linux/kernel/sched/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  kernel/sched/core.c
   4 *
   5 *  Core kernel scheduler code and related syscalls
   6 *
   7 *  Copyright (C) 1991-2002  Linus Torvalds
   8 */
   9#define CREATE_TRACE_POINTS
  10#include <trace/events/sched.h>
  11#undef CREATE_TRACE_POINTS
  12
  13#include "sched.h"
  14
  15#include <linux/nospec.h>
  16
  17#include <linux/kcov.h>
  18#include <linux/scs.h>
  19
  20#include <asm/switch_to.h>
  21#include <asm/tlb.h>
  22
  23#include "../workqueue_internal.h"
  24#include "../../fs/io-wq.h"
  25#include "../smpboot.h"
  26
  27#include "pelt.h"
  28#include "smp.h"
  29
  30/*
  31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  32 * associated with them) to allow external modules to probe them.
  33 */
  34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  43
  44DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  45
  46#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
  47/*
  48 * Debugging: various feature bits
  49 *
  50 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  51 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  52 * at compile time and compiler optimization based on features default.
  53 */
  54#define SCHED_FEAT(name, enabled)       \
  55        (1UL << __SCHED_FEAT_##name) * enabled |
  56const_debug unsigned int sysctl_sched_features =
  57#include "features.h"
  58        0;
  59#undef SCHED_FEAT
  60#endif
  61
  62/*
  63 * Number of tasks to iterate in a single balance run.
  64 * Limited because this is done with IRQs disabled.
  65 */
  66const_debug unsigned int sysctl_sched_nr_migrate = 32;
  67
  68/*
  69 * period over which we measure -rt task CPU usage in us.
  70 * default: 1s
  71 */
  72unsigned int sysctl_sched_rt_period = 1000000;
  73
  74__read_mostly int scheduler_running;
  75
  76/*
  77 * part of the period that we allow rt tasks to run in us.
  78 * default: 0.95s
  79 */
  80int sysctl_sched_rt_runtime = 950000;
  81
  82
  83/*
  84 * Serialization rules:
  85 *
  86 * Lock order:
  87 *
  88 *   p->pi_lock
  89 *     rq->lock
  90 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  91 *
  92 *  rq1->lock
  93 *    rq2->lock  where: rq1 < rq2
  94 *
  95 * Regular state:
  96 *
  97 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  98 * local CPU's rq->lock, it optionally removes the task from the runqueue and
  99 * always looks at the local rq data structures to find the most elegible task
 100 * to run next.
 101 *
 102 * Task enqueue is also under rq->lock, possibly taken from another CPU.
 103 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
 104 * the local CPU to avoid bouncing the runqueue state around [ see
 105 * ttwu_queue_wakelist() ]
 106 *
 107 * Task wakeup, specifically wakeups that involve migration, are horribly
 108 * complicated to avoid having to take two rq->locks.
 109 *
 110 * Special state:
 111 *
 112 * System-calls and anything external will use task_rq_lock() which acquires
 113 * both p->pi_lock and rq->lock. As a consequence the state they change is
 114 * stable while holding either lock:
 115 *
 116 *  - sched_setaffinity()/
 117 *    set_cpus_allowed_ptr():   p->cpus_ptr, p->nr_cpus_allowed
 118 *  - set_user_nice():          p->se.load, p->*prio
 119 *  - __sched_setscheduler():   p->sched_class, p->policy, p->*prio,
 120 *                              p->se.load, p->rt_priority,
 121 *                              p->dl.dl_{runtime, deadline, period, flags, bw, density}
 122 *  - sched_setnuma():          p->numa_preferred_nid
 123 *  - sched_move_task()/
 124 *    cpu_cgroup_fork():        p->sched_task_group
 125 *  - uclamp_update_active()    p->uclamp*
 126 *
 127 * p->state <- TASK_*:
 128 *
 129 *   is changed locklessly using set_current_state(), __set_current_state() or
 130 *   set_special_state(), see their respective comments, or by
 131 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
 132 *   concurrent self.
 133 *
 134 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
 135 *
 136 *   is set by activate_task() and cleared by deactivate_task(), under
 137 *   rq->lock. Non-zero indicates the task is runnable, the special
 138 *   ON_RQ_MIGRATING state is used for migration without holding both
 139 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
 140 *
 141 * p->on_cpu <- { 0, 1 }:
 142 *
 143 *   is set by prepare_task() and cleared by finish_task() such that it will be
 144 *   set before p is scheduled-in and cleared after p is scheduled-out, both
 145 *   under rq->lock. Non-zero indicates the task is running on its CPU.
 146 *
 147 *   [ The astute reader will observe that it is possible for two tasks on one
 148 *     CPU to have ->on_cpu = 1 at the same time. ]
 149 *
 150 * task_cpu(p): is changed by set_task_cpu(), the rules are:
 151 *
 152 *  - Don't call set_task_cpu() on a blocked task:
 153 *
 154 *    We don't care what CPU we're not running on, this simplifies hotplug,
 155 *    the CPU assignment of blocked tasks isn't required to be valid.
 156 *
 157 *  - for try_to_wake_up(), called under p->pi_lock:
 158 *
 159 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
 160 *
 161 *  - for migration called under rq->lock:
 162 *    [ see task_on_rq_migrating() in task_rq_lock() ]
 163 *
 164 *    o move_queued_task()
 165 *    o detach_task()
 166 *
 167 *  - for migration called under double_rq_lock():
 168 *
 169 *    o __migrate_swap_task()
 170 *    o push_rt_task() / pull_rt_task()
 171 *    o push_dl_task() / pull_dl_task()
 172 *    o dl_task_offline_migration()
 173 *
 174 */
 175
 176/*
 177 * __task_rq_lock - lock the rq @p resides on.
 178 */
 179struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 180        __acquires(rq->lock)
 181{
 182        struct rq *rq;
 183
 184        lockdep_assert_held(&p->pi_lock);
 185
 186        for (;;) {
 187                rq = task_rq(p);
 188                raw_spin_lock(&rq->lock);
 189                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 190                        rq_pin_lock(rq, rf);
 191                        return rq;
 192                }
 193                raw_spin_unlock(&rq->lock);
 194
 195                while (unlikely(task_on_rq_migrating(p)))
 196                        cpu_relax();
 197        }
 198}
 199
 200/*
 201 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 202 */
 203struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 204        __acquires(p->pi_lock)
 205        __acquires(rq->lock)
 206{
 207        struct rq *rq;
 208
 209        for (;;) {
 210                raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 211                rq = task_rq(p);
 212                raw_spin_lock(&rq->lock);
 213                /*
 214                 *      move_queued_task()              task_rq_lock()
 215                 *
 216                 *      ACQUIRE (rq->lock)
 217                 *      [S] ->on_rq = MIGRATING         [L] rq = task_rq()
 218                 *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
 219                 *      [S] ->cpu = new_cpu             [L] task_rq()
 220                 *                                      [L] ->on_rq
 221                 *      RELEASE (rq->lock)
 222                 *
 223                 * If we observe the old CPU in task_rq_lock(), the acquire of
 224                 * the old rq->lock will fully serialize against the stores.
 225                 *
 226                 * If we observe the new CPU in task_rq_lock(), the address
 227                 * dependency headed by '[L] rq = task_rq()' and the acquire
 228                 * will pair with the WMB to ensure we then also see migrating.
 229                 */
 230                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 231                        rq_pin_lock(rq, rf);
 232                        return rq;
 233                }
 234                raw_spin_unlock(&rq->lock);
 235                raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 236
 237                while (unlikely(task_on_rq_migrating(p)))
 238                        cpu_relax();
 239        }
 240}
 241
 242/*
 243 * RQ-clock updating methods:
 244 */
 245
 246static void update_rq_clock_task(struct rq *rq, s64 delta)
 247{
 248/*
 249 * In theory, the compile should just see 0 here, and optimize out the call
 250 * to sched_rt_avg_update. But I don't trust it...
 251 */
 252        s64 __maybe_unused steal = 0, irq_delta = 0;
 253
 254#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 255        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 256
 257        /*
 258         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 259         * this case when a previous update_rq_clock() happened inside a
 260         * {soft,}irq region.
 261         *
 262         * When this happens, we stop ->clock_task and only update the
 263         * prev_irq_time stamp to account for the part that fit, so that a next
 264         * update will consume the rest. This ensures ->clock_task is
 265         * monotonic.
 266         *
 267         * It does however cause some slight miss-attribution of {soft,}irq
 268         * time, a more accurate solution would be to update the irq_time using
 269         * the current rq->clock timestamp, except that would require using
 270         * atomic ops.
 271         */
 272        if (irq_delta > delta)
 273                irq_delta = delta;
 274
 275        rq->prev_irq_time += irq_delta;
 276        delta -= irq_delta;
 277#endif
 278#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 279        if (static_key_false((&paravirt_steal_rq_enabled))) {
 280                steal = paravirt_steal_clock(cpu_of(rq));
 281                steal -= rq->prev_steal_time_rq;
 282
 283                if (unlikely(steal > delta))
 284                        steal = delta;
 285
 286                rq->prev_steal_time_rq += steal;
 287                delta -= steal;
 288        }
 289#endif
 290
 291        rq->clock_task += delta;
 292
 293#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 294        if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 295                update_irq_load_avg(rq, irq_delta + steal);
 296#endif
 297        update_rq_clock_pelt(rq, delta);
 298}
 299
 300void update_rq_clock(struct rq *rq)
 301{
 302        s64 delta;
 303
 304        lockdep_assert_held(&rq->lock);
 305
 306        if (rq->clock_update_flags & RQCF_ACT_SKIP)
 307                return;
 308
 309#ifdef CONFIG_SCHED_DEBUG
 310        if (sched_feat(WARN_DOUBLE_CLOCK))
 311                SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
 312        rq->clock_update_flags |= RQCF_UPDATED;
 313#endif
 314
 315        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 316        if (delta < 0)
 317                return;
 318        rq->clock += delta;
 319        update_rq_clock_task(rq, delta);
 320}
 321
 322static inline void
 323rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
 324{
 325        csd->flags = 0;
 326        csd->func = func;
 327        csd->info = rq;
 328}
 329
 330#ifdef CONFIG_SCHED_HRTICK
 331/*
 332 * Use HR-timers to deliver accurate preemption points.
 333 */
 334
 335static void hrtick_clear(struct rq *rq)
 336{
 337        if (hrtimer_active(&rq->hrtick_timer))
 338                hrtimer_cancel(&rq->hrtick_timer);
 339}
 340
 341/*
 342 * High-resolution timer tick.
 343 * Runs from hardirq context with interrupts disabled.
 344 */
 345static enum hrtimer_restart hrtick(struct hrtimer *timer)
 346{
 347        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 348        struct rq_flags rf;
 349
 350        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 351
 352        rq_lock(rq, &rf);
 353        update_rq_clock(rq);
 354        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 355        rq_unlock(rq, &rf);
 356
 357        return HRTIMER_NORESTART;
 358}
 359
 360#ifdef CONFIG_SMP
 361
 362static void __hrtick_restart(struct rq *rq)
 363{
 364        struct hrtimer *timer = &rq->hrtick_timer;
 365
 366        hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
 367}
 368
 369/*
 370 * called from hardirq (IPI) context
 371 */
 372static void __hrtick_start(void *arg)
 373{
 374        struct rq *rq = arg;
 375        struct rq_flags rf;
 376
 377        rq_lock(rq, &rf);
 378        __hrtick_restart(rq);
 379        rq_unlock(rq, &rf);
 380}
 381
 382/*
 383 * Called to set the hrtick timer state.
