linux/kernel/cgroup/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/cred.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/magic.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/sched/task.h>
  45#include <linux/slab.h>
  46#include <linux/spinlock.h>
  47#include <linux/percpu-rwsem.h>
  48#include <linux/string.h>
  49#include <linux/hashtable.h>
  50#include <linux/idr.h>
  51#include <linux/kthread.h>
  52#include <linux/atomic.h>
  53#include <linux/cpuset.h>
  54#include <linux/proc_ns.h>
  55#include <linux/nsproxy.h>
  56#include <linux/file.h>
  57#include <linux/fs_parser.h>
  58#include <linux/sched/cputime.h>
  59#include <linux/psi.h>
  60#include <net/sock.h>
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/cgroup.h>
  64
  65#define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
  66                                         MAX_CFTYPE_NAME + 2)
  67/* let's not notify more than 100 times per second */
  68#define CGROUP_FILE_NOTIFY_MIN_INTV     DIV_ROUND_UP(HZ, 100)
  69
  70/*
  71 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  72 * hierarchy must be performed while holding it.
  73 *
  74 * css_set_lock protects task->cgroups pointer, the list of css_set
  75 * objects, and the chain of tasks off each css_set.
  76 *
  77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  78 * cgroup.h can use them for lockdep annotations.
  79 */
  80DEFINE_MUTEX(cgroup_mutex);
  81DEFINE_SPINLOCK(css_set_lock);
  82
  83#ifdef CONFIG_PROVE_RCU
  84EXPORT_SYMBOL_GPL(cgroup_mutex);
  85EXPORT_SYMBOL_GPL(css_set_lock);
  86#endif
  87
  88DEFINE_SPINLOCK(trace_cgroup_path_lock);
  89char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
  90bool cgroup_debug __read_mostly;
  91
  92/*
  93 * Protects cgroup_idr and css_idr so that IDs can be released without
  94 * grabbing cgroup_mutex.
  95 */
  96static DEFINE_SPINLOCK(cgroup_idr_lock);
  97
  98/*
  99 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 100 * against file removal/re-creation across css hiding.
 101 */
 102static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 103
 104DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
 105
 106#define cgroup_assert_mutex_or_rcu_locked()                             \
 107        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 108                           !lockdep_is_held(&cgroup_mutex),             \
 109                           "cgroup_mutex or RCU read lock required");
 110
 111/*
 112 * cgroup destruction makes heavy use of work items and there can be a lot
 113 * of concurrent destructions.  Use a separate workqueue so that cgroup
 114 * destruction work items don't end up filling up max_active of system_wq
 115 * which may lead to deadlock.
 116 */
 117static struct workqueue_struct *cgroup_destroy_wq;
 118
 119/* generate an array of cgroup subsystem pointers */
 120#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 121struct cgroup_subsys *cgroup_subsys[] = {
 122#include <linux/cgroup_subsys.h>
 123};
 124#undef SUBSYS
 125
 126/* array of cgroup subsystem names */
 127#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 128static const char *cgroup_subsys_name[] = {
 129#include <linux/cgroup_subsys.h>
 130};
 131#undef SUBSYS
 132
 133/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 134#define SUBSYS(_x)                                                              \
 135        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
 136        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
 137        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
 138        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 139#include <linux/cgroup_subsys.h>
 140#undef SUBSYS
 141
 142#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 143static struct static_key_true *cgroup_subsys_enabled_key[] = {
 144#include <linux/cgroup_subsys.h>
 145};
 146#undef SUBSYS
 147
 148#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 149static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 150#include <linux/cgroup_subsys.h>
 151};
 152#undef SUBSYS
 153
 154static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
 155
 156/* the default hierarchy */
 157struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
 158EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 159
 160/*
 161 * The default hierarchy always exists but is hidden until mounted for the
 162 * first time.  This is for backward compatibility.
 163 */
 164static bool cgrp_dfl_visible;
 165
 166/* some controllers are not supported in the default hierarchy */
 167static u16 cgrp_dfl_inhibit_ss_mask;
 168
 169/* some controllers are implicitly enabled on the default hierarchy */
 170static u16 cgrp_dfl_implicit_ss_mask;
 171
 172/* some controllers can be threaded on the default hierarchy */
 173static u16 cgrp_dfl_threaded_ss_mask;
 174
 175/* The list of hierarchy roots */
 176LIST_HEAD(cgroup_roots);
 177static int cgroup_root_count;
 178
 179/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 180static DEFINE_IDR(cgroup_hierarchy_idr);
 181
 182/*
 183 * Assign a monotonically increasing serial number to csses.  It guarantees
 184 * cgroups with bigger numbers are newer than those with smaller numbers.
 185 * Also, as csses are always appended to the parent's ->children list, it
 186 * guarantees that sibling csses are always sorted in the ascending serial
 187 * number order on the list.  Protected by cgroup_mutex.
 188 */
 189static u64 css_serial_nr_next = 1;
 190
 191/*
 192 * These bitmasks identify subsystems with specific features to avoid
 193 * having to do iterative checks repeatedly.
 194 */
 195static u16 have_fork_callback __read_mostly;
 196static u16 have_exit_callback __read_mostly;
 197static u16 have_release_callback __read_mostly;
 198static u16 have_canfork_callback __read_mostly;
 199
 200/* cgroup namespace for init task */
 201struct cgroup_namespace init_cgroup_ns = {
 202        .count          = REFCOUNT_INIT(2),
 203        .user_ns        = &init_user_ns,
 204        .ns.ops         = &cgroupns_operations,
 205        .ns.inum        = PROC_CGROUP_INIT_INO,
 206        .root_cset      = &init_css_set,
 207};
 208
 209static struct file_system_type cgroup2_fs_type;
 210static struct cftype cgroup_base_files[];
 211
 212static int cgroup_apply_control(struct cgroup *cgrp);
 213static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 214static void css_task_iter_skip(struct css_task_iter *it,
 215                               struct task_struct *task);
 216static int cgroup_destroy_locked(struct cgroup *cgrp);
 217static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 218                                              struct cgroup_subsys *ss);
 219static void css_release(struct percpu_ref *ref);
 220static void kill_css(struct cgroup_subsys_state *css);
 221static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 222                              struct cgroup *cgrp, struct cftype cfts[],
 223                              bool is_add);
 224
 225/**
 226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 227 * @ssid: subsys ID of interest
 228 *
 229 * cgroup_subsys_enabled() can only be used with literal subsys names which
 230 * is fine for individual subsystems but unsuitable for cgroup core.  This
 231 * is slower static_key_enabled() based test indexed by @ssid.
 232 */
 233bool cgroup_ssid_enabled(int ssid)
 234{
 235        if (CGROUP_SUBSYS_COUNT == 0)
 236                return false;
 237
 238        return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 239}
 240
 241/**
 242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 243 * @cgrp: the cgroup of interest
 244 *
 245 * The default hierarchy is the v2 interface of cgroup and this function
 246 * can be used to test whether a cgroup is on the default hierarchy for
 247 * cases where a subsystem should behave differnetly depending on the
 248 * interface version.
 249 *
 250 * List of changed behaviors:
 251 *
 252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 253 *   and "name" are disallowed.
 254 *
 255 * - When mounting an existing superblock, mount options should match.
 256 *
 257 * - Remount is disallowed.
 258 *
 259 * - rename(2) is disallowed.
 260 *
 261 * - "tasks" is removed.  Everything should be at process granularity.  Use
 262 *   "cgroup.procs" instead.
 263 *
 264 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 265 *   recycled inbetween reads.
 266 *
 267 * - "release_agent" and "notify_on_release" are removed.  Replacement
 268 *   notification mechanism will be implemented.
 269 *
 270 * - "cgroup.clone_children" is removed.
 271 *
 272 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 273 *   and its descendants contain no task; otherwise, 1.  The file also
 274 *   generates kernfs notification which can be monitored through poll and
 275 *   [di]notify when the value of the file changes.
 276 *
 277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 278 *   take masks of ancestors with non-empty cpus/mems, instead of being
 279 *   moved to an ancestor.
 280 *
 281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 282 *   masks of ancestors.
 283 *
 284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 285 *   is not created.
 286 *
 287 * - blkcg: blk-throttle becomes properly hierarchical.
 288 *
 289 * - debug: disallowed on the default hierarchy.
 290 */
 291bool cgroup_on_dfl(const struct cgroup *cgrp)
 292{
 293        return cgrp->root == &cgrp_dfl_root;
 294}
 295
 296/* IDR wrappers which synchronize using cgroup_idr_lock */
 297static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 298                            gfp_t gfp_mask)
 299{
 300        int ret;
 301
 302        idr_preload(gfp_mask);
 303        spin_lock_bh(&cgroup_idr_lock);
 304        ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 305        spin_unlock_bh(&cgroup_idr_lock);
 306        idr_preload_end();
 307        return ret;
 308}
 309
 310static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 311{
 312        void *ret;
 313
 314        spin_lock_bh(&cgroup_idr_lock);
 315        ret = idr_replace(idr, ptr, id);
 316        spin_unlock_bh(&cgroup_idr_lock);
 317        return ret;
 318}
 319
 320static void cgroup_idr_remove(struct idr *idr, int id)
 321{
 322        spin_lock_bh(&cgroup_idr_lock);
 323        idr_remove(idr, id);
 324        spin_unlock_bh(&cgroup_idr_lock);
 325}
 326
 327static bool cgroup_has_tasks(struct cgroup *cgrp)
 328{
 329        return cgrp->nr_populated_csets;
 330}
 331
 332bool cgroup_is_threaded(struct cgroup *cgrp)
 333{
 334        return cgrp->dom_cgrp != cgrp;
 335}
 336
 337/* can @cgrp host both domain and threaded children? */
 338static bool cgroup_is_mixable(struct cgroup *cgrp)
 339{
 340        /*
 341         * Root isn't under domain level resource control exempting it from
 342         * the no-internal-process constraint, so it can serve as a thread
 343         * root and a parent of resource domains at the same time.
 344         */
 345        return !cgroup_parent(cgrp);
 346}
 347
 348/* can @cgrp become a thread root? should always be true for a thread root */
 349static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 350{
 351        /* mixables don't care */
 352        if (cgroup_is_mixable(cgrp))
 353                return true;
 354
 355        /* domain roots can't be nested under threaded */
 356        if (cgroup_is_threaded(cgrp))
 357                return false;
 358
 359        /* can only have either domain or threaded children */
 360        if (cgrp->nr_populated_domain_children)
 361                return false;
 362
 363        /* and no domain controllers can be enabled */
 364        if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 365                return false;
 366
 367        return true;
 368}
 369
 370/* is @cgrp root of a threaded subtree? */
 371bool cgroup_is_thread_root(struct cgroup *cgrp)
 372{
 373        /* thread root should be a domain */
 374        if (cgroup_is_threaded(cgrp))
 375                return false;
 376
 377        /* a domain w/ threaded children is a thread root */
 378        if (cgrp->nr_threaded_children)
 379                return true;
 380
 381        /*
 382         * A domain which has tasks and explicit threaded controllers
 383         * enabled is a thread root.
 384         */
 385        if (cgroup_has_tasks(cgrp) &&
 386            (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 387                return true;
 388
 389        return false;
 390}
 391
 392/* a domain which isn't connected to the root w/o brekage can't be used */
 393static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 394{
 395        /* the cgroup itself can be a thread root */
 396        if (cgroup_is_threaded(cgrp))
 397                return false;
 398
 399        /* but the ancestors can't be unless mixable */
 400        while ((cgrp = cgroup_parent(cgrp))) {
 401                if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 402                        return false;
 403                if (cgroup_is_threaded(cgrp))
 404                        return false;
 405        }
 406
 407        return true;
 408}
 409
 410/* subsystems visibly enabled on a cgroup */
 411static u16 cgroup_control(struct cgroup *cgrp)
 412{
 413        struct cgroup *parent = cgroup_parent(cgrp);
 414        u16 root_ss_mask = cgrp->root->subsys_mask;
 415
 416        if (parent) {
 417                u16 ss_mask = parent->subtree_control;
 418
 419                /* threaded cgroups can only have threaded controllers */
 420                if (cgroup_is_threaded(cgrp))
 421                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 422                return ss_mask;
 423        }
 424
 425        if (cgroup_on_dfl(cgrp))
 426                root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 427                                  cgrp_dfl_implicit_ss_mask);
 428        return root_ss_mask;
 429}
 430
 431/* subsystems enabled on a cgroup */
 432static u16 cgroup_ss_mask(struct cgroup *cgrp)
 433{
 434        struct cgroup *parent = cgroup_parent(cgrp);
 435
 436        if (parent) {
 437                u16 ss_mask = parent->subtree_ss_mask;
 438
 439                /* threaded cgroups can only have threaded controllers */
 440                if (cgroup_is_threaded(cgrp))
 441                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 442                return ss_mask;
 443        }
 444
 445        return cgrp->root->subsys_mask;
 446}
 447
 448/**
 449 * cgroup_css - obtain a cgroup's css for the specified subsystem
 450 * @cgrp: the cgroup of interest
 451 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 452 *
 453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 454 * function must be called either under cgroup_mutex or rcu_read_lock() and
 455 * the caller is responsible for pinning the returned css if it wants to
 456 * keep accessing it outside the said locks.  This function may return
 457 * %NULL if @cgrp doesn't have @subsys_id enabled.
 458 */
 459static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 460                                              struct cgroup_subsys *ss)
 461{
 462        if (ss)
 463                return rcu_dereference_check(cgrp->subsys[ss->id],
 464                                        lockdep_is_held(&cgroup_mutex));
 465        else
 466                return &cgrp->self;
 467}
 468
 469/**
 470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 471 * @cgrp: the cgroup of interest
 472 * @ss: the subsystem of interest
 473 *
 474 * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
 475 * or is offline, %NULL is returned.
 476 */
 477static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 478                                                     struct cgroup_subsys *ss)
 479{
 480        struct cgroup_subsys_state *css;
 481
 482        rcu_read_lock();
 483        css = cgroup_css(cgrp, ss);
 484        if (css && !css_tryget_online(css))
 485                css = NULL;
 486        rcu_read_unlock();
 487
 488        return css;
 489}
 490
 491/**
 492 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
 493 * @cgrp: the cgroup of interest
 494 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 495 *
 496 * Similar to cgroup_css() but returns the effective css, which is defined
 497 * as the matching css of the nearest ancestor including self which has @ss
 498 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 499 * function is guaranteed to return non-NULL css.
 500 */
 501static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
 502                                                        struct cgroup_subsys *ss)
 503{
 504        lockdep_assert_held(&cgroup_mutex);
 505
 506        if (!ss)
 507                return &cgrp->self;
 508
 509        /*
 510         * This function is used while updating css associations and thus
 511         * can't test the csses directly.  Test ss_mask.
 512         */
 513        while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 514                cgrp = cgroup_parent(cgrp);
 515                if (!cgrp)
 516                        return NULL;
 517        }
 518
 519        return cgroup_css(cgrp, ss);
 520}
 521
 522/**
 523 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 524 * @cgrp: the cgroup of interest
 525 * @ss: the subsystem of interest
 526 *
 527 * Find and get the effective css of @cgrp for @ss.  The effective css is
 528 * defined as the matching css of the nearest ancestor including self which
 529 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 530 * the root css is returned, so this function always returns a valid css.
 531 *
 532 * The returned css is not guaranteed to be online, and therefore it is the
 533 * callers responsiblity to tryget a reference for it.
 534 */
 535struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 536                                         struct cgroup_subsys *ss)
 537{
 538        struct cgroup_subsys_state *css;
 539
 540        do {
 541                css = cgroup_css(cgrp, ss);
 542
 543                if (css)
 544                        return css;
 545                cgrp = cgroup_parent(cgrp);
 546        } while (cgrp);
 547
 548        return init_css_set.subsys[ss->id];
 549}
 550
 551/**
 552 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 553 * @cgrp: the cgroup of interest
 554 * @ss: the subsystem of interest
 555 *
 556 * Find and get the effective css of @cgrp for @ss.  The effective css is
 557 * defined as the matching css of the nearest ancestor including self which
 558 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 559 * the root css is returned, so this function always returns a valid css.
 560 * The returned css must be put using css_put().
 561 */
 562struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 563                                             struct cgroup_subsys *ss)
 564{
 565        struct cgroup_subsys_state *css;
 566
 567        rcu_read_lock();
 568
 569        do {
 570                css = cgroup_css(cgrp, ss);
 571
 572                if (css && css_tryget_online(css))
 573                        goto out_unlock;
 574                cgrp = cgroup_parent(cgrp);
 575        } while (cgrp);
 576
 577        css = init_css_set.subsys[ss->id];
 578        css_get(css);
 579out_unlock:
 580        rcu_read_unlock();
 581        return css;
 582}
 583
 584static void cgroup_get_live(struct cgroup *cgrp)
 585{
 586        WARN_ON_ONCE(cgroup_is_dead(cgrp));
 587        css_get(&cgrp->self);
 588}
 589
 590/**
 591 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
 592 * is responsible for taking the css_set_lock.
 593 * @cgrp: the cgroup in question
 594 */
 595int __cgroup_task_count(const struct cgroup *cgrp)
 596{
 597        int count = 0;
 598        struct cgrp_cset_link *link;
 599
 600        lockdep_assert_held(&css_set_lock);
 601
 602        list_for_each_entry(link, &cgrp->cset_links, cset_link)
 603                count += link->cset->nr_tasks;
 604
 605        return count;
 606}
 607
 608/**
 609 * cgroup_task_count - count the number of tasks in a cgroup.
 610 * @cgrp: the cgroup in question
 611 */
 612int cgroup_task_count(const struct cgroup *cgrp)
 613{
 614        int count;
 615
 616        spin_lock_irq(&css_set_lock);
 617        count = __cgroup_task_count(cgrp);
 618        spin_unlock_irq(&css_set_lock);
 619
 620        return count;
 621}
 622
 623struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 624{
 625        struct cgroup *cgrp = of->kn->parent->priv;
 626        struct cftype *cft = of_cft(of);
 627
 628        /*
 629         * This is open and unprotected implementation of cgroup_css().
 630         * seq_css() is only called from a kernfs file operation which has
 631         * an active reference on the file.  Because all the subsystem
 632         * files are drained before a css is disassociated with a cgroup,
 633         * the matching css from the cgroup's subsys table is guaranteed to
 634         * be and stay valid until the enclosing operation is complete.
 635         */
 636        if (cft->ss)
 637                return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 638        else
 639                return &cgrp->self;
 640}
 641EXPORT_SYMBOL_GPL(of_css);
 642
 643/**
 644 * for_each_css - iterate all css's of a cgroup
 645 * @css: the iteration cursor
 646 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 647 * @cgrp: the target cgroup to iterate css's of
 648 *
 649 * Should be called under cgroup_[tree_]mutex.
 650 */
 651#define for_each_css(css, ssid, cgrp)                                   \
 652        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 653                if (!((css) = rcu_dereference_check(                    \
 654                                (cgrp)->subsys[(ssid)],                 \
 655                                lockdep_is_held(&cgroup_mutex)))) { }   \
 656                else
 657
 658/**
 659 * for_each_e_css - iterate all effective css's of a cgroup
 660 * @css: the iteration cursor
 661 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 662 * @cgrp: the target cgroup to iterate css's of
 663 *
 664 * Should be called under cgroup_[tree_]mutex.
 665 */
 666#define for_each_e_css(css, ssid, cgrp)                                     \
 667        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)            \
 668                if (!((css) = cgroup_e_css_by_mask(cgrp,                    \
 669                                                   cgroup_subsys[(ssid)]))) \
 670                        ;                                                   \
 671                else
 672
 673/**
 674 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 675 * @ss: the iteration cursor
 676 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 677 * @ss_mask: the bitmask
 678 *
 679 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 680 * @ss_mask is set.
 681 */
 682#define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
 683        unsigned long __ss_mask = (ss_mask);                            \
 684        if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
 685                (ssid) = 0;                                             \
 686                break;                                                  \
 687        }                                                               \
 688        for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
 689                (ss) = cgroup_subsys[ssid];                             \
 690                {
 691
 692#define while_each_subsys_mask()                                        \
 693                }                                                       \
 694        }                                                               \
 695} while (false)
 696
 697/* iterate over child cgrps, lock should be held throughout iteration */
 698#define cgroup_for_each_live_child(child, cgrp)                         \
 699        list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 700                if (({ lockdep_assert_held(&cgroup_mutex);              \
 701                       cgroup_is_dead(child); }))                       \
 702                        ;                                               \
 703                else
 704
 705/* walk live descendants in preorder */
 706#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
 707        css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
 708                if (({ lockdep_assert_held(&cgroup_mutex);              \
 709                       (dsct) = (d_css)->cgroup;                        \
 710                       cgroup_is_dead(dsct); }))                        \
 711                        ;                                               \
 712                else
 713
 714/* walk live descendants in postorder */
 715#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
 716        css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
 717                if (({ lockdep_assert_held(&cgroup_mutex);              \
 718                       (dsct) = (d_css)->cgroup;                        \
 719                       cgroup_is_dead(dsct); }))                        \
 720                        ;                                               \
 721                else
 722
 723/*
 724 * The default css_set - used by init and its children prior to any
 725 * hierarchies being mounted. It contains a pointer to the root state
 726 * for each subsystem. Also used to anchor the list of css_sets. Not
 727 * reference-counted, to improve performance when child cgroups
 728 * haven't been created.
 729 */
 730struct css_set init_css_set = {
 731        .refcount               = REFCOUNT_INIT(1),
 732        .dom_cset               = &init_css_set,
 733        .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
 734        .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
 735        .dying_tasks            = LIST_HEAD_INIT(init_css_set.dying_tasks),
 736        .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
 737        .threaded_csets         = LIST_HEAD_INIT(init_css_set.threaded_csets),
 738        .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
 739        .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
 740        .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
 741
 742        /*
 743         * The following field is re-initialized when this cset gets linked
 744         * in cgroup_init().  However, let's initialize the field
 745         * statically too so that the default cgroup can be accessed safely
 746         * early during boot.
 747         */
 748        .dfl_cgrp               = &cgrp_dfl_root.cgrp,
 749};
 750
 751static int css_set_count        = 1;    /* 1 for init_css_set */
 752
 753static bool css_set_threaded(struct css_set *cset)
 754{
 755        return cset->dom_cset != cset;
 756}
 757
 758/**
 759 * css_set_populated - does a css_set contain any tasks?
 760 * @cset: target css_set
 761 *
 762 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 763 * state. However, css_set_populated() can be called while a task is being
 764 * added to or removed from the linked list before the nr_tasks is
 765 * properly updated. Hence, we can't just look at ->nr_tasks here.
 766 */
 767static bool css_set_populated(struct css_set *cset)
 768{
 769        lockdep_assert_held(&css_set_lock);
 770
 771        return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 772}
 773
 774/**
 775 * cgroup_update_populated - update the populated count of a cgroup
 776 * @cgrp: the target cgroup
 777 * @populated: inc or dec populated count
 778 *
 779 * One of the css_sets associated with @cgrp is either getting its first
 780 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 781 * count is propagated towards root so that a given cgroup's
 782 * nr_populated_children is zero iff none of its descendants contain any
 783 * tasks.
 784 *
 785 * @cgrp's interface file "cgroup.populated" is zero if both
 786 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 787 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 788 * that the content of the interface file has changed.  This can be used to
 789 * detect when @cgrp and its descendants become populated or empty.
 790 */
 791static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 792{
 793        struct cgroup *child = NULL;
 794        int adj = populated ? 1 : -1;
 795
 796        lockdep_assert_held(&css_set_lock);
 797
 798        do {
 799                bool was_populated = cgroup_is_populated(cgrp);
 800
 801                if (!child) {
 802                        cgrp->nr_populated_csets += adj;
 803                } else {
 804                        if (cgroup_is_threaded(child))
 805                                cgrp->nr_populated_threaded_children += adj;
 806                        else
 807                                cgrp->nr_populated_domain_children += adj;
 808                }
 809
 810                if (was_populated == cgroup_is_populated(cgrp))
 811                        break;
 812
 813                cgroup1_check_for_release(cgrp);
 814                TRACE_CGROUP_PATH(notify_populated, cgrp,
 815                                  cgroup_is_populated(cgrp));
 816                cgroup_file_notify(&cgrp->events_file);
 817
 818                child = cgrp;
 819                cgrp = cgroup_parent(cgrp);
 820        } while (cgrp);
 821}
 822
 823/**
 824 * css_set_update_populated - update populated state of a css_set
 825 * @cset: target css_set
 826 * @populated: whether @cset is populated or depopulated
 827 *
 828 * @cset is either getting the first task or losing the last.  Update the
 829 * populated counters of all associated cgroups accordingly.
 830 */
 831static void css_set_update_populated(struct css_set *cset, bool populated)
 832{
 833        struct cgrp_cset_link *link;
 834
 835        lockdep_assert_held(&css_set_lock);
 836
 837        list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 838                cgroup_update_populated(link->cgrp, populated);
 839}
 840
 841/*
 842 * @task is leaving, advance task iterators which are pointing to it so
 843 * that they can resume at the next position.  Advancing an iterator might
 844 * remove it from the list, use safe walk.  See css_task_iter_skip() for
 845 * details.
