linux/kernel/module.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3   Copyright (C) 2002 Richard Henderson
   4   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   5
   6*/
   7
   8#define INCLUDE_VERMAGIC
   9
  10#include <linux/export.h>
  11#include <linux/extable.h>
  12#include <linux/moduleloader.h>
  13#include <linux/module_signature.h>
  14#include <linux/trace_events.h>
  15#include <linux/init.h>
  16#include <linux/kallsyms.h>
  17#include <linux/file.h>
  18#include <linux/fs.h>
  19#include <linux/sysfs.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/vmalloc.h>
  23#include <linux/elf.h>
  24#include <linux/proc_fs.h>
  25#include <linux/security.h>
  26#include <linux/seq_file.h>
  27#include <linux/syscalls.h>
  28#include <linux/fcntl.h>
  29#include <linux/rcupdate.h>
  30#include <linux/capability.h>
  31#include <linux/cpu.h>
  32#include <linux/moduleparam.h>
  33#include <linux/errno.h>
  34#include <linux/err.h>
  35#include <linux/vermagic.h>
  36#include <linux/notifier.h>
  37#include <linux/sched.h>
  38#include <linux/device.h>
  39#include <linux/string.h>
  40#include <linux/mutex.h>
  41#include <linux/rculist.h>
  42#include <linux/uaccess.h>
  43#include <asm/cacheflush.h>
  44#include <linux/set_memory.h>
  45#include <asm/mmu_context.h>
  46#include <linux/license.h>
  47#include <asm/sections.h>
  48#include <linux/tracepoint.h>
  49#include <linux/ftrace.h>
  50#include <linux/livepatch.h>
  51#include <linux/async.h>
  52#include <linux/percpu.h>
  53#include <linux/kmemleak.h>
  54#include <linux/jump_label.h>
  55#include <linux/pfn.h>
  56#include <linux/bsearch.h>
  57#include <linux/dynamic_debug.h>
  58#include <linux/audit.h>
  59#include <uapi/linux/module.h>
  60#include "module-internal.h"
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/module.h>
  64
  65#ifndef ARCH_SHF_SMALL
  66#define ARCH_SHF_SMALL 0
  67#endif
  68
  69/*
  70 * Modules' sections will be aligned on page boundaries
  71 * to ensure complete separation of code and data, but
  72 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
  73 */
  74#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
  75# define debug_align(X) ALIGN(X, PAGE_SIZE)
  76#else
  77# define debug_align(X) (X)
  78#endif
  79
  80/* If this is set, the section belongs in the init part of the module */
  81#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  82
  83/*
  84 * Mutex protects:
  85 * 1) List of modules (also safely readable with preempt_disable),
  86 * 2) module_use links,
  87 * 3) module_addr_min/module_addr_max.
  88 * (delete and add uses RCU list operations). */
  89DEFINE_MUTEX(module_mutex);
  90EXPORT_SYMBOL_GPL(module_mutex);
  91static LIST_HEAD(modules);
  92
  93/* Work queue for freeing init sections in success case */
  94static struct work_struct init_free_wq;
  95static struct llist_head init_free_list;
  96
  97#ifdef CONFIG_MODULES_TREE_LOOKUP
  98
  99/*
 100 * Use a latched RB-tree for __module_address(); this allows us to use
 101 * RCU-sched lookups of the address from any context.
 102 *
 103 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 104 * __module_address() hard by doing a lot of stack unwinding; potentially from
 105 * NMI context.
 106 */
 107
 108static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 109{
 110        struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 111
 112        return (unsigned long)layout->base;
 113}
 114
 115static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 116{
 117        struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 118
 119        return (unsigned long)layout->size;
 120}
 121
 122static __always_inline bool
 123mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 124{
 125        return __mod_tree_val(a) < __mod_tree_val(b);
 126}
 127
 128static __always_inline int
 129mod_tree_comp(void *key, struct latch_tree_node *n)
 130{
 131        unsigned long val = (unsigned long)key;
 132        unsigned long start, end;
 133
 134        start = __mod_tree_val(n);
 135        if (val < start)
 136                return -1;
 137
 138        end = start + __mod_tree_size(n);
 139        if (val >= end)
 140                return 1;
 141
 142        return 0;
 143}
 144
 145static const struct latch_tree_ops mod_tree_ops = {
 146        .less = mod_tree_less,
 147        .comp = mod_tree_comp,
 148};
 149
 150static struct mod_tree_root {
 151        struct latch_tree_root root;
 152        unsigned long addr_min;
 153        unsigned long addr_max;
 154} mod_tree __cacheline_aligned = {
 155        .addr_min = -1UL,
 156};
 157
 158#define module_addr_min mod_tree.addr_min
 159#define module_addr_max mod_tree.addr_max
 160
 161static noinline void __mod_tree_insert(struct mod_tree_node *node)
 162{
 163        latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 164}
 165
 166static void __mod_tree_remove(struct mod_tree_node *node)
 167{
 168        latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 169}
 170
 171/*
 172 * These modifications: insert, remove_init and remove; are serialized by the
 173 * module_mutex.
 174 */
 175static void mod_tree_insert(struct module *mod)
 176{
 177        mod->core_layout.mtn.mod = mod;
 178        mod->init_layout.mtn.mod = mod;
 179
 180        __mod_tree_insert(&mod->core_layout.mtn);
 181        if (mod->init_layout.size)
 182                __mod_tree_insert(&mod->init_layout.mtn);
 183}
 184
 185static void mod_tree_remove_init(struct module *mod)
 186{
 187        if (mod->init_layout.size)
 188                __mod_tree_remove(&mod->init_layout.mtn);
 189}
 190
 191static void mod_tree_remove(struct module *mod)
 192{
 193        __mod_tree_remove(&mod->core_layout.mtn);
 194        mod_tree_remove_init(mod);
 195}
 196
 197static struct module *mod_find(unsigned long addr)
 198{
 199        struct latch_tree_node *ltn;
 200
 201        ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 202        if (!ltn)
 203                return NULL;
 204
 205        return container_of(ltn, struct mod_tree_node, node)->mod;
 206}
 207
 208#else /* MODULES_TREE_LOOKUP */
 209
 210static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 211
 212static void mod_tree_insert(struct module *mod) { }
 213static void mod_tree_remove_init(struct module *mod) { }
 214static void mod_tree_remove(struct module *mod) { }
 215
 216static struct module *mod_find(unsigned long addr)
 217{
 218        struct module *mod;
 219
 220        list_for_each_entry_rcu(mod, &modules, list,
 221                                lockdep_is_held(&module_mutex)) {
 222                if (within_module(addr, mod))
 223                        return mod;
 224        }
 225
 226        return NULL;
 227}
 228
 229#endif /* MODULES_TREE_LOOKUP */
 230
 231/*
 232 * Bounds of module text, for speeding up __module_address.
 233 * Protected by module_mutex.
 234 */
 235static void __mod_update_bounds(void *base, unsigned int size)
 236{
 237        unsigned long min = (unsigned long)base;
 238        unsigned long max = min + size;
 239
 240        if (min < module_addr_min)
 241                module_addr_min = min;
 242        if (max > module_addr_max)
 243                module_addr_max = max;
 244}
 245
 246static void mod_update_bounds(struct module *mod)
 247{
 248        __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 249        if (mod->init_layout.size)
 250                __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 251}
 252
 253#ifdef CONFIG_KGDB_KDB
 254struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 255#endif /* CONFIG_KGDB_KDB */
 256
 257static void module_assert_mutex(void)
 258{
 259        lockdep_assert_held(&module_mutex);
 260}
 261
 262static void module_assert_mutex_or_preempt(void)
 263{
 264#ifdef CONFIG_LOCKDEP
 265        if (unlikely(!debug_locks))
 266                return;
 267
 268        WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
 269                !lockdep_is_held(&module_mutex));
 270#endif
 271}
 272
 273static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 274module_param(sig_enforce, bool_enable_only, 0644);
 275
 276/*
 277 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
 278 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
 279 */
 280bool is_module_sig_enforced(void)
 281{
 282        return sig_enforce;
 283}
 284EXPORT_SYMBOL(is_module_sig_enforced);
 285
 286void set_module_sig_enforced(void)
 287{
 288        sig_enforce = true;
 289}
 290
 291/* Block module loading/unloading? */
 292int modules_disabled = 0;
 293core_param(nomodule, modules_disabled, bint, 0);
 294
 295/* Waiting for a module to finish initializing? */
 296static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 297
 298static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 299
 300int register_module_notifier(struct notifier_block *nb)
 301{
 302        return blocking_notifier_chain_register(&module_notify_list, nb);
 303}
 304EXPORT_SYMBOL(register_module_notifier);
 305
 306int unregister_module_notifier(struct notifier_block *nb)
 307{
 308        return blocking_notifier_chain_unregister(&module_notify_list, nb);
 309}
 310EXPORT_SYMBOL(unregister_module_notifier);
 311
 312/*
 313 * We require a truly strong try_module_get(): 0 means success.
 314 * Otherwise an error is returned due to ongoing or failed
 315 * initialization etc.
 316 */
 317static inline int strong_try_module_get(struct module *mod)
 318{
 319        BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 320        if (mod && mod->state == MODULE_STATE_COMING)
 321                return -EBUSY;
 322        if (try_module_get(mod))
 323                return 0;
 324        else
 325                return -ENOENT;
 326}
 327
 328static inline void add_taint_module(struct module *mod, unsigned flag,
 329                                    enum lockdep_ok lockdep_ok)
 330{
 331        add_taint(flag, lockdep_ok);
 332        set_bit(flag, &mod->taints);
 333}
 334
 335/*
 336 * A thread that wants to hold a reference to a module only while it
 337 * is running can call this to safely exit.  nfsd and lockd use this.
 338 */
 339void __noreturn __module_put_and_exit(struct module *mod, long code)
 340{
 341        module_put(mod);
 342        do_exit(code);
 343}
 344EXPORT_SYMBOL(__module_put_and_exit);
 345
 346/* Find a module section: 0 means not found. */
 347static unsigned int find_sec(const struct load_info *info, const char *name)
 348{
 349        unsigned int i;
 350
 351        for (i = 1; i < info->hdr->e_shnum; i++) {
 352                Elf_Shdr *shdr = &info->sechdrs[i];
 353                /* Alloc bit cleared means "ignore it." */
 354                if ((shdr->sh_flags & SHF_ALLOC)
 355                    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 356                        return i;
 357        }
 358        return 0;
 359}
 360
 361/* Find a module section, or NULL. */
 362static void *section_addr(const struct load_info *info, const char *name)
 363{
 364        /* Section 0 has sh_addr 0. */
 365        return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 366}
 367
 368/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 369static void *section_objs(const struct load_info *info,
 370                          const char *name,
 371                          size_t object_size,
 372                          unsigned int *num)
 373{
 374        unsigned int sec = find_sec(info, name);
 375
 376        /* Section 0 has sh_addr 0 and sh_size 0. */
 377        *num = info->sechdrs[sec].sh_size / object_size;
 378        return (void *)info->sechdrs[sec].sh_addr;
 379}
 380
 381/* Provided by the linker */
 382extern const struct kernel_symbol __start___ksymtab[];
 383extern const struct kernel_symbol __stop___ksymtab[];
 384extern const struct kernel_symbol __start___ksymtab_gpl[];
 385extern const struct kernel_symbol __stop___ksymtab_gpl[];
 386extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 387extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 388extern const s32 __start___kcrctab[];
 389extern const s32 __start___kcrctab_gpl[];
 390extern const s32 __start___kcrctab_gpl_future[];
 391#ifdef CONFIG_UNUSED_SYMBOLS
 392extern const struct kernel_symbol __start___ksymtab_unused[];
 393extern const struct kernel_symbol __stop___ksymtab_unused[];
 394extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 395extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 396extern const s32 __start___kcrctab_unused[];
 397extern const s32 __start___kcrctab_unused_gpl[];
 398#endif
 399
 400#ifndef CONFIG_MODVERSIONS
 401#define symversion(base, idx) NULL
 402#else
 403#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 404#endif
 405
 406static bool each_symbol_in_section(const struct symsearch *arr,
 407                                   unsigned int arrsize,
 408                                   struct module *owner,
 409                                   bool (*fn)(const struct symsearch *syms,
 410                                              struct module *owner,
 411                                              void *data),
 412                                   void *data)
 413{
 414        unsigned int j;
 415
 416        for (j = 0; j < arrsize; j++) {
 417                if (fn(&arr[j], owner, data))
 418                        return true;
 419        }
 420
 421        return false;
 422}
 423
 424/* Returns true as soon as fn returns true, otherwise false. */
 425static bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 426                                    struct module *owner,
 427                                    void *data),
 428                         void *data)
 429{
 430        struct module *mod;
 431        static const struct symsearch arr[] = {
 432                { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 433                  NOT_GPL_ONLY, false },
 434                { __start___ksymtab_gpl, __stop___ksymtab_gpl,
 435                  __start___kcrctab_gpl,
 436                  GPL_ONLY, false },
 437                { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 438                  __start___kcrctab_gpl_future,
 439                  WILL_BE_GPL_ONLY, false },
 440#ifdef CONFIG_UNUSED_SYMBOLS
 441                { __start___ksymtab_unused, __stop___ksymtab_unused,
 442                  __start___kcrctab_unused,
 443                  NOT_GPL_ONLY, true },
 444                { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 445                  __start___kcrctab_unused_gpl,
 446                  GPL_ONLY, true },
 447#endif
 448        };
 449
 450        module_assert_mutex_or_preempt();
 451
 452        if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 453                return true;
 454
 455        list_for_each_entry_rcu(mod, &modules, list,
 456                                lockdep_is_held(&module_mutex)) {
 457                struct symsearch arr[] = {
 458                        { mod->syms, mod->syms + mod->num_syms, mod->crcs,
 459                          NOT_GPL_ONLY, false },
 460                        { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 461                          mod->gpl_crcs,
 462                          GPL_ONLY, false },
 463                        { mod->gpl_future_syms,
 464                          mod->gpl_future_syms + mod->num_gpl_future_syms,
 465                          mod->gpl_future_crcs,
 466                          WILL_BE_GPL_ONLY, false },
 467#ifdef CONFIG_UNUSED_SYMBOLS
 468                        { mod->unused_syms,
 469                          mod->unused_syms + mod->num_unused_syms,
 470                          mod->unused_crcs,
 471                          NOT_GPL_ONLY, true },
 472                        { mod->unused_gpl_syms,
 473                          mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 474                          mod->unused_gpl_crcs,
 475                          GPL_ONLY, true },
 476#endif
 477                };
 478
 479                if (mod->state == MODULE_STATE_UNFORMED)
 480                        continue;
 481
 482                if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 483                        return true;
 484        }
 485        return false;
 486}
 487
 488struct find_symbol_arg {
 489        /* Input */
 490        const char *name;
 491        bool gplok;
 492        bool warn;
 493
 494        /* Output */
 495        struct module *owner;
 496        const s32 *crc;
 497        const struct kernel_symbol *sym;
 498        enum mod_license license;
 499};
 500
 501static bool check_exported_symbol(const struct symsearch *syms,
 502                                  struct module *owner,
 503                                  unsigned int symnum, void *data)
 504{
 505        struct find_symbol_arg *fsa = data;
 506
 507        if (!fsa->gplok) {
 508                if (syms->license == GPL_ONLY)
 509                        return false;
 510                if (syms->license == WILL_BE_GPL_ONLY && fsa->warn) {
 511                        pr_warn("Symbol %s is being used by a non-GPL module, "
 512                                "which will not be allowed in the future\n",
 513                                fsa->name);
 514                }
 515        }
 516
 517#ifdef CONFIG_UNUSED_SYMBOLS
 518        if (syms->unused && fsa->warn) {
 519                pr_warn("Symbol %s is marked as UNUSED, however this module is "
 520                        "using it.\n", fsa->name);
 521                pr_warn("This symbol will go away in the future.\n");
 522                pr_warn("Please evaluate if this is the right api to use and "
 523                        "if it really is, submit a report to the linux kernel "
 524                        "mailing list together with submitting your code for "
 525                        "inclusion.\n");
 526        }
 527#endif
 528
 529        fsa->owner = owner;
 530        fsa->crc = symversion(syms->crcs, symnum);
 531        fsa->sym = &syms->start[symnum];
 532        fsa->license = syms->license;
 533        return true;
 534}
 535
 536static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
 537{
 538#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 539        return (unsigned long)offset_to_ptr(&sym->value_offset);
 540#else
 541        return sym->value;
 542#endif
 543}
 544
 545static const char *kernel_symbol_name(const struct kernel_symbol *sym)
 546{
 547#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 548        return offset_to_ptr(&sym->name_offset);
 549#else
 550        return sym->name;
 551#endif
 552}
 553
 554static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
 555{
 556#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 557        if (!sym->namespace_offset)
 558                return NULL;
 559        return offset_to_ptr(&sym->namespace_offset);
 560#else
 561        return sym->namespace;
 562#endif
 563}
 564
 565static int cmp_name(const void *name, const void *sym)
 566{
 567        return strcmp(name, kernel_symbol_name(sym));
 568}
 569
 570static bool find_exported_symbol_in_section(const struct symsearch *syms,
 571                                            struct module *owner,
 572                                            void *data)
 573{
 574        struct find_symbol_arg *fsa = data;
 575        struct kernel_symbol *sym;
 576
 577        sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 578                        sizeof(struct kernel_symbol), cmp_name);
 579
 580        if (sym != NULL && check_exported_symbol(syms, owner,
 581                                                 sym - syms->start, data))
 582                return true;
 583
 584        return false;
 585}
 586
 587/* Find an exported symbol and return it, along with, (optional) crc and
 588 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 589static const struct kernel_symbol *find_symbol(const char *name,
 590                                        struct module **owner,
 591                                        const s32 **crc,
 592                                        enum mod_license *license,
 593                                        bool gplok,
 594                                        bool warn)
 595{
 596        struct find_symbol_arg fsa;
 597
 598        fsa.name = name;
 599        fsa.gplok = gplok;
 600        fsa.warn = warn;
 601
 602        if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
 603                if (owner)
 604                        *owner = fsa.owner;
 605                if (crc)
 606                        *crc = fsa.crc;
 607                if (license)
 608                        *license = fsa.license;
 609                return fsa.sym;
 610        }
 611
 612        pr_debug("Failed to find symbol %s\n", name);
 613        return NULL;
 614}
 615
 616/*
 617 * Search for module by name: must hold module_mutex (or preempt disabled
 618 * for read-only access).