 384 *
 385 * called with rq->lock held and irqs disabled
 386 */
 387void hrtick_start(struct rq *rq, u64 delay)
 388{
 389        struct hrtimer *timer = &rq->hrtick_timer;
 390        ktime_t time;
 391        s64 delta;
 392
 393        /*
 394         * Don't schedule slices shorter than 10000ns, that just
 395         * doesn't make sense and can cause timer DoS.
 396         */
 397        delta = max_t(s64, delay, 10000LL);
 398        time = ktime_add_ns(timer->base->get_time(), delta);
 399
 400        hrtimer_set_expires(timer, time);
 401
 402        if (rq == this_rq())
 403                __hrtick_restart(rq);
 404        else
 405                smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 406}
 407
 408#else
 409/*
 410 * Called to set the hrtick timer state.
 411 *
 412 * called with rq->lock held and irqs disabled
 413 */
 414void hrtick_start(struct rq *rq, u64 delay)
 415{
 416        /*
 417         * Don't schedule slices shorter than 10000ns, that just
 418         * doesn't make sense. Rely on vruntime for fairness.
 419         */
 420        delay = max_t(u64, delay, 10000LL);
 421        hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 422                      HRTIMER_MODE_REL_PINNED_HARD);
 423}
 424
 425#endif /* CONFIG_SMP */
 426
 427static void hrtick_rq_init(struct rq *rq)
 428{
 429#ifdef CONFIG_SMP
 430        rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
 431#endif
 432        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 433        rq->hrtick_timer.function = hrtick;
 434}
 435#else   /* CONFIG_SCHED_HRTICK */
 436static inline void hrtick_clear(struct rq *rq)
 437{
 438}
 439
 440static inline void hrtick_rq_init(struct rq *rq)
 441{
 442}
 443#endif  /* CONFIG_SCHED_HRTICK */
 444
 445/*
 446 * cmpxchg based fetch_or, macro so it works for different integer types
 447 */
 448#define fetch_or(ptr, mask)                                             \
 449        ({                                                              \
 450                typeof(ptr) _ptr = (ptr);                               \
 451                typeof(mask) _mask = (mask);                            \
 452                typeof(*_ptr) _old, _val = *_ptr;                       \
 453                                                                        \
 454                for (;;) {                                              \
 455                        _old = cmpxchg(_ptr, _val, _val | _mask);       \
 456                        if (_old == _val)                               \
 457                                break;                                  \
 458                        _val = _old;                                    \
 459                }                                                       \
 460        _old;                                                           \
 461})
 462
 463#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 464/*
 465 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 466 * this avoids any races wrt polling state changes and thereby avoids
 467 * spurious IPIs.
 468 */
 469static bool set_nr_and_not_polling(struct task_struct *p)
 470{
 471        struct thread_info *ti = task_thread_info(p);
 472        return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 473}
 474
 475/*
 476 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 477 *
 478 * If this returns true, then the idle task promises to call
 479 * sched_ttwu_pending() and reschedule soon.
 480 */
 481static bool set_nr_if_polling(struct task_struct *p)
 482{
 483        struct thread_info *ti = task_thread_info(p);
 484        typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 485
 486        for (;;) {
 487                if (!(val & _TIF_POLLING_NRFLAG))
 488                        return false;
 489                if (val & _TIF_NEED_RESCHED)
 490                        return true;
 491                old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 492                if (old == val)
 493                        break;
 494                val = old;
 495        }
 496        return true;
 497}
 498
 499#else
 500static bool set_nr_and_not_polling(struct task_struct *p)
 501{
 502        set_tsk_need_resched(p);
 503        return true;
 504}
 505
 506#ifdef CONFIG_SMP
 507static bool set_nr_if_polling(struct task_struct *p)
 508{
 509        return false;
 510}
 511#endif
 512#endif
 513
 514static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
 515{
 516        struct wake_q_node *node = &task->wake_q;
 517
 518        /*
 519         * Atomically grab the task, if ->wake_q is !nil already it means
 520         * its already queued (either by us or someone else) and will get the
 521         * wakeup due to that.
 522         *
 523         * In order to ensure that a pending wakeup will observe our pending
 524         * state, even in the failed case, an explicit smp_mb() must be used.
 525         */
 526        smp_mb__before_atomic();
 527        if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
 528                return false;
 529
 530        /*
 531         * The head is context local, there can be no concurrency.
 532         */
 533        *head->lastp = node;
 534        head->lastp = &node->next;
 535        return true;
 536}
 537
 538/**
 539 * wake_q_add() - queue a wakeup for 'later' waking.
 540 * @head: the wake_q_head to add @task to
 541 * @task: the task to queue for 'later' wakeup
 542 *
 543 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 544 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 545 * instantly.
 546 *
 547 * This function must be used as-if it were wake_up_process(); IOW the task
 548 * must be ready to be woken at this location.
 549 */
 550void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 551{
 552        if (__wake_q_add(head, task))
 553                get_task_struct(task);
 554}
 555
 556/**
 557 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
 558 * @head: the wake_q_head to add @task to
 559 * @task: the task to queue for 'later' wakeup
 560 *
 561 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 562 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 563 * instantly.
 564 *
 565 * This function must be used as-if it were wake_up_process(); IOW the task
 566 * must be ready to be woken at this location.
 567 *
 568 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 569 * that already hold reference to @task can call the 'safe' version and trust
 570 * wake_q to do the right thing depending whether or not the @task is already
 571 * queued for wakeup.
 572 */
 573void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 574{
 575        if (!__wake_q_add(head, task))
 576                put_task_struct(task);
 577}
 578
 579void wake_up_q(struct wake_q_head *head)
 580{
 581        struct wake_q_node *node = head->first;
 582
 583        while (node != WAKE_Q_TAIL) {
 584                struct task_struct *task;
 585
 586                task = container_of(node, struct task_struct, wake_q);
 587                BUG_ON(!task);
 588                /* Task can safely be re-inserted now: */
 589                node = node->next;
 590                task->wake_q.next = NULL;
 591
 592                /*
 593                 * wake_up_process() executes a full barrier, which pairs with
 594                 * the queueing in wake_q_add() so as not to miss wakeups.
 595                 */
 596                wake_up_process(task);
 597                put_task_struct(task);
 598        }
 599}
 600
 601/*
 602 * resched_curr - mark rq's current task 'to be rescheduled now'.
 603 *
 604 * On UP this means the setting of the need_resched flag, on SMP it
 605 * might also involve a cross-CPU call to trigger the scheduler on
 606 * the target CPU.
 607 */
 608void resched_curr(struct rq *rq)
 609{
 610        struct task_struct *curr = rq->curr;
 611        int cpu;
 612
 613        lockdep_assert_held(&rq->lock);
 614
 615        if (test_tsk_need_resched(curr))
 616                return;
 617
 618        cpu = cpu_of(rq);
 619
 620        if (cpu == smp_processor_id()) {
 621                set_tsk_need_resched(curr);
 622                set_preempt_need_resched();
 623                return;
 624        }
 625
 626        if (set_nr_and_not_polling(curr))
 627                smp_send_reschedule(cpu);
 628        else
 629                trace_sched_wake_idle_without_ipi(cpu);
 630}
 631
 632void resched_cpu(int cpu)
 633{
 634        struct rq *rq = cpu_rq(cpu);
 635        unsigned long flags;
 636
 637        raw_spin_lock_irqsave(&rq->lock, flags);
 638        if (cpu_online(cpu) || cpu == smp_processor_id())
 639                resched_curr(rq);
 640        raw_spin_unlock_irqrestore(&rq->lock, flags);
 641}
 642
 643#ifdef CONFIG_SMP
 644#ifdef CONFIG_NO_HZ_COMMON
 645/*
 646 * In the semi idle case, use the nearest busy CPU for migrating timers
 647 * from an idle CPU.  This is good for power-savings.
 648 *
 649 * We don't do similar optimization for completely idle system, as
 650 * selecting an idle CPU will add more delays to the timers than intended
 651 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 652 */
 653int get_nohz_timer_target(void)
 654{
 655        int i, cpu = smp_processor_id(), default_cpu = -1;
 656        struct sched_domain *sd;
 657
 658        if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
 659                if (!idle_cpu(cpu))
 660                        return cpu;
 661                default_cpu = cpu;
 662        }
 663
 664        rcu_read_lock();
 665        for_each_domain(cpu, sd) {
 666                for_each_cpu_and(i, sched_domain_span(sd),
 667                        housekeeping_cpumask(HK_FLAG_TIMER)) {
 668                        if (cpu == i)
 669                                continue;
 670
 671                        if (!idle_cpu(i)) {
 672                                cpu = i;
 673                                goto unlock;
 674                        }
 675                }
 676        }
 677
 678        if (default_cpu == -1)
 679                default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
 680        cpu = default_cpu;
 681unlock:
 682        rcu_read_unlock();
 683        return cpu;
 684}
 685
 686/*
 687 * When add_timer_on() enqueues a timer into the timer wheel of an
 688 * idle CPU then this timer might expire before the next timer event
 689 * which is scheduled to wake up that CPU. In case of a completely
 690 * idle system the next event might even be infinite time into the
 691 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 692 * leaves the inner idle loop so the newly added timer is taken into
 693 * account when the CPU goes back to idle and evaluates the timer
 694 * wheel for the next timer event.
 695 */
 696static void wake_up_idle_cpu(int cpu)
 697{
 698        struct rq *rq = cpu_rq(cpu);
 699
 700        if (cpu == smp_processor_id())
 701                return;
 702
 703        if (set_nr_and_not_polling(rq->idle))
 704                smp_send_reschedule(cpu);
 705        else
 706                trace_sched_wake_idle_without_ipi(cpu);
 707}
 708
 709static bool wake_up_full_nohz_cpu(int cpu)
 710{
 711        /*
 712         * We just need the target to call irq_exit() and re-evaluate
 713         * the next tick. The nohz full kick at least implies that.
 714         * If needed we can still optimize that later with an
 715         * empty IRQ.
 716         */
 717        if (cpu_is_offline(cpu))
 718                return true;  /* Don't try to wake offline CPUs. */
 719        if (tick_nohz_full_cpu(cpu)) {
 720                if (cpu != smp_processor_id() ||
 721                    tick_nohz_tick_stopped())
 722                        tick_nohz_full_kick_cpu(cpu);
 723                return true;
 724        }
 725
 726        return false;
 727}
 728
 729/*
 730 * Wake up the specified CPU.  If the CPU is going offline, it is the
 731 * caller's responsibility to deal with the lost wakeup, for example,
 732 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 733 */
 734void wake_up_nohz_cpu(int cpu)
 735{
 736        if (!wake_up_full_nohz_cpu(cpu))
 737                wake_up_idle_cpu(cpu);
 738}
 739
 740static void nohz_csd_func(void *info)
 741{
 742        struct rq *rq = info;
 743        int cpu = cpu_of(rq);
 744        unsigned int flags;
 745
 746        /*
 747         * Release the rq::nohz_csd.