 846 */
 847static void css_set_skip_task_iters(struct css_set *cset,
 848                                    struct task_struct *task)
 849{
 850        struct css_task_iter *it, *pos;
 851
 852        list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
 853                css_task_iter_skip(it, task);
 854}
 855
 856/**
 857 * css_set_move_task - move a task from one css_set to another
 858 * @task: task being moved
 859 * @from_cset: css_set @task currently belongs to (may be NULL)
 860 * @to_cset: new css_set @task is being moved to (may be NULL)
 861 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 862 *
 863 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 864 * css_set, @from_cset can be NULL.  If @task is being disassociated
 865 * instead of moved, @to_cset can be NULL.
 866 *
 867 * This function automatically handles populated counter updates and
 868 * css_task_iter adjustments but the caller is responsible for managing
 869 * @from_cset and @to_cset's reference counts.
 870 */
 871static void css_set_move_task(struct task_struct *task,
 872                              struct css_set *from_cset, struct css_set *to_cset,
 873                              bool use_mg_tasks)
 874{
 875        lockdep_assert_held(&css_set_lock);
 876
 877        if (to_cset && !css_set_populated(to_cset))
 878                css_set_update_populated(to_cset, true);
 879
 880        if (from_cset) {
 881                WARN_ON_ONCE(list_empty(&task->cg_list));
 882
 883                css_set_skip_task_iters(from_cset, task);
 884                list_del_init(&task->cg_list);
 885                if (!css_set_populated(from_cset))
 886                        css_set_update_populated(from_cset, false);
 887        } else {
 888                WARN_ON_ONCE(!list_empty(&task->cg_list));
 889        }
 890
 891        if (to_cset) {
 892                /*
 893                 * We are synchronized through cgroup_threadgroup_rwsem
 894                 * against PF_EXITING setting such that we can't race
 895                 * against cgroup_exit()/cgroup_free() dropping the css_set.
 896                 */
 897                WARN_ON_ONCE(task->flags & PF_EXITING);
 898
 899                cgroup_move_task(task, to_cset);
 900                list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 901                                                             &to_cset->tasks);
 902        }
 903}
 904
 905/*
 906 * hash table for cgroup groups. This improves the performance to find
 907 * an existing css_set. This hash doesn't (currently) take into
 908 * account cgroups in empty hierarchies.
 909 */
 910#define CSS_SET_HASH_BITS       7
 911static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 912
 913static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 914{
 915        unsigned long key = 0UL;
 916        struct cgroup_subsys *ss;
 917        int i;
 918
 919        for_each_subsys(ss, i)
 920                key += (unsigned long)css[i];
 921        key = (key >> 16) ^ key;
 922
 923        return key;
 924}
 925
 926void put_css_set_locked(struct css_set *cset)
 927{
 928        struct cgrp_cset_link *link, *tmp_link;
 929        struct cgroup_subsys *ss;
 930        int ssid;
 931
 932        lockdep_assert_held(&css_set_lock);
 933
 934        if (!refcount_dec_and_test(&cset->refcount))
 935                return;
 936
 937        WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 938
 939        /* This css_set is dead. unlink it and release cgroup and css refs */
 940        for_each_subsys(ss, ssid) {
 941                list_del(&cset->e_cset_node[ssid]);
 942                css_put(cset->subsys[ssid]);
 943        }
 944        hash_del(&cset->hlist);
 945        css_set_count--;
 946
 947        list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 948                list_del(&link->cset_link);
 949                list_del(&link->cgrp_link);
 950                if (cgroup_parent(link->cgrp))
 951                        cgroup_put(link->cgrp);
 952                kfree(link);
 953        }
 954
 955        if (css_set_threaded(cset)) {
 956                list_del(&cset->threaded_csets_node);
 957                put_css_set_locked(cset->dom_cset);
 958        }
 959
 960        kfree_rcu(cset, rcu_head);
 961}
 962
 963/**
 964 * compare_css_sets - helper function for find_existing_css_set().
 965 * @cset: candidate css_set being tested
 966 * @old_cset: existing css_set for a task
 967 * @new_cgrp: cgroup that's being entered by the task
 968 * @template: desired set of css pointers in css_set (pre-calculated)
 969 *
 970 * Returns true if "cset" matches "old_cset" except for the hierarchy
 971 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 972 */
 973static bool compare_css_sets(struct css_set *cset,
 974                             struct css_set *old_cset,
 975                             struct cgroup *new_cgrp,
 976                             struct cgroup_subsys_state *template[])
 977{
 978        struct cgroup *new_dfl_cgrp;
 979        struct list_head *l1, *l2;
 980
 981        /*
 982         * On the default hierarchy, there can be csets which are
 983         * associated with the same set of cgroups but different csses.
 984         * Let's first ensure that csses match.
 985         */
 986        if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 987                return false;
 988
 989
 990        /* @cset's domain should match the default cgroup's */
 991        if (cgroup_on_dfl(new_cgrp))
 992                new_dfl_cgrp = new_cgrp;
 993        else
 994                new_dfl_cgrp = old_cset->dfl_cgrp;
 995
 996        if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
 997                return false;
 998
 999        /*
1000         * Compare cgroup pointers in order to distinguish between
1001         * different cgroups in hierarchies.  As different cgroups may
1002         * share the same effective css, this comparison is always
1003         * necessary.
1004         */
1005        l1 = &cset->cgrp_links;
1006        l2 = &old_cset->cgrp_links;
1007        while (1) {
1008                struct cgrp_cset_link *link1, *link2;
1009                struct cgroup *cgrp1, *cgrp2;
1010
1011                l1 = l1->next;
1012                l2 = l2->next;
1013                /* See if we reached the end - both lists are equal length. */
1014                if (l1 == &cset->cgrp_links) {
1015                        BUG_ON(l2 != &old_cset->cgrp_links);
1016                        break;
1017                } else {
1018                        BUG_ON(l2 == &old_cset->cgrp_links);
1019                }
1020                /* Locate the cgroups associated with these links. */
1021                link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1022                link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1023                cgrp1 = link1->cgrp;
1024                cgrp2 = link2->cgrp;
1025                /* Hierarchies should be linked in the same order. */
1026                BUG_ON(cgrp1->root != cgrp2->root);
1027
1028                /*
1029                 * If this hierarchy is the hierarchy of the cgroup
1030                 * that's changing, then we need to check that this
1031                 * css_set points to the new cgroup; if it's any other
1032                 * hierarchy, then this css_set should point to the
1033                 * same cgroup as the old css_set.
1034                 */
1035                if (cgrp1->root == new_cgrp->root) {
1036                        if (cgrp1 != new_cgrp)
1037                                return false;
1038                } else {
1039                        if (cgrp1 != cgrp2)
1040                                return false;
1041                }
1042        }
1043        return true;
1044}
1045
1046/**
1047 * find_existing_css_set - init css array and find the matching css_set
1048 * @old_cset: the css_set that we're using before the cgroup transition
1049 * @cgrp: the cgroup that we're moving into
1050 * @template: out param for the new set of csses, should be clear on entry
1051 */
1052static struct css_set *find_existing_css_set(struct css_set *old_cset,
1053                                        struct cgroup *cgrp,
1054                                        struct cgroup_subsys_state *template[])
1055{
1056        struct cgroup_root *root = cgrp->root;
1057        struct cgroup_subsys *ss;
1058        struct css_set *cset;
1059        unsigned long key;
1060        int i;
1061
1062        /*
1063         * Build the set of subsystem state objects that we want to see in the
1064         * new css_set. while subsystems can change globally, the entries here
1065         * won't change, so no need for locking.
1066         */
1067        for_each_subsys(ss, i) {
1068                if (root->subsys_mask & (1UL << i)) {
1069                        /*
1070                         * @ss is in this hierarchy, so we want the
1071                         * effective css from @cgrp.
1072                         */
1073                        template[i] = cgroup_e_css_by_mask(cgrp, ss);
1074                } else {
1075                        /*
1076                         * @ss is not in this hierarchy, so we don't want
1077                         * to change the css.
1078                         */
1079                        template[i] = old_cset->subsys[i];
1080                }
1081        }
1082
1083        key = css_set_hash(template);
1084        hash_for_each_possible(css_set_table, cset, hlist, key) {
1085                if (!compare_css_sets(cset, old_cset, cgrp, template))
1086                        continue;
1087
1088                /* This css_set matches what we need */
1089                return cset;
1090        }
1091
1092        /* No existing cgroup group matched */
1093        return NULL;
1094}
1095
1096static void free_cgrp_cset_links(struct list_head *links_to_free)
1097{
1098        struct cgrp_cset_link *link, *tmp_link;
1099
1100        list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1101                list_del(&link->cset_link);
1102                kfree(link);
1103        }
1104}
1105
1106/**
1107 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1108 * @count: the number of links to allocate
1109 * @tmp_links: list_head the allocated links are put on
1110 *
1111 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1112 * through ->cset_link.  Returns 0 on success or -errno.
1113 */
1114static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1115{
1116        struct cgrp_cset_link *link;
1117        int i;
1118
1119        INIT_LIST_HEAD(tmp_links);
1120
1121        for (i = 0; i < count; i++) {
1122                link = kzalloc(sizeof(*link), GFP_KERNEL);
1123                if (!link) {
1124                        free_cgrp_cset_links(tmp_links);
1125                        return -ENOMEM;
1126                }
1127                list_add(&link->cset_link, tmp_links);
1128        }
1129        return 0;
1130}
1131
1132/**
1133 * link_css_set - a helper function to link a css_set to a cgroup
1134 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1135 * @cset: the css_set to be linked
1136 * @cgrp: the destination cgroup
1137 */
1138static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1139                         struct cgroup *cgrp)
1140{
1141        struct cgrp_cset_link *link;
1142
1143        BUG_ON(list_empty(tmp_links));
1144
1145        if (cgroup_on_dfl(cgrp))
1146                cset->dfl_cgrp = cgrp;
1147
1148        link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1149        link->cset = cset;
1150        link->cgrp = cgrp;
1151
1152        /*
1153         * Always add links to the tail of the lists so that the lists are
1154         * in choronological order.
1155         */
1156        list_move_tail(&link->cset_link, &cgrp->cset_links);
1157        list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1158
1159        if (cgroup_parent(cgrp))
1160                cgroup_get_live(cgrp);
1161}
1162
1163/**
1164 * find_css_set - return a new css_set with one cgroup updated
1165 * @old_cset: the baseline css_set
1166 * @cgrp: the cgroup to be updated
1167 *
1168 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1169 * substituted into the appropriate hierarchy.
1170 */
1171static struct css_set *find_css_set(struct css_set *old_cset,
1172                                    struct cgroup *cgrp)
1173{
1174        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1175        struct css_set *cset;
1176        struct list_head tmp_links;
1177        struct cgrp_cset_link *link;
1178        struct cgroup_subsys *ss;
1179        unsigned long key;
1180        int ssid;
1181
1182        lockdep_assert_held(&cgroup_mutex);
1183
1184        /* First see if we already have a cgroup group that matches
1185         * the desired set */
1186        spin_lock_irq(&css_set_lock);
1187        cset = find_existing_css_set(old_cset, cgrp, template);
1188        if (cset)
1189                get_css_set(cset);
1190        spin_unlock_irq(&css_set_lock);
1191
1192        if (cset)
1193                return cset;
1194
1195        cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1196        if (!cset)
1197                return NULL;
1198
1199        /* Allocate all the cgrp_cset_link objects that we'll need */
1200        if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1201                kfree(cset);
1202                return NULL;
1203        }
1204
1205        refcount_set(&cset->refcount, 1);
1206        cset->dom_cset = cset;
1207        INIT_LIST_HEAD(&cset->tasks);
1208        INIT_LIST_HEAD(&cset->mg_tasks);
1209        INIT_LIST_HEAD(&cset->dying_tasks);
1210        INIT_LIST_HEAD(&cset->task_iters);
1211        INIT_LIST_HEAD(&cset->threaded_csets);
1212        INIT_HLIST_NODE(&cset->hlist);
1213        INIT_LIST_HEAD(&cset->cgrp_links);
1214        INIT_LIST_HEAD(&cset->mg_preload_node);
1215        INIT_LIST_HEAD(&cset->mg_node);
1216
1217        /* Copy the set of subsystem state objects generated in
1218         * find_existing_css_set() */
1219        memcpy(cset->subsys, template, sizeof(cset->subsys));
1220
1221        spin_lock_irq(&css_set_lock);
1222        /* Add reference counts and links from the new css_set. */
1223        list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224                struct cgroup *c = link->cgrp;
1225
1226                if (c->root == cgrp->root)
1227                        c = cgrp;
1228                link_css_set(&tmp_links, cset, c);
1229        }
1230
1231        BUG_ON(!list_empty(&tmp_links));
1232
1233        css_set_count++;
1234
1235        /* Add @cset to the hash table */
1236        key = css_set_hash(cset->subsys);
1237        hash_add(css_set_table, &cset->hlist, key);
1238
1239        for_each_subsys(ss, ssid) {
1240                struct cgroup_subsys_state *css = cset->subsys[ssid];
1241
1242                list_add_tail(&cset->e_cset_node[ssid],
1243                              &css->cgroup->e_csets[ssid]);
1244                css_get(css);
1245        }
1246
1247        spin_unlock_irq(&css_set_lock);
1248
1249        /*
1250         * If @cset should be threaded, look up the matching dom_cset and
1251         * link them up.  We first fully initialize @cset then look for the
1252         * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253         * to stay empty until we return.
1254         */
1255        if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256                struct css_set *dcset;
1257
1258                dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259                if (!dcset) {
1260                        put_css_set(cset);
1261                        return NULL;
1262                }
1263
1264                spin_lock_irq(&css_set_lock);
1265                cset->dom_cset = dcset;
1266                list_add_tail(&cset->threaded_csets_node,
1267                              &dcset->threaded_csets);
1268                spin_unlock_irq(&css_set_lock);
1269        }
1270
1271        return cset;
1272}
1273
1274struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275{
1276        struct cgroup *root_cgrp = kf_root->kn->priv;
1277
1278        return root_cgrp->root;
1279}
1280
1281static int cgroup_init_root_id(struct cgroup_root *root)
1282{
1283        int id;
1284
1285        lockdep_assert_held(&cgroup_mutex);
1286
1287        id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1288        if (id < 0)
1289                return id;
1290
1291        root->hierarchy_id = id;
1292        return 0;
1293}
1294
1295static void cgroup_exit_root_id(struct cgroup_root *root)
1296{
1297        lockdep_assert_held(&cgroup_mutex);
1298
1299        idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1300}
1301
1302void cgroup_free_root(struct cgroup_root *root)
1303{
1304        kfree(root);
1305}
1306
1307static void cgroup_destroy_root(struct cgroup_root *root)
1308{
1309        struct cgroup *cgrp = &root->cgrp;
1310        struct cgrp_cset_link *link, *tmp_link;
1311
1312        trace_cgroup_destroy_root(root);
1313
1314        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1315
1316        BUG_ON(atomic_read(&root->nr_cgrps));
1317        BUG_ON(!list_empty(&cgrp->self.children));
1318
1319        /* Rebind all subsystems back to the default hierarchy */
1320        WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1321
1322        /*
1323         * Release all the links from cset_links to this hierarchy's
1324         * root cgroup
1325         */
1326        spin_lock_irq(&css_set_lock);
1327
1328        list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1329                list_del(&link->cset_link);
1330                list_del(&link->cgrp_link);
1331                kfree(link);
1332        }
1333
1334        spin_unlock_irq(&css_set_lock);
1335
1336        if (!list_empty(&root->root_list)) {
1337                list_del(&root->root_list);
1338                cgroup_root_count--;
1339        }
1340
1341        cgroup_exit_root_id(root);
1342
1343        mutex_unlock(&cgroup_mutex);
1344
1345        kernfs_destroy_root(root->kf_root);
1346        cgroup_free_root(root);
1347}
1348
1349/*
1350 * look up cgroup associated with current task's cgroup namespace on the
1351 * specified hierarchy
1352 */
1353static struct cgroup *
1354current_cgns_cgroup_from_root(struct cgroup_root *root)
1355{
1356        struct cgroup *res = NULL;
1357        struct css_set *cset;
1358
1359        lockdep_assert_held(&css_set_lock);
1360
1361        rcu_read_lock();
1362
1363        cset = current->nsproxy->cgroup_ns->root_cset;
1364        if (cset == &init_css_set) {
1365                res = &root->cgrp;
1366        } else if (root == &cgrp_dfl_root) {
1367                res = cset->dfl_cgrp;
1368        } else {
1369                struct cgrp_cset_link *link;
1370
1371                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1372                        struct cgroup *c = link->cgrp;
1373
1374                        if (c->root == root) {
1375                                res = c;
1376                                break;
1377                        }
1378                }
1379        }
1380        rcu_read_unlock();
1381
1382        BUG_ON(!res);
1383        return res;
1384}
1385
1386/* look up cgroup associated with given css_set on the specified hierarchy */
1387static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1388                                            struct cgroup_root *root)
1389{
1390        struct cgroup *res = NULL;
1391
1392        lockdep_assert_held(&cgroup_mutex);
1393        lockdep_assert_held(&css_set_lock);
1394
1395        if (cset == &init_css_set) {
1396                res = &root->cgrp;
1397        } else if (root == &cgrp_dfl_root) {
1398                res = cset->dfl_cgrp;
1399        } else {
1400                struct cgrp_cset_link *link;
1401
1402                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1403                        struct cgroup *c = link->cgrp;
1404
1405                        if (c->root == root) {
1406                                res = c;
1407                                break;
1408                        }
1409                }
1410        }
1411
1412        BUG_ON(!res);
1413        return res;
1414}
1415
1416/*
1417 * Return the cgroup for "task" from the given hierarchy. Must be
1418 * called with cgroup_mutex and css_set_lock held.
1419 */
1420struct cgroup *task_cgroup_from_root(struct task_struct *task,
1421                                     struct cgroup_root *root)
1422{
1423        /*
1424         * No need to lock the task - since we hold css_set_lock the
1425         * task can't change groups.
1426         */
1427        return cset_cgroup_from_root(task_css_set(task), root);
1428}
1429
1430/*
1431 * A task must hold cgroup_mutex to modify cgroups.
1432 *
1433 * Any task can increment and decrement the count field without lock.
1434 * So in general, code holding cgroup_mutex can't rely on the count
1435 * field not changing.  However, if the count goes to zero, then only
1436 * cgroup_attach_task() can increment it again.  Because a count of zero
1437 * means that no tasks are currently attached, therefore there is no
1438 * way a task attached to that cgroup can fork (the other way to
1439 * increment the count).  So code holding cgroup_mutex can safely
1440 * assume that if the count is zero, it will stay zero. Similarly, if
1441 * a task holds cgroup_mutex on a cgroup with zero count, it
1442 * knows that the cgroup won't be removed, as cgroup_rmdir()
1443 * needs that mutex.
1444 *
1445 * A cgroup can only be deleted if both its 'count' of using tasks
1446 * is zero, and its list of 'children' cgroups is empty.  Since all
1447 * tasks in the system use _some_ cgroup, and since there is always at
1448 * least one task in the system (init, pid == 1), therefore, root cgroup
1449 * always has either children cgroups and/or using tasks.  So we don't
1450 * need a special hack to ensure that root cgroup cannot be deleted.
1451 *
1452 * P.S.  One more locking exception.  RCU is used to guard the
1453 * update of a tasks cgroup pointer by cgroup_attach_task()
1454 */
1455
1456static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1457
1458static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1459                              char *buf)
1460{
1461        struct cgroup_subsys *ss = cft->ss;
1462
1463        if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1464            !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1465                const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1466
1467                snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1468                         dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1469                         cft->name);
1470        } else {
1471                strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1472        }
1473        return buf;
1474}
1475
1476/**
1477 * cgroup_file_mode - deduce file mode of a control file
1478 * @cft: the control file in question
1479 *
1480 * S_IRUGO for read, S_IWUSR for write.
1481 */
1482static umode_t cgroup_file_mode(const struct cftype *cft)
1483{
1484        umode_t mode = 0;
1485
1486        if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1487                mode |= S_IRUGO;
1488
1489        if (cft->write_u64 || cft->write_s64 || cft->write) {
1490                if (cft->flags & CFTYPE_WORLD_WRITABLE)
1491                        mode |= S_IWUGO;
1492                else
1493                        mode |= S_IWUSR;
1494        }
1495
1496        return mode;
1497}
1498
1499/**
1500 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1501 * @subtree_control: the new subtree_control mask to consider
1502 * @this_ss_mask: available subsystems
1503 *
1504 * On the default hierarchy, a subsystem may request other subsystems to be
1505 * enabled together through its ->depends_on mask.  In such cases, more
1506 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1507 *
1508 * This function calculates which subsystems need to be enabled if
1509 * @subtree_control is to be applied while restricted to @this_ss_mask.
1510 */
1511static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1512{
1513        u16 cur_ss_mask = subtree_control;
1514        struct cgroup_subsys *ss;
1515        int ssid;
1516
1517        lockdep_assert_held(&cgroup_mutex);
1518
1519        cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1520
1521        while (true) {
1522                u16 new_ss_mask = cur_ss_mask;
1523
1524                do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1525                        new_ss_mask |= ss->depends_on;
1526                } while_each_subsys_mask();
1527
1528                /*
1529                 * Mask out subsystems which aren't available.  This can
1530                 * happen only if some depended-upon subsystems were bound
1531                 * to non-default hierarchies.
1532                 */
1533                new_ss_mask &= this_ss_mask;
1534
1535                if (new_ss_mask == cur_ss_mask)
1536                        break;
1537                cur_ss_mask = new_ss_mask;
1538        }
1539
1540        return cur_ss_mask;
1541}
1542
1543/**
1544 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1545 * @kn: the kernfs_node being serviced
1546 *
1547 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1548 * the method finishes if locking succeeded.  Note that once this function
1549 * returns the cgroup returned by cgroup_kn_lock_live() may become
1550 * inaccessible any time.  If the caller intends to continue to access the
1551 * cgroup, it should pin it before invoking this function.
1552 */
1553void cgroup_kn_unlock(struct kernfs_node *kn)
1554{
1555        struct cgroup *cgrp;
1556
1557        if (kernfs_type(kn) == KERNFS_DIR)
1558                cgrp = kn->priv;
1559        else
1560                cgrp = kn->parent->priv;
1561
1562        mutex_unlock(&cgroup_mutex);
1563
1564        kernfs_unbreak_active_protection(kn);
1565        cgroup_put(cgrp);
1566}
1567
1568/**
1569 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1570 * @kn: the kernfs_node being serviced
1571 * @drain_offline: perform offline draining on the cgroup
1572 *
1573 * This helper is to be used by a cgroup kernfs method currently servicing
1574 * @kn.  It breaks the active protection, performs cgroup locking and
1575 * verifies that the associated cgroup is alive.  Returns the cgroup if
1576 * alive; otherwise, %NULL.  A successful return should be undone by a
1577 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1578 * cgroup is drained of offlining csses before return.
1579 *
1580 * Any cgroup kernfs method implementation which requires locking the
1581 * associated cgroup should use this helper.  It avoids nesting cgroup
1582 * locking under kernfs active protection and allows all kernfs operations
1583 * including self-removal.
1584 */
1585struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1586{
1587        struct cgroup *cgrp;
1588
1589        if (kernfs_type(kn) == KERNFS_DIR)
1590                cgrp = kn->priv;
1591        else
1592                cgrp = kn->parent->priv;
1593
1594        /*
1595         * We're gonna grab cgroup_mutex which nests outside kernfs
1596         * active_ref.  cgroup liveliness check alone provides enough
1597         * protection against removal.  Ensure @cgrp stays accessible and
1598         * break the active_ref protection.
1599         */
1600        if (!cgroup_tryget(cgrp))
1601                return NULL;
1602        kernfs_break_active_protection(kn);
1603
1604        if (drain_offline)
1605                cgroup_lock_and_drain_offline(cgrp);
1606        else
1607                mutex_lock(&cgroup_mutex);
1608
1609        if (!cgroup_is_dead(cgrp))
1610                return cgrp;
1611
1612        cgroup_kn_unlock(kn);
1613        return NULL;
1614}
1615
1616static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1617{
1618        char name[CGROUP_FILE_NAME_MAX];
1619
1620        lockdep_assert_held(&cgroup_mutex);
1621
1622        if (cft->file_offset) {
1623                struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1624                struct cgroup_file *cfile = (void *)css + cft->file_offset;
1625
1626                spin_lock_irq(&cgroup_file_kn_lock);
1627                cfile->kn = NULL;
1628                spin_unlock_irq(&cgroup_file_kn_lock);
1629
1630                del_timer_sync(&cfile->notify_timer);
1631        }
1632
1633        kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1634}
1635
1636/**
1637 * css_clear_dir - remove subsys files in a cgroup directory
1638 * @css: taget css
1639 */
1640static void css_clear_dir(struct cgroup_subsys_state *css)
1641{
1642        struct cgroup *cgrp = css->cgroup;
1643        struct cftype *cfts;
1644
1645        if (!(css->flags & CSS_VISIBLE))
1646                return;
1647
1648        css->flags &= ~CSS_VISIBLE;
1649
1650        if (!css->ss) {
1651                if (cgroup_on_dfl(cgrp))
1652                        cfts = cgroup_base_files;
1653                else
1654                        cfts = cgroup1_base_files;
1655
1656                cgroup_addrm_files(css, cgrp, cfts, false);
1657        } else {
1658                list_for_each_entry(cfts, &css->ss->cfts, node)
1659                        cgroup_addrm_files(css, cgrp, cfts, false);
1660        }
1661}
1662
1663/**
1664 * css_populate_dir - create subsys files in a cgroup directory
1665 * @css: target css
1666 *
1667 * On failure, no file is added.