 619 */
 620static struct module *find_module_all(const char *name, size_t len,
 621                                      bool even_unformed)
 622{
 623        struct module *mod;
 624
 625        module_assert_mutex_or_preempt();
 626
 627        list_for_each_entry_rcu(mod, &modules, list,
 628                                lockdep_is_held(&module_mutex)) {
 629                if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 630                        continue;
 631                if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 632                        return mod;
 633        }
 634        return NULL;
 635}
 636
 637struct module *find_module(const char *name)
 638{
 639        module_assert_mutex();
 640        return find_module_all(name, strlen(name), false);
 641}
 642EXPORT_SYMBOL_GPL(find_module);
 643
 644#ifdef CONFIG_SMP
 645
 646static inline void __percpu *mod_percpu(struct module *mod)
 647{
 648        return mod->percpu;
 649}
 650
 651static int percpu_modalloc(struct module *mod, struct load_info *info)
 652{
 653        Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 654        unsigned long align = pcpusec->sh_addralign;
 655
 656        if (!pcpusec->sh_size)
 657                return 0;
 658
 659        if (align > PAGE_SIZE) {
 660                pr_warn("%s: per-cpu alignment %li > %li\n",
 661                        mod->name, align, PAGE_SIZE);
 662                align = PAGE_SIZE;
 663        }
 664
 665        mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 666        if (!mod->percpu) {
 667                pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 668                        mod->name, (unsigned long)pcpusec->sh_size);
 669                return -ENOMEM;
 670        }
 671        mod->percpu_size = pcpusec->sh_size;
 672        return 0;
 673}
 674
 675static void percpu_modfree(struct module *mod)
 676{
 677        free_percpu(mod->percpu);
 678}
 679
 680static unsigned int find_pcpusec(struct load_info *info)
 681{
 682        return find_sec(info, ".data..percpu");
 683}
 684
 685static void percpu_modcopy(struct module *mod,
 686                           const void *from, unsigned long size)
 687{
 688        int cpu;
 689
 690        for_each_possible_cpu(cpu)
 691                memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 692}
 693
 694bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 695{
 696        struct module *mod;
 697        unsigned int cpu;
 698
 699        preempt_disable();
 700
 701        list_for_each_entry_rcu(mod, &modules, list) {
 702                if (mod->state == MODULE_STATE_UNFORMED)
 703                        continue;
 704                if (!mod->percpu_size)
 705                        continue;
 706                for_each_possible_cpu(cpu) {
 707                        void *start = per_cpu_ptr(mod->percpu, cpu);
 708                        void *va = (void *)addr;
 709
 710                        if (va >= start && va < start + mod->percpu_size) {
 711                                if (can_addr) {
 712                                        *can_addr = (unsigned long) (va - start);
 713                                        *can_addr += (unsigned long)
 714                                                per_cpu_ptr(mod->percpu,
 715                                                            get_boot_cpu_id());
 716                                }
 717                                preempt_enable();
 718                                return true;
 719                        }
 720                }
 721        }
 722
 723        preempt_enable();
 724        return false;
 725}
 726
 727/**
 728 * is_module_percpu_address - test whether address is from module static percpu
 729 * @addr: address to test
 730 *
 731 * Test whether @addr belongs to module static percpu area.
 732 *
 733 * RETURNS:
 734 * %true if @addr is from module static percpu area
 735 */
 736bool is_module_percpu_address(unsigned long addr)
 737{
 738        return __is_module_percpu_address(addr, NULL);
 739}
 740
 741#else /* ... !CONFIG_SMP */
 742
 743static inline void __percpu *mod_percpu(struct module *mod)
 744{
 745        return NULL;
 746}
 747static int percpu_modalloc(struct module *mod, struct load_info *info)
 748{
 749        /* UP modules shouldn't have this section: ENOMEM isn't quite right */
 750        if (info->sechdrs[info->index.pcpu].sh_size != 0)
 751                return -ENOMEM;
 752        return 0;
 753}
 754static inline void percpu_modfree(struct module *mod)
 755{
 756}
 757static unsigned int find_pcpusec(struct load_info *info)
 758{
 759        return 0;
 760}
 761static inline void percpu_modcopy(struct module *mod,
 762                                  const void *from, unsigned long size)
 763{
 764        /* pcpusec should be 0, and size of that section should be 0. */
 765        BUG_ON(size != 0);
 766}
 767bool is_module_percpu_address(unsigned long addr)
 768{
 769        return false;
 770}
 771
 772bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 773{
 774        return false;
 775}
 776
 777#endif /* CONFIG_SMP */
 778
 779#define MODINFO_ATTR(field)     \
 780static void setup_modinfo_##field(struct module *mod, const char *s)  \
 781{                                                                     \
 782        mod->field = kstrdup(s, GFP_KERNEL);                          \
 783}                                                                     \
 784static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 785                        struct module_kobject *mk, char *buffer)      \
 786{                                                                     \
 787        return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 788}                                                                     \
 789static int modinfo_##field##_exists(struct module *mod)               \
 790{                                                                     \
 791        return mod->field != NULL;                                    \
 792}                                                                     \
 793static void free_modinfo_##field(struct module *mod)                  \
 794{                                                                     \
 795        kfree(mod->field);                                            \
 796        mod->field = NULL;                                            \
 797}                                                                     \
 798static struct module_attribute modinfo_##field = {                    \
 799        .attr = { .name = __stringify(field), .mode = 0444 },         \
 800        .show = show_modinfo_##field,                                 \
 801        .setup = setup_modinfo_##field,                               \
 802        .test = modinfo_##field##_exists,                             \
 803        .free = free_modinfo_##field,                                 \
 804};
 805
 806MODINFO_ATTR(version);
 807MODINFO_ATTR(srcversion);
 808
 809static char last_unloaded_module[MODULE_NAME_LEN+1];
 810
 811#ifdef CONFIG_MODULE_UNLOAD
 812
 813EXPORT_TRACEPOINT_SYMBOL(module_get);
 814
 815/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 816#define MODULE_REF_BASE 1
 817
 818/* Init the unload section of the module. */
 819static int module_unload_init(struct module *mod)
 820{
 821        /*
 822         * Initialize reference counter to MODULE_REF_BASE.
 823         * refcnt == 0 means module is going.
 824         */
 825        atomic_set(&mod->refcnt, MODULE_REF_BASE);
 826
 827        INIT_LIST_HEAD(&mod->source_list);
 828        INIT_LIST_HEAD(&mod->target_list);
 829
 830        /* Hold reference count during initialization. */
 831        atomic_inc(&mod->refcnt);
 832
 833        return 0;
 834}
 835
 836/* Does a already use b? */
 837static int already_uses(struct module *a, struct module *b)
 838{
 839        struct module_use *use;
 840
 841        list_for_each_entry(use, &b->source_list, source_list) {
 842                if (use->source == a) {
 843                        pr_debug("%s uses %s!\n", a->name, b->name);
 844                        return 1;
 845                }
 846        }
 847        pr_debug("%s does not use %s!\n", a->name, b->name);
 848        return 0;
 849}
 850
 851/*
 852 * Module a uses b
 853 *  - we add 'a' as a "source", 'b' as a "target" of module use
 854 *  - the module_use is added to the list of 'b' sources (so
 855 *    'b' can walk the list to see who sourced them), and of 'a'
 856 *    targets (so 'a' can see what modules it targets).
 857 */
 858static int add_module_usage(struct module *a, struct module *b)
 859{
 860        struct module_use *use;
 861
 862        pr_debug("Allocating new usage for %s.\n", a->name);
 863        use = kmalloc(sizeof(*use), GFP_ATOMIC);
 864        if (!use)
 865                return -ENOMEM;
 866
 867        use->source = a;
 868        use->target = b;
 869        list_add(&use->source_list, &b->source_list);
 870        list_add(&use->target_list, &a->target_list);
 871        return 0;
 872}
 873
 874/* Module a uses b: caller needs module_mutex() */
 875static int ref_module(struct module *a, struct module *b)
 876{
 877        int err;
 878
 879        if (b == NULL || already_uses(a, b))
 880                return 0;
 881
 882        /* If module isn't available, we fail. */
 883        err = strong_try_module_get(b);
 884        if (err)
 885                return err;
 886
 887        err = add_module_usage(a, b);
 888        if (err) {
 889                module_put(b);
 890                return err;
 891        }
 892        return 0;
 893}
 894
 895/* Clear the unload stuff of the module. */
 896static void module_unload_free(struct module *mod)
 897{
 898        struct module_use *use, *tmp;
 899
 900        mutex_lock(&module_mutex);
 901        list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 902                struct module *i = use->target;
 903                pr_debug("%s unusing %s\n", mod->name, i->name);
 904                module_put(i);
 905                list_del(&use->source_list);
 906                list_del(&use->target_list);
 907                kfree(use);
 908        }
 909        mutex_unlock(&module_mutex);
 910}
 911
 912#ifdef CONFIG_MODULE_FORCE_UNLOAD
 913static inline int try_force_unload(unsigned int flags)
 914{
 915        int ret = (flags & O_TRUNC);
 916        if (ret)
 917                add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 918        return ret;
 919}
 920#else
 921static inline int try_force_unload(unsigned int flags)
 922{
 923        return 0;
 924}
 925#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 926
 927/* Try to release refcount of module, 0 means success. */
 928static int try_release_module_ref(struct module *mod)
 929{
 930        int ret;
 931
 932        /* Try to decrement refcnt which we set at loading */
 933        ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 934        BUG_ON(ret < 0);
 935        if (ret)
 936                /* Someone can put this right now, recover with checking */
 937                ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 938
 939        return ret;
 940}
 941
 942static int try_stop_module(struct module *mod, int flags, int *forced)
 943{
 944        /* If it's not unused, quit unless we're forcing. */
 945        if (try_release_module_ref(mod) != 0) {
 946                *forced = try_force_unload(flags);
 947                if (!(*forced))
 948                        return -EWOULDBLOCK;
 949        }
 950
 951        /* Mark it as dying. */
 952        mod->state = MODULE_STATE_GOING;
 953
 954        return 0;
 955}
 956
 957/**
 958 * module_refcount - return the refcount or -1 if unloading
 959 *
 960 * @mod:        the module we're checking
 961 *
 962 * Returns:
 963 *      -1 if the module is in the process of unloading
 964 *      otherwise the number of references in the kernel to the module
 965 */
 966int module_refcount(struct module *mod)
 967{
 968        return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 969}
 970EXPORT_SYMBOL(module_refcount);
 971
 972/* This exists whether we can unload or not */
 973static void free_module(struct module *mod);
 974
 975SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 976                unsigned int, flags)
 977{
 978        struct module *mod;
 979        char name[MODULE_NAME_LEN];
 980        int ret, forced = 0;
 981
 982        if (!capable(CAP_SYS_MODULE) || modules_disabled)
 983                return -EPERM;
 984
 985        if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 986                return -EFAULT;
 987        name[MODULE_NAME_LEN-1] = '\0';
 988
 989        audit_log_kern_module(name);
 990
 991        if (mutex_lock_interruptible(&module_mutex) != 0)
 992                return -EINTR;
 993
 994        mod = find_module(name);
 995        if (!mod) {
 996                ret = -ENOENT;
 997                goto out;
 998        }
 999
1000        if (!list_empty(&mod->source_list)) {
1001                /* Other modules depend on us: get rid of them first. */
1002                ret = -EWOULDBLOCK;
1003                goto out;
1004        }
1005
1006        /* Doing init or already dying? */
1007        if (mod->state != MODULE_STATE_LIVE) {
1008                /* FIXME: if (force), slam module count damn the torpedoes */
1009                pr_debug("%s already dying\n", mod->name);
1010                ret = -EBUSY;
1011                goto out;
1012        }
1013
1014        /* If it has an init func, it must have an exit func to unload */
1015        if (mod->init && !mod->exit) {
1016                forced = try_force_unload(flags);
1017                if (!forced) {
1018                        /* This module can't be removed */
1019                        ret = -EBUSY;
1020                        goto out;
1021                }
1022        }
1023
1024        /* Stop the machine so refcounts can't move and disable module. */
1025        ret = try_stop_module(mod, flags, &forced);
1026        if (ret != 0)
1027                goto out;
1028
1029        mutex_unlock(&module_mutex);
1030        /* Final destruction now no one is using it. */
1031        if (mod->exit != NULL)
1032                mod->exit();
1033        blocking_notifier_call_chain(&module_notify_list,
1034                                     MODULE_STATE_GOING, mod);
1035        klp_module_going(mod);
1036        ftrace_release_mod(mod);
1037
1038        async_synchronize_full();
1039
1040        /* Store the name of the last unloaded module for diagnostic purposes */
1041        strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1042
1043        free_module(mod);
1044        /* someone could wait for the module in add_unformed_module() */
1045        wake_up_all(&module_wq);
1046        return 0;
1047out:
1048        mutex_unlock(&module_mutex);
1049        return ret;
1050}
1051
1052static inline void print_unload_info(struct seq_file *m, struct module *mod)
1053{
1054        struct module_use *use;
1055        int printed_something = 0;
1056
1057        seq_printf(m, " %i ", module_refcount(mod));
1058
1059        /*
1060         * Always include a trailing , so userspace can differentiate
1061         * between this and the old multi-field proc format.
1062         */
1063        list_for_each_entry(use, &mod->source_list, source_list) {
1064                printed_something = 1;
1065                seq_printf(m, "%s,", use->source->name);
1066        }
1067
1068        if (mod->init != NULL && mod->exit == NULL) {
1069                printed_something = 1;
1070                seq_puts(m, "[permanent],");
1071        }
1072
1073        if (!printed_something)
1074                seq_puts(m, "-");
1075}
1076
1077void __symbol_put(const char *symbol)
1078{
1079        struct module *owner;
1080
1081        preempt_disable();
1082        if (!find_symbol(symbol, &owner, NULL, NULL, true, false))
1083                BUG();
1084        module_put(owner);
1085        preempt_enable();
1086}
1087EXPORT_SYMBOL(__symbol_put);
1088
1089/* Note this assumes addr is a function, which it currently always is. */
1090void symbol_put_addr(void *addr)
1091{
1092        struct module *modaddr;
1093        unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1094
1095        if (core_kernel_text(a))
1096                return;
1097
1098        /*
1099         * Even though we hold a reference on the module; we still need to
1100         * disable preemption in order to safely traverse the data structure.