 748         */
 749        flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
 750        WARN_ON(!(flags & NOHZ_KICK_MASK));
 751
 752        rq->idle_balance = idle_cpu(cpu);
 753        if (rq->idle_balance && !need_resched()) {
 754                rq->nohz_idle_balance = flags;
 755                raise_softirq_irqoff(SCHED_SOFTIRQ);
 756        }
 757}
 758
 759#endif /* CONFIG_NO_HZ_COMMON */
 760
 761#ifdef CONFIG_NO_HZ_FULL
 762bool sched_can_stop_tick(struct rq *rq)
 763{
 764        int fifo_nr_running;
 765
 766        /* Deadline tasks, even if single, need the tick */
 767        if (rq->dl.dl_nr_running)
 768                return false;
 769
 770        /*
 771         * If there are more than one RR tasks, we need the tick to effect the
 772         * actual RR behaviour.
 773         */
 774        if (rq->rt.rr_nr_running) {
 775                if (rq->rt.rr_nr_running == 1)
 776                        return true;
 777                else
 778                        return false;
 779        }
 780
 781        /*
 782         * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 783         * forced preemption between FIFO tasks.
 784         */
 785        fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 786        if (fifo_nr_running)
 787                return true;
 788
 789        /*
 790         * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 791         * if there's more than one we need the tick for involuntary
 792         * preemption.
 793         */
 794        if (rq->nr_running > 1)
 795                return false;
 796
 797        return true;
 798}
 799#endif /* CONFIG_NO_HZ_FULL */
 800#endif /* CONFIG_SMP */
 801
 802#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 803                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 804/*
 805 * Iterate task_group tree rooted at *from, calling @down when first entering a
 806 * node and @up when leaving it for the final time.
 807 *
 808 * Caller must hold rcu_lock or sufficient equivalent.
 809 */
 810int walk_tg_tree_from(struct task_group *from,
 811                             tg_visitor down, tg_visitor up, void *data)
 812{
 813        struct task_group *parent, *child;
 814        int ret;
 815
 816        parent = from;
 817
 818down:
 819        ret = (*down)(parent, data);
 820        if (ret)
 821                goto out;
 822        list_for_each_entry_rcu(child, &parent->children, siblings) {
 823                parent = child;
 824                goto down;
 825
 826up:
 827                continue;
 828        }
 829        ret = (*up)(parent, data);
 830        if (ret || parent == from)
 831                goto out;
 832
 833        child = parent;
 834        parent = parent->parent;
 835        if (parent)
 836                goto up;
 837out:
 838        return ret;
 839}
 840
 841int tg_nop(struct task_group *tg, void *data)
 842{
 843        return 0;
 844}
 845#endif
 846
 847static void set_load_weight(struct task_struct *p, bool update_load)
 848{
 849        int prio = p->static_prio - MAX_RT_PRIO;
 850        struct load_weight *load = &p->se.load;
 851
 852        /*
 853         * SCHED_IDLE tasks get minimal weight:
 854         */
 855        if (task_has_idle_policy(p)) {
 856                load->weight = scale_load(WEIGHT_IDLEPRIO);
 857                load->inv_weight = WMULT_IDLEPRIO;
 858                return;
 859        }
 860
 861        /*
 862         * SCHED_OTHER tasks have to update their load when changing their
 863         * weight
 864         */
 865        if (update_load && p->sched_class == &fair_sched_class) {
 866                reweight_task(p, prio);
 867        } else {
 868                load->weight = scale_load(sched_prio_to_weight[prio]);
 869                load->inv_weight = sched_prio_to_wmult[prio];
 870        }
 871}
 872
 873#ifdef CONFIG_UCLAMP_TASK
 874/*
 875 * Serializes updates of utilization clamp values
 876 *
 877 * The (slow-path) user-space triggers utilization clamp value updates which
 878 * can require updates on (fast-path) scheduler's data structures used to
 879 * support enqueue/dequeue operations.
 880 * While the per-CPU rq lock protects fast-path update operations, user-space
 881 * requests are serialized using a mutex to reduce the risk of conflicting
 882 * updates or API abuses.
 883 */
 884static DEFINE_MUTEX(uclamp_mutex);
 885
 886/* Max allowed minimum utilization */
 887unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 888
 889/* Max allowed maximum utilization */
 890unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 891
 892/*
 893 * By default RT tasks run at the maximum performance point/capacity of the
 894 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 895 * SCHED_CAPACITY_SCALE.
 896 *
 897 * This knob allows admins to change the default behavior when uclamp is being
 898 * used. In battery powered devices, particularly, running at the maximum
 899 * capacity and frequency will increase energy consumption and shorten the
 900 * battery life.
 901 *
 902 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 903 *
 904 * This knob will not override the system default sched_util_clamp_min defined
 905 * above.
 906 */
 907unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 908
 909/* All clamps are required to be less or equal than these values */
 910static struct uclamp_se uclamp_default[UCLAMP_CNT];
 911
 912/*
 913 * This static key is used to reduce the uclamp overhead in the fast path. It
 914 * primarily disables the call to uclamp_rq_{inc, dec}() in
 915 * enqueue/dequeue_task().
 916 *
 917 * This allows users to continue to enable uclamp in their kernel config with
 918 * minimum uclamp overhead in the fast path.
 919 *
 920 * As soon as userspace modifies any of the uclamp knobs, the static key is
 921 * enabled, since we have an actual users that make use of uclamp
 922 * functionality.
 923 *
 924 * The knobs that would enable this static key are:
 925 *
 926 *   * A task modifying its uclamp value with sched_setattr().
 927 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 928 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 929 */
 930DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 931
 932/* Integer rounded range for each bucket */
 933#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 934
 935#define for_each_clamp_id(clamp_id) \
 936        for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 937
 938static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 939{
 940        return clamp_value / UCLAMP_BUCKET_DELTA;
 941}
 942
 943static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
 944{
 945        return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
 946}
 947
 948static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
 949{
 950        if (clamp_id == UCLAMP_MIN)
 951                return 0;
 952        return SCHED_CAPACITY_SCALE;
 953}
 954
 955static inline void uclamp_se_set(struct uclamp_se *uc_se,
 956                                 unsigned int value, bool user_defined)
 957{
 958        uc_se->value = value;
 959        uc_se->bucket_id = uclamp_bucket_id(value);
 960        uc_se->user_defined = user_defined;
 961}
 962
 963static inline unsigned int
 964uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 965                  unsigned int clamp_value)
 966{
 967        /*
 968         * Avoid blocked utilization pushing up the frequency when we go
 969         * idle (which drops the max-clamp) by retaining the last known
 970         * max-clamp.
 971         */
 972        if (clamp_id == UCLAMP_MAX) {
 973                rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 974                return clamp_value;
 975        }
 976
 977        return uclamp_none(UCLAMP_MIN);
 978}
 979
 980static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 981                                     unsigned int clamp_value)
 982{
 983        /* Reset max-clamp retention only on idle exit */
 984        if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 985                return;
 986
 987        WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
 988}
 989
 990static inline
 991unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 992                                   unsigned int clamp_value)
 993{
 994        struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 995        int bucket_id = UCLAMP_BUCKETS - 1;
 996
 997        /*
 998         * Since both min and max clamps are max aggregated, find the
 999         * top most bucket with tasks in.
1000         */
1001        for ( ; bucket_id >= 0; bucket_id--) {
1002                if (!bucket[bucket_id].tasks)
1003                        continue;
1004                return bucket[bucket_id].value;
1005        }
1006
1007        /* No tasks -- default clamp values */
1008        return uclamp_idle_value(rq, clamp_id, clamp_value);
1009}
1010
1011static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1012{
1013        unsigned int default_util_min;
1014        struct uclamp_se *uc_se;
1015
1016        lockdep_assert_held(&p->pi_lock);
1017
1018        uc_se = &p->uclamp_req[UCLAMP_MIN];
1019
1020        /* Only sync if user didn't override the default */
1021        if (uc_se->user_defined)
1022                return;
1023
1024        default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1025        uclamp_se_set(uc_se, default_util_min, false);
1026}
1027
1028static void uclamp_update_util_min_rt_default(struct task_struct *p)
1029{
1030        struct rq_flags rf;
1031        struct rq *rq;
1032
1033        if (!rt_task(p))
1034                return;
1035
1036        /* Protect updates to p->uclamp_* */
1037        rq = task_rq_lock(p, &rf);
1038        __uclamp_update_util_min_rt_default(p);
1039        task_rq_unlock(rq, p, &rf);
1040}
1041
1042static void uclamp_sync_util_min_rt_default(void)
1043{
1044        struct task_struct *g, *p;
1045
1046        /*
1047         * copy_process()                       sysctl_uclamp
1048         *                                        uclamp_min_rt = X;
1049         *   write_lock(&tasklist_lock)           read_lock(&tasklist_lock)
1050         *   // link thread                       smp_mb__after_spinlock()
1051         *   write_unlock(&tasklist_lock)         read_unlock(&tasklist_lock);
1052         *   sched_post_fork()                    for_each_process_thread()
1053         *     __uclamp_sync_rt()                   __uclamp_sync_rt()
1054         *
1055         * Ensures that either sched_post_fork() will observe the new
1056         * uclamp_min_rt or for_each_process_thread() will observe the new
1057         * task.
1058         */
1059        read_lock(&tasklist_lock);
1060        smp_mb__after_spinlock();
1061        read_unlock(&tasklist_lock);
1062
1063        rcu_read_lock();
1064        for_each_process_thread(g, p)
1065                uclamp_update_util_min_rt_default(p);
1066        rcu_read_unlock();
1067}
1068
1069static inline struct uclamp_se
1070uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1071{
1072        struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1073#ifdef CONFIG_UCLAMP_TASK_GROUP
1074        struct uclamp_se uc_max;
1075
1076        /*
1077         * Tasks in autogroups or root task group will be
1078         * restricted by system defaults.
1079         */
1080        if (task_group_is_autogroup(task_group(p)))
1081                return uc_req;
1082        if (task_group(p) == &root_task_group)
1083                return uc_req;
1084
1085        uc_max = task_group(p)->uclamp[clamp_id];
1086        if (uc_req.value > uc_max.value || !uc_req.user_defined)
1087                return uc_max;
1088#endif
1089
1090        return uc_req;
1091}
1092
1093/*
1094 * The effective clamp bucket index of a task depends on, by increasing
1095 * priority:
1096 * - the task specific clamp value, when explicitly requested from userspace
1097 * - the task group effective clamp value, for tasks not either in the root
1098 *   group or in an autogroup
1099 * - the system default clamp value, defined by the sysadmin
1100 */
1101static inline struct uclamp_se
1102uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1103{
1104        struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1105        struct uclamp_se uc_max = uclamp_default[clamp_id];
1106
1107        /* System default restrictions always apply */
1108        if (unlikely(uc_req.value > uc_max.value))
1109                return uc_max;
1110
1111        return uc_req;
1112}
1113
1114unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1115{
1116        struct uclamp_se uc_eff;
1117
1118        /* Task currently refcounted: use back-annotated (effective) value */
1119        if (p->uclamp[clamp_id].active)
1120                return (unsigned long)p->uclamp[clamp_id].value;
1121
1122        uc_eff = uclamp_eff_get(p, clamp_id);
1123
1124        return (unsigned long)uc_eff.value;
1125}
1126
1127/*
1128 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1129 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1130 * updates the rq's clamp value if required.
