struct bpf_reg_state *reg)
2194{
2195        return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2196}
2197
2198static bool register_is_const(struct bpf_reg_state *reg)
2199{
2200        return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2201}
2202
2203static bool __is_pointer_value(bool allow_ptr_leaks,
2204                               const struct bpf_reg_state *reg)
2205{
2206        if (allow_ptr_leaks)
2207                return false;
2208
2209        return reg->type != SCALAR_VALUE;
2210}
2211
2212static void save_register_state(struct bpf_func_state *state,
2213                                int spi, struct bpf_reg_state *reg)
2214{
2215        int i;
2216
2217        state->stack[spi].spilled_ptr = *reg;
2218        state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2219
2220        for (i = 0; i < BPF_REG_SIZE; i++)
2221                state->stack[spi].slot_type[i] = STACK_SPILL;
2222}
2223
2224/* check_stack_read/write functions track spill/fill of registers,
2225 * stack boundary and alignment are checked in check_mem_access()
2226 */
2227static int check_stack_write(struct bpf_verifier_env *env,
2228                             struct bpf_func_state *state, /* func where register points to */
2229                             int off, int size, int value_regno, int insn_idx)
2230{
2231        struct bpf_func_state *cur; /* state of the current function */
2232        int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2233        u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2234        struct bpf_reg_state *reg = NULL;
2235
2236        err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2237                                 state->acquired_refs, true);
2238        if (err)
2239                return err;
2240        /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2241         * so it's aligned access and [off, off + size) are within stack limits
2242         */
2243        if (!env->allow_ptr_leaks &&
2244            state->stack[spi].slot_type[0] == STACK_SPILL &&
2245            size != BPF_REG_SIZE) {
2246                verbose(env, "attempt to corrupt spilled pointer on stack\n");
2247                return -EACCES;
2248        }
2249
2250        cur = env->cur_state->frame[env->cur_state->curframe];
2251        if (value_regno >= 0)
2252                reg = &cur->regs[value_regno];
2253
2254        if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2255            !register_is_null(reg) && env->bpf_capable) {
2256                if (dst_reg != BPF_REG_FP) {
2257                        /* The backtracking logic can only recognize explicit
2258                         * stack slot address like [fp - 8]. Other spill of
2259                         * scalar via different register has to be conervative.
2260                         * Backtrack from here and mark all registers as precise
2261                         * that contributed into 'reg' being a constant.
2262                         */
2263                        err = mark_chain_precision(env, value_regno);
2264                        if (err)
2265                                return err;
2266                }
2267                save_register_state(state, spi, reg);
2268        } else if (reg && is_spillable_regtype(reg->type)) {
2269                /* register containing pointer is being spilled into stack */
2270                if (size != BPF_REG_SIZE) {
2271                        verbose_linfo(env, insn_idx, "; ");
2272                        verbose(env, "invalid size of register spill\n");
2273                        return -EACCES;
2274                }
2275
2276                if (state != cur && reg->type == PTR_TO_STACK) {
2277                        verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2278                        return -EINVAL;
2279                }
2280
2281                if (!env->bypass_spec_v4) {
2282                        bool sanitize = false;
2283
2284                        if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2285                            register_is_const(&state->stack[spi].spilled_ptr))
2286                                sanitize = true;
2287                        for (i = 0; i < BPF_REG_SIZE; i++)
2288                                if (state->stack[spi].slot_type[i] == STACK_MISC) {
2289                                        sanitize = true;
2290                                        break;
2291                                }
2292                        if (sanitize) {
2293                                int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2294                                int soff = (-spi - 1) * BPF_REG_SIZE;
2295
2296                                /* detected reuse of integer stack slot with a pointer
2297                                 * which means either llvm is reusing stack slot or
2298                                 * an attacker is trying to exploit CVE-2018-3639
2299                                 * (speculative store bypass)
2300                                 * Have to sanitize that slot with preemptive
2301                                 * store of zero.
2302                                 */
2303                                if (*poff && *poff != soff) {
2304                                        /* disallow programs where single insn stores
2305                                         * into two different stack slots, since verifier
2306                                         * cannot sanitize them
2307                                         */
2308                                        verbose(env,
2309                                                "insn %d cannot access two stack slots fp%d and fp%d",
2310                                                insn_idx, *poff, soff);
2311                                        return -EINVAL;
2312                                }
2313                                *poff = soff;
2314                        }
2315                }
2316                save_register_state(state, spi, reg);
2317        } else {
2318                u8 type = STACK_MISC;
2319
2320                /* regular write of data into stack destroys any spilled ptr */
2321                state->stack[spi].spilled_ptr.type = NOT_INIT;
2322                /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2323                if (state->stack[spi].slot_type[0] == STACK_SPILL)
2324                        for (i = 0; i < BPF_REG_SIZE; i++)
2325                                state->stack[spi].slot_type[i] = STACK_MISC;
2326
2327                /* only mark the slot as written if all 8 bytes were written
2328                 * otherwise read propagation may incorrectly stop too soon
2329                 * when stack slots are partially written.
2330                 * This heuristic means that read propagation will be
2331                 * conservative, since it will add reg_live_read marks
2332                 * to stack slots all the way to first state when programs
2333                 * writes+reads less than 8 bytes
2334                 */
2335                if (size == BPF_REG_SIZE)
2336                        state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2337
2338                /* when we zero initialize stack slots mark them as such */
2339                if (reg && register_is_null(reg)) {
2340                        /* backtracking doesn't work for STACK_ZERO yet. */
2341                        err = mark_chain_precision(env, value_regno);
2342                        if (err)
2343                                return err;
2344                        type = STACK_ZERO;
2345                }
2346
2347                /* Mark slots affected by this stack write. */
2348                for (i = 0; i < size; i++)
2349                        state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2350                                type;
2351        }
2352        return 0;
2353}
2354
2355static int check_stack_read(struct bpf_verifier_env *env,
2356                            struct bpf_func_state *reg_state /* func where register points to */,
2357                            int off, int size, int value_regno)
2358{
2359        struct bpf_verifier_state *vstate = env->cur_state;
2360        struct bpf_func_state *state = vstate->frame[vstate->curframe];
2361        int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2362        struct bpf_reg_state *reg;
2363        u8 *stype;
2364
2365        if (reg_state->allocated_stack <= slot) {
2366                verbose(env, "invalid read from stack off %d+0 size %d\n",
2367                        off, size);
2368                return -EACCES;
2369        }
2370        stype = reg_state->stack[spi].slot_type;
2371        reg = &reg_state->stack[spi].spilled_ptr;
2372
2373        if (stype[0] == STACK_SPILL) {
2374                if (size != BPF_REG_SIZE) {
2375                        if (reg->type != SCALAR_VALUE) {
2376                                verbose_linfo(env, env->insn_idx, "; ");
2377                                verbose(env, "invalid size of register fill\n");
2378                                return -EACCES;
2379                        }
2380                        if (value_regno >= 0) {
2381                                mark_reg_unknown(env, state->regs, value_regno);
2382                                state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2383                        }
2384                        mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2385                        return 0;
2386                }
2387                for (i = 1; i < BPF_REG_SIZE; i++) {
2388                        if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2389                                verbose(env, "corrupted spill memory\n");
2390                                return -EACCES;
2391                        }
2392                }
2393
2394                if (value_regno >= 0) {
2395                        /* restore register state from stack */
2396                        state->regs[value_regno] = *reg;
2397                        /* mark reg as written since spilled pointer state likely
2398                         * has its liveness marks cleared by is_state_visited()
2399                         * which resets stack/reg liveness for state transitions
2400                         */
2401                        state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2402                } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2403                        /* If value_regno==-1, the caller is asking us whether
2404                         * it is acceptable to use this value as a SCALAR_VALUE
2405                         * (e.g. for XADD).
2406                         * We must not allow unprivileged callers to do that
2407                         * with spilled pointers.
2408                         */
2409                        verbose(env, "leaking pointer from stack off %d\n",
2410                                off);
2411                        return -EACCES;
2412                }
2413                mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2414        } else {
2415                int zeros = 0;
2416
2417                for (i = 0; i < size; i++) {
2418                        if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2419                                continue;
2420                        if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2421                                zeros++;
2422                                continue;
2423                        }
2424                        verbose(env, "invalid read from stack off %d+%d size %d\n",
2425                                off, i, size);
2426                        return -EACCES;
2427                }
2428                mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2429                if (value_regno >= 0) {
2430                        if (zeros == size) {
2431                                /* any size read into register is zero extended,
2432                                 * so the whole register == const_zero
2433                                 */
2434                                __mark_reg_const_zero(&state->regs[value_regno]);
2435                                /* backtracking doesn't support STACK_ZERO yet,
2436                                 * so mark it precise here, so that later
2437                                 * backtracking can stop here.
2438                                 * Backtracking may not need this if this register
2439                                 * doesn't participate in pointer adjustment.
2440                                 * Forward propagation of precise flag is not
2441                                 * necessary either. This mark is only to stop
2442                                 * backtracking. Any register that contributed
2443                                 * to const 0 was marked precise before spill.
2444                                 */
2445                                state->regs[value_regno].precise = true;
2446                        } else {
2447                                /* have read misc data from the stack */
2448                                mark_reg_unknown(env, state->regs, value_regno);
2449                        }
2450                        state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2451                }
2452        }
2453        return 0;
2454}
2455
2456static int check_stack_access(struct bpf_verifier_env *env,
2457                              const struct bpf_reg_state *reg,
2458                              int off, int size)
2459{
2460        /* Stack accesses must be at a fixed offset, so that we
2461         * can determine what type of data were returned. See
2462         * check_stack_read().
2463         */
2464        if (!tnum_is_const(reg->var_off)) {
2465                char tn_buf[48];
2466
2467                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2468                verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2469                        tn_buf, off, size);
2470                return -EACCES;
2471        }
2472
2473        if (off >= 0 || off < -MAX_BPF_STACK) {
2474                verbose(env, "invalid stack off=%d size=%d\n", off, size);
2475                return -EACCES;
2476        }
2477
2478        return 0;
2479}
2480
2481static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2482                                 int off, int size, enum bpf_access_type type)
2483{
2484        struct bpf_reg_state *regs = cur_regs(env);
2485        struct bpf_map *map = regs[regno].map_ptr;
2486        u32 cap = bpf_map_flags_to_cap(map);
2487
2488        if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2489                verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2490                        map->value_size, off, size);
2491                return -EACCES;
2492        }
2493
2494        if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2495                verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2496                        map->value_size, off, size);
2497                return -EACCES;
2498        }
2499
2500        return 0;
2501}
2502
2503/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2504static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2505                              int off, int size, u32 mem_size,
2506                              bool zero_size_allowed)
2507{
2508        bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2509        struct bpf_reg_state *reg;
2510
2511        if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2512                return 0;
2513
2514        reg = &cur_regs(env)[regno];
2515        switch (reg->type) {
2516        case PTR_TO_MAP_VALUE:
2517                verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2518                        mem_size, off, size);
2519                break;
2520        case PTR_TO_PACKET:
2521        case PTR_TO_PACKET_META:
2522        case PTR_TO_PACKET_END:
2523                verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2524                        off, size, regno, reg->id, off, mem_size);
2525                break;
2526        case PTR_TO_MEM:
2527        default:
2528                verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2529                        mem_size, off, size);
2530        }
2531
2532        return -EACCES;
2533}
2534
2535/* check read/write into a memory region with possible variable offset */
2536static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2537                                   int off, int size, u32 mem_size,
2538                                   bool zero_size_allowed)
2539{
2540        struct bpf_verifier_state *vstate = env->cur_state;
2541        struct bpf_func_state *state = vstate->frame[vstate->curframe];
2542        struct bpf_reg_state *reg = &state->regs[regno];
2543        int err;
2544
2545        /* We may have adjusted the register pointing to memory region, so we
2546         * need to try adding each of min_value and max_value to off
2547         * to make sure our theoretical access will be safe.
2548         */
2549        if (env->log.level & BPF_LOG_LEVEL)
2550                print_verifier_state(env, state);
2551
2552        /* The minimum value is only important with signed
2553         * comparisons where we can't assume the floor of a
2554         * value is 0.  If we are using signed variables for our
2555         * index'es we need to make sure that whatever we use
2556         * will have a set floor within our range.
2557         */
2558        if (reg->smin_value < 0 &&
2559            (reg->smin_value == S64_MIN ||
2560             (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2561              reg->smin_value + off < 0)) {
2562                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2563                        regno);
2564                return -EACCES;
2565        }
2566        err = __check_mem_access(env, regno, reg->smin_value + off, size,
2567                                 mem_size, zero_size_allowed);
2568        if (err) {
2569                verbose(env, "R%d min value is outside of the allowed memory range\n",
2570                        regno);
2571                return err;
2572        }
2573
2574        /* If we haven't set a max value then we need to bail since we can't be
2575         * sure we won't do bad things.
2576         * If reg->umax_value + off could overflow, treat that as unbounded too.
2577         */
2578        if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2579                verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2580                        regno);
2581                return -EACCES;
2582        }
2583        err = __check_mem_access(env, regno, reg->umax_value + off, size,
2584                                 mem_size, zero_size_allowed);
2585        if (err) {
2586                verbose(env, "R%d max value is outside of the allowed memory range\n",
2587                        regno);
2588                return err;
2589        }
2590
2591        return 0;
2592}
2593
2594/* check read/write into a map element with possible variable offset */
2595static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2596                            int off, int size, bool zero_size_allowed)
2597{
2598        struct bpf_verifier_state *vstate = env->cur_state;
2599        struct bpf_func_state *state = vstate->frame[vstate->curframe];
2600        struct bpf_reg_state *reg = &state->regs[regno];
2601        struct bpf_map *map = reg->map_ptr;
2602        int err;
2603
2604        err = check_mem_region_access(env, regno, off, size, map->value_size,
2605                                      zero_size_allowed);
2606        if (err)
2607                return err;
2608
2609        if (map_value_has_spin_lock(map)) {
2610                u32 lock = map->spin_lock_off;
2611
2612                /* if any part of struct bpf_spin_lock can be touched by
2613                 * load/store reject this program.
2614                 * To check that [x1, x2) overlaps with [y1, y2)
2615                 * it is sufficient to check x1 < y2 && y1 < x2.
2616                 */
2617                if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2618                     lock < reg->umax_value + off + size) {
2619                        verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2620                        return -EACCES;
2621                }
2622        }
2623        return err;
2624}
2625
2626#define MAX_PACKET_OFF 0xffff
2627
2628static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2629                                       const struct bpf_call_arg_meta *meta,
2630                                       enum bpf_access_type t)
2631{
2632        switch (env->prog->type) {
2633        /* Program types only with direct read access go here! */
2634        case BPF_PROG_TYPE_LWT_IN:
2635        case BPF_PROG_TYPE_LWT_OUT:
2636        case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2637        case BPF_PROG_TYPE_SK_REUSEPORT:
2638        case BPF_PROG_TYPE_FLOW_DISSECTOR:
2639        case BPF_PROG_TYPE_CGROUP_SKB:
2640                if (t == BPF_WRITE)
2641                        return false;
2642                /* fallthrough */
2643
2644        /* Program types with direct read + write access go here! */
2645        case BPF_PROG_TYPE_SCHED_CLS:
2646        case BPF_PROG_TYPE_SCHED_ACT:
2647        case BPF_PROG_TYPE_XDP:
2648        case BPF_PROG_TYPE_LWT_XMIT:
2649        case BPF_PROG_TYPE_SK_SKB:
2650        case BPF_PROG_TYPE_SK_MSG:
2651                if (meta)
2652                        return meta->pkt_access;
2653
2654                env->seen_direct_write = true;
2655                return true;
2656
2657        case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2658                if (t == BPF_WRITE)
2659                        env->seen_direct_write = true;
2660
2661                return true;
2662
2663        default:
2664                return false;
2665        }
2666}
2667
2668static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2669                               int size, bool zero_size_allowed)
2670{
2671        struct bpf_reg_state *regs = cur_regs(env);
2672        struct bpf_reg_state *reg = &regs[regno];
2673        int err;
2674
2675        /* We may have added a variable offset to the packet pointer; but any
2676         * reg->range we have comes after that.  We are only checking the fixed
2677         * offset.
2678         */
2679
2680        /* We don't allow negative numbers, because we aren't tracking enough
2681         * detail to prove they're safe.
2682         */
2683        if (reg->smin_value < 0) {
2684                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2685                        regno);
2686                return -EACCES;
2687        }
2688        err = __check_mem_access(env, regno, off, size, reg->range,
2689                                 zero_size_allowed);
2690        if (err) {
2691                verbose(env, "R%d offset is outside of the packet\n", regno);
2692                return err;
2693        }
2694
2695        /* __check_mem_access has made sure "off + size - 1" is within u16.
2696         * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2697         * otherwise find_good_pkt_pointers would have refused to set range info
2698         * that __check_mem_access would have rejected this pkt access.
2699         * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2700         */
2701        env->prog->aux->max_pkt_offset =
2702                max_t(u32, env->prog->aux->max_pkt_offset,
2703                      off + reg->umax_value + size - 1);
2704
2705        return err;
2706}
2707
2708/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2709static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2710                            enum bpf_access_type t, enum bpf_reg_type *reg_type,
2711                            u32 *btf_id)
2712{
2713        struct bpf_insn_access_aux info = {
2714                .reg_type = *reg_type,
2715                .log = &env->log,
2716        };
2717
2718        if (env->ops->is_valid_access &&
2719            env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2720                /* A non zero info.ctx_field_size indicates that this field is a
2721                 * candidate for later verifier transformation to load the whole
2722                 * field and then apply a mask when accessed with a narrower
2723                 * access than actual ctx access size. A zero info.ctx_field_size
2724                 * will only allow for whole field access and rejects any other
2725                 * type of narrower access.
2726                 */
2727                *reg_type = info.reg_type;
2728
2729                if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
2730                        *btf_id = info.btf_id;
2731                else
2732                        env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2733                /* remember the offset of last byte accessed in ctx */
2734                if (env->prog->aux->max_ctx_offset < off + size)
2735                        env->prog->aux->max_ctx_offset = off + size;
2736                return 0;
2737        }
2738
2739        verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2740        return -EACCES;
2741}
2742
2743static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2744                                  int size)
2745{
2746        if (size < 0 || off < 0 ||
2747            (u64)off + size > sizeof(struct bpf_flow_keys)) {
2748                verbose(env, "invalid access to flow keys off=%d size=%d\n",
2749                        off, size);
2750                return -EACCES;
2751        }
2752        return 0;
2753}
2754
2755static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2756                             u32 regno, int off, int size,
2757                             enum bpf_access_type t)
2758{
2759        struct bpf_reg_state *regs = cur_regs(env);
2760        struct bpf_reg_state *reg = &regs[regno];
2761        struct bpf_insn_access_aux info = {};
2762        bool valid;
2763
2764        if (reg->smin_value < 0) {
2765                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2766                        regno);
2767                return -EACCES;
2768        }
2769
2770        switch (reg->type) {
2771        case PTR_TO_SOCK_COMMON:
2772                valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2773                break;
2774        case PTR_TO_SOCKET:
2775                valid = bpf_sock_is_valid_access(off, size, t, &info);
2776                break;
2777        case PTR_TO_TCP_SOCK:
2778                valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2779                break;
2780        case PTR_TO_XDP_SOCK:
2781                valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2782                break;
2783        default:
2784                valid = false;
2785        }
2786
2787
2788        if (valid) {
2789                env->insn_aux_data[insn_idx].ctx_field_size =
2790                        info.ctx_field_size;
2791                return 0;
2792        }
2793
2794        verbose(env, "R%d invalid %s access off=%d size=%d\n",
2795                regno, reg_type_str[reg->type], off, size);
2796
2797        return -EACCES;
2798}
2799
2800static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2801{
2802        return cur_regs(env) + regno;
2803}
2804
2805static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2806{
2807        return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2808}
2809
2810static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2811{
2812        const struct bpf_reg_state *reg = reg_state(env, regno);
2813
2814        return reg->type == PTR_TO_CTX;
2815}
2816
2817static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2818{
2819        const struct bpf_reg_state *reg = reg_state(env, regno);
2820
2821        return type_is_sk_pointer(reg->type);
2822}
2823
2824static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2825{
2826        const struct bpf_reg_state *reg = reg_state(env, regno);
2827
2828        return type_is_pkt_pointer(reg->type);
2829}
2830
2831static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2832{
2833        const struct bpf_reg_state *reg = reg_state(env, regno);
2834
2835        /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2836        return reg->type == PTR_TO_FLOW_KEYS;
2837}
2838
2839static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2840                                   const struct bpf_reg_state *reg,
2841                                   int off, int size, bool strict)
2842{
2843        struct tnum reg_off;
2844        int ip_align;
2845
2846        /* Byte size accesses are always allowed. */
2847        if (!strict || size == 1)
2848                return 0;
2849
2850        /* For platforms that do not have a Kconfig enabling
2851         * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2852         * NET_IP_ALIGN is universally set to '2'.  And on platforms
2853         * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2854         * to this code only in strict mode where we want to emulate
2855         * the NET_IP_ALIGN==2 checking.  Therefore use an
2856         * unconditional IP align value of '2'.
2857         */
2858        ip_align = 2;
2859
2860        reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2861        if (!tnum_is_aligned(reg_off, size)) {
2862                char tn_buf[48];
2863
2864                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2865                verbose(env,
2866                        "misaligned packet access off %d+%s+%d+%d size %d\n",
2867                        ip_align, tn_buf, reg->off, off, size);
2868                return -EACCES;
2869        }
2870
2871        return 0;
2872}
2873
2874static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2875                                       const struct bpf_reg_state *reg,
2876                                       const char *pointer_desc,
2877                                       int off, int size, bool strict)
2878{
2879        struct tnum reg_off;
2880
2881        /* Byte size accesses are always allowed. */
2882        if (!strict || size == 1)
2883                return 0;
2884
2885        reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2886        if (!tnum_is_aligned(reg_off, size)) {
2887                char tn_buf[48];
2888
2889                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2890                verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2891                        pointer_desc, tn_buf, reg->off, off, size);
2892                return -EACCES;
2893        }
2894
2895        return 0;
2896}
2897
2898static int check_ptr_alignment(struct bpf_verifier_env *env,
2899                               const struct bpf_reg_state *reg, int off,
2900                               int size, bool strict_alignment_once)
2901{
2902        bool strict = env->strict_alignment || strict_alignment_once;
2903        const char *pointer_desc = "";
2904
2905        switch (reg->type) {
2906        case PTR_TO_PACKET:
2907        case PTR_TO_PACKET_META:
2908                /* Special case, because of NET_IP_ALIGN. Given metadata sits
2909                 * right in front, treat it the very same way.
2910                 */
2911                return check_pkt_ptr_alignment(env, reg, off, size, strict);
2912        case PTR_TO_FLOW_KEYS:
2913                pointer_desc = "flow keys ";
2914                break;
2915        case PTR_TO_MAP_VALUE:
2916                pointer_desc = "value ";
2917                break;
2918        case PTR_TO_CTX:
2919                pointer_desc = "context ";
2920                break;
2921        case PTR_TO_STACK:
2922                pointer_desc = "stack ";
2923                /* The stack spill tracking logic in check_stack_write()
2924                 * and check_stack_read() relies on stack accesses being
2925                 * aligned.
2926                 */
2927                strict = true;
2928                break;
2929        case PTR_TO_SOCKET:
2930                pointer_desc = "sock ";
2931                break;
2932        case PTR_TO_SOCK_COMMON:
2933                pointer_desc = "sock_common ";
2934                break;
2935        case PTR_TO_TCP_SOCK:
2936                pointer_desc = "tcp_sock ";
2937                break;
2938        case PTR_TO_XDP_SOCK:
2939                pointer_desc = "xdp_sock ";
2940                break;
2941        default:
2942                break;
2943        }
2944        return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2945                                           strict);
2946}
2947
2948static int update_stack_depth(struct bpf_verifier_env *env,
2949                              const struct bpf_func_state *func,
2950                              int off)
2951{
2952        u16 stack = env->subprog_info[func->subprogno].stack_depth;
2953
2954        if (stack >= -off)
2955                return 0;
2956
2957        /* update known max for given subprogram */
2958        env->subprog_info[func->subprogno].stack_depth = -off;
2959        return 0;
2960}
2961
2962/* starting from main bpf function walk all instructions of the function
2963 * and recursively walk all callees that given function can call.
2964 * Ignore jump and exit insns.
2965 * Since recursion is prevented by check_cfg() this algorithm
2966 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2967 */
2968static int check_max_stack_depth(struct bpf_verifier_env *env)
2969{
2970        int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2971        struct bpf_subprog_info *subprog = env->subprog_info;
2972        struct bpf_insn *insn = env->prog->insnsi;
2973        int ret_insn[MAX_CALL_FRAMES];
2974        int ret_prog[MAX_CALL_FRAMES];
2975
2976process_func:
2977        /* round up to 32-bytes, since this is granularity
2978         * of interpreter stack size
2979         */
2980        depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2981        if (depth > MAX_BPF_STACK) {
2982                verbose(env, "combined stack size of %d calls is %d. Too large\n",
2983                        frame + 1, depth);
2984                return -EACCES;
2985        }
2986continue_func:
2987        subprog_end = subprog[idx + 1].start;
2988        for (; i < subprog_end; i++) {
2989                if (insn[i].code != (BPF_JMP | BPF_CALL))
2990                        continue;
2991                if (insn[i].src_reg != BPF_PSEUDO_CALL)
2992                        continue;
2993                /* remember insn and function to return to */
2994                ret_insn[frame] = i + 1;
2995                ret_prog[frame] = idx;
2996
2997                /* find the callee */
2998                i = i + insn[i].imm + 1;
2999                idx = find_subprog(env, i);
3000                if (idx < 0) {
3001                        WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3002                                  i);
3003                        return -EFAULT;
3004                }
3005                frame++;
3006                if (frame >= MAX_CALL_FRAMES) {
3007                        verbose(env, "the call stack of %d frames is too deep !\n",
3008                                frame);
3009                        return -E2BIG;
3010                }
3011                goto process_func;
3012        }
3013        /* end of for() loop means the last insn of the 'subprog'
3014         * was reached. Doesn't matter whether it was JA or EXIT
3015         */
3016        if (frame == 0)
3017                return 0;
3018        depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3019        frame--;
3020        i = ret_insn[frame];
3021        idx = ret_prog[frame];
3022        goto continue_func;
3023}
3024
3025#ifndef CONFIG_BPF_JIT_ALWAYS_ON
3026static int get_callee_stack_depth(struct bpf_verifier_env *env,
3027                                  const struct bpf_insn *insn, int idx)
3028{
3029        int start = idx + insn->imm + 1, subprog;
3030
3031        subprog = find_subprog(env, start);
3032        if (subprog < 0) {
3033                WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3034                          start);
3035                return -EFAULT;
3036        }
3037        return env->subprog_info[subprog].stack_depth;
3038}
3039#endif
3040
3041int check_ctx_reg(struct bpf_verifier_env *env,
3042                  const struct bpf_reg_state *reg, int regno)
3043{
3044        /* Access to ctx or passing it to a helper is only allowed in
3045         * its original, unmodified form.
3046         */
3047
3048        if (reg->off) {
3049                verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3050                        regno, reg->off);
3051                return -EACCES;
3052        }
3053
3054        if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3055                char tn_buf[48];
3056
3057                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3058                verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3059                return -EACCES;
3060        }
3061
3062        return 0;
3063}
3064
3065static int __check_buffer_access(struct bpf_verifier_env *env,
3066                                 const char *buf_info,
3067                                 const struct bpf_reg_state *reg,
3068                                 int regno, int off, int size)
3069{
3070        if (off < 0) {
3071                verbose(env,
3072                        "R%d invalid %s buffer access: off=%d, size=%d\n",
3073                        regno, buf_info, off, size);
3074                return -EACCES;
3075        }
3076        if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3077                char tn_buf[48];
3078
3079                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3080                verbose(env,
3081                        "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3082                        regno, off, tn_buf);
3083                return -EACCES;
3084        }
3085
3086        return 0;
3087}
3088
3089static int check_tp_buffer_access(struct bpf_verifier_env *env,
3090                                  const struct bpf_reg_state *reg,
3091                                  int regno, int off, int size)
3092{
3093        int err;
3094
3095        err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3096        if (err)
3097                return err;
3098
3099        if (off + size > env->prog->aux->max_tp_access)
3100                env->prog->aux->max_tp_access = off + size;
3101
3102        return 0;
3103}
3104
3105static int check_buffer_access(struct bpf_verifier_env *env,
3106                               const struct bpf_reg_state *reg,
3107                               int regno, int off, int size,
3108                               bool zero_size_allowed,
3109                               const char *buf_info,
3110                               u32 *max_access)
3111{
3112        int err;
3113
3114        err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3115        if (err)
3116                return err;
3117
3118        if (off + size > *max_access)
3119                *max_access = off + size;
3120
3121        return 0;
3122}
3123
3124/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3125static void zext_32_to_64(struct bpf_reg_state *reg)
3126{
3127        reg->var_off = tnum_subreg(reg->var_off);
3128        __reg_assign_32_into_64(reg);
3129}
3130
3131/* truncate register to smaller size (in bytes)
3132 * must be called with size < BPF_REG_SIZE
3133 */
3134static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3135{
3136        u64 mask;
3137
3138        /* clear high bits in bit representation */
3139        reg->var_off = tnum_cast(reg->var_off, size);
3140
3141        /* fix arithmetic bounds */
3142        mask = ((u64)1 << (size * 8)) - 1;
3143        if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3144                reg->umin_value &= mask;
3145                reg->umax_value &= mask;
3146        } else {
3147                reg->umin_value = 0;
3148                reg->umax_value = mask;
3149        }
3150        reg->smin_value = reg->umin_value;
3151        reg->smax_value = reg->umax_value;
3152
3153        /* If size is smaller than 32bit register the 32bit register
3154         * values are also truncated so we push 64-bit bounds into
3155         * 32-bit bounds. Above were truncated < 32-bits already.
3156         */
3157        if (size >= 4)
3158                return;
3159        __reg_combine_64_into_32(reg);
3160}
3161
3162static bool bpf_map_is_rdonly(const struct bpf_map *map)
3163{
3164        return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3165}
3166
3167static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3168{
3169        void *ptr;
3170        u64 addr;
3171        int err;
3172
3173        err = map->ops->map_direct_value_addr(map, &addr, off);
3174        if (err)
3175                return err;
3176        ptr = (void *)(long)addr + off;
3177
3178        switch (size) {
3179        case sizeof(u8):
3180                *val = (u64)*(u8 *)ptr;
3181                break;
3182        case sizeof(u16):
3183                *val = (u64)*(u16 *)ptr;
3184                break;
3185        case sizeof(u32):
3186                *val = (u64)*(u32 *)ptr;
3187                break;
3188        case sizeof(u64):
3189                *val = *(u64 *)ptr;
3190                break;
3191        default:
3192                return -EINVAL;
3193        }
3194        return 0;
3195}
3196
3197static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3198                                   struct bpf_reg_state *regs,
3199                                   int regno, int off, int size,
3200                                   enum bpf_access_type atype,
3201                                   int value_regno)
3202{
3203        struct bpf_reg_state *reg = regs + regno;
3204        const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3205        const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3206        u32 btf_id;
3207        int ret;
3208
3209        if (off < 0) {
3210                verbose(env,
3211                        "R%d is ptr_%s invalid negative access: off=%d\n",
3212                        regno, tname, off);
3213                return -EACCES;
3214        }
3215        if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3216                char tn_buf[48];
3217
3218                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3219                verbose(env,
3220                        "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3221                        regno, tname, off, tn_buf);
3222                return -EACCES;
3223        }
3224
3225        if (env->ops->btf_struct_access) {
3226                ret = env->ops->btf_struct_access(&env->log, t, off, size,
3227                                                  atype, &btf_id);
3228        } else {
3229                if (atype != BPF_READ) {
3230                        verbose(env, "only read is supported\n");
3231                        return -EACCES;
3232                }
3233
3234                ret = btf_struct_access(&env->log, t, off, size, atype,
3235                                        &btf_id);
3236        }
3237
3238        if (ret < 0)
3239                return ret;
3240
3241        if (atype == BPF_READ && value_regno >= 0)
3242                mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3243
3244        return 0;
3245}
3246
3247static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3248                                   struct bpf_reg_state *regs,
3249                                   int regno, int off, int size,
3250                                   enum bpf_access_type atype,
3251                                   int value_regno)
3252{
3253        struct bpf_reg_state *reg = regs + regno;
3254        struct bpf_map *map = reg->map_ptr;
3255        const struct btf_type *t;
3256        const char *tname;
3257        u32 btf_id;
3258        int ret;
3259
3260        if (!btf_vmlinux) {
3261                verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3262                return -ENOTSUPP;
3263        }
3264
3265        if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3266                verbose(env, "map_ptr access not supported for map type %d\n",
3267                        map->map_type);
3268                return -ENOTSUPP;
3269        }
3270
3271        t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3272        tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3273
3274        if (!env->allow_ptr_to_map_access) {
3275                verbose(env,
3276                        "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3277                        tname);
3278                return -EPERM;
3279        }
3280
3281        if (off < 0) {
3282                verbose(env, "R%d is %s invalid negative access: off=%d\n",
3283                        regno, tname, off);
3284                return -EACCES;
3285        }
3286
3287        if (atype != BPF_READ) {
3288                verbose(env, "only read from %s is supported\n", tname);
3289                return -EACCES;
3290        }
3291
3292        ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3293        if (ret < 0)
3294                return ret;
3295
3296        if (value_regno >= 0)
3297                mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3298
3299        return 0;
3300}
3301
3302
3303/* check whether memory at (regno + off) is accessible for t = (read | write)
3304 * if t==write, value_regno is a register which value is stored into memory
3305 * if t==read, value_regno is a register which will receive the value from memory
3306 * if t==write && value_regno==-1, some unknown value is stored into memory
3307 * if t==read && value_regno==-1, don't care what we read from memory
3308 */
3309static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3310                            int off, int bpf_size, enum bpf_access_type t,
3311                            int value_regno, bool strict_alignment_once)
3312{
3313        struct bpf_reg_state *regs = cur_regs(env);
3314        struct bpf_reg_state *reg = regs + regno;
3315        struct bpf_func_state *state;
3316        int size, err = 0;
3317
3318        size = bpf_size_to_bytes(bpf_size);
3319        if (size < 0)
3320                return size;
3321
3322        /* alignment checks will add in reg->off themselves */
3323        err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3324        if (err)
3325                return err;
3326
3327        /* for access checks, reg->off is just part of off */
3328        off += reg->off;
3329
3330        if (reg->type == PTR_TO_MAP_VALUE) {
3331                if (t == BPF_WRITE && value_regno >= 0 &&
3332                    is_pointer_value(env, value_regno)) {
3333                        verbose(env, "R%d leaks addr into map\n", value_regno);
3334                        return -EACCES;
3335                }
3336                err = check_map_access_type(env, regno, off, size, t);
3337                if (err)
3338                        return err;
3339                err = check_map_access(env, regno, off, size, false);
3340                if (!err && t == BPF_READ && value_regno >= 0) {
3341                        struct bpf_map *map = reg->map_ptr;
3342
3343                        /* if map is read-only, track its contents as scalars */
3344                        if (tnum_is_const(reg->var_off) &&
3345                            bpf_map_is_rdonly(map) &&
3346                            map->ops->map_direct_value_addr) {
3347                                int map_off = off + reg->var_off.value;
3348                                u64 val = 0;
3349
3350                                err = bpf_map_direct_read(map, map_off, size,
3351                                                          &val);
3352                                if (err)
3353                                        return err;
3354
3355                                regs[value_regno].type = SCALAR_VALUE;
3356                                __mark_reg_known(&regs[value_regno], val);
3357                        } else {
3358                                mark_reg_unknown(env, regs, value_regno);
3359                        }
3360                }
3361        } else if (reg->type == PTR_TO_MEM) {
3362                if (t == BPF_WRITE && value_regno >= 0 &&
3363                    is_pointer_value(env, value_regno)) {
3364                        verbose(env, "R%d leaks addr into mem\n", value_regno);
3365                        return -EACCES;
3366                }
3367                err = check_mem_region_access(env, regno, off, size,
3368                                              reg->mem_size, false);
3369                if (!err && t == BPF_READ && value_regno >= 0)
3370                        mark_reg_unknown(env, regs, value_regno);
3371        } else if (reg->type == PTR_TO_CTX) {
3372                enum bpf_reg_type reg_type = SCALAR_VALUE;
3373                u32 btf_id = 0;
3374
3375                if (t == BPF_WRITE && value_regno >= 0 &&
3376                    is_pointer_value(env, value_regno)) {
3377                        verbose(env, "R%d leaks addr into ctx\n", value_regno);
3378                        return -EACCES;
3379                }
3380
3381                err = check_ctx_reg(env, reg, regno);
3382                if (err < 0)
3383                        return err;
3384
3385                err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3386                if (err)
3387                        verbose_linfo(env, insn_idx, "; ");
3388                if (!err && t == BPF_READ && value_regno >= 0) {
3389                        /* ctx access returns either a scalar, or a
3390                         * PTR_TO_PACKET[_META,_END]. In the latter
3391                         * case, we know the offset is zero.
3392                         */
3393                        if (reg_type == SCALAR_VALUE) {
3394                                mark_reg_unknown(env, regs, value_regno);
3395                        } else {
3396                                mark_reg_known_zero(env, regs,
3397                                                    value_regno);
3398                                if (reg_type_may_be_null(reg_type))
3399                                        regs[value_regno].id = ++env->id_gen;
3400                                /* A load of ctx field could have different
3401                                 * actual load size with the one encoded in the
3402                                 * insn. When the dst is PTR, it is for sure not
3403                                 * a sub-register.