1668 */
1669static int css_populate_dir(struct cgroup_subsys_state *css)
1670{
1671        struct cgroup *cgrp = css->cgroup;
1672        struct cftype *cfts, *failed_cfts;
1673        int ret;
1674
1675        if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1676                return 0;
1677
1678        if (!css->ss) {
1679                if (cgroup_on_dfl(cgrp))
1680                        cfts = cgroup_base_files;
1681                else
1682                        cfts = cgroup1_base_files;
1683
1684                ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1685                if (ret < 0)
1686                        return ret;
1687        } else {
1688                list_for_each_entry(cfts, &css->ss->cfts, node) {
1689                        ret = cgroup_addrm_files(css, cgrp, cfts, true);
1690                        if (ret < 0) {
1691                                failed_cfts = cfts;
1692                                goto err;
1693                        }
1694                }
1695        }
1696
1697        css->flags |= CSS_VISIBLE;
1698
1699        return 0;
1700err:
1701        list_for_each_entry(cfts, &css->ss->cfts, node) {
1702                if (cfts == failed_cfts)
1703                        break;
1704                cgroup_addrm_files(css, cgrp, cfts, false);
1705        }
1706        return ret;
1707}
1708
1709int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1710{
1711        struct cgroup *dcgrp = &dst_root->cgrp;
1712        struct cgroup_subsys *ss;
1713        int ssid, i, ret;
1714
1715        lockdep_assert_held(&cgroup_mutex);
1716
1717        do_each_subsys_mask(ss, ssid, ss_mask) {
1718                /*
1719                 * If @ss has non-root csses attached to it, can't move.
1720                 * If @ss is an implicit controller, it is exempt from this
1721                 * rule and can be stolen.
1722                 */
1723                if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1724                    !ss->implicit_on_dfl)
1725                        return -EBUSY;
1726
1727                /* can't move between two non-dummy roots either */
1728                if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1729                        return -EBUSY;
1730        } while_each_subsys_mask();
1731
1732        do_each_subsys_mask(ss, ssid, ss_mask) {
1733                struct cgroup_root *src_root = ss->root;
1734                struct cgroup *scgrp = &src_root->cgrp;
1735                struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1736                struct css_set *cset;
1737
1738                WARN_ON(!css || cgroup_css(dcgrp, ss));
1739
1740                /* disable from the source */
1741                src_root->subsys_mask &= ~(1 << ssid);
1742                WARN_ON(cgroup_apply_control(scgrp));
1743                cgroup_finalize_control(scgrp, 0);
1744
1745                /* rebind */
1746                RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1747                rcu_assign_pointer(dcgrp->subsys[ssid], css);
1748                ss->root = dst_root;
1749                css->cgroup = dcgrp;
1750
1751                spin_lock_irq(&css_set_lock);
1752                hash_for_each(css_set_table, i, cset, hlist)
1753                        list_move_tail(&cset->e_cset_node[ss->id],
1754                                       &dcgrp->e_csets[ss->id]);
1755                spin_unlock_irq(&css_set_lock);
1756
1757                /* default hierarchy doesn't enable controllers by default */
1758                dst_root->subsys_mask |= 1 << ssid;
1759                if (dst_root == &cgrp_dfl_root) {
1760                        static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1761                } else {
1762                        dcgrp->subtree_control |= 1 << ssid;
1763                        static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1764                }
1765
1766                ret = cgroup_apply_control(dcgrp);
1767                if (ret)
1768                        pr_warn("partial failure to rebind %s controller (err=%d)\n",
1769                                ss->name, ret);
1770
1771                if (ss->bind)
1772                        ss->bind(css);
1773        } while_each_subsys_mask();
1774
1775        kernfs_activate(dcgrp->kn);
1776        return 0;
1777}
1778
1779int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1780                     struct kernfs_root *kf_root)
1781{
1782        int len = 0;
1783        char *buf = NULL;
1784        struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1785        struct cgroup *ns_cgroup;
1786
1787        buf = kmalloc(PATH_MAX, GFP_KERNEL);
1788        if (!buf)
1789                return -ENOMEM;
1790
1791        spin_lock_irq(&css_set_lock);
1792        ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1793        len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1794        spin_unlock_irq(&css_set_lock);
1795
1796        if (len >= PATH_MAX)
1797                len = -ERANGE;
1798        else if (len > 0) {
1799                seq_escape(sf, buf, " \t\n\\");
1800                len = 0;
1801        }
1802        kfree(buf);
1803        return len;
1804}
1805
1806enum cgroup2_param {
1807        Opt_nsdelegate,
1808        Opt_memory_localevents,
1809        Opt_memory_recursiveprot,
1810        nr__cgroup2_params
1811};
1812
1813static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1814        fsparam_flag("nsdelegate",              Opt_nsdelegate),
1815        fsparam_flag("memory_localevents",      Opt_memory_localevents),
1816        fsparam_flag("memory_recursiveprot",    Opt_memory_recursiveprot),
1817        {}
1818};
1819
1820static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1821{
1822        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1823        struct fs_parse_result result;
1824        int opt;
1825
1826        opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1827        if (opt < 0)
1828                return opt;
1829
1830        switch (opt) {
1831        case Opt_nsdelegate:
1832                ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1833                return 0;
1834        case Opt_memory_localevents:
1835                ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1836                return 0;
1837        case Opt_memory_recursiveprot:
1838                ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1839                return 0;
1840        }
1841        return -EINVAL;
1842}
1843
1844static void apply_cgroup_root_flags(unsigned int root_flags)
1845{
1846        if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1847                if (root_flags & CGRP_ROOT_NS_DELEGATE)
1848                        cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1849                else
1850                        cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1851
1852                if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1853                        cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1854                else
1855                        cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1856
1857                if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1858                        cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1859                else
1860                        cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1861        }
1862}
1863
1864static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1865{
1866        if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1867                seq_puts(seq, ",nsdelegate");
1868        if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1869                seq_puts(seq, ",memory_localevents");
1870        if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1871                seq_puts(seq, ",memory_recursiveprot");
1872        return 0;
1873}
1874
1875static int cgroup_reconfigure(struct fs_context *fc)
1876{
1877        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1878
1879        apply_cgroup_root_flags(ctx->flags);
1880        return 0;
1881}
1882
1883static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884{
1885        struct cgroup_subsys *ss;
1886        int ssid;
1887
1888        INIT_LIST_HEAD(&cgrp->self.sibling);
1889        INIT_LIST_HEAD(&cgrp->self.children);
1890        INIT_LIST_HEAD(&cgrp->cset_links);
1891        INIT_LIST_HEAD(&cgrp->pidlists);
1892        mutex_init(&cgrp->pidlist_mutex);
1893        cgrp->self.cgroup = cgrp;
1894        cgrp->self.flags |= CSS_ONLINE;
1895        cgrp->dom_cgrp = cgrp;
1896        cgrp->max_descendants = INT_MAX;
1897        cgrp->max_depth = INT_MAX;
1898        INIT_LIST_HEAD(&cgrp->rstat_css_list);
1899        prev_cputime_init(&cgrp->prev_cputime);
1900
1901        for_each_subsys(ss, ssid)
1902                INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1903
1904        init_waitqueue_head(&cgrp->offline_waitq);
1905        INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1906}
1907
1908void init_cgroup_root(struct cgroup_fs_context *ctx)
1909{
1910        struct cgroup_root *root = ctx->root;
1911        struct cgroup *cgrp = &root->cgrp;
1912
1913        INIT_LIST_HEAD(&root->root_list);
1914        atomic_set(&root->nr_cgrps, 1);
1915        cgrp->root = root;
1916        init_cgroup_housekeeping(cgrp);
1917
1918        root->flags = ctx->flags;
1919        if (ctx->release_agent)
1920                strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1921        if (ctx->name)
1922                strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1923        if (ctx->cpuset_clone_children)
1924                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1925}
1926
1927int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1928{
1929        LIST_HEAD(tmp_links);
1930        struct cgroup *root_cgrp = &root->cgrp;
1931        struct kernfs_syscall_ops *kf_sops;
1932        struct css_set *cset;
1933        int i, ret;
1934
1935        lockdep_assert_held(&cgroup_mutex);
1936
1937        ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1938                              0, GFP_KERNEL);
1939        if (ret)
1940                goto out;
1941
1942        /*
1943         * We're accessing css_set_count without locking css_set_lock here,
1944         * but that's OK - it can only be increased by someone holding
1945         * cgroup_lock, and that's us.  Later rebinding may disable
1946         * controllers on the default hierarchy and thus create new csets,
1947         * which can't be more than the existing ones.  Allocate 2x.
1948         */
1949        ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1950        if (ret)
1951                goto cancel_ref;
1952
1953        ret = cgroup_init_root_id(root);
1954        if (ret)
1955                goto cancel_ref;
1956
1957        kf_sops = root == &cgrp_dfl_root ?
1958                &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1959
1960        root->kf_root = kernfs_create_root(kf_sops,
1961                                           KERNFS_ROOT_CREATE_DEACTIVATED |
1962                                           KERNFS_ROOT_SUPPORT_EXPORTOP |
1963                                           KERNFS_ROOT_SUPPORT_USER_XATTR,
1964                                           root_cgrp);
1965        if (IS_ERR(root->kf_root)) {
1966                ret = PTR_ERR(root->kf_root);
1967                goto exit_root_id;
1968        }
1969        root_cgrp->kn = root->kf_root->kn;
1970        WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1971        root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1972
1973        ret = css_populate_dir(&root_cgrp->self);
1974        if (ret)
1975                goto destroy_root;
1976
1977        ret = rebind_subsystems(root, ss_mask);
1978        if (ret)
1979                goto destroy_root;
1980
1981        ret = cgroup_bpf_inherit(root_cgrp);
1982        WARN_ON_ONCE(ret);
1983
1984        trace_cgroup_setup_root(root);
1985
1986        /*
1987         * There must be no failure case after here, since rebinding takes
1988         * care of subsystems' refcounts, which are explicitly dropped in
1989         * the failure exit path.
1990         */
1991        list_add(&root->root_list, &cgroup_roots);
1992        cgroup_root_count++;
1993
1994        /*
1995         * Link the root cgroup in this hierarchy into all the css_set
1996         * objects.
1997         */
1998        spin_lock_irq(&css_set_lock);
1999        hash_for_each(css_set_table, i, cset, hlist) {
2000                link_css_set(&tmp_links, cset, root_cgrp);
2001                if (css_set_populated(cset))
2002                        cgroup_update_populated(root_cgrp, true);
2003        }
2004        spin_unlock_irq(&css_set_lock);
2005
2006        BUG_ON(!list_empty(&root_cgrp->self.children));
2007        BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2008
2009        kernfs_activate(root_cgrp->kn);
2010        ret = 0;
2011        goto out;
2012
2013destroy_root:
2014        kernfs_destroy_root(root->kf_root);
2015        root->kf_root = NULL;
2016exit_root_id:
2017        cgroup_exit_root_id(root);
2018cancel_ref:
2019        percpu_ref_exit(&root_cgrp->self.refcnt);
2020out:
2021        free_cgrp_cset_links(&tmp_links);
2022        return ret;
2023}
2024
2025int cgroup_do_get_tree(struct fs_context *fc)
2026{
2027        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2028        int ret;
2029
2030        ctx->kfc.root = ctx->root->kf_root;
2031        if (fc->fs_type == &cgroup2_fs_type)
2032                ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2033        else
2034                ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2035        ret = kernfs_get_tree(fc);
2036
2037        /*
2038         * In non-init cgroup namespace, instead of root cgroup's dentry,
2039         * we return the dentry corresponding to the cgroupns->root_cgrp.
2040         */
2041        if (!ret && ctx->ns != &init_cgroup_ns) {
2042                struct dentry *nsdentry;
2043                struct super_block *sb = fc->root->d_sb;
2044                struct cgroup *cgrp;
2045
2046                mutex_lock(&cgroup_mutex);
2047                spin_lock_irq(&css_set_lock);
2048
2049                cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2050
2051                spin_unlock_irq(&css_set_lock);
2052                mutex_unlock(&cgroup_mutex);
2053
2054                nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2055                dput(fc->root);
2056                if (IS_ERR(nsdentry)) {
2057                        deactivate_locked_super(sb);
2058                        ret = PTR_ERR(nsdentry);
2059                        nsdentry = NULL;
2060                }
2061                fc->root = nsdentry;
2062        }
2063
2064        if (!ctx->kfc.new_sb_created)
2065                cgroup_put(&ctx->root->cgrp);
2066
2067        return ret;
2068}
2069
2070/*
2071 * Destroy a cgroup filesystem context.
2072 */
2073static void cgroup_fs_context_free(struct fs_context *fc)
2074{
2075        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2076
2077        kfree(ctx->name);
2078        kfree(ctx->release_agent);
2079        put_cgroup_ns(ctx->ns);
2080        kernfs_free_fs_context(fc);
2081        kfree(ctx);
2082}
2083
2084static int cgroup_get_tree(struct fs_context *fc)
2085{
2086        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2087        int ret;
2088
2089        cgrp_dfl_visible = true;
2090        cgroup_get_live(&cgrp_dfl_root.cgrp);
2091        ctx->root = &cgrp_dfl_root;
2092
2093        ret = cgroup_do_get_tree(fc);
2094        if (!ret)
2095                apply_cgroup_root_flags(ctx->flags);
2096        return ret;
2097}
2098
2099static const struct fs_context_operations cgroup_fs_context_ops = {
2100        .free           = cgroup_fs_context_free,
2101        .parse_param    = cgroup2_parse_param,
2102        .get_tree       = cgroup_get_tree,
2103        .reconfigure    = cgroup_reconfigure,
2104};
2105
2106static const struct fs_context_operations cgroup1_fs_context_ops = {
2107        .free           = cgroup_fs_context_free,
2108        .parse_param    = cgroup1_parse_param,
2109        .get_tree       = cgroup1_get_tree,
2110        .reconfigure    = cgroup1_reconfigure,
2111};
2112
2113/*
2114 * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2115 * we select the namespace we're going to use.
2116 */
2117static int cgroup_init_fs_context(struct fs_context *fc)
2118{
2119        struct cgroup_fs_context *ctx;
2120
2121        ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2122        if (!ctx)
2123                return -ENOMEM;
2124
2125        ctx->ns = current->nsproxy->cgroup_ns;
2126        get_cgroup_ns(ctx->ns);
2127        fc->fs_private = &ctx->kfc;
2128        if (fc->fs_type == &cgroup2_fs_type)
2129                fc->ops = &cgroup_fs_context_ops;
2130        else
2131                fc->ops = &cgroup1_fs_context_ops;
2132        put_user_ns(fc->user_ns);
2133        fc->user_ns = get_user_ns(ctx->ns->user_ns);
2134        fc->global = true;
2135        return 0;
2136}
2137
2138static void cgroup_kill_sb(struct super_block *sb)
2139{
2140        struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2141        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2142
2143        /*
2144         * If @root doesn't have any children, start killing it.
2145         * This prevents new mounts by disabling percpu_ref_tryget_live().
2146         * cgroup_mount() may wait for @root's release.
2147         *
2148         * And don't kill the default root.
2149         */
2150        if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2151            !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2152                percpu_ref_kill(&root->cgrp.self.refcnt);
2153        cgroup_put(&root->cgrp);
2154        kernfs_kill_sb(sb);
2155}
2156
2157struct file_system_type cgroup_fs_type = {
2158        .name                   = "cgroup",
2159        .init_fs_context        = cgroup_init_fs_context,
2160        .parameters             = cgroup1_fs_parameters,
2161        .kill_sb                = cgroup_kill_sb,
2162        .fs_flags               = FS_USERNS_MOUNT,
2163};
2164
2165static struct file_system_type cgroup2_fs_type = {
2166        .name                   = "cgroup2",
2167        .init_fs_context        = cgroup_init_fs_context,
2168        .parameters             = cgroup2_fs_parameters,
2169        .kill_sb                = cgroup_kill_sb,
2170        .fs_flags               = FS_USERNS_MOUNT,
2171};
2172
2173#ifdef CONFIG_CPUSETS
2174static const struct fs_context_operations cpuset_fs_context_ops = {
2175        .get_tree       = cgroup1_get_tree,
2176        .free           = cgroup_fs_context_free,
2177};
2178
2179/*
2180 * This is ugly, but preserves the userspace API for existing cpuset
2181 * users. If someone tries to mount the "cpuset" filesystem, we
2182 * silently switch it to mount "cgroup" instead
2183 */
2184static int cpuset_init_fs_context(struct fs_context *fc)
2185{
2186        char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2187        struct cgroup_fs_context *ctx;
2188        int err;
2189
2190        err = cgroup_init_fs_context(fc);
2191        if (err) {
2192                kfree(agent);
2193                return err;
2194        }
2195
2196        fc->ops = &cpuset_fs_context_ops;
2197
2198        ctx = cgroup_fc2context(fc);
2199        ctx->subsys_mask = 1 << cpuset_cgrp_id;
2200        ctx->flags |= CGRP_ROOT_NOPREFIX;
2201        ctx->release_agent = agent;
2202
2203        get_filesystem(&cgroup_fs_type);
2204        put_filesystem(fc->fs_type);
2205        fc->fs_type = &cgroup_fs_type;
2206
2207        return 0;
2208}
2209
2210static struct file_system_type cpuset_fs_type = {
2211        .name                   = "cpuset",
2212        .init_fs_context        = cpuset_init_fs_context,
2213        .fs_flags               = FS_USERNS_MOUNT,
2214};
2215#endif
2216
2217int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2218                          struct cgroup_namespace *ns)
2219{
2220        struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2221
2222        return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2223}
2224
2225int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2226                   struct cgroup_namespace *ns)
2227{
2228        int ret;
2229
2230        mutex_lock(&cgroup_mutex);
2231        spin_lock_irq(&css_set_lock);
2232
2233        ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2234
2235        spin_unlock_irq(&css_set_lock);
2236        mutex_unlock(&cgroup_mutex);
2237
2238        return ret;
2239}
2240EXPORT_SYMBOL_GPL(cgroup_path_ns);
2241
2242/**
2243 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2244 * @task: target task
2245 * @buf: the buffer to write the path into
2246 * @buflen: the length of the buffer
2247 *
2248 * Determine @task's cgroup on the first (the one with the lowest non-zero
2249 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2250 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2251 * cgroup controller callbacks.
2252 *
2253 * Return value is the same as kernfs_path().
2254 */
2255int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2256{
2257        struct cgroup_root *root;
2258        struct cgroup *cgrp;
2259        int hierarchy_id = 1;
2260        int ret;
2261
2262        mutex_lock(&cgroup_mutex);
2263        spin_lock_irq(&css_set_lock);
2264
2265        root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2266
2267        if (root) {
2268                cgrp = task_cgroup_from_root(task, root);
2269                ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2270        } else {
2271                /* if no hierarchy exists, everyone is in "/" */
2272                ret = strlcpy(buf, "/", buflen);
2273        }
2274
2275        spin_unlock_irq(&css_set_lock);
2276        mutex_unlock(&cgroup_mutex);
2277        return ret;
2278}
2279EXPORT_SYMBOL_GPL(task_cgroup_path);
2280
2281/**
2282 * cgroup_migrate_add_task - add a migration target task to a migration context
2283 * @task: target task
2284 * @mgctx: target migration context
2285 *
2286 * Add @task, which is a migration target, to @mgctx->tset.  This function
2287 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2288 * should have been added as a migration source and @task->cg_list will be
2289 * moved from the css_set's tasks list to mg_tasks one.
2290 */
2291static void cgroup_migrate_add_task(struct task_struct *task,
2292                                    struct cgroup_mgctx *mgctx)
2293{
2294        struct css_set *cset;
2295
2296        lockdep_assert_held(&css_set_lock);
2297
2298        /* @task either already exited or can't exit until the end */
2299        if (task->flags & PF_EXITING)
2300                return;
2301
2302        /* cgroup_threadgroup_rwsem protects racing against forks */
2303        WARN_ON_ONCE(list_empty(&task->cg_list));
2304
2305        cset = task_css_set(task);
2306        if (!cset->mg_src_cgrp)
2307                return;
2308
2309        mgctx->tset.nr_tasks++;
2310
2311        list_move_tail(&task->cg_list, &cset->mg_tasks);
2312        if (list_empty(&cset->mg_node))
2313                list_add_tail(&cset->mg_node,
2314                              &mgctx->tset.src_csets);
2315        if (list_empty(&cset->mg_dst_cset->mg_node))
2316                list_add_tail(&cset->mg_dst_cset->mg_node,
2317                              &mgctx->tset.dst_csets);
2318}
2319
2320/**
2321 * cgroup_taskset_first - reset taskset and return the first task
2322 * @tset: taskset of interest
2323 * @dst_cssp: output variable for the destination css
2324 *
2325 * @tset iteration is initialized and the first task is returned.
2326 */
2327struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2328                                         struct cgroup_subsys_state **dst_cssp)
2329{
2330        tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2331        tset->cur_task = NULL;
2332
2333        return cgroup_taskset_next(tset, dst_cssp);
2334}
2335
2336/**
2337 * cgroup_taskset_next - iterate to the next task in taskset
2338 * @tset: taskset of interest
2339 * @dst_cssp: output variable for the destination css
2340 *
2341 * Return the next task in @tset.  Iteration must have been initialized
2342 * with cgroup_taskset_first().
2343 */
2344struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2345                                        struct cgroup_subsys_state **dst_cssp)
2346{
2347        struct css_set *cset = tset->cur_cset;
2348        struct task_struct *task = tset->cur_task;
2349
2350        while (&cset->mg_node != tset->csets) {
2351                if (!task)
2352                        task = list_first_entry(&cset->mg_tasks,
2353                                                struct task_struct, cg_list);
2354                else
2355                        task = list_next_entry(task, cg_list);
2356
2357                if (&task->cg_list != &cset->mg_tasks) {
2358                        tset->cur_cset = cset;
2359                        tset->cur_task = task;
2360
2361                        /*
2362                         * This function may be called both before and
2363                         * after cgroup_taskset_migrate().  The two cases
2364                         * can be distinguished by looking at whether @cset
2365                         * has its ->mg_dst_cset set.
2366                         */
2367                        if (cset->mg_dst_cset)
2368                                *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2369                        else
2370                                *dst_cssp = cset->subsys[tset->ssid];
2371
2372                        return task;
2373                }
2374
2375                cset = list_next_entry(cset, mg_node);
2376                task = NULL;
2377        }
2378
2379        return NULL;
2380}
2381
2382/**
2383 * cgroup_taskset_migrate - migrate a taskset
2384 * @mgctx: migration context
2385 *
2386 * Migrate tasks in @mgctx as setup by migration preparation functions.
2387 * This function fails iff one of the ->can_attach callbacks fails and
2388 * guarantees that either all or none of the tasks in @mgctx are migrated.
2389 * @mgctx is consumed regardless of success.
2390 */
2391static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2392{
2393        struct cgroup_taskset *tset = &mgctx->tset;
2394        struct cgroup_subsys *ss;
2395        struct task_struct *task, *tmp_task;
2396        struct css_set *cset, *tmp_cset;
2397        int ssid, failed_ssid, ret;
2398
2399        /* check that we can legitimately attach to the cgroup */
2400        if (tset->nr_tasks) {
2401                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2402                        if (ss->can_attach) {
2403                                tset->ssid = ssid;
2404                                ret = ss->can_attach(tset);
2405                                if (ret) {
2406                                        failed_ssid = ssid;
2407                                        goto out_cancel_attach;
2408                                }
2409                        }
2410                } while_each_subsys_mask();
2411        }
2412
2413        /*
2414         * Now that we're guaranteed success, proceed to move all tasks to
2415         * the new cgroup.  There are no failure cases after here, so this
2416         * is the commit point.
2417         */
2418        spin_lock_irq(&css_set_lock);
2419        list_for_each_entry(cset, &tset->src_csets, mg_node) {
2420                list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2421                        struct css_set *from_cset = task_css_set(task);
2422                        struct css_set *to_cset = cset->mg_dst_cset;
2423
2424                        get_css_set(to_cset);
2425                        to_cset->nr_tasks++;
2426                        css_set_move_task(task, from_cset, to_cset, true);
2427                        from_cset->nr_tasks--;
2428                        /*
2429                         * If the source or destination cgroup is frozen,
2430                         * the task might require to change its state.
2431                         */
2432                        cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2433                                                    to_cset->dfl_cgrp);
2434                        put_css_set_locked(from_cset);
2435
2436                }
2437        }
2438        spin_unlock_irq(&css_set_lock);
2439
2440        /*
2441         * Migration is committed, all target tasks are now on dst_csets.
2442         * Nothing is sensitive to fork() after this point.  Notify
2443         * controllers that migration is complete.