1101         */
1102        preempt_disable();
1103        modaddr = __module_text_address(a);
1104        BUG_ON(!modaddr);
1105        module_put(modaddr);
1106        preempt_enable();
1107}
1108EXPORT_SYMBOL_GPL(symbol_put_addr);
1109
1110static ssize_t show_refcnt(struct module_attribute *mattr,
1111                           struct module_kobject *mk, char *buffer)
1112{
1113        return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1114}
1115
1116static struct module_attribute modinfo_refcnt =
1117        __ATTR(refcnt, 0444, show_refcnt, NULL);
1118
1119void __module_get(struct module *module)
1120{
1121        if (module) {
1122                preempt_disable();
1123                atomic_inc(&module->refcnt);
1124                trace_module_get(module, _RET_IP_);
1125                preempt_enable();
1126        }
1127}
1128EXPORT_SYMBOL(__module_get);
1129
1130bool try_module_get(struct module *module)
1131{
1132        bool ret = true;
1133
1134        if (module) {
1135                preempt_disable();
1136                /* Note: here, we can fail to get a reference */
1137                if (likely(module_is_live(module) &&
1138                           atomic_inc_not_zero(&module->refcnt) != 0))
1139                        trace_module_get(module, _RET_IP_);
1140                else
1141                        ret = false;
1142
1143                preempt_enable();
1144        }
1145        return ret;
1146}
1147EXPORT_SYMBOL(try_module_get);
1148
1149void module_put(struct module *module)
1150{
1151        int ret;
1152
1153        if (module) {
1154                preempt_disable();
1155                ret = atomic_dec_if_positive(&module->refcnt);
1156                WARN_ON(ret < 0);       /* Failed to put refcount */
1157                trace_module_put(module, _RET_IP_);
1158                preempt_enable();
1159        }
1160}
1161EXPORT_SYMBOL(module_put);
1162
1163#else /* !CONFIG_MODULE_UNLOAD */
1164static inline void print_unload_info(struct seq_file *m, struct module *mod)
1165{
1166        /* We don't know the usage count, or what modules are using. */
1167        seq_puts(m, " - -");
1168}
1169
1170static inline void module_unload_free(struct module *mod)
1171{
1172}
1173
1174static int ref_module(struct module *a, struct module *b)
1175{
1176        return strong_try_module_get(b);
1177}
1178
1179static inline int module_unload_init(struct module *mod)
1180{
1181        return 0;
1182}
1183#endif /* CONFIG_MODULE_UNLOAD */
1184
1185static size_t module_flags_taint(struct module *mod, char *buf)
1186{
1187        size_t l = 0;
1188        int i;
1189
1190        for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1191                if (taint_flags[i].module && test_bit(i, &mod->taints))
1192                        buf[l++] = taint_flags[i].c_true;
1193        }
1194
1195        return l;
1196}
1197
1198static ssize_t show_initstate(struct module_attribute *mattr,
1199                              struct module_kobject *mk, char *buffer)
1200{
1201        const char *state = "unknown";
1202
1203        switch (mk->mod->state) {
1204        case MODULE_STATE_LIVE:
1205                state = "live";
1206                break;
1207        case MODULE_STATE_COMING:
1208                state = "coming";
1209                break;
1210        case MODULE_STATE_GOING:
1211                state = "going";
1212                break;
1213        default:
1214                BUG();
1215        }
1216        return sprintf(buffer, "%s\n", state);
1217}
1218
1219static struct module_attribute modinfo_initstate =
1220        __ATTR(initstate, 0444, show_initstate, NULL);
1221
1222static ssize_t store_uevent(struct module_attribute *mattr,
1223                            struct module_kobject *mk,
1224                            const char *buffer, size_t count)
1225{
1226        int rc;
1227
1228        rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1229        return rc ? rc : count;
1230}
1231
1232struct module_attribute module_uevent =
1233        __ATTR(uevent, 0200, NULL, store_uevent);
1234
1235static ssize_t show_coresize(struct module_attribute *mattr,
1236                             struct module_kobject *mk, char *buffer)
1237{
1238        return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1239}
1240
1241static struct module_attribute modinfo_coresize =
1242        __ATTR(coresize, 0444, show_coresize, NULL);
1243
1244static ssize_t show_initsize(struct module_attribute *mattr,
1245                             struct module_kobject *mk, char *buffer)
1246{
1247        return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1248}
1249
1250static struct module_attribute modinfo_initsize =
1251        __ATTR(initsize, 0444, show_initsize, NULL);
1252
1253static ssize_t show_taint(struct module_attribute *mattr,
1254                          struct module_kobject *mk, char *buffer)
1255{
1256        size_t l;
1257
1258        l = module_flags_taint(mk->mod, buffer);
1259        buffer[l++] = '\n';
1260        return l;
1261}
1262
1263static struct module_attribute modinfo_taint =
1264        __ATTR(taint, 0444, show_taint, NULL);
1265
1266static struct module_attribute *modinfo_attrs[] = {
1267        &module_uevent,
1268        &modinfo_version,
1269        &modinfo_srcversion,
1270        &modinfo_initstate,
1271        &modinfo_coresize,
1272        &modinfo_initsize,
1273        &modinfo_taint,
1274#ifdef CONFIG_MODULE_UNLOAD
1275        &modinfo_refcnt,
1276#endif
1277        NULL,
1278};
1279
1280static const char vermagic[] = VERMAGIC_STRING;
1281
1282static int try_to_force_load(struct module *mod, const char *reason)
1283{
1284#ifdef CONFIG_MODULE_FORCE_LOAD
1285        if (!test_taint(TAINT_FORCED_MODULE))
1286                pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1287        add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1288        return 0;
1289#else
1290        return -ENOEXEC;
1291#endif
1292}
1293
1294#ifdef CONFIG_MODVERSIONS
1295
1296static u32 resolve_rel_crc(const s32 *crc)
1297{
1298        return *(u32 *)((void *)crc + *crc);
1299}
1300
1301static int check_version(const struct load_info *info,
1302                         const char *symname,
1303                         struct module *mod,
1304                         const s32 *crc)
1305{
1306        Elf_Shdr *sechdrs = info->sechdrs;
1307        unsigned int versindex = info->index.vers;
1308        unsigned int i, num_versions;
1309        struct modversion_info *versions;
1310
1311        /* Exporting module didn't supply crcs?  OK, we're already tainted. */
1312        if (!crc)
1313                return 1;
1314
1315        /* No versions at all?  modprobe --force does this. */
1316        if (versindex == 0)
1317                return try_to_force_load(mod, symname) == 0;
1318
1319        versions = (void *) sechdrs[versindex].sh_addr;
1320        num_versions = sechdrs[versindex].sh_size
1321                / sizeof(struct modversion_info);
1322
1323        for (i = 0; i < num_versions; i++) {
1324                u32 crcval;
1325
1326                if (strcmp(versions[i].name, symname) != 0)
1327                        continue;
1328
1329                if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1330                        crcval = resolve_rel_crc(crc);
1331                else
1332                        crcval = *crc;
1333                if (versions[i].crc == crcval)
1334                        return 1;
1335                pr_debug("Found checksum %X vs module %lX\n",
1336                         crcval, versions[i].crc);
1337                goto bad_version;
1338        }
1339
1340        /* Broken toolchain. Warn once, then let it go.. */
1341        pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1342        return 1;
1343
1344bad_version:
1345        pr_warn("%s: disagrees about version of symbol %s\n",
1346               info->name, symname);
1347        return 0;
1348}
1349
1350static inline int check_modstruct_version(const struct load_info *info,
1351                                          struct module *mod)
1352{
1353        const s32 *crc;
1354
1355        /*
1356         * Since this should be found in kernel (which can't be removed), no
1357         * locking is necessary -- use preempt_disable() to placate lockdep.
1358         */
1359        preempt_disable();
1360        if (!find_symbol("module_layout", NULL, &crc, NULL, true, false)) {
1361                preempt_enable();
1362                BUG();
1363        }
1364        preempt_enable();
1365        return check_version(info, "module_layout", mod, crc);
1366}
1367
1368/* First part is kernel version, which we ignore if module has crcs. */
1369static inline int same_magic(const char *amagic, const char *bmagic,
1370                             bool has_crcs)
1371{
1372        if (has_crcs) {
1373                amagic += strcspn(amagic, " ");
1374                bmagic += strcspn(bmagic, " ");
1375        }
1376        return strcmp(amagic, bmagic) == 0;
1377}
1378#else
1379static inline int check_version(const struct load_info *info,
1380                                const char *symname,
1381                                struct module *mod,
1382                                const s32 *crc)
1383{
1384        return 1;
1385}
1386
1387static inline int check_modstruct_version(const struct load_info *info,
1388                                          struct module *mod)
1389{
1390        return 1;
1391}
1392
1393static inline int same_magic(const char *amagic, const char *bmagic,
1394                             bool has_crcs)
1395{
1396        return strcmp(amagic, bmagic) == 0;
1397}
1398#endif /* CONFIG_MODVERSIONS */
1399
1400static char *get_modinfo(const struct load_info *info, const char *tag);
1401static char *get_next_modinfo(const struct load_info *info, const char *tag,
1402                              char *prev);
1403
1404static int verify_namespace_is_imported(const struct load_info *info,
1405                                        const struct kernel_symbol *sym,
1406                                        struct module *mod)
1407{
1408        const char *namespace;
1409        char *imported_namespace;
1410
1411        namespace = kernel_symbol_namespace(sym);
1412        if (namespace && namespace[0]) {
1413                imported_namespace = get_modinfo(info, "import_ns");
1414                while (imported_namespace) {
1415                        if (strcmp(namespace, imported_namespace) == 0)
1416                                return 0;
1417                        imported_namespace = get_next_modinfo(
1418                                info, "import_ns", imported_namespace);
1419                }
1420#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1421                pr_warn(
1422#else
1423                pr_err(
1424#endif
1425                        "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1426                        mod->name, kernel_symbol_name(sym), namespace);
1427#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1428                return -EINVAL;
1429#endif
1430        }
1431        return 0;
1432}
1433
1434static bool inherit_taint(struct module *mod, struct module *owner)
1435{
1436        if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1437                return true;
1438
1439        if (mod->using_gplonly_symbols) {
1440                pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1441                        mod->name, owner->name);
1442                return false;
1443        }
1444
1445        if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1446                pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1447                        mod->name, owner->name);
1448                set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1449        }
1450        return true;
1451}
1452
1453/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1454static const struct kernel_symbol *resolve_symbol(struct module *mod,
1455                                                  const struct load_info *info,
1456                                                  const char *name,
1457                                                  char ownername[])
1458{
1459        struct module *owner;
1460        const struct kernel_symbol *sym;
1461        const s32 *crc;
1462        enum mod_license license;
1463        int err;
1464
1465        /*
1466         * The module_mutex should not be a heavily contended lock;
1467         * if we get the occasional sleep here, we'll go an extra iteration
1468         * in the wait_event_interruptible(), which is harmless.
1469         */
1470        sched_annotate_sleep();
1471        mutex_lock(&module_mutex);
1472        sym = find_symbol(name, &owner, &crc, &license,
1473                          !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1474        if (!sym)
1475                goto unlock;
1476
1477        if (license == GPL_ONLY)
1478                mod->using_gplonly_symbols = true;
1479
1480        if (!inherit_taint(mod, owner)) {
1481                sym = NULL;
1482                goto getname;
1483        }
1484
1485        if (!check_version(info, name, mod, crc)) {
1486                sym = ERR_PTR(-EINVAL);
1487                goto getname;
1488        }
1489
1490        err = verify_namespace_is_imported(info, sym, mod);
1491        if (err) {
1492                sym = ERR_PTR(err);
1493                goto getname;
1494        }
1495
1496        err = ref_module(mod, owner);
1497        if (err) {
1498                sym = ERR_PTR(err);
1499                goto getname;
1500        }
1501
1502getname:
1503        /* We must make copy under the lock if we failed to get ref. */
1504        strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1505unlock:
1506        mutex_unlock(&module_mutex);
1507        return sym;
1508}
1509
1510static const struct kernel_symbol *
1511resolve_symbol_wait(struct module *mod,
1512                    const struct load_info *info,
1513                    const char *name)
1514{
1515        const struct kernel_symbol *ksym;
1516        char owner[MODULE_NAME_LEN];
1517
1518        if (wait_event_interruptible_timeout(module_wq,
1519                        !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1520                        || PTR_ERR(ksym) != -EBUSY,
1521                                             30 * HZ) <= 0) {
1522                pr_warn("%s: gave up waiting for init of module %s.\n",
1523                        mod->name, owner);
1524        }
1525        return ksym;
1526}
1527
1528/*
1529 * /sys/module/foo/sections stuff
1530 * J. Corbet <corbet@lwn.net>
1531 */
1532#ifdef CONFIG_SYSFS
1533
1534#ifdef CONFIG_KALLSYMS
1535static inline bool sect_empty(const Elf_Shdr *sect)
1536{
1537        return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1538}
1539
1540struct module_sect_attr {
1541        struct bin_attribute battr;
1542        unsigned long address;
1543};
1544
1545struct module_sect_attrs {
1546        struct attribute_group grp;
1547        unsigned int nsections;
1548        struct module_sect_attr attrs[];
1549};
1550
1551#define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
1552static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1553                                struct bin_attribute *battr,
1554                                char *buf, loff_t pos, size_t count)
1555{
1556        struct module_sect_attr *sattr =
1557                container_of(battr, struct module_sect_attr, battr);
1558        char bounce[MODULE_SECT_READ_SIZE + 1];
1559        size_t wrote;
1560
1561        if (pos != 0)
1562                return -EINVAL;
1563
1564        /*
1565         * Since we're a binary read handler, we must account for the
1566         * trailing NUL byte that sprintf will write: if "buf" is
1567         * too small to hold the NUL, or the NUL is exactly the last
1568         * byte, the read will look like it got truncated by one byte.
1569         * Since there is no way to ask sprintf nicely to not write
1570         * the NUL, we have to use a bounce buffer.
1571         */
1572        wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1573                         kallsyms_show_value(file->f_cred)
1574                                ? (void *)sattr->address : NULL);
1575        count = min(count, wrote);
1576        memcpy(buf, bounce, count);
1577
1578        return count;
1579}
1580
1581static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1582{
1583        unsigned int section;
1584
1585        for (section = 0; section < sect_attrs->nsections; section++)
1586                kfree(sect_attrs->attrs[section].battr.attr.name);
1587        kfree(sect_attrs);
1588}
1589
1590static void add_sect_attrs(struct module *mod, const struct load_info *info)
1591{
1592        unsigned int nloaded = 0, i, size[2];
1593        struct module_sect_attrs *sect_attrs;
1594        struct module_sect_attr *sattr;
1595        struct bin_attribute **gattr;
1596
1597        /* Count loaded sections and allocate structures */
1598        for (i = 0; i < info->hdr->e_shnum; i++)
1599                if (!sect_empty(&info->sechdrs[i]))
1600                        nloaded++;
1601        size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1602                        sizeof(sect_attrs->grp.bin_attrs[0]));
1603        size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1604        sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1605        if (sect_attrs == NULL)
1606                return;
1607
1608        /* Setup section attributes. */
1609        sect_attrs->grp.name = "sections";
1610        sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1611
1612        sect_attrs->nsections = 0;
1613        sattr = &sect_attrs->attrs[0];
1614        gattr = &sect_attrs->grp.bin_attrs[0];
1615        for (i = 0; i < info->hdr->e_shnum; i++) {
1616                Elf_Shdr *sec = &info->sechdrs[i];
1617                if (sect_empty(sec))
1618                        continue;
1619                sysfs_bin_attr_init(&sattr->battr);
1620                sattr->address = sec->sh_addr;
1621                sattr->battr.attr.name =
1622                        kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1623                if (sattr->battr.attr.name == NULL)
1624                        goto out;
1625                sect_attrs->nsections++;
1626                sattr->battr.read = module_sect_read;
1627                sattr->battr.size = MODULE_SECT_READ_SIZE;
1628                sattr->battr.attr.mode = 0400;
1629                *(gattr++) = &(sattr++)->battr;
1630        }
1631        *gattr = NULL;
1632
1633        if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1634                goto out;
1635
1636        mod->sect_attrs = sect_attrs;
1637        return;
1638  out:
1639        free_sect_attrs(sect_attrs);
1640}
1641
1642static void remove_sect_attrs(struct module *mod)
1643{
1644        if (mod->sect_attrs) {
1645                sysfs_remove_group(&mod->mkobj.kobj,
1646                                   &mod->sect_attrs->grp);
1647                /* We are positive that no one is using any sect attrs
1648                 * at this point.  Deallocate immediately. */
1649                free_sect_attrs(mod->sect_attrs);
1650                mod->sect_attrs = NULL;
1651        }
1652}
1653
1654/*
1655 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1656 */
1657
1658struct module_notes_attrs {
1659        struct kobject *dir;
1660        unsigned int notes;
1661        struct bin_attribute attrs[];
1662};
1663
1664static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1665                                 struct bin_attribute *bin_attr,
1666                                 char *buf, loff_t pos, size_t count)
1667{
1668        /*
1669         * The caller checked the pos and count against our size.