3404                                 */
3405                                regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3406                                if (reg_type == PTR_TO_BTF_ID ||
3407                                    reg_type == PTR_TO_BTF_ID_OR_NULL)
3408                                        regs[value_regno].btf_id = btf_id;
3409                        }
3410                        regs[value_regno].type = reg_type;
3411                }
3412
3413        } else if (reg->type == PTR_TO_STACK) {
3414                off += reg->var_off.value;
3415                err = check_stack_access(env, reg, off, size);
3416                if (err)
3417                        return err;
3418
3419                state = func(env, reg);
3420                err = update_stack_depth(env, state, off);
3421                if (err)
3422                        return err;
3423
3424                if (t == BPF_WRITE)
3425                        err = check_stack_write(env, state, off, size,
3426                                                value_regno, insn_idx);
3427                else
3428                        err = check_stack_read(env, state, off, size,
3429                                               value_regno);
3430        } else if (reg_is_pkt_pointer(reg)) {
3431                if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3432                        verbose(env, "cannot write into packet\n");
3433                        return -EACCES;
3434                }
3435                if (t == BPF_WRITE && value_regno >= 0 &&
3436                    is_pointer_value(env, value_regno)) {
3437                        verbose(env, "R%d leaks addr into packet\n",
3438                                value_regno);
3439                        return -EACCES;
3440                }
3441                err = check_packet_access(env, regno, off, size, false);
3442                if (!err && t == BPF_READ && value_regno >= 0)
3443                        mark_reg_unknown(env, regs, value_regno);
3444        } else if (reg->type == PTR_TO_FLOW_KEYS) {
3445                if (t == BPF_WRITE && value_regno >= 0 &&
3446                    is_pointer_value(env, value_regno)) {
3447                        verbose(env, "R%d leaks addr into flow keys\n",
3448                                value_regno);
3449                        return -EACCES;
3450                }
3451
3452                err = check_flow_keys_access(env, off, size);
3453                if (!err && t == BPF_READ && value_regno >= 0)
3454                        mark_reg_unknown(env, regs, value_regno);
3455        } else if (type_is_sk_pointer(reg->type)) {
3456                if (t == BPF_WRITE) {
3457                        verbose(env, "R%d cannot write into %s\n",
3458                                regno, reg_type_str[reg->type]);
3459                        return -EACCES;
3460                }
3461                err = check_sock_access(env, insn_idx, regno, off, size, t);
3462                if (!err && value_regno >= 0)
3463                        mark_reg_unknown(env, regs, value_regno);
3464        } else if (reg->type == PTR_TO_TP_BUFFER) {
3465                err = check_tp_buffer_access(env, reg, regno, off, size);
3466                if (!err && t == BPF_READ && value_regno >= 0)
3467                        mark_reg_unknown(env, regs, value_regno);
3468        } else if (reg->type == PTR_TO_BTF_ID) {
3469                err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3470                                              value_regno);
3471        } else if (reg->type == CONST_PTR_TO_MAP) {
3472                err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3473                                              value_regno);
3474        } else if (reg->type == PTR_TO_RDONLY_BUF) {
3475                if (t == BPF_WRITE) {
3476                        verbose(env, "R%d cannot write into %s\n",
3477                                regno, reg_type_str[reg->type]);
3478                        return -EACCES;
3479                }
3480                err = check_buffer_access(env, reg, regno, off, size, false,
3481                                          "rdonly",
3482                                          &env->prog->aux->max_rdonly_access);
3483                if (!err && value_regno >= 0)
3484                        mark_reg_unknown(env, regs, value_regno);
3485        } else if (reg->type == PTR_TO_RDWR_BUF) {
3486                err = check_buffer_access(env, reg, regno, off, size, false,
3487                                          "rdwr",
3488                                          &env->prog->aux->max_rdwr_access);
3489                if (!err && t == BPF_READ && value_regno >= 0)
3490                        mark_reg_unknown(env, regs, value_regno);
3491        } else {
3492                verbose(env, "R%d invalid mem access '%s'\n", regno,
3493                        reg_type_str[reg->type]);
3494                return -EACCES;
3495        }
3496
3497        if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3498            regs[value_regno].type == SCALAR_VALUE) {
3499                /* b/h/w load zero-extends, mark upper bits as known 0 */
3500                coerce_reg_to_size(&regs[value_regno], size);
3501        }
3502        return err;
3503}
3504
3505static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3506{
3507        int err;
3508
3509        if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3510            insn->imm != 0) {
3511                verbose(env, "BPF_XADD uses reserved fields\n");
3512                return -EINVAL;
3513        }
3514
3515        /* check src1 operand */
3516        err = check_reg_arg(env, insn->src_reg, SRC_OP);
3517        if (err)
3518                return err;
3519
3520        /* check src2 operand */
3521        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3522        if (err)
3523                return err;
3524
3525        if (is_pointer_value(env, insn->src_reg)) {
3526                verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3527                return -EACCES;
3528        }
3529
3530        if (is_ctx_reg(env, insn->dst_reg) ||
3531            is_pkt_reg(env, insn->dst_reg) ||
3532            is_flow_key_reg(env, insn->dst_reg) ||
3533            is_sk_reg(env, insn->dst_reg)) {
3534                verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3535                        insn->dst_reg,
3536                        reg_type_str[reg_state(env, insn->dst_reg)->type]);
3537                return -EACCES;
3538        }
3539
3540        /* check whether atomic_add can read the memory */
3541        err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3542                               BPF_SIZE(insn->code), BPF_READ, -1, true);
3543        if (err)
3544                return err;
3545
3546        /* check whether atomic_add can write into the same memory */
3547        return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3548                                BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3549}
3550
3551static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3552                                  int off, int access_size,
3553                                  bool zero_size_allowed)
3554{
3555        struct bpf_reg_state *reg = reg_state(env, regno);
3556
3557        if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3558            access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3559                if (tnum_is_const(reg->var_off)) {
3560                        verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3561                                regno, off, access_size);
3562                } else {
3563                        char tn_buf[48];
3564
3565                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3566                        verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3567                                regno, tn_buf, access_size);
3568                }
3569                return -EACCES;
3570        }
3571        return 0;
3572}
3573
3574/* when register 'regno' is passed into function that will read 'access_size'
3575 * bytes from that pointer, make sure that it's within stack boundary
3576 * and all elements of stack are initialized.
3577 * Unlike most pointer bounds-checking functions, this one doesn't take an
3578 * 'off' argument, so it has to add in reg->off itself.
3579 */
3580static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3581                                int access_size, bool zero_size_allowed,
3582                                struct bpf_call_arg_meta *meta)
3583{
3584        struct bpf_reg_state *reg = reg_state(env, regno);
3585        struct bpf_func_state *state = func(env, reg);
3586        int err, min_off, max_off, i, j, slot, spi;
3587
3588        if (reg->type != PTR_TO_STACK) {
3589                /* Allow zero-byte read from NULL, regardless of pointer type */
3590                if (zero_size_allowed && access_size == 0 &&
3591                    register_is_null(reg))
3592                        return 0;
3593
3594                verbose(env, "R%d type=%s expected=%s\n", regno,
3595                        reg_type_str[reg->type],
3596                        reg_type_str[PTR_TO_STACK]);
3597                return -EACCES;
3598        }
3599
3600        if (tnum_is_const(reg->var_off)) {
3601                min_off = max_off = reg->var_off.value + reg->off;
3602                err = __check_stack_boundary(env, regno, min_off, access_size,
3603                                             zero_size_allowed);
3604                if (err)
3605                        return err;
3606        } else {
3607                /* Variable offset is prohibited for unprivileged mode for
3608                 * simplicity since it requires corresponding support in
3609                 * Spectre masking for stack ALU.
3610                 * See also retrieve_ptr_limit().
3611                 */
3612                if (!env->bypass_spec_v1) {
3613                        char tn_buf[48];
3614
3615                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3616                        verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3617                                regno, tn_buf);
3618                        return -EACCES;
3619                }
3620                /* Only initialized buffer on stack is allowed to be accessed
3621                 * with variable offset. With uninitialized buffer it's hard to
3622                 * guarantee that whole memory is marked as initialized on
3623                 * helper return since specific bounds are unknown what may
3624                 * cause uninitialized stack leaking.
3625                 */
3626                if (meta && meta->raw_mode)
3627                        meta = NULL;
3628
3629                if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3630                    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3631                        verbose(env, "R%d unbounded indirect variable offset stack access\n",
3632                                regno);
3633                        return -EACCES;
3634                }
3635                min_off = reg->smin_value + reg->off;
3636                max_off = reg->smax_value + reg->off;
3637                err = __check_stack_boundary(env, regno, min_off, access_size,
3638                                             zero_size_allowed);
3639                if (err) {
3640                        verbose(env, "R%d min value is outside of stack bound\n",
3641                                regno);
3642                        return err;
3643                }
3644                err = __check_stack_boundary(env, regno, max_off, access_size,
3645                                             zero_size_allowed);
3646                if (err) {
3647                        verbose(env, "R%d max value is outside of stack bound\n",
3648                                regno);
3649                        return err;
3650                }
3651        }
3652
3653        if (meta && meta->raw_mode) {
3654                meta->access_size = access_size;
3655                meta->regno = regno;
3656                return 0;
3657        }
3658
3659        for (i = min_off; i < max_off + access_size; i++) {
3660                u8 *stype;
3661
3662                slot = -i - 1;
3663                spi = slot / BPF_REG_SIZE;
3664                if (state->allocated_stack <= slot)
3665                        goto err;
3666                stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3667                if (*stype == STACK_MISC)
3668                        goto mark;
3669                if (*stype == STACK_ZERO) {
3670                        /* helper can write anything into the stack */
3671                        *stype = STACK_MISC;
3672                        goto mark;
3673                }
3674
3675                if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3676                    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3677                        goto mark;
3678
3679                if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3680                    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3681                        __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3682                        for (j = 0; j < BPF_REG_SIZE; j++)
3683                                state->stack[spi].slot_type[j] = STACK_MISC;
3684                        goto mark;
3685                }
3686
3687err:
3688                if (tnum_is_const(reg->var_off)) {
3689                        verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3690                                min_off, i - min_off, access_size);
3691                } else {
3692                        char tn_buf[48];
3693
3694                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3695                        verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3696                                tn_buf, i - min_off, access_size);
3697                }
3698                return -EACCES;
3699mark:
3700                /* reading any byte out of 8-byte 'spill_slot' will cause
3701                 * the whole slot to be marked as 'read'
3702                 */
3703                mark_reg_read(env, &state->stack[spi].spilled_ptr,
3704                              state->stack[spi].spilled_ptr.parent,
3705                              REG_LIVE_READ64);
3706        }
3707        return update_stack_depth(env, state, min_off);
3708}
3709
3710static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3711                                   int access_size, bool zero_size_allowed,
3712                                   struct bpf_call_arg_meta *meta)
3713{
3714        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3715
3716        switch (reg->type) {
3717        case PTR_TO_PACKET:
3718        case PTR_TO_PACKET_META:
3719                return check_packet_access(env, regno, reg->off, access_size,
3720                                           zero_size_allowed);
3721        case PTR_TO_MAP_VALUE:
3722                if (check_map_access_type(env, regno, reg->off, access_size,
3723                                          meta && meta->raw_mode ? BPF_WRITE :
3724                                          BPF_READ))
3725                        return -EACCES;
3726                return check_map_access(env, regno, reg->off, access_size,
3727                                        zero_size_allowed);
3728        case PTR_TO_MEM:
3729                return check_mem_region_access(env, regno, reg->off,
3730                                               access_size, reg->mem_size,
3731                                               zero_size_allowed);
3732        case PTR_TO_RDONLY_BUF:
3733                if (meta && meta->raw_mode)
3734                        return -EACCES;
3735                return check_buffer_access(env, reg, regno, reg->off,
3736                                           access_size, zero_size_allowed,
3737                                           "rdonly",
3738                                           &env->prog->aux->max_rdonly_access);
3739        case PTR_TO_RDWR_BUF:
3740                return check_buffer_access(env, reg, regno, reg->off,
3741                                           access_size, zero_size_allowed,
3742                                           "rdwr",
3743                                           &env->prog->aux->max_rdwr_access);
3744        default: /* scalar_value|ptr_to_stack or invalid ptr */
3745                return check_stack_boundary(env, regno, access_size,
3746                                            zero_size_allowed, meta);
3747        }
3748}
3749
3750/* Implementation details:
3751 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3752 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3753 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3754 * value_or_null->value transition, since the verifier only cares about
3755 * the range of access to valid map value pointer and doesn't care about actual
3756 * address of the map element.
3757 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3758 * reg->id > 0 after value_or_null->value transition. By doing so
3759 * two bpf_map_lookups will be considered two different pointers that
3760 * point to different bpf_spin_locks.
3761 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3762 * dead-locks.
3763 * Since only one bpf_spin_lock is allowed the checks are simpler than
3764 * reg_is_refcounted() logic. The verifier needs to remember only
3765 * one spin_lock instead of array of acquired_refs.
3766 * cur_state->active_spin_lock remembers which map value element got locked
3767 * and clears it after bpf_spin_unlock.
3768 */
3769static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3770                             bool is_lock)
3771{
3772        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3773        struct bpf_verifier_state *cur = env->cur_state;
3774        bool is_const = tnum_is_const(reg->var_off);
3775        struct bpf_map *map = reg->map_ptr;
3776        u64 val = reg->var_off.value;
3777
3778        if (reg->type != PTR_TO_MAP_VALUE) {
3779                verbose(env, "R%d is not a pointer to map_value\n", regno);
3780                return -EINVAL;
3781        }
3782        if (!is_const) {
3783                verbose(env,
3784                        "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3785                        regno);
3786                return -EINVAL;
3787        }
3788        if (!map->btf) {
3789                verbose(env,
3790                        "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3791                        map->name);
3792                return -EINVAL;
3793        }
3794        if (!map_value_has_spin_lock(map)) {
3795                if (map->spin_lock_off == -E2BIG)
3796                        verbose(env,
3797                                "map '%s' has more than one 'struct bpf_spin_lock'\n",
3798                                map->name);
3799                else if (map->spin_lock_off == -ENOENT)
3800                        verbose(env,
3801                                "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3802                                map->name);
3803                else
3804                        verbose(env,
3805                                "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3806                                map->name);
3807                return -EINVAL;
3808        }
3809        if (map->spin_lock_off != val + reg->off) {
3810                verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3811                        val + reg->off);
3812                return -EINVAL;
3813        }
3814        if (is_lock) {
3815                if (cur->active_spin_lock) {
3816                        verbose(env,
3817                                "Locking two bpf_spin_locks are not allowed\n");
3818                        return -EINVAL;
3819                }
3820                cur->active_spin_lock = reg->id;
3821        } else {
3822                if (!cur->active_spin_lock) {
3823                        verbose(env, "bpf_spin_unlock without taking a lock\n");
3824                        return -EINVAL;
3825                }
3826                if (cur->active_spin_lock != reg->id) {
3827                        verbose(env, "bpf_spin_unlock of different lock\n");
3828                        return -EINVAL;
3829                }
3830                cur->active_spin_lock = 0;
3831        }
3832        return 0;
3833}
3834
3835static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3836{
3837        return type == ARG_PTR_TO_MEM ||
3838               type == ARG_PTR_TO_MEM_OR_NULL ||
3839               type == ARG_PTR_TO_UNINIT_MEM;
3840}
3841
3842static bool arg_type_is_mem_size(enum bpf_arg_type type)
3843{
3844        return type == ARG_CONST_SIZE ||
3845               type == ARG_CONST_SIZE_OR_ZERO;
3846}
3847
3848static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type)
3849{
3850        return type == ARG_PTR_TO_ALLOC_MEM ||
3851               type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
3852}
3853
3854static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3855{
3856        return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3857}
3858
3859static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3860{
3861        return type == ARG_PTR_TO_INT ||
3862               type == ARG_PTR_TO_LONG;
3863}
3864
3865static int int_ptr_type_to_size(enum bpf_arg_type type)
3866{
3867        if (type == ARG_PTR_TO_INT)
3868                return sizeof(u32);
3869        else if (type == ARG_PTR_TO_LONG)
3870                return sizeof(u64);
3871
3872        return -EINVAL;
3873}
3874
3875static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
3876                          struct bpf_call_arg_meta *meta,
3877                          const struct bpf_func_proto *fn)
3878{
3879        u32 regno = BPF_REG_1 + arg;
3880        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3881        enum bpf_reg_type expected_type, type = reg->type;
3882        enum bpf_arg_type arg_type = fn->arg_type[arg];
3883        int err = 0;
3884
3885        if (arg_type == ARG_DONTCARE)
3886                return 0;
3887
3888        err = check_reg_arg(env, regno, SRC_OP);
3889        if (err)
3890                return err;
3891
3892        if (arg_type == ARG_ANYTHING) {
3893                if (is_pointer_value(env, regno)) {
3894                        verbose(env, "R%d leaks addr into helper function\n",
3895                                regno);
3896                        return -EACCES;
3897                }
3898                return 0;
3899        }
3900
3901        if (type_is_pkt_pointer(type) &&
3902            !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3903                verbose(env, "helper access to the packet is not allowed\n");
3904                return -EACCES;
3905        }
3906
3907        if (arg_type == ARG_PTR_TO_MAP_KEY ||
3908            arg_type == ARG_PTR_TO_MAP_VALUE ||
3909            arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3910            arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3911                expected_type = PTR_TO_STACK;
3912                if (register_is_null(reg) &&
3913                    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3914                        /* final test in check_stack_boundary() */;
3915                else if (!type_is_pkt_pointer(type) &&
3916                         type != PTR_TO_MAP_VALUE &&
3917                         type != expected_type)
3918                        goto err_type;
3919        } else if (arg_type == ARG_CONST_SIZE ||
3920                   arg_type == ARG_CONST_SIZE_OR_ZERO ||
3921                   arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) {
3922                expected_type = SCALAR_VALUE;
3923                if (type != expected_type)
3924                        goto err_type;
3925        } else if (arg_type == ARG_CONST_MAP_PTR) {
3926                expected_type = CONST_PTR_TO_MAP;
3927                if (type != expected_type)
3928                        goto err_type;
3929        } else if (arg_type == ARG_PTR_TO_CTX ||
3930                   arg_type == ARG_PTR_TO_CTX_OR_NULL) {
3931                expected_type = PTR_TO_CTX;
3932                if (!(register_is_null(reg) &&
3933                      arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
3934                        if (type != expected_type)
3935                                goto err_type;
3936                        err = check_ctx_reg(env, reg, regno);
3937                        if (err < 0)
3938                                return err;
3939                }
3940        } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3941                expected_type = PTR_TO_SOCK_COMMON;
3942                /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3943                if (!type_is_sk_pointer(type))
3944                        goto err_type;
3945                if (reg->ref_obj_id) {
3946                        if (meta->ref_obj_id) {
3947                                verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3948                                        regno, reg->ref_obj_id,
3949                                        meta->ref_obj_id);
3950                                return -EFAULT;
3951                        }
3952                        meta->ref_obj_id = reg->ref_obj_id;
3953                }
3954        } else if (arg_type == ARG_PTR_TO_SOCKET ||
3955                   arg_type == ARG_PTR_TO_SOCKET_OR_NULL) {
3956                expected_type = PTR_TO_SOCKET;
3957                if (!(register_is_null(reg) &&
3958                      arg_type == ARG_PTR_TO_SOCKET_OR_NULL)) {
3959                        if (type != expected_type)
3960                                goto err_type;
3961                }
3962        } else if (arg_type == ARG_PTR_TO_BTF_ID) {
3963                expected_type = PTR_TO_BTF_ID;
3964                if (type != expected_type)
3965                        goto err_type;
3966                if (!fn->check_btf_id) {
3967                        if (reg->btf_id != meta->btf_id) {
3968                                verbose(env, "Helper has type %s got %s in R%d\n",
3969                                        kernel_type_name(meta->btf_id),
3970                                        kernel_type_name(reg->btf_id), regno);
3971
3972                                return -EACCES;
3973                        }
3974                } else if (!fn->check_btf_id(reg->btf_id, arg)) {
3975                        verbose(env, "Helper does not support %s in R%d\n",
3976                                kernel_type_name(reg->btf_id), regno);
3977
3978                        return -EACCES;
3979                }
3980                if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3981                        verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3982                                regno);
3983                        return -EACCES;
3984                }
3985        } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3986                if (meta->func_id == BPF_FUNC_spin_lock) {
3987                        if (process_spin_lock(env, regno, true))
3988                                return -EACCES;
3989                } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3990                        if (process_spin_lock(env, regno, false))
3991                                return -EACCES;
3992                } else {
3993                        verbose(env, "verifier internal error\n");
3994                        return -EFAULT;
3995                }
3996        } else if (arg_type_is_mem_ptr(arg_type)) {
3997                expected_type = PTR_TO_STACK;
3998                /* One exception here. In case function allows for NULL to be
3999                 * passed in as argument, it's a SCALAR_VALUE type. Final test
4000                 * happens during stack boundary checking.
4001                 */
4002                if (register_is_null(reg) &&
4003                    (arg_type == ARG_PTR_TO_MEM_OR_NULL ||
4004                     arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL))
4005                        /* final test in check_stack_boundary() */;
4006                else if (!type_is_pkt_pointer(type) &&
4007                         type != PTR_TO_MAP_VALUE &&
4008                         type != PTR_TO_MEM &&
4009                         type != PTR_TO_RDONLY_BUF &&
4010                         type != PTR_TO_RDWR_BUF &&
4011                         type != expected_type)
4012                        goto err_type;
4013                meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
4014        } else if (arg_type_is_alloc_mem_ptr(arg_type)) {
4015                expected_type = PTR_TO_MEM;
4016                if (register_is_null(reg) &&
4017                    arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)
4018                        /* final test in check_stack_boundary() */;
4019                else if (type != expected_type)
4020                        goto err_type;
4021                if (meta->ref_obj_id) {
4022                        verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4023                                regno, reg->ref_obj_id,
4024                                meta->ref_obj_id);
4025                        return -EFAULT;
4026                }
4027                meta->ref_obj_id = reg->ref_obj_id;
4028        } else if (arg_type_is_int_ptr(arg_type)) {
4029                expected_type = PTR_TO_STACK;
4030                if (!type_is_pkt_pointer(type) &&
4031                    type != PTR_TO_MAP_VALUE &&
4032                    type != expected_type)
4033                        goto err_type;
4034        } else {
4035                verbose(env, "unsupported arg_type %d\n", arg_type);
4036                return -EFAULT;
4037        }
4038
4039        if (arg_type == ARG_CONST_MAP_PTR) {
4040                /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4041                meta->map_ptr = reg->map_ptr;
4042        } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4043                /* bpf_map_xxx(..., map_ptr, ..., key) call:
4044                 * check that [key, key + map->key_size) are within
4045                 * stack limits and initialized
4046                 */
4047                if (!meta->map_ptr) {
4048                        /* in function declaration map_ptr must come before
4049                         * map_key, so that it's verified and known before
4050                         * we have to check map_key here. Otherwise it means
4051                         * that kernel subsystem misconfigured verifier
4052                         */
4053                        verbose(env, "invalid map_ptr to access map->key\n");
4054                        return -EACCES;
4055                }
4056                err = check_helper_mem_access(env, regno,
4057                                              meta->map_ptr->key_size, false,
4058                                              NULL);
4059        } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4060                   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4061                    !register_is_null(reg)) ||
4062                   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4063                /* bpf_map_xxx(..., map_ptr, ..., value) call:
4064                 * check [value, value + map->value_size) validity
4065                 */
4066                if (!meta->map_ptr) {
4067                        /* kernel subsystem misconfigured verifier */
4068                        verbose(env, "invalid map_ptr to access map->value\n");
4069                        return -EACCES;
4070                }
4071                meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4072                err = check_helper_mem_access(env, regno,
4073                                              meta->map_ptr->value_size, false,
4074                                              meta);
4075        } else if (arg_type_is_mem_size(arg_type)) {
4076                bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4077
4078                /* This is used to refine r0 return value bounds for helpers
4079                 * that enforce this value as an upper bound on return values.
4080                 * See do_refine_retval_range() for helpers that can refine
4081                 * the return value. C type of helper is u32 so we pull register
4082                 * bound from umax_value however, if negative verifier errors
4083                 * out. Only upper bounds can be learned because retval is an
4084                 * int type and negative retvals are allowed.
4085                 */
4086                meta->msize_max_value = reg->umax_value;
4087
4088                /* The register is SCALAR_VALUE; the access check
4089                 * happens using its boundaries.
4090                 */
4091                if (!tnum_is_const(reg->var_off))
4092                        /* For unprivileged variable accesses, disable raw
4093                         * mode so that the program is required to
4094                         * initialize all the memory that the helper could
4095                         * just partially fill up.
4096                         */
4097                        meta = NULL;
4098
4099                if (reg->smin_value < 0) {
4100                        verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4101                                regno);
4102                        return -EACCES;
4103                }
4104
4105                if (reg->umin_value == 0) {
4106                        err = check_helper_mem_access(env, regno - 1, 0,
4107                                                      zero_size_allowed,
4108                                                      meta);
4109                        if (err)
4110                                return err;
4111                }
4112
4113                if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4114                        verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4115                                regno);
4116                        return -EACCES;
4117                }
4118                err = check_helper_mem_access(env, regno - 1,
4119                                              reg->umax_value,
4120                                              zero_size_allowed, meta);
4121                if (!err)
4122                        err = mark_chain_precision(env, regno);
4123        } else if (arg_type_is_alloc_size(arg_type)) {
4124                if (!tnum_is_const(reg->var_off)) {
4125                        verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4126                                regno);
4127                        return -EACCES;
4128                }
4129                meta->mem_size = reg->var_off.value;
4130        } else if (arg_type_is_int_ptr(arg_type)) {
4131                int size = int_ptr_type_to_size(arg_type);
4132
4133                err = check_helper_mem_access(env, regno, size, false, meta);
4134                if (err)
4135                        return err;
4136                err = check_ptr_alignment(env, reg, 0, size, true);
4137        }
4138
4139        return err;
4140err_type:
4141        verbose(env, "R%d type=%s expected=%s\n", regno,
4142                reg_type_str[type], reg_type_str[expected_type]);
4143        return -EACCES;
4144}
4145
4146static int check_map_func_compatibility(struct bpf_verifier_env *env,
4147                                        struct bpf_map *map, int func_id)
4148{
4149        if (!map)
4150                return 0;
4151
4152        /* We need a two way check, first is from map perspective ... */
4153        switch (map->map_type) {
4154        case BPF_MAP_TYPE_PROG_ARRAY:
4155                if (func_id != BPF_FUNC_tail_call)
4156                        goto error;
4157                break;
4158        case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4159                if (func_id != BPF_FUNC_perf_event_read &&
4160                    func_id != BPF_FUNC_perf_event_output &&
4161                    func_id != BPF_FUNC_skb_output &&
4162                    func_id != BPF_FUNC_perf_event_read_value &&
4163                    func_id != BPF_FUNC_xdp_output)
4164                        goto error;
4165                break;
4166        case BPF_MAP_TYPE_RINGBUF:
4167                if (func_id != BPF_FUNC_ringbuf_output &&
4168                    func_id != BPF_FUNC_ringbuf_reserve &&
4169                    func_id != BPF_FUNC_ringbuf_submit &&
4170                    func_id != BPF_FUNC_ringbuf_discard &&
4171                    func_id != BPF_FUNC_ringbuf_query)
4172                        goto error;
4173                break;
4174        case BPF_MAP_TYPE_STACK_TRACE:
4175                if (func_id != BPF_FUNC_get_stackid)
4176                        goto error;
4177                break;
4178        case BPF_MAP_TYPE_CGROUP_ARRAY:
4179                if (func_id != BPF_FUNC_skb_under_cgroup &&
4180                    func_id != BPF_FUNC_current_task_under_cgroup)
4181                        goto error;
4182                break;
4183        case BPF_MAP_TYPE_CGROUP_STORAGE:
4184        case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4185                if (func_id != BPF_FUNC_get_local_storage)
4186                        goto error;
4187                break;
4188        case BPF_MAP_TYPE_DEVMAP:
4189        case BPF_MAP_TYPE_DEVMAP_HASH:
4190                if (func_id != BPF_FUNC_redirect_map &&
4191                    func_id != BPF_FUNC_map_lookup_elem)
4192                        goto error;
4193                break;
4194        /* Restrict bpf side of cpumap and xskmap, open when use-cases
4195         * appear.
4196         */
4197        case BPF_MAP_TYPE_CPUMAP:
4198                if (func_id != BPF_FUNC_redirect_map)
4199                        goto error;
4200                break;
4201        case BPF_MAP_TYPE_XSKMAP:
4202                if (func_id != BPF_FUNC_redirect_map &&
4203                    func_id != BPF_FUNC_map_lookup_elem)
4204                        goto error;
4205                break;
4206        case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4207        case BPF_MAP_TYPE_HASH_OF_MAPS:
4208                if (func_id != BPF_FUNC_map_lookup_elem)
4209                        goto error;
4210                break;
4211        case BPF_MAP_TYPE_SOCKMAP:
4212                if (func_id != BPF_FUNC_sk_redirect_map &&
4213                    func_id != BPF_FUNC_sock_map_update &&
4214                    func_id != BPF_FUNC_map_delete_elem &&
4215                    func_id != BPF_FUNC_msg_redirect_map &&
4216                    func_id != BPF_FUNC_sk_select_reuseport &&
4217                    func_id != BPF_FUNC_map_lookup_elem)
4218                        goto error;
4219                break;
4220        case BPF_MAP_TYPE_SOCKHASH:
4221                if (func_id != BPF_FUNC_sk_redirect_hash &&
4222                    func_id != BPF_FUNC_sock_hash_update &&
4223                    func_id != BPF_FUNC_map_delete_elem &&
4224                    func_id != BPF_FUNC_msg_redirect_hash &&
4225                    func_id != BPF_FUNC_sk_select_reuseport &&
4226                    func_id != BPF_FUNC_map_lookup_elem)
4227                        goto error;
4228                break;
4229        case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4230                if (func_id != BPF_FUNC_sk_select_reuseport)
4231                        goto error;
4232                break;
4233        case BPF_MAP_TYPE_QUEUE:
4234        case BPF_MAP_TYPE_STACK:
4235                if (func_id != BPF_FUNC_map_peek_elem &&
4236                    func_id != BPF_FUNC_map_pop_elem &&
4237                    func_id != BPF_FUNC_map_push_elem)
4238                        goto error;
4239                break;
4240        case BPF_MAP_TYPE_SK_STORAGE:
4241                if (func_id != BPF_FUNC_sk_storage_get &&
4242                    func_id != BPF_FUNC_sk_storage_delete)
4243                        goto error;
4244                break;
4245        default:
4246                break;
4247        }
4248
4249        /* ... and second from the function itself. */
4250        switch (func_id) {
4251        case BPF_FUNC_tail_call:
4252                if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4253                        goto error;
4254                if (env->subprog_cnt > 1) {
4255                        verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
4256                        return -EINVAL;
4257                }
4258                break;
4259        case BPF_FUNC_perf_event_read:
4260        case BPF_FUNC_perf_event_output:
4261        case BPF_FUNC_perf_event_read_value:
4262        case BPF_FUNC_skb_output:
4263        case BPF_FUNC_xdp_output:
4264                if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4265                        goto error;
4266                break;
4267        case BPF_FUNC_get_stackid:
4268                if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4269                        goto error;
4270                break;
4271        case BPF_FUNC_current_task_under_cgroup:
4272        case BPF_FUNC_skb_under_cgroup:
4273                if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4274                        goto error;
4275                break;
4276        case BPF_FUNC_redirect_map:
4277                if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4278                    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4279                    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4280                    map->map_type != BPF_MAP_TYPE_XSKMAP)
4281                        goto error;
4282                break;
4283        case BPF_FUNC_sk_redirect_map:
4284        case BPF_FUNC_msg_redirect_map:
4285        case BPF_FUNC_sock_map_update:
4286                if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4287                        goto error;
4288                break;
4289        case BPF_FUNC_sk_redirect_hash:
4290        case BPF_FUNC_msg_redirect_hash:
4291        case BPF_FUNC_sock_hash_update:
4292                if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4293                        goto error;
4294                break;
4295        case BPF_FUNC_get_local_storage:
4296                if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4297                    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4298                        goto error;
4299                break;
4300        case BPF_FUNC_sk_select_reuseport:
4301                if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4302                    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4303                    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4304                        goto error;
4305                break;
4306        case BPF_FUNC_map_peek_elem:
4307        case BPF_FUNC_map_pop_elem:
4308        case BPF_FUNC_map_push_elem:
4309                if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4310                    map->map_type != BPF_MAP_TYPE_STACK)
4311                        goto error;
4312                break;
4313        case BPF_FUNC_sk_storage_get:
4314        case BPF_FUNC_sk_storage_delete:
4315                if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4316                        goto error;
4317                break;
4318        default:
4319                break;
4320        }
4321
4322        return 0;
4323error:
4324        verbose(env, "cannot pass map_type %d into func %s#%d\n",
4325                map->map_type, func_id_name(func_id), func_id);
4326        return -EINVAL;
4327}
4328
4329static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4330{
4331        int count = 0;
4332
4333        if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4334                count++;
4335        if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4336                count++;
4337        if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4338                count++;
4339        if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4340                count++;
4341        if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4342                count++;
4343
4344        /* We only support one arg being in raw mode at the moment,
4345         * which is sufficient for the helper functions we have
4346         * right now.
4347         */
4348        return count <= 1;
4349}
4350
4351static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4352                                    enum bpf_arg_type arg_next)
4353{
4354        return (arg_type_is_mem_ptr(arg_curr) &&
4355                !arg_type_is_mem_size(arg_next)) ||
4356               (!arg_type_is_mem_ptr(arg_curr) &&
4357                arg_type_is_mem_size(arg_next));
4358}
4359
4360static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4361{
4362        /* bpf_xxx(..., buf, len) call will access 'len'
4363         * bytes from memory 'buf'. Both arg types need
4364         * to be paired, so make sure there's no buggy
4365         * helper function specification.
4366         */
4367        if (arg_type_is_mem_size(fn->arg1_type) ||
4368            arg_type_is_mem_ptr(fn->arg5_type)  ||
4369            check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4370            check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4371            check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4372            check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4373                return false;
4374
4375        return true;
4376}
4377
4378static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4379{
4380        int count = 0;
4381
4382        if (arg_type_may_be_refcounted(fn->arg1_type))
4383                count++;
4384        if (arg_type_may_be_refcounted(fn->arg2_type))
4385                count++;
4386        if (arg_type_may_be_refcounted(fn->arg3_type))
4387                count++;
4388        if (arg_type_may_be_refcounted(fn->arg4_type))
4389                count++;
4390        if (arg_type_may_be_refcounted(fn->arg5_type))
4391                count++;
4392
4393        /* A reference acquiring function cannot acquire
4394         * another refcounted ptr.
4395         */
4396        if (may_be_acquire_function(func_id) && count)
4397                return false;
4398
4399        /* We only support one arg being unreferenced at the moment,
4400         * which is sufficient for the helper functions we have right now.
4401         */
4402        return count <= 1;
4403}
4404
4405static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4406{
4407        return check_raw_mode_ok(fn) &&
4408               check_arg_pair_ok(fn) &&
4409               check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4410}
4411
4412/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4413 * are now invalid, so turn them into unknown SCALAR_VALUE.
4414 */
4415static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4416                                     struct bpf_func_state *state)
4417{
4418        struct bpf_reg_state *regs = state->regs, *reg;
4419        int i;
4420
4421        for (i = 0; i < MAX_BPF_REG; i++)
4422                if (reg_is_pkt_pointer_any(&regs[i]))
4423                        mark_reg_unknown(env, regs, i);
4424
4425        bpf_for_each_spilled_reg(i, state, reg) {
4426                if (!reg)
4427                        continue;
4428                if (reg_is_pkt_pointer_any(reg))
4429                        __mark_reg_unknown(env, reg);
4430        }
4431}
4432
4433static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4434{
4435        struct bpf_verifier_state *vstate = env->cur_state;
4436        int i;
4437
4438        for (i = 0; i <= vstate->curframe; i++)
4439                __clear_all_pkt_pointers(env, vstate->frame[i]);
4440}
4441
4442static void release_reg_references(struct bpf_verifier_env *env,
4443                                   struct bpf_func_state *state,
4444                                   int ref_obj_id)
4445{
4446        struct bpf_reg_state *regs = state->regs, *reg;
4447        int i;
4448
4449        for (i = 0; i < MAX_BPF_REG; i++)
4450                if (regs[i].ref_obj_id == ref_obj_id)
4451                        mark_reg_unknown(env, regs, i);
4452
4453        bpf_for_each_spilled_reg(i, state, reg) {
4454                if (!reg)
4455                        continue;
4456                if (reg->ref_obj_id == ref_obj_id)
4457                        __mark_reg_unknown(env, reg);
4458        }
4459}
4460
4461/* The pointer with the specified id has released its reference to kernel
4462 * resources. Identify all copies of the same pointer and clear the reference.
4463 */
4464static int release_reference(struct bpf_verifier_env *env,
4465                             int ref_obj_id)
4466{
4467        struct bpf_verifier_state *vstate = env->cur_state;
4468        int err;
4469        int i;
4470
4471        err = release_reference_state(cur_func(env), ref_obj_id);
4472        if (err)
4473                return err;
4474
4475        for (i = 0; i <= vstate->curframe; i++)
4476                release_reg_references(env, vstate->frame[i], ref_obj_id);
4477
4478        return 0;
4479}
4480
4481static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4482                                    struct bpf_reg_state *regs)
4483{
4484        int i;
4485
4486        /* after the call registers r0 - r5 were scratched */
4487        for (i = 0; i < CALLER_SAVED_REGS; i++) {
4488                mark_reg_not_init(env, regs, caller_saved[i]);
4489                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4490        }
4491}
4492
4493static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4494                           int *insn_idx)
4495{
4496        struct bpf_verifier_state *state = env->cur_state;
4497        struct bpf_func_info_aux *func_info_aux;
4498        struct bpf_func_state *caller, *callee;
4499        int i, err, subprog, target_insn;
4500        bool is_global = false;
4501
4502        if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4503                verbose(env, "the call stack of %d frames is too deep\n",
4504                        state->curframe + 2);
4505                return -E2BIG;
4506        }
4507
4508        target_insn = *insn_idx + insn->imm;
4509        subprog = find_subprog(env, target_insn + 1);
4510        if (subprog < 0) {
4511                verbose(env, "verifier bug. No program starts at insn %d\n",
4512                        target_insn + 1);
4513                return -EFAULT;
4514        }
4515
4516        caller = state->frame[state->curframe];
4517        if (state->frame[state->curframe + 1]) {
4518                verbose(env, "verifier bug. Frame %d already allocated\n",
4519                        state->curframe + 1);
4520                return -EFAULT;
4521        }
4522
4523        func_info_aux = env->prog->aux->func_info_aux;
4524        if (func_info_aux)
4525                is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4526        err = btf_check_func_arg_match(env, subprog, caller->regs);
4527        if (err == -EFAULT)
4528                return err;
4529        if (is_global) {
4530                if (err) {
4531                        verbose(env, "Caller passes invalid args into func#%d\n",
4532                                subprog);
4533                        return err;
4534                } else {
4535                        if (env->log.level & BPF_LOG_LEVEL)
4536                                verbose(env,
4537                                        "Func#%d is global and valid. Skipping.\n",
4538                                        subprog);
4539                        clear_caller_saved_regs(env, caller->regs);
4540
4541                        /* All global functions return SCALAR_VALUE */
4542                        mark_reg_unknown(env, caller->regs, BPF_REG_0);
4543
4544                        /* continue with next insn after call */
4545                        return 0;
4546                }
4547        }
4548
4549        callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4550        if (!callee)
4551                return -ENOMEM;
4552        state->frame[state->curframe + 1] = callee;
4553
4554        /* callee cannot access r0, r6 - r9 for reading and has to write
4555         * into its own stack before reading from it.