2444         */
2445        tset->csets = &tset->dst_csets;
2446
2447        if (tset->nr_tasks) {
2448                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2449                        if (ss->attach) {
2450                                tset->ssid = ssid;
2451                                ss->attach(tset);
2452                        }
2453                } while_each_subsys_mask();
2454        }
2455
2456        ret = 0;
2457        goto out_release_tset;
2458
2459out_cancel_attach:
2460        if (tset->nr_tasks) {
2461                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2462                        if (ssid == failed_ssid)
2463                                break;
2464                        if (ss->cancel_attach) {
2465                                tset->ssid = ssid;
2466                                ss->cancel_attach(tset);
2467                        }
2468                } while_each_subsys_mask();
2469        }
2470out_release_tset:
2471        spin_lock_irq(&css_set_lock);
2472        list_splice_init(&tset->dst_csets, &tset->src_csets);
2473        list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2474                list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2475                list_del_init(&cset->mg_node);
2476        }
2477        spin_unlock_irq(&css_set_lock);
2478
2479        /*
2480         * Re-initialize the cgroup_taskset structure in case it is reused
2481         * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2482         * iteration.
2483         */
2484        tset->nr_tasks = 0;
2485        tset->csets    = &tset->src_csets;
2486        return ret;
2487}
2488
2489/**
2490 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2491 * @dst_cgrp: destination cgroup to test
2492 *
2493 * On the default hierarchy, except for the mixable, (possible) thread root
2494 * and threaded cgroups, subtree_control must be zero for migration
2495 * destination cgroups with tasks so that child cgroups don't compete
2496 * against tasks.
2497 */
2498int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2499{
2500        /* v1 doesn't have any restriction */
2501        if (!cgroup_on_dfl(dst_cgrp))
2502                return 0;
2503
2504        /* verify @dst_cgrp can host resources */
2505        if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2506                return -EOPNOTSUPP;
2507
2508        /* mixables don't care */
2509        if (cgroup_is_mixable(dst_cgrp))
2510                return 0;
2511
2512        /*
2513         * If @dst_cgrp is already or can become a thread root or is
2514         * threaded, it doesn't matter.
2515         */
2516        if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2517                return 0;
2518
2519        /* apply no-internal-process constraint */
2520        if (dst_cgrp->subtree_control)
2521                return -EBUSY;
2522
2523        return 0;
2524}
2525
2526/**
2527 * cgroup_migrate_finish - cleanup after attach
2528 * @mgctx: migration context
2529 *
2530 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2531 * those functions for details.
2532 */
2533void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2534{
2535        LIST_HEAD(preloaded);
2536        struct css_set *cset, *tmp_cset;
2537
2538        lockdep_assert_held(&cgroup_mutex);
2539
2540        spin_lock_irq(&css_set_lock);
2541
2542        list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2543        list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2544
2545        list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2546                cset->mg_src_cgrp = NULL;
2547                cset->mg_dst_cgrp = NULL;
2548                cset->mg_dst_cset = NULL;
2549                list_del_init(&cset->mg_preload_node);
2550                put_css_set_locked(cset);
2551        }
2552
2553        spin_unlock_irq(&css_set_lock);
2554}
2555
2556/**
2557 * cgroup_migrate_add_src - add a migration source css_set
2558 * @src_cset: the source css_set to add
2559 * @dst_cgrp: the destination cgroup
2560 * @mgctx: migration context
2561 *
2562 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2563 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2564 * up by cgroup_migrate_finish().
2565 *
2566 * This function may be called without holding cgroup_threadgroup_rwsem
2567 * even if the target is a process.  Threads may be created and destroyed
2568 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2569 * into play and the preloaded css_sets are guaranteed to cover all
2570 * migrations.
2571 */
2572void cgroup_migrate_add_src(struct css_set *src_cset,
2573                            struct cgroup *dst_cgrp,
2574                            struct cgroup_mgctx *mgctx)
2575{
2576        struct cgroup *src_cgrp;
2577
2578        lockdep_assert_held(&cgroup_mutex);
2579        lockdep_assert_held(&css_set_lock);
2580
2581        /*
2582         * If ->dead, @src_set is associated with one or more dead cgroups
2583         * and doesn't contain any migratable tasks.  Ignore it early so
2584         * that the rest of migration path doesn't get confused by it.
2585         */
2586        if (src_cset->dead)
2587                return;
2588
2589        src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2590
2591        if (!list_empty(&src_cset->mg_preload_node))
2592                return;
2593
2594        WARN_ON(src_cset->mg_src_cgrp);
2595        WARN_ON(src_cset->mg_dst_cgrp);
2596        WARN_ON(!list_empty(&src_cset->mg_tasks));
2597        WARN_ON(!list_empty(&src_cset->mg_node));
2598
2599        src_cset->mg_src_cgrp = src_cgrp;
2600        src_cset->mg_dst_cgrp = dst_cgrp;
2601        get_css_set(src_cset);
2602        list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2603}
2604
2605/**
2606 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2607 * @mgctx: migration context
2608 *
2609 * Tasks are about to be moved and all the source css_sets have been
2610 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2611 * pins all destination css_sets, links each to its source, and append them
2612 * to @mgctx->preloaded_dst_csets.
2613 *
2614 * This function must be called after cgroup_migrate_add_src() has been
2615 * called on each migration source css_set.  After migration is performed
2616 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2617 * @mgctx.
2618 */
2619int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2620{
2621        struct css_set *src_cset, *tmp_cset;
2622
2623        lockdep_assert_held(&cgroup_mutex);
2624
2625        /* look up the dst cset for each src cset and link it to src */
2626        list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2627                                 mg_preload_node) {
2628                struct css_set *dst_cset;
2629                struct cgroup_subsys *ss;
2630                int ssid;
2631
2632                dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2633                if (!dst_cset)
2634                        return -ENOMEM;
2635
2636                WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2637
2638                /*
2639                 * If src cset equals dst, it's noop.  Drop the src.
2640                 * cgroup_migrate() will skip the cset too.  Note that we
2641                 * can't handle src == dst as some nodes are used by both.
2642                 */
2643                if (src_cset == dst_cset) {
2644                        src_cset->mg_src_cgrp = NULL;
2645                        src_cset->mg_dst_cgrp = NULL;
2646                        list_del_init(&src_cset->mg_preload_node);
2647                        put_css_set(src_cset);
2648                        put_css_set(dst_cset);
2649                        continue;
2650                }
2651
2652                src_cset->mg_dst_cset = dst_cset;
2653
2654                if (list_empty(&dst_cset->mg_preload_node))
2655                        list_add_tail(&dst_cset->mg_preload_node,
2656                                      &mgctx->preloaded_dst_csets);
2657                else
2658                        put_css_set(dst_cset);
2659
2660                for_each_subsys(ss, ssid)
2661                        if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2662                                mgctx->ss_mask |= 1 << ssid;
2663        }
2664
2665        return 0;
2666}
2667
2668/**
2669 * cgroup_migrate - migrate a process or task to a cgroup
2670 * @leader: the leader of the process or the task to migrate
2671 * @threadgroup: whether @leader points to the whole process or a single task
2672 * @mgctx: migration context
2673 *
2674 * Migrate a process or task denoted by @leader.  If migrating a process,
2675 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2676 * responsible for invoking cgroup_migrate_add_src() and
2677 * cgroup_migrate_prepare_dst() on the targets before invoking this
2678 * function and following up with cgroup_migrate_finish().
2679 *
2680 * As long as a controller's ->can_attach() doesn't fail, this function is
2681 * guaranteed to succeed.  This means that, excluding ->can_attach()
2682 * failure, when migrating multiple targets, the success or failure can be
2683 * decided for all targets by invoking group_migrate_prepare_dst() before
2684 * actually starting migrating.
2685 */
2686int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2687                   struct cgroup_mgctx *mgctx)
2688{
2689        struct task_struct *task;
2690
2691        /*
2692         * Prevent freeing of tasks while we take a snapshot. Tasks that are
2693         * already PF_EXITING could be freed from underneath us unless we
2694         * take an rcu_read_lock.
2695         */
2696        spin_lock_irq(&css_set_lock);
2697        rcu_read_lock();
2698        task = leader;
2699        do {
2700                cgroup_migrate_add_task(task, mgctx);
2701                if (!threadgroup)
2702                        break;
2703        } while_each_thread(leader, task);
2704        rcu_read_unlock();
2705        spin_unlock_irq(&css_set_lock);
2706
2707        return cgroup_migrate_execute(mgctx);
2708}
2709
2710/**
2711 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2712 * @dst_cgrp: the cgroup to attach to
2713 * @leader: the task or the leader of the threadgroup to be attached
2714 * @threadgroup: attach the whole threadgroup?
2715 *
2716 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2717 */
2718int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2719                       bool threadgroup)
2720{
2721        DEFINE_CGROUP_MGCTX(mgctx);
2722        struct task_struct *task;
2723        int ret = 0;
2724
2725        /* look up all src csets */
2726        spin_lock_irq(&css_set_lock);
2727        rcu_read_lock();
2728        task = leader;
2729        do {
2730                cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2731                if (!threadgroup)
2732                        break;
2733        } while_each_thread(leader, task);
2734        rcu_read_unlock();
2735        spin_unlock_irq(&css_set_lock);
2736
2737        /* prepare dst csets and commit */
2738        ret = cgroup_migrate_prepare_dst(&mgctx);
2739        if (!ret)
2740                ret = cgroup_migrate(leader, threadgroup, &mgctx);
2741
2742        cgroup_migrate_finish(&mgctx);
2743
2744        if (!ret)
2745                TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2746
2747        return ret;
2748}
2749
2750struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2751                                             bool *locked)
2752        __acquires(&cgroup_threadgroup_rwsem)
2753{
2754        struct task_struct *tsk;
2755        pid_t pid;
2756
2757        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2758                return ERR_PTR(-EINVAL);
2759
2760        /*
2761         * If we migrate a single thread, we don't care about threadgroup
2762         * stability. If the thread is `current`, it won't exit(2) under our
2763         * hands or change PID through exec(2). We exclude
2764         * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2765         * callers by cgroup_mutex.
2766         * Therefore, we can skip the global lock.
2767         */
2768        lockdep_assert_held(&cgroup_mutex);
2769        if (pid || threadgroup) {
2770                percpu_down_write(&cgroup_threadgroup_rwsem);
2771                *locked = true;
2772        } else {
2773                *locked = false;
2774        }
2775
2776        rcu_read_lock();
2777        if (pid) {
2778                tsk = find_task_by_vpid(pid);
2779                if (!tsk) {
2780                        tsk = ERR_PTR(-ESRCH);
2781                        goto out_unlock_threadgroup;
2782                }
2783        } else {
2784                tsk = current;
2785        }
2786
2787        if (threadgroup)
2788                tsk = tsk->group_leader;
2789
2790        /*
2791         * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2792         * If userland migrates such a kthread to a non-root cgroup, it can
2793         * become trapped in a cpuset, or RT kthread may be born in a
2794         * cgroup with no rt_runtime allocated.  Just say no.
2795         */
2796        if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2797                tsk = ERR_PTR(-EINVAL);
2798                goto out_unlock_threadgroup;
2799        }
2800
2801        get_task_struct(tsk);
2802        goto out_unlock_rcu;
2803
2804out_unlock_threadgroup:
2805        if (*locked) {
2806                percpu_up_write(&cgroup_threadgroup_rwsem);
2807                *locked = false;
2808        }
2809out_unlock_rcu:
2810        rcu_read_unlock();
2811        return tsk;
2812}
2813
2814void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2815        __releases(&cgroup_threadgroup_rwsem)
2816{
2817        struct cgroup_subsys *ss;
2818        int ssid;
2819
2820        /* release reference from cgroup_procs_write_start() */
2821        put_task_struct(task);
2822
2823        if (locked)
2824                percpu_up_write(&cgroup_threadgroup_rwsem);
2825        for_each_subsys(ss, ssid)
2826                if (ss->post_attach)
2827                        ss->post_attach();
2828}
2829
2830static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2831{
2832        struct cgroup_subsys *ss;
2833        bool printed = false;
2834        int ssid;
2835
2836        do_each_subsys_mask(ss, ssid, ss_mask) {
2837                if (printed)
2838                        seq_putc(seq, ' ');
2839                seq_puts(seq, ss->name);
2840                printed = true;
2841        } while_each_subsys_mask();
2842        if (printed)
2843                seq_putc(seq, '\n');
2844}
2845
2846/* show controllers which are enabled from the parent */
2847static int cgroup_controllers_show(struct seq_file *seq, void *v)
2848{
2849        struct cgroup *cgrp = seq_css(seq)->cgroup;
2850
2851        cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2852        return 0;
2853}
2854
2855/* show controllers which are enabled for a given cgroup's children */
2856static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2857{
2858        struct cgroup *cgrp = seq_css(seq)->cgroup;
2859
2860        cgroup_print_ss_mask(seq, cgrp->subtree_control);
2861        return 0;
2862}
2863
2864/**
2865 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2866 * @cgrp: root of the subtree to update csses for
2867 *
2868 * @cgrp's control masks have changed and its subtree's css associations
2869 * need to be updated accordingly.  This function looks up all css_sets
2870 * which are attached to the subtree, creates the matching updated css_sets
2871 * and migrates the tasks to the new ones.
2872 */
2873static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2874{
2875        DEFINE_CGROUP_MGCTX(mgctx);
2876        struct cgroup_subsys_state *d_css;
2877        struct cgroup *dsct;
2878        struct css_set *src_cset;
2879        int ret;
2880
2881        lockdep_assert_held(&cgroup_mutex);
2882
2883        percpu_down_write(&cgroup_threadgroup_rwsem);
2884
2885        /* look up all csses currently attached to @cgrp's subtree */
2886        spin_lock_irq(&css_set_lock);
2887        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2888                struct cgrp_cset_link *link;
2889
2890                list_for_each_entry(link, &dsct->cset_links, cset_link)
2891                        cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2892        }
2893        spin_unlock_irq(&css_set_lock);
2894
2895        /* NULL dst indicates self on default hierarchy */
2896        ret = cgroup_migrate_prepare_dst(&mgctx);
2897        if (ret)
2898                goto out_finish;
2899
2900        spin_lock_irq(&css_set_lock);
2901        list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2902                struct task_struct *task, *ntask;
2903
2904                /* all tasks in src_csets need to be migrated */
2905                list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2906                        cgroup_migrate_add_task(task, &mgctx);
2907        }
2908        spin_unlock_irq(&css_set_lock);
2909
2910        ret = cgroup_migrate_execute(&mgctx);
2911out_finish:
2912        cgroup_migrate_finish(&mgctx);
2913        percpu_up_write(&cgroup_threadgroup_rwsem);
2914        return ret;
2915}
2916
2917/**
2918 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2919 * @cgrp: root of the target subtree
2920 *
2921 * Because css offlining is asynchronous, userland may try to re-enable a
2922 * controller while the previous css is still around.  This function grabs
2923 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2924 */
2925void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2926        __acquires(&cgroup_mutex)
2927{
2928        struct cgroup *dsct;
2929        struct cgroup_subsys_state *d_css;
2930        struct cgroup_subsys *ss;
2931        int ssid;
2932
2933restart:
2934        mutex_lock(&cgroup_mutex);
2935
2936        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2937                for_each_subsys(ss, ssid) {
2938                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2939                        DEFINE_WAIT(wait);
2940
2941                        if (!css || !percpu_ref_is_dying(&css->refcnt))
2942                                continue;
2943
2944                        cgroup_get_live(dsct);
2945                        prepare_to_wait(&dsct->offline_waitq, &wait,
2946                                        TASK_UNINTERRUPTIBLE);
2947
2948                        mutex_unlock(&cgroup_mutex);
2949                        schedule();
2950                        finish_wait(&dsct->offline_waitq, &wait);
2951
2952                        cgroup_put(dsct);
2953                        goto restart;
2954                }
2955        }
2956}
2957
2958/**
2959 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2960 * @cgrp: root of the target subtree
2961 *
2962 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2963 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2964 * itself.
2965 */
2966static void cgroup_save_control(struct cgroup *cgrp)
2967{
2968        struct cgroup *dsct;
2969        struct cgroup_subsys_state *d_css;
2970
2971        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2972                dsct->old_subtree_control = dsct->subtree_control;
2973                dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2974                dsct->old_dom_cgrp = dsct->dom_cgrp;
2975        }
2976}
2977
2978/**
2979 * cgroup_propagate_control - refresh control masks of a subtree
2980 * @cgrp: root of the target subtree
2981 *
2982 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2983 * ->subtree_control and propagate controller availability through the
2984 * subtree so that descendants don't have unavailable controllers enabled.
2985 */
2986static void cgroup_propagate_control(struct cgroup *cgrp)
2987{
2988        struct cgroup *dsct;
2989        struct cgroup_subsys_state *d_css;
2990
2991        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2992                dsct->subtree_control &= cgroup_control(dsct);
2993                dsct->subtree_ss_mask =
2994                        cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2995                                                    cgroup_ss_mask(dsct));
2996        }
2997}
2998
2999/**
3000 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3001 * @cgrp: root of the target subtree
3002 *
3003 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3004 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3005 * itself.
3006 */
3007static void cgroup_restore_control(struct cgroup *cgrp)
3008{
3009        struct cgroup *dsct;
3010        struct cgroup_subsys_state *d_css;
3011
3012        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3013                dsct->subtree_control = dsct->old_subtree_control;
3014                dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3015                dsct->dom_cgrp = dsct->old_dom_cgrp;
3016        }
3017}
3018
3019static bool css_visible(struct cgroup_subsys_state *css)
3020{
3021        struct cgroup_subsys *ss = css->ss;
3022        struct cgroup *cgrp = css->cgroup;
3023
3024        if (cgroup_control(cgrp) & (1 << ss->id))
3025                return true;
3026        if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3027                return false;
3028        return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3029}
3030
3031/**
3032 * cgroup_apply_control_enable - enable or show csses according to control
3033 * @cgrp: root of the target subtree
3034 *
3035 * Walk @cgrp's subtree and create new csses or make the existing ones
3036 * visible.  A css is created invisible if it's being implicitly enabled
3037 * through dependency.  An invisible css is made visible when the userland
3038 * explicitly enables it.
3039 *
3040 * Returns 0 on success, -errno on failure.  On failure, csses which have
3041 * been processed already aren't cleaned up.  The caller is responsible for
3042 * cleaning up with cgroup_apply_control_disable().
3043 */
3044static int cgroup_apply_control_enable(struct cgroup *cgrp)
3045{
3046        struct cgroup *dsct;
3047        struct cgroup_subsys_state *d_css;
3048        struct cgroup_subsys *ss;
3049        int ssid, ret;
3050
3051        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3052                for_each_subsys(ss, ssid) {
3053                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3054
3055                        if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3056                                continue;
3057
3058                        if (!css) {
3059                                css = css_create(dsct, ss);
3060                                if (IS_ERR(css))
3061                                        return PTR_ERR(css);
3062                        }
3063
3064                        WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3065
3066                        if (css_visible(css)) {
3067                                ret = css_populate_dir(css);
3068                                if (ret)
3069                                        return ret;
3070                        }
3071                }
3072        }
3073
3074        return 0;
3075}
3076
3077/**
3078 * cgroup_apply_control_disable - kill or hide csses according to control
3079 * @cgrp: root of the target subtree
3080 *
3081 * Walk @cgrp's subtree and kill and hide csses so that they match
3082 * cgroup_ss_mask() and cgroup_visible_mask().
3083 *
3084 * A css is hidden when the userland requests it to be disabled while other
3085 * subsystems are still depending on it.  The css must not actively control
3086 * resources and be in the vanilla state if it's made visible again later.
3087 * Controllers which may be depended upon should provide ->css_reset() for
3088 * this purpose.
3089 */
3090static void cgroup_apply_control_disable(struct cgroup *cgrp)
3091{
3092        struct cgroup *dsct;
3093        struct cgroup_subsys_state *d_css;
3094        struct cgroup_subsys *ss;
3095        int ssid;
3096
3097        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3098                for_each_subsys(ss, ssid) {
3099                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3100
3101                        if (!css)
3102                                continue;
3103
3104                        WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3105
3106                        if (css->parent &&
3107                            !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3108                                kill_css(css);
3109                        } else if (!css_visible(css)) {
3110                                css_clear_dir(css);
3111                                if (ss->css_reset)
3112                                        ss->css_reset(css);
3113                        }
3114                }
3115        }
3116}
3117
3118/**
3119 * cgroup_apply_control - apply control mask updates to the subtree
3120 * @cgrp: root of the target subtree
3121 *
3122 * subsystems can be enabled and disabled in a subtree using the following
3123 * steps.
3124 *
3125 * 1. Call cgroup_save_control() to stash the current state.
3126 * 2. Update ->subtree_control masks in the subtree as desired.
3127 * 3. Call cgroup_apply_control() to apply the changes.
3128 * 4. Optionally perform other related operations.
3129 * 5. Call cgroup_finalize_control() to finish up.
3130 *
3131 * This function implements step 3 and propagates the mask changes
3132 * throughout @cgrp's subtree, updates csses accordingly and perform
3133 * process migrations.
3134 */
3135static int cgroup_apply_control(struct cgroup *cgrp)
3136{
3137        int ret;
3138
3139        cgroup_propagate_control(cgrp);
3140
3141        ret = cgroup_apply_control_enable(cgrp);
3142        if (ret)
3143                return ret;
3144
3145        /*
3146         * At this point, cgroup_e_css_by_mask() results reflect the new csses
3147         * making the following cgroup_update_dfl_csses() properly update
3148         * css associations of all tasks in the subtree.
3149         */
3150        ret = cgroup_update_dfl_csses(cgrp);
3151        if (ret)
3152                return ret;
3153
3154        return 0;
3155}
3156
3157/**
3158 * cgroup_finalize_control - finalize control mask update
3159 * @cgrp: root of the target subtree
3160 * @ret: the result of the update
3161 *
3162 * Finalize control mask update.  See cgroup_apply_control() for more info.
3163 */
3164static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3165{
3166        if (ret) {
3167                cgroup_restore_control(cgrp);
3168                cgroup_propagate_control(cgrp);
3169        }
3170
3171        cgroup_apply_control_disable(cgrp);
3172}
3173
3174static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3175{
3176        u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3177
3178        /* if nothing is getting enabled, nothing to worry about */
3179        if (!enable)
3180                return 0;
3181
3182        /* can @cgrp host any resources? */
3183        if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3184                return -EOPNOTSUPP;
3185
3186        /* mixables don't care */
3187        if (cgroup_is_mixable(cgrp))
3188                return 0;
3189
3190        if (domain_enable) {
3191                /* can't enable domain controllers inside a thread subtree */
3192                if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3193                        return -EOPNOTSUPP;
3194        } else {
3195                /*
3196                 * Threaded controllers can handle internal competitions
3197                 * and are always allowed inside a (prospective) thread
3198                 * subtree.
3199                 */
3200                if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3201                        return 0;
3202        }
3203
3204        /*
3205         * Controllers can't be enabled for a cgroup with tasks to avoid
3206         * child cgroups competing against tasks.
3207         */
3208        if (cgroup_has_tasks(cgrp))
3209                return -EBUSY;
3210
3211        return 0;
3212}
3213
3214/* change the enabled child controllers for a cgroup in the default hierarchy */
3215static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3216                                            char *buf, size_t nbytes,
3217                                            loff_t off)
3218{
3219        u16 enable = 0, disable = 0;
3220        struct cgroup *cgrp, *child;
3221        struct cgroup_subsys *ss;
3222        char *tok;
3223        int ssid, ret;
3224
3225        /*
3226         * Parse input - space separated list of subsystem names prefixed
3227         * with either + or -.
3228         */
3229        buf = strstrip(buf);
3230        while ((tok = strsep(&buf, " "))) {
3231                if (tok[0] == '\0')
3232                        continue;
3233                do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3234                        if (!cgroup_ssid_enabled(ssid) ||
3235                            strcmp(tok + 1, ss->name))
3236                                continue;
3237
3238                        if (*tok == '+') {
3239                                enable |= 1 << ssid;
3240                                disable &= ~(1 << ssid);
3241                        } else if (*tok == '-') {
3242                                disable |= 1 << ssid;
3243                                enable &= ~(1 << ssid);
3244                        } else {
3245                                return -EINVAL;
3246                        }
3247                        break;
3248                } while_each_subsys_mask();
3249                if (ssid == CGROUP_SUBSYS_COUNT)
3250                        return -EINVAL;
3251        }
3252
3253        cgrp = cgroup_kn_lock_live(of->kn, true);
3254        if (!cgrp)
3255                return -ENODEV;
3256
3257        for_each_subsys(ss, ssid) {
3258                if (enable & (1 << ssid)) {
3259                        if (cgrp->subtree_control & (1 << ssid)) {
3260                                enable &= ~(1 << ssid);
3261                                continue;
3262                        }
3263
3264                        if (!(cgroup_control(cgrp) & (1 << ssid))) {
3265                                ret = -ENOENT;
3266                                goto out_unlock;
3267                        }
3268                } else if (disable & (1 << ssid)) {
3269                        if (!(cgrp->subtree_control & (1 << ssid))) {
3270                                disable &= ~(1 << ssid);
3271                                continue;
3272                        }
3273
3274                        /* a child has it enabled? */
3275                        cgroup_for_each_live_child(child, cgrp) {
3276                                if (child->subtree_control & (1 << ssid)) {
3277                                        ret = -EBUSY;
3278                                        goto out_unlock;
3279                                }
3280                        }
3281                }
3282        }
3283
3284        if (!enable && !disable) {
3285                ret = 0;
3286                goto out_unlock;
3287        }
3288
3289        ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3290        if (ret)
3291                goto out_unlock;
3292
3293        /* save and update control masks and prepare csses */
3294        cgroup_save_control(cgrp);
3295
3296        cgrp->subtree_control |= enable;
3297        cgrp->subtree_control &= ~disable;
3298
3299        ret = cgroup_apply_control(cgrp);
3300        cgroup_finalize_control(cgrp, ret);
3301        if (ret)
3302                goto out_unlock;
3303
3304        kernfs_activate(cgrp->kn);
3305out_unlock:
3306        cgroup_kn_unlock(of->kn);
3307        return ret ?: nbytes;
3308}
3309
3310/**
3311 * cgroup_enable_threaded - make @cgrp threaded
3312 * @cgrp: the target cgroup
3313 *
3314 * Called when "threaded" is written to the cgroup.type interface file and
3315 * tries to make @cgrp threaded and join the parent's resource domain.