1670         */
1671        memcpy(buf, bin_attr->private + pos, count);
1672        return count;
1673}
1674
1675static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1676                             unsigned int i)
1677{
1678        if (notes_attrs->dir) {
1679                while (i-- > 0)
1680                        sysfs_remove_bin_file(notes_attrs->dir,
1681                                              &notes_attrs->attrs[i]);
1682                kobject_put(notes_attrs->dir);
1683        }
1684        kfree(notes_attrs);
1685}
1686
1687static void add_notes_attrs(struct module *mod, const struct load_info *info)
1688{
1689        unsigned int notes, loaded, i;
1690        struct module_notes_attrs *notes_attrs;
1691        struct bin_attribute *nattr;
1692
1693        /* failed to create section attributes, so can't create notes */
1694        if (!mod->sect_attrs)
1695                return;
1696
1697        /* Count notes sections and allocate structures.  */
1698        notes = 0;
1699        for (i = 0; i < info->hdr->e_shnum; i++)
1700                if (!sect_empty(&info->sechdrs[i]) &&
1701                    (info->sechdrs[i].sh_type == SHT_NOTE))
1702                        ++notes;
1703
1704        if (notes == 0)
1705                return;
1706
1707        notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1708                              GFP_KERNEL);
1709        if (notes_attrs == NULL)
1710                return;
1711
1712        notes_attrs->notes = notes;
1713        nattr = &notes_attrs->attrs[0];
1714        for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1715                if (sect_empty(&info->sechdrs[i]))
1716                        continue;
1717                if (info->sechdrs[i].sh_type == SHT_NOTE) {
1718                        sysfs_bin_attr_init(nattr);
1719                        nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1720                        nattr->attr.mode = S_IRUGO;
1721                        nattr->size = info->sechdrs[i].sh_size;
1722                        nattr->private = (void *) info->sechdrs[i].sh_addr;
1723                        nattr->read = module_notes_read;
1724                        ++nattr;
1725                }
1726                ++loaded;
1727        }
1728
1729        notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1730        if (!notes_attrs->dir)
1731                goto out;
1732
1733        for (i = 0; i < notes; ++i)
1734                if (sysfs_create_bin_file(notes_attrs->dir,
1735                                          &notes_attrs->attrs[i]))
1736                        goto out;
1737
1738        mod->notes_attrs = notes_attrs;
1739        return;
1740
1741  out:
1742        free_notes_attrs(notes_attrs, i);
1743}
1744
1745static void remove_notes_attrs(struct module *mod)
1746{
1747        if (mod->notes_attrs)
1748                free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1749}
1750
1751#else
1752
1753static inline void add_sect_attrs(struct module *mod,
1754                                  const struct load_info *info)
1755{
1756}
1757
1758static inline void remove_sect_attrs(struct module *mod)
1759{
1760}
1761
1762static inline void add_notes_attrs(struct module *mod,
1763                                   const struct load_info *info)
1764{
1765}
1766
1767static inline void remove_notes_attrs(struct module *mod)
1768{
1769}
1770#endif /* CONFIG_KALLSYMS */
1771
1772static void del_usage_links(struct module *mod)
1773{
1774#ifdef CONFIG_MODULE_UNLOAD
1775        struct module_use *use;
1776
1777        mutex_lock(&module_mutex);
1778        list_for_each_entry(use, &mod->target_list, target_list)
1779                sysfs_remove_link(use->target->holders_dir, mod->name);
1780        mutex_unlock(&module_mutex);
1781#endif
1782}
1783
1784static int add_usage_links(struct module *mod)
1785{
1786        int ret = 0;
1787#ifdef CONFIG_MODULE_UNLOAD
1788        struct module_use *use;
1789
1790        mutex_lock(&module_mutex);
1791        list_for_each_entry(use, &mod->target_list, target_list) {
1792                ret = sysfs_create_link(use->target->holders_dir,
1793                                        &mod->mkobj.kobj, mod->name);
1794                if (ret)
1795                        break;
1796        }
1797        mutex_unlock(&module_mutex);
1798        if (ret)
1799                del_usage_links(mod);
1800#endif
1801        return ret;
1802}
1803
1804static void module_remove_modinfo_attrs(struct module *mod, int end);
1805
1806static int module_add_modinfo_attrs(struct module *mod)
1807{
1808        struct module_attribute *attr;
1809        struct module_attribute *temp_attr;
1810        int error = 0;
1811        int i;
1812
1813        mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1814                                        (ARRAY_SIZE(modinfo_attrs) + 1)),
1815                                        GFP_KERNEL);
1816        if (!mod->modinfo_attrs)
1817                return -ENOMEM;
1818
1819        temp_attr = mod->modinfo_attrs;
1820        for (i = 0; (attr = modinfo_attrs[i]); i++) {
1821                if (!attr->test || attr->test(mod)) {
1822                        memcpy(temp_attr, attr, sizeof(*temp_attr));
1823                        sysfs_attr_init(&temp_attr->attr);
1824                        error = sysfs_create_file(&mod->mkobj.kobj,
1825                                        &temp_attr->attr);
1826                        if (error)
1827                                goto error_out;
1828                        ++temp_attr;
1829                }
1830        }
1831
1832        return 0;
1833
1834error_out:
1835        if (i > 0)
1836                module_remove_modinfo_attrs(mod, --i);
1837        else
1838                kfree(mod->modinfo_attrs);
1839        return error;
1840}
1841
1842static void module_remove_modinfo_attrs(struct module *mod, int end)
1843{
1844        struct module_attribute *attr;
1845        int i;
1846
1847        for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1848                if (end >= 0 && i > end)
1849                        break;
1850                /* pick a field to test for end of list */
1851                if (!attr->attr.name)
1852                        break;
1853                sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1854                if (attr->free)
1855                        attr->free(mod);
1856        }
1857        kfree(mod->modinfo_attrs);
1858}
1859
1860static void mod_kobject_put(struct module *mod)
1861{
1862        DECLARE_COMPLETION_ONSTACK(c);
1863        mod->mkobj.kobj_completion = &c;
1864        kobject_put(&mod->mkobj.kobj);
1865        wait_for_completion(&c);
1866}
1867
1868static int mod_sysfs_init(struct module *mod)
1869{
1870        int err;
1871        struct kobject *kobj;
1872
1873        if (!module_sysfs_initialized) {
1874                pr_err("%s: module sysfs not initialized\n", mod->name);
1875                err = -EINVAL;
1876                goto out;
1877        }
1878
1879        kobj = kset_find_obj(module_kset, mod->name);
1880        if (kobj) {
1881                pr_err("%s: module is already loaded\n", mod->name);
1882                kobject_put(kobj);
1883                err = -EINVAL;
1884                goto out;
1885        }
1886
1887        mod->mkobj.mod = mod;
1888
1889        memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1890        mod->mkobj.kobj.kset = module_kset;
1891        err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1892                                   "%s", mod->name);
1893        if (err)
1894                mod_kobject_put(mod);
1895
1896        /* delay uevent until full sysfs population */
1897out:
1898        return err;
1899}
1900
1901static int mod_sysfs_setup(struct module *mod,
1902                           const struct load_info *info,
1903                           struct kernel_param *kparam,
1904                           unsigned int num_params)
1905{
1906        int err;
1907
1908        err = mod_sysfs_init(mod);
1909        if (err)
1910                goto out;
1911
1912        mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1913        if (!mod->holders_dir) {
1914                err = -ENOMEM;
1915                goto out_unreg;
1916        }
1917
1918        err = module_param_sysfs_setup(mod, kparam, num_params);
1919        if (err)
1920                goto out_unreg_holders;
1921
1922        err = module_add_modinfo_attrs(mod);
1923        if (err)
1924                goto out_unreg_param;
1925
1926        err = add_usage_links(mod);
1927        if (err)
1928                goto out_unreg_modinfo_attrs;
1929
1930        add_sect_attrs(mod, info);
1931        add_notes_attrs(mod, info);
1932
1933        kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1934        return 0;
1935
1936out_unreg_modinfo_attrs:
1937        module_remove_modinfo_attrs(mod, -1);
1938out_unreg_param:
1939        module_param_sysfs_remove(mod);
1940out_unreg_holders:
1941        kobject_put(mod->holders_dir);
1942out_unreg:
1943        mod_kobject_put(mod);
1944out:
1945        return err;
1946}
1947
1948static void mod_sysfs_fini(struct module *mod)
1949{
1950        remove_notes_attrs(mod);
1951        remove_sect_attrs(mod);
1952        mod_kobject_put(mod);
1953}
1954
1955static void init_param_lock(struct module *mod)
1956{
1957        mutex_init(&mod->param_lock);
1958}
1959#else /* !CONFIG_SYSFS */
1960
1961static int mod_sysfs_setup(struct module *mod,
1962                           const struct load_info *info,
1963                           struct kernel_param *kparam,
1964                           unsigned int num_params)
1965{
1966        return 0;
1967}
1968
1969static void mod_sysfs_fini(struct module *mod)
1970{
1971}
1972
1973static void module_remove_modinfo_attrs(struct module *mod, int end)
1974{
1975}
1976
1977static void del_usage_links(struct module *mod)
1978{
1979}
1980
1981static void init_param_lock(struct module *mod)
1982{
1983}
1984#endif /* CONFIG_SYSFS */
1985
1986static void mod_sysfs_teardown(struct module *mod)
1987{
1988        del_usage_links(mod);
1989        module_remove_modinfo_attrs(mod, -1);
1990        module_param_sysfs_remove(mod);
1991        kobject_put(mod->mkobj.drivers_dir);
1992        kobject_put(mod->holders_dir);
1993        mod_sysfs_fini(mod);
1994}
1995
1996/*
1997 * LKM RO/NX protection: protect module's text/ro-data
1998 * from modification and any data from execution.
1999 *
2000 * General layout of module is:
2001 *          [text] [read-only-data] [ro-after-init] [writable data]
2002 * text_size -----^                ^               ^               ^
2003 * ro_size ------------------------|               |               |
2004 * ro_after_init_size -----------------------------|               |
2005 * size -----------------------------------------------------------|
2006 *
2007 * These values are always page-aligned (as is base)
2008 */
2009
2010/*
2011 * Since some arches are moving towards PAGE_KERNEL module allocations instead
2012 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
2013 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
2014 * whether we are strict.
2015 */
2016#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
2017static void frob_text(const struct module_layout *layout,
2018                      int (*set_memory)(unsigned long start, int num_pages))
2019{
2020        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2021        BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2022        set_memory((unsigned long)layout->base,
2023                   layout->text_size >> PAGE_SHIFT);
2024}
2025
2026static void module_enable_x(const struct module *mod)
2027{
2028        frob_text(&mod->core_layout, set_memory_x);
2029        frob_text(&mod->init_layout, set_memory_x);
2030}
2031#else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2032static void module_enable_x(const struct module *mod) { }
2033#endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2034
2035#ifdef CONFIG_STRICT_MODULE_RWX
2036static void frob_rodata(const struct module_layout *layout,
2037                        int (*set_memory)(unsigned long start, int num_pages))
2038{
2039        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2040        BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2041        BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2042        set_memory((unsigned long)layout->base + layout->text_size,
2043                   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
2044}
2045
2046static void frob_ro_after_init(const struct module_layout *layout,
2047                                int (*set_memory)(unsigned long start, int num_pages))
2048{
2049        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2050        BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2051        BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2052        set_memory((unsigned long)layout->base + layout->ro_size,
2053                   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
2054}
2055
2056static void frob_writable_data(const struct module_layout *layout,
2057                               int (*set_memory)(unsigned long start, int num_pages))
2058{
2059        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2060        BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2061        BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2062        set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2063                   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2064}
2065
2066static void module_enable_ro(const struct module *mod, bool after_init)
2067{
2068        if (!rodata_enabled)
2069                return;
2070
2071        set_vm_flush_reset_perms(mod->core_layout.base);
2072        set_vm_flush_reset_perms(mod->init_layout.base);
2073        frob_text(&mod->core_layout, set_memory_ro);
2074
2075        frob_rodata(&mod->core_layout, set_memory_ro);
2076        frob_text(&mod->init_layout, set_memory_ro);
2077        frob_rodata(&mod->init_layout, set_memory_ro);
2078
2079        if (after_init)
2080                frob_ro_after_init(&mod->core_layout, set_memory_ro);
2081}
2082
2083static void module_enable_nx(const struct module *mod)
2084{
2085        frob_rodata(&mod->core_layout, set_memory_nx);
2086        frob_ro_after_init(&mod->core_layout, set_memory_nx);
2087        frob_writable_data(&mod->core_layout, set_memory_nx);
2088        frob_rodata(&mod->init_layout, set_memory_nx);
2089        frob_writable_data(&mod->init_layout, set_memory_nx);
2090}
2091
2092static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2093                                       char *secstrings, struct module *mod)
2094{
2095        const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2096        int i;
2097
2098        for (i = 0; i < hdr->e_shnum; i++) {
2099                if ((sechdrs[i].sh_flags & shf_wx) == shf_wx)
2100                        return -ENOEXEC;
2101        }
2102
2103        return 0;
2104}
2105
2106#else /* !CONFIG_STRICT_MODULE_RWX */
2107static void module_enable_nx(const struct module *mod) { }
2108static void module_enable_ro(const struct module *mod, bool after_init) {}
2109static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2110                                       char *secstrings, struct module *mod)
2111{
2112        return 0;
2113}
2114#endif /*  CONFIG_STRICT_MODULE_RWX */
2115
2116#ifdef CONFIG_LIVEPATCH
2117/*
2118 * Persist Elf information about a module. Copy the Elf header,
2119 * section header table, section string table, and symtab section
2120 * index from info to mod->klp_info.
2121 */
2122static int copy_module_elf(struct module *mod, struct load_info *info)
2123{
2124        unsigned int size, symndx;
2125        int ret;
2126
2127        size = sizeof(*mod->klp_info);
2128        mod->klp_info = kmalloc(size, GFP_KERNEL);
2129        if (mod->klp_info == NULL)
2130                return -ENOMEM;
2131
2132        /* Elf header */
2133        size = sizeof(mod->klp_info->hdr);
2134        memcpy(&mod->klp_info->hdr, info->hdr, size);
2135
2136        /* Elf section header table */
2137        size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2138        mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2139        if (mod->klp_info->sechdrs == NULL) {
2140                ret = -ENOMEM;
2141                goto free_info;
2142        }
2143
2144        /* Elf section name string table */
2145        size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2146        mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2147        if (mod->klp_info->secstrings == NULL) {
2148                ret = -ENOMEM;
2149                goto free_sechdrs;
2150        }
2151
2152        /* Elf symbol section index */
2153        symndx = info->index.sym;
2154        mod->klp_info->symndx = symndx;
2155
2156        /*
2157         * For livepatch modules, core_kallsyms.symtab is a complete
2158         * copy of the original symbol table. Adjust sh_addr to point
2159         * to core_kallsyms.symtab since the copy of the symtab in module
2160         * init memory is freed at the end of do_init_module().
2161         */
2162        mod->klp_info->sechdrs[symndx].sh_addr = \
2163                (unsigned long) mod->core_kallsyms.symtab;
2164
2165        return 0;
2166
2167free_sechdrs:
2168        kfree(mod->klp_info->sechdrs);
2169free_info:
2170        kfree(mod->klp_info);
2171        return ret;
2172}
2173
2174static void free_module_elf(struct module *mod)
2175{
2176        kfree(mod->klp_info->sechdrs);
2177        kfree(mod->klp_info->secstrings);
2178        kfree(mod->klp_info);
2179}
2180#else /* !CONFIG_LIVEPATCH */
2181static int copy_module_elf(struct module *mod, struct load_info *info)
2182{
2183        return 0;
2184}
2185
2186static void free_module_elf(struct module *mod)
2187{
2188}
2189#endif /* CONFIG_LIVEPATCH */
2190
2191void __weak module_memfree(void *module_region)
2192{
2193        /*
2194         * This memory may be RO, and freeing RO memory in an interrupt is not
2195         * supported by vmalloc.
2196         */
2197        WARN_ON(in_interrupt());
2198        vfree(module_region);
2199}
2200
2201void __weak module_arch_cleanup(struct module *mod)
2202{
2203}
2204
2205void __weak module_arch_freeing_init(struct module *mod)
2206{
2207}
2208
2209/* Free a module, remove from lists, etc. */
2210static void free_module(struct module *mod)
2211{
2212        trace_module_free(mod);
2213
2214        mod_sysfs_teardown(mod);
2215
2216        /* We leave it in list to prevent duplicate loads, but make sure
2217         * that noone uses it while it's being deconstructed. */
2218        mutex_lock(&module_mutex);
2219        mod->state = MODULE_STATE_UNFORMED;
2220        mutex_unlock(&module_mutex);
2221
2222        /* Remove dynamic debug info */
2223        ddebug_remove_module(mod->name);
2224
2225        /* Arch-specific cleanup. */
2226        module_arch_cleanup(mod);
2227
2228        /* Module unload stuff */
2229        module_unload_free(mod);
2230
2231        /* Free any allocated parameters. */
2232        destroy_params(mod->kp, mod->num_kp);
2233
2234        if (is_livepatch_module(mod))
2235                free_module_elf(mod);
2236
2237        /* Now we can delete it from the lists */
2238        mutex_lock(&module_mutex);
2239        /* Unlink carefully: kallsyms could be walking list. */
2240        list_del_rcu(&mod->list);
2241        mod_tree_remove(mod);
2242        /* Remove this module from bug list, this uses list_del_rcu */
2243        module_bug_cleanup(mod);
2244        /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2245        synchronize_rcu();
2246        mutex_unlock(&module_mutex);
2247
2248        /* This may be empty, but that's OK */
2249        module_arch_freeing_init(mod);
2250        module_memfree(mod->init_layout.base);
2251        kfree(mod->args);
2252        percpu_modfree(mod);
2253
2254        /* Free lock-classes; relies on the preceding sync_rcu(). */
2255        lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2256
2257        /* Finally, free the core (containing the module structure) */
2258        module_memfree(mod->core_layout.base);
2259}
2260
2261void *__symbol_get(const char *symbol)
2262{
2263        struct module *owner;
2264        const struct kernel_symbol *sym;
2265
2266        preempt_disable();
2267        sym = find_symbol(symbol, &owner, NULL, NULL, true, true);
2268        if (sym && strong_try_module_get(owner))
2269                sym = NULL;
2270        preempt_enable();
2271
2272        return sym ? (void *)kernel_symbol_value(sym) : NULL;
2273}
2274EXPORT_SYMBOL_GPL(__symbol_get);
2275
2276/*
2277 * Ensure that an exported symbol [global namespace] does not already exist
2278 * in the kernel or in some other module's exported symbol table.
2279 *
2280 * You must hold the module_mutex.
