linux/kernel/pid_namespace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Pid namespaces
   4 *
   5 * Authors:
   6 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
   7 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
   8 *     Many thanks to Oleg Nesterov for comments and help
   9 *
  10 */
  11
  12#include <linux/pid.h>
  13#include <linux/pid_namespace.h>
  14#include <linux/user_namespace.h>
  15#include <linux/syscalls.h>
  16#include <linux/cred.h>
  17#include <linux/err.h>
  18#include <linux/acct.h>
  19#include <linux/slab.h>
  20#include <linux/proc_ns.h>
  21#include <linux/reboot.h>
  22#include <linux/export.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/signal.h>
  25#include <linux/idr.h>
  26
  27static DEFINE_MUTEX(pid_caches_mutex);
  28static struct kmem_cache *pid_ns_cachep;
  29/* Write once array, filled from the beginning. */
  30static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
  31
  32/*
  33 * creates the kmem cache to allocate pids from.
  34 * @level: pid namespace level
  35 */
  36
  37static struct kmem_cache *create_pid_cachep(unsigned int level)
  38{
  39        /* Level 0 is init_pid_ns.pid_cachep */
  40        struct kmem_cache **pkc = &pid_cache[level - 1];
  41        struct kmem_cache *kc;
  42        char name[4 + 10 + 1];
  43        unsigned int len;
  44
  45        kc = READ_ONCE(*pkc);
  46        if (kc)
  47                return kc;
  48
  49        snprintf(name, sizeof(name), "pid_%u", level + 1);
  50        len = sizeof(struct pid) + level * sizeof(struct upid);
  51        mutex_lock(&pid_caches_mutex);
  52        /* Name collision forces to do allocation under mutex. */
  53        if (!*pkc)
  54                *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
  55        mutex_unlock(&pid_caches_mutex);
  56        /* current can fail, but someone else can succeed. */
  57        return READ_ONCE(*pkc);
  58}
  59
  60static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
  61{
  62        return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
  63}
  64
  65static void dec_pid_namespaces(struct ucounts *ucounts)
  66{
  67        dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
  68}
  69
  70static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
  71        struct pid_namespace *parent_pid_ns)
  72{
  73        struct pid_namespace *ns;
  74        unsigned int level = parent_pid_ns->level + 1;
  75        struct ucounts *ucounts;
  76        int err;
  77
  78        err = -EINVAL;
  79        if (!in_userns(parent_pid_ns->user_ns, user_ns))
  80                goto out;
  81
  82        err = -ENOSPC;
  83        if (level > MAX_PID_NS_LEVEL)
  84                goto out;
  85        ucounts = inc_pid_namespaces(user_ns);
  86        if (!ucounts)
  87                goto out;
  88
  89        err = -ENOMEM;
  90        ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
  91        if (ns == NULL)
  92                goto out_dec;
  93
  94        idr_init(&ns->idr);
  95
  96        ns->pid_cachep = create_pid_cachep(level);
  97        if (ns->pid_cachep == NULL)
  98                goto out_free_idr;
  99
 100        err = ns_alloc_inum(&ns->ns);
 101        if (err)
 102                goto out_free_idr;
 103        ns->ns.ops = &pidns_operations;
 104
 105        kref_init(&ns->kref);
 106        ns->level = level;
 107        ns->parent = get_pid_ns(parent_pid_ns);
 108        ns->user_ns = get_user_ns(user_ns);
 109        ns->ucounts = ucounts;
 110        ns->pid_allocated = PIDNS_ADDING;
 111
 112        return ns;
 113
 114out_free_idr:
 115        idr_destroy(&ns->idr);
 116        kmem_cache_free(pid_ns_cachep, ns);
 117out_dec:
 118        dec_pid_namespaces(ucounts);
 119out:
 120        return ERR_PTR(err);
 121}
 122
 123static void delayed_free_pidns(struct rcu_head *p)
 124{
 125        struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
 126
 127        dec_pid_namespaces(ns->ucounts);
 128        put_user_ns(ns->user_ns);
 129