4556         * callee can read/write into caller's stack
4557         */
4558        init_func_state(env, callee,
4559                        /* remember the callsite, it will be used by bpf_exit */
4560                        *insn_idx /* callsite */,
4561                        state->curframe + 1 /* frameno within this callchain */,
4562                        subprog /* subprog number within this prog */);
4563
4564        /* Transfer references to the callee */
4565        err = transfer_reference_state(callee, caller);
4566        if (err)
4567                return err;
4568
4569        /* copy r1 - r5 args that callee can access.  The copy includes parent
4570         * pointers, which connects us up to the liveness chain
4571         */
4572        for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4573                callee->regs[i] = caller->regs[i];
4574
4575        clear_caller_saved_regs(env, caller->regs);
4576
4577        /* only increment it after check_reg_arg() finished */
4578        state->curframe++;
4579
4580        /* and go analyze first insn of the callee */
4581        *insn_idx = target_insn;
4582
4583        if (env->log.level & BPF_LOG_LEVEL) {
4584                verbose(env, "caller:\n");
4585                print_verifier_state(env, caller);
4586                verbose(env, "callee:\n");
4587                print_verifier_state(env, callee);
4588        }
4589        return 0;
4590}
4591
4592static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4593{
4594        struct bpf_verifier_state *state = env->cur_state;
4595        struct bpf_func_state *caller, *callee;
4596        struct bpf_reg_state *r0;
4597        int err;
4598
4599        callee = state->frame[state->curframe];
4600        r0 = &callee->regs[BPF_REG_0];
4601        if (r0->type == PTR_TO_STACK) {
4602                /* technically it's ok to return caller's stack pointer
4603                 * (or caller's caller's pointer) back to the caller,
4604                 * since these pointers are valid. Only current stack
4605                 * pointer will be invalid as soon as function exits,
4606                 * but let's be conservative
4607                 */
4608                verbose(env, "cannot return stack pointer to the caller\n");
4609                return -EINVAL;
4610        }
4611
4612        state->curframe--;
4613        caller = state->frame[state->curframe];
4614        /* return to the caller whatever r0 had in the callee */
4615        caller->regs[BPF_REG_0] = *r0;
4616
4617        /* Transfer references to the caller */
4618        err = transfer_reference_state(caller, callee);
4619        if (err)
4620                return err;
4621
4622        *insn_idx = callee->callsite + 1;
4623        if (env->log.level & BPF_LOG_LEVEL) {
4624                verbose(env, "returning from callee:\n");
4625                print_verifier_state(env, callee);
4626                verbose(env, "to caller at %d:\n", *insn_idx);
4627                print_verifier_state(env, caller);
4628        }
4629        /* clear everything in the callee */
4630        free_func_state(callee);
4631        state->frame[state->curframe + 1] = NULL;
4632        return 0;
4633}
4634
4635static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4636                                   int func_id,
4637                                   struct bpf_call_arg_meta *meta)
4638{
4639        struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4640
4641        if (ret_type != RET_INTEGER ||
4642            (func_id != BPF_FUNC_get_stack &&
4643             func_id != BPF_FUNC_probe_read_str &&
4644             func_id != BPF_FUNC_probe_read_kernel_str &&
4645             func_id != BPF_FUNC_probe_read_user_str))
4646                return;
4647
4648        ret_reg->smax_value = meta->msize_max_value;
4649        ret_reg->s32_max_value = meta->msize_max_value;
4650        __reg_deduce_bounds(ret_reg);
4651        __reg_bound_offset(ret_reg);
4652        __update_reg_bounds(ret_reg);
4653}
4654
4655static int
4656record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4657                int func_id, int insn_idx)
4658{
4659        struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4660        struct bpf_map *map = meta->map_ptr;
4661
4662        if (func_id != BPF_FUNC_tail_call &&
4663            func_id != BPF_FUNC_map_lookup_elem &&
4664            func_id != BPF_FUNC_map_update_elem &&
4665            func_id != BPF_FUNC_map_delete_elem &&
4666            func_id != BPF_FUNC_map_push_elem &&
4667            func_id != BPF_FUNC_map_pop_elem &&
4668            func_id != BPF_FUNC_map_peek_elem)
4669                return 0;
4670
4671        if (map == NULL) {
4672                verbose(env, "kernel subsystem misconfigured verifier\n");
4673                return -EINVAL;
4674        }
4675
4676        /* In case of read-only, some additional restrictions
4677         * need to be applied in order to prevent altering the
4678         * state of the map from program side.
4679         */
4680        if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4681            (func_id == BPF_FUNC_map_delete_elem ||
4682             func_id == BPF_FUNC_map_update_elem ||
4683             func_id == BPF_FUNC_map_push_elem ||
4684             func_id == BPF_FUNC_map_pop_elem)) {
4685                verbose(env, "write into map forbidden\n");
4686                return -EACCES;
4687        }
4688
4689        if (!BPF_MAP_PTR(aux->map_ptr_state))
4690                bpf_map_ptr_store(aux, meta->map_ptr,
4691                                  !meta->map_ptr->bypass_spec_v1);
4692        else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4693                bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4694                                  !meta->map_ptr->bypass_spec_v1);
4695        return 0;
4696}
4697
4698static int
4699record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4700                int func_id, int insn_idx)
4701{
4702        struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4703        struct bpf_reg_state *regs = cur_regs(env), *reg;
4704        struct bpf_map *map = meta->map_ptr;
4705        struct tnum range;
4706        u64 val;
4707        int err;
4708
4709        if (func_id != BPF_FUNC_tail_call)
4710                return 0;
4711        if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4712                verbose(env, "kernel subsystem misconfigured verifier\n");
4713                return -EINVAL;
4714        }
4715
4716        range = tnum_range(0, map->max_entries - 1);
4717        reg = &regs[BPF_REG_3];
4718
4719        if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4720                bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4721                return 0;
4722        }
4723
4724        err = mark_chain_precision(env, BPF_REG_3);
4725        if (err)
4726                return err;
4727
4728        val = reg->var_off.value;
4729        if (bpf_map_key_unseen(aux))
4730                bpf_map_key_store(aux, val);
4731        else if (!bpf_map_key_poisoned(aux) &&
4732                  bpf_map_key_immediate(aux) != val)
4733                bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4734        return 0;
4735}
4736
4737static int check_reference_leak(struct bpf_verifier_env *env)
4738{
4739        struct bpf_func_state *state = cur_func(env);
4740        int i;
4741
4742        for (i = 0; i < state->acquired_refs; i++) {
4743                verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4744                        state->refs[i].id, state->refs[i].insn_idx);
4745        }
4746        return state->acquired_refs ? -EINVAL : 0;
4747}
4748
4749static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4750{
4751        const struct bpf_func_proto *fn = NULL;
4752        struct bpf_reg_state *regs;
4753        struct bpf_call_arg_meta meta;
4754        bool changes_data;
4755        int i, err;
4756
4757        /* find function prototype */
4758        if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4759                verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4760                        func_id);
4761                return -EINVAL;
4762        }
4763
4764        if (env->ops->get_func_proto)
4765                fn = env->ops->get_func_proto(func_id, env->prog);
4766        if (!fn) {
4767                verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4768                        func_id);
4769                return -EINVAL;
4770        }
4771
4772        /* eBPF programs must be GPL compatible to use GPL-ed functions */
4773        if (!env->prog->gpl_compatible && fn->gpl_only) {
4774                verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4775                return -EINVAL;
4776        }
4777
4778        /* With LD_ABS/IND some JITs save/restore skb from r1. */
4779        changes_data = bpf_helper_changes_pkt_data(fn->func);
4780        if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4781                verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4782                        func_id_name(func_id), func_id);
4783                return -EINVAL;
4784        }
4785
4786        memset(&meta, 0, sizeof(meta));
4787        meta.pkt_access = fn->pkt_access;
4788
4789        err = check_func_proto(fn, func_id);
4790        if (err) {
4791                verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4792                        func_id_name(func_id), func_id);
4793                return err;
4794        }
4795
4796        meta.func_id = func_id;
4797        /* check args */
4798        for (i = 0; i < 5; i++) {
4799                if (!fn->check_btf_id) {
4800                        err = btf_resolve_helper_id(&env->log, fn, i);
4801                        if (err > 0)
4802                                meta.btf_id = err;
4803                }
4804                err = check_func_arg(env, i, &meta, fn);
4805                if (err)
4806                        return err;
4807        }
4808
4809        err = record_func_map(env, &meta, func_id, insn_idx);
4810        if (err)
4811                return err;
4812
4813        err = record_func_key(env, &meta, func_id, insn_idx);
4814        if (err)
4815                return err;
4816
4817        /* Mark slots with STACK_MISC in case of raw mode, stack offset
4818         * is inferred from register state.
4819         */
4820        for (i = 0; i < meta.access_size; i++) {
4821                err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4822                                       BPF_WRITE, -1, false);
4823                if (err)
4824                        return err;
4825        }
4826
4827        if (func_id == BPF_FUNC_tail_call) {
4828                err = check_reference_leak(env);
4829                if (err) {
4830                        verbose(env, "tail_call would lead to reference leak\n");
4831                        return err;
4832                }
4833        } else if (is_release_function(func_id)) {
4834                err = release_reference(env, meta.ref_obj_id);
4835                if (err) {
4836                        verbose(env, "func %s#%d reference has not been acquired before\n",
4837                                func_id_name(func_id), func_id);
4838                        return err;
4839                }
4840        }
4841
4842        regs = cur_regs(env);
4843
4844        /* check that flags argument in get_local_storage(map, flags) is 0,
4845         * this is required because get_local_storage() can't return an error.
4846         */
4847        if (func_id == BPF_FUNC_get_local_storage &&
4848            !register_is_null(&regs[BPF_REG_2])) {
4849                verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4850                return -EINVAL;
4851        }
4852
4853        /* reset caller saved regs */
4854        for (i = 0; i < CALLER_SAVED_REGS; i++) {
4855                mark_reg_not_init(env, regs, caller_saved[i]);
4856                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4857        }
4858
4859        /* helper call returns 64-bit value. */
4860        regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4861
4862        /* update return register (already marked as written above) */
4863        if (fn->ret_type == RET_INTEGER) {
4864                /* sets type to SCALAR_VALUE */
4865                mark_reg_unknown(env, regs, BPF_REG_0);
4866        } else if (fn->ret_type == RET_VOID) {
4867                regs[BPF_REG_0].type = NOT_INIT;
4868        } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4869                   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4870                /* There is no offset yet applied, variable or fixed */
4871                mark_reg_known_zero(env, regs, BPF_REG_0);
4872                /* remember map_ptr, so that check_map_access()
4873                 * can check 'value_size' boundary of memory access
4874                 * to map element returned from bpf_map_lookup_elem()
4875                 */
4876                if (meta.map_ptr == NULL) {
4877                        verbose(env,
4878                                "kernel subsystem misconfigured verifier\n");
4879                        return -EINVAL;
4880                }
4881                regs[BPF_REG_0].map_ptr = meta.map_ptr;
4882                if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4883                        regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4884                        if (map_value_has_spin_lock(meta.map_ptr))
4885                                regs[BPF_REG_0].id = ++env->id_gen;
4886                } else {
4887                        regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4888                        regs[BPF_REG_0].id = ++env->id_gen;
4889                }
4890        } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4891                mark_reg_known_zero(env, regs, BPF_REG_0);
4892                regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4893                regs[BPF_REG_0].id = ++env->id_gen;
4894        } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4895                mark_reg_known_zero(env, regs, BPF_REG_0);
4896                regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4897                regs[BPF_REG_0].id = ++env->id_gen;
4898        } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4899                mark_reg_known_zero(env, regs, BPF_REG_0);
4900                regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4901                regs[BPF_REG_0].id = ++env->id_gen;
4902        } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
4903                mark_reg_known_zero(env, regs, BPF_REG_0);
4904                regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
4905                regs[BPF_REG_0].id = ++env->id_gen;
4906                regs[BPF_REG_0].mem_size = meta.mem_size;
4907        } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
4908                int ret_btf_id;
4909
4910                mark_reg_known_zero(env, regs, BPF_REG_0);
4911                regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
4912                ret_btf_id = *fn->ret_btf_id;
4913                if (ret_btf_id == 0) {
4914                        verbose(env, "invalid return type %d of func %s#%d\n",
4915                                fn->ret_type, func_id_name(func_id), func_id);
4916                        return -EINVAL;
4917                }
4918                regs[BPF_REG_0].btf_id = ret_btf_id;
4919        } else {
4920                verbose(env, "unknown return type %d of func %s#%d\n",
4921                        fn->ret_type, func_id_name(func_id), func_id);
4922                return -EINVAL;
4923        }
4924
4925        if (is_ptr_cast_function(func_id)) {
4926                /* For release_reference() */
4927                regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4928        } else if (is_acquire_function(func_id, meta.map_ptr)) {
4929                int id = acquire_reference_state(env, insn_idx);
4930
4931                if (id < 0)
4932                        return id;
4933                /* For mark_ptr_or_null_reg() */
4934                regs[BPF_REG_0].id = id;
4935                /* For release_reference() */
4936                regs[BPF_REG_0].ref_obj_id = id;
4937        }
4938
4939        do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4940
4941        err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4942        if (err)
4943                return err;
4944
4945        if ((func_id == BPF_FUNC_get_stack ||
4946             func_id == BPF_FUNC_get_task_stack) &&
4947            !env->prog->has_callchain_buf) {
4948                const char *err_str;
4949
4950#ifdef CONFIG_PERF_EVENTS
4951                err = get_callchain_buffers(sysctl_perf_event_max_stack);
4952                err_str = "cannot get callchain buffer for func %s#%d\n";
4953#else
4954                err = -ENOTSUPP;
4955                err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4956#endif
4957                if (err) {
4958                        verbose(env, err_str, func_id_name(func_id), func_id);
4959                        return err;
4960                }
4961
4962                env->prog->has_callchain_buf = true;
4963        }
4964
4965        if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
4966                env->prog->call_get_stack = true;
4967
4968        if (changes_data)
4969                clear_all_pkt_pointers(env);
4970        return 0;
4971}
4972
4973static bool signed_add_overflows(s64 a, s64 b)
4974{
4975        /* Do the add in u64, where overflow is well-defined */
4976        s64 res = (s64)((u64)a + (u64)b);
4977
4978        if (b < 0)
4979                return res > a;
4980        return res < a;
4981}
4982
4983static bool signed_add32_overflows(s64 a, s64 b)
4984{
4985        /* Do the add in u32, where overflow is well-defined */
4986        s32 res = (s32)((u32)a + (u32)b);
4987
4988        if (b < 0)
4989                return res > a;
4990        return res < a;
4991}
4992
4993static bool signed_sub_overflows(s32 a, s32 b)
4994{
4995        /* Do the sub in u64, where overflow is well-defined */
4996        s64 res = (s64)((u64)a - (u64)b);
4997
4998        if (b < 0)
4999                return res < a;
5000        return res > a;
5001}
5002
5003static bool signed_sub32_overflows(s32 a, s32 b)
5004{
5005        /* Do the sub in u64, where overflow is well-defined */
5006        s32 res = (s32)((u32)a - (u32)b);
5007
5008        if (b < 0)
5009                return res < a;
5010        return res > a;
5011}
5012
5013static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5014                                  const struct bpf_reg_state *reg,
5015                                  enum bpf_reg_type type)
5016{
5017        bool known = tnum_is_const(reg->var_off);
5018        s64 val = reg->var_off.value;
5019        s64 smin = reg->smin_value;
5020
5021        if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5022                verbose(env, "math between %s pointer and %lld is not allowed\n",
5023                        reg_type_str[type], val);
5024                return false;
5025        }
5026
5027        if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5028                verbose(env, "%s pointer offset %d is not allowed\n",
5029                        reg_type_str[type], reg->off);
5030                return false;
5031        }
5032
5033        if (smin == S64_MIN) {
5034                verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5035                        reg_type_str[type]);
5036                return false;
5037        }
5038
5039        if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5040                verbose(env, "value %lld makes %s pointer be out of bounds\n",
5041                        smin, reg_type_str[type]);
5042                return false;
5043        }
5044
5045        return true;
5046}
5047
5048static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5049{
5050        return &env->insn_aux_data[env->insn_idx];
5051}
5052
5053static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5054                              u32 *ptr_limit, u8 opcode, bool off_is_neg)
5055{
5056        bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
5057                            (opcode == BPF_SUB && !off_is_neg);
5058        u32 off;
5059
5060        switch (ptr_reg->type) {
5061        case PTR_TO_STACK:
5062                /* Indirect variable offset stack access is prohibited in
5063                 * unprivileged mode so it's not handled here.
5064                 */
5065                off = ptr_reg->off + ptr_reg->var_off.value;
5066                if (mask_to_left)
5067                        *ptr_limit = MAX_BPF_STACK + off;
5068                else
5069                        *ptr_limit = -off;
5070                return 0;
5071        case PTR_TO_MAP_VALUE:
5072                if (mask_to_left) {
5073                        *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5074                } else {
5075                        off = ptr_reg->smin_value + ptr_reg->off;
5076                        *ptr_limit = ptr_reg->map_ptr->value_size - off;
5077                }
5078                return 0;
5079        default:
5080                return -EINVAL;
5081        }
5082}
5083
5084static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5085                                    const struct bpf_insn *insn)
5086{
5087        return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5088}
5089
5090static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5091                                       u32 alu_state, u32 alu_limit)
5092{
5093        /* If we arrived here from different branches with different
5094         * state or limits to sanitize, then this won't work.
5095         */
5096        if (aux->alu_state &&
5097            (aux->alu_state != alu_state ||
5098             aux->alu_limit != alu_limit))
5099                return -EACCES;
5100
5101        /* Corresponding fixup done in fixup_bpf_calls(). */
5102        aux->alu_state = alu_state;
5103        aux->alu_limit = alu_limit;
5104        return 0;
5105}
5106
5107static int sanitize_val_alu(struct bpf_verifier_env *env,
5108                            struct bpf_insn *insn)
5109{
5110        struct bpf_insn_aux_data *aux = cur_aux(env);
5111
5112        if (can_skip_alu_sanitation(env, insn))
5113                return 0;
5114
5115        return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5116}
5117
5118static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5119                            struct bpf_insn *insn,
5120                            const struct bpf_reg_state *ptr_reg,
5121                            struct bpf_reg_state *dst_reg,
5122                            bool off_is_neg)
5123{
5124        struct bpf_verifier_state *vstate = env->cur_state;
5125        struct bpf_insn_aux_data *aux = cur_aux(env);
5126        bool ptr_is_dst_reg = ptr_reg == dst_reg;
5127        u8 opcode = BPF_OP(insn->code);
5128        u32 alu_state, alu_limit;
5129        struct bpf_reg_state tmp;
5130        bool ret;
5131
5132        if (can_skip_alu_sanitation(env, insn))
5133                return 0;
5134
5135        /* We already marked aux for masking from non-speculative
5136         * paths, thus we got here in the first place. We only care
5137         * to explore bad access from here.
5138         */
5139        if (vstate->speculative)
5140                goto do_sim;
5141
5142        alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5143        alu_state |= ptr_is_dst_reg ?
5144                     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5145
5146        if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5147                return 0;
5148        if (update_alu_sanitation_state(aux, alu_state, alu_limit))
5149                return -EACCES;
5150do_sim:
5151        /* Simulate and find potential out-of-bounds access under
5152         * speculative execution from truncation as a result of
5153         * masking when off was not within expected range. If off
5154         * sits in dst, then we temporarily need to move ptr there
5155         * to simulate dst (== 0) +/-= ptr. Needed, for example,
5156         * for cases where we use K-based arithmetic in one direction
5157         * and truncated reg-based in the other in order to explore
5158         * bad access.
5159         */
5160        if (!ptr_is_dst_reg) {
5161                tmp = *dst_reg;
5162                *dst_reg = *ptr_reg;
5163        }
5164        ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5165        if (!ptr_is_dst_reg && ret)
5166                *dst_reg = tmp;
5167        return !ret ? -EFAULT : 0;
5168}
5169
5170/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5171 * Caller should also handle BPF_MOV case separately.
5172 * If we return -EACCES, caller may want to try again treating pointer as a
5173 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
5174 */
5175static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5176                                   struct bpf_insn *insn,
5177                                   const struct bpf_reg_state *ptr_reg,
5178                                   const struct bpf_reg_state *off_reg)
5179{
5180        struct bpf_verifier_state *vstate = env->cur_state;
5181        struct bpf_func_state *state = vstate->frame[vstate->curframe];
5182        struct bpf_reg_state *regs = state->regs, *dst_reg;
5183        bool known = tnum_is_const(off_reg->var_off);
5184        s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5185            smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5186        u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5187            umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5188        u32 dst = insn->dst_reg, src = insn->src_reg;
5189        u8 opcode = BPF_OP(insn->code);
5190        int ret;
5191
5192        dst_reg = &regs[dst];
5193
5194        if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5195            smin_val > smax_val || umin_val > umax_val) {
5196                /* Taint dst register if offset had invalid bounds derived from
5197                 * e.g. dead branches.
5198                 */
5199                __mark_reg_unknown(env, dst_reg);
5200                return 0;
5201        }
5202
5203        if (BPF_CLASS(insn->code) != BPF_ALU64) {
5204                /* 32-bit ALU ops on pointers produce (meaningless) scalars */
5205                if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5206                        __mark_reg_unknown(env, dst_reg);
5207                        return 0;
5208                }
5209
5210                verbose(env,
5211                        "R%d 32-bit pointer arithmetic prohibited\n",
5212                        dst);
5213                return -EACCES;
5214        }
5215
5216        switch (ptr_reg->type) {
5217        case PTR_TO_MAP_VALUE_OR_NULL:
5218                verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5219                        dst, reg_type_str[ptr_reg->type]);
5220                return -EACCES;
5221        case CONST_PTR_TO_MAP:
5222        case PTR_TO_PACKET_END:
5223        case PTR_TO_SOCKET:
5224        case PTR_TO_SOCKET_OR_NULL:
5225        case PTR_TO_SOCK_COMMON:
5226        case PTR_TO_SOCK_COMMON_OR_NULL:
5227        case PTR_TO_TCP_SOCK:
5228        case PTR_TO_TCP_SOCK_OR_NULL:
5229        case PTR_TO_XDP_SOCK:
5230                verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5231                        dst, reg_type_str[ptr_reg->type]);
5232                return -EACCES;
5233        case PTR_TO_MAP_VALUE:
5234                if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5235                        verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5236                                off_reg == dst_reg ? dst : src);
5237                        return -EACCES;
5238                }
5239                fallthrough;
5240        default:
5241                break;
5242        }
5243
5244        /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5245         * The id may be overwritten later if we create a new variable offset.
5246         */
5247        dst_reg->type = ptr_reg->type;
5248        dst_reg->id = ptr_reg->id;
5249
5250        if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5251            !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5252                return -EINVAL;
5253
5254        /* pointer types do not carry 32-bit bounds at the moment. */
5255        __mark_reg32_unbounded(dst_reg);
5256
5257        switch (opcode) {
5258        case BPF_ADD:
5259                ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5260                if (ret < 0) {
5261                        verbose(env, "R%d tried to add from different maps or paths\n", dst);
5262                        return ret;
5263                }
5264                /* We can take a fixed offset as long as it doesn't overflow
5265                 * the s32 'off' field
5266                 */
5267                if (known && (ptr_reg->off + smin_val ==
5268                              (s64)(s32)(ptr_reg->off + smin_val))) {
5269                        /* pointer += K.  Accumulate it into fixed offset */
5270                        dst_reg->smin_value = smin_ptr;
5271                        dst_reg->smax_value = smax_ptr;
5272                        dst_reg->umin_value = umin_ptr;
5273                        dst_reg->umax_value = umax_ptr;
5274                        dst_reg->var_off = ptr_reg->var_off;
5275                        dst_reg->off = ptr_reg->off + smin_val;
5276                        dst_reg->raw = ptr_reg->raw;
5277                        break;
5278                }
5279                /* A new variable offset is created.  Note that off_reg->off
5280                 * == 0, since it's a scalar.
5281                 * dst_reg gets the pointer type and since some positive
5282                 * integer value was added to the pointer, give it a new 'id'
5283                 * if it's a PTR_TO_PACKET.
5284                 * this creates a new 'base' pointer, off_reg (variable) gets
5285                 * added into the variable offset, and we copy the fixed offset
5286                 * from ptr_reg.
5287                 */
5288                if (signed_add_overflows(smin_ptr, smin_val) ||
5289                    signed_add_overflows(smax_ptr, smax_val)) {
5290                        dst_reg->smin_value = S64_MIN;
5291                        dst_reg->smax_value = S64_MAX;
5292                } else {
5293                        dst_reg->smin_value = smin_ptr + smin_val;
5294                        dst_reg->smax_value = smax_ptr + smax_val;
5295                }
5296                if (umin_ptr + umin_val < umin_ptr ||
5297                    umax_ptr + umax_val < umax_ptr) {
5298                        dst_reg->umin_value = 0;
5299                        dst_reg->umax_value = U64_MAX;
5300                } else {
5301                        dst_reg->umin_value = umin_ptr + umin_val;
5302                        dst_reg->umax_value = umax_ptr + umax_val;
5303                }
5304                dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5305                dst_reg->off = ptr_reg->off;
5306                dst_reg->raw = ptr_reg->raw;
5307                if (reg_is_pkt_pointer(ptr_reg)) {
5308                        dst_reg->id = ++env->id_gen;
5309                        /* something was added to pkt_ptr, set range to zero */
5310                        dst_reg->raw = 0;
5311                }
5312                break;
5313        case BPF_SUB:
5314                ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5315                if (ret < 0) {
5316                        verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5317                        return ret;
5318                }
5319                if (dst_reg == off_reg) {
5320                        /* scalar -= pointer.  Creates an unknown scalar */
5321                        verbose(env, "R%d tried to subtract pointer from scalar\n",
5322                                dst);
5323                        return -EACCES;
5324                }
5325                /* We don't allow subtraction from FP, because (according to
5326                 * test_verifier.c test "invalid fp arithmetic", JITs might not
5327                 * be able to deal with it.
5328                 */
5329                if (ptr_reg->type == PTR_TO_STACK) {
5330                        verbose(env, "R%d subtraction from stack pointer prohibited\n",
5331                                dst);
5332                        return -EACCES;
5333                }
5334                if (known && (ptr_reg->off - smin_val ==
5335                              (s64)(s32)(ptr_reg->off - smin_val))) {
5336                        /* pointer -= K.  Subtract it from fixed offset */
5337                        dst_reg->smin_value = smin_ptr;
5338                        dst_reg->smax_value = smax_ptr;
5339                        dst_reg->umin_value = umin_ptr;
5340                        dst_reg->umax_value = umax_ptr;
5341                        dst_reg->var_off = ptr_reg->var_off;
5342                        dst_reg->id = ptr_reg->id;
5343                        dst_reg->off = ptr_reg->off - smin_val;
5344                        dst_reg->raw = ptr_reg->raw;
5345                        break;
5346                }
5347                /* A new variable offset is created.  If the subtrahend is known
5348                 * nonnegative, then any reg->range we had before is still good.
5349                 */
5350                if (signed_sub_overflows(smin_ptr, smax_val) ||
5351                    signed_sub_overflows(smax_ptr, smin_val)) {
5352                        /* Overflow possible, we know nothing */
5353                        dst_reg->smin_value = S64_MIN;
5354                        dst_reg->smax_value = S64_MAX;
5355                } else {
5356                        dst_reg->smin_value = smin_ptr - smax_val;
5357                        dst_reg->smax_value = smax_ptr - smin_val;
5358                }
5359                if (umin_ptr < umax_val) {
5360                        /* Overflow possible, we know nothing */
5361                        dst_reg->umin_value = 0;
5362                        dst_reg->umax_value = U64_MAX;
5363                } else {
5364                        /* Cannot overflow (as long as bounds are consistent) */
5365                        dst_reg->umin_value = umin_ptr - umax_val;
5366                        dst_reg->umax_value = umax_ptr - umin_val;
5367                }
5368                dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5369                dst_reg->off = ptr_reg->off;
5370                dst_reg->raw = ptr_reg->raw;
5371                if (reg_is_pkt_pointer(ptr_reg)) {
5372                        dst_reg->id = ++env->id_gen;
5373                        /* something was added to pkt_ptr, set range to zero */
5374                        if (smin_val < 0)
5375                                dst_reg->raw = 0;
5376                }
5377                break;
5378        case BPF_AND:
5379        case BPF_OR:
5380        case BPF_XOR:
5381                /* bitwise ops on pointers are troublesome, prohibit. */
5382                verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5383                        dst, bpf_alu_string[opcode >> 4]);
5384                return -EACCES;
5385        default:
5386                /* other operators (e.g. MUL,LSH) produce non-pointer results */
5387                verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5388                        dst, bpf_alu_string[opcode >> 4]);
5389                return -EACCES;
5390        }
5391
5392        if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5393                return -EINVAL;
5394
5395        __update_reg_bounds(dst_reg);
5396        __reg_deduce_bounds(dst_reg);
5397        __reg_bound_offset(dst_reg);
5398
5399        /* For unprivileged we require that resulting offset must be in bounds
5400         * in order to be able to sanitize access later on.
5401         */
5402        if (!env->bypass_spec_v1) {
5403                if (dst_reg->type == PTR_TO_MAP_VALUE &&
5404                    check_map_access(env, dst, dst_reg->off, 1, false)) {
5405                        verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5406                                "prohibited for !root\n", dst);
5407                        return -EACCES;
5408                } else if (dst_reg->type == PTR_TO_STACK &&
5409                           check_stack_access(env, dst_reg, dst_reg->off +
5410                                              dst_reg->var_off.value, 1)) {
5411                        verbose(env, "R%d stack pointer arithmetic goes out of range, "
5412                                "prohibited for !root\n", dst);
5413                        return -EACCES;
5414                }
5415        }
5416
5417        return 0;
5418}
5419
5420static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5421                                 struct bpf_reg_state *src_reg)
5422{
5423        s32 smin_val = src_reg->s32_min_value;
5424        s32 smax_val = src_reg->s32_max_value;
5425        u32 umin_val = src_reg->u32_min_value;
5426        u32 umax_val = src_reg->u32_max_value;
5427
5428        if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5429            signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5430                dst_reg->s32_min_value = S32_MIN;
5431                dst_reg->s32_max_value = S32_MAX;
5432        } else {
5433                dst_reg->s32_min_value += smin_val;
5434                dst_reg->s32_max_value += smax_val;
5435        }
5436        if (dst_reg->u32_min_value + umin_val < umin_val ||
5437            dst_reg->u32_max_value + umax_val < umax_val) {
5438                dst_reg->u32_min_value = 0;
5439                dst_reg->u32_max_value = U32_MAX;
5440        } else {
5441                dst_reg->u32_min_value += umin_val;
5442                dst_reg->u32_max_value += umax_val;
5443        }
5444}
5445
5446static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5447                               struct bpf_reg_state *src_reg)
5448{
5449        s64 smin_val = src_reg->smin_value;
5450        s64 smax_val = src_reg->smax_value;
5451        u64 umin_val = src_reg->umin_value;
5452        u64 umax_val = src_reg->umax_value;
5453
5454        if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5455            signed_add_overflows(dst_reg->smax_value, smax_val)) {
5456                dst_reg->smin_value = S64_MIN;
5457                dst_reg->smax_value = S64_MAX;
5458        } else {
5459                dst_reg->smin_value += smin_val;
5460                dst_reg->smax_value += smax_val;
5461        }
5462        if (dst_reg->umin_value + umin_val < umin_val ||
5463            dst_reg->umax_value + umax_val < umax_val) {
5464                dst_reg->umin_value = 0;
5465                dst_reg->umax_value = U64_MAX;
5466        } else {
5467                dst_reg->umin_value += umin_val;
5468                dst_reg->umax_value += umax_val;
5469        }
5470}
5471
5472static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5473                                 struct bpf_reg_state *src_reg)
5474{
5475        s32 smin_val = src_reg->s32_min_value;
5476        s32 smax_val = src_reg->s32_max_value;
5477        u32 umin_val = src_reg->u32_min_value;
5478        u32 umax_val = src_reg->u32_max_value;
5479
5480        if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5481            signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5482                /* Overflow possible, we know nothing */
5483                dst_reg->s32_min_value = S32_MIN;
5484                dst_reg->s32_max_value = S32_MAX;
5485        } else {
5486                dst_reg->s32_min_value -= smax_val;
5487                dst_reg->s32_max_value -= smin_val;
5488        }
5489        if (dst_reg->u32_min_value < umax_val) {
5490                /* Overflow possible, we know nothing */
5491                dst_reg->u32_min_value = 0;
5492                dst_reg->u32_max_value = U32_MAX;
5493        } else {
5494                /* Cannot overflow (as long as bounds are consistent) */
5495                dst_reg->u32_min_value -= umax_val;
5496                dst_reg->u32_max_value -= umin_val;
5497        }
5498}
5499
5500static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5501                               struct bpf_reg_state *src_reg)
5502{
5503        s64 smin_val = src_reg->smin_value;
5504        s64 smax_val = src_reg->smax_value;
5505        u64 umin_val = src_reg->umin_value;
5506        u64 umax_val = src_reg->umax_value;
5507
5508        if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5509            signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5510                /* Overflow possible, we know nothing */
5511                dst_reg->smin_value = S64_MIN;
5512                dst_reg->smax_value = S64_MAX;
5513        } else {
5514                dst_reg->smin_value -= smax_val;
5515                dst_reg->smax_value -= smin_val;
5516        }
5517        if (dst_reg->umin_value < umax_val) {
5518                /* Overflow possible, we know nothing */
5519                dst_reg->umin_value = 0;
5520                dst_reg->umax_value = U64_MAX;
5521        } else {
5522                /* Cannot overflow (as long as bounds are consistent) */
5523                dst_reg->umin_value -= umax_val;
5524                dst_reg->umax_value -= umin_val;
5525        }
5526}
5527
5528static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5529                                 struct bpf_reg_state *src_reg)
5530{
5531        s32 smin_val = src_reg->s32_min_value;
5532        u32 umin_val = src_reg->u32_min_value;
5533        u32 umax_val = src_reg->u32_max_value;
5534
5535        if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5536                /* Ain't nobody got time to multiply that sign */
5537                __mark_reg32_unbounded(dst_reg);
5538                return;
5539        }
5540        /* Both values are positive, so we can work with unsigned and
5541         * copy the result to signed (unless it exceeds S32_MAX).
5542         */
5543        if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5544                /* Potential overflow, we know nothing */
5545                __mark_reg32_unbounded(dst_reg);
5546                return;
5547        }
5548        dst_reg->u32_min_value *= umin_val;
5549        dst_reg->u32_max_value *= umax_val;
5550        if (dst_reg->u32_max_value > S32_MAX) {
5551                /* Overflow possible, we know nothing */
5552                dst_reg->s32_min_value = S32_MIN;
5553                dst_reg->s32_max_value = S32_MAX;
5554        } else {
5555                dst_reg->s32_min_value = dst_reg->u32_min_value;
5556                dst_reg->s32_max_value = dst_reg->u32_max_value;
5557        }
5558}
5559
5560static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5561                               struct bpf_reg_state *src_reg)
5562{
5563        s64 smin_val = src_reg->smin_value;
5564        u64 umin_val = src_reg->umin_value;
5565        u64 umax_val = src_reg->umax_value;
5566
5567        if (smin_val < 0 || dst_reg->smin_value < 0) {
5568                /* Ain't nobody got time to multiply that sign */
5569                __mark_reg64_unbounded(dst_reg);
5570                return;
5571        }
5572        /* Both values are positive, so we can work with unsigned and
5573         * copy the result to signed (unless it exceeds S64_MAX).
5574         */
5575        if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5576                /* Potential overflow, we know nothing */
5577                __mark_reg64_unbounded(dst_reg);
5578                return;
5579        }
5580        dst_reg->umin_value *= umin_val;
5581        dst_reg->umax_value *= umax_val;
5582        if (dst_reg->umax_value > S64_MAX) {
5583                /* Overflow possible, we know nothing */
5584                dst_reg->smin_value = S64_MIN;
5585                dst_reg->smax_value = S64_MAX;
5586        } else {
5587                dst_reg->smin_value = dst_reg->umin_value;
5588                dst_reg->smax_value = dst_reg->umax_value;
5589        }
5590}
5591
5592static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5593                                 struct bpf_reg_state *src_reg)
5594{
5595        bool src_known = tnum_subreg_is_const(src_reg->var_off);
5596        bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5597        struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5598        s32 smin_val = src_reg->s32_min_value;
5599        u32 umax_val = src_reg->u32_max_value;
5600
5601        /* Assuming scalar64_min_max_and will be called so its safe
5602         * to skip updating register for known 32-bit case.
5603         */
5604        if (src_known && dst_known)
5605                return;
5606
5607        /* We get our minimum from the var_off, since that's inherently
5608         * bitwise.  Our maximum is the minimum of the operands' maxima.
5609         */
5610        dst_reg->u32_min_value = var32_off.value;
5611        dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5612        if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5613                /* Lose signed bounds when ANDing negative numbers,
5614                 * ain't nobody got time for that.
5615                 */
5616                dst_reg->s32_min_value = S32_MIN;
5617                dst_reg->s32_max_value = S32_MAX;
5618        } else {
5619                /* ANDing two positives gives a positive, so safe to
5620                 * cast result into s64.
