linux/kernel/cgroup/cpuset.c
<<
>>
Prefs
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/fs_context.h>
  43#include <linux/namei.h>
  44#include <linux/pagemap.h>
  45#include <linux/proc_fs.h>
  46#include <linux/rcupdate.h>
  47#include <linux/sched.h>
  48#include <linux/sched/deadline.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/seq_file.h>
  52#include <linux/security.h>
  53#include <linux/slab.h>
  54#include <linux/spinlock.h>
  55#include <linux/stat.h>
  56#include <linux/string.h>
  57#include <linux/time.h>
  58#include <linux/time64.h>
  59#include <linux/backing-dev.h>
  60#include <linux/sort.h>
  61#include <linux/oom.h>
  62#include <linux/sched/isolation.h>
  63#include <linux/uaccess.h>
  64#include <linux/atomic.h>
  65#include <linux/mutex.h>
  66#include <linux/cgroup.h>
  67#include <linux/wait.h>
  68
  69DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
  70DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
  71
  72/* See "Frequency meter" comments, below. */
  73
  74struct fmeter {
  75        int cnt;                /* unprocessed events count */
  76        int val;                /* most recent output value */
  77        time64_t time;          /* clock (secs) when val computed */
  78        spinlock_t lock;        /* guards read or write of above */
  79};
  80
  81struct cpuset {
  82        struct cgroup_subsys_state css;
  83
  84        unsigned long flags;            /* "unsigned long" so bitops work */
  85
  86        /*
  87         * On default hierarchy:
  88         *
  89         * The user-configured masks can only be changed by writing to
  90         * cpuset.cpus and cpuset.mems, and won't be limited by the
  91         * parent masks.
  92         *
  93         * The effective masks is the real masks that apply to the tasks
  94         * in the cpuset. They may be changed if the configured masks are
  95         * changed or hotplug happens.
  96         *
  97         * effective_mask == configured_mask & parent's effective_mask,
  98         * and if it ends up empty, it will inherit the parent's mask.
  99         *
 100         *
 101         * On legacy hierachy:
 102         *
 103         * The user-configured masks are always the same with effective masks.
 104         */
 105
 106        /* user-configured CPUs and Memory Nodes allow to tasks */
 107        cpumask_var_t cpus_allowed;
 108        nodemask_t mems_allowed;
 109
 110        /* effective CPUs and Memory Nodes allow to tasks */
 111        cpumask_var_t effective_cpus;
 112        nodemask_t effective_mems;
 113
 114        /*
 115         * CPUs allocated to child sub-partitions (default hierarchy only)
 116         * - CPUs granted by the parent = effective_cpus U subparts_cpus
 117         * - effective_cpus and subparts_cpus are mutually exclusive.
 118         *
 119         * effective_cpus contains only onlined CPUs, but subparts_cpus
 120         * may have offlined ones.
 121         */
 122        cpumask_var_t subparts_cpus;
 123
 124        /*
 125         * This is old Memory Nodes tasks took on.
 126         *
 127         * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
 128         * - A new cpuset's old_mems_allowed is initialized when some
 129         *   task is moved into it.
 130         * - old_mems_allowed is used in cpuset_migrate_mm() when we change
 131         *   cpuset.mems_allowed and have tasks' nodemask updated, and
 132         *   then old_mems_allowed is updated to mems_allowed.
 133         */
 134        nodemask_t old_mems_allowed;
 135
 136        struct fmeter fmeter;           /* memory_pressure filter */
 137
 138        /*
 139         * Tasks are being attached to this cpuset.  Used to prevent
 140         * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
 141         */
 142        int attach_in_progress;
 143
 144        /* partition number for rebuild_sched_domains() */
 145        int pn;
 146
 147        /* for custom sched domain */
 148        int relax_domain_level;
 149
 150        /* number of CPUs in subparts_cpus */
 151        int nr_subparts_cpus;
 152
 153        /* partition root state */
 154        int partition_root_state;
 155
 156        /*
 157         * Default hierarchy only:
 158         * use_parent_ecpus - set if using parent's effective_cpus
 159         * child_ecpus_count - # of children with use_parent_ecpus set
 160         */
 161        int use_parent_ecpus;
 162        int child_ecpus_count;
 163};
 164
 165/*
 166 * Partition root states:
 167 *
 168 *   0 - not a partition root
 169 *
 170 *   1 - partition root
 171 *
 172 *  -1 - invalid partition root
 173 *       None of the cpus in cpus_allowed can be put into the parent's
 174 *       subparts_cpus. In this case, the cpuset is not a real partition
 175 *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
 176 *       and the cpuset can be restored back to a partition root if the
 177 *       parent cpuset can give more CPUs back to this child cpuset.
 178 */
 179#define PRS_DISABLED            0
 180#define PRS_ENABLED             1
 181#define PRS_ERROR               -1
 182
 183/*
 184 * Temporary cpumasks for working with partitions that are passed among
 185 * functions to avoid memory allocation in inner functions.
 186 */
 187struct tmpmasks {
 188        cpumask_var_t addmask, delmask; /* For partition root */
 189        cpumask_var_t new_cpus;         /* For update_cpumasks_hier() */
 190};
 191
 192static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
 193{
 194        return css ? container_of(css, struct cpuset, css) : NULL;
 195}
 196
 197/* Retrieve the cpuset for a task */
 198static inline struct cpuset *task_cs(struct task_struct *task)
 199{
 200        return css_cs(task_css(task, cpuset_cgrp_id));
 201}
 202
 203static inline struct cpuset *parent_cs(struct cpuset *cs)
 204{
 205        return css_cs(cs->css.parent);
 206}
 207
 208/* bits in struct cpuset flags field */
 209typedef enum {
 210        CS_ONLINE,
 211        CS_CPU_EXCLUSIVE,
 212        CS_MEM_EXCLUSIVE,
 213        CS_MEM_HARDWALL,
 214        CS_MEMORY_MIGRATE,
 215        CS_SCHED_LOAD_BALANCE,
 216        CS_SPREAD_PAGE,
 217        CS_SPREAD_SLAB,
 218} cpuset_flagbits_t;
 219
 220/* convenient tests for these bits */
 221static inline bool is_cpuset_online(struct cpuset *cs)
 222{
 223        return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
 224}
 225
 226static inline int is_cpu_exclusive(const struct cpuset *cs)
 227{
 228        return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 229}
 230
 231static inline int is_mem_exclusive(const struct cpuset *cs)
 232{
 233        return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 234}
 235
 236static inline int is_mem_hardwall(const struct cpuset *cs)
 237{
 238        return test_bit(CS_MEM_HARDWALL, &cs->flags);
 239}
 240
 241static inline int is_sched_load_balance(const struct cpuset *cs)
 242{
 243        return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 244}
 245
 246static inline int is_memory_migrate(const struct cpuset *cs)
 247{
 248        return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 249}
 250
 251static inline int is_spread_page(const struct cpuset *cs)
 252{
 253        return test_bit(CS_SPREAD_PAGE, &cs->flags);
 254}
 255
 256static inline int is_spread_slab(const struct cpuset *cs)
 257{
 258        return test_bit(CS_SPREAD_SLAB, &cs->flags);
 259}
 260
 261static inline int is_partition_root(const struct cpuset *cs)
 262{
 263        return cs->partition_root_state > 0;
 264}
 265
 266static struct cpuset top_cpuset = {
 267        .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 268                  (1 << CS_MEM_EXCLUSIVE)),
 269        .partition_root_state = PRS_ENABLED,
 270};
 271
 272/**
 273 * cpuset_for_each_child - traverse online children of a cpuset
 274 * @child_cs: loop cursor pointing to the current child
 275 * @pos_css: used for iteration
 276 * @parent_cs: target cpuset to walk children of
 277 *
 278 * Walk @child_cs through the online children of @parent_cs.  Must be used
 279 * with RCU read locked.
 280 */
 281#define cpuset_for_each_child(child_cs, pos_css, parent_cs)             \
 282        css_for_each_child((pos_css), &(parent_cs)->css)                \
 283                if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
 284
 285/**
 286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 287 * @des_cs: loop cursor pointing to the current descendant
 288 * @pos_css: used for iteration
 289 * @root_cs: target cpuset to walk ancestor of
 290 *
 291 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 292 * with RCU read locked.  The caller may modify @pos_css by calling
 293 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 294 * iteration and the first node to be visited.
 295 */
 296#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)        \
 297        css_for_each_descendant_pre((pos_css), &(root_cs)->css)         \
 298                if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
 299
 300/*
 301 * There are two global locks guarding cpuset structures - cpuset_mutex and
 302 * callback_lock. We also require taking task_lock() when dereferencing a
 303 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 304 * comment.
 305 *
 306 * A task must hold both locks to modify cpusets.  If a task holds
 307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 308 * is the only task able to also acquire callback_lock and be able to
 309 * modify cpusets.  It can perform various checks on the cpuset structure
 310 * first, knowing nothing will change.  It can also allocate memory while
 311 * just holding cpuset_mutex.  While it is performing these checks, various
 312 * callback routines can briefly acquire callback_lock to query cpusets.
 313 * Once it is ready to make the changes, it takes callback_lock, blocking
 314 * everyone else.
 315 *
 316 * Calls to the kernel memory allocator can not be made while holding
 317 * callback_lock, as that would risk double tripping on callback_lock
 318 * from one of the callbacks into the cpuset code from within
 319 * __alloc_pages().
 320 *
 321 * If a task is only holding callback_lock, then it has read-only
 322 * access to cpusets.
 323 *
 324 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 325 * by other task, we use alloc_lock in the task_struct fields to protect
 326 * them.
 327 *
 328 * The cpuset_common_file_read() handlers only hold callback_lock across
 329 * small pieces of code, such as when reading out possibly multi-word
 330 * cpumasks and nodemasks.
 331 *
 332 * Accessing a task's cpuset should be done in accordance with the
 333 * guidelines for accessing subsystem state in kernel/cgroup.c
 334 */
 335
 336DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
 337
 338void cpuset_read_lock(void)
 339{
 340        percpu_down_read(&cpuset_rwsem);
 341}
 342
 343void cpuset_read_unlock(void)
 344{
 345        percpu_up_read(&cpuset_rwsem);
 346}
 347
 348static DEFINE_SPINLOCK(callback_lock);
 349
 350static struct workqueue_struct *cpuset_migrate_mm_wq;
 351
 352/*
 353 * CPU / memory hotplug is handled asynchronously.
 354 */
 355static void cpuset_hotplug_workfn(struct work_struct *work);
 356static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 357
 358static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 359
 360/*
 361 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
 362 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
 363 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
 364 * With v2 behavior, "cpus" and "mems" are always what the users have
 365 * requested and won't be changed by hotplug events. Only the effective
 366 * cpus or mems will be affected.
 367 */
 368static inline bool is_in_v2_mode(void)
 369{
 370        return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
 371              (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
 372}
 373
 374/*
 375 * Return in pmask the portion of a cpusets's cpus_allowed that
 376 * are online.  If none are online, walk up the cpuset hierarchy
 377 * until we find one that does have some online cpus.
 378 *
 379 * One way or another, we guarantee to return some non-empty subset
 380 * of cpu_online_mask.
 381 *
 382 * Call with callback_lock or cpuset_mutex held.
 383 */
 384static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
 385{
 386        while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
 387                cs = parent_cs(cs);
 388                if (unlikely(!cs)) {
 389                        /*
 390                         * The top cpuset doesn't have any online cpu as a
 391                         * consequence of a race between cpuset_hotplug_work
 392                         * and cpu hotplug notifier.  But we know the top
 393                         * cpuset's effective_cpus is on its way to to be
 394                         * identical to cpu_online_mask.
 395                         */
 396                        cpumask_copy(pmask, cpu_online_mask);
 397                        return;
 398                }
 399        }
 400        cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
 401}
 402
 403/*
 404 * Return in *pmask the portion of a cpusets's mems_allowed that
 405 * are online, with memory.  If none are online with memory, walk
 406 * up the cpuset hierarchy until we find one that does have some
 407 * online mems.  The top cpuset always has some mems online.
 408 *
 409 * One way or another, we guarantee to return some non-empty subset
 410 * of node_states[N_MEMORY].
 411 *
 412 * Call with callback_lock or cpuset_mutex held.
 413 */
 414static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 415{
 416        while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 417                cs = parent_cs(cs);
 418        nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 419}
 420
 421/*
 422 * update task's spread flag if cpuset's page/slab spread flag is set
 423 *
 424 * Call with callback_lock or cpuset_mutex held.
 425 */
 426static void cpuset_update_task_spread_flag(struct cpuset *cs,
 427                                        struct task_struct *tsk)
 428{
 429        if (is_spread_page(cs))
 430                task_set_spread_page(tsk);
 431        else
 432                task_clear_spread_page(tsk);
 433
 434        if (is_spread_slab(cs))
 435                task_set_spread_slab(tsk);
 436        else
 437                task_clear_spread_slab(tsk);
 438}
 439
 440/*
 441 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 442 *
 443 * One cpuset is a subset of another if all its allowed CPUs and
 444 * Memory Nodes are a subset of the other, and its exclusive flags
 445 * are only set if the other's are set.  Call holding cpuset_mutex.
 446 */
 447
 448static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 449{
 450        return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 451                nodes_subset(p->mems_allowed, q->mems_allowed) &&
 452                is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 453                is_mem_exclusive(p) <= is_mem_exclusive(q);
 454}
 455
 456/**
 457 * alloc_cpumasks - allocate three cpumasks for cpuset
 458 * @cs:  the cpuset that have cpumasks to be allocated.
 459 * @tmp: the tmpmasks structure pointer
 460 * Return: 0 if successful, -ENOMEM otherwise.
 461 *
 462 * Only one of the two input arguments should be non-NULL.
 463 */
 464static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 465{
 466        cpumask_var_t *pmask1, *pmask2, *pmask3;
 467
 468        if (cs) {
 469                pmask1 = &cs->cpus_allowed;
 470                pmask2 = &cs->effective_cpus;
 471                pmask3 = &cs->subparts_cpus;
 472        } else {
 473                pmask1 = &tmp->new_cpus;
 474                pmask2 = &tmp->addmask;
 475                pmask3 = &tmp->delmask;
 476        }
 477
 478        if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
 479                return -ENOMEM;
 480
 481        if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
 482                goto free_one;
 483
 484        if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
 485                goto free_two;
 486
 487        return 0;
 488
 489free_two:
 490        free_cpumask_var(*pmask2);
 491free_one:
 492        free_cpumask_var(*pmask1);
 493        return -ENOMEM;
 494}
 495
 496/**
 497 * free_cpumasks - free cpumasks in a tmpmasks structure
 498 * @cs:  the cpuset that have cpumasks to be free.