 130        kmem_cache_free(pid_ns_cachep, ns);
 131}
 132
 133static void destroy_pid_namespace(struct pid_namespace *ns)
 134{
 135        ns_free_inum(&ns->ns);
 136
 137        idr_destroy(&ns->idr);
 138        call_rcu(&ns->rcu, delayed_free_pidns);
 139}
 140
 141struct pid_namespace *copy_pid_ns(unsigned long flags,
 142        struct user_namespace *user_ns, struct pid_namespace *old_ns)
 143{
 144        if (!(flags & CLONE_NEWPID))
 145                return get_pid_ns(old_ns);
 146        if (task_active_pid_ns(current) != old_ns)
 147                return ERR_PTR(-EINVAL);
 148        return create_pid_namespace(user_ns, old_ns);
 149}
 150
 151static void free_pid_ns(struct kref *kref)
 152{
 153        struct pid_namespace *ns;
 154
 155        ns = container_of(kref, struct pid_namespace, kref);
 156        destroy_pid_namespace(ns);
 157}
 158
 159void put_pid_ns(struct pid_namespace *ns)
 160{
 161        struct pid_namespace *parent;
 162
 163        while (ns != &init_pid_ns) {
 164                parent = ns->parent;
 165                if (!kref_put(&ns->kref, free_pid_ns))
 166                        break;
 167                ns = parent;
 168        }
 169}
 170EXPORT_SYMBOL_GPL(put_pid_ns);
 171
 172void zap_pid_ns_processes(struct pid_namespace *pid_ns)
 173{
 174        int nr;
 175        int rc;
 176        struct task_struct *task, *me = current;
 177        int init_pids = thread_group_leader(me) ? 1 : 2;
 178        struct pid *pid;
 179
 180        /* Don't allow any more processes into the pid namespace */
 181        disable_pid_allocation(pid_ns);
 182
 183        /*
 184         * Ignore SIGCHLD causing any terminated children to autoreap.
 185         * This speeds up the namespace shutdown, plus see the comment
 186         * below.
 187         */
 188        spin_lock_irq(&me->sighand->siglock);
 189        me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
 190        spin_unlock_irq(&me->sighand->siglock);
 191
 192        /*
 193         * The last thread in the cgroup-init thread group is terminating.
 194         * Find remaining pid_ts in the namespace, signal and wait for them
 195         * to exit.
 196         *
 197         * Note:  This signals each threads in the namespace - even those that
 198         *        belong to the same thread group, To avoid this, we would have
 199         *        to walk the entire tasklist looking a processes in this
 200         *        namespace, but that could be unnecessarily expensive if the
 201         *        pid namespace has just a few processes. Or we need to
 202         *        maintain a tasklist for each pid namespace.
 203         *
 204         */
 205        rcu_read_lock();
 206        read_lock(&tasklist_lock);
 207        nr = 2;
 208        idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
 209                task = pid_task(pid, PIDTYPE_PID);
 210                if (task && !__fatal_signal_pending(task))
 211                        group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
 212        }
 213        read_unlock(&tasklist_lock);
 214        rcu_read_unlock();
 215
 216        /*
 217         * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
 218         * kernel_wait4() will also block until our children traced from the
 219         * parent namespace are detached and become EXIT_DEAD.
 220         */
 221        do {
 222                clear_thread_flag(TIF_SIGPENDING);
 223                rc = kernel_wait4(-1, NULL, __WALL, NULL);
 224        } while (rc != -ECHILD);
 225
 226        /*
 227         * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
 228         * process whose parents processes are outside of the pid
 229         * namespace.  Such processes are created with setns()+fork().
 230         *
 231         * If those EXIT_ZOMBIE processes are not reaped by their
 232         * parents before their parents exit, they will be reparented
 233         * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
 234         * stay valid until they all go away.