5621                 */
5622                dst_reg->s32_min_value = dst_reg->u32_min_value;
5623                dst_reg->s32_max_value = dst_reg->u32_max_value;
5624        }
5625
5626}
5627
5628static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5629                               struct bpf_reg_state *src_reg)
5630{
5631        bool src_known = tnum_is_const(src_reg->var_off);
5632        bool dst_known = tnum_is_const(dst_reg->var_off);
5633        s64 smin_val = src_reg->smin_value;
5634        u64 umax_val = src_reg->umax_value;
5635
5636        if (src_known && dst_known) {
5637                __mark_reg_known(dst_reg, dst_reg->var_off.value &
5638                                          src_reg->var_off.value);
5639                return;
5640        }
5641
5642        /* We get our minimum from the var_off, since that's inherently
5643         * bitwise.  Our maximum is the minimum of the operands' maxima.
5644         */
5645        dst_reg->umin_value = dst_reg->var_off.value;
5646        dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5647        if (dst_reg->smin_value < 0 || smin_val < 0) {
5648                /* Lose signed bounds when ANDing negative numbers,
5649                 * ain't nobody got time for that.
5650                 */
5651                dst_reg->smin_value = S64_MIN;
5652                dst_reg->smax_value = S64_MAX;
5653        } else {
5654                /* ANDing two positives gives a positive, so safe to
5655                 * cast result into s64.
5656                 */
5657                dst_reg->smin_value = dst_reg->umin_value;
5658                dst_reg->smax_value = dst_reg->umax_value;
5659        }
5660        /* We may learn something more from the var_off */
5661        __update_reg_bounds(dst_reg);
5662}
5663
5664static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5665                                struct bpf_reg_state *src_reg)
5666{
5667        bool src_known = tnum_subreg_is_const(src_reg->var_off);
5668        bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5669        struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5670        s32 smin_val = src_reg->s32_min_value;
5671        u32 umin_val = src_reg->u32_min_value;
5672
5673        /* Assuming scalar64_min_max_or will be called so it is safe
5674         * to skip updating register for known case.
5675         */
5676        if (src_known && dst_known)
5677                return;
5678
5679        /* We get our maximum from the var_off, and our minimum is the
5680         * maximum of the operands' minima
5681         */
5682        dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5683        dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5684        if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5685                /* Lose signed bounds when ORing negative numbers,
5686                 * ain't nobody got time for that.
5687                 */
5688                dst_reg->s32_min_value = S32_MIN;
5689                dst_reg->s32_max_value = S32_MAX;
5690        } else {
5691                /* ORing two positives gives a positive, so safe to
5692                 * cast result into s64.
5693                 */
5694                dst_reg->s32_min_value = dst_reg->u32_min_value;
5695                dst_reg->s32_max_value = dst_reg->u32_max_value;
5696        }
5697}
5698
5699static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5700                              struct bpf_reg_state *src_reg)
5701{
5702        bool src_known = tnum_is_const(src_reg->var_off);
5703        bool dst_known = tnum_is_const(dst_reg->var_off);
5704        s64 smin_val = src_reg->smin_value;
5705        u64 umin_val = src_reg->umin_value;
5706
5707        if (src_known && dst_known) {
5708                __mark_reg_known(dst_reg, dst_reg->var_off.value |
5709                                          src_reg->var_off.value);
5710                return;
5711        }
5712
5713        /* We get our maximum from the var_off, and our minimum is the
5714         * maximum of the operands' minima
5715         */
5716        dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5717        dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5718        if (dst_reg->smin_value < 0 || smin_val < 0) {
5719                /* Lose signed bounds when ORing negative numbers,
5720                 * ain't nobody got time for that.
5721                 */
5722                dst_reg->smin_value = S64_MIN;
5723                dst_reg->smax_value = S64_MAX;
5724        } else {
5725                /* ORing two positives gives a positive, so safe to
5726                 * cast result into s64.
5727                 */
5728                dst_reg->smin_value = dst_reg->umin_value;
5729                dst_reg->smax_value = dst_reg->umax_value;
5730        }
5731        /* We may learn something more from the var_off */
5732        __update_reg_bounds(dst_reg);
5733}
5734
5735static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5736                                   u64 umin_val, u64 umax_val)
5737{
5738        /* We lose all sign bit information (except what we can pick
5739         * up from var_off)
5740         */
5741        dst_reg->s32_min_value = S32_MIN;
5742        dst_reg->s32_max_value = S32_MAX;
5743        /* If we might shift our top bit out, then we know nothing */
5744        if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5745                dst_reg->u32_min_value = 0;
5746                dst_reg->u32_max_value = U32_MAX;
5747        } else {
5748                dst_reg->u32_min_value <<= umin_val;
5749                dst_reg->u32_max_value <<= umax_val;
5750        }
5751}
5752
5753static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5754                                 struct bpf_reg_state *src_reg)
5755{
5756        u32 umax_val = src_reg->u32_max_value;
5757        u32 umin_val = src_reg->u32_min_value;
5758        /* u32 alu operation will zext upper bits */
5759        struct tnum subreg = tnum_subreg(dst_reg->var_off);
5760
5761        __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5762        dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5763        /* Not required but being careful mark reg64 bounds as unknown so
5764         * that we are forced to pick them up from tnum and zext later and
5765         * if some path skips this step we are still safe.
5766         */
5767        __mark_reg64_unbounded(dst_reg);
5768        __update_reg32_bounds(dst_reg);
5769}
5770
5771static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5772                                   u64 umin_val, u64 umax_val)
5773{
5774        /* Special case <<32 because it is a common compiler pattern to sign
5775         * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5776         * positive we know this shift will also be positive so we can track
5777         * bounds correctly. Otherwise we lose all sign bit information except
5778         * what we can pick up from var_off. Perhaps we can generalize this
5779         * later to shifts of any length.
5780         */
5781        if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5782                dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5783        else
5784                dst_reg->smax_value = S64_MAX;
5785
5786        if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5787                dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5788        else
5789                dst_reg->smin_value = S64_MIN;
5790
5791        /* If we might shift our top bit out, then we know nothing */
5792        if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5793                dst_reg->umin_value = 0;
5794                dst_reg->umax_value = U64_MAX;
5795        } else {
5796                dst_reg->umin_value <<= umin_val;
5797                dst_reg->umax_value <<= umax_val;
5798        }
5799}
5800
5801static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
5802                               struct bpf_reg_state *src_reg)
5803{
5804        u64 umax_val = src_reg->umax_value;
5805        u64 umin_val = src_reg->umin_value;
5806
5807        /* scalar64 calc uses 32bit unshifted bounds so must be called first */
5808        __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
5809        __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5810
5811        dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5812        /* We may learn something more from the var_off */
5813        __update_reg_bounds(dst_reg);
5814}
5815
5816static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
5817                                 struct bpf_reg_state *src_reg)
5818{
5819        struct tnum subreg = tnum_subreg(dst_reg->var_off);
5820        u32 umax_val = src_reg->u32_max_value;
5821        u32 umin_val = src_reg->u32_min_value;
5822
5823        /* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5824         * be negative, then either:
5825         * 1) src_reg might be zero, so the sign bit of the result is
5826         *    unknown, so we lose our signed bounds
5827         * 2) it's known negative, thus the unsigned bounds capture the
5828         *    signed bounds
5829         * 3) the signed bounds cross zero, so they tell us nothing
5830         *    about the result
5831         * If the value in dst_reg is known nonnegative, then again the
5832         * unsigned bounts capture the signed bounds.
5833         * Thus, in all cases it suffices to blow away our signed bounds
5834         * and rely on inferring new ones from the unsigned bounds and
5835         * var_off of the result.
5836         */
5837        dst_reg->s32_min_value = S32_MIN;
5838        dst_reg->s32_max_value = S32_MAX;
5839
5840        dst_reg->var_off = tnum_rshift(subreg, umin_val);
5841        dst_reg->u32_min_value >>= umax_val;
5842        dst_reg->u32_max_value >>= umin_val;
5843
5844        __mark_reg64_unbounded(dst_reg);
5845        __update_reg32_bounds(dst_reg);
5846}
5847
5848static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
5849                               struct bpf_reg_state *src_reg)
5850{
5851        u64 umax_val = src_reg->umax_value;
5852        u64 umin_val = src_reg->umin_value;
5853
5854        /* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5855         * be negative, then either:
5856         * 1) src_reg might be zero, so the sign bit of the result is
5857         *    unknown, so we lose our signed bounds
5858         * 2) it's known negative, thus the unsigned bounds capture the
5859         *    signed bounds
5860         * 3) the signed bounds cross zero, so they tell us nothing
5861         *    about the result
5862         * If the value in dst_reg is known nonnegative, then again the
5863         * unsigned bounts capture the signed bounds.
5864         * Thus, in all cases it suffices to blow away our signed bounds
5865         * and rely on inferring new ones from the unsigned bounds and
5866         * var_off of the result.
5867         */
5868        dst_reg->smin_value = S64_MIN;
5869        dst_reg->smax_value = S64_MAX;
5870        dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5871        dst_reg->umin_value >>= umax_val;
5872        dst_reg->umax_value >>= umin_val;
5873
5874        /* Its not easy to operate on alu32 bounds here because it depends
5875         * on bits being shifted in. Take easy way out and mark unbounded
5876         * so we can recalculate later from tnum.
5877         */
5878        __mark_reg32_unbounded(dst_reg);
5879        __update_reg_bounds(dst_reg);
5880}
5881
5882static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
5883                                  struct bpf_reg_state *src_reg)
5884{
5885        u64 umin_val = src_reg->u32_min_value;
5886
5887        /* Upon reaching here, src_known is true and
5888         * umax_val is equal to umin_val.
5889         */
5890        dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
5891        dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
5892
5893        dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
5894
5895        /* blow away the dst_reg umin_value/umax_value and rely on
5896         * dst_reg var_off to refine the result.
5897         */
5898        dst_reg->u32_min_value = 0;
5899        dst_reg->u32_max_value = U32_MAX;
5900
5901        __mark_reg64_unbounded(dst_reg);
5902        __update_reg32_bounds(dst_reg);
5903}
5904
5905static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
5906                                struct bpf_reg_state *src_reg)
5907{
5908        u64 umin_val = src_reg->umin_value;
5909
5910        /* Upon reaching here, src_known is true and umax_val is equal
5911         * to umin_val.
5912         */
5913        dst_reg->smin_value >>= umin_val;
5914        dst_reg->smax_value >>= umin_val;
5915
5916        dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
5917
5918        /* blow away the dst_reg umin_value/umax_value and rely on
5919         * dst_reg var_off to refine the result.
5920         */
5921        dst_reg->umin_value = 0;
5922        dst_reg->umax_value = U64_MAX;
5923
5924        /* Its not easy to operate on alu32 bounds here because it depends
5925         * on bits being shifted in from upper 32-bits. Take easy way out
5926         * and mark unbounded so we can recalculate later from tnum.
5927         */
5928        __mark_reg32_unbounded(dst_reg);
5929        __update_reg_bounds(dst_reg);
5930}
5931
5932/* WARNING: This function does calculations on 64-bit values, but the actual
5933 * execution may occur on 32-bit values. Therefore, things like bitshifts
5934 * need extra checks in the 32-bit case.
5935 */
5936static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
5937                                      struct bpf_insn *insn,
5938                                      struct bpf_reg_state *dst_reg,
5939                                      struct bpf_reg_state src_reg)
5940{
5941        struct bpf_reg_state *regs = cur_regs(env);
5942        u8 opcode = BPF_OP(insn->code);
5943        bool src_known;
5944        s64 smin_val, smax_val;
5945        u64 umin_val, umax_val;
5946        s32 s32_min_val, s32_max_val;
5947        u32 u32_min_val, u32_max_val;
5948        u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
5949        u32 dst = insn->dst_reg;
5950        int ret;
5951        bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
5952
5953        smin_val = src_reg.smin_value;
5954        smax_val = src_reg.smax_value;
5955        umin_val = src_reg.umin_value;
5956        umax_val = src_reg.umax_value;
5957
5958        s32_min_val = src_reg.s32_min_value;
5959        s32_max_val = src_reg.s32_max_value;
5960        u32_min_val = src_reg.u32_min_value;
5961        u32_max_val = src_reg.u32_max_value;
5962
5963        if (alu32) {
5964                src_known = tnum_subreg_is_const(src_reg.var_off);
5965                if ((src_known &&
5966                     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
5967                    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
5968                        /* Taint dst register if offset had invalid bounds
5969                         * derived from e.g. dead branches.
5970                         */
5971                        __mark_reg_unknown(env, dst_reg);
5972                        return 0;
5973                }
5974        } else {
5975                src_known = tnum_is_const(src_reg.var_off);
5976                if ((src_known &&
5977                     (smin_val != smax_val || umin_val != umax_val)) ||
5978                    smin_val > smax_val || umin_val > umax_val) {
5979                        /* Taint dst register if offset had invalid bounds
5980                         * derived from e.g. dead branches.
5981                         */
5982                        __mark_reg_unknown(env, dst_reg);
5983                        return 0;
5984                }
5985        }
5986
5987        if (!src_known &&
5988            opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
5989                __mark_reg_unknown(env, dst_reg);
5990                return 0;
5991        }
5992
5993        /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
5994         * There are two classes of instructions: The first class we track both
5995         * alu32 and alu64 sign/unsigned bounds independently this provides the
5996         * greatest amount of precision when alu operations are mixed with jmp32
5997         * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
5998         * and BPF_OR. This is possible because these ops have fairly easy to
5999         * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6000         * See alu32 verifier tests for examples. The second class of
6001         * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6002         * with regards to tracking sign/unsigned bounds because the bits may
6003         * cross subreg boundaries in the alu64 case. When this happens we mark
6004         * the reg unbounded in the subreg bound space and use the resulting
6005         * tnum to calculate an approximation of the sign/unsigned bounds.
6006         */
6007        switch (opcode) {
6008        case BPF_ADD:
6009                ret = sanitize_val_alu(env, insn);
6010                if (ret < 0) {
6011                        verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6012                        return ret;
6013                }
6014                scalar32_min_max_add(dst_reg, &src_reg);
6015                scalar_min_max_add(dst_reg, &src_reg);
6016                dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6017                break;
6018        case BPF_SUB:
6019                ret = sanitize_val_alu(env, insn);
6020                if (ret < 0) {
6021                        verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6022                        return ret;
6023                }
6024                scalar32_min_max_sub(dst_reg, &src_reg);
6025                scalar_min_max_sub(dst_reg, &src_reg);
6026                dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6027                break;
6028        case BPF_MUL:
6029                dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6030                scalar32_min_max_mul(dst_reg, &src_reg);
6031                scalar_min_max_mul(dst_reg, &src_reg);
6032                break;
6033        case BPF_AND:
6034                dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6035                scalar32_min_max_and(dst_reg, &src_reg);
6036                scalar_min_max_and(dst_reg, &src_reg);
6037                break;
6038        case BPF_OR:
6039                dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6040                scalar32_min_max_or(dst_reg, &src_reg);
6041                scalar_min_max_or(dst_reg, &src_reg);
6042                break;
6043        case BPF_LSH:
6044                if (umax_val >= insn_bitness) {
6045                        /* Shifts greater than 31 or 63 are undefined.
6046                         * This includes shifts by a negative number.
6047                         */
6048                        mark_reg_unknown(env, regs, insn->dst_reg);
6049                        break;
6050                }
6051                if (alu32)
6052                        scalar32_min_max_lsh(dst_reg, &src_reg);
6053                else
6054                        scalar_min_max_lsh(dst_reg, &src_reg);
6055                break;
6056        case BPF_RSH:
6057                if (umax_val >= insn_bitness) {
6058                        /* Shifts greater than 31 or 63 are undefined.
6059                         * This includes shifts by a negative number.
6060                         */
6061                        mark_reg_unknown(env, regs, insn->dst_reg);
6062                        break;
6063                }
6064                if (alu32)
6065                        scalar32_min_max_rsh(dst_reg, &src_reg);
6066                else
6067                        scalar_min_max_rsh(dst_reg, &src_reg);
6068                break;
6069        case BPF_ARSH:
6070                if (umax_val >= insn_bitness) {
6071                        /* Shifts greater than 31 or 63 are undefined.
6072                         * This includes shifts by a negative number.
6073                         */
6074                        mark_reg_unknown(env, regs, insn->dst_reg);
6075                        break;
6076                }
6077                if (alu32)
6078                        scalar32_min_max_arsh(dst_reg, &src_reg);
6079                else
6080                        scalar_min_max_arsh(dst_reg, &src_reg);
6081                break;
6082        default:
6083                mark_reg_unknown(env, regs, insn->dst_reg);
6084                break;
6085        }
6086
6087        /* ALU32 ops are zero extended into 64bit register */
6088        if (alu32)
6089                zext_32_to_64(dst_reg);
6090
6091        __update_reg_bounds(dst_reg);
6092        __reg_deduce_bounds(dst_reg);
6093        __reg_bound_offset(dst_reg);
6094        return 0;
6095}
6096
6097/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6098 * and var_off.
6099 */
6100static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6101                                   struct bpf_insn *insn)
6102{
6103        struct bpf_verifier_state *vstate = env->cur_state;
6104        struct bpf_func_state *state = vstate->frame[vstate->curframe];
6105        struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6106        struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6107        u8 opcode = BPF_OP(insn->code);
6108        int err;
6109
6110        dst_reg = &regs[insn->dst_reg];
6111        src_reg = NULL;
6112        if (dst_reg->type != SCALAR_VALUE)
6113                ptr_reg = dst_reg;
6114        if (BPF_SRC(insn->code) == BPF_X) {
6115                src_reg = &regs[insn->src_reg];
6116                if (src_reg->type != SCALAR_VALUE) {
6117                        if (dst_reg->type != SCALAR_VALUE) {
6118                                /* Combining two pointers by any ALU op yields
6119                                 * an arbitrary scalar. Disallow all math except
6120                                 * pointer subtraction
6121                                 */
6122                                if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6123                                        mark_reg_unknown(env, regs, insn->dst_reg);
6124                                        return 0;
6125                                }
6126                                verbose(env, "R%d pointer %s pointer prohibited\n",
6127                                        insn->dst_reg,
6128                                        bpf_alu_string[opcode >> 4]);
6129                                return -EACCES;
6130                        } else {
6131                                /* scalar += pointer
6132                                 * This is legal, but we have to reverse our
6133                                 * src/dest handling in computing the range
6134                                 */
6135                                err = mark_chain_precision(env, insn->dst_reg);
6136                                if (err)
6137                                        return err;
6138                                return adjust_ptr_min_max_vals(env, insn,
6139                                                               src_reg, dst_reg);
6140                        }
6141                } else if (ptr_reg) {
6142                        /* pointer += scalar */
6143                        err = mark_chain_precision(env, insn->src_reg);
6144                        if (err)
6145                                return err;
6146                        return adjust_ptr_min_max_vals(env, insn,
6147                                                       dst_reg, src_reg);
6148                }
6149        } else {
6150                /* Pretend the src is a reg with a known value, since we only
6151                 * need to be able to read from this state.
6152                 */
6153                off_reg.type = SCALAR_VALUE;
6154                __mark_reg_known(&off_reg, insn->imm);
6155                src_reg = &off_reg;
6156                if (ptr_reg) /* pointer += K */
6157                        return adjust_ptr_min_max_vals(env, insn,
6158                                                       ptr_reg, src_reg);
6159        }
6160
6161        /* Got here implies adding two SCALAR_VALUEs */
6162        if (WARN_ON_ONCE(ptr_reg)) {
6163                print_verifier_state(env, state);
6164                verbose(env, "verifier internal error: unexpected ptr_reg\n");
6165                return -EINVAL;
6166        }
6167        if (WARN_ON(!src_reg)) {
6168                print_verifier_state(env, state);
6169                verbose(env, "verifier internal error: no src_reg\n");
6170                return -EINVAL;
6171        }
6172        return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
6173}
6174
6175/* check validity of 32-bit and 64-bit arithmetic operations */
6176static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6177{
6178        struct bpf_reg_state *regs = cur_regs(env);
6179        u8 opcode = BPF_OP(insn->code);
6180        int err;
6181
6182        if (opcode == BPF_END || opcode == BPF_NEG) {
6183                if (opcode == BPF_NEG) {
6184                        if (BPF_SRC(insn->code) != 0 ||
6185                            insn->src_reg != BPF_REG_0 ||
6186                            insn->off != 0 || insn->imm != 0) {
6187                                verbose(env, "BPF_NEG uses reserved fields\n");
6188                                return -EINVAL;
6189                        }
6190                } else {
6191                        if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6192                            (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6193                            BPF_CLASS(insn->code) == BPF_ALU64) {
6194                                verbose(env, "BPF_END uses reserved fields\n");
6195                                return -EINVAL;
6196                        }
6197                }
6198
6199                /* check src operand */
6200                err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6201                if (err)
6202                        return err;
6203
6204                if (is_pointer_value(env, insn->dst_reg)) {
6205                        verbose(env, "R%d pointer arithmetic prohibited\n",
6206                                insn->dst_reg);
6207                        return -EACCES;
6208                }
6209
6210                /* check dest operand */
6211                err = check_reg_arg(env, insn->dst_reg, DST_OP);
6212                if (err)
6213                        return err;
6214
6215        } else if (opcode == BPF_MOV) {
6216
6217                if (BPF_SRC(insn->code) == BPF_X) {
6218                        if (insn->imm != 0 || insn->off != 0) {
6219                                verbose(env, "BPF_MOV uses reserved fields\n");
6220                                return -EINVAL;
6221                        }
6222
6223                        /* check src operand */
6224                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
6225                        if (err)
6226                                return err;
6227                } else {
6228                        if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6229                                verbose(env, "BPF_MOV uses reserved fields\n");
6230                                return -EINVAL;
6231                        }
6232                }
6233
6234                /* check dest operand, mark as required later */
6235                err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6236                if (err)
6237                        return err;
6238
6239                if (BPF_SRC(insn->code) == BPF_X) {
6240                        struct bpf_reg_state *src_reg = regs + insn->src_reg;
6241                        struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6242
6243                        if (BPF_CLASS(insn->code) == BPF_ALU64) {
6244                                /* case: R1 = R2
6245                                 * copy register state to dest reg
6246                                 */
6247                                *dst_reg = *src_reg;
6248                                dst_reg->live |= REG_LIVE_WRITTEN;
6249                                dst_reg->subreg_def = DEF_NOT_SUBREG;
6250                        } else {
6251                                /* R1 = (u32) R2 */
6252                                if (is_pointer_value(env, insn->src_reg)) {
6253                                        verbose(env,
6254                                                "R%d partial copy of pointer\n",
6255                                                insn->src_reg);
6256                                        return -EACCES;
6257                                } else if (src_reg->type == SCALAR_VALUE) {
6258                                        *dst_reg = *src_reg;
6259                                        dst_reg->live |= REG_LIVE_WRITTEN;
6260                                        dst_reg->subreg_def = env->insn_idx + 1;
6261                                } else {
6262                                        mark_reg_unknown(env, regs,
6263                                                         insn->dst_reg);
6264                                }
6265                                zext_32_to_64(dst_reg);
6266                        }
6267                } else {
6268                        /* case: R = imm
6269                         * remember the value we stored into this reg
6270                         */
6271                        /* clear any state __mark_reg_known doesn't set */
6272                        mark_reg_unknown(env, regs, insn->dst_reg);
6273                        regs[insn->dst_reg].type = SCALAR_VALUE;
6274                        if (BPF_CLASS(insn->code) == BPF_ALU64) {
6275                                __mark_reg_known(regs + insn->dst_reg,
6276                                                 insn->imm);
6277                        } else {
6278                                __mark_reg_known(regs + insn->dst_reg,
6279                                                 (u32)insn->imm);
6280                        }
6281                }
6282
6283        } else if (opcode > BPF_END) {
6284                verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6285                return -EINVAL;
6286
6287        } else {        /* all other ALU ops: and, sub, xor, add, ... */
6288
6289                if (BPF_SRC(insn->code) == BPF_X) {
6290                        if (insn->imm != 0 || insn->off != 0) {
6291                                verbose(env, "BPF_ALU uses reserved fields\n");
6292                                return -EINVAL;
6293                        }
6294                        /* check src1 operand */
6295                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
6296                        if (err)
6297                                return err;
6298                } else {
6299                        if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6300                                verbose(env, "BPF_ALU uses reserved fields\n");
6301                                return -EINVAL;
6302                        }
6303                }
6304
6305                /* check src2 operand */
6306                err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6307                if (err)
6308                        return err;
6309
6310                if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6311                    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6312                        verbose(env, "div by zero\n");
6313                        return -EINVAL;
6314                }
6315
6316                if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6317                     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6318                        int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6319
6320                        if (insn->imm < 0 || insn->imm >= size) {
6321                                verbose(env, "invalid shift %d\n", insn->imm);
6322                                return -EINVAL;
6323                        }
6324                }
6325
6326                /* check dest operand */
6327                err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6328                if (err)
6329                        return err;
6330
6331                return adjust_reg_min_max_vals(env, insn);
6332        }
6333
6334        return 0;
6335}
6336
6337static void __find_good_pkt_pointers(struct bpf_func_state *state,
6338                                     struct bpf_reg_state *dst_reg,
6339                                     enum bpf_reg_type type, u16 new_range)
6340{
6341        struct bpf_reg_state *reg;
6342        int i;
6343
6344        for (i = 0; i < MAX_BPF_REG; i++) {
6345                reg = &state->regs[i];
6346                if (reg->type == type && reg->id == dst_reg->id)
6347                        /* keep the maximum range already checked */
6348                        reg->range = max(reg->range, new_range);
6349        }
6350
6351        bpf_for_each_spilled_reg(i, state, reg) {
6352                if (!reg)
6353                        continue;
6354                if (reg->type == type && reg->id == dst_reg->id)
6355                        reg->range = max(reg->range, new_range);
6356        }
6357}
6358
6359static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6360                                   struct bpf_reg_state *dst_reg,
6361                                   enum bpf_reg_type type,
6362                                   bool range_right_open)
6363{
6364        u16 new_range;
6365        int i;
6366
6367        if (dst_reg->off < 0 ||
6368            (dst_reg->off == 0 && range_right_open))
6369                /* This doesn't give us any range */
6370                return;
6371
6372        if (dst_reg->umax_value > MAX_PACKET_OFF ||
6373            dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6374                /* Risk of overflow.  For instance, ptr + (1<<63) may be less
6375                 * than pkt_end, but that's because it's also less than pkt.
6376                 */
6377                return;
6378
6379        new_range = dst_reg->off;
6380        if (range_right_open)
6381                new_range--;
6382
6383        /* Examples for register markings:
6384         *
6385         * pkt_data in dst register:
6386         *
6387         *   r2 = r3;
6388         *   r2 += 8;
6389         *   if (r2 > pkt_end) goto <handle exception>
6390         *   <access okay>
6391         *
6392         *   r2 = r3;
6393         *   r2 += 8;
6394         *   if (r2 < pkt_end) goto <access okay>
6395         *   <handle exception>
6396         *
6397         *   Where:
6398         *     r2 == dst_reg, pkt_end == src_reg
6399         *     r2=pkt(id=n,off=8,r=0)
6400         *     r3=pkt(id=n,off=0,r=0)
6401         *
6402         * pkt_data in src register:
6403         *
6404         *   r2 = r3;
6405         *   r2 += 8;
6406         *   if (pkt_end >= r2) goto <access okay>
6407         *   <handle exception>
6408         *
6409         *   r2 = r3;
6410         *   r2 += 8;
6411         *   if (pkt_end <= r2) goto <handle exception>
6412         *   <access okay>
6413         *
6414         *   Where:
6415         *     pkt_end == dst_reg, r2 == src_reg
6416         *     r2=pkt(id=n,off=8,r=0)
6417         *     r3=pkt(id=n,off=0,r=0)
6418         *
6419         * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6420         * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6421         * and [r3, r3 + 8-1) respectively is safe to access depending on
6422         * the check.
6423         */
6424
6425        /* If our ids match, then we must have the same max_value.  And we
6426         * don't care about the other reg's fixed offset, since if it's too big
6427         * the range won't allow anything.
6428         * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6429         */
6430        for (i = 0; i <= vstate->curframe; i++)
6431                __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6432                                         new_range);
6433}
6434
6435static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6436{
6437        struct tnum subreg = tnum_subreg(reg->var_off);
6438        s32 sval = (s32)val;
6439
6440        switch (opcode) {
6441        case BPF_JEQ:
6442                if (tnum_is_const(subreg))
6443                        return !!tnum_equals_const(subreg, val);
6444                break;
6445        case BPF_JNE:
6446                if (tnum_is_const(subreg))
6447                        return !tnum_equals_const(subreg, val);
6448                break;
6449        case BPF_JSET:
6450                if ((~subreg.mask & subreg.value) & val)
6451                        return 1;
6452                if (!((subreg.mask | subreg.value) & val))
6453                        return 0;
6454                break;
6455        case BPF_JGT:
6456                if (reg->u32_min_value > val)
6457                        return 1;
6458                else if (reg->u32_max_value <= val)
6459                        return 0;
6460                break;
6461        case BPF_JSGT:
6462                if (reg->s32_min_value > sval)
6463                        return 1;
6464                else if (reg->s32_max_value < sval)
6465                        return 0;
6466                break;
6467        case BPF_JLT:
6468                if (reg->u32_max_value < val)
6469                        return 1;
6470                else if (reg->u32_min_value >= val)
6471                        return 0;
6472                break;
6473        case BPF_JSLT:
6474                if (reg->s32_max_value < sval)
6475                        return 1;
6476                else if (reg->s32_min_value >= sval)
6477                        return 0;
6478                break;
6479        case BPF_JGE:
6480                if (reg->u32_min_value >= val)
6481                        return 1;
6482                else if (reg->u32_max_value < val)
6483                        return 0;
6484                break;
6485        case BPF_JSGE:
6486                if (reg->s32_min_value >= sval)
6487                        return 1;
6488                else if (reg->s32_max_value < sval)
6489                        return 0;
6490                break;
6491        case BPF_JLE:
6492                if (reg->u32_max_value <= val)
6493                        return 1;
6494                else if (reg->u32_min_value > val)
6495                        return 0;
6496                break;
6497        case BPF_JSLE:
6498                if (reg->s32_max_value <= sval)
6499                        return 1;
6500                else if (reg->s32_min_value > sval)
6501                        return 0;
6502                break;
6503        }
6504
6505        return -1;
6506}
6507
6508
6509static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6510{
6511        s64 sval = (s64)val;
6512
6513        switch (opcode) {
6514        case BPF_JEQ:
6515                if (tnum_is_const(reg->var_off))
6516                        return !!tnum_equals_const(reg->var_off, val);
6517                break;
6518        case BPF_JNE:
6519                if (tnum_is_const(reg->var_off))
6520                        return !tnum_equals_const(reg->var_off, val);
6521                break;
6522        case BPF_JSET:
6523                if ((~reg->var_off.mask & reg->var_off.value) & val)
6524                        return 1;
6525                if (!((reg->var_off.mask | reg->var_off.value) & val))
6526                        return 0;
6527                break;
6528        case BPF_JGT:
6529                if (reg->umin_value > val)
6530                        return 1;
6531                else if (reg->umax_value <= val)
6532                        return 0;
6533                break;
6534        case BPF_JSGT:
6535                if (reg->smin_value > sval)
6536                        return 1;
6537                else if (reg->smax_value < sval)
6538                        return 0;
6539                break;
6540        case BPF_JLT:
6541                if (reg->umax_value < val)
6542                        return 1;
6543                else if (reg->umin_value >= val)
6544                        return 0;
6545                break;
6546        case BPF_JSLT:
6547                if (reg->smax_value < sval)
6548                        return 1;
6549                else if (reg->smin_value >= sval)
6550                        return 0;
6551                break;
6552        case BPF_JGE:
6553                if (reg->umin_value >= val)
6554                        return 1;
6555                else if (reg->umax_value < val)
6556                        return 0;
6557                break;
6558        case BPF_JSGE:
6559                if (reg->smin_value >= sval)
6560                        return 1;
6561                else if (reg->smax_value < sval)
6562                        return 0;
6563                break;
6564        case BPF_JLE:
6565                if (reg->umax_value <= val)
6566                        return 1;
6567                else if (reg->umin_value > val)
6568                        return 0;
6569                break;
6570        case BPF_JSLE:
6571                if (reg->smax_value <= sval)
6572                        return 1;
6573                else if (reg->smin_value > sval)
6574                        return 0;
6575                break;
6576        }
6577
6578        return -1;
6579}
6580
6581/* compute branch direction of the expression "if (reg opcode val) goto target;"
6582 * and return:
6583 *  1 - branch will be taken and "goto target" will be executed
6584 *  0 - branch will not be taken and fall-through to next insn
6585 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6586 *      range [0,10]
6587 */
6588static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6589                           bool is_jmp32)
6590{
6591        if (__is_pointer_value(false, reg)) {
6592                if (!reg_type_not_null(reg->type))
6593                        return -1;
6594
6595                /* If pointer is valid tests against zero will fail so we can
6596                 * use this to direct branch taken.
6597                 */
6598                if (val != 0)
6599                        return -1;
6600
6601                switch (opcode) {
6602                case BPF_JEQ:
6603                        return 0;
6604                case BPF_JNE:
6605                        return 1;
6606                default:
6607                        return -1;
6608                }
6609        }
6610
6611        if (is_jmp32)
6612                return is_branch32_taken(reg, val, opcode);
6613        return is_branch64_taken(reg, val, opcode);
6614}
6615
6616/* Adjusts the register min/max values in the case that the dst_reg is the
6617 * variable register that we are working on, and src_reg is a constant or we're
6618 * simply doing a BPF_K check.
6619 * In JEQ/JNE cases we also adjust the var_off values.
6620 */
6621static void reg_set_min_max(struct bpf_reg_state *true_reg,
6622                            struct bpf_reg_state *false_reg,
6623                            u64 val, u32 val32,
6624                            u8 opcode, bool is_jmp32)
6625{
6626        struct tnum false_32off = tnum_subreg(false_reg->var_off);
6627        struct tnum false_64off = false_reg->var_off;
6628        struct tnum true_32off = tnum_subreg(true_reg->var_off);
6629        struct tnum true_64off = true_reg->var_off;
6630        s64 sval = (s64)val;
6631        s32 sval32 = (s32)val32;
6632
6633        /* If the dst_reg is a pointer, we can't learn anything about its
6634         * variable offset from the compare (unless src_reg were a pointer into
6635         * the same object, but we don't bother with that.
6636         * Since false_reg and true_reg have the same type by construction, we
6637         * only need to check one of them for pointerness.
6638         */
6639        if (__is_pointer_value(false, false_reg))
6640                return;
6641
6642        switch (opcode) {
6643        case BPF_JEQ:
6644        case BPF_JNE:
6645        {
6646                struct bpf_reg_state *reg =
6647                        opcode == BPF_JEQ ? true_reg : false_reg;
6648
6649                /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6650                 * if it is true we know the value for sure. Likewise for
6651                 * BPF_JNE.
6652                 */
6653                if (is_jmp32)
6654                        __mark_reg32_known(reg, val32);
6655                else
6656                        __mark_reg_known(reg, val);
6657                break;
6658        }
6659        case BPF_JSET:
6660                if (is_jmp32) {
6661                        false_32off = tnum_and(false_32off, tnum_const(~val32));
6662                        if (is_power_of_2(val32))
6663                                true_32off = tnum_or(true_32off,
6664                                                     tnum_const(val32));
6665                } else {
6666                        false_64off = tnum_and(false_64off, tnum_const(~val));
6667                        if (is_power_of_2(val))
6668                                true_64off = tnum_or(true_64off,
6669                                                     tnum_const(val));
6670                }
6671                break;
6672        case BPF_JGE:
6673        case BPF_JGT:
6674        {
6675                if (is_jmp32) {
6676                        u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
6677                        u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6678
6679                        false_reg->u32_max_value = min(false_reg->u32_max_value,
6680                                                       false_umax);
6681                        true_reg->u32_min_value = max(true_reg->u32_min_value,
6682                                                      true_umin);
6683                } else {
6684                        u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
6685                        u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6686
6687                        false_reg->umax_value = min(false_reg->umax_value, false_umax);
6688                        true_reg->umin_value = max(true_reg->umin_value, true_umin);
6689                }
6690                break;
6691        }
6692        case BPF_JSGE:
6693        case BPF_JSGT:
6694        {
6695                if (is_jmp32) {
6696                        s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
6697                        s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
6698
6699                        false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6700                        true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6701                } else {
6702                        s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
6703                        s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6704
6705                        false_reg->smax_value = min(false_reg->smax_value, false_smax);
6706                        true_reg->smin_value = max(true_reg->smin_value, true_smin);
6707                }
6708                break;
6709        }
6710        case BPF_JLE:
6711        case BPF_JLT:
6712        {
6713                if (is_jmp32) {
6714                        u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
6715                        u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6716
6717                        false_reg->u32_min_value = max(false_reg->u32_min_value,
6718                                                       false_umin);
6719                        true_reg->u32_max_value = min(true_reg->u32_max_value,
6720                                                      true_umax);
6721                } else {
6722                        u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
6723                        u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6724
6725                        false_reg->umin_value = max(false_reg->umin_value, false_umin);
6726                        true_reg->umax_value = min(true_reg->umax_value, true_umax);
6727                }
6728                break;
6729        }
6730        case BPF_JSLE:
6731        case BPF_JSLT:
6732        {
6733                if (is_jmp32) {
6734                        s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
6735                        s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
6736
6737                        false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6738                        true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6739                } else {
6740                        s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
6741                        s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6742
6743                        false_reg->smin_value = max(false_reg->smin_value, false_smin);
6744                        true_reg->smax_value = min(true_reg->smax_value, true_smax);
6745                }
6746                break;
6747        }
6748        default:
6749                return;
6750        }
6751
6752        if (is_jmp32) {
6753                false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6754                                             tnum_subreg(false_32off));
6755                true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6756                                            tnum_subreg(true_32off));
6757                __reg_combine_32_into_64(false_reg);
6758                __reg_combine_32_into_64(true_reg);
6759        } else {
6760                false_reg->var_off = false_64off;
6761                true_reg->var_off = true_64off;
6762                __reg_combine_64_into_32(false_reg);
6763                __reg_combine_64_into_32(true_reg);
6764        }
6765}
6766
6767/* Same as above, but for the case that dst_reg holds a constant and src_reg is
6768 * the variable reg.