2281 */
2282static int verify_exported_symbols(struct module *mod)
2283{
2284        unsigned int i;
2285        struct module *owner;
2286        const struct kernel_symbol *s;
2287        struct {
2288                const struct kernel_symbol *sym;
2289                unsigned int num;
2290        } arr[] = {
2291                { mod->syms, mod->num_syms },
2292                { mod->gpl_syms, mod->num_gpl_syms },
2293                { mod->gpl_future_syms, mod->num_gpl_future_syms },
2294#ifdef CONFIG_UNUSED_SYMBOLS
2295                { mod->unused_syms, mod->num_unused_syms },
2296                { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2297#endif
2298        };
2299
2300        for (i = 0; i < ARRAY_SIZE(arr); i++) {
2301                for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2302                        if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2303                                        NULL, true, false)) {
2304                                pr_err("%s: exports duplicate symbol %s"
2305                                       " (owned by %s)\n",
2306                                       mod->name, kernel_symbol_name(s),
2307                                       module_name(owner));
2308                                return -ENOEXEC;
2309                        }
2310                }
2311        }
2312        return 0;
2313}
2314
2315/* Change all symbols so that st_value encodes the pointer directly. */
2316static int simplify_symbols(struct module *mod, const struct load_info *info)
2317{
2318        Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2319        Elf_Sym *sym = (void *)symsec->sh_addr;
2320        unsigned long secbase;
2321        unsigned int i;
2322        int ret = 0;
2323        const struct kernel_symbol *ksym;
2324
2325        for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2326                const char *name = info->strtab + sym[i].st_name;
2327
2328                switch (sym[i].st_shndx) {
2329                case SHN_COMMON:
2330                        /* Ignore common symbols */
2331                        if (!strncmp(name, "__gnu_lto", 9))
2332                                break;
2333
2334                        /* We compiled with -fno-common.  These are not
2335                           supposed to happen.  */
2336                        pr_debug("Common symbol: %s\n", name);
2337                        pr_warn("%s: please compile with -fno-common\n",
2338                               mod->name);
2339                        ret = -ENOEXEC;
2340                        break;
2341
2342                case SHN_ABS:
2343                        /* Don't need to do anything */
2344                        pr_debug("Absolute symbol: 0x%08lx\n",
2345                               (long)sym[i].st_value);
2346                        break;
2347
2348                case SHN_LIVEPATCH:
2349                        /* Livepatch symbols are resolved by livepatch */
2350                        break;
2351
2352                case SHN_UNDEF:
2353                        ksym = resolve_symbol_wait(mod, info, name);
2354                        /* Ok if resolved.  */
2355                        if (ksym && !IS_ERR(ksym)) {
2356                                sym[i].st_value = kernel_symbol_value(ksym);
2357                                break;
2358                        }
2359
2360                        /* Ok if weak.  */
2361                        if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2362                                break;
2363
2364                        ret = PTR_ERR(ksym) ?: -ENOENT;
2365                        pr_warn("%s: Unknown symbol %s (err %d)\n",
2366                                mod->name, name, ret);
2367                        break;
2368
2369                default:
2370                        /* Divert to percpu allocation if a percpu var. */
2371                        if (sym[i].st_shndx == info->index.pcpu)
2372                                secbase = (unsigned long)mod_percpu(mod);
2373                        else
2374                                secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2375                        sym[i].st_value += secbase;
2376                        break;
2377                }
2378        }
2379
2380        return ret;
2381}
2382
2383static int apply_relocations(struct module *mod, const struct load_info *info)
2384{
2385        unsigned int i;
2386        int err = 0;
2387
2388        /* Now do relocations. */
2389        for (i = 1; i < info->hdr->e_shnum; i++) {
2390                unsigned int infosec = info->sechdrs[i].sh_info;
2391
2392                /* Not a valid relocation section? */
2393                if (infosec >= info->hdr->e_shnum)
2394                        continue;
2395
2396                /* Don't bother with non-allocated sections */
2397                if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2398                        continue;
2399
2400                if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2401                        err = klp_apply_section_relocs(mod, info->sechdrs,
2402                                                       info->secstrings,
2403                                                       info->strtab,
2404                                                       info->index.sym, i,
2405                                                       NULL);
2406                else if (info->sechdrs[i].sh_type == SHT_REL)
2407                        err = apply_relocate(info->sechdrs, info->strtab,
2408                                             info->index.sym, i, mod);
2409                else if (info->sechdrs[i].sh_type == SHT_RELA)
2410                        err = apply_relocate_add(info->sechdrs, info->strtab,
2411                                                 info->index.sym, i, mod);
2412                if (err < 0)
2413                        break;
2414        }
2415        return err;
2416}
2417
2418/* Additional bytes needed by arch in front of individual sections */
2419unsigned int __weak arch_mod_section_prepend(struct module *mod,
2420                                             unsigned int section)
2421{
2422        /* default implementation just returns zero */
2423        return 0;
2424}
2425
2426/* Update size with this section: return offset. */
2427static long get_offset(struct module *mod, unsigned int *size,
2428                       Elf_Shdr *sechdr, unsigned int section)
2429{
2430        long ret;
2431
2432        *size += arch_mod_section_prepend(mod, section);
2433        ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2434        *size = ret + sechdr->sh_size;
2435        return ret;
2436}
2437
2438/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2439   might -- code, read-only data, read-write data, small data.  Tally
2440   sizes, and place the offsets into sh_entsize fields: high bit means it
2441   belongs in init. */
2442static void layout_sections(struct module *mod, struct load_info *info)
2443{
2444        static unsigned long const masks[][2] = {
2445                /* NOTE: all executable code must be the first section
2446                 * in this array; otherwise modify the text_size
2447                 * finder in the two loops below */
2448                { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2449                { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2450                { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2451                { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2452                { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2453        };
2454        unsigned int m, i;
2455
2456        for (i = 0; i < info->hdr->e_shnum; i++)
2457                info->sechdrs[i].sh_entsize = ~0UL;
2458
2459        pr_debug("Core section allocation order:\n");
2460        for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2461                for (i = 0; i < info->hdr->e_shnum; ++i) {
2462                        Elf_Shdr *s = &info->sechdrs[i];
2463                        const char *sname = info->secstrings + s->sh_name;
2464
2465                        if ((s->sh_flags & masks[m][0]) != masks[m][0]
2466                            || (s->sh_flags & masks[m][1])
2467                            || s->sh_entsize != ~0UL
2468                            || module_init_section(sname))
2469                                continue;
2470                        s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2471                        pr_debug("\t%s\n", sname);
2472                }
2473                switch (m) {
2474                case 0: /* executable */
2475                        mod->core_layout.size = debug_align(mod->core_layout.size);
2476                        mod->core_layout.text_size = mod->core_layout.size;
2477                        break;
2478                case 1: /* RO: text and ro-data */
2479                        mod->core_layout.size = debug_align(mod->core_layout.size);
2480                        mod->core_layout.ro_size = mod->core_layout.size;
2481                        break;
2482                case 2: /* RO after init */
2483                        mod->core_layout.size = debug_align(mod->core_layout.size);
2484                        mod->core_layout.ro_after_init_size = mod->core_layout.size;
2485                        break;
2486                case 4: /* whole core */
2487                        mod->core_layout.size = debug_align(mod->core_layout.size);
2488                        break;
2489                }
2490        }
2491
2492        pr_debug("Init section allocation order:\n");
2493        for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2494                for (i = 0; i < info->hdr->e_shnum; ++i) {
2495                        Elf_Shdr *s = &info->sechdrs[i];
2496                        const char *sname = info->secstrings + s->sh_name;
2497
2498                        if ((s->sh_flags & masks[m][0]) != masks[m][0]
2499                            || (s->sh_flags & masks[m][1])
2500                            || s->sh_entsize != ~0UL
2501                            || !module_init_section(sname))
2502                                continue;
2503                        s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2504                                         | INIT_OFFSET_MASK);
2505                        pr_debug("\t%s\n", sname);
2506                }
2507                switch (m) {
2508                case 0: /* executable */
2509                        mod->init_layout.size = debug_align(mod->init_layout.size);
2510                        mod->init_layout.text_size = mod->init_layout.size;
2511                        break;
2512                case 1: /* RO: text and ro-data */
2513                        mod->init_layout.size = debug_align(mod->init_layout.size);
2514                        mod->init_layout.ro_size = mod->init_layout.size;
2515                        break;
2516                case 2:
2517                        /*
2518                         * RO after init doesn't apply to init_layout (only
2519                         * core_layout), so it just takes the value of ro_size.
2520                         */
2521                        mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2522                        break;
2523                case 4: /* whole init */
2524                        mod->init_layout.size = debug_align(mod->init_layout.size);
2525                        break;
2526                }
2527        }
2528}
2529
2530static void set_license(struct module *mod, const char *license)
2531{
2532        if (!license)
2533                license = "unspecified";
2534
2535        if (!license_is_gpl_compatible(license)) {
2536                if (!test_taint(TAINT_PROPRIETARY_MODULE))
2537                        pr_warn("%s: module license '%s' taints kernel.\n",
2538                                mod->name, license);
2539                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2540                                 LOCKDEP_NOW_UNRELIABLE);
2541        }
2542}
2543
2544/* Parse tag=value strings from .modinfo section */
2545static char *next_string(char *string, unsigned long *secsize)
2546{
2547        /* Skip non-zero chars */
2548        while (string[0]) {
2549                string++;
2550                if ((*secsize)-- <= 1)
2551                        return NULL;
2552        }
2553
2554        /* Skip any zero padding. */
2555        while (!string[0]) {
2556                string++;
2557                if ((*secsize)-- <= 1)
2558                        return NULL;
2559        }
2560        return string;
2561}
2562
2563static char *get_next_modinfo(const struct load_info *info, const char *tag,
2564                              char *prev)
2565{
2566        char *p;
2567        unsigned int taglen = strlen(tag);
2568        Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2569        unsigned long size = infosec->sh_size;
2570
2571        /*
2572         * get_modinfo() calls made before rewrite_section_headers()
2573         * must use sh_offset, as sh_addr isn't set!
2574         */
2575        char *modinfo = (char *)info->hdr + infosec->sh_offset;
2576
2577        if (prev) {
2578                size -= prev - modinfo;
2579                modinfo = next_string(prev, &size);
2580        }
2581
2582        for (p = modinfo; p; p = next_string(p, &size)) {
2583                if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2584                        return p + taglen + 1;
2585        }
2586        return NULL;
2587}
2588
2589static char *get_modinfo(const struct load_info *info, const char *tag)
2590{
2591        return get_next_modinfo(info, tag, NULL);
2592}
2593
2594static void setup_modinfo(struct module *mod, struct load_info *info)
2595{
2596        struct module_attribute *attr;
2597        int i;
2598
2599        for (i = 0; (attr = modinfo_attrs[i]); i++) {
2600                if (attr->setup)
2601                        attr->setup(mod, get_modinfo(info, attr->attr.name));
2602        }
2603}
2604
2605static void free_modinfo(struct module *mod)
2606{
2607        struct module_attribute *attr;
2608        int i;
2609
2610        for (i = 0; (attr = modinfo_attrs[i]); i++) {
2611                if (attr->free)
2612                        attr->free(mod);
2613        }
2614}
2615
2616#ifdef CONFIG_KALLSYMS
2617
2618/* Lookup exported symbol in given range of kernel_symbols */
2619static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2620                                                          const struct kernel_symbol *start,
2621                                                          const struct kernel_symbol *stop)
2622{
2623        return bsearch(name, start, stop - start,
2624                        sizeof(struct kernel_symbol), cmp_name);
2625}
2626
2627static int is_exported(const char *name, unsigned long value,
2628                       const struct module *mod)
2629{
2630        const struct kernel_symbol *ks;
2631        if (!mod)
2632                ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2633        else
2634                ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2635
2636        return ks != NULL && kernel_symbol_value(ks) == value;
2637}
2638
2639/* As per nm */
2640static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2641{
2642        const Elf_Shdr *sechdrs = info->sechdrs;
2643
2644        if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2645                if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2646                        return 'v';
2647                else
2648                        return 'w';
2649        }
2650        if (sym->st_shndx == SHN_UNDEF)
2651                return 'U';
2652        if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2653                return 'a';
2654        if (sym->st_shndx >= SHN_LORESERVE)
2655                return '?';
2656        if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2657                return 't';
2658        if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2659            && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2660                if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2661                        return 'r';
2662                else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2663                        return 'g';
2664                else
2665                        return 'd';
2666        }
2667        if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2668                if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2669                        return 's';
2670                else
2671                        return 'b';
2672        }
2673        if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2674                      ".debug")) {
2675                return 'n';
2676        }
2677        return '?';
2678}
2679
2680static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2681                        unsigned int shnum, unsigned int pcpundx)
2682{
2683        const Elf_Shdr *sec;
2684
2685        if (src->st_shndx == SHN_UNDEF
2686            || src->st_shndx >= shnum
2687            || !src->st_name)
2688                return false;
2689
2690#ifdef CONFIG_KALLSYMS_ALL
2691        if (src->st_shndx == pcpundx)
2692                return true;
2693#endif
2694
2695        sec = sechdrs + src->st_shndx;
2696        if (!(sec->sh_flags & SHF_ALLOC)
2697#ifndef CONFIG_KALLSYMS_ALL
2698            || !(sec->sh_flags & SHF_EXECINSTR)
2699#endif
2700            || (sec->sh_entsize & INIT_OFFSET_MASK))
2701                return false;
2702
2703        return true;
2704}
2705
2706/*
2707 * We only allocate and copy the strings needed by the parts of symtab
2708 * we keep.  This is simple, but has the effect of making multiple
2709 * copies of duplicates.  We could be more sophisticated, see
2710 * linux-kernel thread starting with
2711 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2712 */
2713static void layout_symtab(struct module *mod, struct load_info *info)
2714{
2715        Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2716        Elf_Shdr *strsect = info->sechdrs + info->index.str;
2717        const Elf_Sym *src;
2718        unsigned int i, nsrc, ndst, strtab_size = 0;
2719
2720        /* Put symbol section at end of init part of module. */
2721        symsect->sh_flags |= SHF_ALLOC;
2722        symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2723                                         info->index.sym) | INIT_OFFSET_MASK;
2724        pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2725
2726        src = (void *)info->hdr + symsect->sh_offset;
2727        nsrc = symsect->sh_size / sizeof(*src);
2728
2729        /* Compute total space required for the core symbols' strtab. */
2730        for (ndst = i = 0; i < nsrc; i++) {
2731                if (i == 0 || is_livepatch_module(mod) ||
2732                    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2733                                   info->index.pcpu)) {
2734                        strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2735                        ndst++;
2736                }
2737        }
2738
2739        /* Append room for core symbols at end of core part. */
2740        info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2741        info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2742        mod->core_layout.size += strtab_size;
2743        info->core_typeoffs = mod->core_layout.size;
2744        mod->core_layout.size += ndst * sizeof(char);
2745        mod->core_layout.size = debug_align(mod->core_layout.size);
2746
2747        /* Put string table section at end of init part of module. */
2748        strsect->sh_flags |= SHF_ALLOC;
2749        strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2750                                         info->index.str) | INIT_OFFSET_MASK;
2751        pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2752
2753        /* We'll tack temporary mod_kallsyms on the end. */
2754        mod->init_layout.size = ALIGN(mod->init_layout.size,
2755                                      __alignof__(struct mod_kallsyms));
2756        info->mod_kallsyms_init_off = mod->init_layout.size;
2757        mod->init_layout.size += sizeof(struct mod_kallsyms);
2758        info->init_typeoffs = mod->init_layout.size;
2759        mod->init_layout.size += nsrc * sizeof(char);
2760        mod->init_layout.size = debug_align(mod->init_layout.size);
2761}
2762
2763/*
2764 * We use the full symtab and strtab which layout_symtab arranged to
2765 * be appended to the init section.  Later we switch to the cut-down
2766 * core-only ones.
2767 */
2768static void add_kallsyms(struct module *mod, const struct load_info *info)
2769{
2770        unsigned int i, ndst;
2771        const Elf_Sym *src;
2772        Elf_Sym *dst;
2773        char *s;
2774        Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2775
2776        /* Set up to point into init section. */
2777        mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2778
2779        mod->kallsyms->symtab = (void *)symsec->sh_addr;
2780        mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2781        /* Make sure we get permanent strtab: don't use info->strtab. */
2782        mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2783        mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2784
2785        /*
2786         * Now populate the cut down core kallsyms for after init
2787         * and set types up while we still have access to sections.
2788         */
2789        mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2790        mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2791        mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2792        src = mod->kallsyms->symtab;
2793        for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2794                mod->kallsyms->typetab[i] = elf_type(src + i, info);
2795                if (i == 0 || is_livepatch_module(mod) ||
2796                    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2797                                   info->index.pcpu)) {
2798                        mod->core_kallsyms.typetab[ndst] =
2799                            mod->kallsyms->typetab[i];
2800                        dst[ndst] = src[i];
2801                        dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2802                        s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2803                                     KSYM_NAME_LEN) + 1;
2804                }
2805        }
2806        mod->core_kallsyms.num_symtab = ndst;
2807}
2808#else
2809static inline void layout_symtab(struct module *mod, struct load_info *info)
2810{
2811}
2812
2813static void add_kallsyms(struct module *mod, const struct load_info *info)
2814{
2815}
2816#endif /* CONFIG_KALLSYMS */
2817
2818static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2819{
2820        if (!debug)
2821                return;
2822        ddebug_add_module(debug, num, mod->name);
2823}
2824
2825static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2826{
2827        if (debug)
2828                ddebug_remove_module(mod->name);
2829}
2830
2831void * __weak module_alloc(unsigned long size)
2832{
2833        return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2834                        GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2835                        NUMA_NO_NODE, __builtin_return_address(0));
2836}
2837
2838bool __weak module_init_section(const char *name)
2839{
2840        return strstarts(name, ".init");
2841}
2842
2843bool __weak module_exit_section(const char *name)
2844{
2845        return strstarts(name, ".exit");
2846}
2847
2848#ifdef CONFIG_DEBUG_KMEMLEAK
2849static void kmemleak_load_module(const struct module *mod,
2850                                 const struct load_info *info)
2851{
2852        unsigned int i;
2853
2854        /* only scan the sections containing data */
2855        kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2856
2857        for (i = 1; i < info->hdr->e_shnum; i++) {
2858                /* Scan all writable sections that's not executable */
2859                if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2860                    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2861                    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2862                        continue;
2863
2864                kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2865                                   info->sechdrs[i].sh_size, GFP_KERNEL);
2866        }
2867}
2868#else
2869static inline void kmemleak_load_module(const struct module *mod,
2870                                        const struct load_info *info)
2871{
2872}
2873#endif
2874
2875#ifdef CONFIG_MODULE_SIG
2876static int module_sig_check(struct load_info *info, int flags)
2877{
2878        int err = -ENODATA;
2879        const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2880        const char *reason;
2881        const void *mod = info->hdr;
2882
2883        /*
2884         * Require flags == 0, as a module with version information
2885         * removed is no longer the module that was signed
2886         */
2887        if (flags == 0 &&
2888            info->len > markerlen &&
2889            memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2890                /* We truncate the module to discard the signature */
2891                info->len -= markerlen;
2892                err = mod_verify_sig(mod, info);
2893        }
2894
2895        switch (err) {
2896        case 0:
2897                info->sig_ok = true;
2898                return 0;
2899
2900                /* We don't permit modules to be loaded into trusted kernels
2901                 * without a valid signature on them, but if we're not
2902                 * enforcing, certain errors are non-fatal.