 499 * @tmp: the tmpmasks structure pointer
 500 */
 501static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 502{
 503        if (cs) {
 504                free_cpumask_var(cs->cpus_allowed);
 505                free_cpumask_var(cs->effective_cpus);
 506                free_cpumask_var(cs->subparts_cpus);
 507        }
 508        if (tmp) {
 509                free_cpumask_var(tmp->new_cpus);
 510                free_cpumask_var(tmp->addmask);
 511                free_cpumask_var(tmp->delmask);
 512        }
 513}
 514
 515/**
 516 * alloc_trial_cpuset - allocate a trial cpuset
 517 * @cs: the cpuset that the trial cpuset duplicates
 518 */
 519static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 520{
 521        struct cpuset *trial;
 522
 523        trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 524        if (!trial)
 525                return NULL;
 526
 527        if (alloc_cpumasks(trial, NULL)) {
 528                kfree(trial);
 529                return NULL;
 530        }
 531
 532        cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 533        cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 534        return trial;
 535}
 536
 537/**
 538 * free_cpuset - free the cpuset
 539 * @cs: the cpuset to be freed
 540 */
 541static inline void free_cpuset(struct cpuset *cs)
 542{
 543        free_cpumasks(cs, NULL);
 544        kfree(cs);
 545}
 546
 547/*
 548 * validate_change() - Used to validate that any proposed cpuset change
 549 *                     follows the structural rules for cpusets.
 550 *
 551 * If we replaced the flag and mask values of the current cpuset
 552 * (cur) with those values in the trial cpuset (trial), would
 553 * our various subset and exclusive rules still be valid?  Presumes
 554 * cpuset_mutex held.
 555 *
 556 * 'cur' is the address of an actual, in-use cpuset.  Operations
 557 * such as list traversal that depend on the actual address of the
 558 * cpuset in the list must use cur below, not trial.
 559 *
 560 * 'trial' is the address of bulk structure copy of cur, with
 561 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 562 * or flags changed to new, trial values.
 563 *
 564 * Return 0 if valid, -errno if not.
 565 */
 566
 567static int validate_change(struct cpuset *cur, struct cpuset *trial)
 568{
 569        struct cgroup_subsys_state *css;
 570        struct cpuset *c, *par;
 571        int ret;
 572
 573        rcu_read_lock();
 574
 575        /* Each of our child cpusets must be a subset of us */
 576        ret = -EBUSY;
 577        cpuset_for_each_child(c, css, cur)
 578                if (!is_cpuset_subset(c, trial))
 579                        goto out;
 580
 581        /* Remaining checks don't apply to root cpuset */
 582        ret = 0;
 583        if (cur == &top_cpuset)
 584                goto out;
 585
 586        par = parent_cs(cur);
 587
 588        /* On legacy hiearchy, we must be a subset of our parent cpuset. */
 589        ret = -EACCES;
 590        if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
 591                goto out;
 592
 593        /*
 594         * If either I or some sibling (!= me) is exclusive, we can't
 595         * overlap
 596         */
 597        ret = -EINVAL;
 598        cpuset_for_each_child(c, css, par) {
 599                if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 600                    c != cur &&
 601                    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 602                        goto out;
 603                if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 604                    c != cur &&
 605                    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 606                        goto out;
 607        }
 608
 609        /*
 610         * Cpusets with tasks - existing or newly being attached - can't
 611         * be changed to have empty cpus_allowed or mems_allowed.
 612         */
 613        ret = -ENOSPC;
 614        if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
 615                if (!cpumask_empty(cur->cpus_allowed) &&
 616                    cpumask_empty(trial->cpus_allowed))
 617                        goto out;
 618                if (!nodes_empty(cur->mems_allowed) &&
 619                    nodes_empty(trial->mems_allowed))
 620                        goto out;
 621        }
 622
 623        /*
 624         * We can't shrink if we won't have enough room for SCHED_DEADLINE
 625         * tasks.
 626         */
 627        ret = -EBUSY;
 628        if (is_cpu_exclusive(cur) &&
 629            !cpuset_cpumask_can_shrink(cur->cpus_allowed,
 630                                       trial->cpus_allowed))
 631                goto out;
 632
 633        ret = 0;
 634out:
 635        rcu_read_unlock();
 636        return ret;
 637}
 638
 639#ifdef CONFIG_SMP
 640/*
 641 * Helper routine for generate_sched_domains().
 642 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 643 */
 644static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 645{
 646        return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 647}
 648
 649static void
 650update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 651{
 652        if (dattr->relax_domain_level < c->relax_domain_level)
 653                dattr->relax_domain_level = c->relax_domain_level;
 654        return;
 655}
 656
 657static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 658                                    struct cpuset *root_cs)
 659{
 660        struct cpuset *cp;
 661        struct cgroup_subsys_state *pos_css;
 662
 663        rcu_read_lock();
 664        cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 665                /* skip the whole subtree if @cp doesn't have any CPU */
 666                if (cpumask_empty(cp->cpus_allowed)) {
 667                        pos_css = css_rightmost_descendant(pos_css);
 668                        continue;
 669                }
 670
 671                if (is_sched_load_balance(cp))
 672                        update_domain_attr(dattr, cp);
 673        }
 674        rcu_read_unlock();
 675}
 676
 677/* Must be called with cpuset_mutex held.  */
 678static inline int nr_cpusets(void)
 679{
 680        /* jump label reference count + the top-level cpuset */
 681        return static_key_count(&cpusets_enabled_key.key) + 1;
 682}
 683
 684/*
 685 * generate_sched_domains()
 686 *
 687 * This function builds a partial partition of the systems CPUs
 688 * A 'partial partition' is a set of non-overlapping subsets whose
 689 * union is a subset of that set.
 690 * The output of this function needs to be passed to kernel/sched/core.c
 691 * partition_sched_domains() routine, which will rebuild the scheduler's
 692 * load balancing domains (sched domains) as specified by that partial
 693 * partition.
 694 *
 695 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
 696 * for a background explanation of this.
 697 *
 698 * Does not return errors, on the theory that the callers of this
 699 * routine would rather not worry about failures to rebuild sched
 700 * domains when operating in the severe memory shortage situations
 701 * that could cause allocation failures below.
 702 *
 703 * Must be called with cpuset_mutex held.
 704 *
 705 * The three key local variables below are:
 706 *    cp - cpuset pointer, used (together with pos_css) to perform a
 707 *         top-down scan of all cpusets. For our purposes, rebuilding
 708 *         the schedulers sched domains, we can ignore !is_sched_load_
 709 *         balance cpusets.
 710 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 711 *         that need to be load balanced, for convenient iterative
 712 *         access by the subsequent code that finds the best partition,
 713 *         i.e the set of domains (subsets) of CPUs such that the
 714 *         cpus_allowed of every cpuset marked is_sched_load_balance
 715 *         is a subset of one of these domains, while there are as
 716 *         many such domains as possible, each as small as possible.
 717 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 718 *         the kernel/sched/core.c routine partition_sched_domains() in a
 719 *         convenient format, that can be easily compared to the prior
 720 *         value to determine what partition elements (sched domains)
 721 *         were changed (added or removed.)
 722 *
 723 * Finding the best partition (set of domains):
 724 *      The triple nested loops below over i, j, k scan over the
 725 *      load balanced cpusets (using the array of cpuset pointers in
 726 *      csa[]) looking for pairs of cpusets that have overlapping
 727 *      cpus_allowed, but which don't have the same 'pn' partition
 728 *      number and gives them in the same partition number.  It keeps
 729 *      looping on the 'restart' label until it can no longer find
 730 *      any such pairs.
 731 *
 732 *      The union of the cpus_allowed masks from the set of
 733 *      all cpusets having the same 'pn' value then form the one
 734 *      element of the partition (one sched domain) to be passed to
 735 *      partition_sched_domains().
 736 */
 737static int generate_sched_domains(cpumask_var_t **domains,
 738                        struct sched_domain_attr **attributes)
 739{
 740        struct cpuset *cp;      /* top-down scan of cpusets */
 741        struct cpuset **csa;    /* array of all cpuset ptrs */
 742        int csn;                /* how many cpuset ptrs in csa so far */
 743        int i, j, k;            /* indices for partition finding loops */
 744        cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
 745        struct sched_domain_attr *dattr;  /* attributes for custom domains */
 746        int ndoms = 0;          /* number of sched domains in result */
 747        int nslot;              /* next empty doms[] struct cpumask slot */
 748        struct cgroup_subsys_state *pos_css;
 749        bool root_load_balance = is_sched_load_balance(&top_cpuset);
 750
 751        doms = NULL;
 752        dattr = NULL;
 753        csa = NULL;
 754
 755        /* Special case for the 99% of systems with one, full, sched domain */
 756        if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
 757                ndoms = 1;
 758                doms = alloc_sched_domains(ndoms);
 759                if (!doms)
 760                        goto done;
 761
 762                dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 763                if (dattr) {
 764                        *dattr = SD_ATTR_INIT;
 765                        update_domain_attr_tree(dattr, &top_cpuset);
 766                }
 767                cpumask_and(doms[0], top_cpuset.effective_cpus,
 768                            housekeeping_cpumask(HK_FLAG_DOMAIN));
 769
 770                goto done;
 771        }
 772
 773        csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
 774        if (!csa)
 775                goto done;
 776        csn = 0;
 777
 778        rcu_read_lock();
 779        if (root_load_balance)
 780                csa[csn++] = &top_cpuset;
 781        cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 782                if (cp == &top_cpuset)
 783                        continue;
 784                /*
 785                 * Continue traversing beyond @cp iff @cp has some CPUs and
 786                 * isn't load balancing.  The former is obvious.  The
 787                 * latter: All child cpusets contain a subset of the
 788                 * parent's cpus, so just skip them, and then we call
 789                 * update_domain_attr_tree() to calc relax_domain_level of
 790                 * the corresponding sched domain.
 791                 *
 792                 * If root is load-balancing, we can skip @cp if it
 793                 * is a subset of the root's effective_cpus.
 794                 */
 795                if (!cpumask_empty(cp->cpus_allowed) &&
 796                    !(is_sched_load_balance(cp) &&
 797                      cpumask_intersects(cp->cpus_allowed,
 798                                         housekeeping_cpumask(HK_FLAG_DOMAIN))))
 799                        continue;
 800
 801                if (root_load_balance &&
 802                    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
 803                        continue;
 804
 805                if (is_sched_load_balance(cp) &&
 806                    !cpumask_empty(cp->effective_cpus))
 807                        csa[csn++] = cp;
 808
 809                /* skip @cp's subtree if not a partition root */
 810                if (!is_partition_root(cp))
 811                        pos_css = css_rightmost_descendant(pos_css);
 812        }
 813        rcu_read_unlock();
 814
 815        for (i = 0; i < csn; i++)
 816                csa[i]->pn = i;
 817        ndoms = csn;
 818
 819restart:
 820        /* Find the best partition (set of sched domains) */
 821        for (i = 0; i < csn; i++) {
 822                struct cpuset *a = csa[i];
 823                int apn = a->pn;
 824
 825                for (j = 0; j < csn; j++) {
 826                        struct cpuset *b = csa[j];
 827                        int bpn = b->pn;
 828
 829                        if (apn != bpn && cpusets_overlap(a, b)) {
 830                                for (k = 0; k < csn; k++) {
 831                                        struct cpuset *c = csa[k];
 832
 833                                        if (c->pn == bpn)
 834                                                c->pn = apn;
 835                                }
 836                                ndoms--;        /* one less element */
 837                                goto restart;
 838                        }
 839                }
 840        }
 841
 842        /*
 843         * Now we know how many domains to create.
 844         * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 845         */
 846        doms = alloc_sched_domains(ndoms);
 847        if (!doms)
 848                goto done;
 849
 850        /*
 851         * The rest of the code, including the scheduler, can deal with
 852         * dattr==NULL case. No need to abort if alloc fails.
 853         */
 854        dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
 855                              GFP_KERNEL);
 856
 857        for (nslot = 0, i = 0; i < csn; i++) {
 858                struct cpuset *a = csa[i];
 859                struct cpumask *dp;
 860                int apn = a->pn;
 861
 862                if (apn < 0) {
 863                        /* Skip completed partitions */
 864                        continue;
 865                }
 866
 867                dp = doms[nslot];
 868
 869                if (nslot == ndoms) {
 870                        static int warnings = 10;
 871                        if (warnings) {
 872                                pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
 873                                        nslot, ndoms, csn, i, apn);
 874                                warnings--;
 875                        }
 876                        continue;
 877                }
 878
 879                cpumask_clear(dp);
 880                if (dattr)
 881                        *(dattr + nslot) = SD_ATTR_INIT;
 882                for (j = i; j < csn; j++) {
 883                        struct cpuset *b = csa[j];
 884
 885                        if (apn == b->pn) {
 886                                cpumask_or(dp, dp, b->effective_cpus);
 887                                cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
 888                                if (dattr)
 889                                        update_domain_attr_tree(dattr + nslot, b);
 890
 891                                /* Done with this partition */
 892                                b->pn = -1;
 893                        }
 894                }
 895                nslot++;
 896        }
 897        BUG_ON(nslot != ndoms);
 898
 899done:
 900        kfree(csa);
 901
 902        /*
 903         * Fallback to the default domain if kmalloc() failed.
 904         * See comments in partition_sched_domains().
 905         */
 906        if (doms == NULL)
 907                ndoms = 1;
 908
 909        *domains    = doms;
 910        *attributes = dattr;
 911        return ndoms;
 912}
 913
 914static void update_tasks_root_domain(struct cpuset *cs)
 915{
 916        struct css_task_iter it;
 917        struct task_struct *task;
 918
 919        css_task_iter_start(&cs->css, 0, &it);
 920
 921        while ((task = css_task_iter_next(&it)))
 922                dl_add_task_root_domain(task);
 923
 924        css_task_iter_end(&it);
 925}
 926
 927static void rebuild_root_domains(void)
 928{
 929        struct cpuset *cs = NULL;
 930        struct cgroup_subsys_state *pos_css;
 931
 932        percpu_rwsem_assert_held(&cpuset_rwsem);
 933        lockdep_assert_cpus_held();
 934        lockdep_assert_held(&sched_domains_mutex);
 935
 936        rcu_read_lock();
 937
 938        /*
 939         * Clear default root domain DL accounting, it will be computed again
 940         * if a task belongs to it.