3316 * This function is never called on the root cgroup as cgroup.type doesn't
3317 * exist on it.
3318 */
3319static int cgroup_enable_threaded(struct cgroup *cgrp)
3320{
3321        struct cgroup *parent = cgroup_parent(cgrp);
3322        struct cgroup *dom_cgrp = parent->dom_cgrp;
3323        struct cgroup *dsct;
3324        struct cgroup_subsys_state *d_css;
3325        int ret;
3326
3327        lockdep_assert_held(&cgroup_mutex);
3328
3329        /* noop if already threaded */
3330        if (cgroup_is_threaded(cgrp))
3331                return 0;
3332
3333        /*
3334         * If @cgroup is populated or has domain controllers enabled, it
3335         * can't be switched.  While the below cgroup_can_be_thread_root()
3336         * test can catch the same conditions, that's only when @parent is
3337         * not mixable, so let's check it explicitly.
3338         */
3339        if (cgroup_is_populated(cgrp) ||
3340            cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3341                return -EOPNOTSUPP;
3342
3343        /* we're joining the parent's domain, ensure its validity */
3344        if (!cgroup_is_valid_domain(dom_cgrp) ||
3345            !cgroup_can_be_thread_root(dom_cgrp))
3346                return -EOPNOTSUPP;
3347
3348        /*
3349         * The following shouldn't cause actual migrations and should
3350         * always succeed.
3351         */
3352        cgroup_save_control(cgrp);
3353
3354        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3355                if (dsct == cgrp || cgroup_is_threaded(dsct))
3356                        dsct->dom_cgrp = dom_cgrp;
3357
3358        ret = cgroup_apply_control(cgrp);
3359        if (!ret)
3360                parent->nr_threaded_children++;
3361
3362        cgroup_finalize_control(cgrp, ret);
3363        return ret;
3364}
3365
3366static int cgroup_type_show(struct seq_file *seq, void *v)
3367{
3368        struct cgroup *cgrp = seq_css(seq)->cgroup;
3369
3370        if (cgroup_is_threaded(cgrp))
3371                seq_puts(seq, "threaded\n");
3372        else if (!cgroup_is_valid_domain(cgrp))
3373                seq_puts(seq, "domain invalid\n");
3374        else if (cgroup_is_thread_root(cgrp))
3375                seq_puts(seq, "domain threaded\n");
3376        else
3377                seq_puts(seq, "domain\n");
3378
3379        return 0;
3380}
3381
3382static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3383                                 size_t nbytes, loff_t off)
3384{
3385        struct cgroup *cgrp;
3386        int ret;
3387
3388        /* only switching to threaded mode is supported */
3389        if (strcmp(strstrip(buf), "threaded"))
3390                return -EINVAL;
3391
3392        /* drain dying csses before we re-apply (threaded) subtree control */
3393        cgrp = cgroup_kn_lock_live(of->kn, true);
3394        if (!cgrp)
3395                return -ENOENT;
3396
3397        /* threaded can only be enabled */
3398        ret = cgroup_enable_threaded(cgrp);
3399
3400        cgroup_kn_unlock(of->kn);
3401        return ret ?: nbytes;
3402}
3403
3404static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3405{
3406        struct cgroup *cgrp = seq_css(seq)->cgroup;
3407        int descendants = READ_ONCE(cgrp->max_descendants);
3408
3409        if (descendants == INT_MAX)
3410                seq_puts(seq, "max\n");
3411        else
3412                seq_printf(seq, "%d\n", descendants);
3413
3414        return 0;
3415}
3416
3417static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3418                                           char *buf, size_t nbytes, loff_t off)
3419{
3420        struct cgroup *cgrp;
3421        int descendants;
3422        ssize_t ret;
3423
3424        buf = strstrip(buf);
3425        if (!strcmp(buf, "max")) {
3426                descendants = INT_MAX;
3427        } else {
3428                ret = kstrtoint(buf, 0, &descendants);
3429                if (ret)
3430                        return ret;
3431        }
3432
3433        if (descendants < 0)
3434                return -ERANGE;
3435
3436        cgrp = cgroup_kn_lock_live(of->kn, false);
3437        if (!cgrp)
3438                return -ENOENT;
3439
3440        cgrp->max_descendants = descendants;
3441
3442        cgroup_kn_unlock(of->kn);
3443
3444        return nbytes;
3445}
3446
3447static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3448{
3449        struct cgroup *cgrp = seq_css(seq)->cgroup;
3450        int depth = READ_ONCE(cgrp->max_depth);
3451
3452        if (depth == INT_MAX)
3453                seq_puts(seq, "max\n");
3454        else
3455                seq_printf(seq, "%d\n", depth);
3456
3457        return 0;
3458}
3459
3460static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3461                                      char *buf, size_t nbytes, loff_t off)
3462{
3463        struct cgroup *cgrp;
3464        ssize_t ret;
3465        int depth;
3466
3467        buf = strstrip(buf);
3468        if (!strcmp(buf, "max")) {
3469                depth = INT_MAX;
3470        } else {
3471                ret = kstrtoint(buf, 0, &depth);
3472                if (ret)
3473                        return ret;
3474        }
3475
3476        if (depth < 0)
3477                return -ERANGE;
3478
3479        cgrp = cgroup_kn_lock_live(of->kn, false);
3480        if (!cgrp)
3481                return -ENOENT;
3482
3483        cgrp->max_depth = depth;
3484
3485        cgroup_kn_unlock(of->kn);
3486
3487        return nbytes;
3488}
3489
3490static int cgroup_events_show(struct seq_file *seq, void *v)
3491{
3492        struct cgroup *cgrp = seq_css(seq)->cgroup;
3493
3494        seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3495        seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3496
3497        return 0;
3498}
3499
3500static int cgroup_stat_show(struct seq_file *seq, void *v)
3501{
3502        struct cgroup *cgroup = seq_css(seq)->cgroup;
3503
3504        seq_printf(seq, "nr_descendants %d\n",
3505                   cgroup->nr_descendants);
3506        seq_printf(seq, "nr_dying_descendants %d\n",
3507                   cgroup->nr_dying_descendants);
3508
3509        return 0;
3510}
3511
3512static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3513                                                 struct cgroup *cgrp, int ssid)
3514{
3515        struct cgroup_subsys *ss = cgroup_subsys[ssid];
3516        struct cgroup_subsys_state *css;
3517        int ret;
3518
3519        if (!ss->css_extra_stat_show)
3520                return 0;
3521
3522        css = cgroup_tryget_css(cgrp, ss);
3523        if (!css)
3524                return 0;
3525
3526        ret = ss->css_extra_stat_show(seq, css);
3527        css_put(css);
3528        return ret;
3529}
3530
3531static int cpu_stat_show(struct seq_file *seq, void *v)
3532{
3533        struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3534        int ret = 0;
3535
3536        cgroup_base_stat_cputime_show(seq);
3537#ifdef CONFIG_CGROUP_SCHED
3538        ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3539#endif
3540        return ret;
3541}
3542
3543#ifdef CONFIG_PSI
3544static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3545{
3546        struct cgroup *cgrp = seq_css(seq)->cgroup;
3547        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3548
3549        return psi_show(seq, psi, PSI_IO);
3550}
3551static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3552{
3553        struct cgroup *cgrp = seq_css(seq)->cgroup;
3554        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3555
3556        return psi_show(seq, psi, PSI_MEM);
3557}
3558static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3559{
3560        struct cgroup *cgrp = seq_css(seq)->cgroup;
3561        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3562
3563        return psi_show(seq, psi, PSI_CPU);
3564}
3565
3566static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3567                                          size_t nbytes, enum psi_res res)
3568{
3569        struct psi_trigger *new;
3570        struct cgroup *cgrp;
3571
3572        cgrp = cgroup_kn_lock_live(of->kn, false);
3573        if (!cgrp)
3574                return -ENODEV;
3575
3576        cgroup_get(cgrp);
3577        cgroup_kn_unlock(of->kn);
3578
3579        new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3580        if (IS_ERR(new)) {
3581                cgroup_put(cgrp);
3582                return PTR_ERR(new);
3583        }
3584
3585        psi_trigger_replace(&of->priv, new);
3586
3587        cgroup_put(cgrp);
3588
3589        return nbytes;
3590}
3591
3592static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3593                                          char *buf, size_t nbytes,
3594                                          loff_t off)
3595{
3596        return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3597}
3598
3599static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3600                                          char *buf, size_t nbytes,
3601                                          loff_t off)
3602{
3603        return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3604}
3605
3606static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3607                                          char *buf, size_t nbytes,
3608                                          loff_t off)
3609{
3610        return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3611}
3612
3613static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3614                                          poll_table *pt)
3615{
3616        return psi_trigger_poll(&of->priv, of->file, pt);
3617}
3618
3619static void cgroup_pressure_release(struct kernfs_open_file *of)
3620{
3621        psi_trigger_replace(&of->priv, NULL);
3622}
3623#endif /* CONFIG_PSI */
3624
3625static int cgroup_freeze_show(struct seq_file *seq, void *v)
3626{
3627        struct cgroup *cgrp = seq_css(seq)->cgroup;
3628
3629        seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3630
3631        return 0;
3632}
3633
3634static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3635                                   char *buf, size_t nbytes, loff_t off)
3636{
3637        struct cgroup *cgrp;
3638        ssize_t ret;
3639        int freeze;
3640
3641        ret = kstrtoint(strstrip(buf), 0, &freeze);
3642        if (ret)
3643                return ret;
3644
3645        if (freeze < 0 || freeze > 1)
3646                return -ERANGE;
3647
3648        cgrp = cgroup_kn_lock_live(of->kn, false);
3649        if (!cgrp)
3650                return -ENOENT;
3651
3652        cgroup_freeze(cgrp, freeze);
3653
3654        cgroup_kn_unlock(of->kn);
3655
3656        return nbytes;
3657}
3658
3659static int cgroup_file_open(struct kernfs_open_file *of)
3660{
3661        struct cftype *cft = of->kn->priv;
3662
3663        if (cft->open)
3664                return cft->open(of);
3665        return 0;
3666}
3667
3668static void cgroup_file_release(struct kernfs_open_file *of)
3669{
3670        struct cftype *cft = of->kn->priv;
3671
3672        if (cft->release)
3673                cft->release(of);
3674}
3675
3676static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3677                                 size_t nbytes, loff_t off)
3678{
3679        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3680        struct cgroup *cgrp = of->kn->parent->priv;
3681        struct cftype *cft = of->kn->priv;
3682        struct cgroup_subsys_state *css;
3683        int ret;
3684
3685        /*
3686         * If namespaces are delegation boundaries, disallow writes to
3687         * files in an non-init namespace root from inside the namespace
3688         * except for the files explicitly marked delegatable -
3689         * cgroup.procs and cgroup.subtree_control.
3690         */
3691        if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3692            !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3693            ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3694                return -EPERM;
3695
3696        if (cft->write)
3697                return cft->write(of, buf, nbytes, off);
3698
3699        /*
3700         * kernfs guarantees that a file isn't deleted with operations in
3701         * flight, which means that the matching css is and stays alive and
3702         * doesn't need to be pinned.  The RCU locking is not necessary
3703         * either.  It's just for the convenience of using cgroup_css().
3704         */
3705        rcu_read_lock();
3706        css = cgroup_css(cgrp, cft->ss);
3707        rcu_read_unlock();
3708
3709        if (cft->write_u64) {
3710                unsigned long long v;
3711                ret = kstrtoull(buf, 0, &v);
3712                if (!ret)
3713                        ret = cft->write_u64(css, cft, v);
3714        } else if (cft->write_s64) {
3715                long long v;
3716                ret = kstrtoll(buf, 0, &v);
3717                if (!ret)
3718                        ret = cft->write_s64(css, cft, v);
3719        } else {
3720                ret = -EINVAL;
3721        }
3722
3723        return ret ?: nbytes;
3724}
3725
3726static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3727{
3728        struct cftype *cft = of->kn->priv;
3729
3730        if (cft->poll)
3731                return cft->poll(of, pt);
3732
3733        return kernfs_generic_poll(of, pt);
3734}
3735
3736static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3737{
3738        return seq_cft(seq)->seq_start(seq, ppos);
3739}
3740
3741static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3742{
3743        return seq_cft(seq)->seq_next(seq, v, ppos);
3744}
3745
3746static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3747{
3748        if (seq_cft(seq)->seq_stop)
3749                seq_cft(seq)->seq_stop(seq, v);
3750}
3751
3752static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3753{
3754        struct cftype *cft = seq_cft(m);
3755        struct cgroup_subsys_state *css = seq_css(m);
3756
3757        if (cft->seq_show)
3758                return cft->seq_show(m, arg);
3759
3760        if (cft->read_u64)
3761                seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3762        else if (cft->read_s64)
3763                seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3764        else
3765                return -EINVAL;
3766        return 0;
3767}
3768
3769static struct kernfs_ops cgroup_kf_single_ops = {
3770        .atomic_write_len       = PAGE_SIZE,
3771        .open                   = cgroup_file_open,
3772        .release                = cgroup_file_release,
3773        .write                  = cgroup_file_write,
3774        .poll                   = cgroup_file_poll,
3775        .seq_show               = cgroup_seqfile_show,
3776};
3777
3778static struct kernfs_ops cgroup_kf_ops = {
3779        .atomic_write_len       = PAGE_SIZE,
3780        .open                   = cgroup_file_open,
3781        .release                = cgroup_file_release,
3782        .write                  = cgroup_file_write,
3783        .poll                   = cgroup_file_poll,
3784        .seq_start              = cgroup_seqfile_start,
3785        .seq_next               = cgroup_seqfile_next,
3786        .seq_stop               = cgroup_seqfile_stop,
3787        .seq_show               = cgroup_seqfile_show,
3788};
3789
3790/* set uid and gid of cgroup dirs and files to that of the creator */
3791static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3792{
3793        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3794                               .ia_uid = current_fsuid(),
3795                               .ia_gid = current_fsgid(), };
3796
3797        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3798            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3799                return 0;
3800
3801        return kernfs_setattr(kn, &iattr);
3802}
3803
3804static void cgroup_file_notify_timer(struct timer_list *timer)
3805{
3806        cgroup_file_notify(container_of(timer, struct cgroup_file,
3807                                        notify_timer));
3808}
3809
3810static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3811                           struct cftype *cft)
3812{
3813        char name[CGROUP_FILE_NAME_MAX];
3814        struct kernfs_node *kn;
3815        struct lock_class_key *key = NULL;
3816        int ret;
3817
3818#ifdef CONFIG_DEBUG_LOCK_ALLOC
3819        key = &cft->lockdep_key;
3820#endif
3821        kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3822                                  cgroup_file_mode(cft),
3823                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3824                                  0, cft->kf_ops, cft,
3825                                  NULL, key);
3826        if (IS_ERR(kn))
3827                return PTR_ERR(kn);
3828
3829        ret = cgroup_kn_set_ugid(kn);
3830        if (ret) {
3831                kernfs_remove(kn);
3832                return ret;
3833        }
3834
3835        if (cft->file_offset) {
3836                struct cgroup_file *cfile = (void *)css + cft->file_offset;
3837
3838                timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3839
3840                spin_lock_irq(&cgroup_file_kn_lock);
3841                cfile->kn = kn;
3842                spin_unlock_irq(&cgroup_file_kn_lock);
3843        }
3844
3845        return 0;
3846}
3847
3848/**
3849 * cgroup_addrm_files - add or remove files to a cgroup directory
3850 * @css: the target css
3851 * @cgrp: the target cgroup (usually css->cgroup)
3852 * @cfts: array of cftypes to be added
3853 * @is_add: whether to add or remove
3854 *
3855 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3856 * For removals, this function never fails.
3857 */
3858static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3859                              struct cgroup *cgrp, struct cftype cfts[],
3860                              bool is_add)
3861{
3862        struct cftype *cft, *cft_end = NULL;
3863        int ret = 0;
3864
3865        lockdep_assert_held(&cgroup_mutex);
3866
3867restart:
3868        for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3869                /* does cft->flags tell us to skip this file on @cgrp? */
3870                if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3871                        continue;
3872                if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3873                        continue;
3874                if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3875                        continue;
3876                if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3877                        continue;
3878                if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3879                        continue;
3880                if (is_add) {
3881                        ret = cgroup_add_file(css, cgrp, cft);
3882                        if (ret) {
3883                                pr_warn("%s: failed to add %s, err=%d\n",
3884                                        __func__, cft->name, ret);
3885                                cft_end = cft;
3886                                is_add = false;
3887                                goto restart;
3888                        }
3889                } else {
3890                        cgroup_rm_file(cgrp, cft);
3891                }
3892        }
3893        return ret;
3894}
3895
3896static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3897{
3898        struct cgroup_subsys *ss = cfts[0].ss;
3899        struct cgroup *root = &ss->root->cgrp;
3900        struct cgroup_subsys_state *css;
3901        int ret = 0;
3902
3903        lockdep_assert_held(&cgroup_mutex);
3904
3905        /* add/rm files for all cgroups created before */
3906        css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3907                struct cgroup *cgrp = css->cgroup;
3908
3909                if (!(css->flags & CSS_VISIBLE))
3910                        continue;
3911
3912                ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3913                if (ret)
3914                        break;
3915        }
3916
3917        if (is_add && !ret)
3918                kernfs_activate(root->kn);
3919        return ret;
3920}
3921
3922static void cgroup_exit_cftypes(struct cftype *cfts)
3923{
3924        struct cftype *cft;
3925
3926        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3927                /* free copy for custom atomic_write_len, see init_cftypes() */
3928                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3929                        kfree(cft->kf_ops);
3930                cft->kf_ops = NULL;
3931                cft->ss = NULL;
3932
3933                /* revert flags set by cgroup core while adding @cfts */
3934                cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3935        }
3936}
3937
3938static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3939{
3940        struct cftype *cft;
3941
3942        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3943                struct kernfs_ops *kf_ops;
3944
3945                WARN_ON(cft->ss || cft->kf_ops);
3946
3947                if (cft->seq_start)
3948                        kf_ops = &cgroup_kf_ops;
3949                else
3950                        kf_ops = &cgroup_kf_single_ops;
3951
3952                /*
3953                 * Ugh... if @cft wants a custom max_write_len, we need to
3954                 * make a copy of kf_ops to set its atomic_write_len.
3955                 */
3956                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3957                        kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3958                        if (!kf_ops) {
3959                                cgroup_exit_cftypes(cfts);
3960                                return -ENOMEM;
3961                        }
3962                        kf_ops->atomic_write_len = cft->max_write_len;
3963                }
3964
3965                cft->kf_ops = kf_ops;
3966                cft->ss = ss;
3967        }
3968
3969        return 0;
3970}
3971
3972static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3973{
3974        lockdep_assert_held(&cgroup_mutex);
3975
3976        if (!cfts || !cfts[0].ss)
3977                return -ENOENT;
3978
3979        list_del(&cfts->node);
3980        cgroup_apply_cftypes(cfts, false);
3981        cgroup_exit_cftypes(cfts);
3982        return 0;
3983}
3984
3985/**
3986 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3987 * @cfts: zero-length name terminated array of cftypes
3988 *
3989 * Unregister @cfts.  Files described by @cfts are removed from all
3990 * existing cgroups and all future cgroups won't have them either.  This
3991 * function can be called anytime whether @cfts' subsys is attached or not.
3992 *
3993 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3994 * registered.
3995 */
3996int cgroup_rm_cftypes(struct cftype *cfts)
3997{
3998        int ret;
3999
4000        mutex_lock(&cgroup_mutex);
4001        ret = cgroup_rm_cftypes_locked(cfts);
4002        mutex_unlock(&cgroup_mutex);
4003        return ret;
4004}
4005
4006/**
4007 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4008 * @ss: target cgroup subsystem
4009 * @cfts: zero-length name terminated array of cftypes
4010 *
4011 * Register @cfts to @ss.  Files described by @cfts are created for all
4012 * existing cgroups to which @ss is attached and all future cgroups will
4013 * have them too.  This function can be called anytime whether @ss is
4014 * attached or not.
4015 *
4016 * Returns 0 on successful registration, -errno on failure.  Note that this
4017 * function currently returns 0 as long as @cfts registration is successful
4018 * even if some file creation attempts on existing cgroups fail.
4019 */
4020static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4021{
4022        int ret;
4023
4024        if (!cgroup_ssid_enabled(ss->id))
4025                return 0;
4026
4027        if (!cfts || cfts[0].name[0] == '\0')
4028                return 0;
4029
4030        ret = cgroup_init_cftypes(ss, cfts);
4031        if (ret)
4032                return ret;
4033
4034        mutex_lock(&cgroup_mutex);
4035
4036        list_add_tail(&cfts->node, &ss->cfts);
4037        ret = cgroup_apply_cftypes(cfts, true);
4038        if (ret)
4039                cgroup_rm_cftypes_locked(cfts);
4040
4041        mutex_unlock(&cgroup_mutex);
4042        return ret;
4043}
4044
4045/**
4046 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4047 * @ss: target cgroup subsystem
4048 * @cfts: zero-length name terminated array of cftypes
4049 *
4050 * Similar to cgroup_add_cftypes() but the added files are only used for
4051 * the default hierarchy.
4052 */
4053int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4054{
4055        struct cftype *cft;
4056
4057        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4058                cft->flags |= __CFTYPE_ONLY_ON_DFL;
4059        return cgroup_add_cftypes(ss, cfts);
4060}
4061
4062/**
4063 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4064 * @ss: target cgroup subsystem
4065 * @cfts: zero-length name terminated array of cftypes
4066 *
4067 * Similar to cgroup_add_cftypes() but the added files are only used for
4068 * the legacy hierarchies.
4069 */
4070int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4071{
4072        struct cftype *cft;
4073
4074        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4075                cft->flags |= __CFTYPE_NOT_ON_DFL;
4076        return cgroup_add_cftypes(ss, cfts);
4077}
4078
4079/**
4080 * cgroup_file_notify - generate a file modified event for a cgroup_file
4081 * @cfile: target cgroup_file
4082 *
4083 * @cfile must have been obtained by setting cftype->file_offset.
4084 */
4085void cgroup_file_notify(struct cgroup_file *cfile)
4086{
4087        unsigned long flags;
4088
4089        spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4090        if (cfile->kn) {
4091                unsigned long last = cfile->notified_at;
4092                unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4093
4094                if (time_in_range(jiffies, last, next)) {
4095                        timer_reduce(&cfile->notify_timer, next);
4096                } else {
4097                        kernfs_notify(cfile->kn);
4098                        cfile->notified_at = jiffies;
4099                }
4100        }
4101        spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4102}
4103
4104/**
4105 * css_next_child - find the next child of a given css
4106 * @pos: the current position (%NULL to initiate traversal)
4107 * @parent: css whose children to walk
4108 *
4109 * This function returns the next child of @parent and should be called
4110 * under either cgroup_mutex or RCU read lock.  The only requirement is
4111 * that @parent and @pos are accessible.  The next sibling is guaranteed to
4112 * be returned regardless of their states.
4113 *
4114 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4115 * css which finished ->css_online() is guaranteed to be visible in the
4116 * future iterations and will stay visible until the last reference is put.
4117 * A css which hasn't finished ->css_online() or already finished
4118 * ->css_offline() may show up during traversal.  It's each subsystem's
4119 * responsibility to synchronize against on/offlining.
4120 */
4121struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4122                                           struct cgroup_subsys_state *parent)
4123{
4124        struct cgroup_subsys_state *next;
4125
4126        cgroup_assert_mutex_or_rcu_locked();
4127
4128        /*
4129         * @pos could already have been unlinked from the sibling list.
4130         * Once a cgroup is removed, its ->sibling.next is no longer
4131         * updated when its next sibling changes.  CSS_RELEASED is set when
4132         * @pos is taken off list, at which time its next pointer is valid,
4133         * and, as releases are serialized, the one pointed to by the next
4134         * pointer is guaranteed to not have started release yet.  This
4135         * implies that if we observe !CSS_RELEASED on @pos in this RCU
4136         * critical section, the one pointed to by its next pointer is
4137         * guaranteed to not have finished its RCU grace period even if we
4138         * have dropped rcu_read_lock() inbetween iterations.
4139         *
4140         * If @pos has CSS_RELEASED set, its next pointer can't be
4141         * dereferenced; however, as each css is given a monotonically
4142         * increasing unique serial number and always appended to the
4143         * sibling list, the next one can be found by walking the parent's
4144         * children until the first css with higher serial number than
4145         * @pos's.  While this path can be slower, it happens iff iteration
4146         * races against release and the race window is very small.