6769 */
6770static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
6771                                struct bpf_reg_state *false_reg,
6772                                u64 val, u32 val32,
6773                                u8 opcode, bool is_jmp32)
6774{
6775        /* How can we transform "a <op> b" into "b <op> a"? */
6776        static const u8 opcode_flip[16] = {
6777                /* these stay the same */
6778                [BPF_JEQ  >> 4] = BPF_JEQ,
6779                [BPF_JNE  >> 4] = BPF_JNE,
6780                [BPF_JSET >> 4] = BPF_JSET,
6781                /* these swap "lesser" and "greater" (L and G in the opcodes) */
6782                [BPF_JGE  >> 4] = BPF_JLE,
6783                [BPF_JGT  >> 4] = BPF_JLT,
6784                [BPF_JLE  >> 4] = BPF_JGE,
6785                [BPF_JLT  >> 4] = BPF_JGT,
6786                [BPF_JSGE >> 4] = BPF_JSLE,
6787                [BPF_JSGT >> 4] = BPF_JSLT,
6788                [BPF_JSLE >> 4] = BPF_JSGE,
6789                [BPF_JSLT >> 4] = BPF_JSGT
6790        };
6791        opcode = opcode_flip[opcode >> 4];
6792        /* This uses zero as "not present in table"; luckily the zero opcode,
6793         * BPF_JA, can't get here.
6794         */
6795        if (opcode)
6796                reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
6797}
6798
6799/* Regs are known to be equal, so intersect their min/max/var_off */
6800static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
6801                                  struct bpf_reg_state *dst_reg)
6802{
6803        src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
6804                                                        dst_reg->umin_value);
6805        src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
6806                                                        dst_reg->umax_value);
6807        src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
6808                                                        dst_reg->smin_value);
6809        src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
6810                                                        dst_reg->smax_value);
6811        src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
6812                                                             dst_reg->var_off);
6813        /* We might have learned new bounds from the var_off. */
6814        __update_reg_bounds(src_reg);
6815        __update_reg_bounds(dst_reg);
6816        /* We might have learned something about the sign bit. */
6817        __reg_deduce_bounds(src_reg);
6818        __reg_deduce_bounds(dst_reg);
6819        /* We might have learned some bits from the bounds. */
6820        __reg_bound_offset(src_reg);
6821        __reg_bound_offset(dst_reg);
6822        /* Intersecting with the old var_off might have improved our bounds
6823         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
6824         * then new var_off is (0; 0x7f...fc) which improves our umax.
6825         */
6826        __update_reg_bounds(src_reg);
6827        __update_reg_bounds(dst_reg);
6828}
6829
6830static void reg_combine_min_max(struct bpf_reg_state *true_src,
6831                                struct bpf_reg_state *true_dst,
6832                                struct bpf_reg_state *false_src,
6833                                struct bpf_reg_state *false_dst,
6834                                u8 opcode)
6835{
6836        switch (opcode) {
6837        case BPF_JEQ:
6838                __reg_combine_min_max(true_src, true_dst);
6839                break;
6840        case BPF_JNE:
6841                __reg_combine_min_max(false_src, false_dst);
6842                break;
6843        }
6844}
6845
6846static void mark_ptr_or_null_reg(struct bpf_func_state *state,
6847                                 struct bpf_reg_state *reg, u32 id,
6848                                 bool is_null)
6849{
6850        if (reg_type_may_be_null(reg->type) && reg->id == id) {
6851                /* Old offset (both fixed and variable parts) should
6852                 * have been known-zero, because we don't allow pointer
6853                 * arithmetic on pointers that might be NULL.
6854                 */
6855                if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
6856                                 !tnum_equals_const(reg->var_off, 0) ||
6857                                 reg->off)) {
6858                        __mark_reg_known_zero(reg);
6859                        reg->off = 0;
6860                }
6861                if (is_null) {
6862                        reg->type = SCALAR_VALUE;
6863                } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
6864                        const struct bpf_map *map = reg->map_ptr;
6865
6866                        if (map->inner_map_meta) {
6867                                reg->type = CONST_PTR_TO_MAP;
6868                                reg->map_ptr = map->inner_map_meta;
6869                        } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
6870                                reg->type = PTR_TO_XDP_SOCK;
6871                        } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
6872                                   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
6873                                reg->type = PTR_TO_SOCKET;
6874                        } else {
6875                                reg->type = PTR_TO_MAP_VALUE;
6876                        }
6877                } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
6878                        reg->type = PTR_TO_SOCKET;
6879                } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
6880                        reg->type = PTR_TO_SOCK_COMMON;
6881                } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
6882                        reg->type = PTR_TO_TCP_SOCK;
6883                } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
6884                        reg->type = PTR_TO_BTF_ID;
6885                } else if (reg->type == PTR_TO_MEM_OR_NULL) {
6886                        reg->type = PTR_TO_MEM;
6887                } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
6888                        reg->type = PTR_TO_RDONLY_BUF;
6889                } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
6890                        reg->type = PTR_TO_RDWR_BUF;
6891                }
6892                if (is_null) {
6893                        /* We don't need id and ref_obj_id from this point
6894                         * onwards anymore, thus we should better reset it,
6895                         * so that state pruning has chances to take effect.
6896                         */
6897                        reg->id = 0;
6898                        reg->ref_obj_id = 0;
6899                } else if (!reg_may_point_to_spin_lock(reg)) {
6900                        /* For not-NULL ptr, reg->ref_obj_id will be reset
6901                         * in release_reg_references().
6902                         *
6903                         * reg->id is still used by spin_lock ptr. Other
6904                         * than spin_lock ptr type, reg->id can be reset.
6905                         */
6906                        reg->id = 0;
6907                }
6908        }
6909}
6910
6911static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
6912                                    bool is_null)
6913{
6914        struct bpf_reg_state *reg;
6915        int i;
6916
6917        for (i = 0; i < MAX_BPF_REG; i++)
6918                mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
6919
6920        bpf_for_each_spilled_reg(i, state, reg) {
6921                if (!reg)
6922                        continue;
6923                mark_ptr_or_null_reg(state, reg, id, is_null);
6924        }
6925}
6926
6927/* The logic is similar to find_good_pkt_pointers(), both could eventually
6928 * be folded together at some point.
6929 */
6930static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
6931                                  bool is_null)
6932{
6933        struct bpf_func_state *state = vstate->frame[vstate->curframe];
6934        struct bpf_reg_state *regs = state->regs;
6935        u32 ref_obj_id = regs[regno].ref_obj_id;
6936        u32 id = regs[regno].id;
6937        int i;
6938
6939        if (ref_obj_id && ref_obj_id == id && is_null)
6940                /* regs[regno] is in the " == NULL" branch.
6941                 * No one could have freed the reference state before
6942                 * doing the NULL check.
6943                 */
6944                WARN_ON_ONCE(release_reference_state(state, id));
6945
6946        for (i = 0; i <= vstate->curframe; i++)
6947                __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
6948}
6949
6950static bool try_match_pkt_pointers(const struct bpf_insn *insn,
6951                                   struct bpf_reg_state *dst_reg,
6952                                   struct bpf_reg_state *src_reg,
6953                                   struct bpf_verifier_state *this_branch,
6954                                   struct bpf_verifier_state *other_branch)
6955{
6956        if (BPF_SRC(insn->code) != BPF_X)
6957                return false;
6958
6959        /* Pointers are always 64-bit. */
6960        if (BPF_CLASS(insn->code) == BPF_JMP32)
6961                return false;
6962
6963        switch (BPF_OP(insn->code)) {
6964        case BPF_JGT:
6965                if ((dst_reg->type == PTR_TO_PACKET &&
6966                     src_reg->type == PTR_TO_PACKET_END) ||
6967                    (dst_reg->type == PTR_TO_PACKET_META &&
6968                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6969                        /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6970                        find_good_pkt_pointers(this_branch, dst_reg,
6971                                               dst_reg->type, false);
6972                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6973                            src_reg->type == PTR_TO_PACKET) ||
6974                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6975                            src_reg->type == PTR_TO_PACKET_META)) {
6976                        /* pkt_end > pkt_data', pkt_data > pkt_meta' */
6977                        find_good_pkt_pointers(other_branch, src_reg,
6978                                               src_reg->type, true);
6979                } else {
6980                        return false;
6981                }
6982                break;
6983        case BPF_JLT:
6984                if ((dst_reg->type == PTR_TO_PACKET &&
6985                     src_reg->type == PTR_TO_PACKET_END) ||
6986                    (dst_reg->type == PTR_TO_PACKET_META &&
6987                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6988                        /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6989                        find_good_pkt_pointers(other_branch, dst_reg,
6990                                               dst_reg->type, true);
6991                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6992                            src_reg->type == PTR_TO_PACKET) ||
6993                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6994                            src_reg->type == PTR_TO_PACKET_META)) {
6995                        /* pkt_end < pkt_data', pkt_data > pkt_meta' */
6996                        find_good_pkt_pointers(this_branch, src_reg,
6997                                               src_reg->type, false);
6998                } else {
6999                        return false;
7000                }
7001                break;
7002        case BPF_JGE:
7003                if ((dst_reg->type == PTR_TO_PACKET &&
7004                     src_reg->type == PTR_TO_PACKET_END) ||
7005                    (dst_reg->type == PTR_TO_PACKET_META &&
7006                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7007                        /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7008                        find_good_pkt_pointers(this_branch, dst_reg,
7009                                               dst_reg->type, true);
7010                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7011                            src_reg->type == PTR_TO_PACKET) ||
7012                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7013                            src_reg->type == PTR_TO_PACKET_META)) {
7014                        /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7015                        find_good_pkt_pointers(other_branch, src_reg,
7016                                               src_reg->type, false);
7017                } else {
7018                        return false;
7019                }
7020                break;
7021        case BPF_JLE:
7022                if ((dst_reg->type == PTR_TO_PACKET &&
7023                     src_reg->type == PTR_TO_PACKET_END) ||
7024                    (dst_reg->type == PTR_TO_PACKET_META &&
7025                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7026                        /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7027                        find_good_pkt_pointers(other_branch, dst_reg,
7028                                               dst_reg->type, false);
7029                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7030                            src_reg->type == PTR_TO_PACKET) ||
7031                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7032                            src_reg->type == PTR_TO_PACKET_META)) {
7033                        /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7034                        find_good_pkt_pointers(this_branch, src_reg,
7035                                               src_reg->type, true);
7036                } else {
7037                        return false;
7038                }
7039                break;
7040        default:
7041                return false;
7042        }
7043
7044        return true;
7045}
7046
7047static int check_cond_jmp_op(struct bpf_verifier_env *env,
7048                             struct bpf_insn *insn, int *insn_idx)
7049{
7050        struct bpf_verifier_state *this_branch = env->cur_state;
7051        struct bpf_verifier_state *other_branch;
7052        struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
7053        struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
7054        u8 opcode = BPF_OP(insn->code);
7055        bool is_jmp32;
7056        int pred = -1;
7057        int err;
7058
7059        /* Only conditional jumps are expected to reach here. */
7060        if (opcode == BPF_JA || opcode > BPF_JSLE) {
7061                verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
7062                return -EINVAL;
7063        }
7064
7065        if (BPF_SRC(insn->code) == BPF_X) {
7066                if (insn->imm != 0) {
7067                        verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7068                        return -EINVAL;
7069                }
7070
7071                /* check src1 operand */
7072                err = check_reg_arg(env, insn->src_reg, SRC_OP);
7073                if (err)
7074                        return err;
7075
7076                if (is_pointer_value(env, insn->src_reg)) {
7077                        verbose(env, "R%d pointer comparison prohibited\n",
7078                                insn->src_reg);
7079                        return -EACCES;
7080                }
7081                src_reg = &regs[insn->src_reg];
7082        } else {
7083                if (insn->src_reg != BPF_REG_0) {
7084                        verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7085                        return -EINVAL;
7086                }
7087        }
7088
7089        /* check src2 operand */
7090        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7091        if (err)
7092                return err;
7093
7094        dst_reg = &regs[insn->dst_reg];
7095        is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
7096
7097        if (BPF_SRC(insn->code) == BPF_K) {
7098                pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7099        } else if (src_reg->type == SCALAR_VALUE &&
7100                   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7101                pred = is_branch_taken(dst_reg,
7102                                       tnum_subreg(src_reg->var_off).value,
7103                                       opcode,
7104                                       is_jmp32);
7105        } else if (src_reg->type == SCALAR_VALUE &&
7106                   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7107                pred = is_branch_taken(dst_reg,
7108                                       src_reg->var_off.value,
7109                                       opcode,
7110                                       is_jmp32);
7111        }
7112
7113        if (pred >= 0) {
7114                /* If we get here with a dst_reg pointer type it is because
7115                 * above is_branch_taken() special cased the 0 comparison.
7116                 */
7117                if (!__is_pointer_value(false, dst_reg))
7118                        err = mark_chain_precision(env, insn->dst_reg);
7119                if (BPF_SRC(insn->code) == BPF_X && !err)
7120                        err = mark_chain_precision(env, insn->src_reg);
7121                if (err)
7122                        return err;
7123        }
7124        if (pred == 1) {
7125                /* only follow the goto, ignore fall-through */
7126                *insn_idx += insn->off;
7127                return 0;
7128        } else if (pred == 0) {
7129                /* only follow fall-through branch, since
7130                 * that's where the program will go
7131                 */
7132                return 0;
7133        }
7134
7135        other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7136                                  false);
7137        if (!other_branch)
7138                return -EFAULT;
7139        other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
7140
7141        /* detect if we are comparing against a constant value so we can adjust
7142         * our min/max values for our dst register.
7143         * this is only legit if both are scalars (or pointers to the same
7144         * object, I suppose, but we don't support that right now), because
7145         * otherwise the different base pointers mean the offsets aren't
7146         * comparable.
7147         */
7148        if (BPF_SRC(insn->code) == BPF_X) {
7149                struct bpf_reg_state *src_reg = &regs[insn->src_reg];
7150
7151                if (dst_reg->type == SCALAR_VALUE &&
7152                    src_reg->type == SCALAR_VALUE) {
7153                        if (tnum_is_const(src_reg->var_off) ||
7154                            (is_jmp32 &&
7155                             tnum_is_const(tnum_subreg(src_reg->var_off))))
7156                                reg_set_min_max(&other_branch_regs[insn->dst_reg],
7157                                                dst_reg,
7158                                                src_reg->var_off.value,
7159                                                tnum_subreg(src_reg->var_off).value,
7160                                                opcode, is_jmp32);
7161                        else if (tnum_is_const(dst_reg->var_off) ||
7162                                 (is_jmp32 &&
7163                                  tnum_is_const(tnum_subreg(dst_reg->var_off))))
7164                                reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
7165                                                    src_reg,
7166                                                    dst_reg->var_off.value,
7167                                                    tnum_subreg(dst_reg->var_off).value,
7168                                                    opcode, is_jmp32);
7169                        else if (!is_jmp32 &&
7170                                 (opcode == BPF_JEQ || opcode == BPF_JNE))
7171                                /* Comparing for equality, we can combine knowledge */
7172                                reg_combine_min_max(&other_branch_regs[insn->src_reg],
7173                                                    &other_branch_regs[insn->dst_reg],
7174                                                    src_reg, dst_reg, opcode);
7175                }
7176        } else if (dst_reg->type == SCALAR_VALUE) {
7177                reg_set_min_max(&other_branch_regs[insn->dst_reg],
7178                                        dst_reg, insn->imm, (u32)insn->imm,
7179                                        opcode, is_jmp32);
7180        }
7181
7182        /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7183         * NOTE: these optimizations below are related with pointer comparison
7184         *       which will never be JMP32.
7185         */
7186        if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7187            insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7188            reg_type_may_be_null(dst_reg->type)) {
7189                /* Mark all identical registers in each branch as either
7190                 * safe or unknown depending R == 0 or R != 0 conditional.
7191                 */
7192                mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7193                                      opcode == BPF_JNE);
7194                mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7195                                      opcode == BPF_JEQ);
7196        } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7197                                           this_branch, other_branch) &&
7198                   is_pointer_value(env, insn->dst_reg)) {
7199                verbose(env, "R%d pointer comparison prohibited\n",
7200                        insn->dst_reg);
7201                return -EACCES;
7202        }
7203        if (env->log.level & BPF_LOG_LEVEL)
7204                print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7205        return 0;
7206}
7207
7208/* verify BPF_LD_IMM64 instruction */
7209static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7210{
7211        struct bpf_insn_aux_data *aux = cur_aux(env);
7212        struct bpf_reg_state *regs = cur_regs(env);
7213        struct bpf_map *map;
7214        int err;
7215
7216        if (BPF_SIZE(insn->code) != BPF_DW) {
7217                verbose(env, "invalid BPF_LD_IMM insn\n");
7218                return -EINVAL;
7219        }
7220        if (insn->off != 0) {
7221                verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7222                return -EINVAL;
7223        }
7224
7225        err = check_reg_arg(env, insn->dst_reg, DST_OP);
7226        if (err)
7227                return err;
7228
7229        if (insn->src_reg == 0) {
7230                u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7231
7232                regs[insn->dst_reg].type = SCALAR_VALUE;
7233                __mark_reg_known(&regs[insn->dst_reg], imm);
7234                return 0;
7235        }
7236
7237        map = env->used_maps[aux->map_index];
7238        mark_reg_known_zero(env, regs, insn->dst_reg);
7239        regs[insn->dst_reg].map_ptr = map;
7240
7241        if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7242                regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
7243                regs[insn->dst_reg].off = aux->map_off;
7244                if (map_value_has_spin_lock(map))
7245                        regs[insn->dst_reg].id = ++env->id_gen;
7246        } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7247                regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
7248        } else {
7249                verbose(env, "bpf verifier is misconfigured\n");
7250                return -EINVAL;
7251        }
7252
7253        return 0;
7254}
7255
7256static bool may_access_skb(enum bpf_prog_type type)
7257{
7258        switch (type) {
7259        case BPF_PROG_TYPE_SOCKET_FILTER:
7260        case BPF_PROG_TYPE_SCHED_CLS:
7261        case BPF_PROG_TYPE_SCHED_ACT:
7262                return true;
7263        default:
7264                return false;
7265        }
7266}
7267
7268/* verify safety of LD_ABS|LD_IND instructions:
7269 * - they can only appear in the programs where ctx == skb
7270 * - since they are wrappers of function calls, they scratch R1-R5 registers,
7271 *   preserve R6-R9, and store return value into R0
7272 *
7273 * Implicit input:
7274 *   ctx == skb == R6 == CTX
7275 *
7276 * Explicit input:
7277 *   SRC == any register
7278 *   IMM == 32-bit immediate
7279 *
7280 * Output:
7281 *   R0 - 8/16/32-bit skb data converted to cpu endianness
7282 */
7283static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7284{
7285        struct bpf_reg_state *regs = cur_regs(env);
7286        static const int ctx_reg = BPF_REG_6;
7287        u8 mode = BPF_MODE(insn->code);
7288        int i, err;
7289
7290        if (!may_access_skb(env->prog->type)) {
7291                verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7292                return -EINVAL;
7293        }
7294
7295        if (!env->ops->gen_ld_abs) {
7296                verbose(env, "bpf verifier is misconfigured\n");
7297                return -EINVAL;
7298        }
7299
7300        if (env->subprog_cnt > 1) {
7301                /* when program has LD_ABS insn JITs and interpreter assume
7302                 * that r1 == ctx == skb which is not the case for callees
7303                 * that can have arbitrary arguments. It's problematic
7304                 * for main prog as well since JITs would need to analyze
7305                 * all functions in order to make proper register save/restore
7306                 * decisions in the main prog. Hence disallow LD_ABS with calls
7307                 */
7308                verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
7309                return -EINVAL;
7310        }
7311
7312        if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7313            BPF_SIZE(insn->code) == BPF_DW ||
7314            (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7315                verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7316                return -EINVAL;
7317        }
7318
7319        /* check whether implicit source operand (register R6) is readable */
7320        err = check_reg_arg(env, ctx_reg, SRC_OP);
7321        if (err)
7322                return err;
7323
7324        /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7325         * gen_ld_abs() may terminate the program at runtime, leading to
7326         * reference leak.
7327         */
7328        err = check_reference_leak(env);
7329        if (err) {
7330                verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7331                return err;
7332        }
7333
7334        if (env->cur_state->active_spin_lock) {
7335                verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7336                return -EINVAL;
7337        }
7338
7339        if (regs[ctx_reg].type != PTR_TO_CTX) {
7340                verbose(env,
7341                        "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7342                return -EINVAL;
7343        }
7344
7345        if (mode == BPF_IND) {
7346                /* check explicit source operand */
7347                err = check_reg_arg(env, insn->src_reg, SRC_OP);
7348                if (err)
7349                        return err;
7350        }
7351
7352        err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7353        if (err < 0)
7354                return err;
7355
7356        /* reset caller saved regs to unreadable */
7357        for (i = 0; i < CALLER_SAVED_REGS; i++) {
7358                mark_reg_not_init(env, regs, caller_saved[i]);
7359                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7360        }
7361
7362        /* mark destination R0 register as readable, since it contains
7363         * the value fetched from the packet.
7364         * Already marked as written above.
7365         */
7366        mark_reg_unknown(env, regs, BPF_REG_0);
7367        /* ld_abs load up to 32-bit skb data. */
7368        regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7369        return 0;
7370}
7371
7372static int check_return_code(struct bpf_verifier_env *env)
7373{
7374        struct tnum enforce_attach_type_range = tnum_unknown;
7375        const struct bpf_prog *prog = env->prog;
7376        struct bpf_reg_state *reg;
7377        struct tnum range = tnum_range(0, 1);
7378        int err;
7379
7380        /* LSM and struct_ops func-ptr's return type could be "void" */
7381        if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
7382             env->prog->type == BPF_PROG_TYPE_LSM) &&
7383            !prog->aux->attach_func_proto->type)
7384                return 0;
7385
7386        /* eBPF calling convetion is such that R0 is used
7387         * to return the value from eBPF program.
7388         * Make sure that it's readable at this time
7389         * of bpf_exit, which means that program wrote
7390         * something into it earlier
7391         */
7392        err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7393        if (err)
7394                return err;
7395
7396        if (is_pointer_value(env, BPF_REG_0)) {
7397                verbose(env, "R0 leaks addr as return value\n");
7398                return -EACCES;
7399        }
7400
7401        switch (env->prog->type) {
7402        case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7403                if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7404                    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7405                    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7406                    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7407                    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7408                    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7409                        range = tnum_range(1, 1);
7410                break;
7411        case BPF_PROG_TYPE_CGROUP_SKB:
7412                if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7413                        range = tnum_range(0, 3);
7414                        enforce_attach_type_range = tnum_range(2, 3);
7415                }
7416                break;
7417        case BPF_PROG_TYPE_CGROUP_SOCK:
7418        case BPF_PROG_TYPE_SOCK_OPS:
7419        case BPF_PROG_TYPE_CGROUP_DEVICE:
7420        case BPF_PROG_TYPE_CGROUP_SYSCTL:
7421        case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7422                break;
7423        case BPF_PROG_TYPE_RAW_TRACEPOINT:
7424                if (!env->prog->aux->attach_btf_id)
7425                        return 0;
7426                range = tnum_const(0);
7427                break;
7428        case BPF_PROG_TYPE_TRACING:
7429                switch (env->prog->expected_attach_type) {
7430                case BPF_TRACE_FENTRY:
7431                case BPF_TRACE_FEXIT:
7432                        range = tnum_const(0);
7433                        break;
7434                case BPF_TRACE_RAW_TP:
7435                case BPF_MODIFY_RETURN:
7436                        return 0;
7437                case BPF_TRACE_ITER:
7438                        break;
7439                default:
7440                        return -ENOTSUPP;
7441                }
7442                break;
7443        case BPF_PROG_TYPE_SK_LOOKUP:
7444                range = tnum_range(SK_DROP, SK_PASS);
7445                break;
7446        case BPF_PROG_TYPE_EXT:
7447                /* freplace program can return anything as its return value
7448                 * depends on the to-be-replaced kernel func or bpf program.
7449                 */
7450        default:
7451                return 0;
7452        }
7453
7454        reg = cur_regs(env) + BPF_REG_0;
7455        if (reg->type != SCALAR_VALUE) {
7456                verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7457                        reg_type_str[reg->type]);
7458                return -EINVAL;
7459        }
7460
7461        if (!tnum_in(range, reg->var_off)) {
7462                char tn_buf[48];
7463
7464                verbose(env, "At program exit the register R0 ");
7465                if (!tnum_is_unknown(reg->var_off)) {
7466                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7467                        verbose(env, "has value %s", tn_buf);
7468                } else {
7469                        verbose(env, "has unknown scalar value");
7470                }
7471                tnum_strn(tn_buf, sizeof(tn_buf), range);
7472                verbose(env, " should have been in %s\n", tn_buf);
7473                return -EINVAL;
7474        }
7475
7476        if (!tnum_is_unknown(enforce_attach_type_range) &&
7477            tnum_in(enforce_attach_type_range, reg->var_off))
7478                env->prog->enforce_expected_attach_type = 1;
7479        return 0;
7480}
7481
7482/* non-recursive DFS pseudo code
7483 * 1  procedure DFS-iterative(G,v):
7484 * 2      label v as discovered
7485 * 3      let S be a stack
7486 * 4      S.push(v)
7487 * 5      while S is not empty
7488 * 6            t <- S.pop()
7489 * 7            if t is what we're looking for:
7490 * 8                return t
7491 * 9            for all edges e in G.adjacentEdges(t) do
7492 * 10               if edge e is already labelled
7493 * 11                   continue with the next edge
7494 * 12               w <- G.adjacentVertex(t,e)
7495 * 13               if vertex w is not discovered and not explored
7496 * 14                   label e as tree-edge
7497 * 15                   label w as discovered
7498 * 16                   S.push(w)
7499 * 17                   continue at 5
7500 * 18               else if vertex w is discovered
7501 * 19                   label e as back-edge
7502 * 20               else
7503 * 21                   // vertex w is explored
7504 * 22                   label e as forward- or cross-edge
7505 * 23           label t as explored
7506 * 24           S.pop()
7507 *
7508 * convention:
7509 * 0x10 - discovered
7510 * 0x11 - discovered and fall-through edge labelled
7511 * 0x12 - discovered and fall-through and branch edges labelled
7512 * 0x20 - explored
7513 */
7514
7515enum {
7516        DISCOVERED = 0x10,
7517        EXPLORED = 0x20,
7518        FALLTHROUGH = 1,
7519        BRANCH = 2,
7520};
7521
7522static u32 state_htab_size(struct bpf_verifier_env *env)
7523{
7524        return env->prog->len;
7525}
7526
7527static struct bpf_verifier_state_list **explored_state(
7528                                        struct bpf_verifier_env *env,
7529                                        int idx)
7530{
7531        struct bpf_verifier_state *cur = env->cur_state;
7532        struct bpf_func_state *state = cur->frame[cur->curframe];
7533
7534        return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
7535}
7536
7537static void init_explored_state(struct bpf_verifier_env *env, int idx)
7538{
7539        env->insn_aux_data[idx].prune_point = true;
7540}
7541
7542/* t, w, e - match pseudo-code above:
7543 * t - index of current instruction
7544 * w - next instruction
7545 * e - edge
7546 */
7547static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7548                     bool loop_ok)
7549{
7550        int *insn_stack = env->cfg.insn_stack;
7551        int *insn_state = env->cfg.insn_state;
7552
7553        if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7554                return 0;
7555
7556        if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7557                return 0;
7558
7559        if (w < 0 || w >= env->prog->len) {
7560                verbose_linfo(env, t, "%d: ", t);
7561                verbose(env, "jump out of range from insn %d to %d\n", t, w);
7562                return -EINVAL;
7563        }
7564
7565        if (e == BRANCH)
7566                /* mark branch target for state pruning */
7567                init_explored_state(env, w);
7568
7569        if (insn_state[w] == 0) {
7570                /* tree-edge */
7571                insn_state[t] = DISCOVERED | e;
7572                insn_state[w] = DISCOVERED;
7573                if (env->cfg.cur_stack >= env->prog->len)
7574                        return -E2BIG;
7575                insn_stack[env->cfg.cur_stack++] = w;
7576                return 1;
7577        } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
7578                if (loop_ok && env->bpf_capable)
7579                        return 0;
7580                verbose_linfo(env, t, "%d: ", t);
7581                verbose_linfo(env, w, "%d: ", w);
7582                verbose(env, "back-edge from insn %d to %d\n", t, w);
7583                return -EINVAL;
7584        } else if (insn_state[w] == EXPLORED) {
7585                /* forward- or cross-edge */
7586                insn_state[t] = DISCOVERED | e;
7587        } else {
7588                verbose(env, "insn state internal bug\n");
7589                return -EFAULT;
7590        }
7591        return 0;
7592}
7593
7594/* non-recursive depth-first-search to detect loops in BPF program
7595 * loop == back-edge in directed graph
7596 */
7597static int check_cfg(struct bpf_verifier_env *env)
7598{
7599        struct bpf_insn *insns = env->prog->insnsi;
7600        int insn_cnt = env->prog->len;
7601        int *insn_stack, *insn_state;
7602        int ret = 0;
7603        int i, t;
7604
7605        insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7606        if (!insn_state)
7607                return -ENOMEM;
7608
7609        insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7610        if (!insn_stack) {
7611                kvfree(insn_state);
7612                return -ENOMEM;
7613        }
7614
7615        insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7616        insn_stack[0] = 0; /* 0 is the first instruction */
7617        env->cfg.cur_stack = 1;
7618
7619peek_stack:
7620        if (env->cfg.cur_stack == 0)
7621                goto check_state;
7622        t = insn_stack[env->cfg.cur_stack - 1];
7623
7624        if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7625            BPF_CLASS(insns[t].code) == BPF_JMP32) {
7626                u8 opcode = BPF_OP(insns[t].code);
7627
7628                if (opcode == BPF_EXIT) {
7629                        goto mark_explored;
7630                } else if (opcode == BPF_CALL) {
7631                        ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7632                        if (ret == 1)
7633                                goto peek_stack;
7634                        else if (ret < 0)
7635                                goto err_free;
7636                        if (t + 1 < insn_cnt)
7637                                init_explored_state(env, t + 1);
7638                        if (insns[t].src_reg == BPF_PSEUDO_CALL) {
7639                                init_explored_state(env, t);
7640                                ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7641                                                env, false);
7642                                if (ret == 1)
7643                                        goto peek_stack;
7644                                else if (ret < 0)
7645                                        goto err_free;
7646                        }
7647                } else if (opcode == BPF_JA) {
7648                        if (BPF_SRC(insns[t].code) != BPF_K) {
7649                                ret = -EINVAL;
7650                                goto err_free;
7651                        }
7652                        /* unconditional jump with single edge */
7653                        ret = push_insn(t, t + insns[t].off + 1,
7654                                        FALLTHROUGH, env, true);
7655                        if (ret == 1)
7656                                goto peek_stack;
7657                        else if (ret < 0)
7658                                goto err_free;
7659                        /* unconditional jmp is not a good pruning point,
7660                         * but it's marked, since backtracking needs
7661                         * to record jmp history in is_state_visited().
7662                         */
7663                        init_explored_state(env, t + insns[t].off + 1);
7664                        /* tell verifier to check for equivalent states
7665                         * after every call and jump
7666                         */
7667                        if (t + 1 < insn_cnt)
7668                                init_explored_state(env, t + 1);
7669                } else {
7670                        /* conditional jump with two edges */
7671                        init_explored_state(env, t);
7672                        ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
7673                        if (ret == 1)
7674                                goto peek_stack;
7675                        else if (ret < 0)
7676                                goto err_free;
7677
7678                        ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
7679                        if (ret == 1)
7680                                goto peek_stack;
7681                        else if (ret < 0)
7682                                goto err_free;
7683                }
7684        } else {
7685                /* all other non-branch instructions with single
7686                 * fall-through edge
7687                 */
7688                ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7689                if (ret == 1)
7690                        goto peek_stack;
7691                else if (ret < 0)
7692                        goto err_free;
7693        }
7694
7695mark_explored:
7696        insn_state[t] = EXPLORED;
7697        if (env->cfg.cur_stack-- <= 0) {
7698                verbose(env, "pop stack internal bug\n");
7699                ret = -EFAULT;
7700                goto err_free;
7701        }
7702        goto peek_stack;
7703
7704check_state:
7705        for (i = 0; i < insn_cnt; i++) {
7706                if (insn_state[i] != EXPLORED) {
7707                        verbose(env, "unreachable insn %d\n", i);
7708                        ret = -EINVAL;
7709                        goto err_free;
7710                }
7711        }
7712        ret = 0; /* cfg looks good */
7713
7714err_free:
7715        kvfree(insn_state);
7716        kvfree(insn_stack);
7717        env->cfg.insn_state = env->cfg.insn_stack = NULL;
7718        return ret;
7719}
7720
7721/* The minimum supported BTF func info size */
7722#define MIN_BPF_FUNCINFO_SIZE   8
7723#define MAX_FUNCINFO_REC_SIZE   252
7724
7725static int check_btf_func(struct bpf_verifier_env *env,
7726                          const union bpf_attr *attr,
7727                          union bpf_attr __user *uattr)
7728{
7729        u32 i, nfuncs, urec_size, min_size;
7730        u32 krec_size = sizeof(struct bpf_func_info);
7731        struct bpf_func_info *krecord;
7732        struct bpf_func_info_aux *info_aux = NULL;
7733        const struct btf_type *type;
7734        struct bpf_prog *prog;
7735        const struct btf *btf;
7736        void __user *urecord;
7737        u32 prev_offset = 0;
7738        int ret = -ENOMEM;
7739
7740        nfuncs = attr->func_info_cnt;
7741        if (!nfuncs)
7742                return 0;
7743
7744        if (nfuncs != env->subprog_cnt) {
7745                verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7746                return -EINVAL;
7747        }
7748
7749        urec_size = attr->func_info_rec_size;
7750        if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7751            urec_size > MAX_FUNCINFO_REC_SIZE ||
7752            urec_size % sizeof(u32)) {
7753                verbose(env, "invalid func info rec size %u\n", urec_size);
7754                return -EINVAL;
7755        }
7756
7757        prog = env->prog;
7758        btf = prog->aux->btf;
7759
7760        urecord = u64_to_user_ptr(attr->func_info);
7761        min_size = min_t(u32, krec_size, urec_size);
7762
7763        krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
7764        if (!krecord)
7765                return -ENOMEM;
7766        info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7767        if (!info_aux)
7768                goto err_free;
7769
7770        for (i = 0; i < nfuncs; i++) {
7771                ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7772                if (ret) {
7773                        if (ret == -E2BIG) {
7774                                verbose(env, "nonzero tailing record in func info");
7775                                /* set the size kernel expects so loader can zero
7776                                 * out the rest of the record.
7777                                 */
7778                                if (put_user(min_size, &uattr->func_info_rec_size))
7779                                        ret = -EFAULT;
7780                        }
7781                        goto err_free;
7782                }
7783
7784                if (copy_from_user(&krecord[i], urecord, min_size)) {
7785                        ret = -EFAULT;
7786                        goto err_free;
7787                }
7788
7789                /* check insn_off */
7790                if (i == 0) {
7791                        if (krecord[i].insn_off) {
7792                                verbose(env,
7793                                        "nonzero insn_off %u for the first func info record",
7794                                        krecord[i].insn_off);
7795                                ret = -EINVAL;
7796                                goto err_free;
7797                        }
7798                } else if (krecord[i].insn_off <= prev_offset) {
7799                        verbose(env,
7800                                "same or smaller insn offset (%u) than previous func info record (%u)",
7801                                krecord[i].insn_off, prev_offset);
7802                        ret = -EINVAL;
7803                        goto err_free;
7804                }
7805
7806                if (env->subprog_info[i].start != krecord[i].insn_off) {
7807                        verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
7808                        ret = -EINVAL;
7809                        goto err_free;
7810                }
7811
7812                /* check type_id */
7813                type = btf_type_by_id(btf, krecord[i].type_id);
7814                if (!type || !btf_type_is_func(type)) {
7815                        verbose(env, "invalid type id %d in func info",
7816                                krecord[i].type_id);
7817                        ret = -EINVAL;
7818                        goto err_free;
7819                }
7820                info_aux[i].linkage = BTF_INFO_VLEN(type->info);
7821                prev_offset = krecord[i].insn_off;
7822                urecord += urec_size;
7823        }
7824
7825        prog->aux->func_info = krecord;
7826        prog->aux->func_info_cnt = nfuncs;
7827        prog->aux->func_info_aux = info_aux;
7828        return 0;
7829
7830err_free:
7831        kvfree(krecord);
7832        kfree(info_aux);
7833        return ret;
7834}
7835
7836static void adjust_btf_func(struct bpf_verifier_env *env)
7837{
7838        struct bpf_prog_aux *aux = env->prog->aux;
7839        int i;
7840
7841        if (!aux->func_info)
7842                return;
7843
7844        for (i = 0; i < env->subprog_cnt; i++)
7845                aux->func_info[i].insn_off = env->subprog_info[i].start;
7846}
7847
7848#define MIN_BPF_LINEINFO_SIZE   (offsetof(struct bpf_line_info, line_col) + \
7849                sizeof(((struct bpf_line_info *)(0))->line_col))
7850#define MAX_LINEINFO_REC_SIZE   MAX_FUNCINFO_REC_SIZE
7851
7852static int check_btf_line(struct bpf_verifier_env *env,
7853                          const union bpf_attr *attr,
7854                          union bpf_attr __user *uattr)
7855{
7856        u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
7857        struct bpf_subprog_info *sub;
7858        struct bpf_line_info *linfo;
7859        struct bpf_prog *prog;
7860        const struct btf *btf;
7861        void __user *ulinfo;
7862        int err;
7863
7864        nr_linfo = attr->line_info_cnt;
7865        if (!nr_linfo)
7866                return 0;
7867
7868        rec_size = attr->line_info_rec_size;
7869        if (rec_size < MIN_BPF_LINEINFO_SIZE ||
7870            rec_size > MAX_LINEINFO_REC_SIZE ||
7871            rec_size & (sizeof(u32) - 1))
7872                return -EINVAL;
7873
7874        /* Need to zero it in case the userspace may
7875         * pass in a smaller bpf_line_info object.