 941         */
 942        dl_clear_root_domain(&def_root_domain);
 943
 944        cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
 945
 946                if (cpumask_empty(cs->effective_cpus)) {
 947                        pos_css = css_rightmost_descendant(pos_css);
 948                        continue;
 949                }
 950
 951                css_get(&cs->css);
 952
 953                rcu_read_unlock();
 954
 955                update_tasks_root_domain(cs);
 956
 957                rcu_read_lock();
 958                css_put(&cs->css);
 959        }
 960        rcu_read_unlock();
 961}
 962
 963static void
 964partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 965                                    struct sched_domain_attr *dattr_new)
 966{
 967        mutex_lock(&sched_domains_mutex);
 968        partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
 969        rebuild_root_domains();
 970        mutex_unlock(&sched_domains_mutex);
 971}
 972
 973/*
 974 * Rebuild scheduler domains.
 975 *
 976 * If the flag 'sched_load_balance' of any cpuset with non-empty
 977 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 978 * which has that flag enabled, or if any cpuset with a non-empty
 979 * 'cpus' is removed, then call this routine to rebuild the
 980 * scheduler's dynamic sched domains.
 981 *
 982 * Call with cpuset_mutex held.  Takes get_online_cpus().
 983 */
 984static void rebuild_sched_domains_locked(void)
 985{
 986        struct sched_domain_attr *attr;
 987        cpumask_var_t *doms;
 988        int ndoms;
 989
 990        lockdep_assert_cpus_held();
 991        percpu_rwsem_assert_held(&cpuset_rwsem);
 992
 993        /*
 994         * We have raced with CPU hotplug. Don't do anything to avoid
 995         * passing doms with offlined cpu to partition_sched_domains().
 996         * Anyways, hotplug work item will rebuild sched domains.
 997         */
 998        if (!top_cpuset.nr_subparts_cpus &&
 999            !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1000                return;
1001
1002        if (top_cpuset.nr_subparts_cpus &&
1003           !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
1004                return;
1005
1006        /* Generate domain masks and attrs */
1007        ndoms = generate_sched_domains(&doms, &attr);
1008
1009        /* Have scheduler rebuild the domains */
1010        partition_and_rebuild_sched_domains(ndoms, doms, attr);
1011}
1012#else /* !CONFIG_SMP */
1013static void rebuild_sched_domains_locked(void)
1014{
1015}
1016#endif /* CONFIG_SMP */
1017
1018void rebuild_sched_domains(void)
1019{
1020        get_online_cpus();
1021        percpu_down_write(&cpuset_rwsem);
1022        rebuild_sched_domains_locked();
1023        percpu_up_write(&cpuset_rwsem);
1024        put_online_cpus();
1025}
1026
1027/**
1028 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1029 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1030 *
1031 * Iterate through each task of @cs updating its cpus_allowed to the
1032 * effective cpuset's.  As this function is called with cpuset_mutex held,
1033 * cpuset membership stays stable.
1034 */
1035static void update_tasks_cpumask(struct cpuset *cs)
1036{
1037        struct css_task_iter it;
1038        struct task_struct *task;
1039
1040        css_task_iter_start(&cs->css, 0, &it);
1041        while ((task = css_task_iter_next(&it)))
1042                set_cpus_allowed_ptr(task, cs->effective_cpus);
1043        css_task_iter_end(&it);
1044}
1045
1046/**
1047 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1048 * @new_cpus: the temp variable for the new effective_cpus mask
1049 * @cs: the cpuset the need to recompute the new effective_cpus mask
1050 * @parent: the parent cpuset
1051 *
1052 * If the parent has subpartition CPUs, include them in the list of
1053 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1054 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1055 * to mask those out.
1056 */
1057static void compute_effective_cpumask(struct cpumask *new_cpus,
1058                                      struct cpuset *cs, struct cpuset *parent)
1059{
1060        if (parent->nr_subparts_cpus) {
1061                cpumask_or(new_cpus, parent->effective_cpus,
1062                           parent->subparts_cpus);
1063                cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1064                cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1065        } else {
1066                cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1067        }
1068}
1069
1070/*
1071 * Commands for update_parent_subparts_cpumask
1072 */
1073enum subparts_cmd {
1074        partcmd_enable,         /* Enable partition root         */
1075        partcmd_disable,        /* Disable partition root        */
1076        partcmd_update,         /* Update parent's subparts_cpus */
1077};
1078
1079/**
1080 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1081 * @cpuset:  The cpuset that requests change in partition root state
1082 * @cmd:     Partition root state change command
1083 * @newmask: Optional new cpumask for partcmd_update
1084 * @tmp:     Temporary addmask and delmask
1085 * Return:   0, 1 or an error code
1086 *
1087 * For partcmd_enable, the cpuset is being transformed from a non-partition
1088 * root to a partition root. The cpus_allowed mask of the given cpuset will
1089 * be put into parent's subparts_cpus and taken away from parent's
1090 * effective_cpus. The function will return 0 if all the CPUs listed in
1091 * cpus_allowed can be granted or an error code will be returned.
1092 *
1093 * For partcmd_disable, the cpuset is being transofrmed from a partition
1094 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1095 * parent's subparts_cpus will be taken away from that cpumask and put back
1096 * into parent's effective_cpus. 0 should always be returned.
1097 *
1098 * For partcmd_update, if the optional newmask is specified, the cpu
1099 * list is to be changed from cpus_allowed to newmask. Otherwise,
1100 * cpus_allowed is assumed to remain the same. The cpuset should either
1101 * be a partition root or an invalid partition root. The partition root
1102 * state may change if newmask is NULL and none of the requested CPUs can
1103 * be granted by the parent. The function will return 1 if changes to
1104 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1105 * Error code should only be returned when newmask is non-NULL.
1106 *
1107 * The partcmd_enable and partcmd_disable commands are used by
1108 * update_prstate(). The partcmd_update command is used by
1109 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1110 * newmask set.
1111 *
1112 * The checking is more strict when enabling partition root than the
1113 * other two commands.
1114 *
1115 * Because of the implicit cpu exclusive nature of a partition root,
1116 * cpumask changes that violates the cpu exclusivity rule will not be
1117 * permitted when checked by validate_change(). The validate_change()
1118 * function will also prevent any changes to the cpu list if it is not
1119 * a superset of children's cpu lists.
1120 */
1121static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1122                                          struct cpumask *newmask,
1123                                          struct tmpmasks *tmp)
1124{
1125        struct cpuset *parent = parent_cs(cpuset);
1126        int adding;     /* Moving cpus from effective_cpus to subparts_cpus */
1127        int deleting;   /* Moving cpus from subparts_cpus to effective_cpus */
1128        bool part_error = false;        /* Partition error? */
1129
1130        percpu_rwsem_assert_held(&cpuset_rwsem);
1131
1132        /*
1133         * The parent must be a partition root.
1134         * The new cpumask, if present, or the current cpus_allowed must
1135         * not be empty.
1136         */
1137        if (!is_partition_root(parent) ||
1138           (newmask && cpumask_empty(newmask)) ||
1139           (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1140                return -EINVAL;
1141
1142        /*
1143         * Enabling/disabling partition root is not allowed if there are
1144         * online children.
1145         */
1146        if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1147                return -EBUSY;
1148
1149        /*
1150         * Enabling partition root is not allowed if not all the CPUs
1151         * can be granted from parent's effective_cpus or at least one
1152         * CPU will be left after that.
1153         */
1154        if ((cmd == partcmd_enable) &&
1155           (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1156             cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1157                return -EINVAL;
1158
1159        /*
1160         * A cpumask update cannot make parent's effective_cpus become empty.
1161         */
1162        adding = deleting = false;
1163        if (cmd == partcmd_enable) {
1164                cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1165                adding = true;
1166        } else if (cmd == partcmd_disable) {
1167                deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1168                                       parent->subparts_cpus);
1169        } else if (newmask) {
1170                /*
1171                 * partcmd_update with newmask:
1172                 *
1173                 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1174                 * addmask = newmask & parent->effective_cpus
1175                 *                   & ~parent->subparts_cpus
1176                 */
1177                cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1178                deleting = cpumask_and(tmp->delmask, tmp->delmask,
1179                                       parent->subparts_cpus);
1180
1181                cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1182                adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1183                                        parent->subparts_cpus);
1184                /*
1185                 * Return error if the new effective_cpus could become empty.
1186                 */
1187                if (adding &&
1188                    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1189                        if (!deleting)
1190                                return -EINVAL;
1191                        /*
1192                         * As some of the CPUs in subparts_cpus might have
1193                         * been offlined, we need to compute the real delmask
1194                         * to confirm that.
1195                         */
1196                        if (!cpumask_and(tmp->addmask, tmp->delmask,
1197                                         cpu_active_mask))
1198                                return -EINVAL;
1199                        cpumask_copy(tmp->addmask, parent->effective_cpus);
1200                }
1201        } else {
1202                /*
1203                 * partcmd_update w/o newmask:
1204                 *
1205                 * addmask = cpus_allowed & parent->effectiveb_cpus
1206                 *
1207                 * Note that parent's subparts_cpus may have been
1208                 * pre-shrunk in case there is a change in the cpu list.
1209                 * So no deletion is needed.
1210                 */
1211                adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1212                                     parent->effective_cpus);
1213                part_error = cpumask_equal(tmp->addmask,
1214                                           parent->effective_cpus);
1215        }
1216
1217        if (cmd == partcmd_update) {
1218                int prev_prs = cpuset->partition_root_state;
1219
1220                /*
1221                 * Check for possible transition between PRS_ENABLED
1222                 * and PRS_ERROR.
1223                 */
1224                switch (cpuset->partition_root_state) {
1225                case PRS_ENABLED:
1226                        if (part_error)
1227                                cpuset->partition_root_state = PRS_ERROR;
1228                        break;
1229                case PRS_ERROR:
1230                        if (!part_error)
1231                                cpuset->partition_root_state = PRS_ENABLED;
1232                        break;
1233                }
1234                /*
1235                 * Set part_error if previously in invalid state.
1236                 */
1237                part_error = (prev_prs == PRS_ERROR);
1238        }
1239
1240        if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1241                return 0;       /* Nothing need to be done */
1242
1243        if (cpuset->partition_root_state == PRS_ERROR) {
1244                /*
1245                 * Remove all its cpus from parent's subparts_cpus.
1246                 */
1247                adding = false;
1248                deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1249                                       parent->subparts_cpus);
1250        }
1251
1252        if (!adding && !deleting)
1253                return 0;
1254
1255        /*
1256         * Change the parent's subparts_cpus.
1257         * Newly added CPUs will be removed from effective_cpus and
1258         * newly deleted ones will be added back to effective_cpus.
1259         */
1260        spin_lock_irq(&callback_lock);
1261        if (adding) {
1262                cpumask_or(parent->subparts_cpus,
1263                           parent->subparts_cpus, tmp->addmask);
1264                cpumask_andnot(parent->effective_cpus,
1265                               parent->effective_cpus, tmp->addmask);
1266        }
1267        if (deleting) {
1268                cpumask_andnot(parent->subparts_cpus,
1269                               parent->subparts_cpus, tmp->delmask);
1270                /*
1271                 * Some of the CPUs in subparts_cpus might have been offlined.
1272                 */
1273                cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1274                cpumask_or(parent->effective_cpus,
1275                           parent->effective_cpus, tmp->delmask);
1276        }
1277
1278        parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1279        spin_unlock_irq(&callback_lock);
1280
1281        return cmd == partcmd_update;
1282}
1283
1284/*
1285 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1286 * @cs:  the cpuset to consider
1287 * @tmp: temp variables for calculating effective_cpus & partition setup
1288 *
1289 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1290 * and all its descendants need to be updated.
1291 *
1292 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1293 *
1294 * Called with cpuset_mutex held
1295 */
1296static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1297{
1298        struct cpuset *cp;
1299        struct cgroup_subsys_state *pos_css;
1300        bool need_rebuild_sched_domains = false;
1301
1302        rcu_read_lock();
1303        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1304                struct cpuset *parent = parent_cs(cp);
1305
1306                compute_effective_cpumask(tmp->new_cpus, cp, parent);
1307
1308                /*
1309                 * If it becomes empty, inherit the effective mask of the
1310                 * parent, which is guaranteed to have some CPUs.
1311                 */
1312                if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1313                        cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1314                        if (!cp->use_parent_ecpus) {
1315                                cp->use_parent_ecpus = true;
1316                                parent->child_ecpus_count++;
1317                        }
1318                } else if (cp->use_parent_ecpus) {
1319                        cp->use_parent_ecpus = false;
1320                        WARN_ON_ONCE(!parent->child_ecpus_count);
1321                        parent->child_ecpus_count--;
1322                }
1323
1324                /*
1325                 * Skip the whole subtree if the cpumask remains the same
1326                 * and has no partition root state.
1327                 */
1328                if (!cp->partition_root_state &&
1329                    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1330                        pos_css = css_rightmost_descendant(pos_css);
1331                        continue;
1332                }
1333
1334                /*
1335                 * update_parent_subparts_cpumask() should have been called
1336                 * for cs already in update_cpumask(). We should also call
1337                 * update_tasks_cpumask() again for tasks in the parent
1338                 * cpuset if the parent's subparts_cpus changes.
1339                 */
1340                if ((cp != cs) && cp->partition_root_state) {
1341                        switch (parent->partition_root_state) {
1342                        case PRS_DISABLED:
1343                                /*
1344                                 * If parent is not a partition root or an
1345                                 * invalid partition root, clear the state
1346                                 * state and the CS_CPU_EXCLUSIVE flag.
1347                                 */
1348                                WARN_ON_ONCE(cp->partition_root_state
1349                                             != PRS_ERROR);
1350                                cp->partition_root_state = 0;
1351
1352                                /*
1353                                 * clear_bit() is an atomic operation and
1354                                 * readers aren't interested in the state
1355                                 * of CS_CPU_EXCLUSIVE anyway. So we can
1356                                 * just update the flag without holding
1357                                 * the callback_lock.
1358                                 */
1359                                clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1360                                break;
1361
1362                        case PRS_ENABLED:
1363                                if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1364                                        update_tasks_cpumask(parent);
1365                                break;
1366
1367                        case PRS_ERROR:
1368                                /*
1369                                 * When parent is invalid, it has to be too.