4147         */
4148        if (!pos) {
4149                next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4150        } else if (likely(!(pos->flags & CSS_RELEASED))) {
4151                next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4152        } else {
4153                list_for_each_entry_rcu(next, &parent->children, sibling,
4154                                        lockdep_is_held(&cgroup_mutex))
4155                        if (next->serial_nr > pos->serial_nr)
4156                                break;
4157        }
4158
4159        /*
4160         * @next, if not pointing to the head, can be dereferenced and is
4161         * the next sibling.
4162         */
4163        if (&next->sibling != &parent->children)
4164                return next;
4165        return NULL;
4166}
4167
4168/**
4169 * css_next_descendant_pre - find the next descendant for pre-order walk
4170 * @pos: the current position (%NULL to initiate traversal)
4171 * @root: css whose descendants to walk
4172 *
4173 * To be used by css_for_each_descendant_pre().  Find the next descendant
4174 * to visit for pre-order traversal of @root's descendants.  @root is
4175 * included in the iteration and the first node to be visited.
4176 *
4177 * While this function requires cgroup_mutex or RCU read locking, it
4178 * doesn't require the whole traversal to be contained in a single critical
4179 * section.  This function will return the correct next descendant as long
4180 * as both @pos and @root are accessible and @pos is a descendant of @root.
4181 *
4182 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4183 * css which finished ->css_online() is guaranteed to be visible in the
4184 * future iterations and will stay visible until the last reference is put.
4185 * A css which hasn't finished ->css_online() or already finished
4186 * ->css_offline() may show up during traversal.  It's each subsystem's
4187 * responsibility to synchronize against on/offlining.
4188 */
4189struct cgroup_subsys_state *
4190css_next_descendant_pre(struct cgroup_subsys_state *pos,
4191                        struct cgroup_subsys_state *root)
4192{
4193        struct cgroup_subsys_state *next;
4194
4195        cgroup_assert_mutex_or_rcu_locked();
4196
4197        /* if first iteration, visit @root */
4198        if (!pos)
4199                return root;
4200
4201        /* visit the first child if exists */
4202        next = css_next_child(NULL, pos);
4203        if (next)
4204                return next;
4205
4206        /* no child, visit my or the closest ancestor's next sibling */
4207        while (pos != root) {
4208                next = css_next_child(pos, pos->parent);
4209                if (next)
4210                        return next;
4211                pos = pos->parent;
4212        }
4213
4214        return NULL;
4215}
4216EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4217
4218/**
4219 * css_rightmost_descendant - return the rightmost descendant of a css
4220 * @pos: css of interest
4221 *
4222 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4223 * is returned.  This can be used during pre-order traversal to skip
4224 * subtree of @pos.
4225 *
4226 * While this function requires cgroup_mutex or RCU read locking, it
4227 * doesn't require the whole traversal to be contained in a single critical
4228 * section.  This function will return the correct rightmost descendant as
4229 * long as @pos is accessible.
4230 */
4231struct cgroup_subsys_state *
4232css_rightmost_descendant(struct cgroup_subsys_state *pos)
4233{
4234        struct cgroup_subsys_state *last, *tmp;
4235
4236        cgroup_assert_mutex_or_rcu_locked();
4237
4238        do {
4239                last = pos;
4240                /* ->prev isn't RCU safe, walk ->next till the end */
4241                pos = NULL;
4242                css_for_each_child(tmp, last)
4243                        pos = tmp;
4244        } while (pos);
4245
4246        return last;
4247}
4248
4249static struct cgroup_subsys_state *
4250css_leftmost_descendant(struct cgroup_subsys_state *pos)
4251{
4252        struct cgroup_subsys_state *last;
4253
4254        do {
4255                last = pos;
4256                pos = css_next_child(NULL, pos);
4257        } while (pos);
4258
4259        return last;
4260}
4261
4262/**
4263 * css_next_descendant_post - find the next descendant for post-order walk
4264 * @pos: the current position (%NULL to initiate traversal)
4265 * @root: css whose descendants to walk
4266 *
4267 * To be used by css_for_each_descendant_post().  Find the next descendant
4268 * to visit for post-order traversal of @root's descendants.  @root is
4269 * included in the iteration and the last node to be visited.
4270 *
4271 * While this function requires cgroup_mutex or RCU read locking, it
4272 * doesn't require the whole traversal to be contained in a single critical
4273 * section.  This function will return the correct next descendant as long
4274 * as both @pos and @cgroup are accessible and @pos is a descendant of
4275 * @cgroup.
4276 *
4277 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4278 * css which finished ->css_online() is guaranteed to be visible in the
4279 * future iterations and will stay visible until the last reference is put.
4280 * A css which hasn't finished ->css_online() or already finished
4281 * ->css_offline() may show up during traversal.  It's each subsystem's
4282 * responsibility to synchronize against on/offlining.
4283 */
4284struct cgroup_subsys_state *
4285css_next_descendant_post(struct cgroup_subsys_state *pos,
4286                         struct cgroup_subsys_state *root)
4287{
4288        struct cgroup_subsys_state *next;
4289
4290        cgroup_assert_mutex_or_rcu_locked();
4291
4292        /* if first iteration, visit leftmost descendant which may be @root */
4293        if (!pos)
4294                return css_leftmost_descendant(root);
4295
4296        /* if we visited @root, we're done */
4297        if (pos == root)
4298                return NULL;
4299
4300        /* if there's an unvisited sibling, visit its leftmost descendant */
4301        next = css_next_child(pos, pos->parent);
4302        if (next)
4303                return css_leftmost_descendant(next);
4304
4305        /* no sibling left, visit parent */
4306        return pos->parent;
4307}
4308
4309/**
4310 * css_has_online_children - does a css have online children
4311 * @css: the target css
4312 *
4313 * Returns %true if @css has any online children; otherwise, %false.  This
4314 * function can be called from any context but the caller is responsible
4315 * for synchronizing against on/offlining as necessary.
4316 */
4317bool css_has_online_children(struct cgroup_subsys_state *css)
4318{
4319        struct cgroup_subsys_state *child;
4320        bool ret = false;
4321
4322        rcu_read_lock();
4323        css_for_each_child(child, css) {
4324                if (child->flags & CSS_ONLINE) {
4325                        ret = true;
4326                        break;
4327                }
4328        }
4329        rcu_read_unlock();
4330        return ret;
4331}
4332
4333static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4334{
4335        struct list_head *l;
4336        struct cgrp_cset_link *link;
4337        struct css_set *cset;
4338
4339        lockdep_assert_held(&css_set_lock);
4340
4341        /* find the next threaded cset */
4342        if (it->tcset_pos) {
4343                l = it->tcset_pos->next;
4344
4345                if (l != it->tcset_head) {
4346                        it->tcset_pos = l;
4347                        return container_of(l, struct css_set,
4348                                            threaded_csets_node);
4349                }
4350
4351                it->tcset_pos = NULL;
4352        }
4353
4354        /* find the next cset */
4355        l = it->cset_pos;
4356        l = l->next;
4357        if (l == it->cset_head) {
4358                it->cset_pos = NULL;
4359                return NULL;
4360        }
4361
4362        if (it->ss) {
4363                cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4364        } else {
4365                link = list_entry(l, struct cgrp_cset_link, cset_link);
4366                cset = link->cset;
4367        }
4368
4369        it->cset_pos = l;
4370
4371        /* initialize threaded css_set walking */
4372        if (it->flags & CSS_TASK_ITER_THREADED) {
4373                if (it->cur_dcset)
4374                        put_css_set_locked(it->cur_dcset);
4375                it->cur_dcset = cset;
4376                get_css_set(cset);
4377
4378                it->tcset_head = &cset->threaded_csets;
4379                it->tcset_pos = &cset->threaded_csets;
4380        }
4381
4382        return cset;
4383}
4384
4385/**
4386 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4387 * @it: the iterator to advance
4388 *
4389 * Advance @it to the next css_set to walk.
4390 */
4391static void css_task_iter_advance_css_set(struct css_task_iter *it)
4392{
4393        struct css_set *cset;
4394
4395        lockdep_assert_held(&css_set_lock);
4396
4397        /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4398        while ((cset = css_task_iter_next_css_set(it))) {
4399                if (!list_empty(&cset->tasks)) {
4400                        it->cur_tasks_head = &cset->tasks;
4401                        break;
4402                } else if (!list_empty(&cset->mg_tasks)) {
4403                        it->cur_tasks_head = &cset->mg_tasks;
4404                        break;
4405                } else if (!list_empty(&cset->dying_tasks)) {
4406                        it->cur_tasks_head = &cset->dying_tasks;
4407                        break;
4408                }
4409        }
4410        if (!cset) {
4411                it->task_pos = NULL;
4412                return;
4413        }
4414        it->task_pos = it->cur_tasks_head->next;
4415
4416        /*
4417         * We don't keep css_sets locked across iteration steps and thus
4418         * need to take steps to ensure that iteration can be resumed after
4419         * the lock is re-acquired.  Iteration is performed at two levels -
4420         * css_sets and tasks in them.
4421         *
4422         * Once created, a css_set never leaves its cgroup lists, so a
4423         * pinned css_set is guaranteed to stay put and we can resume
4424         * iteration afterwards.
4425         *
4426         * Tasks may leave @cset across iteration steps.  This is resolved
4427         * by registering each iterator with the css_set currently being
4428         * walked and making css_set_move_task() advance iterators whose
4429         * next task is leaving.
4430         */
4431        if (it->cur_cset) {
4432                list_del(&it->iters_node);
4433                put_css_set_locked(it->cur_cset);
4434        }
4435        get_css_set(cset);
4436        it->cur_cset = cset;
4437        list_add(&it->iters_node, &cset->task_iters);
4438}
4439
4440static void css_task_iter_skip(struct css_task_iter *it,
4441                               struct task_struct *task)
4442{
4443        lockdep_assert_held(&css_set_lock);
4444
4445        if (it->task_pos == &task->cg_list) {
4446                it->task_pos = it->task_pos->next;
4447                it->flags |= CSS_TASK_ITER_SKIPPED;
4448        }
4449}
4450
4451static void css_task_iter_advance(struct css_task_iter *it)
4452{
4453        struct task_struct *task;
4454
4455        lockdep_assert_held(&css_set_lock);
4456repeat:
4457        if (it->task_pos) {
4458                /*
4459                 * Advance iterator to find next entry. We go through cset
4460                 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4461                 * the next cset.
4462                 */
4463                if (it->flags & CSS_TASK_ITER_SKIPPED)
4464                        it->flags &= ~CSS_TASK_ITER_SKIPPED;
4465                else
4466                        it->task_pos = it->task_pos->next;
4467
4468                if (it->task_pos == &it->cur_cset->tasks) {
4469                        it->cur_tasks_head = &it->cur_cset->mg_tasks;
4470                        it->task_pos = it->cur_tasks_head->next;
4471                }
4472                if (it->task_pos == &it->cur_cset->mg_tasks) {
4473                        it->cur_tasks_head = &it->cur_cset->dying_tasks;
4474                        it->task_pos = it->cur_tasks_head->next;
4475                }
4476                if (it->task_pos == &it->cur_cset->dying_tasks)
4477                        css_task_iter_advance_css_set(it);
4478        } else {
4479                /* called from start, proceed to the first cset */
4480                css_task_iter_advance_css_set(it);
4481        }
4482
4483        if (!it->task_pos)
4484                return;
4485
4486        task = list_entry(it->task_pos, struct task_struct, cg_list);
4487
4488        if (it->flags & CSS_TASK_ITER_PROCS) {
4489                /* if PROCS, skip over tasks which aren't group leaders */
4490                if (!thread_group_leader(task))
4491                        goto repeat;
4492
4493                /* and dying leaders w/o live member threads */
4494                if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4495                    !atomic_read(&task->signal->live))
4496                        goto repeat;
4497        } else {
4498                /* skip all dying ones */
4499                if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4500                        goto repeat;
4501        }
4502}
4503
4504/**
4505 * css_task_iter_start - initiate task iteration
4506 * @css: the css to walk tasks of
4507 * @flags: CSS_TASK_ITER_* flags
4508 * @it: the task iterator to use
4509 *
4510 * Initiate iteration through the tasks of @css.  The caller can call
4511 * css_task_iter_next() to walk through the tasks until the function
4512 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4513 * called.
4514 */
4515void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4516                         struct css_task_iter *it)
4517{
4518        memset(it, 0, sizeof(*it));
4519
4520        spin_lock_irq(&css_set_lock);
4521
4522        it->ss = css->ss;
4523        it->flags = flags;
4524
4525        if (it->ss)
4526                it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4527        else
4528                it->cset_pos = &css->cgroup->cset_links;
4529
4530        it->cset_head = it->cset_pos;
4531
4532        css_task_iter_advance(it);
4533
4534        spin_unlock_irq(&css_set_lock);
4535}
4536
4537/**
4538 * css_task_iter_next - return the next task for the iterator
4539 * @it: the task iterator being iterated
4540 *
4541 * The "next" function for task iteration.  @it should have been
4542 * initialized via css_task_iter_start().  Returns NULL when the iteration
4543 * reaches the end.
4544 */
4545struct task_struct *css_task_iter_next(struct css_task_iter *it)
4546{
4547        if (it->cur_task) {
4548                put_task_struct(it->cur_task);
4549                it->cur_task = NULL;
4550        }
4551
4552        spin_lock_irq(&css_set_lock);
4553
4554        /* @it may be half-advanced by skips, finish advancing */
4555        if (it->flags & CSS_TASK_ITER_SKIPPED)
4556                css_task_iter_advance(it);
4557
4558        if (it->task_pos) {
4559                it->cur_task = list_entry(it->task_pos, struct task_struct,
4560                                          cg_list);
4561                get_task_struct(it->cur_task);
4562                css_task_iter_advance(it);
4563        }
4564
4565        spin_unlock_irq(&css_set_lock);
4566
4567        return it->cur_task;
4568}
4569
4570/**
4571 * css_task_iter_end - finish task iteration
4572 * @it: the task iterator to finish
4573 *
4574 * Finish task iteration started by css_task_iter_start().
4575 */
4576void css_task_iter_end(struct css_task_iter *it)
4577{
4578        if (it->cur_cset) {
4579                spin_lock_irq(&css_set_lock);
4580                list_del(&it->iters_node);
4581                put_css_set_locked(it->cur_cset);
4582                spin_unlock_irq(&css_set_lock);
4583        }
4584
4585        if (it->cur_dcset)
4586                put_css_set(it->cur_dcset);
4587
4588        if (it->cur_task)
4589                put_task_struct(it->cur_task);
4590}
4591
4592static void cgroup_procs_release(struct kernfs_open_file *of)
4593{
4594        if (of->priv) {
4595                css_task_iter_end(of->priv);
4596                kfree(of->priv);
4597        }
4598}
4599
4600static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4601{
4602        struct kernfs_open_file *of = s->private;
4603        struct css_task_iter *it = of->priv;
4604
4605        if (pos)
4606                (*pos)++;
4607
4608        return css_task_iter_next(it);
4609}
4610
4611static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4612                                  unsigned int iter_flags)
4613{
4614        struct kernfs_open_file *of = s->private;
4615        struct cgroup *cgrp = seq_css(s)->cgroup;
4616        struct css_task_iter *it = of->priv;
4617
4618        /*
4619         * When a seq_file is seeked, it's always traversed sequentially
4620         * from position 0, so we can simply keep iterating on !0 *pos.
4621         */
4622        if (!it) {
4623                if (WARN_ON_ONCE((*pos)))
4624                        return ERR_PTR(-EINVAL);
4625
4626                it = kzalloc(sizeof(*it), GFP_KERNEL);
4627                if (!it)
4628                        return ERR_PTR(-ENOMEM);
4629                of->priv = it;
4630                css_task_iter_start(&cgrp->self, iter_flags, it);
4631        } else if (!(*pos)) {
4632                css_task_iter_end(it);
4633                css_task_iter_start(&cgrp->self, iter_flags, it);
4634        } else
4635                return it->cur_task;
4636
4637        return cgroup_procs_next(s, NULL, NULL);
4638}
4639
4640static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4641{
4642        struct cgroup *cgrp = seq_css(s)->cgroup;
4643
4644        /*
4645         * All processes of a threaded subtree belong to the domain cgroup
4646         * of the subtree.  Only threads can be distributed across the
4647         * subtree.  Reject reads on cgroup.procs in the subtree proper.
4648         * They're always empty anyway.
4649         */
4650        if (cgroup_is_threaded(cgrp))
4651                return ERR_PTR(-EOPNOTSUPP);
4652
4653        return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4654                                            CSS_TASK_ITER_THREADED);
4655}
4656
4657static int cgroup_procs_show(struct seq_file *s, void *v)
4658{
4659        seq_printf(s, "%d\n", task_pid_vnr(v));
4660        return 0;
4661}
4662
4663static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4664{
4665        int ret;
4666        struct inode *inode;
4667
4668        lockdep_assert_held(&cgroup_mutex);
4669
4670        inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4671        if (!inode)
4672                return -ENOMEM;
4673
4674        ret = inode_permission(inode, MAY_WRITE);
4675        iput(inode);
4676        return ret;
4677}
4678
4679static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4680                                         struct cgroup *dst_cgrp,
4681                                         struct super_block *sb)
4682{
4683        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4684        struct cgroup *com_cgrp = src_cgrp;
4685        int ret;
4686
4687        lockdep_assert_held(&cgroup_mutex);
4688
4689        /* find the common ancestor */
4690        while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4691                com_cgrp = cgroup_parent(com_cgrp);
4692
4693        /* %current should be authorized to migrate to the common ancestor */
4694        ret = cgroup_may_write(com_cgrp, sb);
4695        if (ret)
4696                return ret;
4697
4698        /*
4699         * If namespaces are delegation boundaries, %current must be able
4700         * to see both source and destination cgroups from its namespace.
4701         */
4702        if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4703            (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4704             !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4705                return -ENOENT;
4706
4707        return 0;
4708}
4709
4710static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4711                                     struct cgroup *dst_cgrp,
4712                                     struct super_block *sb, bool threadgroup)
4713{
4714        int ret = 0;
4715
4716        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4717        if (ret)
4718                return ret;
4719
4720        ret = cgroup_migrate_vet_dst(dst_cgrp);
4721        if (ret)
4722                return ret;
4723
4724        if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4725                ret = -EOPNOTSUPP;
4726
4727        return ret;
4728}
4729
4730static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4731                                  char *buf, size_t nbytes, loff_t off)
4732{
4733        struct cgroup *src_cgrp, *dst_cgrp;
4734        struct task_struct *task;
4735        ssize_t ret;
4736        bool locked;
4737
4738        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4739        if (!dst_cgrp)
4740                return -ENODEV;
4741
4742        task = cgroup_procs_write_start(buf, true, &locked);
4743        ret = PTR_ERR_OR_ZERO(task);
4744        if (ret)
4745                goto out_unlock;
4746
4747        /* find the source cgroup */
4748        spin_lock_irq(&css_set_lock);
4749        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4750        spin_unlock_irq(&css_set_lock);
4751
4752        ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4753                                        of->file->f_path.dentry->d_sb, true);
4754        if (ret)
4755                goto out_finish;
4756
4757        ret = cgroup_attach_task(dst_cgrp, task, true);
4758
4759out_finish:
4760        cgroup_procs_write_finish(task, locked);
4761out_unlock:
4762        cgroup_kn_unlock(of->kn);
4763
4764        return ret ?: nbytes;
4765}
4766
4767static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4768{
4769        return __cgroup_procs_start(s, pos, 0);
4770}
4771
4772static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4773                                    char *buf, size_t nbytes, loff_t off)
4774{
4775        struct cgroup *src_cgrp, *dst_cgrp;
4776        struct task_struct *task;
4777        ssize_t ret;
4778        bool locked;
4779
4780        buf = strstrip(buf);
4781
4782        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4783        if (!dst_cgrp)
4784                return -ENODEV;
4785
4786        task = cgroup_procs_write_start(buf, false, &locked);
4787        ret = PTR_ERR_OR_ZERO(task);
4788        if (ret)
4789                goto out_unlock;
4790
4791        /* find the source cgroup */
4792        spin_lock_irq(&css_set_lock);
4793        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4794        spin_unlock_irq(&css_set_lock);
4795
4796        /* thread migrations follow the cgroup.procs delegation rule */
4797        ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4798                                        of->file->f_path.dentry->d_sb, false);
4799        if (ret)
4800                goto out_finish;
4801
4802        ret = cgroup_attach_task(dst_cgrp, task, false);
4803
4804out_finish:
4805        cgroup_procs_write_finish(task, locked);
4806out_unlock:
4807        cgroup_kn_unlock(of->kn);
4808
4809        return ret ?: nbytes;
4810}
4811
4812/* cgroup core interface files for the default hierarchy */
4813static struct cftype cgroup_base_files[] = {
4814        {
4815                .name = "cgroup.type",
4816                .flags = CFTYPE_NOT_ON_ROOT,
4817                .seq_show = cgroup_type_show,
4818                .write = cgroup_type_write,
4819        },
4820        {
4821                .name = "cgroup.procs",
4822                .flags = CFTYPE_NS_DELEGATABLE,
4823                .file_offset = offsetof(struct cgroup, procs_file),
4824                .release = cgroup_procs_release,
4825                .seq_start = cgroup_procs_start,
4826                .seq_next = cgroup_procs_next,
4827                .seq_show = cgroup_procs_show,
4828                .write = cgroup_procs_write,
4829        },
4830        {
4831                .name = "cgroup.threads",
4832                .flags = CFTYPE_NS_DELEGATABLE,
4833                .release = cgroup_procs_release,
4834                .seq_start = cgroup_threads_start,
4835                .seq_next = cgroup_procs_next,
4836                .seq_show = cgroup_procs_show,
4837                .write = cgroup_threads_write,
4838        },
4839        {
4840                .name = "cgroup.controllers",
4841                .seq_show = cgroup_controllers_show,
4842        },
4843        {
4844                .name = "cgroup.subtree_control",
4845                .flags = CFTYPE_NS_DELEGATABLE,
4846                .seq_show = cgroup_subtree_control_show,
4847                .write = cgroup_subtree_control_write,
4848        },
4849        {
4850                .name = "cgroup.events",
4851                .flags = CFTYPE_NOT_ON_ROOT,
4852                .file_offset = offsetof(struct cgroup, events_file),
4853                .seq_show = cgroup_events_show,
4854        },
4855        {
4856                .name = "cgroup.max.descendants",
4857                .seq_show = cgroup_max_descendants_show,
4858                .write = cgroup_max_descendants_write,
4859        },
4860        {
4861                .name = "cgroup.max.depth",
4862                .seq_show = cgroup_max_depth_show,
4863                .write = cgroup_max_depth_write,
4864        },
4865        {
4866                .name = "cgroup.stat",
4867                .seq_show = cgroup_stat_show,
4868        },
4869        {
4870                .name = "cgroup.freeze",
4871                .flags = CFTYPE_NOT_ON_ROOT,
4872                .seq_show = cgroup_freeze_show,
4873                .write = cgroup_freeze_write,
4874        },
4875        {
4876                .name = "cpu.stat",
4877                .seq_show = cpu_stat_show,
4878        },
4879#ifdef CONFIG_PSI
4880        {
4881                .name = "io.pressure",
4882                .seq_show = cgroup_io_pressure_show,
4883                .write = cgroup_io_pressure_write,
4884                .poll = cgroup_pressure_poll,
4885                .release = cgroup_pressure_release,
4886        },
4887        {
4888                .name = "memory.pressure",
4889                .seq_show = cgroup_memory_pressure_show,
4890                .write = cgroup_memory_pressure_write,
4891                .poll = cgroup_pressure_poll,
4892                .release = cgroup_pressure_release,
4893        },
4894        {
4895                .name = "cpu.pressure",
4896                .seq_show = cgroup_cpu_pressure_show,
4897                .write = cgroup_cpu_pressure_write,
4898                .poll = cgroup_pressure_poll,
4899                .release = cgroup_pressure_release,
4900        },
4901#endif /* CONFIG_PSI */
4902        { }     /* terminate */
4903};
4904
4905/*
4906 * css destruction is four-stage process.
4907 *
4908 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4909 *    Implemented in kill_css().
4910 *
4911 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4912 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4913 *    offlined by invoking offline_css().  After offlining, the base ref is
4914 *    put.  Implemented in css_killed_work_fn().
4915 *
4916 * 3. When the percpu_ref reaches zero, the only possible remaining
4917 *    accessors are inside RCU read sections.  css_release() schedules the
4918 *    RCU callback.
4919 *
4920 * 4. After the grace period, the css can be freed.  Implemented in
4921 *    css_free_work_fn().
4922 *
4923 * It is actually hairier because both step 2 and 4 require process context
4924 * and thus involve punting to css->destroy_work adding two additional
4925 * steps to the already complex sequence.
4926 */
4927static void css_free_rwork_fn(struct work_struct *work)
4928{
4929        struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4930                                struct cgroup_subsys_state, destroy_rwork);
4931        struct cgroup_subsys *ss = css->ss;
4932        struct cgroup *cgrp = css->cgroup;
4933
4934        percpu_ref_exit(&css->refcnt);
4935
4936        if (ss) {
4937                /* css free path */
4938                struct cgroup_subsys_state *parent = css->parent;
4939                int id = css->id;
4940
4941                ss->css_free(css);
4942                cgroup_idr_remove(&ss->css_idr, id);
4943                cgroup_put(cgrp);
4944
4945                if (parent)
4946                        css_put(parent);
4947        } else {
4948                /* cgroup free path */
4949                atomic_dec(&cgrp->root->nr_cgrps);
4950                cgroup1_pidlist_destroy_all(cgrp);
4951                cancel_work_sync(&cgrp->release_agent_work);
4952
4953                if (cgroup_parent(cgrp)) {
4954                        /*
4955                         * We get a ref to the parent, and put the ref when
4956                         * this cgroup is being freed, so it's guaranteed
4957                         * that the parent won't be destroyed before its
4958                         * children.