7876         */
7877        linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
7878                         GFP_KERNEL | __GFP_NOWARN);
7879        if (!linfo)
7880                return -ENOMEM;
7881
7882        prog = env->prog;
7883        btf = prog->aux->btf;
7884
7885        s = 0;
7886        sub = env->subprog_info;
7887        ulinfo = u64_to_user_ptr(attr->line_info);
7888        expected_size = sizeof(struct bpf_line_info);
7889        ncopy = min_t(u32, expected_size, rec_size);
7890        for (i = 0; i < nr_linfo; i++) {
7891                err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
7892                if (err) {
7893                        if (err == -E2BIG) {
7894                                verbose(env, "nonzero tailing record in line_info");
7895                                if (put_user(expected_size,
7896                                             &uattr->line_info_rec_size))
7897                                        err = -EFAULT;
7898                        }
7899                        goto err_free;
7900                }
7901
7902                if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
7903                        err = -EFAULT;
7904                        goto err_free;
7905                }
7906
7907                /*
7908                 * Check insn_off to ensure
7909                 * 1) strictly increasing AND
7910                 * 2) bounded by prog->len
7911                 *
7912                 * The linfo[0].insn_off == 0 check logically falls into
7913                 * the later "missing bpf_line_info for func..." case
7914                 * because the first linfo[0].insn_off must be the
7915                 * first sub also and the first sub must have
7916                 * subprog_info[0].start == 0.
7917                 */
7918                if ((i && linfo[i].insn_off <= prev_offset) ||
7919                    linfo[i].insn_off >= prog->len) {
7920                        verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
7921                                i, linfo[i].insn_off, prev_offset,
7922                                prog->len);
7923                        err = -EINVAL;
7924                        goto err_free;
7925                }
7926
7927                if (!prog->insnsi[linfo[i].insn_off].code) {
7928                        verbose(env,
7929                                "Invalid insn code at line_info[%u].insn_off\n",
7930                                i);
7931                        err = -EINVAL;
7932                        goto err_free;
7933                }
7934
7935                if (!btf_name_by_offset(btf, linfo[i].line_off) ||
7936                    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
7937                        verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
7938                        err = -EINVAL;
7939                        goto err_free;
7940                }
7941
7942                if (s != env->subprog_cnt) {
7943                        if (linfo[i].insn_off == sub[s].start) {
7944                                sub[s].linfo_idx = i;
7945                                s++;
7946                        } else if (sub[s].start < linfo[i].insn_off) {
7947                                verbose(env, "missing bpf_line_info for func#%u\n", s);
7948                                err = -EINVAL;
7949                                goto err_free;
7950                        }
7951                }
7952
7953                prev_offset = linfo[i].insn_off;
7954                ulinfo += rec_size;
7955        }
7956
7957        if (s != env->subprog_cnt) {
7958                verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
7959                        env->subprog_cnt - s, s);
7960                err = -EINVAL;
7961                goto err_free;
7962        }
7963
7964        prog->aux->linfo = linfo;
7965        prog->aux->nr_linfo = nr_linfo;
7966
7967        return 0;
7968
7969err_free:
7970        kvfree(linfo);
7971        return err;
7972}
7973
7974static int check_btf_info(struct bpf_verifier_env *env,
7975                          const union bpf_attr *attr,
7976                          union bpf_attr __user *uattr)
7977{
7978        struct btf *btf;
7979        int err;
7980
7981        if (!attr->func_info_cnt && !attr->line_info_cnt)
7982                return 0;
7983
7984        btf = btf_get_by_fd(attr->prog_btf_fd);
7985        if (IS_ERR(btf))
7986                return PTR_ERR(btf);
7987        env->prog->aux->btf = btf;
7988
7989        err = check_btf_func(env, attr, uattr);
7990        if (err)
7991                return err;
7992
7993        err = check_btf_line(env, attr, uattr);
7994        if (err)
7995                return err;
7996
7997        return 0;
7998}
7999
8000/* check %cur's range satisfies %old's */
8001static bool range_within(struct bpf_reg_state *old,
8002                         struct bpf_reg_state *cur)
8003{
8004        return old->umin_value <= cur->umin_value &&
8005               old->umax_value >= cur->umax_value &&
8006               old->smin_value <= cur->smin_value &&
8007               old->smax_value >= cur->smax_value;
8008}
8009
8010/* Maximum number of register states that can exist at once */
8011#define ID_MAP_SIZE     (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8012struct idpair {
8013        u32 old;
8014        u32 cur;
8015};
8016
8017/* If in the old state two registers had the same id, then they need to have
8018 * the same id in the new state as well.  But that id could be different from
8019 * the old state, so we need to track the mapping from old to new ids.
8020 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8021 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
8022 * regs with a different old id could still have new id 9, we don't care about
8023 * that.
8024 * So we look through our idmap to see if this old id has been seen before.  If
8025 * so, we require the new id to match; otherwise, we add the id pair to the map.
8026 */
8027static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
8028{
8029        unsigned int i;
8030
8031        for (i = 0; i < ID_MAP_SIZE; i++) {
8032                if (!idmap[i].old) {
8033                        /* Reached an empty slot; haven't seen this id before */
8034                        idmap[i].old = old_id;
8035                        idmap[i].cur = cur_id;
8036                        return true;
8037                }
8038                if (idmap[i].old == old_id)
8039                        return idmap[i].cur == cur_id;
8040        }
8041        /* We ran out of idmap slots, which should be impossible */
8042        WARN_ON_ONCE(1);
8043        return false;
8044}
8045
8046static void clean_func_state(struct bpf_verifier_env *env,
8047                             struct bpf_func_state *st)
8048{
8049        enum bpf_reg_liveness live;
8050        int i, j;
8051
8052        for (i = 0; i < BPF_REG_FP; i++) {
8053                live = st->regs[i].live;
8054                /* liveness must not touch this register anymore */
8055                st->regs[i].live |= REG_LIVE_DONE;
8056                if (!(live & REG_LIVE_READ))
8057                        /* since the register is unused, clear its state
8058                         * to make further comparison simpler
8059                         */
8060                        __mark_reg_not_init(env, &st->regs[i]);
8061        }
8062
8063        for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8064                live = st->stack[i].spilled_ptr.live;
8065                /* liveness must not touch this stack slot anymore */
8066                st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8067                if (!(live & REG_LIVE_READ)) {
8068                        __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
8069                        for (j = 0; j < BPF_REG_SIZE; j++)
8070                                st->stack[i].slot_type[j] = STACK_INVALID;
8071                }
8072        }
8073}
8074
8075static void clean_verifier_state(struct bpf_verifier_env *env,
8076                                 struct bpf_verifier_state *st)
8077{
8078        int i;
8079
8080        if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8081                /* all regs in this state in all frames were already marked */
8082                return;
8083
8084        for (i = 0; i <= st->curframe; i++)
8085                clean_func_state(env, st->frame[i]);
8086}
8087
8088/* the parentage chains form a tree.
8089 * the verifier states are added to state lists at given insn and
8090 * pushed into state stack for future exploration.
8091 * when the verifier reaches bpf_exit insn some of the verifer states
8092 * stored in the state lists have their final liveness state already,
8093 * but a lot of states will get revised from liveness point of view when
8094 * the verifier explores other branches.
8095 * Example:
8096 * 1: r0 = 1
8097 * 2: if r1 == 100 goto pc+1
8098 * 3: r0 = 2
8099 * 4: exit
8100 * when the verifier reaches exit insn the register r0 in the state list of
8101 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8102 * of insn 2 and goes exploring further. At the insn 4 it will walk the
8103 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8104 *
8105 * Since the verifier pushes the branch states as it sees them while exploring
8106 * the program the condition of walking the branch instruction for the second
8107 * time means that all states below this branch were already explored and
8108 * their final liveness markes are already propagated.
8109 * Hence when the verifier completes the search of state list in is_state_visited()
8110 * we can call this clean_live_states() function to mark all liveness states
8111 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8112 * will not be used.
8113 * This function also clears the registers and stack for states that !READ
8114 * to simplify state merging.
8115 *
8116 * Important note here that walking the same branch instruction in the callee
8117 * doesn't meant that the states are DONE. The verifier has to compare
8118 * the callsites
8119 */
8120static void clean_live_states(struct bpf_verifier_env *env, int insn,
8121                              struct bpf_verifier_state *cur)
8122{
8123        struct bpf_verifier_state_list *sl;
8124        int i;
8125
8126        sl = *explored_state(env, insn);
8127        while (sl) {
8128                if (sl->state.branches)
8129                        goto next;
8130                if (sl->state.insn_idx != insn ||
8131                    sl->state.curframe != cur->curframe)
8132                        goto next;
8133                for (i = 0; i <= cur->curframe; i++)
8134                        if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8135                                goto next;
8136                clean_verifier_state(env, &sl->state);
8137next:
8138                sl = sl->next;
8139        }
8140}
8141
8142/* Returns true if (rold safe implies rcur safe) */
8143static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8144                    struct idpair *idmap)
8145{
8146        bool equal;
8147
8148        if (!(rold->live & REG_LIVE_READ))
8149                /* explored state didn't use this */
8150                return true;
8151
8152        equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
8153
8154        if (rold->type == PTR_TO_STACK)
8155                /* two stack pointers are equal only if they're pointing to
8156                 * the same stack frame, since fp-8 in foo != fp-8 in bar
8157                 */
8158                return equal && rold->frameno == rcur->frameno;
8159
8160        if (equal)
8161                return true;
8162
8163        if (rold->type == NOT_INIT)
8164                /* explored state can't have used this */
8165                return true;
8166        if (rcur->type == NOT_INIT)
8167                return false;
8168        switch (rold->type) {
8169        case SCALAR_VALUE:
8170                if (rcur->type == SCALAR_VALUE) {
8171                        if (!rold->precise && !rcur->precise)
8172                                return true;
8173                        /* new val must satisfy old val knowledge */
8174                        return range_within(rold, rcur) &&
8175                               tnum_in(rold->var_off, rcur->var_off);
8176                } else {
8177                        /* We're trying to use a pointer in place of a scalar.
8178                         * Even if the scalar was unbounded, this could lead to
8179                         * pointer leaks because scalars are allowed to leak
8180                         * while pointers are not. We could make this safe in
8181                         * special cases if root is calling us, but it's
8182                         * probably not worth the hassle.
8183                         */
8184                        return false;
8185                }
8186        case PTR_TO_MAP_VALUE:
8187                /* If the new min/max/var_off satisfy the old ones and
8188                 * everything else matches, we are OK.
8189                 * 'id' is not compared, since it's only used for maps with
8190                 * bpf_spin_lock inside map element and in such cases if
8191                 * the rest of the prog is valid for one map element then
8192                 * it's valid for all map elements regardless of the key
8193                 * used in bpf_map_lookup()
8194                 */
8195                return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8196                       range_within(rold, rcur) &&
8197                       tnum_in(rold->var_off, rcur->var_off);
8198        case PTR_TO_MAP_VALUE_OR_NULL:
8199                /* a PTR_TO_MAP_VALUE could be safe to use as a
8200                 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8201                 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8202                 * checked, doing so could have affected others with the same
8203                 * id, and we can't check for that because we lost the id when
8204                 * we converted to a PTR_TO_MAP_VALUE.
8205                 */
8206                if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8207                        return false;
8208                if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8209                        return false;
8210                /* Check our ids match any regs they're supposed to */
8211                return check_ids(rold->id, rcur->id, idmap);
8212        case PTR_TO_PACKET_META:
8213        case PTR_TO_PACKET:
8214                if (rcur->type != rold->type)
8215                        return false;
8216                /* We must have at least as much range as the old ptr
8217                 * did, so that any accesses which were safe before are
8218                 * still safe.  This is true even if old range < old off,
8219                 * since someone could have accessed through (ptr - k), or
8220                 * even done ptr -= k in a register, to get a safe access.
8221                 */
8222                if (rold->range > rcur->range)
8223                        return false;
8224                /* If the offsets don't match, we can't trust our alignment;
8225                 * nor can we be sure that we won't fall out of range.
8226                 */
8227                if (rold->off != rcur->off)
8228                        return false;
8229                /* id relations must be preserved */
8230                if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8231                        return false;
8232                /* new val must satisfy old val knowledge */
8233                return range_within(rold, rcur) &&
8234                       tnum_in(rold->var_off, rcur->var_off);
8235        case PTR_TO_CTX:
8236        case CONST_PTR_TO_MAP:
8237        case PTR_TO_PACKET_END:
8238        case PTR_TO_FLOW_KEYS:
8239        case PTR_TO_SOCKET:
8240        case PTR_TO_SOCKET_OR_NULL:
8241        case PTR_TO_SOCK_COMMON:
8242        case PTR_TO_SOCK_COMMON_OR_NULL:
8243        case PTR_TO_TCP_SOCK:
8244        case PTR_TO_TCP_SOCK_OR_NULL:
8245        case PTR_TO_XDP_SOCK:
8246                /* Only valid matches are exact, which memcmp() above
8247                 * would have accepted
8248                 */
8249        default:
8250                /* Don't know what's going on, just say it's not safe */
8251                return false;
8252        }
8253
8254        /* Shouldn't get here; if we do, say it's not safe */
8255        WARN_ON_ONCE(1);
8256        return false;
8257}
8258
8259static bool stacksafe(struct bpf_func_state *old,
8260                      struct bpf_func_state *cur,
8261                      struct idpair *idmap)
8262{
8263        int i, spi;
8264
8265        /* walk slots of the explored stack and ignore any additional
8266         * slots in the current stack, since explored(safe) state
8267         * didn't use them
8268         */
8269        for (i = 0; i < old->allocated_stack; i++) {
8270                spi = i / BPF_REG_SIZE;
8271
8272                if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8273                        i += BPF_REG_SIZE - 1;
8274                        /* explored state didn't use this */
8275                        continue;
8276                }
8277
8278                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8279                        continue;
8280
8281                /* explored stack has more populated slots than current stack
8282                 * and these slots were used
8283                 */
8284                if (i >= cur->allocated_stack)
8285                        return false;
8286
8287                /* if old state was safe with misc data in the stack
8288                 * it will be safe with zero-initialized stack.
8289                 * The opposite is not true
8290                 */
8291                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8292                    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8293                        continue;
8294                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8295                    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8296                        /* Ex: old explored (safe) state has STACK_SPILL in
8297                         * this stack slot, but current has STACK_MISC ->
8298                         * this verifier states are not equivalent,
8299                         * return false to continue verification of this path
8300                         */
8301                        return false;
8302                if (i % BPF_REG_SIZE)
8303                        continue;
8304                if (old->stack[spi].slot_type[0] != STACK_SPILL)
8305                        continue;
8306                if (!regsafe(&old->stack[spi].spilled_ptr,
8307                             &cur->stack[spi].spilled_ptr,
8308                             idmap))
8309                        /* when explored and current stack slot are both storing
8310                         * spilled registers, check that stored pointers types
8311                         * are the same as well.
8312                         * Ex: explored safe path could have stored
8313                         * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8314                         * but current path has stored:
8315                         * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8316                         * such verifier states are not equivalent.
8317                         * return false to continue verification of this path
8318                         */
8319                        return false;
8320        }
8321        return true;
8322}
8323
8324static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8325{
8326        if (old->acquired_refs != cur->acquired_refs)
8327                return false;
8328        return !memcmp(old->refs, cur->refs,
8329                       sizeof(*old->refs) * old->acquired_refs);
8330}
8331
8332/* compare two verifier states
8333 *
8334 * all states stored in state_list are known to be valid, since
8335 * verifier reached 'bpf_exit' instruction through them
8336 *
8337 * this function is called when verifier exploring different branches of
8338 * execution popped from the state stack. If it sees an old state that has
8339 * more strict register state and more strict stack state then this execution
8340 * branch doesn't need to be explored further, since verifier already
8341 * concluded that more strict state leads to valid finish.
8342 *
8343 * Therefore two states are equivalent if register state is more conservative
8344 * and explored stack state is more conservative than the current one.
8345 * Example:
8346 *       explored                   current
8347 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8348 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8349 *
8350 * In other words if current stack state (one being explored) has more
8351 * valid slots than old one that already passed validation, it means
8352 * the verifier can stop exploring and conclude that current state is valid too
8353 *
8354 * Similarly with registers. If explored state has register type as invalid
8355 * whereas register type in current state is meaningful, it means that
8356 * the current state will reach 'bpf_exit' instruction safely
8357 */
8358static bool func_states_equal(struct bpf_func_state *old,
8359                              struct bpf_func_state *cur)
8360{
8361        struct idpair *idmap;
8362        bool ret = false;
8363        int i;
8364
8365        idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8366        /* If we failed to allocate the idmap, just say it's not safe */
8367        if (!idmap)
8368                return false;
8369
8370        for (i = 0; i < MAX_BPF_REG; i++) {
8371                if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8372                        goto out_free;
8373        }
8374
8375        if (!stacksafe(old, cur, idmap))
8376                goto out_free;
8377
8378        if (!refsafe(old, cur))
8379                goto out_free;
8380        ret = true;
8381out_free:
8382        kfree(idmap);
8383        return ret;
8384}
8385
8386static bool states_equal(struct bpf_verifier_env *env,
8387                         struct bpf_verifier_state *old,
8388                         struct bpf_verifier_state *cur)
8389{
8390        int i;
8391
8392        if (old->curframe != cur->curframe)
8393                return false;
8394
8395        /* Verification state from speculative execution simulation
8396         * must never prune a non-speculative execution one.
8397         */
8398        if (old->speculative && !cur->speculative)
8399                return false;
8400
8401        if (old->active_spin_lock != cur->active_spin_lock)
8402                return false;
8403
8404        /* for states to be equal callsites have to be the same
8405         * and all frame states need to be equivalent
8406         */
8407        for (i = 0; i <= old->curframe; i++) {
8408                if (old->frame[i]->callsite != cur->frame[i]->callsite)
8409                        return false;
8410                if (!func_states_equal(old->frame[i], cur->frame[i]))
8411                        return false;
8412        }
8413        return true;
8414}
8415
8416/* Return 0 if no propagation happened. Return negative error code if error
8417 * happened. Otherwise, return the propagated bit.
8418 */
8419static int propagate_liveness_reg(struct bpf_verifier_env *env,
8420                                  struct bpf_reg_state *reg,
8421                                  struct bpf_reg_state *parent_reg)
8422{
8423        u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8424        u8 flag = reg->live & REG_LIVE_READ;
8425        int err;
8426
8427        /* When comes here, read flags of PARENT_REG or REG could be any of
8428         * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8429         * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8430         */
8431        if (parent_flag == REG_LIVE_READ64 ||
8432            /* Or if there is no read flag from REG. */
8433            !flag ||
8434            /* Or if the read flag from REG is the same as PARENT_REG. */
8435            parent_flag == flag)
8436                return 0;
8437
8438        err = mark_reg_read(env, reg, parent_reg, flag);
8439        if (err)
8440                return err;
8441
8442        return flag;
8443}
8444
8445/* A write screens off any subsequent reads; but write marks come from the
8446 * straight-line code between a state and its parent.  When we arrive at an
8447 * equivalent state (jump target or such) we didn't arrive by the straight-line
8448 * code, so read marks in the state must propagate to the parent regardless
8449 * of the state's write marks. That's what 'parent == state->parent' comparison
8450 * in mark_reg_read() is for.
8451 */
8452static int propagate_liveness(struct bpf_verifier_env *env,
8453                              const struct bpf_verifier_state *vstate,
8454                              struct bpf_verifier_state *vparent)
8455{
8456        struct bpf_reg_state *state_reg, *parent_reg;
8457        struct bpf_func_state *state, *parent;
8458        int i, frame, err = 0;
8459
8460        if (vparent->curframe != vstate->curframe) {
8461                WARN(1, "propagate_live: parent frame %d current frame %d\n",
8462                     vparent->curframe, vstate->curframe);
8463                return -EFAULT;
8464        }
8465        /* Propagate read liveness of registers... */
8466        BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
8467        for (frame = 0; frame <= vstate->curframe; frame++) {
8468                parent = vparent->frame[frame];
8469                state = vstate->frame[frame];
8470                parent_reg = parent->regs;
8471                state_reg = state->regs;
8472                /* We don't need to worry about FP liveness, it's read-only */
8473                for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
8474                        err = propagate_liveness_reg(env, &state_reg[i],
8475                                                     &parent_reg[i]);
8476                        if (err < 0)
8477                                return err;
8478                        if (err == REG_LIVE_READ64)
8479                                mark_insn_zext(env, &parent_reg[i]);
8480                }
8481
8482                /* Propagate stack slots. */
8483                for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8484                            i < parent->allocated_stack / BPF_REG_SIZE; i++) {
8485                        parent_reg = &parent->stack[i].spilled_ptr;
8486                        state_reg = &state->stack[i].spilled_ptr;
8487                        err = propagate_liveness_reg(env, state_reg,
8488                                                     parent_reg);
8489                        if (err < 0)
8490                                return err;
8491                }
8492        }
8493        return 0;
8494}
8495
8496/* find precise scalars in the previous equivalent state and
8497 * propagate them into the current state
8498 */
8499static int propagate_precision(struct bpf_verifier_env *env,
8500                               const struct bpf_verifier_state *old)
8501{
8502        struct bpf_reg_state *state_reg;
8503        struct bpf_func_state *state;
8504        int i, err = 0;
8505
8506        state = old->frame[old->curframe];
8507        state_reg = state->regs;
8508        for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8509                if (state_reg->type != SCALAR_VALUE ||
8510                    !state_reg->precise)
8511                        continue;
8512                if (env->log.level & BPF_LOG_LEVEL2)
8513                        verbose(env, "propagating r%d\n", i);
8514                err = mark_chain_precision(env, i);
8515                if (err < 0)
8516                        return err;
8517        }
8518
8519        for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8520                if (state->stack[i].slot_type[0] != STACK_SPILL)
8521                        continue;
8522                state_reg = &state->stack[i].spilled_ptr;
8523                if (state_reg->type != SCALAR_VALUE ||
8524                    !state_reg->precise)
8525                        continue;
8526                if (env->log.level & BPF_LOG_LEVEL2)
8527                        verbose(env, "propagating fp%d\n",
8528                                (-i - 1) * BPF_REG_SIZE);
8529                err = mark_chain_precision_stack(env, i);
8530                if (err < 0)
8531                        return err;
8532        }
8533        return 0;
8534}
8535
8536static bool states_maybe_looping(struct bpf_verifier_state *old,
8537                                 struct bpf_verifier_state *cur)
8538{
8539        struct bpf_func_state *fold, *fcur;
8540        int i, fr = cur->curframe;
8541
8542        if (old->curframe != fr)
8543                return false;
8544
8545        fold = old->frame[fr];
8546        fcur = cur->frame[fr];
8547        for (i = 0; i < MAX_BPF_REG; i++)
8548                if (memcmp(&fold->regs[i], &fcur->regs[i],
8549                           offsetof(struct bpf_reg_state, parent)))
8550                        return false;
8551        return true;
8552}
8553
8554
8555static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
8556{
8557        struct bpf_verifier_state_list *new_sl;
8558        struct bpf_verifier_state_list *sl, **pprev;
8559        struct bpf_verifier_state *cur = env->cur_state, *new;
8560        int i, j, err, states_cnt = 0;
8561        bool add_new_state = env->test_state_freq ? true : false;
8562
8563        cur->last_insn_idx = env->prev_insn_idx;
8564        if (!env->insn_aux_data[insn_idx].prune_point)
8565                /* this 'insn_idx' instruction wasn't marked, so we will not
8566                 * be doing state search here
8567                 */
8568                return 0;
8569
8570        /* bpf progs typically have pruning point every 4 instructions
8571         * http://vger.kernel.org/bpfconf2019.html#session-1
8572         * Do not add new state for future pruning if the verifier hasn't seen
8573         * at least 2 jumps and at least 8 instructions.
8574         * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8575         * In tests that amounts to up to 50% reduction into total verifier
8576         * memory consumption and 20% verifier time speedup.
8577         */
8578        if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8579            env->insn_processed - env->prev_insn_processed >= 8)
8580                add_new_state = true;
8581
8582        pprev = explored_state(env, insn_idx);
8583        sl = *pprev;
8584
8585        clean_live_states(env, insn_idx, cur);
8586
8587        while (sl) {
8588                states_cnt++;
8589                if (sl->state.insn_idx != insn_idx)
8590                        goto next;
8591                if (sl->state.branches) {
8592                        if (states_maybe_looping(&sl->state, cur) &&
8593                            states_equal(env, &sl->state, cur)) {
8594                                verbose_linfo(env, insn_idx, "; ");
8595                                verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8596                                return -EINVAL;
8597                        }
8598                        /* if the verifier is processing a loop, avoid adding new state
8599                         * too often, since different loop iterations have distinct
8600                         * states and may not help future pruning.
8601                         * This threshold shouldn't be too low to make sure that
8602                         * a loop with large bound will be rejected quickly.
8603                         * The most abusive loop will be:
8604                         * r1 += 1
8605                         * if r1 < 1000000 goto pc-2
8606                         * 1M insn_procssed limit / 100 == 10k peak states.
8607                         * This threshold shouldn't be too high either, since states
8608                         * at the end of the loop are likely to be useful in pruning.
8609                         */
8610                        if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8611                            env->insn_processed - env->prev_insn_processed < 100)
8612                                add_new_state = false;
8613                        goto miss;
8614                }
8615                if (states_equal(env, &sl->state, cur)) {
8616                        sl->hit_cnt++;
8617                        /* reached equivalent register/stack state,
8618                         * prune the search.
8619                         * Registers read by the continuation are read by us.
8620                         * If we have any write marks in env->cur_state, they
8621                         * will prevent corresponding reads in the continuation
8622                         * from reaching our parent (an explored_state).  Our
8623                         * own state will get the read marks recorded, but
8624                         * they'll be immediately forgotten as we're pruning
8625                         * this state and will pop a new one.
8626                         */
8627                        err = propagate_liveness(env, &sl->state, cur);
8628
8629                        /* if previous state reached the exit with precision and
8630                         * current state is equivalent to it (except precsion marks)
8631                         * the precision needs to be propagated back in
8632                         * the current state.
8633                         */
8634                        err = err ? : push_jmp_history(env, cur);
8635                        err = err ? : propagate_precision(env, &sl->state);
8636                        if (err)
8637                                return err;
8638                        return 1;
8639                }
8640miss:
8641                /* when new state is not going to be added do not increase miss count.
8642                 * Otherwise several loop iterations will remove the state
8643                 * recorded earlier. The goal of these heuristics is to have
8644                 * states from some iterations of the loop (some in the beginning
8645                 * and some at the end) to help pruning.
8646                 */
8647                if (add_new_state)
8648                        sl->miss_cnt++;
8649                /* heuristic to determine whether this state is beneficial
8650                 * to keep checking from state equivalence point of view.
8651                 * Higher numbers increase max_states_per_insn and verification time,
8652                 * but do not meaningfully decrease insn_processed.
8653                 */
8654                if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8655                        /* the state is unlikely to be useful. Remove it to
8656                         * speed up verification
8657                         */
8658                        *pprev = sl->next;
8659                        if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
8660                                u32 br = sl->state.branches;
8661
8662                                WARN_ONCE(br,
8663                                          "BUG live_done but branches_to_explore %d\n",
8664                                          br);
8665                                free_verifier_state(&sl->state, false);
8666                                kfree(sl);
8667                                env->peak_states--;
8668                        } else {
8669                                /* cannot free this state, since parentage chain may
8670                                 * walk it later. Add it for free_list instead to
8671                                 * be freed at the end of verification
8672                                 */
8673                                sl->next = env->free_list;
8674                                env->free_list = sl;
8675                        }
8676                        sl = *pprev;
8677                        continue;
8678                }
8679next:
8680                pprev = &sl->next;
8681                sl = *pprev;
8682        }
8683
8684        if (env->max_states_per_insn < states_cnt)
8685                env->max_states_per_insn = states_cnt;
8686
8687        if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
8688                return push_jmp_history(env, cur);
8689
8690        if (!add_new_state)
8691                return push_jmp_history(env, cur);
8692
8693        /* There were no equivalent states, remember the current one.
8694         * Technically the current state is not proven to be safe yet,
8695         * but it will either reach outer most bpf_exit (which means it's safe)
8696         * or it will be rejected. When there are no loops the verifier won't be
8697         * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
8698         * again on the way to bpf_exit.
8699         * When looping the sl->state.branches will be > 0 and this state
8700         * will not be considered for equivalence until branches == 0.
8701         */
8702        new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
8703        if (!new_sl)
8704                return -ENOMEM;
8705        env->total_states++;
8706        env->peak_states++;
8707        env->prev_jmps_processed = env->jmps_processed;
8708        env->prev_insn_processed = env->insn_processed;
8709
8710        /* add new state to the head of linked list */
8711        new = &new_sl->state;
8712        err = copy_verifier_state(new, cur);
8713        if (err) {
8714                free_verifier_state(new, false);
8715                kfree(new_sl);
8716                return err;
8717        }
8718        new->insn_idx = insn_idx;
8719        WARN_ONCE(new->branches != 1,
8720                  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
8721
8722        cur->parent = new;
8723        cur->first_insn_idx = insn_idx;
8724        clear_jmp_history(cur);
8725        new_sl->next = *explored_state(env, insn_idx);
8726        *explored_state(env, insn_idx) = new_sl;
8727        /* connect new state to parentage chain. Current frame needs all
8728         * registers connected. Only r6 - r9 of the callers are alive (pushed
8729         * to the stack implicitly by JITs) so in callers' frames connect just
8730         * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8731         * the state of the call instruction (with WRITTEN set), and r0 comes
8732         * from callee with its full parentage chain, anyway.
8733         */
8734        /* clear write marks in current state: the writes we did are not writes
8735         * our child did, so they don't screen off its reads from us.
8736         * (There are no read marks in current state, because reads always mark
8737         * their parent and current state never has children yet.  Only
8738         * explored_states can get read marks.)
8739         */
8740        for (j = 0; j <= cur->curframe; j++) {
8741                for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8742                        cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8743                for (i = 0; i < BPF_REG_FP; i++)
8744                        cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8745        }
8746
8747        /* all stack frames are accessible from callee, clear them all */
8748        for (j = 0; j <= cur->curframe; j++) {
8749                struct bpf_func_state *frame = cur->frame[j];
8750                struct bpf_func_state *newframe = new->frame[j];
8751
8752                for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
8753                        frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
8754                        frame->stack[i].spilled_ptr.parent =
8755                                                &newframe->stack[i].spilled_ptr;
8756                }
8757        }
8758        return 0;
8759}
8760
8761/* Return true if it's OK to have the same insn return a different type. */
8762static bool reg_type_mismatch_ok(enum bpf_reg_type type)
8763{
8764        switch (type) {
8765        case PTR_TO_CTX:
8766        case PTR_TO_SOCKET:
8767        case PTR_TO_SOCKET_OR_NULL:
8768        case PTR_TO_SOCK_COMMON:
8769        case PTR_TO_SOCK_COMMON_OR_NULL:
8770        case PTR_TO_TCP_SOCK:
8771        case PTR_TO_TCP_SOCK_OR_NULL:
8772        case PTR_TO_XDP_SOCK:
8773        case PTR_TO_BTF_ID:
8774        case PTR_TO_BTF_ID_OR_NULL:
8775                return false;
8776        default:
8777                return true;
8778        }
8779}
8780
8781/* If an instruction was previously used with particular pointer types, then we
8782 * need to be careful to avoid cases such as the below, where it may be ok
8783 * for one branch accessing the pointer, but not ok for the other branch:
8784 *
8785 * R1 = sock_ptr
8786 * goto X;
8787 * ...
8788 * R1 = some_other_valid_ptr;
8789 * goto X;
8790 * ...
8791 * R2 = *(u32 *)(R1 + 0);
8792 */
8793static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
8794{
8795        return src != prev && (!reg_type_mismatch_ok(src) ||
8796                               !reg_type_mismatch_ok(prev));
8797}
8798
8799static int do_check(struct bpf_verifier_env *env)
8800{
8801        bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
8802        struct bpf_verifier_state *state = env->cur_state;
8803        struct bpf_insn *insns = env->prog->insnsi;
8804        struct bpf_reg_state *regs;
8805        int insn_cnt = env->prog->len;
8806        bool do_print_state = false;
8807        int prev_insn_idx = -1;
8808
8809        for (;;) {
8810                struct bpf_insn *insn;
8811                u8 class;
8812                int err;
8813
8814                env->prev_insn_idx = prev_insn_idx;
8815                if (env->insn_idx >= insn_cnt) {
8816                        verbose(env, "invalid insn idx %d insn_cnt %d\n",
8817                                env->insn_idx, insn_cnt);
8818                        return -EFAULT;
8819                }
8820
8821                insn = &insns[env->insn_idx];
8822                class = BPF_CLASS(insn->code);
8823
8824                if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
8825                        verbose(env,
8826                                "BPF program is too large. Processed %d insn\n",
8827                                env->insn_processed);
8828                        return -E2BIG;
8829                }
8830
8831                err = is_state_visited(env, env->insn_idx);
8832                if (err < 0)
8833                        return err;
8834                if (err == 1) {
8835                        /* found equivalent state, can prune the search */
8836                        if (env->log.level & BPF_LOG_LEVEL) {
8837                                if (do_print_state)
8838                                        verbose(env, "\nfrom %d to %d%s: safe\n",
8839                                                env->prev_insn_idx, env->insn_idx,
8840                                                env->cur_state->speculative ?
8841                                                " (speculative execution)" : "");
8842                                else
8843                                        verbose(env, "%d: safe\n", env->insn_idx);
8844                        }
8845                        goto process_bpf_exit;
8846                }
8847
8848                if (signal_pending(current))
8849                        return -EAGAIN;
8850
8851                if (need_resched())
8852                        cond_resched();
8853
8854                if (env->log.level & BPF_LOG_LEVEL2 ||
8855                    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
8856                        if (env->log.level & BPF_LOG_LEVEL2)
8857                                verbose(env, "%d:", env->insn_idx);
8858                        else
8859                                verbose(env, "\nfrom %d to %d%s:",
8860                                        env->prev_insn_idx, env->insn_idx,
8861                                        env->cur_state->speculative ?
8862                                        " (speculative execution)" : "");
8863                        print_verifier_state(env, state->frame[state->curframe]);
8864                        do_print_state = false;
8865                }
8866
8867                if (env->log.level & BPF_LOG_LEVEL) {
8868                        const struct bpf_insn_cbs cbs = {
8869                                .cb_print       = verbose,
8870                                .private_data   = env,
8871                        };
8872
8873                        verbose_linfo(env, env->insn_idx, "; ");
8874                        verbose(env, "%d: ", env->insn_idx);
8875                        print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
8876                }
8877
8878                if (bpf_prog_is_dev_bound(env->prog->aux)) {
8879                        err = bpf_prog_offload_verify_insn(env, env->insn_idx,
8880                                                           env->prev_insn_idx);
8881                        if (err)
8882                                return err;
8883                }
8884
8885                regs = cur_regs(env);
8886                env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8887                prev_insn_idx = env->insn_idx;
8888
8889                if (class == BPF_ALU || class == BPF_ALU64) {
8890                        err = check_alu_op(env, insn);
8891                        if (err)
8892                                return err;
8893
8894                } else if (class == BPF_LDX) {
8895                        enum bpf_reg_type *prev_src_type, src_reg_type;
8896
8897                        /* check for reserved fields is already done */
8898
8899                        /* check src operand */
8900                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
8901                        if (err)
8902                                return err;
8903
8904                        err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8905                        if (err)
8906                                return err;
8907
8908                        src_reg_type = regs[insn->src_reg].type;
8909
8910                        /* check that memory (src_reg + off) is readable,
8911                         * the state of dst_reg will be updated by this func
8912                         */
8913                        err = check_mem_access(env, env->insn_idx, insn->src_reg,
8914                                               insn->off, BPF_SIZE(insn->code),
8915                                               BPF_READ, insn->dst_reg, false);
8916                        if (err)
8917                                return err;
8918
8919                        prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8920
8921                        if (*prev_src_type == NOT_INIT) {
8922                                /* saw a valid insn
8923                                 * dst_reg = *(u32 *)(src_reg + off)
8924                                 * save type to validate intersecting paths
8925                                 */
8926                                *prev_src_type = src_reg_type;
8927
8928                        } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
8929                                /* ABuser program is trying to use the same insn
8930                                 * dst_reg = *(u32*) (src_reg + off)
8931                                 * with different pointer types:
8932                                 * src_reg == ctx in one branch and
8933                                 * src_reg == stack|map in some other branch.
8934                                 * Reject it.