1370                                 */
1371                                cp->partition_root_state = PRS_ERROR;
1372                                if (cp->nr_subparts_cpus) {
1373                                        cp->nr_subparts_cpus = 0;
1374                                        cpumask_clear(cp->subparts_cpus);
1375                                }
1376                                break;
1377                        }
1378                }
1379
1380                if (!css_tryget_online(&cp->css))
1381                        continue;
1382                rcu_read_unlock();
1383
1384                spin_lock_irq(&callback_lock);
1385
1386                cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1387                if (cp->nr_subparts_cpus &&
1388                   (cp->partition_root_state != PRS_ENABLED)) {
1389                        cp->nr_subparts_cpus = 0;
1390                        cpumask_clear(cp->subparts_cpus);
1391                } else if (cp->nr_subparts_cpus) {
1392                        /*
1393                         * Make sure that effective_cpus & subparts_cpus
1394                         * are mutually exclusive.
1395                         *
1396                         * In the unlikely event that effective_cpus
1397                         * becomes empty. we clear cp->nr_subparts_cpus and
1398                         * let its child partition roots to compete for
1399                         * CPUs again.
1400                         */
1401                        cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1402                                       cp->subparts_cpus);
1403                        if (cpumask_empty(cp->effective_cpus)) {
1404                                cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1405                                cpumask_clear(cp->subparts_cpus);
1406                                cp->nr_subparts_cpus = 0;
1407                        } else if (!cpumask_subset(cp->subparts_cpus,
1408                                                   tmp->new_cpus)) {
1409                                cpumask_andnot(cp->subparts_cpus,
1410                                        cp->subparts_cpus, tmp->new_cpus);
1411                                cp->nr_subparts_cpus
1412                                        = cpumask_weight(cp->subparts_cpus);
1413                        }
1414                }
1415                spin_unlock_irq(&callback_lock);
1416
1417                WARN_ON(!is_in_v2_mode() &&
1418                        !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1419
1420                update_tasks_cpumask(cp);
1421
1422                /*
1423                 * On legacy hierarchy, if the effective cpumask of any non-
1424                 * empty cpuset is changed, we need to rebuild sched domains.
1425                 * On default hierarchy, the cpuset needs to be a partition
1426                 * root as well.
1427                 */
1428                if (!cpumask_empty(cp->cpus_allowed) &&
1429                    is_sched_load_balance(cp) &&
1430                   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1431                    is_partition_root(cp)))
1432                        need_rebuild_sched_domains = true;
1433
1434                rcu_read_lock();
1435                css_put(&cp->css);
1436        }
1437        rcu_read_unlock();
1438
1439        if (need_rebuild_sched_domains)
1440                rebuild_sched_domains_locked();
1441}
1442
1443/**
1444 * update_sibling_cpumasks - Update siblings cpumasks
1445 * @parent:  Parent cpuset
1446 * @cs:      Current cpuset
1447 * @tmp:     Temp variables
1448 */
1449static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1450                                    struct tmpmasks *tmp)
1451{
1452        struct cpuset *sibling;
1453        struct cgroup_subsys_state *pos_css;
1454
1455        /*
1456         * Check all its siblings and call update_cpumasks_hier()
1457         * if their use_parent_ecpus flag is set in order for them
1458         * to use the right effective_cpus value.
1459         */
1460        rcu_read_lock();
1461        cpuset_for_each_child(sibling, pos_css, parent) {
1462                if (sibling == cs)
1463                        continue;
1464                if (!sibling->use_parent_ecpus)
1465                        continue;
1466
1467                update_cpumasks_hier(sibling, tmp);
1468        }
1469        rcu_read_unlock();
1470}
1471
1472/**
1473 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1474 * @cs: the cpuset to consider
1475 * @trialcs: trial cpuset
1476 * @buf: buffer of cpu numbers written to this cpuset
1477 */
1478static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1479                          const char *buf)
1480{
1481        int retval;
1482        struct tmpmasks tmp;
1483
1484        /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1485        if (cs == &top_cpuset)
1486                return -EACCES;
1487
1488        /*
1489         * An empty cpus_allowed is ok only if the cpuset has no tasks.
1490         * Since cpulist_parse() fails on an empty mask, we special case
1491         * that parsing.  The validate_change() call ensures that cpusets
1492         * with tasks have cpus.
1493         */
1494        if (!*buf) {
1495                cpumask_clear(trialcs->cpus_allowed);
1496        } else {
1497                retval = cpulist_parse(buf, trialcs->cpus_allowed);
1498                if (retval < 0)
1499                        return retval;
1500
1501                if (!cpumask_subset(trialcs->cpus_allowed,
1502                                    top_cpuset.cpus_allowed))
1503                        return -EINVAL;
1504        }
1505
1506        /* Nothing to do if the cpus didn't change */
1507        if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1508                return 0;
1509
1510        retval = validate_change(cs, trialcs);
1511        if (retval < 0)
1512                return retval;
1513
1514#ifdef CONFIG_CPUMASK_OFFSTACK
1515        /*
1516         * Use the cpumasks in trialcs for tmpmasks when they are pointers
1517         * to allocated cpumasks.
1518         */
1519        tmp.addmask  = trialcs->subparts_cpus;
1520        tmp.delmask  = trialcs->effective_cpus;
1521        tmp.new_cpus = trialcs->cpus_allowed;
1522#endif
1523
1524        if (cs->partition_root_state) {
1525                /* Cpumask of a partition root cannot be empty */
1526                if (cpumask_empty(trialcs->cpus_allowed))
1527                        return -EINVAL;
1528                if (update_parent_subparts_cpumask(cs, partcmd_update,
1529                                        trialcs->cpus_allowed, &tmp) < 0)
1530                        return -EINVAL;
1531        }
1532
1533        spin_lock_irq(&callback_lock);
1534        cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1535
1536        /*
1537         * Make sure that subparts_cpus is a subset of cpus_allowed.
1538         */
1539        if (cs->nr_subparts_cpus) {
1540                cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1541                               cs->cpus_allowed);
1542                cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1543        }
1544        spin_unlock_irq(&callback_lock);
1545
1546        update_cpumasks_hier(cs, &tmp);
1547
1548        if (cs->partition_root_state) {
1549                struct cpuset *parent = parent_cs(cs);
1550
1551                /*
1552                 * For partition root, update the cpumasks of sibling
1553                 * cpusets if they use parent's effective_cpus.
1554                 */
1555                if (parent->child_ecpus_count)
1556                        update_sibling_cpumasks(parent, cs, &tmp);
1557        }
1558        return 0;
1559}
1560
1561/*
1562 * Migrate memory region from one set of nodes to another.  This is
1563 * performed asynchronously as it can be called from process migration path
1564 * holding locks involved in process management.  All mm migrations are
1565 * performed in the queued order and can be waited for by flushing
1566 * cpuset_migrate_mm_wq.
1567 */
1568
1569struct cpuset_migrate_mm_work {
1570        struct work_struct      work;
1571        struct mm_struct        *mm;
1572        nodemask_t              from;
1573        nodemask_t              to;
1574};
1575
1576static void cpuset_migrate_mm_workfn(struct work_struct *work)
1577{
1578        struct cpuset_migrate_mm_work *mwork =
1579                container_of(work, struct cpuset_migrate_mm_work, work);
1580
1581        /* on a wq worker, no need to worry about %current's mems_allowed */
1582        do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1583        mmput(mwork->mm);
1584        kfree(mwork);
1585}
1586
1587static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1588                                                        const nodemask_t *to)
1589{
1590        struct cpuset_migrate_mm_work *mwork;
1591
1592        mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1593        if (mwork) {
1594                mwork->mm = mm;
1595                mwork->from = *from;
1596                mwork->to = *to;
1597                INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1598                queue_work(cpuset_migrate_mm_wq, &mwork->work);
1599        } else {
1600                mmput(mm);
1601        }
1602}
1603
1604static void cpuset_post_attach(void)
1605{
1606        flush_workqueue(cpuset_migrate_mm_wq);
1607}
1608
1609/*
1610 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1611 * @tsk: the task to change
1612 * @newmems: new nodes that the task will be set
1613 *
1614 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1615 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1616 * parallel, it might temporarily see an empty intersection, which results in
1617 * a seqlock check and retry before OOM or allocation failure.
1618 */
1619static void cpuset_change_task_nodemask(struct task_struct *tsk,
1620                                        nodemask_t *newmems)
1621{
1622        task_lock(tsk);
1623
1624        local_irq_disable();
1625        write_seqcount_begin(&tsk->mems_allowed_seq);
1626
1627        nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1628        mpol_rebind_task(tsk, newmems);
1629        tsk->mems_allowed = *newmems;
1630
1631        write_seqcount_end(&tsk->mems_allowed_seq);
1632        local_irq_enable();
1633
1634        task_unlock(tsk);
1635}
1636
1637static void *cpuset_being_rebound;
1638
1639/**
1640 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1641 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1642 *
1643 * Iterate through each task of @cs updating its mems_allowed to the
1644 * effective cpuset's.  As this function is called with cpuset_mutex held,
1645 * cpuset membership stays stable.
1646 */
1647static void update_tasks_nodemask(struct cpuset *cs)
1648{
1649        static nodemask_t newmems;      /* protected by cpuset_mutex */
1650        struct css_task_iter it;
1651        struct task_struct *task;
1652
1653        cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
1654
1655        guarantee_online_mems(cs, &newmems);
1656
1657        /*
1658         * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1659         * take while holding tasklist_lock.  Forks can happen - the
1660         * mpol_dup() cpuset_being_rebound check will catch such forks,
1661         * and rebind their vma mempolicies too.  Because we still hold
1662         * the global cpuset_mutex, we know that no other rebind effort
1663         * will be contending for the global variable cpuset_being_rebound.
1664         * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1665         * is idempotent.  Also migrate pages in each mm to new nodes.
1666         */
1667        css_task_iter_start(&cs->css, 0, &it);
1668        while ((task = css_task_iter_next(&it))) {
1669                struct mm_struct *mm;
1670                bool migrate;
1671
1672                cpuset_change_task_nodemask(task, &newmems);
1673
1674                mm = get_task_mm(task);
1675                if (!mm)
1676                        continue;
1677
1678                migrate = is_memory_migrate(cs);
1679
1680                mpol_rebind_mm(mm, &cs->mems_allowed);
1681                if (migrate)
1682                        cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1683                else
1684                        mmput(mm);
1685        }
1686        css_task_iter_end(&it);
1687
1688        /*
1689         * All the tasks' nodemasks have been updated, update
1690         * cs->old_mems_allowed.
1691         */
1692        cs->old_mems_allowed = newmems;
1693
1694        /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1695        cpuset_being_rebound = NULL;
1696}
1697
1698/*
1699 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1700 * @cs: the cpuset to consider
1701 * @new_mems: a temp variable for calculating new effective_mems
1702 *
1703 * When configured nodemask is changed, the effective nodemasks of this cpuset
1704 * and all its descendants need to be updated.
1705 *
1706 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1707 *
1708 * Called with cpuset_mutex held
1709 */
1710static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1711{
1712        struct cpuset *cp;
1713        struct cgroup_subsys_state *pos_css;
1714
1715        rcu_read_lock();
1716        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1717                struct cpuset *parent = parent_cs(cp);
1718
1719                nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1720
1721                /*
1722                 * If it becomes empty, inherit the effective mask of the
1723                 * parent, which is guaranteed to have some MEMs.
1724                 */
1725                if (is_in_v2_mode() && nodes_empty(*new_mems))
1726                        *new_mems = parent->effective_mems;
1727
1728                /* Skip the whole subtree if the nodemask remains the same. */
1729                if (nodes_equal(*new_mems, cp->effective_mems)) {
1730                        pos_css = css_rightmost_descendant(pos_css);
1731                        continue;
1732                }
1733
1734                if (!css_tryget_online(&cp->css))
1735                        continue;
1736                rcu_read_unlock();
1737
1738                spin_lock_irq(&callback_lock);
1739                cp->effective_mems = *new_mems;
1740                spin_unlock_irq(&callback_lock);
1741
1742                WARN_ON(!is_in_v2_mode() &&
1743                        !nodes_equal(cp->mems_allowed, cp->effective_mems));
1744
1745                update_tasks_nodemask(cp);
1746
1747                rcu_read_lock();
1748                css_put(&cp->css);
1749        }
1750        rcu_read_unlock();
1751}
1752
1753/*
1754 * Handle user request to change the 'mems' memory placement
1755 * of a cpuset.  Needs to validate the request, update the
1756 * cpusets mems_allowed, and for each task in the cpuset,
1757 * update mems_allowed and rebind task's mempolicy and any vma
1758 * mempolicies and if the cpuset is marked 'memory_migrate',
1759 * migrate the tasks pages to the new memory.
1760 *
1761 * Call with cpuset_mutex held. May take callback_lock during call.
1762 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1763 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1764 * their mempolicies to the cpusets new mems_allowed.
1765 */
1766static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1767                           const char *buf)
1768{
1769        int retval;
1770
1771        /*
1772         * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1773         * it's read-only
1774         */
1775        if (cs == &top_cpuset) {
1776                retval = -EACCES;
1777                goto done;
1778        }
1779
1780        /*
1781         * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1782         * Since nodelist_parse() fails on an empty mask, we special case
1783         * that parsing.  The validate_change() call ensures that cpusets
1784         * with tasks have memory.
1785         */
1786        if (!*buf) {
1787                nodes_clear(trialcs->mems_allowed);
1788        } else {
1789                retval = nodelist_parse(buf, trialcs->mems_allowed);
1790                if (retval < 0)
1791                        goto done;
1792
1793                if (!nodes_subset(trialcs->mems_allowed,
1794                                  top_cpuset.mems_allowed)) {
1795                        retval = -EINVAL;
1796                        goto done;
1797                }
1798        }
1799
1800        if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1801                retval = 0;             /* Too easy - nothing to do */
1802                goto done;
1803        }
1804        retval = validate_change(cs, trialcs);
1805        if (retval < 0)
1806                goto done;
1807
1808        spin_lock_irq(&callback_lock);
1809        cs->mems_allowed = trialcs->mems_allowed;
1810        spin_unlock_irq(&callback_lock);
1811
1812        /* use trialcs->mems_allowed as a temp variable */
1813        update_nodemasks_hier(cs, &trialcs->mems_allowed);
1814done:
1815        return retval;
1816}
1817
1818bool current_cpuset_is_being_rebound(void)
1819{
1820        bool ret;
1821
1822        rcu_read_lock();
1823        ret = task_cs(current) == cpuset_being_rebound;
1824        rcu_read_unlock();
1825
1826        return ret;
1827}
1828
1829static int update_relax_domain_level(struct cpuset *cs, s64 val)
1830{
1831#ifdef CONFIG_SMP
1832        if (val < -1 || val >= sched_domain_level_max)
1833                return -EINVAL;
1834#endif
1835
1836        if (val != cs->relax_domain_level) {
1837                cs->relax_domain_level = val;
1838                if (!cpumask_empty(cs->cpus_allowed) &&
1839                    is_sched_load_balance(cs))
1840                        rebuild_sched_domains_locked();
1841        }
1842
1843        return 0;
1844}
1845
1846/**
1847 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1848 * @cs: the cpuset in which each task's spread flags needs to be changed
1849 *
1850 * Iterate through each task of @cs updating its spread flags.  As this
1851 * function is called with cpuset_mutex held, cpuset membership stays
1852 * stable.