2903                 */
2904        case -ENODATA:
2905                reason = "Loading of unsigned module";
2906                goto decide;
2907        case -ENOPKG:
2908                reason = "Loading of module with unsupported crypto";
2909                goto decide;
2910        case -ENOKEY:
2911                reason = "Loading of module with unavailable key";
2912        decide:
2913                if (is_module_sig_enforced()) {
2914                        pr_notice("%s: %s is rejected\n", info->name, reason);
2915                        return -EKEYREJECTED;
2916                }
2917
2918                return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2919
2920                /* All other errors are fatal, including nomem, unparseable
2921                 * signatures and signature check failures - even if signatures
2922                 * aren't required.
2923                 */
2924        default:
2925                return err;
2926        }
2927}
2928#else /* !CONFIG_MODULE_SIG */
2929static int module_sig_check(struct load_info *info, int flags)
2930{
2931        return 0;
2932}
2933#endif /* !CONFIG_MODULE_SIG */
2934
2935/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2936static int elf_header_check(struct load_info *info)
2937{
2938        if (info->len < sizeof(*(info->hdr)))
2939                return -ENOEXEC;
2940
2941        if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2942            || info->hdr->e_type != ET_REL
2943            || !elf_check_arch(info->hdr)
2944            || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2945                return -ENOEXEC;
2946
2947        if (info->hdr->e_shoff >= info->len
2948            || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2949                info->len - info->hdr->e_shoff))
2950                return -ENOEXEC;
2951
2952        return 0;
2953}
2954
2955#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2956
2957static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2958{
2959        do {
2960                unsigned long n = min(len, COPY_CHUNK_SIZE);
2961
2962                if (copy_from_user(dst, usrc, n) != 0)
2963                        return -EFAULT;
2964                cond_resched();
2965                dst += n;
2966                usrc += n;
2967                len -= n;
2968        } while (len);
2969        return 0;
2970}
2971
2972#ifdef CONFIG_LIVEPATCH
2973static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2974{
2975        if (get_modinfo(info, "livepatch")) {
2976                mod->klp = true;
2977                add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2978                pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2979                               mod->name);
2980        }
2981
2982        return 0;
2983}
2984#else /* !CONFIG_LIVEPATCH */
2985static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2986{
2987        if (get_modinfo(info, "livepatch")) {
2988                pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2989                       mod->name);
2990                return -ENOEXEC;
2991        }
2992
2993        return 0;
2994}
2995#endif /* CONFIG_LIVEPATCH */
2996
2997static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2998{
2999        if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3000                return;
3001
3002        pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3003                mod->name);
3004}
3005
3006/* Sets info->hdr and info->len. */
3007static int copy_module_from_user(const void __user *umod, unsigned long len,
3008                                  struct load_info *info)
3009{
3010        int err;
3011
3012        info->len = len;
3013        if (info->len < sizeof(*(info->hdr)))
3014                return -ENOEXEC;
3015
3016        err = security_kernel_load_data(LOADING_MODULE);
3017        if (err)
3018                return err;
3019
3020        /* Suck in entire file: we'll want most of it. */
3021        info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3022        if (!info->hdr)
3023                return -ENOMEM;
3024
3025        if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3026                vfree(info->hdr);
3027                return -EFAULT;
3028        }
3029
3030        return 0;
3031}
3032
3033static void free_copy(struct load_info *info)
3034{
3035        vfree(info->hdr);
3036}
3037
3038static int rewrite_section_headers(struct load_info *info, int flags)
3039{
3040        unsigned int i;
3041
3042        /* This should always be true, but let's be sure. */
3043        info->sechdrs[0].sh_addr = 0;
3044
3045        for (i = 1; i < info->hdr->e_shnum; i++) {
3046                Elf_Shdr *shdr = &info->sechdrs[i];
3047                if (shdr->sh_type != SHT_NOBITS
3048                    && info->len < shdr->sh_offset + shdr->sh_size) {
3049                        pr_err("Module len %lu truncated\n", info->len);
3050                        return -ENOEXEC;
3051                }
3052
3053                /* Mark all sections sh_addr with their address in the
3054                   temporary image. */
3055                shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3056
3057#ifndef CONFIG_MODULE_UNLOAD
3058                /* Don't load .exit sections */
3059                if (module_exit_section(info->secstrings+shdr->sh_name))
3060                        shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3061#endif
3062        }
3063
3064        /* Track but don't keep modinfo and version sections. */
3065        info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3066        info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3067
3068        return 0;
3069}
3070
3071/*
3072 * Set up our basic convenience variables (pointers to section headers,
3073 * search for module section index etc), and do some basic section
3074 * verification.
3075 *
3076 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3077 * will be allocated in move_module().
3078 */
3079static int setup_load_info(struct load_info *info, int flags)
3080{
3081        unsigned int i;
3082
3083        /* Set up the convenience variables */
3084        info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3085        info->secstrings = (void *)info->hdr
3086                + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
3087
3088        /* Try to find a name early so we can log errors with a module name */
3089        info->index.info = find_sec(info, ".modinfo");
3090        if (info->index.info)
3091                info->name = get_modinfo(info, "name");
3092
3093        /* Find internal symbols and strings. */
3094        for (i = 1; i < info->hdr->e_shnum; i++) {
3095                if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3096                        info->index.sym = i;
3097                        info->index.str = info->sechdrs[i].sh_link;
3098                        info->strtab = (char *)info->hdr
3099                                + info->sechdrs[info->index.str].sh_offset;
3100                        break;
3101                }
3102        }
3103
3104        if (info->index.sym == 0) {
3105                pr_warn("%s: module has no symbols (stripped?)\n",
3106                        info->name ?: "(missing .modinfo section or name field)");
3107                return -ENOEXEC;
3108        }
3109
3110        info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3111        if (!info->index.mod) {
3112                pr_warn("%s: No module found in object\n",
3113                        info->name ?: "(missing .modinfo section or name field)");
3114                return -ENOEXEC;
3115        }
3116        /* This is temporary: point mod into copy of data. */
3117        info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3118
3119        /*
3120         * If we didn't load the .modinfo 'name' field earlier, fall back to
3121         * on-disk struct mod 'name' field.
3122         */
3123        if (!info->name)
3124                info->name = info->mod->name;
3125
3126        if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3127                info->index.vers = 0; /* Pretend no __versions section! */
3128        else
3129                info->index.vers = find_sec(info, "__versions");
3130
3131        info->index.pcpu = find_pcpusec(info);
3132
3133        return 0;
3134}
3135
3136static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3137{
3138        const char *modmagic = get_modinfo(info, "vermagic");
3139        int err;
3140
3141        if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3142                modmagic = NULL;
3143
3144        /* This is allowed: modprobe --force will invalidate it. */
3145        if (!modmagic) {
3146                err = try_to_force_load(mod, "bad vermagic");
3147                if (err)
3148                        return err;
3149        } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3150                pr_err("%s: version magic '%s' should be '%s'\n",
3151                       info->name, modmagic, vermagic);
3152                return -ENOEXEC;
3153        }
3154
3155        if (!get_modinfo(info, "intree")) {
3156                if (!test_taint(TAINT_OOT_MODULE))
3157                        pr_warn("%s: loading out-of-tree module taints kernel.\n",
3158                                mod->name);
3159                add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3160        }
3161
3162        check_modinfo_retpoline(mod, info);
3163
3164        if (get_modinfo(info, "staging")) {
3165                add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3166                pr_warn("%s: module is from the staging directory, the quality "
3167                        "is unknown, you have been warned.\n", mod->name);
3168        }
3169
3170        err = check_modinfo_livepatch(mod, info);
3171        if (err)
3172                return err;
3173
3174        /* Set up license info based on the info section */
3175        set_license(mod, get_modinfo(info, "license"));
3176
3177        return 0;
3178}
3179
3180static int find_module_sections(struct module *mod, struct load_info *info)
3181{
3182        mod->kp = section_objs(info, "__param",
3183                               sizeof(*mod->kp), &mod->num_kp);
3184        mod->syms = section_objs(info, "__ksymtab",
3185                                 sizeof(*mod->syms), &mod->num_syms);
3186        mod->crcs = section_addr(info, "__kcrctab");
3187        mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3188                                     sizeof(*mod->gpl_syms),
3189                                     &mod->num_gpl_syms);
3190        mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3191        mod->gpl_future_syms = section_objs(info,
3192                                            "__ksymtab_gpl_future",
3193                                            sizeof(*mod->gpl_future_syms),
3194                                            &mod->num_gpl_future_syms);
3195        mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3196
3197#ifdef CONFIG_UNUSED_SYMBOLS
3198        mod->unused_syms = section_objs(info, "__ksymtab_unused",
3199                                        sizeof(*mod->unused_syms),
3200                                        &mod->num_unused_syms);
3201        mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3202        mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3203                                            sizeof(*mod->unused_gpl_syms),
3204                                            &mod->num_unused_gpl_syms);
3205        mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3206#endif
3207#ifdef CONFIG_CONSTRUCTORS
3208        mod->ctors = section_objs(info, ".ctors",
3209                                  sizeof(*mod->ctors), &mod->num_ctors);
3210        if (!mod->ctors)
3211                mod->ctors = section_objs(info, ".init_array",
3212                                sizeof(*mod->ctors), &mod->num_ctors);
3213        else if (find_sec(info, ".init_array")) {
3214                /*
3215                 * This shouldn't happen with same compiler and binutils
3216                 * building all parts of the module.
3217                 */
3218                pr_warn("%s: has both .ctors and .init_array.\n",
3219                       mod->name);
3220                return -EINVAL;
3221        }
3222#endif
3223
3224        mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3225                                                &mod->noinstr_text_size);
3226
3227#ifdef CONFIG_TRACEPOINTS
3228        mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3229                                             sizeof(*mod->tracepoints_ptrs),
3230                                             &mod->num_tracepoints);
3231#endif
3232#ifdef CONFIG_TREE_SRCU
3233        mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3234                                             sizeof(*mod->srcu_struct_ptrs),
3235                                             &mod->num_srcu_structs);
3236#endif
3237#ifdef CONFIG_BPF_EVENTS
3238        mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3239                                           sizeof(*mod->bpf_raw_events),
3240                                           &mod->num_bpf_raw_events);
3241#endif
3242#ifdef CONFIG_JUMP_LABEL
3243        mod->jump_entries = section_objs(info, "__jump_table",
3244                                        sizeof(*mod->jump_entries),
3245                                        &mod->num_jump_entries);
3246#endif
3247#ifdef CONFIG_EVENT_TRACING
3248        mod->trace_events = section_objs(info, "_ftrace_events",
3249                                         sizeof(*mod->trace_events),
3250                                         &mod->num_trace_events);
3251        mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3252                                        sizeof(*mod->trace_evals),
3253                                        &mod->num_trace_evals);
3254#endif
3255#ifdef CONFIG_TRACING
3256        mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3257                                         sizeof(*mod->trace_bprintk_fmt_start),
3258                                         &mod->num_trace_bprintk_fmt);
3259#endif
3260#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3261        /* sechdrs[0].sh_size is always zero */
3262        mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3263                                             sizeof(*mod->ftrace_callsites),
3264                                             &mod->num_ftrace_callsites);
3265#endif
3266#ifdef CONFIG_FUNCTION_ERROR_INJECTION
3267        mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3268                                            sizeof(*mod->ei_funcs),
3269                                            &mod->num_ei_funcs);
3270#endif
3271#ifdef CONFIG_KPROBES
3272        mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3273                                                &mod->kprobes_text_size);
3274        mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3275                                                sizeof(unsigned long),
3276                                                &mod->num_kprobe_blacklist);
3277#endif
3278        mod->extable = section_objs(info, "__ex_table",
3279                                    sizeof(*mod->extable), &mod->num_exentries);
3280
3281        if (section_addr(info, "__obsparm"))
3282                pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3283
3284        info->debug = section_objs(info, "__dyndbg",
3285                                   sizeof(*info->debug), &info->num_debug);
3286
3287        return 0;
3288}
3289
3290static int move_module(struct module *mod, struct load_info *info)
3291{
3292        int i;
3293        void *ptr;
3294
3295        /* Do the allocs. */
3296        ptr = module_alloc(mod->core_layout.size);
3297        /*
3298         * The pointer to this block is stored in the module structure
3299         * which is inside the block. Just mark it as not being a
3300         * leak.
3301         */
3302        kmemleak_not_leak(ptr);
3303        if (!ptr)
3304                return -ENOMEM;
3305
3306        memset(ptr, 0, mod->core_layout.size);
3307        mod->core_layout.base = ptr;
3308
3309        if (mod->init_layout.size) {
3310                ptr = module_alloc(mod->init_layout.size);
3311                /*
3312                 * The pointer to this block is stored in the module structure
3313                 * which is inside the block. This block doesn't need to be
3314                 * scanned as it contains data and code that will be freed
3315                 * after the module is initialized.
3316                 */
3317                kmemleak_ignore(ptr);
3318                if (!ptr) {
3319                        module_memfree(mod->core_layout.base);
3320                        return -ENOMEM;
3321                }
3322                memset(ptr, 0, mod->init_layout.size);
3323                mod->init_layout.base = ptr;
3324        } else
3325                mod->init_layout.base = NULL;
3326
3327        /* Transfer each section which specifies SHF_ALLOC */
3328        pr_debug("final section addresses:\n");
3329        for (i = 0; i < info->hdr->e_shnum; i++) {
3330                void *dest;
3331                Elf_Shdr *shdr = &info->sechdrs[i];
3332
3333                if (!(shdr->sh_flags & SHF_ALLOC))
3334                        continue;
3335
3336                if (shdr->sh_entsize & INIT_OFFSET_MASK)
3337                        dest = mod->init_layout.base
3338                                + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3339                else
3340                        dest = mod->core_layout.base + shdr->sh_entsize;
3341
3342                if (shdr->sh_type != SHT_NOBITS)
3343                        memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3344                /* Update sh_addr to point to copy in image. */
3345                shdr->sh_addr = (unsigned long)dest;
3346                pr_debug("\t0x%lx %s\n",
3347                         (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3348        }
3349
3350        return 0;
3351}
3352
3353static int check_module_license_and_versions(struct module *mod)
3354{
3355        int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3356
3357        /*
3358         * ndiswrapper is under GPL by itself, but loads proprietary modules.
3359         * Don't use add_taint_module(), as it would prevent ndiswrapper from
3360         * using GPL-only symbols it needs.
3361         */
3362        if (strcmp(mod->name, "ndiswrapper") == 0)
3363                add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3364
3365        /* driverloader was caught wrongly pretending to be under GPL */
3366        if (strcmp(mod->name, "driverloader") == 0)
3367                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3368                                 LOCKDEP_NOW_UNRELIABLE);
3369
3370        /* lve claims to be GPL but upstream won't provide source */
3371        if (strcmp(mod->name, "lve") == 0)
3372                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3373                                 LOCKDEP_NOW_UNRELIABLE);
3374
3375        if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3376                pr_warn("%s: module license taints kernel.\n", mod->name);
3377
3378#ifdef CONFIG_MODVERSIONS
3379        if ((mod->num_syms && !mod->crcs)
3380            || (mod->num_gpl_syms && !mod->gpl_crcs)
3381            || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3382#ifdef CONFIG_UNUSED_SYMBOLS
3383            || (mod->num_unused_syms && !mod->unused_crcs)
3384            || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3385#endif
3386                ) {
3387                return try_to_force_load(mod,
3388                                         "no versions for exported symbols");
3389        }
3390#endif
3391        return 0;
3392}
3393
3394static void flush_module_icache(const struct module *mod)
3395{
3396        /*
3397         * Flush the instruction cache, since we've played with text.
3398         * Do it before processing of module parameters, so the module
3399         * can provide parameter accessor functions of its own.
3400         */
3401        if (mod->init_layout.base)
3402                flush_icache_range((unsigned long)mod->init_layout.base,
3403                                   (unsigned long)mod->init_layout.base
3404                                   + mod->init_layout.size);
3405        flush_icache_range((unsigned long)mod->core_layout.base,
3406                           (unsigned long)mod->core_layout.base + mod->core_layout.size);
3407}
3408
3409int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3410                                     Elf_Shdr *sechdrs,
3411                                     char *secstrings,
3412                                     struct module *mod)
3413{
3414        return 0;
3415}
3416
3417/* module_blacklist is a comma-separated list of module names */
3418static char *module_blacklist;
3419static bool blacklisted(const char *module_name)
3420{
3421        const char *p;
3422        size_t len;
3423
3424        if (!module_blacklist)
3425                return false;
3426
3427        for (p = module_blacklist; *p; p += len) {
3428                len = strcspn(p, ",");
3429                if (strlen(module_name) == len && !memcmp(module_name, p, len))
3430                        return true;
3431                if (p[len] == ',')
3432                        len++;
3433        }
3434        return false;
3435}
3436core_param(module_blacklist, module_blacklist, charp, 0400);
3437
3438static struct module *layout_and_allocate(struct load_info *info, int flags)
3439{
3440        struct module *mod;
3441        unsigned int ndx;
3442        int err;
3443
3444        err = check_modinfo(info->mod, info, flags);
3445        if (err)
3446                return ERR_PTR(err);
3447
3448        /* Allow arches to frob section contents and sizes.  */
3449        err = module_frob_arch_sections(info->hdr, info->sechdrs,
3450                                        info->secstrings, info->mod);
3451        if (err < 0)
3452                return ERR_PTR(err);
3453
3454        err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3455                                          info->secstrings, info->mod);
3456        if (err < 0)
3457                return ERR_PTR(err);
3458
3459        /* We will do a special allocation for per-cpu sections later. */
3460        info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3461
3462        /*
3463         * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3464         * layout_sections() can put it in the right place.