8935                                 */
8936                                verbose(env, "same insn cannot be used with different pointers\n");
8937                                return -EINVAL;
8938                        }
8939
8940                } else if (class == BPF_STX) {
8941                        enum bpf_reg_type *prev_dst_type, dst_reg_type;
8942
8943                        if (BPF_MODE(insn->code) == BPF_XADD) {
8944                                err = check_xadd(env, env->insn_idx, insn);
8945                                if (err)
8946                                        return err;
8947                                env->insn_idx++;
8948                                continue;
8949                        }
8950
8951                        /* check src1 operand */
8952                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
8953                        if (err)
8954                                return err;
8955                        /* check src2 operand */
8956                        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8957                        if (err)
8958                                return err;
8959
8960                        dst_reg_type = regs[insn->dst_reg].type;
8961
8962                        /* check that memory (dst_reg + off) is writeable */
8963                        err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8964                                               insn->off, BPF_SIZE(insn->code),
8965                                               BPF_WRITE, insn->src_reg, false);
8966                        if (err)
8967                                return err;
8968
8969                        prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8970
8971                        if (*prev_dst_type == NOT_INIT) {
8972                                *prev_dst_type = dst_reg_type;
8973                        } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
8974                                verbose(env, "same insn cannot be used with different pointers\n");
8975                                return -EINVAL;
8976                        }
8977
8978                } else if (class == BPF_ST) {
8979                        if (BPF_MODE(insn->code) != BPF_MEM ||
8980                            insn->src_reg != BPF_REG_0) {
8981                                verbose(env, "BPF_ST uses reserved fields\n");
8982                                return -EINVAL;
8983                        }
8984                        /* check src operand */
8985                        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8986                        if (err)
8987                                return err;
8988
8989                        if (is_ctx_reg(env, insn->dst_reg)) {
8990                                verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
8991                                        insn->dst_reg,
8992                                        reg_type_str[reg_state(env, insn->dst_reg)->type]);
8993                                return -EACCES;
8994                        }
8995
8996                        /* check that memory (dst_reg + off) is writeable */
8997                        err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8998                                               insn->off, BPF_SIZE(insn->code),
8999                                               BPF_WRITE, -1, false);
9000                        if (err)
9001                                return err;
9002
9003                } else if (class == BPF_JMP || class == BPF_JMP32) {
9004                        u8 opcode = BPF_OP(insn->code);
9005
9006                        env->jmps_processed++;
9007                        if (opcode == BPF_CALL) {
9008                                if (BPF_SRC(insn->code) != BPF_K ||
9009                                    insn->off != 0 ||
9010                                    (insn->src_reg != BPF_REG_0 &&
9011                                     insn->src_reg != BPF_PSEUDO_CALL) ||
9012                                    insn->dst_reg != BPF_REG_0 ||
9013                                    class == BPF_JMP32) {
9014                                        verbose(env, "BPF_CALL uses reserved fields\n");
9015                                        return -EINVAL;
9016                                }
9017
9018                                if (env->cur_state->active_spin_lock &&
9019                                    (insn->src_reg == BPF_PSEUDO_CALL ||
9020                                     insn->imm != BPF_FUNC_spin_unlock)) {
9021                                        verbose(env, "function calls are not allowed while holding a lock\n");
9022                                        return -EINVAL;
9023                                }
9024                                if (insn->src_reg == BPF_PSEUDO_CALL)
9025                                        err = check_func_call(env, insn, &env->insn_idx);
9026                                else
9027                                        err = check_helper_call(env, insn->imm, env->insn_idx);
9028                                if (err)
9029                                        return err;
9030
9031                        } else if (opcode == BPF_JA) {
9032                                if (BPF_SRC(insn->code) != BPF_K ||
9033                                    insn->imm != 0 ||
9034                                    insn->src_reg != BPF_REG_0 ||
9035                                    insn->dst_reg != BPF_REG_0 ||
9036                                    class == BPF_JMP32) {
9037                                        verbose(env, "BPF_JA uses reserved fields\n");
9038                                        return -EINVAL;
9039                                }
9040
9041                                env->insn_idx += insn->off + 1;
9042                                continue;
9043
9044                        } else if (opcode == BPF_EXIT) {
9045                                if (BPF_SRC(insn->code) != BPF_K ||
9046                                    insn->imm != 0 ||
9047                                    insn->src_reg != BPF_REG_0 ||
9048                                    insn->dst_reg != BPF_REG_0 ||
9049                                    class == BPF_JMP32) {
9050                                        verbose(env, "BPF_EXIT uses reserved fields\n");
9051                                        return -EINVAL;
9052                                }
9053
9054                                if (env->cur_state->active_spin_lock) {
9055                                        verbose(env, "bpf_spin_unlock is missing\n");
9056                                        return -EINVAL;
9057                                }
9058
9059                                if (state->curframe) {
9060                                        /* exit from nested function */
9061                                        err = prepare_func_exit(env, &env->insn_idx);
9062                                        if (err)
9063                                                return err;
9064                                        do_print_state = true;
9065                                        continue;
9066                                }
9067
9068                                err = check_reference_leak(env);
9069                                if (err)
9070                                        return err;
9071
9072                                err = check_return_code(env);
9073                                if (err)
9074                                        return err;
9075process_bpf_exit:
9076                                update_branch_counts(env, env->cur_state);
9077                                err = pop_stack(env, &prev_insn_idx,
9078                                                &env->insn_idx, pop_log);
9079                                if (err < 0) {
9080                                        if (err != -ENOENT)
9081                                                return err;
9082                                        break;
9083                                } else {
9084                                        do_print_state = true;
9085                                        continue;
9086                                }
9087                        } else {
9088                                err = check_cond_jmp_op(env, insn, &env->insn_idx);
9089                                if (err)
9090                                        return err;
9091                        }
9092                } else if (class == BPF_LD) {
9093                        u8 mode = BPF_MODE(insn->code);
9094
9095                        if (mode == BPF_ABS || mode == BPF_IND) {
9096                                err = check_ld_abs(env, insn);
9097                                if (err)
9098                                        return err;
9099
9100                        } else if (mode == BPF_IMM) {
9101                                err = check_ld_imm(env, insn);
9102                                if (err)
9103                                        return err;
9104
9105                                env->insn_idx++;
9106                                env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9107                        } else {
9108                                verbose(env, "invalid BPF_LD mode\n");
9109                                return -EINVAL;
9110                        }
9111                } else {
9112                        verbose(env, "unknown insn class %d\n", class);
9113                        return -EINVAL;
9114                }
9115
9116                env->insn_idx++;
9117        }
9118
9119        return 0;
9120}
9121
9122static int check_map_prealloc(struct bpf_map *map)
9123{
9124        return (map->map_type != BPF_MAP_TYPE_HASH &&
9125                map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9126                map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
9127                !(map->map_flags & BPF_F_NO_PREALLOC);
9128}
9129
9130static bool is_tracing_prog_type(enum bpf_prog_type type)
9131{
9132        switch (type) {
9133        case BPF_PROG_TYPE_KPROBE:
9134        case BPF_PROG_TYPE_TRACEPOINT:
9135        case BPF_PROG_TYPE_PERF_EVENT:
9136        case BPF_PROG_TYPE_RAW_TRACEPOINT:
9137                return true;
9138        default:
9139                return false;
9140        }
9141}
9142
9143static bool is_preallocated_map(struct bpf_map *map)
9144{
9145        if (!check_map_prealloc(map))
9146                return false;
9147        if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9148                return false;
9149        return true;
9150}
9151
9152static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9153                                        struct bpf_map *map,
9154                                        struct bpf_prog *prog)
9155
9156{
9157        /*
9158         * Validate that trace type programs use preallocated hash maps.
9159         *
9160         * For programs attached to PERF events this is mandatory as the
9161         * perf NMI can hit any arbitrary code sequence.
9162         *
9163         * All other trace types using preallocated hash maps are unsafe as
9164         * well because tracepoint or kprobes can be inside locked regions
9165         * of the memory allocator or at a place where a recursion into the
9166         * memory allocator would see inconsistent state.
9167         *
9168         * On RT enabled kernels run-time allocation of all trace type
9169         * programs is strictly prohibited due to lock type constraints. On
9170         * !RT kernels it is allowed for backwards compatibility reasons for
9171         * now, but warnings are emitted so developers are made aware of
9172         * the unsafety and can fix their programs before this is enforced.
9173         */
9174        if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) {
9175                if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
9176                        verbose(env, "perf_event programs can only use preallocated hash map\n");
9177                        return -EINVAL;
9178                }
9179                if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9180                        verbose(env, "trace type programs can only use preallocated hash map\n");
9181                        return -EINVAL;
9182                }
9183                WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9184                verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9185        }
9186
9187        if ((is_tracing_prog_type(prog->type) ||
9188             prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
9189            map_value_has_spin_lock(map)) {
9190                verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9191                return -EINVAL;
9192        }
9193
9194        if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
9195            !bpf_offload_prog_map_match(prog, map)) {
9196                verbose(env, "offload device mismatch between prog and map\n");
9197                return -EINVAL;
9198        }
9199
9200        if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9201                verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9202                return -EINVAL;
9203        }
9204
9205        return 0;
9206}
9207
9208static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9209{
9210        return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9211                map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9212}
9213
9214/* look for pseudo eBPF instructions that access map FDs and
9215 * replace them with actual map pointers
9216 */
9217static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
9218{
9219        struct bpf_insn *insn = env->prog->insnsi;
9220        int insn_cnt = env->prog->len;
9221        int i, j, err;
9222
9223        err = bpf_prog_calc_tag(env->prog);
9224        if (err)
9225                return err;
9226
9227        for (i = 0; i < insn_cnt; i++, insn++) {
9228                if (BPF_CLASS(insn->code) == BPF_LDX &&
9229                    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9230                        verbose(env, "BPF_LDX uses reserved fields\n");
9231                        return -EINVAL;
9232                }
9233
9234                if (BPF_CLASS(insn->code) == BPF_STX &&
9235                    ((BPF_MODE(insn->code) != BPF_MEM &&
9236                      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
9237                        verbose(env, "BPF_STX uses reserved fields\n");
9238                        return -EINVAL;
9239                }
9240
9241                if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
9242                        struct bpf_insn_aux_data *aux;
9243                        struct bpf_map *map;
9244                        struct fd f;
9245                        u64 addr;
9246
9247                        if (i == insn_cnt - 1 || insn[1].code != 0 ||
9248                            insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9249                            insn[1].off != 0) {
9250                                verbose(env, "invalid bpf_ld_imm64 insn\n");
9251                                return -EINVAL;
9252                        }
9253
9254                        if (insn[0].src_reg == 0)
9255                                /* valid generic load 64-bit imm */
9256                                goto next_insn;
9257
9258                        /* In final convert_pseudo_ld_imm64() step, this is
9259                         * converted into regular 64-bit imm load insn.
9260                         */
9261                        if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9262                             insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9263                            (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9264                             insn[1].imm != 0)) {
9265                                verbose(env,
9266                                        "unrecognized bpf_ld_imm64 insn\n");
9267                                return -EINVAL;
9268                        }
9269
9270                        f = fdget(insn[0].imm);
9271                        map = __bpf_map_get(f);
9272                        if (IS_ERR(map)) {
9273                                verbose(env, "fd %d is not pointing to valid bpf_map\n",
9274                                        insn[0].imm);
9275                                return PTR_ERR(map);
9276                        }
9277
9278                        err = check_map_prog_compatibility(env, map, env->prog);
9279                        if (err) {
9280                                fdput(f);
9281                                return err;
9282                        }
9283
9284                        aux = &env->insn_aux_data[i];
9285                        if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9286                                addr = (unsigned long)map;
9287                        } else {
9288                                u32 off = insn[1].imm;
9289
9290                                if (off >= BPF_MAX_VAR_OFF) {
9291                                        verbose(env, "direct value offset of %u is not allowed\n", off);
9292                                        fdput(f);
9293                                        return -EINVAL;
9294                                }
9295
9296                                if (!map->ops->map_direct_value_addr) {
9297                                        verbose(env, "no direct value access support for this map type\n");
9298                                        fdput(f);
9299                                        return -EINVAL;
9300                                }
9301
9302                                err = map->ops->map_direct_value_addr(map, &addr, off);
9303                                if (err) {
9304                                        verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9305                                                map->value_size, off);
9306                                        fdput(f);
9307                                        return err;
9308                                }
9309
9310                                aux->map_off = off;
9311                                addr += off;
9312                        }
9313
9314                        insn[0].imm = (u32)addr;
9315                        insn[1].imm = addr >> 32;
9316
9317                        /* check whether we recorded this map already */
9318                        for (j = 0; j < env->used_map_cnt; j++) {
9319                                if (env->used_maps[j] == map) {
9320                                        aux->map_index = j;
9321                                        fdput(f);
9322                                        goto next_insn;
9323                                }
9324                        }
9325
9326                        if (env->used_map_cnt >= MAX_USED_MAPS) {
9327                                fdput(f);
9328                                return -E2BIG;
9329                        }
9330
9331                        /* hold the map. If the program is rejected by verifier,
9332                         * the map will be released by release_maps() or it
9333                         * will be used by the valid program until it's unloaded
9334                         * and all maps are released in free_used_maps()
9335                         */
9336                        bpf_map_inc(map);
9337
9338                        aux->map_index = env->used_map_cnt;
9339                        env->used_maps[env->used_map_cnt++] = map;
9340
9341                        if (bpf_map_is_cgroup_storage(map) &&
9342                            bpf_cgroup_storage_assign(env->prog->aux, map)) {
9343                                verbose(env, "only one cgroup storage of each type is allowed\n");
9344                                fdput(f);
9345                                return -EBUSY;
9346                        }
9347
9348                        fdput(f);
9349next_insn:
9350                        insn++;
9351                        i++;
9352                        continue;
9353                }
9354
9355                /* Basic sanity check before we invest more work here. */
9356                if (!bpf_opcode_in_insntable(insn->code)) {
9357                        verbose(env, "unknown opcode %02x\n", insn->code);
9358                        return -EINVAL;
9359                }
9360        }
9361
9362        /* now all pseudo BPF_LD_IMM64 instructions load valid
9363         * 'struct bpf_map *' into a register instead of user map_fd.
9364         * These pointers will be used later by verifier to validate map access.
9365         */
9366        return 0;
9367}
9368
9369/* drop refcnt of maps used by the rejected program */
9370static void release_maps(struct bpf_verifier_env *env)
9371{
9372        __bpf_free_used_maps(env->prog->aux, env->used_maps,
9373                             env->used_map_cnt);
9374}
9375
9376/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
9377static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
9378{
9379        struct bpf_insn *insn = env->prog->insnsi;
9380        int insn_cnt = env->prog->len;
9381        int i;
9382
9383        for (i = 0; i < insn_cnt; i++, insn++)
9384                if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9385                        insn->src_reg = 0;
9386}
9387
9388/* single env->prog->insni[off] instruction was replaced with the range
9389 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
9390 * [0, off) and [off, end) to new locations, so the patched range stays zero
9391 */
9392static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9393                                struct bpf_prog *new_prog, u32 off, u32 cnt)
9394{
9395        struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
9396        struct bpf_insn *insn = new_prog->insnsi;
9397        u32 prog_len;
9398        int i;
9399
9400        /* aux info at OFF always needs adjustment, no matter fast path
9401         * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9402         * original insn at old prog.
9403         */
9404        old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9405
9406        if (cnt == 1)
9407                return 0;
9408        prog_len = new_prog->len;
9409        new_data = vzalloc(array_size(prog_len,
9410                                      sizeof(struct bpf_insn_aux_data)));
9411        if (!new_data)
9412                return -ENOMEM;
9413        memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9414        memcpy(new_data + off + cnt - 1, old_data + off,
9415               sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
9416        for (i = off; i < off + cnt - 1; i++) {
9417                new_data[i].seen = env->pass_cnt;
9418                new_data[i].zext_dst = insn_has_def32(env, insn + i);
9419        }
9420        env->insn_aux_data = new_data;
9421        vfree(old_data);
9422        return 0;
9423}
9424
9425static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9426{
9427        int i;
9428
9429        if (len == 1)
9430                return;
9431        /* NOTE: fake 'exit' subprog should be updated as well. */
9432        for (i = 0; i <= env->subprog_cnt; i++) {
9433                if (env->subprog_info[i].start <= off)
9434                        continue;
9435                env->subprog_info[i].start += len - 1;
9436        }
9437}
9438
9439static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9440                                            const struct bpf_insn *patch, u32 len)
9441{
9442        struct bpf_prog *new_prog;
9443
9444        new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
9445        if (IS_ERR(new_prog)) {
9446                if (PTR_ERR(new_prog) == -ERANGE)
9447                        verbose(env,
9448                                "insn %d cannot be patched due to 16-bit range\n",
9449                                env->insn_aux_data[off].orig_idx);
9450                return NULL;
9451        }
9452        if (adjust_insn_aux_data(env, new_prog, off, len))
9453                return NULL;
9454        adjust_subprog_starts(env, off, len);
9455        return new_prog;
9456}
9457
9458static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9459                                              u32 off, u32 cnt)
9460{
9461        int i, j;
9462
9463        /* find first prog starting at or after off (first to remove) */
9464        for (i = 0; i < env->subprog_cnt; i++)
9465                if (env->subprog_info[i].start >= off)
9466                        break;
9467        /* find first prog starting at or after off + cnt (first to stay) */
9468        for (j = i; j < env->subprog_cnt; j++)
9469                if (env->subprog_info[j].start >= off + cnt)
9470                        break;
9471        /* if j doesn't start exactly at off + cnt, we are just removing
9472         * the front of previous prog
9473         */
9474        if (env->subprog_info[j].start != off + cnt)
9475                j--;
9476
9477        if (j > i) {
9478                struct bpf_prog_aux *aux = env->prog->aux;
9479                int move;
9480
9481                /* move fake 'exit' subprog as well */
9482                move = env->subprog_cnt + 1 - j;
9483
9484                memmove(env->subprog_info + i,
9485                        env->subprog_info + j,
9486                        sizeof(*env->subprog_info) * move);
9487                env->subprog_cnt -= j - i;
9488
9489                /* remove func_info */
9490                if (aux->func_info) {
9491                        move = aux->func_info_cnt - j;
9492
9493                        memmove(aux->func_info + i,
9494                                aux->func_info + j,
9495                                sizeof(*aux->func_info) * move);
9496                        aux->func_info_cnt -= j - i;
9497                        /* func_info->insn_off is set after all code rewrites,
9498                         * in adjust_btf_func() - no need to adjust
9499                         */
9500                }
9501        } else {
9502                /* convert i from "first prog to remove" to "first to adjust" */
9503                if (env->subprog_info[i].start == off)
9504                        i++;
9505        }
9506
9507        /* update fake 'exit' subprog as well */
9508        for (; i <= env->subprog_cnt; i++)
9509                env->subprog_info[i].start -= cnt;
9510
9511        return 0;
9512}
9513
9514static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9515                                      u32 cnt)
9516{
9517        struct bpf_prog *prog = env->prog;
9518        u32 i, l_off, l_cnt, nr_linfo;
9519        struct bpf_line_info *linfo;
9520
9521        nr_linfo = prog->aux->nr_linfo;
9522        if (!nr_linfo)
9523                return 0;
9524
9525        linfo = prog->aux->linfo;
9526
9527        /* find first line info to remove, count lines to be removed */
9528        for (i = 0; i < nr_linfo; i++)
9529                if (linfo[i].insn_off >= off)
9530                        break;
9531
9532        l_off = i;
9533        l_cnt = 0;
9534        for (; i < nr_linfo; i++)
9535                if (linfo[i].insn_off < off + cnt)
9536                        l_cnt++;
9537                else
9538                        break;
9539
9540        /* First live insn doesn't match first live linfo, it needs to "inherit"
9541         * last removed linfo.  prog is already modified, so prog->len == off
9542         * means no live instructions after (tail of the program was removed).
9543         */
9544        if (prog->len != off && l_cnt &&
9545            (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9546                l_cnt--;
9547                linfo[--i].insn_off = off + cnt;
9548        }
9549
9550        /* remove the line info which refer to the removed instructions */
9551        if (l_cnt) {
9552                memmove(linfo + l_off, linfo + i,
9553                        sizeof(*linfo) * (nr_linfo - i));
9554
9555                prog->aux->nr_linfo -= l_cnt;
9556                nr_linfo = prog->aux->nr_linfo;
9557        }
9558
9559        /* pull all linfo[i].insn_off >= off + cnt in by cnt */
9560        for (i = l_off; i < nr_linfo; i++)
9561                linfo[i].insn_off -= cnt;
9562
9563        /* fix up all subprogs (incl. 'exit') which start >= off */
9564        for (i = 0; i <= env->subprog_cnt; i++)
9565                if (env->subprog_info[i].linfo_idx > l_off) {
9566                        /* program may have started in the removed region but
9567                         * may not be fully removed
9568                         */
9569                        if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9570                                env->subprog_info[i].linfo_idx -= l_cnt;
9571                        else
9572                                env->subprog_info[i].linfo_idx = l_off;
9573                }
9574
9575        return 0;
9576}
9577
9578static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9579{
9580        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9581        unsigned int orig_prog_len = env->prog->len;
9582        int err;
9583
9584        if (bpf_prog_is_dev_bound(env->prog->aux))
9585                bpf_prog_offload_remove_insns(env, off, cnt);
9586
9587        err = bpf_remove_insns(env->prog, off, cnt);
9588        if (err)
9589                return err;
9590
9591        err = adjust_subprog_starts_after_remove(env, off, cnt);
9592        if (err)
9593                return err;
9594
9595        err = bpf_adj_linfo_after_remove(env, off, cnt);
9596        if (err)
9597                return err;
9598
9599        memmove(aux_data + off, aux_data + off + cnt,
9600                sizeof(*aux_data) * (orig_prog_len - off - cnt));
9601
9602        return 0;
9603}
9604
9605/* The verifier does more data flow analysis than llvm and will not
9606 * explore branches that are dead at run time. Malicious programs can
9607 * have dead code too. Therefore replace all dead at-run-time code
9608 * with 'ja -1'.
9609 *
9610 * Just nops are not optimal, e.g. if they would sit at the end of the
9611 * program and through another bug we would manage to jump there, then
9612 * we'd execute beyond program memory otherwise. Returning exception
9613 * code also wouldn't work since we can have subprogs where the dead
9614 * code could be located.
9615 */
9616static void sanitize_dead_code(struct bpf_verifier_env *env)
9617{
9618        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9619        struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
9620        struct bpf_insn *insn = env->prog->insnsi;
9621        const int insn_cnt = env->prog->len;
9622        int i;
9623
9624        for (i = 0; i < insn_cnt; i++) {
9625                if (aux_data[i].seen)
9626                        continue;
9627                memcpy(insn + i, &trap, sizeof(trap));
9628        }
9629}
9630
9631static bool insn_is_cond_jump(u8 code)
9632{
9633        u8 op;
9634
9635        if (BPF_CLASS(code) == BPF_JMP32)
9636                return true;
9637
9638        if (BPF_CLASS(code) != BPF_JMP)
9639                return false;
9640
9641        op = BPF_OP(code);
9642        return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9643}
9644
9645static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9646{
9647        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9648        struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9649        struct bpf_insn *insn = env->prog->insnsi;
9650        const int insn_cnt = env->prog->len;
9651        int i;
9652
9653        for (i = 0; i < insn_cnt; i++, insn++) {
9654                if (!insn_is_cond_jump(insn->code))
9655                        continue;
9656
9657                if (!aux_data[i + 1].seen)
9658                        ja.off = insn->off;
9659                else if (!aux_data[i + 1 + insn->off].seen)
9660                        ja.off = 0;
9661                else
9662                        continue;
9663
9664                if (bpf_prog_is_dev_bound(env->prog->aux))
9665                        bpf_prog_offload_replace_insn(env, i, &ja);
9666
9667                memcpy(insn, &ja, sizeof(ja));
9668        }
9669}
9670
9671static int opt_remove_dead_code(struct bpf_verifier_env *env)
9672{
9673        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9674        int insn_cnt = env->prog->len;
9675        int i, err;
9676
9677        for (i = 0; i < insn_cnt; i++) {
9678                int j;
9679
9680                j = 0;
9681                while (i + j < insn_cnt && !aux_data[i + j].seen)
9682                        j++;
9683                if (!j)
9684                        continue;
9685
9686                err = verifier_remove_insns(env, i, j);
9687                if (err)
9688                        return err;
9689                insn_cnt = env->prog->len;
9690        }
9691
9692        return 0;
9693}
9694
9695static int opt_remove_nops(struct bpf_verifier_env *env)
9696{
9697        const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9698        struct bpf_insn *insn = env->prog->insnsi;
9699        int insn_cnt = env->prog->len;
9700        int i, err;
9701
9702        for (i = 0; i < insn_cnt; i++) {
9703                if (memcmp(&insn[i], &ja, sizeof(ja)))
9704                        continue;
9705
9706                err = verifier_remove_insns(env, i, 1);
9707                if (err)
9708                        return err;
9709                insn_cnt--;
9710                i--;
9711        }
9712
9713        return 0;
9714}
9715
9716static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9717                                         const union bpf_attr *attr)
9718{
9719        struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
9720        struct bpf_insn_aux_data *aux = env->insn_aux_data;
9721        int i, patch_len, delta = 0, len = env->prog->len;
9722        struct bpf_insn *insns = env->prog->insnsi;
9723        struct bpf_prog *new_prog;
9724        bool rnd_hi32;
9725
9726        rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
9727        zext_patch[1] = BPF_ZEXT_REG(0);
9728        rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
9729        rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
9730        rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
9731        for (i = 0; i < len; i++) {
9732                int adj_idx = i + delta;
9733                struct bpf_insn insn;
9734
9735                insn = insns[adj_idx];
9736                if (!aux[adj_idx].zext_dst) {
9737                        u8 code, class;
9738                        u32 imm_rnd;
9739
9740                        if (!rnd_hi32)
9741                                continue;
9742
9743                        code = insn.code;
9744                        class = BPF_CLASS(code);
9745                        if (insn_no_def(&insn))
9746                                continue;
9747
9748                        /* NOTE: arg "reg" (the fourth one) is only used for
9749                         *       BPF_STX which has been ruled out in above
9750                         *       check, it is safe to pass NULL here.
9751                         */
9752                        if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
9753                                if (class == BPF_LD &&
9754                                    BPF_MODE(code) == BPF_IMM)
9755                                        i++;
9756                                continue;
9757                        }
9758
9759                        /* ctx load could be transformed into wider load. */
9760                        if (class == BPF_LDX &&
9761                            aux[adj_idx].ptr_type == PTR_TO_CTX)
9762                                continue;
9763
9764                        imm_rnd = get_random_int();
9765                        rnd_hi32_patch[0] = insn;
9766                        rnd_hi32_patch[1].imm = imm_rnd;
9767                        rnd_hi32_patch[3].dst_reg = insn.dst_reg;
9768                        patch = rnd_hi32_patch;
9769                        patch_len = 4;
9770                        goto apply_patch_buffer;
9771                }
9772
9773                if (!bpf_jit_needs_zext())
9774                        continue;
9775
9776                zext_patch[0] = insn;
9777                zext_patch[1].dst_reg = insn.dst_reg;
9778                zext_patch[1].src_reg = insn.dst_reg;
9779                patch = zext_patch;
9780                patch_len = 2;
9781apply_patch_buffer:
9782                new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
9783                if (!new_prog)
9784                        return -ENOMEM;
9785                env->prog = new_prog;
9786                insns = new_prog->insnsi;
9787                aux = env->insn_aux_data;
9788                delta += patch_len - 1;
9789        }
9790
9791        return 0;
9792}
9793
9794/* convert load instructions that access fields of a context type into a
9795 * sequence of instructions that access fields of the underlying structure:
9796 *     struct __sk_buff    -> struct sk_buff
9797 *     struct bpf_sock_ops -> struct sock
9798 */
9799static int convert_ctx_accesses(struct bpf_verifier_env *env)
9800{
9801        const struct bpf_verifier_ops *ops = env->ops;
9802        int i, cnt, size, ctx_field_size, delta = 0;
9803        const int insn_cnt = env->prog->len;
9804        struct bpf_insn insn_buf[16], *insn;
9805        u32 target_size, size_default, off;
9806        struct bpf_prog *new_prog;
9807        enum bpf_access_type type;
9808        bool is_narrower_load;
9809
9810        if (ops->gen_prologue || env->seen_direct_write) {
9811                if (!ops->gen_prologue) {
9812                        verbose(env, "bpf verifier is misconfigured\n");
9813                        return -EINVAL;
9814                }
9815                cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
9816                                        env->prog);
9817                if (cnt >= ARRAY_SIZE(insn_buf)) {
9818                        verbose(env, "bpf verifier is misconfigured\n");
9819                        return -EINVAL;
9820                } else if (cnt) {
9821                        new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
9822                        if (!new_prog)
9823                                return -ENOMEM;
9824
9825                        env->prog = new_prog;
9826                        delta += cnt - 1;
9827                }
9828        }
9829
9830        if (bpf_prog_is_dev_bound(env->prog->aux))
9831                return 0;
9832
9833        insn = env->prog->insnsi + delta;
9834
9835        for (i = 0; i < insn_cnt; i++, insn++) {
9836                bpf_convert_ctx_access_t convert_ctx_access;
9837
9838                if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
9839                    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
9840                    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
9841                    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
9842                        type = BPF_READ;
9843                else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
9844                         insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
9845                         insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
9846                         insn->code == (BPF_STX | BPF_MEM | BPF_DW))
9847                        type = BPF_WRITE;
9848                else
9849                        continue;
9850
9851                if (type == BPF_WRITE &&
9852                    env->insn_aux_data[i + delta].sanitize_stack_off) {
9853                        struct bpf_insn patch[] = {
9854                                /* Sanitize suspicious stack slot with zero.
9855                                 * There are no memory dependencies for this store,
9856                                 * since it's only using frame pointer and immediate
9857                                 * constant of zero
9858                                 */
9859                                BPF_ST_MEM(BPF_DW, BPF_REG_FP,
9860                                           env->insn_aux_data[i + delta].sanitize_stack_off,
9861                                           0),
9862                                /* the original STX instruction will immediately
9863                                 * overwrite the same stack slot with appropriate value
9864                                 */
9865                                *insn,
9866                        };
9867
9868                        cnt = ARRAY_SIZE(patch);
9869                        new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
9870                        if (!new_prog)
9871                                return -ENOMEM;
9872
9873                        delta    += cnt - 1;
9874                        env->prog = new_prog;
9875                        insn      = new_prog->insnsi + i + delta;
9876                        continue;
9877                }
9878
9879                switch (env->insn_aux_data[i + delta].ptr_type) {
9880                case PTR_TO_CTX:
9881                        if (!ops->convert_ctx_access)
9882                                continue;
9883                        convert_ctx_access = ops->convert_ctx_access;
9884                        break;
9885                case PTR_TO_SOCKET:
9886                case PTR_TO_SOCK_COMMON:
9887                        convert_ctx_access = bpf_sock_convert_ctx_access;
9888                        break;
9889                case PTR_TO_TCP_SOCK:
9890                        convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
9891                        break;
9892                case PTR_TO_XDP_SOCK:
9893                        convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
9894                        break;
9895                case PTR_TO_BTF_ID:
9896                        if (type == BPF_READ) {
9897                                insn->code = BPF_LDX | BPF_PROBE_MEM |
9898                                        BPF_SIZE((insn)->code);
9899                                env->prog->aux->num_exentries++;
9900                        } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9901                                verbose(env, "Writes through BTF pointers are not allowed\n");
9902                                return -EINVAL;
9903                        }
9904                        continue;
9905                default:
9906                        continue;
9907                }
9908
9909                ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
9910                size = BPF_LDST_BYTES(insn);
9911
9912                /* If the read access is a narrower load of the field,
9913                 * convert to a 4/8-byte load, to minimum program type specific
9914                 * convert_ctx_access changes. If conversion is successful,
9915                 * we will apply proper mask to the result.
9916                 */
9917                is_narrower_load = size < ctx_field_size;
9918                size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
9919                off = insn->off;
9920                if (is_narrower_load) {
9921                        u8 size_code;
9922
9923                        if (type == BPF_WRITE) {
9924                                verbose(env, "bpf verifier narrow ctx access misconfigured\n");
9925                                return -EINVAL;
9926                        }
9927
9928                        size_code = BPF_H;
9929                        if (ctx_field_size == 4)
9930                                size_code = BPF_W;
9931                        else if (ctx_field_size == 8)
9932                                size_code = BPF_DW;
9933
9934                        insn->off = off & ~(size_default - 1);
9935                        insn->code = BPF_LDX | BPF_MEM | size_code;
9936                }
9937
9938                target_size = 0;
9939                cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
9940                                         &target_size);
9941                if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
9942                    (ctx_field_size && !target_size)) {
9943                        verbose(env, "bpf verifier is misconfigured\n");
9944                        return -EINVAL;
9945                }
9946
9947                if (is_narrower_load && size < target_size) {
9948                        u8 shift = bpf_ctx_narrow_access_offset(
9949                                off, size, size_default) * 8;
9950                        if (ctx_field_size <= 4) {
9951                                if (shift)
9952                                        insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
9953                                                                        insn->dst_reg,
9954                                                                        shift);
9955                                insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
9956                                                                (1 << size * 8) - 1);
9957                        } else {
9958                                if (shift)
9959                                        insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
9960                                                                        insn->dst_reg,
9961                                                                        shift);
9962                                insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
9963                                                                (1ULL << size * 8) - 1);
9964                        }
9965                }
9966
9967                new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9968                if (!new_prog)
9969                        return -ENOMEM;
9970
9971                delta += cnt - 1;
9972
9973                /* keep walking new program and skip insns we just inserted */
9974                env->prog = new_prog;
9975                insn      = new_prog->insnsi + i + delta;
9976        }
9977
9978        return 0;
9979}
9980
9981static int jit_subprogs(struct bpf_verifier_env *env)
9982{
9983        struct bpf_prog *prog = env->prog, **func, *tmp;
9984        int i, j, subprog_start, subprog_end = 0, len, subprog;
9985        struct bpf_insn *insn;
9986        void *old_bpf_func;
9987        int err, num_exentries;
9988
9989        if (env->subprog_cnt <= 1)
9990                return 0;
9991
9992        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9993                if (insn->code != (BPF_JMP | BPF_CALL) ||
9994                    insn->src_reg != BPF_PSEUDO_CALL)
9995                        continue;
9996                /* Upon error here we cannot fall back to interpreter but
9997                 * need a hard reject of the program. Thus -EFAULT is
9998                 * propagated in any case.
9999                 */
10000                subprog = find_subprog(env, i + insn->imm + 1);
10001                if (subprog < 0) {
10002                        WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10003                                  i + insn->imm + 1);
10004                        return -EFAULT;
10005                }
10006                /* temporarily remember subprog id inside insn instead of
10007                 * aux_data, since next loop will split up all insns into funcs
10008                 */
10009                insn->off = subprog;
10010                /* remember original imm in case JIT fails and fallback
10011                 * to interpreter will be needed
10012                 */
10013                env->insn_aux_data[i].call_imm = insn->imm;
10014                /* point imm to __bpf_call_base+1 from JITs point of view */
10015                insn->imm = 1;
10016        }
10017
10018        err = bpf_prog_alloc_jited_linfo(prog);
10019        if (err)
10020                goto out_undo_insn;
10021
10022        err = -ENOMEM;
10023        func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
10024        if (!func)
10025                goto out_undo_insn;
10026
10027        for (i = 0; i < env->subprog_cnt; i++) {
10028                subprog_start = subprog_end;
10029                subprog_end = env->subprog_info[i + 1].start;
10030
10031                len = subprog_end - subprog_start;
10032                /* BPF_PROG_RUN doesn't call subprogs directly,
10033                 * hence main prog stats include the runtime of subprogs.
10034                 * subprogs don't have IDs and not reachable via prog_get_next_id
10035                 * func[i]->aux->stats will never be accessed and stays NULL
10036                 */
10037                func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
10038                if (!func[i])
10039                        goto out_free;
10040                memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10041                       len * sizeof(struct bpf_insn));
10042                func[i]->type = prog->type;
10043                func[i]->len = len;
10044                if (bpf_prog_calc_tag(func[i]))
10045                        goto out_free;
10046                func[i]->is_func = 1;
10047                func[i]->aux->func_idx = i;
10048                /* the btf and func_info will be freed only at prog->aux */
10049                func[i]->aux->btf = prog->aux->btf;
10050                func[i]->aux->func_info = prog->aux->func_info;
10051
10052                /* Use bpf_prog_F_tag to indicate functions in stack traces.
10053                 * Long term would need debug info to populate names
10054                 */
10055                func[i]->aux->name[0] = 'F';
10056                func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
10057                func[i]->jit_requested = 1;
10058                func[i]->aux->linfo = prog->aux->linfo;
10059                func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10060                func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10061                func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
10062                num_exentries = 0;
10063                insn = func[i]->insnsi;
10064                for (j = 0; j < func[i]->len; j++, insn++) {
10065                        if (BPF_CLASS(insn->code) == BPF_LDX &&
10066                            BPF_MODE(insn->code) == BPF_PROBE_MEM)
10067                                num_exentries++;
10068                }
10069                func[i]->aux->num_exentries = num_exentries;
10070                func[i] = bpf_int_jit_compile(func[i]);
10071                if (!func[i]->jited) {
10072                        err = -ENOTSUPP;
10073                        goto out_free;
10074                }
10075                cond_resched();
10076        }
10077        /* at this point all bpf functions were successfully JITed
10078         * now populate all bpf_calls with correct addresses and
10079         * run last pass of JIT
10080         */
10081        for (i = 0; i < env->subprog_cnt; i++) {
10082                insn = func[i]->insnsi;
10083                for (j = 0; j < func[i]->len; j++, insn++) {
10084                        if (insn->code != (BPF_JMP | BPF_CALL) ||
10085                            insn->src_reg != BPF_PSEUDO_CALL)
10086                                continue;
10087                        subprog = insn->off;
10088                        insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10089                                    __bpf_call_base;
10090                }
10091
10092                /* we use the aux data to keep a list of the start addresses
10093                 * of the JITed images for each function in the program
10094                 *
10095                 * for some architectures, such as powerpc64, the imm field
10096                 * might not be large enough to hold the offset of the start
10097                 * address of the callee's JITed image from __bpf_call_base
10098                 *
10099                 * in such cases, we can lookup the start address of a callee
10100                 * by using its subprog id, available from the off field of
10101                 * the call instruction, as an index for this list
10102                 */
10103                func[i]->aux->func = func;
10104                func[i]->aux->func_cnt = env->subprog_cnt;
10105        }
10106        for (i = 0; i < env->subprog_cnt; i++) {
10107                old_bpf_func = func[i]->bpf_func;
10108                tmp = bpf_int_jit_compile(func[i]);
10109                if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10110                        verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
10111                        err = -ENOTSUPP;
10112                        goto out_free;
10113                }
10114                cond_resched();
10115        }
10116
10117        /* finally lock prog and jit images for all functions and
10118         * populate kallsysm
10119         */
10120        for (i = 0; i < env->subprog_cnt; i++) {
10121                bpf_prog_lock_ro(func[i]);
10122                bpf_prog_kallsyms_add(func[i]);
10123        }
10124
10125        /* Last step: make now unused interpreter insns from main
10126         * prog consistent for later dump requests, so they can
10127         * later look the same as if they were interpreted only.