1131 *
1132 * Tasks can have a task-specific value requested from user-space, track
1133 * within each bucket the maximum value for tasks refcounted in it.
1134 * This "local max aggregation" allows to track the exact "requested" value
1135 * for each bucket when all its RUNNABLE tasks require the same clamp.
1136 */
1137static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1138                                    enum uclamp_id clamp_id)
1139{
1140        struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1141        struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1142        struct uclamp_bucket *bucket;
1143
1144        lockdep_assert_held(&rq->lock);
1145
1146        /* Update task effective clamp */
1147        p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1148
1149        bucket = &uc_rq->bucket[uc_se->bucket_id];
1150        bucket->tasks++;
1151        uc_se->active = true;
1152
1153        uclamp_idle_reset(rq, clamp_id, uc_se->value);
1154
1155        /*
1156         * Local max aggregation: rq buckets always track the max
1157         * "requested" clamp value of its RUNNABLE tasks.
1158         */
1159        if (bucket->tasks == 1 || uc_se->value > bucket->value)
1160                bucket->value = uc_se->value;
1161
1162        if (uc_se->value > READ_ONCE(uc_rq->value))
1163                WRITE_ONCE(uc_rq->value, uc_se->value);
1164}
1165
1166/*
1167 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1168 * is released. If this is the last task reference counting the rq's max
1169 * active clamp value, then the rq's clamp value is updated.
1170 *
1171 * Both refcounted tasks and rq's cached clamp values are expected to be
1172 * always valid. If it's detected they are not, as defensive programming,
1173 * enforce the expected state and warn.
1174 */
1175static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1176                                    enum uclamp_id clamp_id)
1177{
1178        struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1179        struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1180        struct uclamp_bucket *bucket;
1181        unsigned int bkt_clamp;
1182        unsigned int rq_clamp;
1183
1184        lockdep_assert_held(&rq->lock);
1185
1186        /*
1187         * If sched_uclamp_used was enabled after task @p was enqueued,
1188         * we could end up with unbalanced call to uclamp_rq_dec_id().
1189         *
1190         * In this case the uc_se->active flag should be false since no uclamp
1191         * accounting was performed at enqueue time and we can just return
1192         * here.
1193         *
1194         * Need to be careful of the following enqeueue/dequeue ordering
1195         * problem too
1196         *
1197         *      enqueue(taskA)
1198         *      // sched_uclamp_used gets enabled
1199         *      enqueue(taskB)
1200         *      dequeue(taskA)
1201         *      // Must not decrement bukcet->tasks here
1202         *      dequeue(taskB)
1203         *
1204         * where we could end up with stale data in uc_se and
1205         * bucket[uc_se->bucket_id].
1206         *
1207         * The following check here eliminates the possibility of such race.
1208         */
1209        if (unlikely(!uc_se->active))
1210                return;
1211
1212        bucket = &uc_rq->bucket[uc_se->bucket_id];
1213
1214        SCHED_WARN_ON(!bucket->tasks);
1215        if (likely(bucket->tasks))
1216                bucket->tasks--;
1217
1218        uc_se->active = false;
1219
1220        /*
1221         * Keep "local max aggregation" simple and accept to (possibly)
1222         * overboost some RUNNABLE tasks in the same bucket.
1223         * The rq clamp bucket value is reset to its base value whenever
1224         * there are no more RUNNABLE tasks refcounting it.
1225         */
1226        if (likely(bucket->tasks))
1227                return;
1228
1229        rq_clamp = READ_ONCE(uc_rq->value);
1230        /*
1231         * Defensive programming: this should never happen. If it happens,
1232         * e.g. due to future modification, warn and fixup the expected value.
1233         */
1234        SCHED_WARN_ON(bucket->value > rq_clamp);
1235        if (bucket->value >= rq_clamp) {
1236                bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1237                WRITE_ONCE(uc_rq->value, bkt_clamp);
1238        }
1239}
1240
1241static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1242{
1243        enum uclamp_id clamp_id;
1244
1245        /*
1246         * Avoid any overhead until uclamp is actually used by the userspace.
1247         *
1248         * The condition is constructed such that a NOP is generated when
1249         * sched_uclamp_used is disabled.
1250         */
1251        if (!static_branch_unlikely(&sched_uclamp_used))
1252                return;
1253
1254        if (unlikely(!p->sched_class->uclamp_enabled))
1255                return;
1256
1257        for_each_clamp_id(clamp_id)
1258                uclamp_rq_inc_id(rq, p, clamp_id);
1259
1260        /* Reset clamp idle holding when there is one RUNNABLE task */
1261        if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1262                rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1263}
1264
1265static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1266{
1267        enum uclamp_id clamp_id;
1268
1269        /*
1270         * Avoid any overhead until uclamp is actually used by the userspace.
1271         *
1272         * The condition is constructed such that a NOP is generated when
1273         * sched_uclamp_used is disabled.
1274         */
1275        if (!static_branch_unlikely(&sched_uclamp_used))
1276                return;
1277
1278        if (unlikely(!p->sched_class->uclamp_enabled))
1279                return;
1280
1281        for_each_clamp_id(clamp_id)
1282                uclamp_rq_dec_id(rq, p, clamp_id);
1283}
1284
1285static inline void
1286uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1287{
1288        struct rq_flags rf;
1289        struct rq *rq;
1290
1291        /*
1292         * Lock the task and the rq where the task is (or was) queued.
1293         *
1294         * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1295         * price to pay to safely serialize util_{min,max} updates with
1296         * enqueues, dequeues and migration operations.
1297         * This is the same locking schema used by __set_cpus_allowed_ptr().
1298         */
1299        rq = task_rq_lock(p, &rf);
1300
1301        /*
1302         * Setting the clamp bucket is serialized by task_rq_lock().
1303         * If the task is not yet RUNNABLE and its task_struct is not
1304         * affecting a valid clamp bucket, the next time it's enqueued,
1305         * it will already see the updated clamp bucket value.
1306         */
1307        if (p->uclamp[clamp_id].active) {
1308                uclamp_rq_dec_id(rq, p, clamp_id);
1309                uclamp_rq_inc_id(rq, p, clamp_id);
1310        }
1311
1312        task_rq_unlock(rq, p, &rf);
1313}
1314
1315#ifdef CONFIG_UCLAMP_TASK_GROUP
1316static inline void
1317uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1318                           unsigned int clamps)
1319{
1320        enum uclamp_id clamp_id;
1321        struct css_task_iter it;
1322        struct task_struct *p;
1323
1324        css_task_iter_start(css, 0, &it);
1325        while ((p = css_task_iter_next(&it))) {
1326                for_each_clamp_id(clamp_id) {
1327                        if ((0x1 << clamp_id) & clamps)
1328                                uclamp_update_active(p, clamp_id);
1329                }
1330        }
1331        css_task_iter_end(&it);
1332}
1333
1334static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1335static void uclamp_update_root_tg(void)
1336{
1337        struct task_group *tg = &root_task_group;
1338
1339        uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1340                      sysctl_sched_uclamp_util_min, false);
1341        uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1342                      sysctl_sched_uclamp_util_max, false);
1343
1344        rcu_read_lock();
1345        cpu_util_update_eff(&root_task_group.css);
1346        rcu_read_unlock();
1347}
1348#else
1349static void uclamp_update_root_tg(void) { }
1350#endif
1351
1352int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1353                                void *buffer, size_t *lenp, loff_t *ppos)
1354{
1355        bool update_root_tg = false;
1356        int old_min, old_max, old_min_rt;
1357        int result;
1358
1359        mutex_lock(&uclamp_mutex);
1360        old_min = sysctl_sched_uclamp_util_min;
1361        old_max = sysctl_sched_uclamp_util_max;
1362        old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1363
1364        result = proc_dointvec(table, write, buffer, lenp, ppos);
1365        if (result)
1366                goto undo;
1367        if (!write)
1368                goto done;
1369
1370        if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1371            sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1372            sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1373
1374                result = -EINVAL;
1375                goto undo;
1376        }
1377
1378        if (old_min != sysctl_sched_uclamp_util_min) {
1379                uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1380                              sysctl_sched_uclamp_util_min, false);
1381                update_root_tg = true;
1382        }
1383        if (old_max != sysctl_sched_uclamp_util_max) {
1384                uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1385                              sysctl_sched_uclamp_util_max, false);
1386                update_root_tg = true;
1387        }
1388
1389        if (update_root_tg) {
1390                static_branch_enable(&sched_uclamp_used);
1391                uclamp_update_root_tg();
1392        }
1393
1394        if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1395                static_branch_enable(&sched_uclamp_used);
1396                uclamp_sync_util_min_rt_default();
1397        }
1398
1399        /*
1400         * We update all RUNNABLE tasks only when task groups are in use.
1401         * Otherwise, keep it simple and do just a lazy update at each next
1402         * task enqueue time.
1403         */
1404
1405        goto done;
1406
1407undo:
1408        sysctl_sched_uclamp_util_min = old_min;
1409        sysctl_sched_uclamp_util_max = old_max;
1410        sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1411done:
1412        mutex_unlock(&uclamp_mutex);
1413
1414        return result;
1415}
1416
1417static int uclamp_validate(struct task_struct *p,
1418                           const struct sched_attr *attr)
1419{
1420        unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1421        unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1422
1423        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1424                lower_bound = attr->sched_util_min;
1425        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1426                upper_bound = attr->sched_util_max;
1427
1428        if (lower_bound > upper_bound)
1429                return -EINVAL;
1430        if (upper_bound > SCHED_CAPACITY_SCALE)
1431                return -EINVAL;
1432
1433        /*
1434         * We have valid uclamp attributes; make sure uclamp is enabled.
1435         *
1436         * We need to do that here, because enabling static branches is a
1437         * blocking operation which obviously cannot be done while holding
1438         * scheduler locks.
1439         */
1440        static_branch_enable(&sched_uclamp_used);
1441
1442        return 0;
1443}
1444
1445static void __setscheduler_uclamp(struct task_struct *p,
1446                                  const struct sched_attr *attr)
1447{
1448        enum uclamp_id clamp_id;
1449
1450        /*
1451         * On scheduling class change, reset to default clamps for tasks
1452         * without a task-specific value.
1453         */
1454        for_each_clamp_id(clamp_id) {
1455                struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1456
1457                /* Keep using defined clamps across class changes */
1458                if (uc_se->user_defined)
1459                        continue;
1460
1461                /*
1462                 * RT by default have a 100% boost value that could be modified
1463                 * at runtime.
1464                 */
1465                if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1466                        __uclamp_update_util_min_rt_default(p);
1467                else
1468                        uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1469
1470        }
1471
1472        if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1473                return;
1474
1475        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1476                uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1477                              attr->sched_util_min, true);
1478        }
1479
1480        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1481                uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1482                              attr->sched_util_max, true);
1483        }
1484}
1485
1486static void uclamp_fork(struct task_struct *p)
1487{
1488        enum uclamp_id clamp_id;
1489
1490        /*
1491         * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1492         * as the task is still at its early fork stages.