3465         * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3466         */
3467        ndx = find_sec(info, ".data..ro_after_init");
3468        if (ndx)
3469                info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3470        /*
3471         * Mark the __jump_table section as ro_after_init as well: these data
3472         * structures are never modified, with the exception of entries that
3473         * refer to code in the __init section, which are annotated as such
3474         * at module load time.
3475         */
3476        ndx = find_sec(info, "__jump_table");
3477        if (ndx)
3478                info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3479
3480        /* Determine total sizes, and put offsets in sh_entsize.  For now
3481           this is done generically; there doesn't appear to be any
3482           special cases for the architectures. */
3483        layout_sections(info->mod, info);
3484        layout_symtab(info->mod, info);
3485
3486        /* Allocate and move to the final place */
3487        err = move_module(info->mod, info);
3488        if (err)
3489                return ERR_PTR(err);
3490
3491        /* Module has been copied to its final place now: return it. */
3492        mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3493        kmemleak_load_module(mod, info);
3494        return mod;
3495}
3496
3497/* mod is no longer valid after this! */
3498static void module_deallocate(struct module *mod, struct load_info *info)
3499{
3500        percpu_modfree(mod);
3501        module_arch_freeing_init(mod);
3502        module_memfree(mod->init_layout.base);
3503        module_memfree(mod->core_layout.base);
3504}
3505
3506int __weak module_finalize(const Elf_Ehdr *hdr,
3507                           const Elf_Shdr *sechdrs,
3508                           struct module *me)
3509{
3510        return 0;
3511}
3512
3513static int post_relocation(struct module *mod, const struct load_info *info)
3514{
3515        /* Sort exception table now relocations are done. */
3516        sort_extable(mod->extable, mod->extable + mod->num_exentries);
3517
3518        /* Copy relocated percpu area over. */
3519        percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3520                       info->sechdrs[info->index.pcpu].sh_size);
3521
3522        /* Setup kallsyms-specific fields. */
3523        add_kallsyms(mod, info);
3524
3525        /* Arch-specific module finalizing. */
3526        return module_finalize(info->hdr, info->sechdrs, mod);
3527}
3528
3529/* Is this module of this name done loading?  No locks held. */
3530static bool finished_loading(const char *name)
3531{
3532        struct module *mod;
3533        bool ret;
3534
3535        /*
3536         * The module_mutex should not be a heavily contended lock;
3537         * if we get the occasional sleep here, we'll go an extra iteration
3538         * in the wait_event_interruptible(), which is harmless.
3539         */
3540        sched_annotate_sleep();
3541        mutex_lock(&module_mutex);
3542        mod = find_module_all(name, strlen(name), true);
3543        ret = !mod || mod->state == MODULE_STATE_LIVE;
3544        mutex_unlock(&module_mutex);
3545
3546        return ret;
3547}
3548
3549/* Call module constructors. */
3550static void do_mod_ctors(struct module *mod)
3551{
3552#ifdef CONFIG_CONSTRUCTORS
3553        unsigned long i;
3554
3555        for (i = 0; i < mod->num_ctors; i++)
3556                mod->ctors[i]();
3557#endif
3558}
3559
3560/* For freeing module_init on success, in case kallsyms traversing */
3561struct mod_initfree {
3562        struct llist_node node;
3563        void *module_init;
3564};
3565
3566static void do_free_init(struct work_struct *w)
3567{
3568        struct llist_node *pos, *n, *list;
3569        struct mod_initfree *initfree;
3570
3571        list = llist_del_all(&init_free_list);
3572
3573        synchronize_rcu();
3574
3575        llist_for_each_safe(pos, n, list) {
3576                initfree = container_of(pos, struct mod_initfree, node);
3577                module_memfree(initfree->module_init);
3578                kfree(initfree);
3579        }
3580}
3581
3582static int __init modules_wq_init(void)
3583{
3584        INIT_WORK(&init_free_wq, do_free_init);
3585        init_llist_head(&init_free_list);
3586        return 0;
3587}
3588module_init(modules_wq_init);
3589
3590/*
3591 * This is where the real work happens.
3592 *
3593 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3594 * helper command 'lx-symbols'.
3595 */
3596static noinline int do_init_module(struct module *mod)
3597{
3598        int ret = 0;
3599        struct mod_initfree *freeinit;
3600
3601        freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3602        if (!freeinit) {
3603                ret = -ENOMEM;
3604                goto fail;
3605        }
3606        freeinit->module_init = mod->init_layout.base;
3607
3608        /*
3609         * We want to find out whether @mod uses async during init.  Clear
3610         * PF_USED_ASYNC.  async_schedule*() will set it.
3611         */
3612        current->flags &= ~PF_USED_ASYNC;
3613
3614        do_mod_ctors(mod);
3615        /* Start the module */
3616        if (mod->init != NULL)
3617                ret = do_one_initcall(mod->init);
3618        if (ret < 0) {
3619                goto fail_free_freeinit;
3620        }
3621        if (ret > 0) {
3622                pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3623                        "follow 0/-E convention\n"
3624                        "%s: loading module anyway...\n",
3625                        __func__, mod->name, ret, __func__);
3626                dump_stack();
3627        }
3628
3629        /* Now it's a first class citizen! */
3630        mod->state = MODULE_STATE_LIVE;
3631        blocking_notifier_call_chain(&module_notify_list,
3632                                     MODULE_STATE_LIVE, mod);
3633
3634        /*
3635         * We need to finish all async code before the module init sequence
3636         * is done.  This has potential to deadlock.  For example, a newly
3637         * detected block device can trigger request_module() of the
3638         * default iosched from async probing task.  Once userland helper
3639         * reaches here, async_synchronize_full() will wait on the async
3640         * task waiting on request_module() and deadlock.
3641         *
3642         * This deadlock is avoided by perfomring async_synchronize_full()
3643         * iff module init queued any async jobs.  This isn't a full
3644         * solution as it will deadlock the same if module loading from
3645         * async jobs nests more than once; however, due to the various
3646         * constraints, this hack seems to be the best option for now.
3647         * Please refer to the following thread for details.
3648         *
3649         * http://thread.gmane.org/gmane.linux.kernel/1420814
3650         */
3651        if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3652                async_synchronize_full();
3653
3654        ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3655                        mod->init_layout.size);
3656        mutex_lock(&module_mutex);
3657        /* Drop initial reference. */
3658        module_put(mod);
3659        trim_init_extable(mod);
3660#ifdef CONFIG_KALLSYMS
3661        /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3662        rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3663#endif
3664        module_enable_ro(mod, true);
3665        mod_tree_remove_init(mod);
3666        module_arch_freeing_init(mod);
3667        mod->init_layout.base = NULL;
3668        mod->init_layout.size = 0;
3669        mod->init_layout.ro_size = 0;
3670        mod->init_layout.ro_after_init_size = 0;
3671        mod->init_layout.text_size = 0;
3672        /*
3673         * We want to free module_init, but be aware that kallsyms may be
3674         * walking this with preempt disabled.  In all the failure paths, we
3675         * call synchronize_rcu(), but we don't want to slow down the success
3676         * path. module_memfree() cannot be called in an interrupt, so do the
3677         * work and call synchronize_rcu() in a work queue.
3678         *
3679         * Note that module_alloc() on most architectures creates W+X page
3680         * mappings which won't be cleaned up until do_free_init() runs.  Any
3681         * code such as mark_rodata_ro() which depends on those mappings to
3682         * be cleaned up needs to sync with the queued work - ie
3683         * rcu_barrier()
3684         */
3685        if (llist_add(&freeinit->node, &init_free_list))
3686                schedule_work(&init_free_wq);
3687
3688        mutex_unlock(&module_mutex);
3689        wake_up_all(&module_wq);
3690
3691        return 0;
3692
3693fail_free_freeinit:
3694        kfree(freeinit);
3695fail:
3696        /* Try to protect us from buggy refcounters. */
3697        mod->state = MODULE_STATE_GOING;
3698        synchronize_rcu();
3699        module_put(mod);
3700        blocking_notifier_call_chain(&module_notify_list,
3701                                     MODULE_STATE_GOING, mod);
3702        klp_module_going(mod);
3703        ftrace_release_mod(mod);
3704        free_module(mod);
3705        wake_up_all(&module_wq);
3706        return ret;
3707}
3708
3709static int may_init_module(void)
3710{
3711        if (!capable(CAP_SYS_MODULE) || modules_disabled)
3712                return -EPERM;
3713
3714        return 0;
3715}
3716
3717/*
3718 * We try to place it in the list now to make sure it's unique before
3719 * we dedicate too many resources.  In particular, temporary percpu
3720 * memory exhaustion.
3721 */
3722static int add_unformed_module(struct module *mod)
3723{
3724        int err;
3725        struct module *old;
3726
3727        mod->state = MODULE_STATE_UNFORMED;
3728
3729again:
3730        mutex_lock(&module_mutex);
3731        old = find_module_all(mod->name, strlen(mod->name), true);
3732        if (old != NULL) {
3733                if (old->state != MODULE_STATE_LIVE) {
3734                        /* Wait in case it fails to load. */
3735                        mutex_unlock(&module_mutex);
3736                        err = wait_event_interruptible(module_wq,
3737                                               finished_loading(mod->name));
3738                        if (err)
3739                                goto out_unlocked;
3740                        goto again;
3741                }
3742                err = -EEXIST;
3743                goto out;
3744        }
3745        mod_update_bounds(mod);
3746        list_add_rcu(&mod->list, &modules);
3747        mod_tree_insert(mod);
3748        err = 0;
3749
3750out:
3751        mutex_unlock(&module_mutex);
3752out_unlocked:
3753        return err;
3754}
3755
3756static int complete_formation(struct module *mod, struct load_info *info)
3757{
3758        int err;
3759
3760        mutex_lock(&module_mutex);
3761
3762        /* Find duplicate symbols (must be called under lock). */
3763        err = verify_exported_symbols(mod);
3764        if (err < 0)
3765                goto out;
3766
3767        /* This relies on module_mutex for list integrity. */
3768        module_bug_finalize(info->hdr, info->sechdrs, mod);
3769
3770        module_enable_ro(mod, false);
3771        module_enable_nx(mod);
3772        module_enable_x(mod);
3773
3774        /* Mark state as coming so strong_try_module_get() ignores us,
3775         * but kallsyms etc. can see us. */
3776        mod->state = MODULE_STATE_COMING;
3777        mutex_unlock(&module_mutex);
3778
3779        return 0;
3780
3781out:
3782        mutex_unlock(&module_mutex);
3783        return err;
3784}
3785
3786static int prepare_coming_module(struct module *mod)
3787{
3788        int err;
3789
3790        ftrace_module_enable(mod);
3791        err = klp_module_coming(mod);
3792        if (err)
3793                return err;
3794
3795        blocking_notifier_call_chain(&module_notify_list,
3796                                     MODULE_STATE_COMING, mod);
3797        return 0;
3798}
3799
3800static int unknown_module_param_cb(char *param, char *val, const char *modname,
3801                                   void *arg)
3802{
3803        struct module *mod = arg;
3804        int ret;
3805
3806        if (strcmp(param, "async_probe") == 0) {
3807                mod->async_probe_requested = true;
3808                return 0;
3809        }
3810
3811        /* Check for magic 'dyndbg' arg */
3812        ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3813        if (ret != 0)
3814                pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3815        return 0;
3816}
3817
3818/* Allocate and load the module: note that size of section 0 is always
3819   zero, and we rely on this for optional sections. */
3820static int load_module(struct load_info *info, const char __user *uargs,
3821                       int flags)
3822{
3823        struct module *mod;
3824        long err = 0;
3825        char *after_dashes;
3826
3827        err = elf_header_check(info);
3828        if (err)
3829                goto free_copy;
3830
3831        err = setup_load_info(info, flags);
3832        if (err)
3833                goto free_copy;
3834
3835        if (blacklisted(info->name)) {
3836                err = -EPERM;
3837                goto free_copy;
3838        }
3839
3840        err = module_sig_check(info, flags);
3841        if (err)
3842                goto free_copy;
3843
3844        err = rewrite_section_headers(info, flags);
3845        if (err)
3846                goto free_copy;
3847
3848        /* Check module struct version now, before we try to use module. */
3849        if (!check_modstruct_version(info, info->mod)) {
3850                err = -ENOEXEC;
3851                goto free_copy;
3852        }
3853
3854        /* Figure out module layout, and allocate all the memory. */
3855        mod = layout_and_allocate(info, flags);
3856        if (IS_ERR(mod)) {
3857                err = PTR_ERR(mod);
3858                goto free_copy;
3859        }
3860
3861        audit_log_kern_module(mod->name);
3862
3863        /* Reserve our place in the list. */
3864        err = add_unformed_module(mod);
3865        if (err)
3866                goto free_module;
3867
3868#ifdef CONFIG_MODULE_SIG
3869        mod->sig_ok = info->sig_ok;
3870        if (!mod->sig_ok) {
3871                pr_notice_once("%s: module verification failed: signature "
3872                               "and/or required key missing - tainting "
3873                               "kernel\n", mod->name);
3874                add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3875        }
3876#endif
3877
3878        /* To avoid stressing percpu allocator, do this once we're unique. */
3879        err = percpu_modalloc(mod, info);
3880        if (err)
3881                goto unlink_mod;
3882
3883        /* Now module is in final location, initialize linked lists, etc. */
3884        err = module_unload_init(mod);
3885        if (err)
3886                goto unlink_mod;
3887
3888        init_param_lock(mod);
3889
3890        /* Now we've got everything in the final locations, we can
3891         * find optional sections. */
3892        err = find_module_sections(mod, info);
3893        if (err)
3894                goto free_unload;
3895
3896        err = check_module_license_and_versions(mod);
3897        if (err)
3898                goto free_unload;
3899
3900        /* Set up MODINFO_ATTR fields */
3901        setup_modinfo(mod, info);
3902
3903        /* Fix up syms, so that st_value is a pointer to location. */
3904        err = simplify_symbols(mod, info);
3905        if (err < 0)
3906                goto free_modinfo;
3907
3908        err = apply_relocations(mod, info);
3909        if (err < 0)
3910                goto free_modinfo;
3911
3912        err = post_relocation(mod, info);
3913        if (err < 0)
3914                goto free_modinfo;
3915
3916        flush_module_icache(mod);
3917
3918        /* Now copy in args */
3919        mod->args = strndup_user(uargs, ~0UL >> 1);
3920        if (IS_ERR(mod->args)) {
3921                err = PTR_ERR(mod->args);
3922                goto free_arch_cleanup;
3923        }
3924
3925        dynamic_debug_setup(mod, info->debug, info->num_debug);
3926
3927        /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3928        ftrace_module_init(mod);
3929
3930        /* Finally it's fully formed, ready to start executing. */
3931        err = complete_formation(mod, info);
3932        if (err)
3933                goto ddebug_cleanup;
3934
3935        err = prepare_coming_module(mod);
3936        if (err)
3937                goto bug_cleanup;
3938
3939        /* Module is ready to execute: parsing args may do that. */
3940        after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3941                                  -32768, 32767, mod,
3942                                  unknown_module_param_cb);
3943        if (IS_ERR(after_dashes)) {
3944                err = PTR_ERR(after_dashes);
3945                goto coming_cleanup;
3946        } else if (after_dashes) {
3947                pr_warn("%s: parameters '%s' after `--' ignored\n",
3948                       mod->name, after_dashes);
3949        }
3950
3951        /* Link in to sysfs. */
3952        err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3953        if (err < 0)
3954                goto coming_cleanup;
3955
3956        if (is_livepatch_module(mod)) {
3957                err = copy_module_elf(mod, info);
3958                if (err < 0)
3959                        goto sysfs_cleanup;
3960        }
3961
3962        /* Get rid of temporary copy. */
3963        free_copy(info);
3964
3965        /* Done! */
3966        trace_module_load(mod);
3967
3968        return do_init_module(mod);
3969
3970 sysfs_cleanup:
3971        mod_sysfs_teardown(mod);
3972 coming_cleanup:
3973        mod->state = MODULE_STATE_GOING;
3974        destroy_params(mod->kp, mod->num_kp);
3975        blocking_notifier_call_chain(&module_notify_list,
3976                                     MODULE_STATE_GOING, mod);
3977        klp_module_going(mod);
3978 bug_cleanup:
3979        /* module_bug_cleanup needs module_mutex protection */
3980        mutex_lock(&module_mutex);
3981        module_bug_cleanup(mod);
3982        mutex_unlock(&module_mutex);
3983
3984 ddebug_cleanup:
3985        ftrace_release_mod(mod);
3986        dynamic_debug_remove(mod, info->debug);
3987        synchronize_rcu();
3988        kfree(mod->args);
3989 free_arch_cleanup:
3990        module_arch_cleanup(mod);
3991 free_modinfo:
3992        free_modinfo(mod);
3993 free_unload:
3994        module_unload_free(mod);
3995 unlink_mod:
3996        mutex_lock(&module_mutex);
3997        /* Unlink carefully: kallsyms could be walking list. */
3998        list_del_rcu(&mod->list);
3999        mod_tree_remove(mod);
4000        wake_up_all(&module_wq);
4001        /* Wait for RCU-sched synchronizing before releasing mod->list. */
4002        synchronize_rcu();
4003        mutex_unlock(&module_mutex);
4004 free_module:
4005        /* Free lock-classes; relies on the preceding sync_rcu() */
4006        lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4007
4008        module_deallocate(mod, info);
4009 free_copy:
4010        free_copy(info);
4011        return err;
4012}
4013
4014SYSCALL_DEFINE3(init_module, void __user *, umod,
4015                unsigned long, len, const char __user *, uargs)
4016{
4017        int err;
4018        struct load_info info = { };
4019
4020        err = may_init_module();
4021        if (err)
4022                return err;
4023
4024        pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4025               umod, len, uargs);
4026
4027        err = copy_module_from_user(umod, len, &info);
4028        if (err)
4029                return err;
4030
4031        return load_module(&info, uargs, 0);
4032}
4033
4034SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4035{
4036        struct load_info info = { };
4037        loff_t size;
4038        void *hdr;
4039        int err;
4040
4041        err = may_init_module();
4042        if (err)
4043                return err;
4044
4045        pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4046
4047        if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4048                      |MODULE_INIT_IGNORE_VERMAGIC))
4049                return -EINVAL;
4050
4051        err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
4052                                       READING_MODULE);
4053        if (err)
4054                return err;
4055        info.hdr = hdr;
4056        info.len = size;
4057
4058        return load_module(&info, uargs, flags);
4059}
4060
4061static inline int within(unsigned long addr, void *start, unsigned long size)
4062{
4063        return ((void *)addr >= start && (void *)addr < start + size);
4064}
4065
4066#ifdef CONFIG_KALLSYMS
4067/*
4068 * This ignores the intensely annoying "mapping symbols" found
4069 * in ARM ELF files: $a, $t and $d.