 235         *
 236         * The code relies on the the pid_ns->child_reaper ignoring
 237         * SIGCHILD to cause those EXIT_ZOMBIE processes to be
 238         * autoreaped if reparented.
 239         *
 240         * Semantically it is also desirable to wait for EXIT_ZOMBIE
 241         * processes before allowing the child_reaper to be reaped, as
 242         * that gives the invariant that when the init process of a
 243         * pid namespace is reaped all of the processes in the pid
 244         * namespace are gone.
 245         *
 246         * Once all of the other tasks are gone from the pid_namespace
 247         * free_pid() will awaken this task.
 248         */
 249        for (;;) {
 250                set_current_state(TASK_INTERRUPTIBLE);
 251                if (pid_ns->pid_allocated == init_pids)
 252                        break;
 253                schedule();
 254        }
 255        __set_current_state(TASK_RUNNING);
 256
 257        if (pid_ns->reboot)
 258                current->signal->group_exit_code = pid_ns->reboot;
 259
 260        acct_exit_ns(pid_ns);
 261        return;
 262}
 263
 264#ifdef CONFIG_CHECKPOINT_RESTORE
 265static int pid_ns_ctl_handler(struct ctl_table *table, int write,
 266                void *buffer, size_t *lenp, loff_t *ppos)
 267{
 268        struct pid_namespace *pid_ns = task_active_pid_ns(current);
 269        struct ctl_table tmp = *table;
 270        int ret, next;
 271
 272        if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
 273                return -EPERM;
 274
 275        /*
 276         * Writing directly to ns' last_pid field is OK, since this field
 277         * is volatile in a living namespace anyway and a code writing to
 278         * it should synchronize its usage with external means.
 279         */
 280
 281        next = idr_get_cursor(&pid_ns->idr) - 1;
 282
 283        tmp.data = &next;
 284        ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 285        if (!ret && write)
 286                idr_set_cursor(&pid_ns->idr, next + 1);
 287
 288        return ret;
 289}
 290
 291extern int pid_max;
 292static struct ctl_table pid_ns_ctl_table[] = {
 293        {
 294                .procname = "ns_last_pid",
 295                .maxlen = sizeof(int),
 296                .mode = 0666, /* permissions are checked in the handler */
 297                .proc_handler = pid_ns_ctl_handler,
 298                .extra1 = SYSCTL_ZERO,
 299                .extra2 = &pid_max,
 300        },
 301        { }
 302};
 303static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
 304#endif  /* CONFIG_CHECKPOINT_RESTORE */
 305
 306int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
 307{
 308        if (pid_ns == &init_pid_ns)
 309                return 0;
 310
 311        switch (cmd) {
 312        case LINUX_REBOOT_CMD_RESTART2:
 313        case LINUX_REBOOT_CMD_RESTART:
 314                pid_ns->reboot = SIGHUP;
 315                break;
 316
 317        case LINUX_REBOOT_CMD_POWER_OFF:
 318        case LINUX_REBOOT_CMD_HALT:
 319                pid_ns->reboot = SIGINT;
 320                break;
 321        default:
 322                return -EINVAL;
 323        }
 324
 325        read_lock(&tasklist_lock);
 326        send_sig(SIGKILL, pid_ns->child_reaper, 1);
 327        read_unlock(&tasklist_lock);
 328
 329        do_exit(0);
 330
 331        /* Not reached */
 332        return 0;
 333}
 334
 335static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
 336{
 337        return container_of(ns, struct pid_namespace, ns);
 338}
 339
 340static struct ns_common *pidns_get(struct task_struct *task)
 341{
 342        struct pid_namespace *ns;
 343
 344        rcu_read_lock();
 345        ns = task_active_pid_ns(task);
 346        if (ns)
 347                get_pid_ns(ns);
 348        rcu_read_unlock();
 349
 350        return ns ? &ns->ns : NULL;