1493         */
1494        for_each_clamp_id(clamp_id)
1495                p->uclamp[clamp_id].active = false;
1496
1497        if (likely(!p->sched_reset_on_fork))
1498                return;
1499
1500        for_each_clamp_id(clamp_id) {
1501                uclamp_se_set(&p->uclamp_req[clamp_id],
1502                              uclamp_none(clamp_id), false);
1503        }
1504}
1505
1506static void uclamp_post_fork(struct task_struct *p)
1507{
1508        uclamp_update_util_min_rt_default(p);
1509}
1510
1511static void __init init_uclamp_rq(struct rq *rq)
1512{
1513        enum uclamp_id clamp_id;
1514        struct uclamp_rq *uc_rq = rq->uclamp;
1515
1516        for_each_clamp_id(clamp_id) {
1517                uc_rq[clamp_id] = (struct uclamp_rq) {
1518                        .value = uclamp_none(clamp_id)
1519                };
1520        }
1521
1522        rq->uclamp_flags = 0;
1523}
1524
1525static void __init init_uclamp(void)
1526{
1527        struct uclamp_se uc_max = {};
1528        enum uclamp_id clamp_id;
1529        int cpu;
1530
1531        for_each_possible_cpu(cpu)
1532                init_uclamp_rq(cpu_rq(cpu));
1533
1534        for_each_clamp_id(clamp_id) {
1535                uclamp_se_set(&init_task.uclamp_req[clamp_id],
1536                              uclamp_none(clamp_id), false);
1537        }
1538
1539        /* System defaults allow max clamp values for both indexes */
1540        uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1541        for_each_clamp_id(clamp_id) {
1542                uclamp_default[clamp_id] = uc_max;
1543#ifdef CONFIG_UCLAMP_TASK_GROUP
1544                root_task_group.uclamp_req[clamp_id] = uc_max;
1545                root_task_group.uclamp[clamp_id] = uc_max;
1546#endif
1547        }
1548}
1549
1550#else /* CONFIG_UCLAMP_TASK */
1551static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1552static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1553static inline int uclamp_validate(struct task_struct *p,
1554                                  const struct sched_attr *attr)
1555{
1556        return -EOPNOTSUPP;
1557}
1558static void __setscheduler_uclamp(struct task_struct *p,
1559                                  const struct sched_attr *attr) { }
1560static inline void uclamp_fork(struct task_struct *p) { }
1561static inline void uclamp_post_fork(struct task_struct *p) { }
1562static inline void init_uclamp(void) { }
1563#endif /* CONFIG_UCLAMP_TASK */
1564
1565static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1566{
1567        if (!(flags & ENQUEUE_NOCLOCK))
1568                update_rq_clock(rq);
1569
1570        if (!(flags & ENQUEUE_RESTORE)) {
1571                sched_info_queued(rq, p);
1572                psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1573        }
1574
1575        uclamp_rq_inc(rq, p);
1576        p->sched_class->enqueue_task(rq, p, flags);
1577}
1578
1579static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1580{
1581        if (!(flags & DEQUEUE_NOCLOCK))
1582                update_rq_clock(rq);
1583
1584        if (!(flags & DEQUEUE_SAVE)) {
1585                sched_info_dequeued(rq, p);
1586                psi_dequeue(p, flags & DEQUEUE_SLEEP);
1587        }
1588
1589        uclamp_rq_dec(rq, p);
1590        p->sched_class->dequeue_task(rq, p, flags);
1591}
1592
1593void activate_task(struct rq *rq, struct task_struct *p, int flags)
1594{
1595        enqueue_task(rq, p, flags);
1596
1597        p->on_rq = TASK_ON_RQ_QUEUED;
1598}
1599
1600void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1601{
1602        p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1603
1604        dequeue_task(rq, p, flags);
1605}
1606
1607/*
1608 * __normal_prio - return the priority that is based on the static prio
1609 */
1610static inline int __normal_prio(struct task_struct *p)
1611{
1612        return p->static_prio;
1613}
1614
1615/*
1616 * Calculate the expected normal priority: i.e. priority
1617 * without taking RT-inheritance into account. Might be
1618 * boosted by interactivity modifiers. Changes upon fork,
1619 * setprio syscalls, and whenever the interactivity
1620 * estimator recalculates.
1621 */
1622static inline int normal_prio(struct task_struct *p)
1623{
1624        int prio;
1625
1626        if (task_has_dl_policy(p))
1627                prio = MAX_DL_PRIO-1;
1628        else if (task_has_rt_policy(p))
1629                prio = MAX_RT_PRIO-1 - p->rt_priority;
1630        else
1631                prio = __normal_prio(p);
1632        return prio;
1633}
1634
1635/*
1636 * Calculate the current priority, i.e. the priority
1637 * taken into account by the scheduler. This value might
1638 * be boosted by RT tasks, or might be boosted by
1639 * interactivity modifiers. Will be RT if the task got
1640 * RT-boosted. If not then it returns p->normal_prio.
1641 */
1642static int effective_prio(struct task_struct *p)
1643{
1644        p->normal_prio = normal_prio(p);
1645        /*
1646         * If we are RT tasks or we were boosted to RT priority,
1647         * keep the priority unchanged. Otherwise, update priority
1648         * to the normal priority:
1649         */
1650        if (!rt_prio(p->prio))
1651                return p->normal_prio;
1652        return p->prio;
1653}
1654
1655/**
1656 * task_curr - is this task currently executing on a CPU?
1657 * @p: the task in question.
1658 *
1659 * Return: 1 if the task is currently executing. 0 otherwise.
1660 */
1661inline int task_curr(const struct task_struct *p)
1662{
1663        return cpu_curr(task_cpu(p)) == p;
1664}
1665
1666/*
1667 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1668 * use the balance_callback list if you want balancing.
1669 *
1670 * this means any call to check_class_changed() must be followed by a call to
1671 * balance_callback().
1672 */
1673static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1674                                       const struct sched_class *prev_class,
1675                                       int oldprio)
1676{
1677        if (prev_class != p->sched_class) {
1678                if (prev_class->switched_from)
1679                        prev_class->switched_from(rq, p);
1680
1681                p->sched_class->switched_to(rq, p);
1682        } else if (oldprio != p->prio || dl_task(p))
1683                p->sched_class->prio_changed(rq, p, oldprio);
1684}
1685
1686void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1687{
1688        if (p->sched_class == rq->curr->sched_class)
1689                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1690        else if (p->sched_class > rq->curr->sched_class)
1691                resched_curr(rq);
1692
1693        /*
1694         * A queue event has occurred, and we're going to schedule.  In
1695         * this case, we can save a useless back to back clock update.
1696         */
1697        if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1698                rq_clock_skip_update(rq);
1699}
1700
1701#ifdef CONFIG_SMP
1702
1703/*
1704 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1705 * __set_cpus_allowed_ptr() and select_fallback_rq().
1706 */
1707static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1708{
1709        if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1710                return false;
1711
1712        if (is_per_cpu_kthread(p))
1713                return cpu_online(cpu);
1714
1715        return cpu_active(cpu);
1716}
1717
1718/*
1719 * This is how migration works:
1720 *
1721 * 1) we invoke migration_cpu_stop() on the target CPU using
1722 *    stop_one_cpu().
1723 * 2) stopper starts to run (implicitly forcing the migrated thread
1724 *    off the CPU)
1725 * 3) it checks whether the migrated task is still in the wrong runqueue.
1726 * 4) if it's in the wrong runqueue then the migration thread removes
1727 *    it and puts it into the right queue.
1728 * 5) stopper completes and stop_one_cpu() returns and the migration
1729 *    is done.
1730 */
1731
1732/*
1733 * move_queued_task - move a queued task to new rq.
1734 *
1735 * Returns (locked) new rq. Old rq's lock is released.
1736 */
1737static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1738                                   struct task_struct *p, int new_cpu)
1739{
1740        lockdep_assert_held(&rq->lock);
1741
1742        deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1743        set_task_cpu(p, new_cpu);
1744        rq_unlock(rq, rf);
1745
1746        rq = cpu_rq(new_cpu);
1747
1748        rq_lock(rq, rf);
1749        BUG_ON(task_cpu(p) != new_cpu);
1750        activate_task(rq, p, 0);
1751        check_preempt_curr(rq, p, 0);
1752
1753        return rq;
1754}
1755
1756struct migration_arg {
1757        struct task_struct *task;
1758        int dest_cpu;
1759};
1760
1761/*
1762 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1763 * this because either it can't run here any more (set_cpus_allowed()
1764 * away from this CPU, or CPU going down), or because we're
1765 * attempting to rebalance this task on exec (sched_exec).
1766 *
1767 * So we race with normal scheduler movements, but that's OK, as long
1768 * as the task is no longer on this CPU.
1769 */
1770static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1771                                 struct task_struct *p, int dest_cpu)
1772{
1773        /* Affinity changed (again). */
1774        if (!is_cpu_allowed(p, dest_cpu))
1775                return rq;
1776
1777        update_rq_clock(rq);
1778        rq = move_queued_task(rq, rf, p, dest_cpu);
1779
1780        return rq;
1781}
1782
1783/*
1784 * migration_cpu_stop - this will be executed by a highprio stopper thread
1785 * and performs thread migration by bumping thread off CPU then
1786 * 'pushing' onto another runqueue.
1787 */
1788static int migration_cpu_stop(void *data)
1789{
1790        struct migration_arg *arg = data;
1791        struct task_struct *p = arg->task;
1792        struct rq *rq = this_rq();
1793        struct rq_flags rf;
1794
1795        /*
1796         * The original target CPU might have gone down and we might
1797         * be on another CPU but it doesn't matter.
1798         */
1799        local_irq_disable();
1800        /*
1801         * We need to explicitly wake pending tasks before running
1802         * __migrate_task() such that we will not miss enforcing cpus_ptr
1803         * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1804         */
1805        flush_smp_call_function_from_idle();
1806
1807        raw_spin_lock(&p->pi_lock);
1808        rq_lock(rq, &rf);
1809        /*
1810         * If task_rq(p) != rq, it cannot be migrated here, because we're
1811         * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1812         * we're holding p->pi_lock.
1813         */
1814        if (task_rq(p) == rq) {
1815                if (task_on_rq_queued(p))
1816                        rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1817                else
1818                        p->wake_cpu = arg->dest_cpu;
1819        }
1820        rq_unlock(rq, &rf);
1821        raw_spin_unlock(&p->pi_lock);
1822
1823        local_irq_enable();
1824        return 0;
1825}
1826
1827/*
1828 * sched_class::set_cpus_allowed must do the below, but is not required to
1829 * actually call this function.
1830 */
1831void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1832{
1833        cpumask_copy(&p->cpus_mask, new_mask);
1834        p->nr_cpus_allowed = cpumask_weight(new_mask);
1835}
1836
1837void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1838{
1839        struct rq *rq = task_rq(p);
1840        bool queued, running;
1841
1842        lockdep_assert_held(&p->pi_lock);
1843
1844        queued = task_on_rq_queued(p);
1845        running = task_current(rq, p);
1846
1847        if (queued) {
1848                /*
1849                 * Because __kthread_bind() calls this on blocked tasks without
1850                 * holding rq->lock.