4070 */
4071static inline int is_arm_mapping_symbol(const char *str)
4072{
4073        if (str[0] == '.' && str[1] == 'L')
4074                return true;
4075        return str[0] == '$' && strchr("axtd", str[1])
4076               && (str[2] == '\0' || str[2] == '.');
4077}
4078
4079static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4080{
4081        return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4082}
4083
4084/*
4085 * Given a module and address, find the corresponding symbol and return its name
4086 * while providing its size and offset if needed.
4087 */
4088static const char *find_kallsyms_symbol(struct module *mod,
4089                                        unsigned long addr,
4090                                        unsigned long *size,
4091                                        unsigned long *offset)
4092{
4093        unsigned int i, best = 0;
4094        unsigned long nextval, bestval;
4095        struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4096
4097        /* At worse, next value is at end of module */
4098        if (within_module_init(addr, mod))
4099                nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4100        else
4101                nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4102
4103        bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4104
4105        /* Scan for closest preceding symbol, and next symbol. (ELF
4106           starts real symbols at 1). */
4107        for (i = 1; i < kallsyms->num_symtab; i++) {
4108                const Elf_Sym *sym = &kallsyms->symtab[i];
4109                unsigned long thisval = kallsyms_symbol_value(sym);
4110
4111                if (sym->st_shndx == SHN_UNDEF)
4112                        continue;
4113
4114                /* We ignore unnamed symbols: they're uninformative
4115                 * and inserted at a whim. */
4116                if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4117                    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4118                        continue;
4119
4120                if (thisval <= addr && thisval > bestval) {
4121                        best = i;
4122                        bestval = thisval;
4123                }
4124                if (thisval > addr && thisval < nextval)
4125                        nextval = thisval;
4126        }
4127
4128        if (!best)
4129                return NULL;
4130
4131        if (size)
4132                *size = nextval - bestval;
4133        if (offset)
4134                *offset = addr - bestval;
4135
4136        return kallsyms_symbol_name(kallsyms, best);
4137}
4138
4139void * __weak dereference_module_function_descriptor(struct module *mod,
4140                                                     void *ptr)
4141{
4142        return ptr;
4143}
4144
4145/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
4146 * not to lock to avoid deadlock on oopses, simply disable preemption. */
4147const char *module_address_lookup(unsigned long addr,
4148                            unsigned long *size,
4149                            unsigned long *offset,
4150                            char **modname,
4151                            char *namebuf)
4152{
4153        const char *ret = NULL;
4154        struct module *mod;
4155
4156        preempt_disable();
4157        mod = __module_address(addr);
4158        if (mod) {
4159                if (modname)
4160                        *modname = mod->name;
4161
4162                ret = find_kallsyms_symbol(mod, addr, size, offset);
4163        }
4164        /* Make a copy in here where it's safe */
4165        if (ret) {
4166                strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4167                ret = namebuf;
4168        }
4169        preempt_enable();
4170
4171        return ret;
4172}
4173
4174int lookup_module_symbol_name(unsigned long addr, char *symname)
4175{
4176        struct module *mod;
4177
4178        preempt_disable();
4179        list_for_each_entry_rcu(mod, &modules, list) {
4180                if (mod->state == MODULE_STATE_UNFORMED)
4181                        continue;
4182                if (within_module(addr, mod)) {
4183                        const char *sym;
4184
4185                        sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4186                        if (!sym)
4187                                goto out;
4188
4189                        strlcpy(symname, sym, KSYM_NAME_LEN);
4190                        preempt_enable();
4191                        return 0;
4192                }
4193        }
4194out:
4195        preempt_enable();
4196        return -ERANGE;
4197}
4198
4199int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4200                        unsigned long *offset, char *modname, char *name)
4201{
4202        struct module *mod;
4203
4204        preempt_disable();
4205        list_for_each_entry_rcu(mod, &modules, list) {
4206                if (mod->state == MODULE_STATE_UNFORMED)
4207                        continue;
4208                if (within_module(addr, mod)) {
4209                        const char *sym;
4210
4211                        sym = find_kallsyms_symbol(mod, addr, size, offset);
4212                        if (!sym)
4213                                goto out;
4214                        if (modname)
4215                                strlcpy(modname, mod->name, MODULE_NAME_LEN);
4216                        if (name)
4217                                strlcpy(name, sym, KSYM_NAME_LEN);
4218                        preempt_enable();
4219                        return 0;
4220                }
4221        }
4222out:
4223        preempt_enable();
4224        return -ERANGE;
4225}
4226
4227int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4228                        char *name, char *module_name, int *exported)
4229{
4230        struct module *mod;
4231
4232        preempt_disable();
4233        list_for_each_entry_rcu(mod, &modules, list) {
4234                struct mod_kallsyms *kallsyms;
4235
4236                if (mod->state == MODULE_STATE_UNFORMED)
4237                        continue;
4238                kallsyms = rcu_dereference_sched(mod->kallsyms);
4239                if (symnum < kallsyms->num_symtab) {
4240                        const Elf_Sym *sym = &kallsyms->symtab[symnum];
4241
4242                        *value = kallsyms_symbol_value(sym);
4243                        *type = kallsyms->typetab[symnum];
4244                        strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4245                        strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4246                        *exported = is_exported(name, *value, mod);
4247                        preempt_enable();
4248                        return 0;
4249                }
4250                symnum -= kallsyms->num_symtab;
4251        }
4252        preempt_enable();
4253        return -ERANGE;
4254}
4255
4256/* Given a module and name of symbol, find and return the symbol's value */
4257static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4258{
4259        unsigned int i;
4260        struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4261
4262        for (i = 0; i < kallsyms->num_symtab; i++) {
4263                const Elf_Sym *sym = &kallsyms->symtab[i];
4264
4265                if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4266                    sym->st_shndx != SHN_UNDEF)
4267                        return kallsyms_symbol_value(sym);
4268        }
4269        return 0;
4270}
4271
4272/* Look for this name: can be of form module:name. */
4273unsigned long module_kallsyms_lookup_name(const char *name)
4274{
4275        struct module *mod;
4276        char *colon;
4277        unsigned long ret = 0;
4278
4279        /* Don't lock: we're in enough trouble already. */
4280        preempt_disable();
4281        if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4282                if ((mod = find_module_all(name, colon - name, false)) != NULL)
4283                        ret = find_kallsyms_symbol_value(mod, colon+1);
4284        } else {
4285                list_for_each_entry_rcu(mod, &modules, list) {
4286                        if (mod->state == MODULE_STATE_UNFORMED)
4287                                continue;
4288                        if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4289                                break;
4290                }
4291        }
4292        preempt_enable();
4293        return ret;
4294}
4295
4296int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4297                                             struct module *, unsigned long),
4298                                   void *data)
4299{
4300        struct module *mod;
4301        unsigned int i;
4302        int ret;
4303
4304        module_assert_mutex();
4305
4306        list_for_each_entry(mod, &modules, list) {
4307                /* We hold module_mutex: no need for rcu_dereference_sched */
4308                struct mod_kallsyms *kallsyms = mod->kallsyms;
4309
4310                if (mod->state == MODULE_STATE_UNFORMED)
4311                        continue;
4312                for (i = 0; i < kallsyms->num_symtab; i++) {
4313                        const Elf_Sym *sym = &kallsyms->symtab[i];
4314
4315                        if (sym->st_shndx == SHN_UNDEF)
4316                                continue;
4317
4318                        ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4319                                 mod, kallsyms_symbol_value(sym));
4320                        if (ret != 0)
4321                                return ret;
4322                }
4323        }
4324        return 0;
4325}
4326#endif /* CONFIG_KALLSYMS */
4327
4328/* Maximum number of characters written by module_flags() */
4329#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4330
4331/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4332static char *module_flags(struct module *mod, char *buf)
4333{
4334        int bx = 0;
4335
4336        BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4337        if (mod->taints ||
4338            mod->state == MODULE_STATE_GOING ||
4339            mod->state == MODULE_STATE_COMING) {
4340                buf[bx++] = '(';
4341                bx += module_flags_taint(mod, buf + bx);
4342                /* Show a - for module-is-being-unloaded */
4343                if (mod->state == MODULE_STATE_GOING)
4344                        buf[bx++] = '-';
4345                /* Show a + for module-is-being-loaded */
4346                if (mod->state == MODULE_STATE_COMING)
4347                        buf[bx++] = '+';
4348                buf[bx++] = ')';
4349        }
4350        buf[bx] = '\0';
4351
4352        return buf;
4353}
4354
4355#ifdef CONFIG_PROC_FS
4356/* Called by the /proc file system to return a list of modules. */
4357static void *m_start(struct seq_file *m, loff_t *pos)
4358{
4359        mutex_lock(&module_mutex);
4360        return seq_list_start(&modules, *pos);
4361}
4362
4363static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4364{
4365        return seq_list_next(p, &modules, pos);
4366}
4367
4368static void m_stop(struct seq_file *m, void *p)
4369{
4370        mutex_unlock(&module_mutex);
4371}
4372
4373static int m_show(struct seq_file *m, void *p)
4374{
4375        struct module *mod = list_entry(p, struct module, list);
4376        char buf[MODULE_FLAGS_BUF_SIZE];
4377        void *value;
4378
4379        /* We always ignore unformed modules. */
4380        if (mod->state == MODULE_STATE_UNFORMED)
4381                return 0;
4382
4383        seq_printf(m, "%s %u",
4384                   mod->name, mod->init_layout.size + mod->core_layout.size);
4385        print_unload_info(m, mod);
4386
4387        /* Informative for users. */
4388        seq_printf(m, " %s",
4389                   mod->state == MODULE_STATE_GOING ? "Unloading" :
4390                   mod->state == MODULE_STATE_COMING ? "Loading" :
4391                   "Live");
4392        /* Used by oprofile and other similar tools. */
4393        value = m->private ? NULL : mod->core_layout.base;
4394        seq_printf(m, " 0x%px", value);
4395
4396        /* Taints info */
4397        if (mod->taints)
4398                seq_printf(m, " %s", module_flags(mod, buf));
4399
4400        seq_puts(m, "\n");
4401        return 0;
4402}
4403
4404/* Format: modulename size refcount deps address
4405
4406   Where refcount is a number or -, and deps is a comma-separated list
4407   of depends or -.
4408*/
4409static const struct seq_operations modules_op = {
4410        .start  = m_start,
4411        .next   = m_next,
4412        .stop   = m_stop,
4413        .show   = m_show
4414};
4415
4416/*
4417 * This also sets the "private" pointer to non-NULL if the
4418 * kernel pointers should be hidden (so you can just test
4419 * "m->private" to see if you should keep the values private).
4420 *
4421 * We use the same logic as for /proc/kallsyms.
4422 */
4423static int modules_open(struct inode *inode, struct file *file)
4424{
4425        int err = seq_open(file, &modules_op);
4426
4427        if (!err) {
4428                struct seq_file *m = file->private_data;
4429                m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4430        }
4431
4432        return err;
4433}
4434
4435static const struct proc_ops modules_proc_ops = {
4436        .proc_flags     = PROC_ENTRY_PERMANENT,
4437        .proc_open      = modules_open,
4438        .proc_read      = seq_read,
4439        .proc_lseek     = seq_lseek,
4440        .proc_release   = seq_release,
4441};
4442
4443static int __init proc_modules_init(void)
4444{
4445        proc_create("modules", 0, NULL, &modules_proc_ops);
4446        return 0;
4447}
4448module_init(proc_modules_init);
4449#endif
4450
4451/* Given an address, look for it in the module exception tables. */
4452const struct exception_table_entry *search_module_extables(unsigned long addr)
4453{
4454        const struct exception_table_entry *e = NULL;
4455        struct module *mod;
4456
4457        preempt_disable();
4458        mod = __module_address(addr);
4459        if (!mod)
4460                goto out;
4461
4462        if (!mod->num_exentries)
4463                goto out;
4464
4465        e = search_extable(mod->extable,
4466                           mod->num_exentries,
4467                           addr);
4468out:
4469        preempt_enable();
4470
4471        /*
4472         * Now, if we found one, we are running inside it now, hence
4473         * we cannot unload the module, hence no refcnt needed.
4474         */
4475        return e;
4476}
4477
4478/*
4479 * is_module_address - is this address inside a module?
4480 * @addr: the address to check.
4481 *
4482 * See is_module_text_address() if you simply want to see if the address
4483 * is code (not data).
4484 */
4485bool is_module_address(unsigned long addr)
4486{
4487        bool ret;
4488
4489        preempt_disable();
4490        ret = __module_address(addr) != NULL;
4491        preempt_enable();
4492
4493        return ret;
4494}
4495
4496/*
4497 * __module_address - get the module which contains an address.
4498 * @addr: the address.
4499 *
4500 * Must be called with preempt disabled or module mutex held so that
4501 * module doesn't get freed during this.
4502 */
4503struct module *__module_address(unsigned long addr)
4504{
4505        struct module *mod;
4506
4507        if (addr < module_addr_min || addr > module_addr_max)
4508                return NULL;
4509
4510        module_assert_mutex_or_preempt();
4511
4512        mod = mod_find(addr);
4513        if (mod) {
4514                BUG_ON(!within_module(addr, mod));
4515                if (mod->state == MODULE_STATE_UNFORMED)
4516                        mod = NULL;
4517        }
4518        return mod;
4519}
4520
4521/*
4522 * is_module_text_address - is this address inside module code?
4523 * @addr: the address to check.
4524 *
4525 * See is_module_address() if you simply want to see if the address is
4526 * anywhere in a module.  See kernel_text_address() for testing if an
4527 * address corresponds to kernel or module code.
4528 */
4529bool is_module_text_address(unsigned long addr)
4530{
4531        bool ret;
4532
4533        preempt_disable();
4534        ret = __module_text_address(addr) != NULL;
4535        preempt_enable();
4536
4537        return ret;
4538}
4539
4540/*
4541 * __module_text_address - get the module whose code contains an address.
4542 * @addr: the address.
4543 *
4544 * Must be called with preempt disabled or module mutex held so that
4545 * module doesn't get freed during this.
4546 */
4547struct module *__module_text_address(unsigned long addr)
4548{
4549        struct module *mod = __module_address(addr);
4550        if (mod) {
4551                /* Make sure it's within the text section. */
4552                if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4553                    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4554                        mod = NULL;
4555        }
4556        return mod;
4557}
4558
4559/* Don't grab lock, we're oopsing. */
4560void print_modules(void)
4561{
4562        struct module *mod;
4563        char buf[MODULE_FLAGS_BUF_SIZE];
4564
4565        printk(KERN_DEFAULT "Modules linked in:");
4566        /* Most callers should already have preempt disabled, but make sure */
4567        preempt_disable();
4568        list_for_each_entry_rcu(mod, &modules, list) {
4569                if (mod->state == MODULE_STATE_UNFORMED)
4570                        continue;
4571                pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4572        }
4573        preempt_enable();
4574        if (last_unloaded_module[0])
4575                pr_cont(" [last unloaded: %s]", last_unloaded_module);
4576        pr_cont("\n");
4577}
4578
4579#ifdef CONFIG_MODVERSIONS
4580/* Generate the signature for all relevant module structures here.
4581 * If these change, we don't want to try to parse the module. */
4582void module_layout(struct module *mod,
4583                   struct modversion_info *ver,
4584                   struct kernel_param *kp,
4585                   struct kernel_symbol *ks,
4586                   struct tracepoint * const *tp)
4587{
4588}
4589EXPORT_SYMBOL(module_layout);
4590#endif
4591