10128         */
10129        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10130                if (insn->code != (BPF_JMP | BPF_CALL) ||
10131                    insn->src_reg != BPF_PSEUDO_CALL)
10132                        continue;
10133                insn->off = env->insn_aux_data[i].call_imm;
10134                subprog = find_subprog(env, i + insn->off + 1);
10135                insn->imm = subprog;
10136        }
10137
10138        prog->jited = 1;
10139        prog->bpf_func = func[0]->bpf_func;
10140        prog->aux->func = func;
10141        prog->aux->func_cnt = env->subprog_cnt;
10142        bpf_prog_free_unused_jited_linfo(prog);
10143        return 0;
10144out_free:
10145        for (i = 0; i < env->subprog_cnt; i++)
10146                if (func[i])
10147                        bpf_jit_free(func[i]);
10148        kfree(func);
10149out_undo_insn:
10150        /* cleanup main prog to be interpreted */
10151        prog->jit_requested = 0;
10152        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10153                if (insn->code != (BPF_JMP | BPF_CALL) ||
10154                    insn->src_reg != BPF_PSEUDO_CALL)
10155                        continue;
10156                insn->off = 0;
10157                insn->imm = env->insn_aux_data[i].call_imm;
10158        }
10159        bpf_prog_free_jited_linfo(prog);
10160        return err;
10161}
10162
10163static int fixup_call_args(struct bpf_verifier_env *env)
10164{
10165#ifndef CONFIG_BPF_JIT_ALWAYS_ON
10166        struct bpf_prog *prog = env->prog;
10167        struct bpf_insn *insn = prog->insnsi;
10168        int i, depth;
10169#endif
10170        int err = 0;
10171
10172        if (env->prog->jit_requested &&
10173            !bpf_prog_is_dev_bound(env->prog->aux)) {
10174                err = jit_subprogs(env);
10175                if (err == 0)
10176                        return 0;
10177                if (err == -EFAULT)
10178                        return err;
10179        }
10180#ifndef CONFIG_BPF_JIT_ALWAYS_ON
10181        for (i = 0; i < prog->len; i++, insn++) {
10182                if (insn->code != (BPF_JMP | BPF_CALL) ||
10183                    insn->src_reg != BPF_PSEUDO_CALL)
10184                        continue;
10185                depth = get_callee_stack_depth(env, insn, i);
10186                if (depth < 0)
10187                        return depth;
10188                bpf_patch_call_args(insn, depth);
10189        }
10190        err = 0;
10191#endif
10192        return err;
10193}
10194
10195/* fixup insn->imm field of bpf_call instructions
10196 * and inline eligible helpers as explicit sequence of BPF instructions
10197 *
10198 * this function is called after eBPF program passed verification
10199 */
10200static int fixup_bpf_calls(struct bpf_verifier_env *env)
10201{
10202        struct bpf_prog *prog = env->prog;
10203        bool expect_blinding = bpf_jit_blinding_enabled(prog);
10204        struct bpf_insn *insn = prog->insnsi;
10205        const struct bpf_func_proto *fn;
10206        const int insn_cnt = prog->len;
10207        const struct bpf_map_ops *ops;
10208        struct bpf_insn_aux_data *aux;
10209        struct bpf_insn insn_buf[16];
10210        struct bpf_prog *new_prog;
10211        struct bpf_map *map_ptr;
10212        int i, ret, cnt, delta = 0;
10213
10214        for (i = 0; i < insn_cnt; i++, insn++) {
10215                if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10216                    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10217                    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
10218                    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10219                        bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10220                        struct bpf_insn mask_and_div[] = {
10221                                BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10222                                /* Rx div 0 -> 0 */
10223                                BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10224                                BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10225                                BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10226                                *insn,
10227                        };
10228                        struct bpf_insn mask_and_mod[] = {
10229                                BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10230                                /* Rx mod 0 -> Rx */
10231                                BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10232                                *insn,
10233                        };
10234                        struct bpf_insn *patchlet;
10235
10236                        if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10237                            insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10238                                patchlet = mask_and_div + (is64 ? 1 : 0);
10239                                cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10240                        } else {
10241                                patchlet = mask_and_mod + (is64 ? 1 : 0);
10242                                cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10243                        }
10244
10245                        new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
10246                        if (!new_prog)
10247                                return -ENOMEM;
10248
10249                        delta    += cnt - 1;
10250                        env->prog = prog = new_prog;
10251                        insn      = new_prog->insnsi + i + delta;
10252                        continue;
10253                }
10254
10255                if (BPF_CLASS(insn->code) == BPF_LD &&
10256                    (BPF_MODE(insn->code) == BPF_ABS ||
10257                     BPF_MODE(insn->code) == BPF_IND)) {
10258                        cnt = env->ops->gen_ld_abs(insn, insn_buf);
10259                        if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10260                                verbose(env, "bpf verifier is misconfigured\n");
10261                                return -EINVAL;
10262                        }
10263
10264                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10265                        if (!new_prog)
10266                                return -ENOMEM;
10267
10268                        delta    += cnt - 1;
10269                        env->prog = prog = new_prog;
10270                        insn      = new_prog->insnsi + i + delta;
10271                        continue;
10272                }
10273
10274                if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10275                    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10276                        const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10277                        const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10278                        struct bpf_insn insn_buf[16];
10279                        struct bpf_insn *patch = &insn_buf[0];
10280                        bool issrc, isneg;
10281                        u32 off_reg;
10282
10283                        aux = &env->insn_aux_data[i + delta];
10284                        if (!aux->alu_state ||
10285                            aux->alu_state == BPF_ALU_NON_POINTER)
10286                                continue;
10287
10288                        isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10289                        issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10290                                BPF_ALU_SANITIZE_SRC;
10291
10292                        off_reg = issrc ? insn->src_reg : insn->dst_reg;
10293                        if (isneg)
10294                                *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10295                        *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10296                        *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10297                        *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10298                        *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10299                        *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10300                        if (issrc) {
10301                                *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10302                                                         off_reg);
10303                                insn->src_reg = BPF_REG_AX;
10304                        } else {
10305                                *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10306                                                         BPF_REG_AX);
10307                        }
10308                        if (isneg)
10309                                insn->code = insn->code == code_add ?
10310                                             code_sub : code_add;
10311                        *patch++ = *insn;
10312                        if (issrc && isneg)
10313                                *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10314                        cnt = patch - insn_buf;
10315
10316                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10317                        if (!new_prog)
10318                                return -ENOMEM;
10319
10320                        delta    += cnt - 1;
10321                        env->prog = prog = new_prog;
10322                        insn      = new_prog->insnsi + i + delta;
10323                        continue;
10324                }
10325
10326                if (insn->code != (BPF_JMP | BPF_CALL))
10327                        continue;
10328                if (insn->src_reg == BPF_PSEUDO_CALL)
10329                        continue;
10330
10331                if (insn->imm == BPF_FUNC_get_route_realm)
10332                        prog->dst_needed = 1;
10333                if (insn->imm == BPF_FUNC_get_prandom_u32)
10334                        bpf_user_rnd_init_once();
10335                if (insn->imm == BPF_FUNC_override_return)
10336                        prog->kprobe_override = 1;
10337                if (insn->imm == BPF_FUNC_tail_call) {
10338                        /* If we tail call into other programs, we
10339                         * cannot make any assumptions since they can
10340                         * be replaced dynamically during runtime in
10341                         * the program array.
10342                         */
10343                        prog->cb_access = 1;
10344                        env->prog->aux->stack_depth = MAX_BPF_STACK;
10345                        env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
10346
10347                        /* mark bpf_tail_call as different opcode to avoid
10348                         * conditional branch in the interpeter for every normal
10349                         * call and to prevent accidental JITing by JIT compiler
10350                         * that doesn't support bpf_tail_call yet
10351                         */
10352                        insn->imm = 0;
10353                        insn->code = BPF_JMP | BPF_TAIL_CALL;
10354
10355                        aux = &env->insn_aux_data[i + delta];
10356                        if (env->bpf_capable && !expect_blinding &&
10357                            prog->jit_requested &&
10358                            !bpf_map_key_poisoned(aux) &&
10359                            !bpf_map_ptr_poisoned(aux) &&
10360                            !bpf_map_ptr_unpriv(aux)) {
10361                                struct bpf_jit_poke_descriptor desc = {
10362                                        .reason = BPF_POKE_REASON_TAIL_CALL,
10363                                        .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10364                                        .tail_call.key = bpf_map_key_immediate(aux),
10365                                };
10366
10367                                ret = bpf_jit_add_poke_descriptor(prog, &desc);
10368                                if (ret < 0) {
10369                                        verbose(env, "adding tail call poke descriptor failed\n");
10370                                        return ret;
10371                                }
10372
10373                                insn->imm = ret + 1;
10374                                continue;
10375                        }
10376
10377                        if (!bpf_map_ptr_unpriv(aux))
10378                                continue;
10379
10380                        /* instead of changing every JIT dealing with tail_call
10381                         * emit two extra insns:
10382                         * if (index >= max_entries) goto out;
10383                         * index &= array->index_mask;
10384                         * to avoid out-of-bounds cpu speculation
10385                         */
10386                        if (bpf_map_ptr_poisoned(aux)) {
10387                                verbose(env, "tail_call abusing map_ptr\n");
10388                                return -EINVAL;
10389                        }
10390
10391                        map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10392                        insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10393                                                  map_ptr->max_entries, 2);
10394                        insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10395                                                    container_of(map_ptr,
10396                                                                 struct bpf_array,
10397                                                                 map)->index_mask);
10398                        insn_buf[2] = *insn;
10399                        cnt = 3;
10400                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10401                        if (!new_prog)
10402                                return -ENOMEM;
10403
10404                        delta    += cnt - 1;
10405                        env->prog = prog = new_prog;
10406                        insn      = new_prog->insnsi + i + delta;
10407                        continue;
10408                }
10409
10410                /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
10411                 * and other inlining handlers are currently limited to 64 bit
10412                 * only.
10413                 */
10414                if (prog->jit_requested && BITS_PER_LONG == 64 &&
10415                    (insn->imm == BPF_FUNC_map_lookup_elem ||
10416                     insn->imm == BPF_FUNC_map_update_elem ||
10417                     insn->imm == BPF_FUNC_map_delete_elem ||
10418                     insn->imm == BPF_FUNC_map_push_elem   ||
10419                     insn->imm == BPF_FUNC_map_pop_elem    ||
10420                     insn->imm == BPF_FUNC_map_peek_elem)) {
10421                        aux = &env->insn_aux_data[i + delta];
10422                        if (bpf_map_ptr_poisoned(aux))
10423                                goto patch_call_imm;
10424
10425                        map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10426                        ops = map_ptr->ops;
10427                        if (insn->imm == BPF_FUNC_map_lookup_elem &&
10428                            ops->map_gen_lookup) {
10429                                cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10430                                if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10431                                        verbose(env, "bpf verifier is misconfigured\n");
10432                                        return -EINVAL;
10433                                }
10434
10435                                new_prog = bpf_patch_insn_data(env, i + delta,
10436                                                               insn_buf, cnt);
10437                                if (!new_prog)
10438                                        return -ENOMEM;
10439
10440                                delta    += cnt - 1;
10441                                env->prog = prog = new_prog;
10442                                insn      = new_prog->insnsi + i + delta;
10443                                continue;
10444                        }
10445
10446                        BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10447                                     (void *(*)(struct bpf_map *map, void *key))NULL));
10448                        BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10449                                     (int (*)(struct bpf_map *map, void *key))NULL));
10450                        BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10451                                     (int (*)(struct bpf_map *map, void *key, void *value,
10452                                              u64 flags))NULL));
10453                        BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10454                                     (int (*)(struct bpf_map *map, void *value,
10455                                              u64 flags))NULL));
10456                        BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10457                                     (int (*)(struct bpf_map *map, void *value))NULL));
10458                        BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10459                                     (int (*)(struct bpf_map *map, void *value))NULL));
10460
10461                        switch (insn->imm) {
10462                        case BPF_FUNC_map_lookup_elem:
10463                                insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10464                                            __bpf_call_base;
10465                                continue;
10466                        case BPF_FUNC_map_update_elem:
10467                                insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10468                                            __bpf_call_base;
10469                                continue;
10470                        case BPF_FUNC_map_delete_elem:
10471                                insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10472                                            __bpf_call_base;
10473                                continue;
10474                        case BPF_FUNC_map_push_elem:
10475                                insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10476                                            __bpf_call_base;
10477                                continue;
10478                        case BPF_FUNC_map_pop_elem:
10479                                insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10480                                            __bpf_call_base;
10481                                continue;
10482                        case BPF_FUNC_map_peek_elem:
10483                                insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10484                                            __bpf_call_base;
10485                                continue;
10486                        }
10487
10488                        goto patch_call_imm;
10489                }
10490
10491                if (prog->jit_requested && BITS_PER_LONG == 64 &&
10492                    insn->imm == BPF_FUNC_jiffies64) {
10493                        struct bpf_insn ld_jiffies_addr[2] = {
10494                                BPF_LD_IMM64(BPF_REG_0,
10495                                             (unsigned long)&jiffies),
10496                        };
10497
10498                        insn_buf[0] = ld_jiffies_addr[0];
10499                        insn_buf[1] = ld_jiffies_addr[1];
10500                        insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10501                                                  BPF_REG_0, 0);
10502                        cnt = 3;
10503
10504                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10505                                                       cnt);
10506                        if (!new_prog)
10507                                return -ENOMEM;
10508
10509                        delta    += cnt - 1;
10510                        env->prog = prog = new_prog;
10511                        insn      = new_prog->insnsi + i + delta;
10512                        continue;
10513                }
10514
10515patch_call_imm:
10516                fn = env->ops->get_func_proto(insn->imm, env->prog);
10517                /* all functions that have prototype and verifier allowed
10518                 * programs to call them, must be real in-kernel functions
10519                 */
10520                if (!fn->func) {
10521                        verbose(env,
10522                                "kernel subsystem misconfigured func %s#%d\n",
10523                                func_id_name(insn->imm), insn->imm);
10524                        return -EFAULT;
10525                }
10526                insn->imm = fn->func - __bpf_call_base;
10527        }
10528
10529        /* Since poke tab is now finalized, publish aux to tracker. */
10530        for (i = 0; i < prog->aux->size_poke_tab; i++) {
10531                map_ptr = prog->aux->poke_tab[i].tail_call.map;
10532                if (!map_ptr->ops->map_poke_track ||
10533                    !map_ptr->ops->map_poke_untrack ||
10534                    !map_ptr->ops->map_poke_run) {
10535                        verbose(env, "bpf verifier is misconfigured\n");
10536                        return -EINVAL;
10537                }
10538
10539                ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10540                if (ret < 0) {
10541                        verbose(env, "tracking tail call prog failed\n");
10542                        return ret;
10543                }
10544        }
10545
10546        return 0;
10547}
10548
10549static void free_states(struct bpf_verifier_env *env)
10550{
10551        struct bpf_verifier_state_list *sl, *sln;
10552        int i;
10553
10554        sl = env->free_list;
10555        while (sl) {
10556                sln = sl->next;
10557                free_verifier_state(&sl->state, false);
10558                kfree(sl);
10559                sl = sln;
10560        }
10561        env->free_list = NULL;
10562
10563        if (!env->explored_states)
10564                return;
10565
10566        for (i = 0; i < state_htab_size(env); i++) {
10567                sl = env->explored_states[i];
10568
10569                while (sl) {
10570                        sln = sl->next;
10571                        free_verifier_state(&sl->state, false);
10572                        kfree(sl);
10573                        sl = sln;
10574                }
10575                env->explored_states[i] = NULL;
10576        }
10577}
10578
10579/* The verifier is using insn_aux_data[] to store temporary data during
10580 * verification and to store information for passes that run after the
10581 * verification like dead code sanitization. do_check_common() for subprogram N
10582 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10583 * temporary data after do_check_common() finds that subprogram N cannot be
10584 * verified independently. pass_cnt counts the number of times
10585 * do_check_common() was run and insn->aux->seen tells the pass number
10586 * insn_aux_data was touched. These variables are compared to clear temporary
10587 * data from failed pass. For testing and experiments do_check_common() can be
10588 * run multiple times even when prior attempt to verify is unsuccessful.
10589 */
10590static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10591{
10592        struct bpf_insn *insn = env->prog->insnsi;
10593        struct bpf_insn_aux_data *aux;
10594        int i, class;
10595
10596        for (i = 0; i < env->prog->len; i++) {
10597                class = BPF_CLASS(insn[i].code);
10598                if (class != BPF_LDX && class != BPF_STX)
10599                        continue;
10600                aux = &env->insn_aux_data[i];
10601                if (aux->seen != env->pass_cnt)
10602                        continue;
10603                memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10604        }
10605}
10606
10607static int do_check_common(struct bpf_verifier_env *env, int subprog)
10608{
10609        bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10610        struct bpf_verifier_state *state;
10611        struct bpf_reg_state *regs;
10612        int ret, i;
10613
10614        env->prev_linfo = NULL;
10615        env->pass_cnt++;
10616
10617        state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10618        if (!state)
10619                return -ENOMEM;
10620        state->curframe = 0;
10621        state->speculative = false;
10622        state->branches = 1;
10623        state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10624        if (!state->frame[0]) {
10625                kfree(state);
10626                return -ENOMEM;
10627        }
10628        env->cur_state = state;
10629        init_func_state(env, state->frame[0],
10630                        BPF_MAIN_FUNC /* callsite */,
10631                        0 /* frameno */,
10632                        subprog);
10633
10634        regs = state->frame[state->curframe]->regs;
10635        if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
10636                ret = btf_prepare_func_args(env, subprog, regs);
10637                if (ret)
10638                        goto out;
10639                for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10640                        if (regs[i].type == PTR_TO_CTX)
10641                                mark_reg_known_zero(env, regs, i);
10642                        else if (regs[i].type == SCALAR_VALUE)
10643                                mark_reg_unknown(env, regs, i);
10644                }
10645        } else {
10646                /* 1st arg to a function */
10647                regs[BPF_REG_1].type = PTR_TO_CTX;
10648                mark_reg_known_zero(env, regs, BPF_REG_1);
10649                ret = btf_check_func_arg_match(env, subprog, regs);
10650                if (ret == -EFAULT)
10651                        /* unlikely verifier bug. abort.
10652                         * ret == 0 and ret < 0 are sadly acceptable for
10653                         * main() function due to backward compatibility.
10654                         * Like socket filter program may be written as:
10655                         * int bpf_prog(struct pt_regs *ctx)
10656                         * and never dereference that ctx in the program.
10657                         * 'struct pt_regs' is a type mismatch for socket
10658                         * filter that should be using 'struct __sk_buff'.
10659                         */
10660                        goto out;
10661        }
10662
10663        ret = do_check(env);
10664out:
10665        /* check for NULL is necessary, since cur_state can be freed inside
10666         * do_check() under memory pressure.
10667         */
10668        if (env->cur_state) {
10669                free_verifier_state(env->cur_state, true);
10670                env->cur_state = NULL;
10671        }
10672        while (!pop_stack(env, NULL, NULL, false));
10673        if (!ret && pop_log)
10674                bpf_vlog_reset(&env->log, 0);
10675        free_states(env);
10676        if (ret)
10677                /* clean aux data in case subprog was rejected */
10678                sanitize_insn_aux_data(env);
10679        return ret;
10680}
10681
10682/* Verify all global functions in a BPF program one by one based on their BTF.
10683 * All global functions must pass verification. Otherwise the whole program is rejected.
10684 * Consider:
10685 * int bar(int);
10686 * int foo(int f)
10687 * {
10688 *    return bar(f);
10689 * }
10690 * int bar(int b)
10691 * {
10692 *    ...
10693 * }
10694 * foo() will be verified first for R1=any_scalar_value. During verification it
10695 * will be assumed that bar() already verified successfully and call to bar()
10696 * from foo() will be checked for type match only. Later bar() will be verified
10697 * independently to check that it's safe for R1=any_scalar_value.
10698 */
10699static int do_check_subprogs(struct bpf_verifier_env *env)
10700{
10701        struct bpf_prog_aux *aux = env->prog->aux;
10702        int i, ret;
10703
10704        if (!aux->func_info)
10705                return 0;
10706
10707        for (i = 1; i < env->subprog_cnt; i++) {
10708                if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
10709                        continue;
10710                env->insn_idx = env->subprog_info[i].start;
10711                WARN_ON_ONCE(env->insn_idx == 0);
10712                ret = do_check_common(env, i);
10713                if (ret) {
10714                        return ret;
10715                } else if (env->log.level & BPF_LOG_LEVEL) {
10716                        verbose(env,
10717                                "Func#%d is safe for any args that match its prototype\n",
10718                                i);
10719                }
10720        }
10721        return 0;
10722}
10723
10724static int do_check_main(struct bpf_verifier_env *env)
10725{
10726        int ret;
10727
10728        env->insn_idx = 0;
10729        ret = do_check_common(env, 0);
10730        if (!ret)
10731                env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
10732        return ret;
10733}
10734
10735
10736static void print_verification_stats(struct bpf_verifier_env *env)
10737{
10738        int i;
10739
10740        if (env->log.level & BPF_LOG_STATS) {
10741                verbose(env, "verification time %lld usec\n",
10742                        div_u64(env->verification_time, 1000));
10743                verbose(env, "stack depth ");
10744                for (i = 0; i < env->subprog_cnt; i++) {
10745                        u32 depth = env->subprog_info[i].stack_depth;
10746
10747                        verbose(env, "%d", depth);
10748                        if (i + 1 < env->subprog_cnt)
10749                                verbose(env, "+");
10750                }
10751                verbose(env, "\n");
10752        }
10753        verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
10754                "total_states %d peak_states %d mark_read %d\n",
10755                env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
10756                env->max_states_per_insn, env->total_states,
10757                env->peak_states, env->longest_mark_read_walk);
10758}
10759
10760static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
10761{
10762        const struct btf_type *t, *func_proto;
10763        const struct bpf_struct_ops *st_ops;
10764        const struct btf_member *member;
10765        struct bpf_prog *prog = env->prog;
10766        u32 btf_id, member_idx;
10767        const char *mname;
10768
10769        btf_id = prog->aux->attach_btf_id;
10770        st_ops = bpf_struct_ops_find(btf_id);
10771        if (!st_ops) {
10772                verbose(env, "attach_btf_id %u is not a supported struct\n",
10773                        btf_id);
10774                return -ENOTSUPP;
10775        }
10776
10777        t = st_ops->type;
10778        member_idx = prog->expected_attach_type;
10779        if (member_idx >= btf_type_vlen(t)) {
10780                verbose(env, "attach to invalid member idx %u of struct %s\n",
10781                        member_idx, st_ops->name);
10782                return -EINVAL;
10783        }
10784
10785        member = &btf_type_member(t)[member_idx];
10786        mname = btf_name_by_offset(btf_vmlinux, member->name_off);
10787        func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
10788                                               NULL);
10789        if (!func_proto) {
10790                verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
10791                        mname, member_idx, st_ops->name);
10792                return -EINVAL;
10793        }
10794
10795        if (st_ops->check_member) {
10796                int err = st_ops->check_member(t, member);
10797
10798                if (err) {
10799                        verbose(env, "attach to unsupported member %s of struct %s\n",
10800                                mname, st_ops->name);
10801                        return err;
10802                }
10803        }
10804
10805        prog->aux->attach_func_proto = func_proto;
10806        prog->aux->attach_func_name = mname;
10807        env->ops = st_ops->verifier_ops;
10808
10809        return 0;
10810}
10811#define SECURITY_PREFIX "security_"
10812
10813static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr)
10814{
10815        if (within_error_injection_list(addr) ||
10816            !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
10817                     sizeof(SECURITY_PREFIX) - 1))
10818                return 0;
10819
10820        return -EINVAL;
10821}
10822
10823static int check_attach_btf_id(struct bpf_verifier_env *env)
10824{
10825        struct bpf_prog *prog = env->prog;
10826        bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
10827        struct bpf_prog *tgt_prog = prog->aux->linked_prog;
10828        u32 btf_id = prog->aux->attach_btf_id;
10829        const char prefix[] = "btf_trace_";
10830        struct btf_func_model fmodel;
10831        int ret = 0, subprog = -1, i;
10832        struct bpf_trampoline *tr;
10833        const struct btf_type *t;
10834        bool conservative = true;
10835        const char *tname;
10836        struct btf *btf;
10837        long addr;
10838        u64 key;
10839
10840        if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
10841                return check_struct_ops_btf_id(env);
10842
10843        if (prog->type != BPF_PROG_TYPE_TRACING &&
10844            prog->type != BPF_PROG_TYPE_LSM &&
10845            !prog_extension)
10846                return 0;
10847
10848        if (!btf_id) {
10849                verbose(env, "Tracing programs must provide btf_id\n");
10850                return -EINVAL;
10851        }
10852        btf = bpf_prog_get_target_btf(prog);
10853        if (!btf) {
10854                verbose(env,
10855                        "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
10856                return -EINVAL;
10857        }
10858        t = btf_type_by_id(btf, btf_id);
10859        if (!t) {
10860                verbose(env, "attach_btf_id %u is invalid\n", btf_id);
10861                return -EINVAL;
10862        }
10863        tname = btf_name_by_offset(btf, t->name_off);
10864        if (!tname) {
10865                verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
10866                return -EINVAL;
10867        }
10868        if (tgt_prog) {
10869                struct bpf_prog_aux *aux = tgt_prog->aux;
10870
10871                for (i = 0; i < aux->func_info_cnt; i++)
10872                        if (aux->func_info[i].type_id == btf_id) {
10873                                subprog = i;
10874                                break;
10875                        }
10876                if (subprog == -1) {
10877                        verbose(env, "Subprog %s doesn't exist\n", tname);
10878                        return -EINVAL;
10879                }
10880                conservative = aux->func_info_aux[subprog].unreliable;
10881                if (prog_extension) {
10882                        if (conservative) {
10883                                verbose(env,
10884                                        "Cannot replace static functions\n");
10885                                return -EINVAL;
10886                        }
10887                        if (!prog->jit_requested) {
10888                                verbose(env,
10889                                        "Extension programs should be JITed\n");
10890                                return -EINVAL;
10891                        }
10892                        env->ops = bpf_verifier_ops[tgt_prog->type];
10893                        prog->expected_attach_type = tgt_prog->expected_attach_type;
10894                }
10895                if (!tgt_prog->jited) {
10896                        verbose(env, "Can attach to only JITed progs\n");
10897                        return -EINVAL;
10898                }
10899                if (tgt_prog->type == prog->type) {
10900                        /* Cannot fentry/fexit another fentry/fexit program.
10901                         * Cannot attach program extension to another extension.
10902                         * It's ok to attach fentry/fexit to extension program.
10903                         */
10904                        verbose(env, "Cannot recursively attach\n");
10905                        return -EINVAL;
10906                }
10907                if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
10908                    prog_extension &&
10909                    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
10910                     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
10911                        /* Program extensions can extend all program types
10912                         * except fentry/fexit. The reason is the following.
10913                         * The fentry/fexit programs are used for performance
10914                         * analysis, stats and can be attached to any program
10915                         * type except themselves. When extension program is
10916                         * replacing XDP function it is necessary to allow
10917                         * performance analysis of all functions. Both original
10918                         * XDP program and its program extension. Hence
10919                         * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
10920                         * allowed. If extending of fentry/fexit was allowed it
10921                         * would be possible to create long call chain
10922                         * fentry->extension->fentry->extension beyond
10923                         * reasonable stack size. Hence extending fentry is not
10924                         * allowed.
10925                         */
10926                        verbose(env, "Cannot extend fentry/fexit\n");
10927                        return -EINVAL;
10928                }
10929                key = ((u64)aux->id) << 32 | btf_id;
10930        } else {
10931                if (prog_extension) {
10932                        verbose(env, "Cannot replace kernel functions\n");
10933                        return -EINVAL;
10934                }
10935                key = btf_id;
10936        }
10937
10938        switch (prog->expected_attach_type) {
10939        case BPF_TRACE_RAW_TP:
10940                if (tgt_prog) {
10941                        verbose(env,
10942                                "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
10943                        return -EINVAL;
10944                }
10945                if (!btf_type_is_typedef(t)) {
10946                        verbose(env, "attach_btf_id %u is not a typedef\n",
10947                                btf_id);
10948                        return -EINVAL;
10949                }
10950                if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
10951                        verbose(env, "attach_btf_id %u points to wrong type name %s\n",
10952                                btf_id, tname);
10953                        return -EINVAL;
10954                }
10955                tname += sizeof(prefix) - 1;
10956                t = btf_type_by_id(btf, t->type);
10957                if (!btf_type_is_ptr(t))
10958                        /* should never happen in valid vmlinux build */
10959                        return -EINVAL;
10960                t = btf_type_by_id(btf, t->type);
10961                if (!btf_type_is_func_proto(t))
10962                        /* should never happen in valid vmlinux build */
10963                        return -EINVAL;
10964
10965                /* remember two read only pointers that are valid for
10966                 * the life time of the kernel
10967                 */
10968                prog->aux->attach_func_name = tname;
10969                prog->aux->attach_func_proto = t;
10970                prog->aux->attach_btf_trace = true;
10971                return 0;
10972        case BPF_TRACE_ITER:
10973                if (!btf_type_is_func(t)) {
10974                        verbose(env, "attach_btf_id %u is not a function\n",
10975                                btf_id);
10976                        return -EINVAL;
10977                }
10978                t = btf_type_by_id(btf, t->type);
10979                if (!btf_type_is_func_proto(t))
10980                        return -EINVAL;
10981                prog->aux->attach_func_name = tname;
10982                prog->aux->attach_func_proto = t;
10983                if (!bpf_iter_prog_supported(prog))
10984                        return -EINVAL;
10985                ret = btf_distill_func_proto(&env->log, btf, t,
10986                                             tname, &fmodel);
10987                return ret;
10988        default:
10989                if (!prog_extension)
10990                        return -EINVAL;
10991                fallthrough;
10992        case BPF_MODIFY_RETURN:
10993        case BPF_LSM_MAC:
10994        case BPF_TRACE_FENTRY:
10995        case BPF_TRACE_FEXIT:
10996                prog->aux->attach_func_name = tname;
10997                if (prog->type == BPF_PROG_TYPE_LSM) {
10998                        ret = bpf_lsm_verify_prog(&env->log, prog);
10999                        if (ret < 0)
11000                                return ret;
11001                }
11002
11003                if (!btf_type_is_func(t)) {
11004                        verbose(env, "attach_btf_id %u is not a function\n",
11005                                btf_id);
11006                        return -EINVAL;
11007                }
11008                if (prog_extension &&
11009                    btf_check_type_match(env, prog, btf, t))
11010                        return -EINVAL;
11011                t = btf_type_by_id(btf, t->type);
11012                if (!btf_type_is_func_proto(t))
11013                        return -EINVAL;
11014                tr = bpf_trampoline_lookup(key);
11015                if (!tr)
11016                        return -ENOMEM;
11017                /* t is either vmlinux type or another program's type */
11018                prog->aux->attach_func_proto = t;
11019                mutex_lock(&tr->mutex);
11020                if (tr->func.addr) {
11021                        prog->aux->trampoline = tr;
11022                        goto out;
11023                }
11024                if (tgt_prog && conservative) {
11025                        prog->aux->attach_func_proto = NULL;
11026                        t = NULL;
11027                }
11028                ret = btf_distill_func_proto(&env->log, btf, t,
11029                                             tname, &tr->func.model);
11030                if (ret < 0)
11031                        goto out;
11032                if (tgt_prog) {
11033                        if (subprog == 0)
11034                                addr = (long) tgt_prog->bpf_func;
11035                        else
11036                                addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
11037                } else {
11038                        addr = kallsyms_lookup_name(tname);
11039                        if (!addr) {
11040                                verbose(env,
11041                                        "The address of function %s cannot be found\n",
11042                                        tname);
11043                                ret = -ENOENT;
11044                                goto out;
11045                        }
11046                }
11047
11048                if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
11049                        ret = check_attach_modify_return(prog, addr);
11050                        if (ret)
11051                                verbose(env, "%s() is not modifiable\n",
11052                                        prog->aux->attach_func_name);
11053                }
11054
11055                if (ret)
11056                        goto out;
11057                tr->func.addr = (void *)addr;
11058                prog->aux->trampoline = tr;
11059out:
11060                mutex_unlock(&tr->mutex);
11061                if (ret)
11062                        bpf_trampoline_put(tr);
11063                return ret;
11064        }
11065}
11066
11067int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11068              union bpf_attr __user *uattr)
11069{
11070        u64 start_time = ktime_get_ns();
11071        struct bpf_verifier_env *env;
11072        struct bpf_verifier_log *log;
11073        int i, len, ret = -EINVAL;
11074        bool is_priv;
11075
11076        /* no program is valid */
11077        if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11078                return -EINVAL;
11079
11080        /* 'struct bpf_verifier_env' can be global, but since it's not small,
11081         * allocate/free it every time bpf_check() is called
11082         */
11083        env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
11084        if (!env)
11085                return -ENOMEM;
11086        log = &env->log;
11087
11088        len = (*prog)->len;
11089        env->insn_aux_data =
11090                vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
11091        ret = -ENOMEM;
11092        if (!env->insn_aux_data)
11093                goto err_free_env;
11094        for (i = 0; i < len; i++)
11095                env->insn_aux_data[i].orig_idx = i;
11096        env->prog = *prog;
11097        env->ops = bpf_verifier_ops[env->prog->type];
11098        is_priv = bpf_capable();
11099
11100        if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11101                mutex_lock(&bpf_verifier_lock);
11102                if (!btf_vmlinux)
11103                        btf_vmlinux = btf_parse_vmlinux();
11104                mutex_unlock(&bpf_verifier_lock);
11105        }
11106
11107        /* grab the mutex to protect few globals used by verifier */
11108        if (!is_priv)
11109                mutex_lock(&bpf_verifier_lock);
11110
11111        if (attr->log_level || attr->log_buf || attr->log_size) {
11112                /* user requested verbose verifier output
11113                 * and supplied buffer to store the verification trace
11114                 */
11115                log->level = attr->log_level;
11116                log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11117                log->len_total = attr->log_size;
11118
11119                ret = -EINVAL;
11120                /* log attributes have to be sane */
11121                if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
11122                    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
11123                        goto err_unlock;
11124        }
11125
11126        if (IS_ERR(btf_vmlinux)) {
11127                /* Either gcc or pahole or kernel are broken. */
11128                verbose(env, "in-kernel BTF is malformed\n");
11129                ret = PTR_ERR(btf_vmlinux);
11130                goto skip_full_check;
11131        }
11132
11133        env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
11134        if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
11135                env->strict_alignment = true;
11136        if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
11137                env->strict_alignment = false;
11138
11139        env->allow_ptr_leaks = bpf_allow_ptr_leaks();
11140        env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
11141        env->bypass_spec_v1 = bpf_bypass_spec_v1();
11142        env->bypass_spec_v4 = bpf_bypass_spec_v4();
11143        env->bpf_capable = bpf_capable();
11144
11145        if (is_priv)
11146                env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
11147
11148        ret = replace_map_fd_with_map_ptr(env);
11149        if (ret < 0)
11150                goto skip_full_check;
11151
11152        if (bpf_prog_is_dev_bound(env->prog->aux)) {
11153                ret = bpf_prog_offload_verifier_prep(env->prog);
11154                if (ret)
11155                        goto skip_full_check;
11156        }
11157
11158        env->explored_states = kvcalloc(state_htab_size(env),
11159                                       sizeof(struct bpf_verifier_state_list *),
11160                                       GFP_USER);
11161        ret = -ENOMEM;
11162        if (!env->explored_states)
11163                goto skip_full_check;
11164
11165        ret = check_subprogs(env);
11166        if (ret < 0)
11167                goto skip_full_check;
11168
11169        ret = check_btf_info(env, attr, uattr);
11170        if (ret < 0)
11171                goto skip_full_check;
11172
11173        ret = check_attach_btf_id(env);
11174        if (ret)
11175                goto skip_full_check;
11176
11177        ret = check_cfg(env);
11178        if (ret < 0)
11179                goto skip_full_check;
11180
11181        ret = do_check_subprogs(env);
11182        ret = ret ?: do_check_main(env);
11183
11184        if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11185                ret = bpf_prog_offload_finalize(env);
11186
11187skip_full_check:
11188        kvfree(env->explored_states);
11189
11190        if (ret == 0)
11191                ret = check_max_stack_depth(env);
11192
11193        /* instruction rewrites happen after this point */
11194        if (is_priv) {
11195                if (ret == 0)
11196                        opt_hard_wire_dead_code_branches(env);
11197                if (ret == 0)
11198                        ret = opt_remove_dead_code(env);
11199                if (ret == 0)
11200                        ret = opt_remove_nops(env);
11201        } else {
11202                if (ret == 0)
11203                        sanitize_dead_code(env);
11204        }
11205
11206        if (ret == 0)
11207                /* program is valid, convert *(u32*)(ctx + off) accesses */
11208                ret = convert_ctx_accesses(env);
11209
11210        if (ret == 0)
11211                ret = fixup_bpf_calls(env);
11212
11213        /* do 32-bit optimization after insn patching has done so those patched
11214         * insns could be handled correctly.
11215         */
11216        if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11217                ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11218                env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11219                                                                     : false;
11220        }
11221
11222        if (ret == 0)
11223                ret = fixup_call_args(env);
11224
11225        env->verification_time = ktime_get_ns() - start_time;
11226        print_verification_stats(env);
11227
11228        if (log->level && bpf_verifier_log_full(log))
11229                ret = -ENOSPC;
11230        if (log->level && !log->ubuf) {
11231                ret = -EFAULT;
11232                goto err_release_maps;
11233        }
11234
11235        if (ret == 0 && env->used_map_cnt) {
11236                /* if program passed verifier, update used_maps in bpf_prog_info */
11237                env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11238                                                          sizeof(env->used_maps[0]),
11239                                                          GFP_KERNEL);
11240
11241                if (!env->prog->aux->used_maps) {
11242                        ret = -ENOMEM;
11243                        goto err_release_maps;
11244                }
11245
11246                memcpy(env->prog->aux->used_maps, env->used_maps,
11247                       sizeof(env->used_maps[0]) * env->used_map_cnt);
11248                env->prog->aux->used_map_cnt = env->used_map_cnt;
11249
11250                /* program is valid. Convert pseudo bpf_ld_imm64 into generic
11251                 * bpf_ld_imm64 instructions
11252                 */
11253                convert_pseudo_ld_imm64(env);
11254        }
11255
11256        if (ret == 0)
11257                adjust_btf_func(env);
11258
11259err_release_maps:
11260        if (!env->prog->aux->used_maps)
11261                /* if we didn't copy map pointers into bpf_prog_info, release
11262                 * them now. Otherwise free_used_maps() will release them.
11263                 */
11264                release_maps(env);
11265
11266        /* extension progs temporarily inherit the attach_type of their targets
11267           for verification purposes, so set it back to zero before returning
11268         */
11269        if (env->prog->type == BPF_PROG_TYPE_EXT)
11270                env->prog->expected_attach_type = 0;
11271
11272        *prog = env->prog;
11273err_unlock:
11274        if (!is_priv)
11275                mutex_unlock(&bpf_verifier_lock);
11276        vfree(env->insn_aux_data);
11277err_free_env:
11278        kfree(env);
11279        return ret;
11280}
11281