1851                 */
1852                lockdep_assert_held(&rq->lock);
1853                dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1854        }
1855        if (running)
1856                put_prev_task(rq, p);
1857
1858        p->sched_class->set_cpus_allowed(p, new_mask);
1859
1860        if (queued)
1861                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1862        if (running)
1863                set_next_task(rq, p);
1864}
1865
1866/*
1867 * Change a given task's CPU affinity. Migrate the thread to a
1868 * proper CPU and schedule it away if the CPU it's executing on
1869 * is removed from the allowed bitmask.
1870 *
1871 * NOTE: the caller must have a valid reference to the task, the
1872 * task must not exit() & deallocate itself prematurely. The
1873 * call is not atomic; no spinlocks may be held.
1874 */
1875static int __set_cpus_allowed_ptr(struct task_struct *p,
1876                                  const struct cpumask *new_mask, bool check)
1877{
1878        const struct cpumask *cpu_valid_mask = cpu_active_mask;
1879        unsigned int dest_cpu;
1880        struct rq_flags rf;
1881        struct rq *rq;
1882        int ret = 0;
1883
1884        rq = task_rq_lock(p, &rf);
1885        update_rq_clock(rq);
1886
1887        if (p->flags & PF_KTHREAD) {
1888                /*
1889                 * Kernel threads are allowed on online && !active CPUs
1890                 */
1891                cpu_valid_mask = cpu_online_mask;
1892        }
1893
1894        /*
1895         * Must re-check here, to close a race against __kthread_bind(),
1896         * sched_setaffinity() is not guaranteed to observe the flag.
1897         */
1898        if (check && (p->flags & PF_NO_SETAFFINITY)) {
1899                ret = -EINVAL;
1900                goto out;
1901        }
1902
1903        if (cpumask_equal(&p->cpus_mask, new_mask))
1904                goto out;
1905
1906        /*
1907         * Picking a ~random cpu helps in cases where we are changing affinity
1908         * for groups of tasks (ie. cpuset), so that load balancing is not
1909         * immediately required to distribute the tasks within their new mask.
1910         */
1911        dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1912        if (dest_cpu >= nr_cpu_ids) {
1913                ret = -EINVAL;
1914                goto out;
1915        }
1916
1917        do_set_cpus_allowed(p, new_mask);
1918
1919        if (p->flags & PF_KTHREAD) {
1920                /*
1921                 * For kernel threads that do indeed end up on online &&
1922                 * !active we want to ensure they are strict per-CPU threads.
1923                 */
1924                WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1925                        !cpumask_intersects(new_mask, cpu_active_mask) &&
1926                        p->nr_cpus_allowed != 1);
1927        }
1928
1929        /* Can the task run on the task's current CPU? If so, we're done */
1930        if (cpumask_test_cpu(task_cpu(p), new_mask))
1931                goto out;
1932
1933        if (task_running(rq, p) || p->state == TASK_WAKING) {
1934                struct migration_arg arg = { p, dest_cpu };
1935                /* Need help from migration thread: drop lock and wait. */
1936                task_rq_unlock(rq, p, &rf);
1937                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1938                return 0;
1939        } else if (task_on_rq_queued(p)) {
1940                /*
1941                 * OK, since we're going to drop the lock immediately
1942                 * afterwards anyway.
1943                 */
1944                rq = move_queued_task(rq, &rf, p, dest_cpu);
1945        }
1946out:
1947        task_rq_unlock(rq, p, &rf);
1948
1949        return ret;
1950}
1951
1952int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1953{
1954        return __set_cpus_allowed_ptr(p, new_mask, false);
1955}
1956EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1957
1958void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1959{
1960#ifdef CONFIG_SCHED_DEBUG
1961        /*
1962         * We should never call set_task_cpu() on a blocked task,
1963         * ttwu() will sort out the placement.
1964         */
1965        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1966                        !p->on_rq);
1967
1968        /*
1969         * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1970         * because schedstat_wait_{start,end} rebase migrating task's wait_start
1971         * time relying on p->on_rq.
1972         */
1973        WARN_ON_ONCE(p->state == TASK_RUNNING &&
1974                     p->sched_class == &fair_sched_class &&
1975                     (p->on_rq && !task_on_rq_migrating(p)));
1976
1977#ifdef CONFIG_LOCKDEP
1978        /*
1979         * The caller should hold either p->pi_lock or rq->lock, when changing
1980         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1981         *
1982         * sched_move_task() holds both and thus holding either pins the cgroup,
1983         * see task_group().
1984         *
1985         * Furthermore, all task_rq users should acquire both locks, see
1986         * task_rq_lock().
1987         */
1988        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1989                                      lockdep_is_held(&task_rq(p)->lock)));
1990#endif
1991        /*
1992         * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1993         */
1994        WARN_ON_ONCE(!cpu_online(new_cpu));
1995#endif
1996
1997        trace_sched_migrate_task(p, new_cpu);
1998
1999        if (task_cpu(p) != new_cpu) {
2000                if (p->sched_class->migrate_task_rq)
2001                        p->sched_class->migrate_task_rq(p, new_cpu);
2002                p->se.nr_migrations++;
2003                rseq_migrate(p);
2004                perf_event_task_migrate(p);
2005        }
2006
2007        __set_task_cpu(p, new_cpu);
2008}
2009
2010#ifdef CONFIG_NUMA_BALANCING
2011static void __migrate_swap_task(struct task_struct *p, int cpu)
2012{
2013        if (task_on_rq_queued(p)) {
2014                struct rq *src_rq, *dst_rq;
2015                struct rq_flags srf, drf;
2016
2017                src_rq = task_rq(p);
2018                dst_rq = cpu_rq(cpu);
2019
2020                rq_pin_lock(src_rq, &srf);
2021                rq_pin_lock(dst_rq, &drf);
2022
2023                deactivate_task(src_rq, p, 0);
2024                set_task_cpu(p, cpu);
2025                activate_task(dst_rq, p, 0);
2026                check_preempt_curr(dst_rq, p, 0);
2027
2028                rq_unpin_lock(dst_rq, &drf);
2029                rq_unpin_lock(src_rq, &srf);
2030
2031        } else {
2032                /*
2033                 * Task isn't running anymore; make it appear like we migrated
2034                 * it before it went to sleep. This means on wakeup we make the
2035                 * previous CPU our target instead of where it really is.
2036                 */
2037                p->wake_cpu = cpu;
2038        }
2039}
2040
2041struct migration_swap_arg {
2042        struct task_struct *src_task, *dst_task;
2043        int src_cpu, dst_cpu;
2044};
2045
2046static int migrate_swap_stop(void *data)
2047{
2048        struct migration_swap_arg *arg = data;
2049        struct rq *src_rq, *dst_rq;
2050        int ret = -EAGAIN;
2051
2052        if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2053                return -EAGAIN;
2054
2055        src_rq = cpu_rq(arg->src_cpu);
2056        dst_rq = cpu_rq(arg->dst_cpu);
2057
2058        double_raw_lock(&arg->src_task->pi_lock,
2059                        &arg->dst_task->pi_lock);
2060        double_rq_lock(src_rq, dst_rq);
2061
2062        if (task_cpu(arg->dst_task) != arg->dst_cpu)
2063                goto unlock;
2064
2065        if (task_cpu(arg->src_task) != arg->src_cpu)
2066                goto unlock;
2067
2068        if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2069                goto unlock;
2070
2071        if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2072                goto unlock;
2073
2074        __migrate_swap_task(arg->src_task, arg->dst_cpu);
2075        __migrate_swap_task(arg->dst_task, arg->src_cpu);
2076
2077        ret = 0;
2078
2079unlock:
2080        double_rq_unlock(src_rq, dst_rq);
2081        raw_spin_unlock(&arg->dst_task->pi_lock);
2082        raw_spin_unlock(&arg->src_task->pi_lock);
2083
2084        return ret;
2085}
2086
2087/*
2088 * Cross migrate two tasks
2089 */
2090int migrate_swap(struct task_struct *cur, struct task_struct *p,
2091                int target_cpu, int curr_cpu)
2092{
2093        struct migration_swap_arg arg;
2094        int ret = -EINVAL;
2095
2096        arg = (struct migration_swap_arg){
2097                .src_task = cur,
2098                .src_cpu = curr_cpu,
2099                .dst_task = p,
2100                .dst_cpu = target_cpu,
2101        };
2102
2103        if (arg.src_cpu == arg.dst_cpu)
2104                goto out;
2105
2106        /*
2107         * These three tests are all lockless; this is OK since all of them
2108         * will be re-checked with proper locks held further down the line.
2109         */
2110        if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2111                goto out;
2112
2113        if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2114                goto out;
2115
2116        if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2117                goto out;
2118
2119        trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2120        ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2121
2122out:
2123        return ret;
2124}
2125#endif /* CONFIG_NUMA_BALANCING */
2126
2127/*
2128 * wait_task_inactive - wait for a thread to unschedule.
2129 *
2130 * If @match_state is nonzero, it's the @p->state value just checked and
2131 * not expected to change.  If it changes, i.e. @p might have woken up,
2132 * then return zero.  When we succeed in waiting for @p to be off its CPU,
2133 * we return a positive number (its total switch count).  If a second call
2134 * a short while later returns the same number, the caller can be sure that
2135 * @p has remained unscheduled the whole time.
2136 *
2137 * The caller must ensure that the task *will* unschedule sometime soon,
2138 * else this function might spin for a *long* time. This function can't
2139 * be called with interrupts off, or it may introduce deadlock with
2140 * smp_call_function() if an IPI is sent by the same process we are
2141 * waiting to become inactive.
2142 */
2143unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2144{
2145        int running, queued;
2146        struct rq_flags rf;
2147        unsigned long ncsw;
2148        struct rq *rq;
2149
2150        for (;;) {
2151                /*
2152                 * We do the initial early heuristics without holding
2153                 * any task-queue locks at all. We'll only try to get
2154                 * the runqueue lock when things look like they will
2155                 * work out!
2156                 */
2157                rq = task_rq(p);
2158
2159                /*
2160                 * If the task is actively running on another CPU
2161                 * still, just relax and busy-wait without holding
2162                 * any locks.
2163                 *
2164                 * NOTE! Since we don't hold any locks, it's not
2165                 * even sure that "rq" stays as the right runqueue!
2166                 * But we don't care, since "task_running()" will
2167                 * return false if the runqueue has changed and p
2168                 * is actually now running somewhere else!
2169                 */
2170                while (task_running(rq, p)) {
2171                        if (match_state && unlikely(p->state != match_state))
2172                                return 0;
2173                        cpu_relax();
2174                }
2175
2176                /*
2177                 * Ok, time to look more closely! We need the rq
2178                 * lock now, to be *sure*. If we're wrong, we'll
2179                 * just go back and repeat.
2180                 */
2181                rq = task_rq_lock(p, &rf);
2182                trace_sched_wait_task(p);
2183                running = task_running(rq, p);
2184                queued = task_on_rq_queued(p);
2185                ncsw = 0;
2186                if (!match_state || p->state == match_state)
2187                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2188                task_rq_unlock(rq, p, &rf);
2189
2190                /*
2191                 * If it changed from the expected state, bail out now.
2192                 */
2193                if (unlikely(!ncsw))
2194                        break;
2195
2196                /*
2197                 * Was it really running after all now that we
2198                 * checked with the proper locks actually held?
2199                 *
2200                 * Oops. Go back and try again..