1853 */
1854static void update_tasks_flags(struct cpuset *cs)
1855{
1856        struct css_task_iter it;
1857        struct task_struct *task;
1858
1859        css_task_iter_start(&cs->css, 0, &it);
1860        while ((task = css_task_iter_next(&it)))
1861                cpuset_update_task_spread_flag(cs, task);
1862        css_task_iter_end(&it);
1863}
1864
1865/*
1866 * update_flag - read a 0 or a 1 in a file and update associated flag
1867 * bit:         the bit to update (see cpuset_flagbits_t)
1868 * cs:          the cpuset to update
1869 * turning_on:  whether the flag is being set or cleared
1870 *
1871 * Call with cpuset_mutex held.
1872 */
1873
1874static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1875                       int turning_on)
1876{
1877        struct cpuset *trialcs;
1878        int balance_flag_changed;
1879        int spread_flag_changed;
1880        int err;
1881
1882        trialcs = alloc_trial_cpuset(cs);
1883        if (!trialcs)
1884                return -ENOMEM;
1885
1886        if (turning_on)
1887                set_bit(bit, &trialcs->flags);
1888        else
1889                clear_bit(bit, &trialcs->flags);
1890
1891        err = validate_change(cs, trialcs);
1892        if (err < 0)
1893                goto out;
1894
1895        balance_flag_changed = (is_sched_load_balance(cs) !=
1896                                is_sched_load_balance(trialcs));
1897
1898        spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1899                        || (is_spread_page(cs) != is_spread_page(trialcs)));
1900
1901        spin_lock_irq(&callback_lock);
1902        cs->flags = trialcs->flags;
1903        spin_unlock_irq(&callback_lock);
1904
1905        if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1906                rebuild_sched_domains_locked();
1907
1908        if (spread_flag_changed)
1909                update_tasks_flags(cs);
1910out:
1911        free_cpuset(trialcs);
1912        return err;
1913}
1914
1915/*
1916 * update_prstate - update partititon_root_state
1917 * cs:  the cpuset to update
1918 * val: 0 - disabled, 1 - enabled
1919 *
1920 * Call with cpuset_mutex held.
1921 */
1922static int update_prstate(struct cpuset *cs, int val)
1923{
1924        int err;
1925        struct cpuset *parent = parent_cs(cs);
1926        struct tmpmasks tmp;
1927
1928        if ((val != 0) && (val != 1))
1929                return -EINVAL;
1930        if (val == cs->partition_root_state)
1931                return 0;
1932
1933        /*
1934         * Cannot force a partial or invalid partition root to a full
1935         * partition root.
1936         */
1937        if (val && cs->partition_root_state)
1938                return -EINVAL;
1939
1940        if (alloc_cpumasks(NULL, &tmp))
1941                return -ENOMEM;
1942
1943        err = -EINVAL;
1944        if (!cs->partition_root_state) {
1945                /*
1946                 * Turning on partition root requires setting the
1947                 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1948                 * cannot be NULL.
1949                 */
1950                if (cpumask_empty(cs->cpus_allowed))
1951                        goto out;
1952
1953                err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1954                if (err)
1955                        goto out;
1956
1957                err = update_parent_subparts_cpumask(cs, partcmd_enable,
1958                                                     NULL, &tmp);
1959                if (err) {
1960                        update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1961                        goto out;
1962                }
1963                cs->partition_root_state = PRS_ENABLED;
1964        } else {
1965                /*
1966                 * Turning off partition root will clear the
1967                 * CS_CPU_EXCLUSIVE bit.
1968                 */
1969                if (cs->partition_root_state == PRS_ERROR) {
1970                        cs->partition_root_state = 0;
1971                        update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1972                        err = 0;
1973                        goto out;
1974                }
1975
1976                err = update_parent_subparts_cpumask(cs, partcmd_disable,
1977                                                     NULL, &tmp);
1978                if (err)
1979                        goto out;
1980
1981                cs->partition_root_state = 0;
1982
1983                /* Turning off CS_CPU_EXCLUSIVE will not return error */
1984                update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1985        }
1986
1987        /*
1988         * Update cpumask of parent's tasks except when it is the top
1989         * cpuset as some system daemons cannot be mapped to other CPUs.
1990         */
1991        if (parent != &top_cpuset)
1992                update_tasks_cpumask(parent);
1993
1994        if (parent->child_ecpus_count)
1995                update_sibling_cpumasks(parent, cs, &tmp);
1996
1997        rebuild_sched_domains_locked();
1998out:
1999        free_cpumasks(NULL, &tmp);
2000        return err;
2001}
2002
2003/*
2004 * Frequency meter - How fast is some event occurring?
2005 *
2006 * These routines manage a digitally filtered, constant time based,
2007 * event frequency meter.  There are four routines:
2008 *   fmeter_init() - initialize a frequency meter.
2009 *   fmeter_markevent() - called each time the event happens.
2010 *   fmeter_getrate() - returns the recent rate of such events.
2011 *   fmeter_update() - internal routine used to update fmeter.
2012 *
2013 * A common data structure is passed to each of these routines,
2014 * which is used to keep track of the state required to manage the
2015 * frequency meter and its digital filter.
2016 *
2017 * The filter works on the number of events marked per unit time.
2018 * The filter is single-pole low-pass recursive (IIR).  The time unit
2019 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2020 * simulate 3 decimal digits of precision (multiplied by 1000).
2021 *
2022 * With an FM_COEF of 933, and a time base of 1 second, the filter
2023 * has a half-life of 10 seconds, meaning that if the events quit
2024 * happening, then the rate returned from the fmeter_getrate()
2025 * will be cut in half each 10 seconds, until it converges to zero.
2026 *
2027 * It is not worth doing a real infinitely recursive filter.  If more
2028 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2029 * just compute FM_MAXTICKS ticks worth, by which point the level
2030 * will be stable.
2031 *
2032 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2033 * arithmetic overflow in the fmeter_update() routine.
2034 *
2035 * Given the simple 32 bit integer arithmetic used, this meter works
2036 * best for reporting rates between one per millisecond (msec) and
2037 * one per 32 (approx) seconds.  At constant rates faster than one
2038 * per msec it maxes out at values just under 1,000,000.  At constant
2039 * rates between one per msec, and one per second it will stabilize
2040 * to a value N*1000, where N is the rate of events per second.
2041 * At constant rates between one per second and one per 32 seconds,
2042 * it will be choppy, moving up on the seconds that have an event,
2043 * and then decaying until the next event.  At rates slower than
2044 * about one in 32 seconds, it decays all the way back to zero between
2045 * each event.
2046 */
2047
2048#define FM_COEF 933             /* coefficient for half-life of 10 secs */
2049#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2050#define FM_MAXCNT 1000000       /* limit cnt to avoid overflow */
2051#define FM_SCALE 1000           /* faux fixed point scale */
2052
2053/* Initialize a frequency meter */
2054static void fmeter_init(struct fmeter *fmp)
2055{
2056        fmp->cnt = 0;
2057        fmp->val = 0;
2058        fmp->time = 0;
2059        spin_lock_init(&fmp->lock);
2060}
2061
2062/* Internal meter update - process cnt events and update value */
2063static void fmeter_update(struct fmeter *fmp)
2064{
2065        time64_t now;
2066        u32 ticks;
2067
2068        now = ktime_get_seconds();
2069        ticks = now - fmp->time;
2070
2071        if (ticks == 0)
2072                return;
2073
2074        ticks = min(FM_MAXTICKS, ticks);
2075        while (ticks-- > 0)
2076                fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2077        fmp->time = now;
2078
2079        fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2080        fmp->cnt = 0;
2081}
2082
2083/* Process any previous ticks, then bump cnt by one (times scale). */
2084static void fmeter_markevent(struct fmeter *fmp)
2085{
2086        spin_lock(&fmp->lock);
2087        fmeter_update(fmp);
2088        fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2089        spin_unlock(&fmp->lock);
2090}
2091
2092/* Process any previous ticks, then return current value. */
2093static int fmeter_getrate(struct fmeter *fmp)
2094{
2095        int val;
2096
2097        spin_lock(&fmp->lock);
2098        fmeter_update(fmp);
2099        val = fmp->val;
2100        spin_unlock(&fmp->lock);
2101        return val;
2102}
2103
2104static struct cpuset *cpuset_attach_old_cs;
2105
2106/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2107static int cpuset_can_attach(struct cgroup_taskset *tset)
2108{
2109        struct cgroup_subsys_state *css;
2110        struct cpuset *cs;
2111        struct task_struct *task;
2112        int ret;
2113
2114        /* used later by cpuset_attach() */
2115        cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2116        cs = css_cs(css);
2117
2118        percpu_down_write(&cpuset_rwsem);
2119
2120        /* allow moving tasks into an empty cpuset if on default hierarchy */
2121        ret = -ENOSPC;
2122        if (!is_in_v2_mode() &&
2123            (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2124                goto out_unlock;
2125
2126        cgroup_taskset_for_each(task, css, tset) {
2127                ret = task_can_attach(task, cs->cpus_allowed);
2128                if (ret)
2129                        goto out_unlock;
2130                ret = security_task_setscheduler(task);
2131                if (ret)
2132                        goto out_unlock;
2133        }
2134
2135        /*
2136         * Mark attach is in progress.  This makes validate_change() fail
2137         * changes which zero cpus/mems_allowed.
2138         */
2139        cs->attach_in_progress++;
2140        ret = 0;
2141out_unlock:
2142        percpu_up_write(&cpuset_rwsem);
2143        return ret;
2144}
2145
2146static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2147{
2148        struct cgroup_subsys_state *css;
2149
2150        cgroup_taskset_first(tset, &css);
2151
2152        percpu_down_write(&cpuset_rwsem);
2153        css_cs(css)->attach_in_progress--;
2154        percpu_up_write(&cpuset_rwsem);
2155}
2156
2157/*
2158 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2159 * but we can't allocate it dynamically there.  Define it global and
2160 * allocate from cpuset_init().
2161 */
2162static cpumask_var_t cpus_attach;
2163
2164static void cpuset_attach(struct cgroup_taskset *tset)
2165{
2166        /* static buf protected by cpuset_mutex */
2167        static nodemask_t cpuset_attach_nodemask_to;
2168        struct task_struct *task;
2169        struct task_struct *leader;
2170        struct cgroup_subsys_state *css;
2171        struct cpuset *cs;
2172        struct cpuset *oldcs = cpuset_attach_old_cs;
2173
2174        cgroup_taskset_first(tset, &css);
2175        cs = css_cs(css);
2176
2177        percpu_down_write(&cpuset_rwsem);
2178
2179        /* prepare for attach */
2180        if (cs == &top_cpuset)
2181                cpumask_copy(cpus_attach, cpu_possible_mask);
2182        else
2183                guarantee_online_cpus(cs, cpus_attach);
2184
2185        guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2186
2187        cgroup_taskset_for_each(task, css, tset) {
2188                /*
2189                 * can_attach beforehand should guarantee that this doesn't
2190                 * fail.  TODO: have a better way to handle failure here
2191                 */
2192                WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2193
2194                cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2195                cpuset_update_task_spread_flag(cs, task);
2196        }
2197
2198        /*
2199         * Change mm for all threadgroup leaders. This is expensive and may
2200         * sleep and should be moved outside migration path proper.
2201         */
2202        cpuset_attach_nodemask_to = cs->effective_mems;
2203        cgroup_taskset_for_each_leader(leader, css, tset) {
2204                struct mm_struct *mm = get_task_mm(leader);
2205
2206                if (mm) {
2207                        mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2208
2209                        /*
2210                         * old_mems_allowed is the same with mems_allowed
2211                         * here, except if this task is being moved
2212                         * automatically due to hotplug.  In that case
2213                         * @mems_allowed has been updated and is empty, so
2214                         * @old_mems_allowed is the right nodesets that we
2215                         * migrate mm from.
2216                         */
2217                        if (is_memory_migrate(cs))
2218                                cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2219                                                  &cpuset_attach_nodemask_to);
2220                        else
2221                                mmput(mm);
2222                }
2223        }
2224
2225        cs->old_mems_allowed = cpuset_attach_nodemask_to;
2226
2227        cs->attach_in_progress--;
2228        if (!cs->attach_in_progress)
2229                wake_up(&cpuset_attach_wq);
2230
2231        percpu_up_write(&cpuset_rwsem);
2232}
2233
2234/* The various types of files and directories in a cpuset file system */
2235
2236typedef enum {
2237        FILE_MEMORY_MIGRATE,
2238        FILE_CPULIST,
2239        FILE_MEMLIST,
2240        FILE_EFFECTIVE_CPULIST,
2241        FILE_EFFECTIVE_MEMLIST,
2242        FILE_SUBPARTS_CPULIST,
2243        FILE_CPU_EXCLUSIVE,
2244        FILE_MEM_EXCLUSIVE,
2245        FILE_MEM_HARDWALL,
2246        FILE_SCHED_LOAD_BALANCE,
2247        FILE_PARTITION_ROOT,
2248        FILE_SCHED_RELAX_DOMAIN_LEVEL,
2249        FILE_MEMORY_PRESSURE_ENABLED,
2250        FILE_MEMORY_PRESSURE,
2251        FILE_SPREAD_PAGE,
2252        FILE_SPREAD_SLAB,
2253} cpuset_filetype_t;
2254
2255static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2256                            u64 val)
2257{
2258        struct cpuset *cs = css_cs(css);
2259        cpuset_filetype_t type = cft->private;
2260        int retval = 0;
2261
2262        get_online_cpus();
2263        percpu_down_write(&cpuset_rwsem);
2264        if (!is_cpuset_online(cs)) {
2265                retval = -ENODEV;
2266                goto out_unlock;
2267        }
2268
2269        switch (type) {
2270        case FILE_CPU_EXCLUSIVE:
2271                retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2272                break;
2273        case FILE_MEM_EXCLUSIVE:
2274                retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2275                break;
2276        case FILE_MEM_HARDWALL:
2277                retval = update_flag(CS_MEM_HARDWALL, cs, val);
2278                break;
2279        case FILE_SCHED_LOAD_BALANCE:
2280                retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2281                break;
2282        case FILE_MEMORY_MIGRATE:
2283                retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2284                break;
2285        case FILE_MEMORY_PRESSURE_ENABLED:
2286                cpuset_memory_pressure_enabled = !!val;
2287                break;
2288        case FILE_SPREAD_PAGE:
2289                retval = update_flag(CS_SPREAD_PAGE, cs, val);
2290                break;
2291        case FILE_SPREAD_SLAB:
2292                retval = update_flag(CS_SPREAD_SLAB, cs, val);
2293                break;
2294        default:
2295                retval = -EINVAL;
2296                break;
2297        }
2298out_unlock:
2299        percpu_up_write(&cpuset_rwsem);
2300        put_online_cpus();
2301        return retval;
2302}
2303
2304static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2305                            s64 val)
2306{
2307        struct cpuset *cs = css_cs(css);
2308        cpuset_filetype_t type = cft->private;
2309        int retval = -ENODEV;
2310
2311        get_online_cpus();
2312        percpu_down_write(&cpuset_rwsem);
2313        if (!is_cpuset_online(cs))
2314                goto out_unlock;
2315
2316        switch (type) {
2317        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2318                retval = update_relax_domain_level(cs, val);
2319                break;
2320        default:
2321                retval = -EINVAL;
2322                break;
2323        }
2324out_unlock:
2325        percpu_up_write(&cpuset_rwsem);
2326        put_online_cpus();
2327        return retval;
2328}
2329
2330/*
2331 * Common handling for a write to a "cpus" or "mems" file.