 351}
 352
 353static struct ns_common *pidns_for_children_get(struct task_struct *task)
 354{
 355        struct pid_namespace *ns = NULL;
 356
 357        task_lock(task);
 358        if (task->nsproxy) {
 359                ns = task->nsproxy->pid_ns_for_children;
 360                get_pid_ns(ns);
 361        }
 362        task_unlock(task);
 363
 364        if (ns) {
 365                read_lock(&tasklist_lock);
 366                if (!ns->child_reaper) {
 367                        put_pid_ns(ns);
 368                        ns = NULL;
 369                }
 370                read_unlock(&tasklist_lock);
 371        }
 372
 373        return ns ? &ns->ns : NULL;
 374}
 375
 376static void pidns_put(struct ns_common *ns)
 377{
 378        put_pid_ns(to_pid_ns(ns));
 379}
 380
 381static int pidns_install(struct nsset *nsset, struct ns_common *ns)
 382{
 383        struct nsproxy *nsproxy = nsset->nsproxy;
 384        struct pid_namespace *active = task_active_pid_ns(current);
 385        struct pid_namespace *ancestor, *new = to_pid_ns(ns);
 386
 387        if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
 388            !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
 389                return -EPERM;
 390
 391        /*
 392         * Only allow entering the current active pid namespace
 393         * or a child of the current active pid namespace.
 394         *
 395         * This is required for fork to return a usable pid value and
 396         * this maintains the property that processes and their
 397         * children can not escape their current pid namespace.
 398         */
 399        if (new->level < active->level)
 400                return -EINVAL;
 401
 402        ancestor = new;
 403        while (ancestor->level > active->level)
 404                ancestor = ancestor->parent;
 405        if (ancestor != active)
 406                return -EINVAL;
 407
 408        put_pid_ns(nsproxy->pid_ns_for_children);
 409        nsproxy->pid_ns_for_children = get_pid_ns(new);
 410        return 0;
 411}
 412
 413static struct ns_common *pidns_get_parent(struct ns_common *ns)
 414{
 415        struct pid_namespace *active = task_active_pid_ns(current);
 416        struct pid_namespace *pid_ns, *p;
 417
 418        /* See if the parent is in the current namespace */
 419        pid_ns = p = to_pid_ns(ns)->parent;
 420        for (;;) {
 421                if (!p)
 422                        return ERR_PTR(-EPERM);
 423                if (p == active)
 424                        break;
 425                p = p->parent;
 426        }
 427
 428        return &get_pid_ns(pid_ns)->ns;
 429}
 430
 431static struct user_namespace *pidns_owner(struct ns_common *ns)
 432{
 433        return to_pid_ns(ns)->user_ns;
 434}
 435
 436const struct proc_ns_operations pidns_operations = {
 437        .name           = "pid",
 438        .type           = CLONE_NEWPID,
 439        .get            = pidns_get,
 440        .put            = pidns_put,
 441        .install        = pidns_install,
 442        .owner          = pidns_owner,
 443        .get_parent     = pidns_get_parent,
 444};
 445
 446const struct proc_ns_operations pidns_for_children_operations = {
 447        .name           = "pid_for_children",
 448        .real_ns_name   = "pid",
 449        .type           = CLONE_NEWPID,
 450        .get            = pidns_for_children_get,
 451        .put            = pidns_put,
 452        .install        = pidns_install,
 453        .owner          = pidns_owner,
 454        .get_parent     = pidns_get_parent,
 455};
 456
 457static __init int pid_namespaces_init(void)
 458{
 459        pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
 460
 461#ifdef CONFIG_CHECKPOINT_RESTORE
 462        register_sysctl_paths(kern_path, pid_ns_ctl_table);
 463#endif
 464        return 0;
 465}
 466
 467__initcall(pid_namespaces_init);
 468