4959                         */
4960                        cgroup_put(cgroup_parent(cgrp));
4961                        kernfs_put(cgrp->kn);
4962                        psi_cgroup_free(cgrp);
4963                        if (cgroup_on_dfl(cgrp))
4964                                cgroup_rstat_exit(cgrp);
4965                        kfree(cgrp);
4966                } else {
4967                        /*
4968                         * This is root cgroup's refcnt reaching zero,
4969                         * which indicates that the root should be
4970                         * released.
4971                         */
4972                        cgroup_destroy_root(cgrp->root);
4973                }
4974        }
4975}
4976
4977static void css_release_work_fn(struct work_struct *work)
4978{
4979        struct cgroup_subsys_state *css =
4980                container_of(work, struct cgroup_subsys_state, destroy_work);
4981        struct cgroup_subsys *ss = css->ss;
4982        struct cgroup *cgrp = css->cgroup;
4983
4984        mutex_lock(&cgroup_mutex);
4985
4986        css->flags |= CSS_RELEASED;
4987        list_del_rcu(&css->sibling);
4988
4989        if (ss) {
4990                /* css release path */
4991                if (!list_empty(&css->rstat_css_node)) {
4992                        cgroup_rstat_flush(cgrp);
4993                        list_del_rcu(&css->rstat_css_node);
4994                }
4995
4996                cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4997                if (ss->css_released)
4998                        ss->css_released(css);
4999        } else {
5000                struct cgroup *tcgrp;
5001
5002                /* cgroup release path */
5003                TRACE_CGROUP_PATH(release, cgrp);
5004
5005                if (cgroup_on_dfl(cgrp))
5006                        cgroup_rstat_flush(cgrp);
5007
5008                spin_lock_irq(&css_set_lock);
5009                for (tcgrp = cgroup_parent(cgrp); tcgrp;
5010                     tcgrp = cgroup_parent(tcgrp))
5011                        tcgrp->nr_dying_descendants--;
5012                spin_unlock_irq(&css_set_lock);
5013
5014                /*
5015                 * There are two control paths which try to determine
5016                 * cgroup from dentry without going through kernfs -
5017                 * cgroupstats_build() and css_tryget_online_from_dir().
5018                 * Those are supported by RCU protecting clearing of
5019                 * cgrp->kn->priv backpointer.
5020                 */
5021                if (cgrp->kn)
5022                        RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5023                                         NULL);
5024        }
5025
5026        mutex_unlock(&cgroup_mutex);
5027
5028        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5029        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5030}
5031
5032static void css_release(struct percpu_ref *ref)
5033{
5034        struct cgroup_subsys_state *css =
5035                container_of(ref, struct cgroup_subsys_state, refcnt);
5036
5037        INIT_WORK(&css->destroy_work, css_release_work_fn);
5038        queue_work(cgroup_destroy_wq, &css->destroy_work);
5039}
5040
5041static void init_and_link_css(struct cgroup_subsys_state *css,
5042                              struct cgroup_subsys *ss, struct cgroup *cgrp)
5043{
5044        lockdep_assert_held(&cgroup_mutex);
5045
5046        cgroup_get_live(cgrp);
5047
5048        memset(css, 0, sizeof(*css));
5049        css->cgroup = cgrp;
5050        css->ss = ss;
5051        css->id = -1;
5052        INIT_LIST_HEAD(&css->sibling);
5053        INIT_LIST_HEAD(&css->children);
5054        INIT_LIST_HEAD(&css->rstat_css_node);
5055        css->serial_nr = css_serial_nr_next++;
5056        atomic_set(&css->online_cnt, 0);
5057
5058        if (cgroup_parent(cgrp)) {
5059                css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5060                css_get(css->parent);
5061        }
5062
5063        if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5064                list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5065
5066        BUG_ON(cgroup_css(cgrp, ss));
5067}
5068
5069/* invoke ->css_online() on a new CSS and mark it online if successful */
5070static int online_css(struct cgroup_subsys_state *css)
5071{
5072        struct cgroup_subsys *ss = css->ss;
5073        int ret = 0;
5074
5075        lockdep_assert_held(&cgroup_mutex);
5076
5077        if (ss->css_online)
5078                ret = ss->css_online(css);
5079        if (!ret) {
5080                css->flags |= CSS_ONLINE;
5081                rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5082
5083                atomic_inc(&css->online_cnt);
5084                if (css->parent)
5085                        atomic_inc(&css->parent->online_cnt);
5086        }
5087        return ret;
5088}
5089
5090/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5091static void offline_css(struct cgroup_subsys_state *css)
5092{
5093        struct cgroup_subsys *ss = css->ss;
5094
5095        lockdep_assert_held(&cgroup_mutex);
5096
5097        if (!(css->flags & CSS_ONLINE))
5098                return;
5099
5100        if (ss->css_offline)
5101                ss->css_offline(css);
5102
5103        css->flags &= ~CSS_ONLINE;
5104        RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5105
5106        wake_up_all(&css->cgroup->offline_waitq);
5107}
5108
5109/**
5110 * css_create - create a cgroup_subsys_state
5111 * @cgrp: the cgroup new css will be associated with
5112 * @ss: the subsys of new css
5113 *
5114 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5115 * css is online and installed in @cgrp.  This function doesn't create the
5116 * interface files.  Returns 0 on success, -errno on failure.
5117 */
5118static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5119                                              struct cgroup_subsys *ss)
5120{
5121        struct cgroup *parent = cgroup_parent(cgrp);
5122        struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5123        struct cgroup_subsys_state *css;
5124        int err;
5125
5126        lockdep_assert_held(&cgroup_mutex);
5127
5128        css = ss->css_alloc(parent_css);
5129        if (!css)
5130                css = ERR_PTR(-ENOMEM);
5131        if (IS_ERR(css))
5132                return css;
5133
5134        init_and_link_css(css, ss, cgrp);
5135
5136        err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5137        if (err)
5138                goto err_free_css;
5139
5140        err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5141        if (err < 0)
5142                goto err_free_css;
5143        css->id = err;
5144
5145        /* @css is ready to be brought online now, make it visible */
5146        list_add_tail_rcu(&css->sibling, &parent_css->children);
5147        cgroup_idr_replace(&ss->css_idr, css, css->id);
5148
5149        err = online_css(css);
5150        if (err)
5151                goto err_list_del;
5152
5153        if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5154            cgroup_parent(parent)) {
5155                pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5156                        current->comm, current->pid, ss->name);
5157                if (!strcmp(ss->name, "memory"))
5158                        pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5159                ss->warned_broken_hierarchy = true;
5160        }
5161
5162        return css;
5163
5164err_list_del:
5165        list_del_rcu(&css->sibling);
5166err_free_css:
5167        list_del_rcu(&css->rstat_css_node);
5168        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5169        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5170        return ERR_PTR(err);
5171}
5172
5173/*
5174 * The returned cgroup is fully initialized including its control mask, but
5175 * it isn't associated with its kernfs_node and doesn't have the control
5176 * mask applied.
5177 */
5178static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5179                                    umode_t mode)
5180{
5181        struct cgroup_root *root = parent->root;
5182        struct cgroup *cgrp, *tcgrp;
5183        struct kernfs_node *kn;
5184        int level = parent->level + 1;
5185        int ret;
5186
5187        /* allocate the cgroup and its ID, 0 is reserved for the root */
5188        cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5189                       GFP_KERNEL);
5190        if (!cgrp)
5191                return ERR_PTR(-ENOMEM);
5192
5193        ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5194        if (ret)
5195                goto out_free_cgrp;
5196
5197        if (cgroup_on_dfl(parent)) {
5198                ret = cgroup_rstat_init(cgrp);
5199                if (ret)
5200                        goto out_cancel_ref;
5201        }
5202
5203        /* create the directory */
5204        kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5205        if (IS_ERR(kn)) {
5206                ret = PTR_ERR(kn);
5207                goto out_stat_exit;
5208        }
5209        cgrp->kn = kn;
5210
5211        init_cgroup_housekeeping(cgrp);
5212
5213        cgrp->self.parent = &parent->self;
5214        cgrp->root = root;
5215        cgrp->level = level;
5216
5217        ret = psi_cgroup_alloc(cgrp);
5218        if (ret)
5219                goto out_kernfs_remove;
5220
5221        ret = cgroup_bpf_inherit(cgrp);
5222        if (ret)
5223                goto out_psi_free;
5224
5225        /*
5226         * New cgroup inherits effective freeze counter, and
5227         * if the parent has to be frozen, the child has too.
5228         */
5229        cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5230        if (cgrp->freezer.e_freeze) {
5231                /*
5232                 * Set the CGRP_FREEZE flag, so when a process will be
5233                 * attached to the child cgroup, it will become frozen.
5234                 * At this point the new cgroup is unpopulated, so we can
5235                 * consider it frozen immediately.
5236                 */
5237                set_bit(CGRP_FREEZE, &cgrp->flags);
5238                set_bit(CGRP_FROZEN, &cgrp->flags);
5239        }
5240
5241        spin_lock_irq(&css_set_lock);
5242        for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5243                cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5244
5245                if (tcgrp != cgrp) {
5246                        tcgrp->nr_descendants++;
5247
5248                        /*
5249                         * If the new cgroup is frozen, all ancestor cgroups
5250                         * get a new frozen descendant, but their state can't
5251                         * change because of this.
5252                         */
5253                        if (cgrp->freezer.e_freeze)
5254                                tcgrp->freezer.nr_frozen_descendants++;
5255                }
5256        }
5257        spin_unlock_irq(&css_set_lock);
5258
5259        if (notify_on_release(parent))
5260                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5261
5262        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5263                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5264
5265        cgrp->self.serial_nr = css_serial_nr_next++;
5266
5267        /* allocation complete, commit to creation */
5268        list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5269        atomic_inc(&root->nr_cgrps);
5270        cgroup_get_live(parent);
5271
5272        /*
5273         * On the default hierarchy, a child doesn't automatically inherit
5274         * subtree_control from the parent.  Each is configured manually.
5275         */
5276        if (!cgroup_on_dfl(cgrp))
5277                cgrp->subtree_control = cgroup_control(cgrp);
5278
5279        cgroup_propagate_control(cgrp);
5280
5281        return cgrp;
5282
5283out_psi_free:
5284        psi_cgroup_free(cgrp);
5285out_kernfs_remove:
5286        kernfs_remove(cgrp->kn);
5287out_stat_exit:
5288        if (cgroup_on_dfl(parent))
5289                cgroup_rstat_exit(cgrp);
5290out_cancel_ref:
5291        percpu_ref_exit(&cgrp->self.refcnt);
5292out_free_cgrp:
5293        kfree(cgrp);
5294        return ERR_PTR(ret);
5295}
5296
5297static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5298{
5299        struct cgroup *cgroup;
5300        int ret = false;
5301        int level = 1;
5302
5303        lockdep_assert_held(&cgroup_mutex);
5304
5305        for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5306                if (cgroup->nr_descendants >= cgroup->max_descendants)
5307                        goto fail;
5308
5309                if (level > cgroup->max_depth)
5310                        goto fail;
5311
5312                level++;
5313        }
5314
5315        ret = true;
5316fail:
5317        return ret;
5318}
5319
5320int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5321{
5322        struct cgroup *parent, *cgrp;
5323        int ret;
5324
5325        /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5326        if (strchr(name, '\n'))
5327                return -EINVAL;
5328
5329        parent = cgroup_kn_lock_live(parent_kn, false);
5330        if (!parent)
5331                return -ENODEV;
5332
5333        if (!cgroup_check_hierarchy_limits(parent)) {
5334                ret = -EAGAIN;
5335                goto out_unlock;
5336        }
5337
5338        cgrp = cgroup_create(parent, name, mode);
5339        if (IS_ERR(cgrp)) {
5340                ret = PTR_ERR(cgrp);
5341                goto out_unlock;
5342        }
5343
5344        /*
5345         * This extra ref will be put in cgroup_free_fn() and guarantees
5346         * that @cgrp->kn is always accessible.
5347         */
5348        kernfs_get(cgrp->kn);
5349
5350        ret = cgroup_kn_set_ugid(cgrp->kn);
5351        if (ret)
5352                goto out_destroy;
5353
5354        ret = css_populate_dir(&cgrp->self);
5355        if (ret)
5356                goto out_destroy;
5357
5358        ret = cgroup_apply_control_enable(cgrp);
5359        if (ret)
5360                goto out_destroy;
5361
5362        TRACE_CGROUP_PATH(mkdir, cgrp);
5363
5364        /* let's create and online css's */
5365        kernfs_activate(cgrp->kn);
5366
5367        ret = 0;
5368        goto out_unlock;
5369
5370out_destroy:
5371        cgroup_destroy_locked(cgrp);
5372out_unlock:
5373        cgroup_kn_unlock(parent_kn);
5374        return ret;
5375}
5376
5377/*
5378 * This is called when the refcnt of a css is confirmed to be killed.
5379 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5380 * initate destruction and put the css ref from kill_css().
5381 */
5382static void css_killed_work_fn(struct work_struct *work)
5383{
5384        struct cgroup_subsys_state *css =
5385                container_of(work, struct cgroup_subsys_state, destroy_work);
5386
5387        mutex_lock(&cgroup_mutex);
5388
5389        do {
5390                offline_css(css);
5391                css_put(css);
5392                /* @css can't go away while we're holding cgroup_mutex */
5393                css = css->parent;
5394        } while (css && atomic_dec_and_test(&css->online_cnt));
5395
5396        mutex_unlock(&cgroup_mutex);
5397}
5398
5399/* css kill confirmation processing requires process context, bounce */
5400static void css_killed_ref_fn(struct percpu_ref *ref)
5401{
5402        struct cgroup_subsys_state *css =
5403                container_of(ref, struct cgroup_subsys_state, refcnt);
5404
5405        if (atomic_dec_and_test(&css->online_cnt)) {
5406                INIT_WORK(&css->destroy_work, css_killed_work_fn);
5407                queue_work(cgroup_destroy_wq, &css->destroy_work);
5408        }
5409}
5410
5411/**
5412 * kill_css - destroy a css
5413 * @css: css to destroy
5414 *
5415 * This function initiates destruction of @css by removing cgroup interface
5416 * files and putting its base reference.  ->css_offline() will be invoked
5417 * asynchronously once css_tryget_online() is guaranteed to fail and when
5418 * the reference count reaches zero, @css will be released.
5419 */
5420static void kill_css(struct cgroup_subsys_state *css)
5421{
5422        lockdep_assert_held(&cgroup_mutex);
5423
5424        if (css->flags & CSS_DYING)
5425                return;
5426
5427        css->flags |= CSS_DYING;
5428
5429        /*
5430         * This must happen before css is disassociated with its cgroup.
5431         * See seq_css() for details.
5432         */
5433        css_clear_dir(css);
5434
5435        /*
5436         * Killing would put the base ref, but we need to keep it alive
5437         * until after ->css_offline().
5438         */
5439        css_get(css);
5440
5441        /*
5442         * cgroup core guarantees that, by the time ->css_offline() is
5443         * invoked, no new css reference will be given out via
5444         * css_tryget_online().  We can't simply call percpu_ref_kill() and
5445         * proceed to offlining css's because percpu_ref_kill() doesn't
5446         * guarantee that the ref is seen as killed on all CPUs on return.
5447         *
5448         * Use percpu_ref_kill_and_confirm() to get notifications as each
5449         * css is confirmed to be seen as killed on all CPUs.
5450         */
5451        percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5452}
5453
5454/**
5455 * cgroup_destroy_locked - the first stage of cgroup destruction
5456 * @cgrp: cgroup to be destroyed
5457 *
5458 * css's make use of percpu refcnts whose killing latency shouldn't be
5459 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5460 * guarantee that css_tryget_online() won't succeed by the time
5461 * ->css_offline() is invoked.  To satisfy all the requirements,
5462 * destruction is implemented in the following two steps.
5463 *
5464 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5465 *     userland visible parts and start killing the percpu refcnts of
5466 *     css's.  Set up so that the next stage will be kicked off once all
5467 *     the percpu refcnts are confirmed to be killed.
5468 *
5469 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5470 *     rest of destruction.  Once all cgroup references are gone, the
5471 *     cgroup is RCU-freed.
5472 *
5473 * This function implements s1.  After this step, @cgrp is gone as far as
5474 * the userland is concerned and a new cgroup with the same name may be
5475 * created.  As cgroup doesn't care about the names internally, this
5476 * doesn't cause any problem.
5477 */
5478static int cgroup_destroy_locked(struct cgroup *cgrp)
5479        __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5480{
5481        struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5482        struct cgroup_subsys_state *css;
5483        struct cgrp_cset_link *link;
5484        int ssid;
5485
5486        lockdep_assert_held(&cgroup_mutex);
5487
5488        /*
5489         * Only migration can raise populated from zero and we're already
5490         * holding cgroup_mutex.
5491         */
5492        if (cgroup_is_populated(cgrp))
5493                return -EBUSY;
5494
5495        /*
5496         * Make sure there's no live children.  We can't test emptiness of
5497         * ->self.children as dead children linger on it while being
5498         * drained; otherwise, "rmdir parent/child parent" may fail.
5499         */
5500        if (css_has_online_children(&cgrp->self))
5501                return -EBUSY;
5502
5503        /*
5504         * Mark @cgrp and the associated csets dead.  The former prevents
5505         * further task migration and child creation by disabling
5506         * cgroup_lock_live_group().  The latter makes the csets ignored by
5507         * the migration path.
5508         */
5509        cgrp->self.flags &= ~CSS_ONLINE;
5510
5511        spin_lock_irq(&css_set_lock);
5512        list_for_each_entry(link, &cgrp->cset_links, cset_link)
5513                link->cset->dead = true;
5514        spin_unlock_irq(&css_set_lock);
5515
5516        /* initiate massacre of all css's */
5517        for_each_css(css, ssid, cgrp)
5518                kill_css(css);
5519
5520        /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5521        css_clear_dir(&cgrp->self);
5522        kernfs_remove(cgrp->kn);
5523
5524        if (parent && cgroup_is_threaded(cgrp))
5525                parent->nr_threaded_children--;
5526
5527        spin_lock_irq(&css_set_lock);
5528        for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5529                tcgrp->nr_descendants--;
5530                tcgrp->nr_dying_descendants++;
5531                /*
5532                 * If the dying cgroup is frozen, decrease frozen descendants
5533                 * counters of ancestor cgroups.
5534                 */
5535                if (test_bit(CGRP_FROZEN, &cgrp->flags))
5536                        tcgrp->freezer.nr_frozen_descendants--;
5537        }
5538        spin_unlock_irq(&css_set_lock);
5539
5540        cgroup1_check_for_release(parent);
5541
5542        cgroup_bpf_offline(cgrp);
5543
5544        /* put the base reference */
5545        percpu_ref_kill(&cgrp->self.refcnt);
5546
5547        return 0;
5548};
5549
5550int cgroup_rmdir(struct kernfs_node *kn)
5551{
5552        struct cgroup *cgrp;
5553        int ret = 0;
5554
5555        cgrp = cgroup_kn_lock_live(kn, false);
5556        if (!cgrp)
5557                return 0;
5558
5559        ret = cgroup_destroy_locked(cgrp);
5560        if (!ret)
5561                TRACE_CGROUP_PATH(rmdir, cgrp);
5562
5563        cgroup_kn_unlock(kn);
5564        return ret;
5565}
5566
5567static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5568        .show_options           = cgroup_show_options,
5569        .mkdir                  = cgroup_mkdir,
5570        .rmdir                  = cgroup_rmdir,
5571        .show_path              = cgroup_show_path,
5572};
5573
5574static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5575{
5576        struct cgroup_subsys_state *css;
5577
5578        pr_debug("Initializing cgroup subsys %s\n", ss->name);
5579
5580        mutex_lock(&cgroup_mutex);
5581
5582        idr_init(&ss->css_idr);
5583        INIT_LIST_HEAD(&ss->cfts);
5584
5585        /* Create the root cgroup state for this subsystem */
5586        ss->root = &cgrp_dfl_root;
5587        css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5588        /* We don't handle early failures gracefully */
5589        BUG_ON(IS_ERR(css));
5590        init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5591
5592        /*
5593         * Root csses are never destroyed and we can't initialize
5594         * percpu_ref during early init.  Disable refcnting.
5595         */
5596        css->flags |= CSS_NO_REF;
5597
5598        if (early) {
5599                /* allocation can't be done safely during early init */
5600                css->id = 1;
5601        } else {
5602                css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5603                BUG_ON(css->id < 0);
5604        }
5605
5606        /* Update the init_css_set to contain a subsys
5607         * pointer to this state - since the subsystem is
5608         * newly registered, all tasks and hence the
5609         * init_css_set is in the subsystem's root cgroup. */
5610        init_css_set.subsys[ss->id] = css;
5611
5612        have_fork_callback |= (bool)ss->fork << ss->id;
5613        have_exit_callback |= (bool)ss->exit << ss->id;
5614        have_release_callback |= (bool)ss->release << ss->id;
5615        have_canfork_callback |= (bool)ss->can_fork << ss->id;
5616
5617        /* At system boot, before all subsystems have been
5618         * registered, no tasks have been forked, so we don't
5619         * need to invoke fork callbacks here. */
5620        BUG_ON(!list_empty(&init_task.tasks));
5621
5622        BUG_ON(online_css(css));
5623
5624        mutex_unlock(&cgroup_mutex);
5625}
5626
5627/**
5628 * cgroup_init_early - cgroup initialization at system boot
5629 *
5630 * Initialize cgroups at system boot, and initialize any
5631 * subsystems that request early init.
5632 */
5633int __init cgroup_init_early(void)
5634{
5635        static struct cgroup_fs_context __initdata ctx;
5636        struct cgroup_subsys *ss;
5637        int i;
5638
5639        ctx.root = &cgrp_dfl_root;
5640        init_cgroup_root(&ctx);
5641        cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5642
5643        RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5644
5645        for_each_subsys(ss, i) {
5646                WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5647                     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5648                     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5649                     ss->id, ss->name);
5650                WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5651                     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5652
5653                ss->id = i;
5654                ss->name = cgroup_subsys_name[i];
5655                if (!ss->legacy_name)
5656                        ss->legacy_name = cgroup_subsys_name[i];
5657
5658                if (ss->early_init)
5659                        cgroup_init_subsys(ss, true);
5660        }
5661        return 0;
5662}
5663
5664static u16 cgroup_disable_mask __initdata;
5665
5666/**
5667 * cgroup_init - cgroup initialization
5668 *
5669 * Register cgroup filesystem and /proc file, and initialize
5670 * any subsystems that didn't request early init.
5671 */
5672int __init cgroup_init(void)
5673{
5674        struct cgroup_subsys *ss;
5675        int ssid;
5676
5677        BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5678        BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5679        BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5680
5681        cgroup_rstat_boot();
5682
5683        /*
5684         * The latency of the synchronize_rcu() is too high for cgroups,
5685         * avoid it at the cost of forcing all readers into the slow path.
5686         */
5687        rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5688
5689        get_user_ns(init_cgroup_ns.user_ns);
5690
5691        mutex_lock(&cgroup_mutex);
5692
5693        /*
5694         * Add init_css_set to the hash table so that dfl_root can link to
5695         * it during init.
5696         */
5697        hash_add(css_set_table, &init_css_set.hlist,
5698                 css_set_hash(init_css_set.subsys));
5699
5700        BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5701
5702        mutex_unlock(&cgroup_mutex);
5703
5704        for_each_subsys(ss, ssid) {
5705                if (ss->early_init) {
5706                        struct cgroup_subsys_state *css =
5707                                init_css_set.subsys[ss->id];
5708
5709                        css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5710                                                   GFP_KERNEL);
5711                        BUG_ON(css->id < 0);
5712                } else {
5713                        cgroup_init_subsys(ss, false);
5714                }
5715
5716                list_add_tail(&init_css_set.e_cset_node[ssid],
5717                              &cgrp_dfl_root.cgrp.e_csets[ssid]);
5718
5719                /*
5720                 * Setting dfl_root subsys_mask needs to consider the
5721                 * disabled flag and cftype registration needs kmalloc,
5722                 * both of which aren't available during early_init.