2332 */
2333static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2334                                    char *buf, size_t nbytes, loff_t off)
2335{
2336        struct cpuset *cs = css_cs(of_css(of));
2337        struct cpuset *trialcs;
2338        int retval = -ENODEV;
2339
2340        buf = strstrip(buf);
2341
2342        /*
2343         * CPU or memory hotunplug may leave @cs w/o any execution
2344         * resources, in which case the hotplug code asynchronously updates
2345         * configuration and transfers all tasks to the nearest ancestor
2346         * which can execute.
2347         *
2348         * As writes to "cpus" or "mems" may restore @cs's execution
2349         * resources, wait for the previously scheduled operations before
2350         * proceeding, so that we don't end up keep removing tasks added
2351         * after execution capability is restored.
2352         *
2353         * cpuset_hotplug_work calls back into cgroup core via
2354         * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2355         * operation like this one can lead to a deadlock through kernfs
2356         * active_ref protection.  Let's break the protection.  Losing the
2357         * protection is okay as we check whether @cs is online after
2358         * grabbing cpuset_mutex anyway.  This only happens on the legacy
2359         * hierarchies.
2360         */
2361        css_get(&cs->css);
2362        kernfs_break_active_protection(of->kn);
2363        flush_work(&cpuset_hotplug_work);
2364
2365        get_online_cpus();
2366        percpu_down_write(&cpuset_rwsem);
2367        if (!is_cpuset_online(cs))
2368                goto out_unlock;
2369
2370        trialcs = alloc_trial_cpuset(cs);
2371        if (!trialcs) {
2372                retval = -ENOMEM;
2373                goto out_unlock;
2374        }
2375
2376        switch (of_cft(of)->private) {
2377        case FILE_CPULIST:
2378                retval = update_cpumask(cs, trialcs, buf);
2379                break;
2380        case FILE_MEMLIST:
2381                retval = update_nodemask(cs, trialcs, buf);
2382                break;
2383        default:
2384                retval = -EINVAL;
2385                break;
2386        }
2387
2388        free_cpuset(trialcs);
2389out_unlock:
2390        percpu_up_write(&cpuset_rwsem);
2391        put_online_cpus();
2392        kernfs_unbreak_active_protection(of->kn);
2393        css_put(&cs->css);
2394        flush_workqueue(cpuset_migrate_mm_wq);
2395        return retval ?: nbytes;
2396}
2397
2398/*
2399 * These ascii lists should be read in a single call, by using a user
2400 * buffer large enough to hold the entire map.  If read in smaller
2401 * chunks, there is no guarantee of atomicity.  Since the display format
2402 * used, list of ranges of sequential numbers, is variable length,
2403 * and since these maps can change value dynamically, one could read
2404 * gibberish by doing partial reads while a list was changing.
2405 */
2406static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2407{
2408        struct cpuset *cs = css_cs(seq_css(sf));
2409        cpuset_filetype_t type = seq_cft(sf)->private;
2410        int ret = 0;
2411
2412        spin_lock_irq(&callback_lock);
2413
2414        switch (type) {
2415        case FILE_CPULIST:
2416                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2417                break;
2418        case FILE_MEMLIST:
2419                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2420                break;
2421        case FILE_EFFECTIVE_CPULIST:
2422                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2423                break;
2424        case FILE_EFFECTIVE_MEMLIST:
2425                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2426                break;
2427        case FILE_SUBPARTS_CPULIST:
2428                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2429                break;
2430        default:
2431                ret = -EINVAL;
2432        }
2433
2434        spin_unlock_irq(&callback_lock);
2435        return ret;
2436}
2437
2438static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2439{
2440        struct cpuset *cs = css_cs(css);
2441        cpuset_filetype_t type = cft->private;
2442        switch (type) {
2443        case FILE_CPU_EXCLUSIVE:
2444                return is_cpu_exclusive(cs);
2445        case FILE_MEM_EXCLUSIVE:
2446                return is_mem_exclusive(cs);
2447        case FILE_MEM_HARDWALL:
2448                return is_mem_hardwall(cs);
2449        case FILE_SCHED_LOAD_BALANCE:
2450                return is_sched_load_balance(cs);
2451        case FILE_MEMORY_MIGRATE:
2452                return is_memory_migrate(cs);
2453        case FILE_MEMORY_PRESSURE_ENABLED:
2454                return cpuset_memory_pressure_enabled;
2455        case FILE_MEMORY_PRESSURE:
2456                return fmeter_getrate(&cs->fmeter);
2457        case FILE_SPREAD_PAGE:
2458                return is_spread_page(cs);
2459        case FILE_SPREAD_SLAB:
2460                return is_spread_slab(cs);
2461        default:
2462                BUG();
2463        }
2464
2465        /* Unreachable but makes gcc happy */
2466        return 0;
2467}
2468
2469static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2470{
2471        struct cpuset *cs = css_cs(css);
2472        cpuset_filetype_t type = cft->private;
2473        switch (type) {
2474        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2475                return cs->relax_domain_level;
2476        default:
2477                BUG();
2478        }
2479
2480        /* Unrechable but makes gcc happy */
2481        return 0;
2482}
2483
2484static int sched_partition_show(struct seq_file *seq, void *v)
2485{
2486        struct cpuset *cs = css_cs(seq_css(seq));
2487
2488        switch (cs->partition_root_state) {
2489        case PRS_ENABLED:
2490                seq_puts(seq, "root\n");
2491                break;
2492        case PRS_DISABLED:
2493                seq_puts(seq, "member\n");
2494                break;
2495        case PRS_ERROR:
2496                seq_puts(seq, "root invalid\n");
2497                break;
2498        }
2499        return 0;
2500}
2501
2502static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2503                                     size_t nbytes, loff_t off)
2504{
2505        struct cpuset *cs = css_cs(of_css(of));
2506        int val;
2507        int retval = -ENODEV;
2508
2509        buf = strstrip(buf);
2510
2511        /*
2512         * Convert "root" to ENABLED, and convert "member" to DISABLED.
2513         */
2514        if (!strcmp(buf, "root"))
2515                val = PRS_ENABLED;
2516        else if (!strcmp(buf, "member"))
2517                val = PRS_DISABLED;
2518        else
2519                return -EINVAL;
2520
2521        css_get(&cs->css);
2522        get_online_cpus();
2523        percpu_down_write(&cpuset_rwsem);
2524        if (!is_cpuset_online(cs))
2525                goto out_unlock;
2526
2527        retval = update_prstate(cs, val);
2528out_unlock:
2529        percpu_up_write(&cpuset_rwsem);
2530        put_online_cpus();
2531        css_put(&cs->css);
2532        return retval ?: nbytes;
2533}
2534
2535/*
2536 * for the common functions, 'private' gives the type of file
2537 */
2538
2539static struct cftype legacy_files[] = {
2540        {
2541                .name = "cpus",
2542                .seq_show = cpuset_common_seq_show,
2543                .write = cpuset_write_resmask,
2544                .max_write_len = (100U + 6 * NR_CPUS),
2545                .private = FILE_CPULIST,
2546        },
2547
2548        {
2549                .name = "mems",
2550                .seq_show = cpuset_common_seq_show,
2551                .write = cpuset_write_resmask,
2552                .max_write_len = (100U + 6 * MAX_NUMNODES),
2553                .private = FILE_MEMLIST,
2554        },
2555
2556        {
2557                .name = "effective_cpus",
2558                .seq_show = cpuset_common_seq_show,
2559                .private = FILE_EFFECTIVE_CPULIST,
2560        },
2561
2562        {
2563                .name = "effective_mems",
2564                .seq_show = cpuset_common_seq_show,
2565                .private = FILE_EFFECTIVE_MEMLIST,
2566        },
2567
2568        {
2569                .name = "cpu_exclusive",
2570                .read_u64 = cpuset_read_u64,
2571                .write_u64 = cpuset_write_u64,
2572                .private = FILE_CPU_EXCLUSIVE,
2573        },
2574
2575        {
2576                .name = "mem_exclusive",
2577                .read_u64 = cpuset_read_u64,
2578                .write_u64 = cpuset_write_u64,
2579                .private = FILE_MEM_EXCLUSIVE,
2580        },
2581
2582        {
2583                .name = "mem_hardwall",
2584                .read_u64 = cpuset_read_u64,
2585                .write_u64 = cpuset_write_u64,
2586                .private = FILE_MEM_HARDWALL,
2587        },
2588
2589        {
2590                .name = "sched_load_balance",
2591                .read_u64 = cpuset_read_u64,
2592                .write_u64 = cpuset_write_u64,
2593                .private = FILE_SCHED_LOAD_BALANCE,
2594        },
2595
2596        {
2597                .name = "sched_relax_domain_level",
2598                .read_s64 = cpuset_read_s64,
2599                .write_s64 = cpuset_write_s64,
2600                .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2601        },
2602
2603        {
2604                .name = "memory_migrate",
2605                .read_u64 = cpuset_read_u64,
2606                .write_u64 = cpuset_write_u64,
2607                .private = FILE_MEMORY_MIGRATE,
2608        },
2609
2610        {
2611                .name = "memory_pressure",
2612                .read_u64 = cpuset_read_u64,
2613                .private = FILE_MEMORY_PRESSURE,
2614        },
2615
2616        {
2617                .name = "memory_spread_page",
2618                .read_u64 = cpuset_read_u64,
2619                .write_u64 = cpuset_write_u64,
2620                .private = FILE_SPREAD_PAGE,
2621        },
2622
2623        {
2624                .name = "memory_spread_slab",
2625                .read_u64 = cpuset_read_u64,
2626                .write_u64 = cpuset_write_u64,
2627                .private = FILE_SPREAD_SLAB,
2628        },
2629
2630        {
2631                .name = "memory_pressure_enabled",
2632                .flags = CFTYPE_ONLY_ON_ROOT,
2633                .read_u64 = cpuset_read_u64,
2634                .write_u64 = cpuset_write_u64,
2635                .private = FILE_MEMORY_PRESSURE_ENABLED,
2636        },
2637
2638        { }     /* terminate */
2639};
2640
2641/*
2642 * This is currently a minimal set for the default hierarchy. It can be
2643 * expanded later on by migrating more features and control files from v1.
2644 */
2645static struct cftype dfl_files[] = {
2646        {
2647                .name = "cpus",
2648                .seq_show = cpuset_common_seq_show,
2649                .write = cpuset_write_resmask,
2650                .max_write_len = (100U + 6 * NR_CPUS),
2651                .private = FILE_CPULIST,
2652                .flags = CFTYPE_NOT_ON_ROOT,
2653        },
2654
2655        {
2656                .name = "mems",
2657                .seq_show = cpuset_common_seq_show,
2658                .write = cpuset_write_resmask,
2659                .max_write_len = (100U + 6 * MAX_NUMNODES),
2660                .private = FILE_MEMLIST,
2661                .flags = CFTYPE_NOT_ON_ROOT,
2662        },
2663
2664        {
2665                .name = "cpus.effective",
2666                .seq_show = cpuset_common_seq_show,
2667                .private = FILE_EFFECTIVE_CPULIST,
2668        },
2669
2670        {
2671                .name = "mems.effective",
2672                .seq_show = cpuset_common_seq_show,
2673                .private = FILE_EFFECTIVE_MEMLIST,
2674        },
2675
2676        {
2677                .name = "cpus.partition",
2678                .seq_show = sched_partition_show,
2679                .write = sched_partition_write,
2680                .private = FILE_PARTITION_ROOT,
2681                .flags = CFTYPE_NOT_ON_ROOT,
2682        },
2683
2684        {
2685                .name = "cpus.subpartitions",
2686                .seq_show = cpuset_common_seq_show,
2687                .private = FILE_SUBPARTS_CPULIST,
2688                .flags = CFTYPE_DEBUG,
2689        },
2690
2691        { }     /* terminate */
2692};
2693
2694
2695/*
2696 *      cpuset_css_alloc - allocate a cpuset css
2697 *      cgrp:   control group that the new cpuset will be part of
2698 */
2699
2700static struct cgroup_subsys_state *
2701cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2702{
2703        struct cpuset *cs;
2704
2705        if (!parent_css)
2706                return &top_cpuset.css;
2707
2708        cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2709        if (!cs)
2710                return ERR_PTR(-ENOMEM);
2711
2712        if (alloc_cpumasks(cs, NULL)) {
2713                kfree(cs);
2714                return ERR_PTR(-ENOMEM);
2715        }
2716
2717        set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2718        nodes_clear(cs->mems_allowed);
2719        nodes_clear(cs->effective_mems);
2720        fmeter_init(&cs->fmeter);
2721        cs->relax_domain_level = -1;
2722
2723        return &cs->css;
2724}
2725
2726static int cpuset_css_online(struct cgroup_subsys_state *css)
2727{
2728        struct cpuset *cs = css_cs(css);
2729        struct cpuset *parent = parent_cs(cs);
2730        struct cpuset *tmp_cs;
2731        struct cgroup_subsys_state *pos_css;
2732
2733        if (!parent)
2734                return 0;
2735
2736        get_online_cpus();
2737        percpu_down_write(&cpuset_rwsem);
2738
2739        set_bit(CS_ONLINE, &cs->flags);
2740        if (is_spread_page(parent))
2741                set_bit(CS_SPREAD_PAGE, &cs->flags);
2742        if (is_spread_slab(parent))
2743                set_bit(CS_SPREAD_SLAB, &cs->flags);
2744
2745        cpuset_inc();
2746
2747        spin_lock_irq(&callback_lock);
2748        if (is_in_v2_mode()) {
2749                cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2750                cs->effective_mems = parent->effective_mems;
2751                cs->use_parent_ecpus = true;
2752                parent->child_ecpus_count++;
2753        }
2754        spin_unlock_irq(&callback_lock);
2755
2756        if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2757                goto out_unlock;
2758
2759        /*
2760         * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2761         * set.  This flag handling is implemented in cgroup core for
2762         * histrical reasons - the flag may be specified during mount.