2201                 */
2202                if (unlikely(running)) {
2203                        cpu_relax();
2204                        continue;
2205                }
2206
2207                /*
2208                 * It's not enough that it's not actively running,
2209                 * it must be off the runqueue _entirely_, and not
2210                 * preempted!
2211                 *
2212                 * So if it was still runnable (but just not actively
2213                 * running right now), it's preempted, and we should
2214                 * yield - it could be a while.
2215                 */
2216                if (unlikely(queued)) {
2217                        ktime_t to = NSEC_PER_SEC / HZ;
2218
2219                        set_current_state(TASK_UNINTERRUPTIBLE);
2220                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2221                        continue;
2222                }
2223
2224                /*
2225                 * Ahh, all good. It wasn't running, and it wasn't
2226                 * runnable, which means that it will never become
2227                 * running in the future either. We're all done!
2228                 */
2229                break;
2230        }
2231
2232        return ncsw;
2233}
2234
2235/***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2238 *
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2241 *
2242 * NOTE: this function doesn't have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2247 */
2248void kick_process(struct task_struct *p)
2249{
2250        int cpu;
2251
2252        preempt_disable();
2253        cpu = task_cpu(p);
2254        if ((cpu != smp_processor_id()) && task_curr(p))
2255                smp_send_reschedule(cpu);
2256        preempt_enable();
2257}
2258EXPORT_SYMBOL_GPL(kick_process);
2259
2260/*
2261 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2262 *
2263 * A few notes on cpu_active vs cpu_online:
2264 *
2265 *  - cpu_active must be a subset of cpu_online
2266 *
2267 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2268 *    see __set_cpus_allowed_ptr(). At this point the newly online
2269 *    CPU isn't yet part of the sched domains, and balancing will not
2270 *    see it.
2271 *
2272 *  - on CPU-down we clear cpu_active() to mask the sched domains and
2273 *    avoid the load balancer to place new tasks on the to be removed
2274 *    CPU. Existing tasks will remain running there and will be taken
2275 *    off.
2276 *
2277 * This means that fallback selection must not select !active CPUs.
2278 * And can assume that any active CPU must be online. Conversely
2279 * select_task_rq() below may allow selection of !active CPUs in order
2280 * to satisfy the above rules.
2281 */
2282static int select_fallback_rq(int cpu, struct task_struct *p)
2283{
2284        int nid = cpu_to_node(cpu);
2285        const struct cpumask *nodemask = NULL;
2286        enum { cpuset, possible, fail } state = cpuset;
2287        int dest_cpu;
2288
2289        /*
2290         * If the node that the CPU is on has been offlined, cpu_to_node()
2291         * will return -1. There is no CPU on the node, and we should
2292         * select the CPU on the other node.
2293         */
2294        if (nid != -1) {
2295                nodemask = cpumask_of_node(nid);
2296
2297                /* Look for allowed, online CPU in same node. */
2298                for_each_cpu(dest_cpu, nodemask) {
2299                        if (!cpu_active(dest_cpu))
2300                                continue;
2301                        if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2302                                return dest_cpu;
2303                }
2304        }
2305
2306        for (;;) {
2307                /* Any allowed, online CPU? */
2308                for_each_cpu(dest_cpu, p->cpus_ptr) {
2309                        if (!is_cpu_allowed(p, dest_cpu))
2310                                continue;
2311
2312                        goto out;
2313                }
2314
2315                /* No more Mr. Nice Guy. */
2316                switch (state) {
2317                case cpuset:
2318                        if (IS_ENABLED(CONFIG_CPUSETS)) {
2319                                cpuset_cpus_allowed_fallback(p);
2320                                state = possible;
2321                                break;
2322                        }
2323                        fallthrough;
2324                case possible:
2325                        do_set_cpus_allowed(p, cpu_possible_mask);
2326                        state = fail;
2327                        break;
2328
2329                case fail:
2330                        BUG();
2331                        break;
2332                }
2333        }
2334
2335out:
2336        if (state != cpuset) {
2337                /*
2338                 * Don't tell them about moving exiting tasks or
2339                 * kernel threads (both mm NULL), since they never
2340                 * leave kernel.
2341                 */
2342                if (p->mm && printk_ratelimit()) {
2343                        printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2344                                        task_pid_nr(p), p->comm, cpu);
2345                }
2346        }
2347
2348        return dest_cpu;
2349}
2350
2351/*
2352 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2353 */
2354static inline
2355int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2356{
2357        lockdep_assert_held(&p->pi_lock);
2358
2359        if (p->nr_cpus_allowed > 1)
2360                cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2361        else
2362                cpu = cpumask_any(p->cpus_ptr);
2363
2364        /*
2365         * In order not to call set_task_cpu() on a blocking task we need
2366         * to rely on ttwu() to place the task on a valid ->cpus_ptr
2367         * CPU.
2368         *
2369         * Since this is common to all placement strategies, this lives here.
2370         *
2371         * [ this allows ->select_task() to simply return task_cpu(p) and
2372         *   not worry about this generic constraint ]
2373         */
2374        if (unlikely(!is_cpu_allowed(p, cpu)))
2375                cpu = select_fallback_rq(task_cpu(p), p);
2376
2377        return cpu;
2378}
2379
2380void sched_set_stop_task(int cpu, struct task_struct *stop)
2381{
2382        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2383        struct task_struct *old_stop = cpu_rq(cpu)->stop;
2384
2385        if (stop) {
2386                /*
2387                 * Make it appear like a SCHED_FIFO task, its something
2388                 * userspace knows about and won't get confused about.
2389                 *
2390                 * Also, it will make PI more or less work without too
2391                 * much confusion -- but then, stop work should not
2392                 * rely on PI working anyway.
2393                 */
2394                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2395
2396                stop->sched_class = &stop_sched_class;
2397        }
2398
2399        cpu_rq(cpu)->stop = stop;
2400
2401        if (old_stop) {
2402                /*
2403                 * Reset it back to a normal scheduling class so that
2404                 * it can die in pieces.
2405                 */
2406                old_stop->sched_class = &rt_sched_class;
2407        }
2408}
2409
2410#else
2411
2412static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2413                                         const struct cpumask *new_mask, bool check)
2414{
2415        return set_cpus_allowed_ptr(p, new_mask);
2416}
2417
2418#endif /* CONFIG_SMP */
2419
2420static void
2421ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2422{
2423        struct rq *rq;
2424
2425        if (!schedstat_enabled())
2426                return;
2427
2428        rq = this_rq();
2429
2430#ifdef CONFIG_SMP
2431        if (cpu == rq->cpu) {
2432                __schedstat_inc(rq->ttwu_local);
2433                __schedstat_inc(p->se.statistics.nr_wakeups_local);
2434        } else {
2435                struct sched_domain *sd;
2436
2437                __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2438                rcu_read_lock();
2439                for_each_domain(rq->cpu, sd) {
2440                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2441                                __schedstat_inc(sd->ttwu_wake_remote);
2442                                break;
2443                        }
2444                }
2445                rcu_read_unlock();
2446        }
2447
2448        if (wake_flags & WF_MIGRATED)
2449                __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2450#endif /* CONFIG_SMP */
2451
2452        __schedstat_inc(rq->ttwu_count);
2453        __schedstat_inc(p->se.statistics.nr_wakeups);
2454
2455        if (wake_flags & WF_SYNC)
2456                __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2457}
2458
2459/*
2460 * Mark the task runnable and perform wakeup-preemption.
2461 */
2462static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2463                           struct rq_flags *rf)
2464{
2465        check_preempt_curr(rq, p, wake_flags);
2466        p->state = TASK_RUNNING;
2467        trace_sched_wakeup(p);
2468
2469#ifdef CONFIG_SMP
2470        if (p->sched_class->task_woken) {
2471                /*
2472                 * Our task @p is fully woken up and running; so its safe to
2473                 * drop the rq->lock, hereafter rq is only used for statistics.
2474                 */
2475                rq_unpin_lock(rq, rf);
2476                p->sched_class->task_woken(rq, p);
2477                rq_repin_lock(rq, rf);
2478        }
2479
2480        if (rq->idle_stamp) {
2481                u64 delta = rq_clock(rq) - rq->idle_stamp;
2482                u64 max = 2*rq->max_idle_balance_cost;
2483
2484                update_avg(&rq->avg_idle, delta);
2485
2486                if (rq->avg_idle > max)
2487                        rq->avg_idle = max;
2488
2489                rq->idle_stamp = 0;
2490        }
2491#endif
2492}
2493
2494static void
2495ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2496                 struct rq_flags *rf)
2497{
2498        int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2499
2500        lockdep_assert_held(&rq->lock);
2501
2502        if (p->sched_contributes_to_load)
2503                rq->nr_uninterruptible--;
2504
2505#ifdef CONFIG_SMP
2506        if (wake_flags & WF_MIGRATED)
2507                en_flags |= ENQUEUE_MIGRATED;
2508#endif
2509
2510        activate_task(rq, p, en_flags);
2511        ttwu_do_wakeup(rq, p, wake_flags, rf);
2512}
2513
2514/*
2515 * Consider @p being inside a wait loop:
2516 *
2517 *   for (;;) {
2518 *      set_current_state(TASK_UNINTERRUPTIBLE);
2519 *
2520 *      if (CONDITION)
2521 *         break;
2522 *
2523 *      schedule();
2524 *   }
2525 *   __set_current_state(TASK_RUNNING);
2526 *
2527 * between set_current_state() and schedule(). In this case @p is still
2528 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2529 * an atomic manner.
2530 *
2531 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2532 * then schedule() must still happen and p->state can be changed to
2533 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2534 * need to do a full wakeup with enqueue.
2535 *
2536 * Returns: %true when the wakeup is done,
2537 *          %false otherwise.
2538 */
2539static int ttwu_runnable(struct task_struct *p, int wake_flags)
2540{
2541        struct rq_flags rf;
2542        struct rq *rq;
2543        int ret = 0;
2544
2545        rq = __task_rq_lock(p, &rf);
2546        if (task_on_rq_queued(p)) {
2547                /* check_preempt_curr() may use rq clock */
2548                update_rq_clock(rq);
2549                ttwu_do_wakeup(rq, p, wake_flags, &rf);
2550                ret = 1;
2551        }
2552        __task_rq_unlock(rq, &rf);
2553
2554        return ret;
2555}
2556
2557#ifdef CONFIG_SMP
2558void sched_ttwu_pending(void *arg)
2559{
2560        struct llist_node *llist = arg;
2561        struct rq *rq = this_rq();
2562        struct task_struct *p, *t;
2563        struct rq_flags rf;
2564
2565        if (!llist)
2566                return;
2567
2568        /*
2569         * rq::ttwu_pending racy indication of out-standing wakeups.
2570         * Races such that false-negatives are possible, since they
2571         * are shorter lived that false-positives would be.