5723                 */
5724                if (cgroup_disable_mask & (1 << ssid)) {
5725                        static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5726                        printk(KERN_INFO "Disabling %s control group subsystem\n",
5727                               ss->name);
5728                        continue;
5729                }
5730
5731                if (cgroup1_ssid_disabled(ssid))
5732                        printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5733                               ss->name);
5734
5735                cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5736
5737                /* implicit controllers must be threaded too */
5738                WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5739
5740                if (ss->implicit_on_dfl)
5741                        cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5742                else if (!ss->dfl_cftypes)
5743                        cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5744
5745                if (ss->threaded)
5746                        cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5747
5748                if (ss->dfl_cftypes == ss->legacy_cftypes) {
5749                        WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5750                } else {
5751                        WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5752                        WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5753                }
5754
5755                if (ss->bind)
5756                        ss->bind(init_css_set.subsys[ssid]);
5757
5758                mutex_lock(&cgroup_mutex);
5759                css_populate_dir(init_css_set.subsys[ssid]);
5760                mutex_unlock(&cgroup_mutex);
5761        }
5762
5763        /* init_css_set.subsys[] has been updated, re-hash */
5764        hash_del(&init_css_set.hlist);
5765        hash_add(css_set_table, &init_css_set.hlist,
5766                 css_set_hash(init_css_set.subsys));
5767
5768        WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5769        WARN_ON(register_filesystem(&cgroup_fs_type));
5770        WARN_ON(register_filesystem(&cgroup2_fs_type));
5771        WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5772#ifdef CONFIG_CPUSETS
5773        WARN_ON(register_filesystem(&cpuset_fs_type));
5774#endif
5775
5776        return 0;
5777}
5778
5779static int __init cgroup_wq_init(void)
5780{
5781        /*
5782         * There isn't much point in executing destruction path in
5783         * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5784         * Use 1 for @max_active.
5785         *
5786         * We would prefer to do this in cgroup_init() above, but that
5787         * is called before init_workqueues(): so leave this until after.
5788         */
5789        cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5790        BUG_ON(!cgroup_destroy_wq);
5791        return 0;
5792}
5793core_initcall(cgroup_wq_init);
5794
5795void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5796{
5797        struct kernfs_node *kn;
5798
5799        kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5800        if (!kn)
5801                return;
5802        kernfs_path(kn, buf, buflen);
5803        kernfs_put(kn);
5804}
5805
5806/*
5807 * proc_cgroup_show()
5808 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5809 *  - Used for /proc/<pid>/cgroup.
5810 */
5811int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5812                     struct pid *pid, struct task_struct *tsk)
5813{
5814        char *buf;
5815        int retval;
5816        struct cgroup_root *root;
5817
5818        retval = -ENOMEM;
5819        buf = kmalloc(PATH_MAX, GFP_KERNEL);
5820        if (!buf)
5821                goto out;
5822
5823        mutex_lock(&cgroup_mutex);
5824        spin_lock_irq(&css_set_lock);
5825
5826        for_each_root(root) {
5827                struct cgroup_subsys *ss;
5828                struct cgroup *cgrp;
5829                int ssid, count = 0;
5830
5831                if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5832                        continue;
5833
5834                seq_printf(m, "%d:", root->hierarchy_id);
5835                if (root != &cgrp_dfl_root)
5836                        for_each_subsys(ss, ssid)
5837                                if (root->subsys_mask & (1 << ssid))
5838                                        seq_printf(m, "%s%s", count++ ? "," : "",
5839                                                   ss->legacy_name);
5840                if (strlen(root->name))
5841                        seq_printf(m, "%sname=%s", count ? "," : "",
5842                                   root->name);
5843                seq_putc(m, ':');
5844
5845                cgrp = task_cgroup_from_root(tsk, root);
5846
5847                /*
5848                 * On traditional hierarchies, all zombie tasks show up as
5849                 * belonging to the root cgroup.  On the default hierarchy,
5850                 * while a zombie doesn't show up in "cgroup.procs" and
5851                 * thus can't be migrated, its /proc/PID/cgroup keeps
5852                 * reporting the cgroup it belonged to before exiting.  If
5853                 * the cgroup is removed before the zombie is reaped,
5854                 * " (deleted)" is appended to the cgroup path.
5855                 */
5856                if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5857                        retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5858                                                current->nsproxy->cgroup_ns);
5859                        if (retval >= PATH_MAX)
5860                                retval = -ENAMETOOLONG;
5861                        if (retval < 0)
5862                                goto out_unlock;
5863
5864                        seq_puts(m, buf);
5865                } else {
5866                        seq_puts(m, "/");
5867                }
5868
5869                if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5870                        seq_puts(m, " (deleted)\n");
5871                else
5872                        seq_putc(m, '\n');
5873        }
5874
5875        retval = 0;
5876out_unlock:
5877        spin_unlock_irq(&css_set_lock);
5878        mutex_unlock(&cgroup_mutex);
5879        kfree(buf);
5880out:
5881        return retval;
5882}
5883
5884/**
5885 * cgroup_fork - initialize cgroup related fields during copy_process()
5886 * @child: pointer to task_struct of forking parent process.
5887 *
5888 * A task is associated with the init_css_set until cgroup_post_fork()
5889 * attaches it to the target css_set.
5890 */
5891void cgroup_fork(struct task_struct *child)
5892{
5893        RCU_INIT_POINTER(child->cgroups, &init_css_set);
5894        INIT_LIST_HEAD(&child->cg_list);
5895}
5896
5897static struct cgroup *cgroup_get_from_file(struct file *f)
5898{
5899        struct cgroup_subsys_state *css;
5900        struct cgroup *cgrp;
5901
5902        css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5903        if (IS_ERR(css))
5904                return ERR_CAST(css);
5905
5906        cgrp = css->cgroup;
5907        if (!cgroup_on_dfl(cgrp)) {
5908                cgroup_put(cgrp);
5909                return ERR_PTR(-EBADF);
5910        }
5911
5912        return cgrp;
5913}
5914
5915/**
5916 * cgroup_css_set_fork - find or create a css_set for a child process
5917 * @kargs: the arguments passed to create the child process
5918 *
5919 * This functions finds or creates a new css_set which the child
5920 * process will be attached to in cgroup_post_fork(). By default,
5921 * the child process will be given the same css_set as its parent.
5922 *
5923 * If CLONE_INTO_CGROUP is specified this function will try to find an
5924 * existing css_set which includes the requested cgroup and if not create
5925 * a new css_set that the child will be attached to later. If this function
5926 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5927 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5928 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5929 * to the target cgroup.
5930 */
5931static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5932        __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5933{
5934        int ret;
5935        struct cgroup *dst_cgrp = NULL;
5936        struct css_set *cset;
5937        struct super_block *sb;
5938        struct file *f;
5939
5940        if (kargs->flags & CLONE_INTO_CGROUP)
5941                mutex_lock(&cgroup_mutex);
5942
5943        cgroup_threadgroup_change_begin(current);
5944
5945        spin_lock_irq(&css_set_lock);
5946        cset = task_css_set(current);
5947        get_css_set(cset);
5948        spin_unlock_irq(&css_set_lock);
5949
5950        if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5951                kargs->cset = cset;
5952                return 0;
5953        }
5954
5955        f = fget_raw(kargs->cgroup);
5956        if (!f) {
5957                ret = -EBADF;
5958                goto err;
5959        }
5960        sb = f->f_path.dentry->d_sb;
5961
5962        dst_cgrp = cgroup_get_from_file(f);
5963        if (IS_ERR(dst_cgrp)) {
5964                ret = PTR_ERR(dst_cgrp);
5965                dst_cgrp = NULL;
5966                goto err;
5967        }
5968
5969        if (cgroup_is_dead(dst_cgrp)) {
5970                ret = -ENODEV;
5971                goto err;
5972        }
5973
5974        /*
5975         * Verify that we the target cgroup is writable for us. This is
5976         * usually done by the vfs layer but since we're not going through
5977         * the vfs layer here we need to do it "manually".
5978         */
5979        ret = cgroup_may_write(dst_cgrp, sb);
5980        if (ret)
5981                goto err;
5982
5983        ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5984                                        !(kargs->flags & CLONE_THREAD));
5985        if (ret)
5986                goto err;
5987
5988        kargs->cset = find_css_set(cset, dst_cgrp);
5989        if (!kargs->cset) {
5990                ret = -ENOMEM;
5991                goto err;
5992        }
5993
5994        put_css_set(cset);
5995        fput(f);
5996        kargs->cgrp = dst_cgrp;
5997        return ret;
5998
5999err:
6000        cgroup_threadgroup_change_end(current);
6001        mutex_unlock(&cgroup_mutex);
6002        if (f)
6003                fput(f);
6004        if (dst_cgrp)
6005                cgroup_put(dst_cgrp);
6006        put_css_set(cset);
6007        if (kargs->cset)
6008                put_css_set(kargs->cset);
6009        return ret;
6010}
6011
6012/**
6013 * cgroup_css_set_put_fork - drop references we took during fork
6014 * @kargs: the arguments passed to create the child process
6015 *
6016 * Drop references to the prepared css_set and target cgroup if
6017 * CLONE_INTO_CGROUP was requested.
6018 */
6019static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6020        __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6021{
6022        cgroup_threadgroup_change_end(current);
6023
6024        if (kargs->flags & CLONE_INTO_CGROUP) {
6025                struct cgroup *cgrp = kargs->cgrp;
6026                struct css_set *cset = kargs->cset;
6027
6028                mutex_unlock(&cgroup_mutex);
6029
6030                if (cset) {
6031                        put_css_set(cset);
6032                        kargs->cset = NULL;
6033                }
6034
6035                if (cgrp) {
6036                        cgroup_put(cgrp);
6037                        kargs->cgrp = NULL;
6038                }
6039        }
6040}
6041
6042/**
6043 * cgroup_can_fork - called on a new task before the process is exposed
6044 * @child: the child process
6045 *
6046 * This prepares a new css_set for the child process which the child will
6047 * be attached to in cgroup_post_fork().
6048 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6049 * callback returns an error, the fork aborts with that error code. This
6050 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6051 */
6052int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6053{
6054        struct cgroup_subsys *ss;
6055        int i, j, ret;
6056
6057        ret = cgroup_css_set_fork(kargs);
6058        if (ret)
6059                return ret;
6060
6061        do_each_subsys_mask(ss, i, have_canfork_callback) {
6062                ret = ss->can_fork(child, kargs->cset);
6063                if (ret)
6064                        goto out_revert;
6065        } while_each_subsys_mask();
6066
6067        return 0;
6068
6069out_revert:
6070        for_each_subsys(ss, j) {
6071                if (j >= i)
6072                        break;
6073                if (ss->cancel_fork)
6074                        ss->cancel_fork(child, kargs->cset);
6075        }
6076
6077        cgroup_css_set_put_fork(kargs);
6078
6079        return ret;
6080}
6081
6082/**
6083 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6084 * @child: the child process
6085 * @kargs: the arguments passed to create the child process
6086 *
6087 * This calls the cancel_fork() callbacks if a fork failed *after*
6088 * cgroup_can_fork() succeded and cleans up references we took to
6089 * prepare a new css_set for the child process in cgroup_can_fork().
6090 */
6091void cgroup_cancel_fork(struct task_struct *child,
6092                        struct kernel_clone_args *kargs)
6093{
6094        struct cgroup_subsys *ss;
6095        int i;
6096
6097        for_each_subsys(ss, i)
6098                if (ss->cancel_fork)
6099                        ss->cancel_fork(child, kargs->cset);
6100
6101        cgroup_css_set_put_fork(kargs);
6102}
6103
6104/**
6105 * cgroup_post_fork - finalize cgroup setup for the child process
6106 * @child: the child process
6107 *
6108 * Attach the child process to its css_set calling the subsystem fork()
6109 * callbacks.
6110 */
6111void cgroup_post_fork(struct task_struct *child,
6112                      struct kernel_clone_args *kargs)
6113        __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6114{
6115        struct cgroup_subsys *ss;
6116        struct css_set *cset;
6117        int i;
6118
6119        cset = kargs->cset;
6120        kargs->cset = NULL;
6121
6122        spin_lock_irq(&css_set_lock);
6123
6124        /* init tasks are special, only link regular threads */
6125        if (likely(child->pid)) {
6126                WARN_ON_ONCE(!list_empty(&child->cg_list));
6127                cset->nr_tasks++;
6128                css_set_move_task(child, NULL, cset, false);
6129        } else {
6130                put_css_set(cset);
6131                cset = NULL;
6132        }
6133
6134        /*
6135         * If the cgroup has to be frozen, the new task has too.  Let's set
6136         * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6137         * frozen state.
6138         */
6139        if (unlikely(cgroup_task_freeze(child))) {
6140                spin_lock(&child->sighand->siglock);
6141                WARN_ON_ONCE(child->frozen);
6142                child->jobctl |= JOBCTL_TRAP_FREEZE;
6143                spin_unlock(&child->sighand->siglock);
6144
6145                /*
6146                 * Calling cgroup_update_frozen() isn't required here,
6147                 * because it will be called anyway a bit later from
6148                 * do_freezer_trap(). So we avoid cgroup's transient switch
6149                 * from the frozen state and back.
6150                 */
6151        }
6152
6153        spin_unlock_irq(&css_set_lock);
6154
6155        /*
6156         * Call ss->fork().  This must happen after @child is linked on
6157         * css_set; otherwise, @child might change state between ->fork()
6158         * and addition to css_set.
6159         */
6160        do_each_subsys_mask(ss, i, have_fork_callback) {
6161                ss->fork(child);
6162        } while_each_subsys_mask();
6163
6164        /* Make the new cset the root_cset of the new cgroup namespace. */
6165        if (kargs->flags & CLONE_NEWCGROUP) {
6166                struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6167
6168                get_css_set(cset);
6169                child->nsproxy->cgroup_ns->root_cset = cset;
6170                put_css_set(rcset);
6171        }
6172
6173        cgroup_css_set_put_fork(kargs);
6174}
6175
6176/**
6177 * cgroup_exit - detach cgroup from exiting task
6178 * @tsk: pointer to task_struct of exiting process
6179 *
6180 * Description: Detach cgroup from @tsk.
6181 *
6182 */
6183void cgroup_exit(struct task_struct *tsk)
6184{
6185        struct cgroup_subsys *ss;
6186        struct css_set *cset;
6187        int i;
6188
6189        spin_lock_irq(&css_set_lock);
6190
6191        WARN_ON_ONCE(list_empty(&tsk->cg_list));
6192        cset = task_css_set(tsk);
6193        css_set_move_task(tsk, cset, NULL, false);
6194        list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6195        cset->nr_tasks--;
6196
6197        WARN_ON_ONCE(cgroup_task_frozen(tsk));
6198        if (unlikely(cgroup_task_freeze(tsk)))
6199                cgroup_update_frozen(task_dfl_cgroup(tsk));
6200
6201        spin_unlock_irq(&css_set_lock);
6202
6203        /* see cgroup_post_fork() for details */
6204        do_each_subsys_mask(ss, i, have_exit_callback) {
6205                ss->exit(tsk);
6206        } while_each_subsys_mask();
6207}
6208
6209void cgroup_release(struct task_struct *task)
6210{
6211        struct cgroup_subsys *ss;
6212        int ssid;
6213
6214        do_each_subsys_mask(ss, ssid, have_release_callback) {
6215                ss->release(task);
6216        } while_each_subsys_mask();
6217
6218        spin_lock_irq(&css_set_lock);
6219        css_set_skip_task_iters(task_css_set(task), task);
6220        list_del_init(&task->cg_list);
6221        spin_unlock_irq(&css_set_lock);
6222}
6223
6224void cgroup_free(struct task_struct *task)
6225{
6226        struct css_set *cset = task_css_set(task);
6227        put_css_set(cset);
6228}
6229
6230static int __init cgroup_disable(char *str)
6231{
6232        struct cgroup_subsys *ss;
6233        char *token;
6234        int i;
6235
6236        while ((token = strsep(&str, ",")) != NULL) {
6237                if (!*token)
6238                        continue;
6239
6240                for_each_subsys(ss, i) {
6241                        if (strcmp(token, ss->name) &&
6242                            strcmp(token, ss->legacy_name))
6243                                continue;
6244                        cgroup_disable_mask |= 1 << i;
6245                }
6246        }
6247        return 1;
6248}
6249__setup("cgroup_disable=", cgroup_disable);
6250
6251void __init __weak enable_debug_cgroup(void) { }
6252
6253static int __init enable_cgroup_debug(char *str)
6254{
6255        cgroup_debug = true;
6256        enable_debug_cgroup();
6257        return 1;
6258}
6259__setup("cgroup_debug", enable_cgroup_debug);
6260
6261/**
6262 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6263 * @dentry: directory dentry of interest
6264 * @ss: subsystem of interest
6265 *
6266 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6267 * to get the corresponding css and return it.  If such css doesn't exist
6268 * or can't be pinned, an ERR_PTR value is returned.
6269 */
6270struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6271                                                       struct cgroup_subsys *ss)
6272{
6273        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6274        struct file_system_type *s_type = dentry->d_sb->s_type;
6275        struct cgroup_subsys_state *css = NULL;
6276        struct cgroup *cgrp;
6277
6278        /* is @dentry a cgroup dir? */
6279        if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6280            !kn || kernfs_type(kn) != KERNFS_DIR)
6281                return ERR_PTR(-EBADF);
6282
6283        rcu_read_lock();
6284
6285        /*
6286         * This path doesn't originate from kernfs and @kn could already
6287         * have been or be removed at any point.  @kn->priv is RCU
6288         * protected for this access.  See css_release_work_fn() for details.
6289         */
6290        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6291        if (cgrp)
6292                css = cgroup_css(cgrp, ss);
6293
6294        if (!css || !css_tryget_online(css))
6295                css = ERR_PTR(-ENOENT);
6296
6297        rcu_read_unlock();
6298        return css;
6299}
6300
6301/**
6302 * css_from_id - lookup css by id
6303 * @id: the cgroup id
6304 * @ss: cgroup subsys to be looked into
6305 *
6306 * Returns the css if there's valid one with @id, otherwise returns NULL.
6307 * Should be called under rcu_read_lock().
6308 */
6309struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6310{
6311        WARN_ON_ONCE(!rcu_read_lock_held());
6312        return idr_find(&ss->css_idr, id);
6313}
6314
6315/**
6316 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6317 * @path: path on the default hierarchy
6318 *
6319 * Find the cgroup at @path on the default hierarchy, increment its
6320 * reference count and return it.  Returns pointer to the found cgroup on
6321 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6322 * if @path points to a non-directory.
6323 */
6324struct cgroup *cgroup_get_from_path(const char *path)
6325{
6326        struct kernfs_node *kn;
6327        struct cgroup *cgrp;
6328
6329        mutex_lock(&cgroup_mutex);
6330
6331        kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6332        if (kn) {
6333                if (kernfs_type(kn) == KERNFS_DIR) {
6334                        cgrp = kn->priv;
6335                        cgroup_get_live(cgrp);
6336                } else {
6337                        cgrp = ERR_PTR(-ENOTDIR);
6338                }
6339                kernfs_put(kn);
6340        } else {
6341                cgrp = ERR_PTR(-ENOENT);
6342        }
6343
6344        mutex_unlock(&cgroup_mutex);
6345        return cgrp;
6346}
6347EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6348
6349/**
6350 * cgroup_get_from_fd - get a cgroup pointer from a fd
6351 * @fd: fd obtained by open(cgroup2_dir)
6352 *
6353 * Find the cgroup from a fd which should be obtained
6354 * by opening a cgroup directory.  Returns a pointer to the
6355 * cgroup on success. ERR_PTR is returned if the cgroup
6356 * cannot be found.
6357 */
6358struct cgroup *cgroup_get_from_fd(int fd)
6359{
6360        struct cgroup *cgrp;
6361        struct file *f;
6362
6363        f = fget_raw(fd);
6364        if (!f)
6365                return ERR_PTR(-EBADF);
6366
6367        cgrp = cgroup_get_from_file(f);
6368        fput(f);
6369        return cgrp;
6370}
6371EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6372
6373static u64 power_of_ten(int power)
6374{
6375        u64 v = 1;
6376        while (power--)
6377                v *= 10;
6378        return v;
6379}
6380
6381/**
6382 * cgroup_parse_float - parse a floating number
6383 * @input: input string
6384 * @dec_shift: number of decimal digits to shift
6385 * @v: output
6386 *
6387 * Parse a decimal floating point number in @input and store the result in
6388 * @v with decimal point right shifted @dec_shift times.  For example, if
6389 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6390 * Returns 0 on success, -errno otherwise.
6391 *
6392 * There's nothing cgroup specific about this function except that it's
6393 * currently the only user.
6394 */
6395int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6396{
6397        s64 whole, frac = 0;
6398        int fstart = 0, fend = 0, flen;
6399
6400        if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6401                return -EINVAL;
6402        if (frac < 0)
6403                return -EINVAL;
6404
6405        flen = fend > fstart ? fend - fstart : 0;
6406        if (flen < dec_shift)
6407                frac *= power_of_ten(dec_shift - flen);
6408        else
6409                frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6410
6411        *v = whole * power_of_ten(dec_shift) + frac;
6412        return 0;
6413}
6414
6415/*
6416 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6417 * definition in cgroup-defs.h.
6418 */
6419#ifdef CONFIG_SOCK_CGROUP_DATA
6420
6421#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6422
6423DEFINE_SPINLOCK(cgroup_sk_update_lock);
6424static bool cgroup_sk_alloc_disabled __read_mostly;
6425
6426void cgroup_sk_alloc_disable(void)
6427{
6428        if (cgroup_sk_alloc_disabled)
6429                return;
6430        pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6431        cgroup_sk_alloc_disabled = true;
6432}
6433
6434#else
6435
6436#define cgroup_sk_alloc_disabled        false
6437
6438#endif
6439
6440void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6441{
6442        if (cgroup_sk_alloc_disabled) {
6443                skcd->no_refcnt = 1;
6444                return;
6445        }
6446
6447        /* Don't associate the sock with unrelated interrupted task's cgroup. */
6448        if (in_interrupt())
6449                return;
6450
6451        rcu_read_lock();
6452
6453        while (true) {
6454                struct css_set *cset;
6455
6456                cset = task_css_set(current);
6457                if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6458                        skcd->val = (unsigned long)cset->dfl_cgrp;
6459                        cgroup_bpf_get(cset->dfl_cgrp);
6460                        break;
6461                }
6462                cpu_relax();
6463        }
6464
6465        rcu_read_unlock();
6466}
6467
6468void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6469{
6470        if (skcd->val) {
6471                if (skcd->no_refcnt)
6472                        return;
6473                /*
6474                 * We might be cloning a socket which is left in an empty
6475                 * cgroup and the cgroup might have already been rmdir'd.
6476                 * Don't use cgroup_get_live().
6477                 */
6478                cgroup_get(sock_cgroup_ptr(skcd));
6479                cgroup_bpf_get(sock_cgroup_ptr(skcd));
6480        }
6481}
6482
6483void cgroup_sk_free(struct sock_cgroup_data *skcd)
6484{
6485        struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6486
6487        if (skcd->no_refcnt)
6488                return;
6489        cgroup_bpf_put(cgrp);
6490        cgroup_put(cgrp);
6491}
6492
6493#endif  /* CONFIG_SOCK_CGROUP_DATA */
6494
6495#ifdef CONFIG_CGROUP_BPF
6496int cgroup_bpf_attach(struct cgroup *cgrp,
6497                      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6498                      struct bpf_cgroup_link *link,
6499                      enum bpf_attach_type type,
6500                      u32 flags)
6501{
6502        int ret;
6503
6504        mutex_lock(&cgroup_mutex);
6505        ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6506        mutex_unlock(&cgroup_mutex);
6507        return ret;
6508}
6509
6510int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6511                      enum bpf_attach_type type)
6512{
6513        int ret;
6514
6515        mutex_lock(&cgroup_mutex);
6516        ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6517        mutex_unlock(&cgroup_mutex);
6518        return ret;
6519}
6520
6521int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6522                     union bpf_attr __user *uattr)
6523{
6524        int ret;
6525
6526        mutex_lock(&cgroup_mutex);
6527        ret = __cgroup_bpf_query(cgrp, attr, uattr);
6528        mutex_unlock(&cgroup_mutex);
6529        return ret;
6530}
6531#endif /* CONFIG_CGROUP_BPF */
6532
6533#ifdef CONFIG_SYSFS
6534static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6535                                      ssize_t size, const char *prefix)
6536{
6537        struct cftype *cft;
6538        ssize_t ret = 0;
6539
6540        for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6541                if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6542                        continue;
6543
6544                if (prefix)
6545                        ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6546
6547                ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6548
6549                if (WARN_ON(ret >= size))
6550                        break;
6551        }
6552
6553        return ret;
6554}
6555
6556static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6557                              char *buf)
6558{
6559        struct cgroup_subsys *ss;
6560        int ssid;
6561        ssize_t ret = 0;
6562
6563        ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6564                                     NULL);
6565
6566        for_each_subsys(ss, ssid)
6567                ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6568                                              PAGE_SIZE - ret,
6569                                              cgroup_subsys_name[ssid]);
6570
6571        return ret;
6572}
6573static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6574
6575static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6576                             char *buf)
6577{
6578        return snprintf(buf, PAGE_SIZE,
6579                        "nsdelegate\n"
6580                        "memory_localevents\n"
6581                        "memory_recursiveprot\n");
6582}
6583static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6584
6585static struct attribute *cgroup_sysfs_attrs[] = {
6586        &cgroup_delegate_attr.attr,
6587        &cgroup_features_attr.attr,
6588        NULL,
6589};
6590
6591static const struct attribute_group cgroup_sysfs_attr_group = {
6592        .attrs = cgroup_sysfs_attrs,
6593        .name = "cgroup",
6594};
6595
6596static int __init cgroup_sysfs_init(void)
6597{
6598        return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6599}
6600subsys_initcall(cgroup_sysfs_init);
6601
6602#endif /* CONFIG_SYSFS */
6603