2763         *
2764         * Currently, if any sibling cpusets have exclusive cpus or mem, we
2765         * refuse to clone the configuration - thereby refusing the task to
2766         * be entered, and as a result refusing the sys_unshare() or
2767         * clone() which initiated it.  If this becomes a problem for some
2768         * users who wish to allow that scenario, then this could be
2769         * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2770         * (and likewise for mems) to the new cgroup.
2771         */
2772        rcu_read_lock();
2773        cpuset_for_each_child(tmp_cs, pos_css, parent) {
2774                if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2775                        rcu_read_unlock();
2776                        goto out_unlock;
2777                }
2778        }
2779        rcu_read_unlock();
2780
2781        spin_lock_irq(&callback_lock);
2782        cs->mems_allowed = parent->mems_allowed;
2783        cs->effective_mems = parent->mems_allowed;
2784        cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2785        cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2786        spin_unlock_irq(&callback_lock);
2787out_unlock:
2788        percpu_up_write(&cpuset_rwsem);
2789        put_online_cpus();
2790        return 0;
2791}
2792
2793/*
2794 * If the cpuset being removed has its flag 'sched_load_balance'
2795 * enabled, then simulate turning sched_load_balance off, which
2796 * will call rebuild_sched_domains_locked(). That is not needed
2797 * in the default hierarchy where only changes in partition
2798 * will cause repartitioning.
2799 *
2800 * If the cpuset has the 'sched.partition' flag enabled, simulate
2801 * turning 'sched.partition" off.
2802 */
2803
2804static void cpuset_css_offline(struct cgroup_subsys_state *css)
2805{
2806        struct cpuset *cs = css_cs(css);
2807
2808        get_online_cpus();
2809        percpu_down_write(&cpuset_rwsem);
2810
2811        if (is_partition_root(cs))
2812                update_prstate(cs, 0);
2813
2814        if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2815            is_sched_load_balance(cs))
2816                update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2817
2818        if (cs->use_parent_ecpus) {
2819                struct cpuset *parent = parent_cs(cs);
2820
2821                cs->use_parent_ecpus = false;
2822                parent->child_ecpus_count--;
2823        }
2824
2825        cpuset_dec();
2826        clear_bit(CS_ONLINE, &cs->flags);
2827
2828        percpu_up_write(&cpuset_rwsem);
2829        put_online_cpus();
2830}
2831
2832static void cpuset_css_free(struct cgroup_subsys_state *css)
2833{
2834        struct cpuset *cs = css_cs(css);
2835
2836        free_cpuset(cs);
2837}
2838
2839static void cpuset_bind(struct cgroup_subsys_state *root_css)
2840{
2841        percpu_down_write(&cpuset_rwsem);
2842        spin_lock_irq(&callback_lock);
2843
2844        if (is_in_v2_mode()) {
2845                cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2846                top_cpuset.mems_allowed = node_possible_map;
2847        } else {
2848                cpumask_copy(top_cpuset.cpus_allowed,
2849                             top_cpuset.effective_cpus);
2850                top_cpuset.mems_allowed = top_cpuset.effective_mems;
2851        }
2852
2853        spin_unlock_irq(&callback_lock);
2854        percpu_up_write(&cpuset_rwsem);
2855}
2856
2857/*
2858 * Make sure the new task conform to the current state of its parent,
2859 * which could have been changed by cpuset just after it inherits the
2860 * state from the parent and before it sits on the cgroup's task list.
2861 */
2862static void cpuset_fork(struct task_struct *task)
2863{
2864        if (task_css_is_root(task, cpuset_cgrp_id))
2865                return;
2866
2867        set_cpus_allowed_ptr(task, current->cpus_ptr);
2868        task->mems_allowed = current->mems_allowed;
2869}
2870
2871struct cgroup_subsys cpuset_cgrp_subsys = {
2872        .css_alloc      = cpuset_css_alloc,
2873        .css_online     = cpuset_css_online,
2874        .css_offline    = cpuset_css_offline,
2875        .css_free       = cpuset_css_free,
2876        .can_attach     = cpuset_can_attach,
2877        .cancel_attach  = cpuset_cancel_attach,
2878        .attach         = cpuset_attach,
2879        .post_attach    = cpuset_post_attach,
2880        .bind           = cpuset_bind,
2881        .fork           = cpuset_fork,
2882        .legacy_cftypes = legacy_files,
2883        .dfl_cftypes    = dfl_files,
2884        .early_init     = true,
2885        .threaded       = true,
2886};
2887
2888/**
2889 * cpuset_init - initialize cpusets at system boot
2890 *
2891 * Description: Initialize top_cpuset
2892 **/
2893
2894int __init cpuset_init(void)
2895{
2896        BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2897
2898        BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2899        BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2900        BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2901
2902        cpumask_setall(top_cpuset.cpus_allowed);
2903        nodes_setall(top_cpuset.mems_allowed);
2904        cpumask_setall(top_cpuset.effective_cpus);
2905        nodes_setall(top_cpuset.effective_mems);
2906
2907        fmeter_init(&top_cpuset.fmeter);
2908        set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2909        top_cpuset.relax_domain_level = -1;
2910
2911        BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2912
2913        return 0;
2914}
2915
2916/*
2917 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2918 * or memory nodes, we need to walk over the cpuset hierarchy,
2919 * removing that CPU or node from all cpusets.  If this removes the
2920 * last CPU or node from a cpuset, then move the tasks in the empty
2921 * cpuset to its next-highest non-empty parent.
2922 */
2923static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2924{
2925        struct cpuset *parent;
2926
2927        /*
2928         * Find its next-highest non-empty parent, (top cpuset
2929         * has online cpus, so can't be empty).
2930         */
2931        parent = parent_cs(cs);
2932        while (cpumask_empty(parent->cpus_allowed) ||
2933                        nodes_empty(parent->mems_allowed))
2934                parent = parent_cs(parent);
2935
2936        if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2937                pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2938                pr_cont_cgroup_name(cs->css.cgroup);
2939                pr_cont("\n");
2940        }
2941}
2942
2943static void
2944hotplug_update_tasks_legacy(struct cpuset *cs,
2945                            struct cpumask *new_cpus, nodemask_t *new_mems,
2946                            bool cpus_updated, bool mems_updated)
2947{
2948        bool is_empty;
2949
2950        spin_lock_irq(&callback_lock);
2951        cpumask_copy(cs->cpus_allowed, new_cpus);
2952        cpumask_copy(cs->effective_cpus, new_cpus);
2953        cs->mems_allowed = *new_mems;
2954        cs->effective_mems = *new_mems;
2955        spin_unlock_irq(&callback_lock);
2956
2957        /*
2958         * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2959         * as the tasks will be migratecd to an ancestor.
2960         */
2961        if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2962                update_tasks_cpumask(cs);
2963        if (mems_updated && !nodes_empty(cs->mems_allowed))
2964                update_tasks_nodemask(cs);
2965
2966        is_empty = cpumask_empty(cs->cpus_allowed) ||
2967                   nodes_empty(cs->mems_allowed);
2968
2969        percpu_up_write(&cpuset_rwsem);
2970
2971        /*
2972         * Move tasks to the nearest ancestor with execution resources,
2973         * This is full cgroup operation which will also call back into
2974         * cpuset. Should be done outside any lock.
2975         */
2976        if (is_empty)
2977                remove_tasks_in_empty_cpuset(cs);
2978
2979        percpu_down_write(&cpuset_rwsem);
2980}
2981
2982static void
2983hotplug_update_tasks(struct cpuset *cs,
2984                     struct cpumask *new_cpus, nodemask_t *new_mems,
2985                     bool cpus_updated, bool mems_updated)
2986{
2987        if (cpumask_empty(new_cpus))
2988                cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2989        if (nodes_empty(*new_mems))
2990                *new_mems = parent_cs(cs)->effective_mems;
2991
2992        spin_lock_irq(&callback_lock);
2993        cpumask_copy(cs->effective_cpus, new_cpus);
2994        cs->effective_mems = *new_mems;
2995        spin_unlock_irq(&callback_lock);
2996
2997        if (cpus_updated)
2998                update_tasks_cpumask(cs);
2999        if (mems_updated)
3000                update_tasks_nodemask(cs);
3001}
3002
3003static bool force_rebuild;
3004
3005void cpuset_force_rebuild(void)
3006{
3007        force_rebuild = true;
3008}
3009
3010/**
3011 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3012 * @cs: cpuset in interest
3013 * @tmp: the tmpmasks structure pointer
3014 *
3015 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3016 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3017 * all its tasks are moved to the nearest ancestor with both resources.
3018 */
3019static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3020{
3021        static cpumask_t new_cpus;
3022        static nodemask_t new_mems;
3023        bool cpus_updated;
3024        bool mems_updated;
3025        struct cpuset *parent;
3026retry:
3027        wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3028
3029        percpu_down_write(&cpuset_rwsem);
3030
3031        /*
3032         * We have raced with task attaching. We wait until attaching
3033         * is finished, so we won't attach a task to an empty cpuset.
3034         */
3035        if (cs->attach_in_progress) {
3036                percpu_up_write(&cpuset_rwsem);
3037                goto retry;
3038        }
3039
3040        parent =  parent_cs(cs);
3041        compute_effective_cpumask(&new_cpus, cs, parent);
3042        nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3043
3044        if (cs->nr_subparts_cpus)
3045                /*
3046                 * Make sure that CPUs allocated to child partitions
3047                 * do not show up in effective_cpus.
3048                 */
3049                cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3050
3051        if (!tmp || !cs->partition_root_state)
3052                goto update_tasks;
3053
3054        /*
3055         * In the unlikely event that a partition root has empty
3056         * effective_cpus or its parent becomes erroneous, we have to
3057         * transition it to the erroneous state.
3058         */
3059        if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3060           (parent->partition_root_state == PRS_ERROR))) {
3061                if (cs->nr_subparts_cpus) {
3062                        cs->nr_subparts_cpus = 0;
3063                        cpumask_clear(cs->subparts_cpus);
3064                        compute_effective_cpumask(&new_cpus, cs, parent);
3065                }
3066
3067                /*
3068                 * If the effective_cpus is empty because the child
3069                 * partitions take away all the CPUs, we can keep
3070                 * the current partition and let the child partitions
3071                 * fight for available CPUs.
3072                 */
3073                if ((parent->partition_root_state == PRS_ERROR) ||
3074                     cpumask_empty(&new_cpus)) {
3075                        update_parent_subparts_cpumask(cs, partcmd_disable,
3076                                                       NULL, tmp);
3077                        cs->partition_root_state = PRS_ERROR;
3078                }
3079                cpuset_force_rebuild();
3080        }
3081
3082        /*
3083         * On the other hand, an erroneous partition root may be transitioned
3084         * back to a regular one or a partition root with no CPU allocated
3085         * from the parent may change to erroneous.
3086         */
3087        if (is_partition_root(parent) &&
3088           ((cs->partition_root_state == PRS_ERROR) ||
3089            !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3090             update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3091                cpuset_force_rebuild();
3092
3093update_tasks:
3094        cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3095        mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3096
3097        if (is_in_v2_mode())
3098                hotplug_update_tasks(cs, &new_cpus, &new_mems,
3099                                     cpus_updated, mems_updated);
3100        else
3101                hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3102                                            cpus_updated, mems_updated);
3103
3104        percpu_up_write(&cpuset_rwsem);
3105}
3106
3107/**
3108 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3109 *
3110 * This function is called after either CPU or memory configuration has
3111 * changed and updates cpuset accordingly.  The top_cpuset is always
3112 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3113 * order to make cpusets transparent (of no affect) on systems that are
3114 * actively using CPU hotplug but making no active use of cpusets.
3115 *
3116 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3117 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3118 * all descendants.
3119 *
3120 * Note that CPU offlining during suspend is ignored.  We don't modify
3121 * cpusets across suspend/resume cycles at all.
3122 */
3123static void cpuset_hotplug_workfn(struct work_struct *work)
3124{
3125        static cpumask_t new_cpus;
3126        static nodemask_t new_mems;
3127        bool cpus_updated, mems_updated;
3128        bool on_dfl = is_in_v2_mode();
3129        struct tmpmasks tmp, *ptmp = NULL;
3130
3131        if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3132                ptmp = &tmp;
3133
3134        percpu_down_write(&cpuset_rwsem);
3135
3136        /* fetch the available cpus/mems and find out which changed how */
3137        cpumask_copy(&new_cpus, cpu_active_mask);
3138        new_mems = node_states[N_MEMORY];
3139
3140        /*
3141         * If subparts_cpus is populated, it is likely that the check below
3142         * will produce a false positive on cpus_updated when the cpu list
3143         * isn't changed. It is extra work, but it is better to be safe.
3144         */
3145        cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3146        mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3147
3148        /* synchronize cpus_allowed to cpu_active_mask */
3149        if (cpus_updated) {
3150                spin_lock_irq(&callback_lock);
3151                if (!on_dfl)
3152                        cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3153                /*
3154                 * Make sure that CPUs allocated to child partitions
3155                 * do not show up in effective_cpus. If no CPU is left,
3156                 * we clear the subparts_cpus & let the child partitions
3157                 * fight for the CPUs again.
3158                 */
3159                if (top_cpuset.nr_subparts_cpus) {
3160                        if (cpumask_subset(&new_cpus,
3161                                           top_cpuset.subparts_cpus)) {
3162                                top_cpuset.nr_subparts_cpus = 0;
3163                                cpumask_clear(top_cpuset.subparts_cpus);
3164                        } else {
3165                                cpumask_andnot(&new_cpus, &new_cpus,
3166                                               top_cpuset.subparts_cpus);
3167                        }
3168                }
3169                cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3170                spin_unlock_irq(&callback_lock);
3171                /* we don't mess with cpumasks of tasks in top_cpuset */
3172        }
3173
3174        /* synchronize mems_allowed to N_MEMORY */
3175        if (mems_updated) {
3176                spin_lock_irq(&callback_lock);
3177                if (!on_dfl)
3178                        top_cpuset.mems_allowed = new_mems;
3179                top_cpuset.effective_mems = new_mems;
3180                spin_unlock_irq(&callback_lock);
3181                update_tasks_nodemask(&top_cpuset);
3182        }
3183
3184        percpu_up_write(&cpuset_rwsem);
3185
3186        /* if cpus or mems changed, we need to propagate to descendants */
3187        if (cpus_updated || mems_updated) {
3188                struct cpuset *cs;
3189                struct cgroup_subsys_state *pos_css;
3190
3191                rcu_read_lock();
3192                cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3193                        if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3194                                continue;
3195                        rcu_read_unlock();
3196
3197                        cpuset_hotplug_update_tasks(cs, ptmp);
3198
3199                        rcu_read_lock();
3200                        css_put(&cs->css);
3201                }
3202                rcu_read_unlock();
3203        }
3204
3205        /* rebuild sched domains if cpus_allowed has changed */
3206        if (cpus_updated || force_rebuild) {
3207                force_rebuild = false;
3208                rebuild_sched_domains();
3209        }
3210
3211        free_cpumasks(NULL, ptmp);
3212}
3213
3214void cpuset_update_active_cpus(void)
3215{
3216        /*
3217         * We're inside cpu hotplug critical region which usually nests
3218         * inside cgroup synchronization.  Bounce actual hotplug processing
3219         * to a work item to avoid reverse locking order.
3220         */
3221        schedule_work(&cpuset_hotplug_work);
3222}
3223
3224void cpuset_wait_for_hotplug(void)
3225{
3226        flush_work(&cpuset_hotplug_work);
3227}
3228
3229/*
3230 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3231 * Call this routine anytime after node_states[N_MEMORY] changes.
3232 * See cpuset_update_active_cpus() for CPU hotplug handling.
3233 */
3234static int cpuset_track_online_nodes(struct notifier_block *self,
3235                                unsigned long action, void *arg)
3236{
3237        schedule_work(&cpuset_hotplug_work);
3238        return NOTIFY_OK;
3239}
3240
3241static struct notifier_block cpuset_track_online_nodes_nb = {
3242        .notifier_call = cpuset_track_online_nodes,
3243        .priority = 10,         /* ??! */
3244};
3245
3246/**
3247 * cpuset_init_smp - initialize cpus_allowed
3248 *
3249 * Description: Finish top cpuset after cpu, node maps are initialized
3250 */
3251void __init cpuset_init_smp(void)
3252{
3253        cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3254        top_cpuset.mems_allowed = node_states[N_MEMORY];
3255        top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3256
3257        cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3258        top_cpuset.effective_mems = node_states[N_MEMORY];
3259
3260        register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3261
3262        cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3263        BUG_ON(!cpuset_migrate_mm_wq);
3264}
3265
3266/**
3267 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3268 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3269 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3270 *
3271 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3272 * attached to the specified @tsk.  Guaranteed to return some non-empty
3273 * subset of cpu_online_mask, even if this means going outside the
3274 * tasks cpuset.
3275 **/
3276
3277void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3278{
3279        unsigned long flags;
3280
3281        spin_lock_irqsave(&callback_lock, flags);
3282        rcu_read_lock();
3283        guarantee_online_cpus(task_cs(tsk), pmask);
3284        rcu_read_unlock();
3285        spin_unlock_irqrestore(&callback_lock, flags);
3286}
3287
3288/**
3289 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3290 * @tsk: pointer to task_struct with which the scheduler is struggling
3291 *
3292 * Description: In the case that the scheduler cannot find an allowed cpu in
3293 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3294 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3295 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3296 * This is the absolute last resort for the scheduler and it is only used if
3297 * _every_ other avenue has been traveled.
3298 **/
3299
3300void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3301{
3302        rcu_read_lock();
3303        do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3304                task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3305        rcu_read_unlock();
3306
3307        /*
3308         * We own tsk->cpus_allowed, nobody can change it under us.
3309         *
3310         * But we used cs && cs->cpus_allowed lockless and thus can
3311         * race with cgroup_attach_task() or update_cpumask() and get
3312         * the wrong tsk->cpus_allowed. However, both cases imply the
3313         * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3314         * which takes task_rq_lock().
3315         *
3316         * If we are called after it dropped the lock we must see all
3317         * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3318         * set any mask even if it is not right from task_cs() pov,
3319         * the pending set_cpus_allowed_ptr() will fix things.
3320         *
3321         * select_fallback_rq() will fix things ups and set cpu_possible_mask
3322         * if required.
3323         */
3324}
3325
3326void __init cpuset_init_current_mems_allowed(void)
3327{
3328        nodes_setall(current->mems_allowed);
3329}
3330
3331/**
3332 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3333 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3334 *
3335 * Description: Returns the nodemask_t mems_allowed of the cpuset
3336 * attached to the specified @tsk.  Guaranteed to return some non-empty
3337 * subset of node_states[N_MEMORY], even if this means going outside the
3338 * tasks cpuset.
3339 **/
3340
3341nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3342{
3343        nodemask_t mask;
3344        unsigned long flags;
3345
3346        spin_lock_irqsave(&callback_lock, flags);
3347        rcu_read_lock();
3348        guarantee_online_mems(task_cs(tsk), &mask);
3349        rcu_read_unlock();
3350        spin_unlock_irqrestore(&callback_lock, flags);
3351
3352        return mask;
3353}
3354
3355/**
3356 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3357 * @nodemask: the nodemask to be checked
3358 *
3359 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3360 */
3361int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3362{
3363        return nodes_intersects(*nodemask, current->mems_allowed);
3364}
3365
3366/*
3367 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3368 * mem_hardwall ancestor to the specified cpuset.  Call holding
3369 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3370 * (an unusual configuration), then returns the root cpuset.
3371 */
3372static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3373{
3374        while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3375                cs = parent_cs(cs);
3376        return cs;
3377}
3378
3379/**
3380 * cpuset_node_allowed - Can we allocate on a memory node?
3381 * @node: is this an allowed node?
3382 * @gfp_mask: memory allocation flags
3383 *
3384 * If we're in interrupt, yes, we can always allocate.  If @node is set in
3385 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3386 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3387 * yes.  If current has access to memory reserves as an oom victim, yes.
3388 * Otherwise, no.
3389 *
3390 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3391 * and do not allow allocations outside the current tasks cpuset
3392 * unless the task has been OOM killed.
3393 * GFP_KERNEL allocations are not so marked, so can escape to the
3394 * nearest enclosing hardwalled ancestor cpuset.
3395 *
3396 * Scanning up parent cpusets requires callback_lock.  The
3397 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3398 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3399 * current tasks mems_allowed came up empty on the first pass over
3400 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3401 * cpuset are short of memory, might require taking the callback_lock.
3402 *
3403 * The first call here from mm/page_alloc:get_page_from_freelist()
3404 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3405 * so no allocation on a node outside the cpuset is allowed (unless
3406 * in interrupt, of course).
3407 *
3408 * The second pass through get_page_from_freelist() doesn't even call
3409 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3410 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3411 * in alloc_flags.  That logic and the checks below have the combined
3412 * affect that:
3413 *      in_interrupt - any node ok (current task context irrelevant)
3414 *      GFP_ATOMIC   - any node ok
3415 *      tsk_is_oom_victim   - any node ok
3416 *      GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3417 *      GFP_USER     - only nodes in current tasks mems allowed ok.
3418 */
3419bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3420{
3421        struct cpuset *cs;              /* current cpuset ancestors */
3422        int allowed;                    /* is allocation in zone z allowed? */
3423        unsigned long flags;
3424
3425        if (in_interrupt())
3426                return true;
3427        if (node_isset(node, current->mems_allowed))
3428                return true;
3429        /*
3430         * Allow tasks that have access to memory reserves because they have
3431         * been OOM killed to get memory anywhere.
3432         */
3433        if (unlikely(tsk_is_oom_victim(current)))
3434                return true;
3435        if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
3436                return false;
3437
3438        if (current->flags & PF_EXITING) /* Let dying task have memory */
3439                return true;
3440
3441        /* Not hardwall and node outside mems_allowed: scan up cpusets */
3442        spin_lock_irqsave(&callback_lock, flags);
3443
3444        rcu_read_lock();
3445        cs = nearest_hardwall_ancestor(task_cs(current));
3446        allowed = node_isset(node, cs->mems_allowed);
3447        rcu_read_unlock();
3448
3449        spin_unlock_irqrestore(&callback_lock, flags);
3450        return allowed;
3451}
3452
3453/**
3454 * cpuset_mem_spread_node() - On which node to begin search for a file page
3455 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3456 *
3457 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3458 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3459 * and if the memory allocation used cpuset_mem_spread_node()
3460 * to determine on which node to start looking, as it will for
3461 * certain page cache or slab cache pages such as used for file
3462 * system buffers and inode caches, then instead of starting on the
3463 * local node to look for a free page, rather spread the starting
3464 * node around the tasks mems_allowed nodes.
3465 *
3466 * We don't have to worry about the returned node being offline
3467 * because "it can't happen", and even if it did, it would be ok.
3468 *
3469 * The routines calling guarantee_online_mems() are careful to
3470 * only set nodes in task->mems_allowed that are online.  So it
3471 * should not be possible for the following code to return an
3472 * offline node.  But if it did, that would be ok, as this routine
3473 * is not returning the node where the allocation must be, only
3474 * the node where the search should start.  The zonelist passed to
3475 * __alloc_pages() will include all nodes.  If the slab allocator
3476 * is passed an offline node, it will fall back to the local node.
3477 * See kmem_cache_alloc_node().
3478 */
3479
3480static int cpuset_spread_node(int *rotor)
3481{
3482        return *rotor = next_node_in(*rotor, current->mems_allowed);
3483}
3484
3485int cpuset_mem_spread_node(void)
3486{
3487        if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3488                current->cpuset_mem_spread_rotor =
3489                        node_random(&current->mems_allowed);
3490
3491        return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3492}
3493
3494int cpuset_slab_spread_node(void)
3495{
3496        if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3497                current->cpuset_slab_spread_rotor =
3498                        node_random(&current->mems_allowed);
3499
3500        return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3501}
3502
3503EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3504
3505/**
3506 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3507 * @tsk1: pointer to task_struct of some task.
3508 * @tsk2: pointer to task_struct of some other task.
3509 *
3510 * Description: Return true if @tsk1's mems_allowed intersects the
3511 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3512 * one of the task's memory usage might impact the memory available
3513 * to the other.
3514 **/
3515
3516int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3517                                   const struct task_struct *tsk2)
3518{
3519        return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3520}
3521
3522/**
3523 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3524 *
3525 * Description: Prints current's name, cpuset name, and cached copy of its
3526 * mems_allowed to the kernel log.
3527 */
3528void cpuset_print_current_mems_allowed(void)
3529{
3530        struct cgroup *cgrp;
3531
3532        rcu_read_lock();
3533
3534        cgrp = task_cs(current)->css.cgroup;
3535        pr_cont(",cpuset=");
3536        pr_cont_cgroup_name(cgrp);
3537        pr_cont(",mems_allowed=%*pbl",
3538                nodemask_pr_args(&current->mems_allowed));
3539
3540        rcu_read_unlock();
3541}
3542
3543/*
3544 * Collection of memory_pressure is suppressed unless
3545 * this flag is enabled by writing "1" to the special
3546 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3547 */
3548
3549int cpuset_memory_pressure_enabled __read_mostly;
3550
3551/**
3552 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3553 *
3554 * Keep a running average of the rate of synchronous (direct)
3555 * page reclaim efforts initiated by tasks in each cpuset.
3556 *
3557 * This represents the rate at which some task in the cpuset
3558 * ran low on memory on all nodes it was allowed to use, and
3559 * had to enter the kernels page reclaim code in an effort to
3560 * create more free memory by tossing clean pages or swapping
3561 * or writing dirty pages.
3562 *
3563 * Display to user space in the per-cpuset read-only file
3564 * "memory_pressure".  Value displayed is an integer
3565 * representing the recent rate of entry into the synchronous
3566 * (direct) page reclaim by any task attached to the cpuset.
3567 **/
3568
3569void __cpuset_memory_pressure_bump(void)
3570{
3571        rcu_read_lock();
3572        fmeter_markevent(&task_cs(current)->fmeter);
3573        rcu_read_unlock();
3574}
3575
3576#ifdef CONFIG_PROC_PID_CPUSET
3577/*
3578 * proc_cpuset_show()
3579 *  - Print tasks cpuset path into seq_file.
3580 *  - Used for /proc/<pid>/cpuset.
3581 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3582 *    doesn't really matter if tsk->cpuset changes after we read it,
3583 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3584 *    anyway.
3585 */
3586int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3587                     struct pid *pid, struct task_struct *tsk)
3588{
3589        char *buf;
3590        struct cgroup_subsys_state *css;
3591        int retval;
3592
3593        retval = -ENOMEM;
3594        buf = kmalloc(PATH_MAX, GFP_KERNEL);
3595        if (!buf)
3596                goto out;
3597
3598        css = task_get_css(tsk, cpuset_cgrp_id);
3599        retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3600                                current->nsproxy->cgroup_ns);
3601        css_put(css);
3602        if (retval >= PATH_MAX)
3603                retval = -ENAMETOOLONG;
3604        if (retval < 0)
3605                goto out_free;
3606        seq_puts(m, buf);
3607        seq_putc(m, '\n');
3608        retval = 0;
3609out_free:
3610        kfree(buf);
3611out:
3612        return retval;
3613}
3614#endif /* CONFIG_PROC_PID_CPUSET */
3615
3616/* Display task mems_allowed in /proc/<pid>/status file. */
3617void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3618{
3619        seq_printf(m, "Mems_allowed:\t%*pb\n",
3620                   nodemask_pr_args(&task->mems_allowed));
3621        seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3622                   nodemask_pr_args(&task->mems_allowed));
3623}
3624