2572         */
2573        WRITE_ONCE(rq->ttwu_pending, 0);
2574
2575        rq_lock_irqsave(rq, &rf);
2576        update_rq_clock(rq);
2577
2578        llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2579                if (WARN_ON_ONCE(p->on_cpu))
2580                        smp_cond_load_acquire(&p->on_cpu, !VAL);
2581
2582                if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2583                        set_task_cpu(p, cpu_of(rq));
2584
2585                ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2586        }
2587
2588        rq_unlock_irqrestore(rq, &rf);
2589}
2590
2591void send_call_function_single_ipi(int cpu)
2592{
2593        struct rq *rq = cpu_rq(cpu);
2594
2595        if (!set_nr_if_polling(rq->idle))
2596                arch_send_call_function_single_ipi(cpu);
2597        else
2598                trace_sched_wake_idle_without_ipi(cpu);
2599}
2600
2601/*
2602 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2603 * necessary. The wakee CPU on receipt of the IPI will queue the task
2604 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2605 * of the wakeup instead of the waker.
2606 */
2607static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2608{
2609        struct rq *rq = cpu_rq(cpu);
2610
2611        p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2612
2613        WRITE_ONCE(rq->ttwu_pending, 1);
2614        __smp_call_single_queue(cpu, &p->wake_entry.llist);
2615}
2616
2617void wake_up_if_idle(int cpu)
2618{
2619        struct rq *rq = cpu_rq(cpu);
2620        struct rq_flags rf;
2621
2622        rcu_read_lock();
2623
2624        if (!is_idle_task(rcu_dereference(rq->curr)))
2625                goto out;
2626
2627        if (set_nr_if_polling(rq->idle)) {
2628                trace_sched_wake_idle_without_ipi(cpu);
2629        } else {
2630                rq_lock_irqsave(rq, &rf);
2631                if (is_idle_task(rq->curr))
2632                        smp_send_reschedule(cpu);
2633                /* Else CPU is not idle, do nothing here: */
2634                rq_unlock_irqrestore(rq, &rf);
2635        }
2636
2637out:
2638        rcu_read_unlock();
2639}
2640
2641bool cpus_share_cache(int this_cpu, int that_cpu)
2642{
2643        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2644}
2645
2646static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2647{
2648        /*
2649         * If the CPU does not share cache, then queue the task on the
2650         * remote rqs wakelist to avoid accessing remote data.
2651         */
2652        if (!cpus_share_cache(smp_processor_id(), cpu))
2653                return true;
2654
2655        /*
2656         * If the task is descheduling and the only running task on the
2657         * CPU then use the wakelist to offload the task activation to
2658         * the soon-to-be-idle CPU as the current CPU is likely busy.
2659         * nr_running is checked to avoid unnecessary task stacking.
2660         */
2661        if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2662                return true;
2663
2664        return false;
2665}
2666
2667static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2668{
2669        if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2670                if (WARN_ON_ONCE(cpu == smp_processor_id()))
2671                        return false;
2672
2673                sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2674                __ttwu_queue_wakelist(p, cpu, wake_flags);
2675                return true;
2676        }
2677
2678        return false;
2679}
2680
2681#else /* !CONFIG_SMP */
2682
2683static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2684{
2685        return false;
2686}
2687
2688#endif /* CONFIG_SMP */
2689
2690static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2691{
2692        struct rq *rq = cpu_rq(cpu);
2693        struct rq_flags rf;
2694
2695        if (ttwu_queue_wakelist(p, cpu, wake_flags))
2696                return;
2697
2698        rq_lock(rq, &rf);
2699        update_rq_clock(rq);
2700        ttwu_do_activate(rq, p, wake_flags, &rf);
2701        rq_unlock(rq, &rf);
2702}
2703
2704/*
2705 * Notes on Program-Order guarantees on SMP systems.
2706 *
2707 *  MIGRATION
2708 *
2709 * The basic program-order guarantee on SMP systems is that when a task [t]
2710 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2711 * execution on its new CPU [c1].
2712 *
2713 * For migration (of runnable tasks) this is provided by the following means:
2714 *
2715 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2716 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2717 *     rq(c1)->lock (if not at the same time, then in that order).
2718 *  C) LOCK of the rq(c1)->lock scheduling in task
2719 *
2720 * Release/acquire chaining guarantees that B happens after A and C after B.
2721 * Note: the CPU doing B need not be c0 or c1
2722 *
2723 * Example:
2724 *
2725 *   CPU0            CPU1            CPU2
2726 *
2727 *   LOCK rq(0)->lock
2728 *   sched-out X
2729 *   sched-in Y
2730 *   UNLOCK rq(0)->lock
2731 *
2732 *                                   LOCK rq(0)->lock // orders against CPU0
2733 *                                   dequeue X
2734 *                                   UNLOCK rq(0)->lock
2735 *
2736 *                                   LOCK rq(1)->lock
2737 *                                   enqueue X
2738 *                                   UNLOCK rq(1)->lock
2739 *
2740 *                   LOCK rq(1)->lock // orders against CPU2
2741 *                   sched-out Z
2742 *                   sched-in X
2743 *                   UNLOCK rq(1)->lock
2744 *
2745 *
2746 *  BLOCKING -- aka. SLEEP + WAKEUP
2747 *
2748 * For blocking we (obviously) need to provide the same guarantee as for
2749 * migration. However the means are completely different as there is no lock
2750 * chain to provide order. Instead we do:
2751 *
2752 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
2753 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2754 *
2755 * Example:
2756 *
2757 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2758 *
2759 *   LOCK rq(0)->lock LOCK X->pi_lock
2760 *   dequeue X
2761 *   sched-out X
2762 *   smp_store_release(X->on_cpu, 0);
2763 *
2764 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2765 *                    X->state = WAKING
2766 *                    set_task_cpu(X,2)
2767 *
2768 *                    LOCK rq(2)->lock
2769 *                    enqueue X
2770 *                    X->state = RUNNING
2771 *                    UNLOCK rq(2)->lock
2772 *
2773 *                                          LOCK rq(2)->lock // orders against CPU1
2774 *                                          sched-out Z
2775 *                                          sched-in X
2776 *                                          UNLOCK rq(2)->lock
2777 *
2778 *                    UNLOCK X->pi_lock
2779 *   UNLOCK rq(0)->lock
2780 *
2781 *
2782 * However, for wakeups there is a second guarantee we must provide, namely we
2783 * must ensure that CONDITION=1 done by the caller can not be reordered with
2784 * accesses to the task state; see try_to_wake_up() and set_current_state().
2785 */
2786
2787/**
2788 * try_to_wake_up - wake up a thread
2789 * @p: the thread to be awakened
2790 * @state: the mask of task states that can be woken
2791 * @wake_flags: wake modifier flags (WF_*)
2792 *
2793 * Conceptually does:
2794 *
2795 *   If (@state & @p->state) @p->state = TASK_RUNNING.
2796 *
2797 * If the task was not queued/runnable, also place it back on a runqueue.
2798 *
2799 * This function is atomic against schedule() which would dequeue the task.
2800 *
2801 * It issues a full memory barrier before accessing @p->state, see the comment
2802 * with set_current_state().
2803 *
2804 * Uses p->pi_lock to serialize against concurrent wake-ups.
2805 *
2806 * Relies on p->pi_lock stabilizing:
2807 *  - p->sched_class
2808 *  - p->cpus_ptr
2809 *  - p->sched_task_group
2810 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2811 *
2812 * Tries really hard to only take one task_rq(p)->lock for performance.
2813 * Takes rq->lock in:
2814 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
2815 *  - ttwu_queue()       -- new rq, for enqueue of the task;
2816 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2817 *
2818 * As a consequence we race really badly with just about everything. See the
2819 * many memory barriers and their comments for details.
2820 *
2821 * Return: %true if @p->state changes (an actual wakeup was done),
2822 *         %false otherwise.
2823 */
2824static int
2825try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2826{
2827        unsigned long flags;
2828        int cpu, success = 0;
2829
2830        preempt_disable();
2831        if (p == current) {
2832                /*
2833                 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2834                 * == smp_processor_id()'. Together this means we can special
2835                 * case the whole 'p->on_rq && ttwu_runnable()' case below
2836                 * without taking any locks.
2837                 *
2838                 * In particular:
2839                 *  - we rely on Program-Order guarantees for all the ordering,
2840                 *  - we're serialized against set_special_state() by virtue of
2841                 *    it disabling IRQs (this allows not taking ->pi_lock).
2842                 */
2843                if (!(p->state & state))
2844                        goto out;
2845
2846                success = 1;
2847                trace_sched_waking(p);
2848                p->state = TASK_RUNNING;
2849                trace_sched_wakeup(p);
2850                goto out;
2851        }
2852
2853        /*
2854         * If we are going to wake up a thread waiting for CONDITION we
2855         * need to ensure that CONDITION=1 done by the caller can not be
2856         * reordered with p->state check below. This pairs with smp_store_mb()
2857         * in set_current_state() that the waiting thread does.
2858         */
2859        raw_spin_lock_irqsave(&p->pi_lock, flags);
2860        smp_mb__after_spinlock();
2861        if (!(p->state & state))
2862                goto unlock;
2863
2864        trace_sched_waking(p);
2865
2866        /* We're going to change ->state: */
2867        success = 1;
2868
2869        /*
2870         * Ensure we load p->on_rq _after_ p->state, otherwise it would
2871         * be possible to, falsely, observe p->on_rq == 0 and get stuck
2872         * in smp_cond_load_acquire() below.
2873         *
2874         * sched_ttwu_pending()                 try_to_wake_up()
2875         *   STORE p->on_rq = 1                   LOAD p->state
2876         *   UNLOCK rq->lock
2877         *
2878         * __schedule() (switch to task 'p')
2879         *   LOCK rq->lock                        smp_rmb();
2880         *   smp_mb__after_spinlock();
2881         *   UNLOCK rq->lock
2882         *
2883         * [task p]
2884         *   STORE p->state = UNINTERRUPTIBLE     LOAD p->on_rq
2885         *
2886         * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2887         * __schedule().  See the comment for smp_mb__after_spinlock().
2888         *
2889         * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2890         */
2891        smp_rmb();
2892        if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
2893                goto unlock;
2894
2895        if (p->in_iowait) {
2896                delayacct_blkio_end(p);
2897                atomic_dec(&task_rq(p)->nr_iowait);
2898        }
2899
2900#ifdef CONFIG_SMP
2901        /*
2902         * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2903         * possible to, falsely, observe p->on_cpu == 0.
2904         *
2905         * One must be running (->on_cpu == 1) in order to remove oneself
2906         * from the runqueue.
2907         *
2908         * __schedule() (switch to task 'p')    try_to_wake_up()
2909         *   STORE p->on_cpu = 1                  LOAD p->on_rq
2910         *   UNLOCK rq->lock
2911         *
2912         * __schedule() (put 'p' to sleep)
2913         *   LOCK rq->lock                        smp_rmb();
2914         *   smp_mb__after_spinlock();
2915         *   STORE p->on_rq = 0                   LOAD p->on_cpu
2916         *
2917         * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2918         * __schedule().  See the comment for smp_mb__after_spinlock().
2919         *
2920         * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2921         * schedule()'s deactivate_task() has 'happened' and p will no longer
2922         * care about it's own p->state. See the comment in __schedule().
2923         */
2924        smp_acquire__after_ctrl_dep();
2925
2926        /*
2927         * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2928         * == 0), which means we need to do an enqueue, change p->state to
2929         * TASK_WAKING such that we can unlock p->pi_lock before doing the
2930         * enqueue, such as ttwu_queue_wakelist().
2931         */
2932        p->state = TASK_WAKING;
2933
2934        /*
2935         * If the owning (remote) CPU is still in the middle of schedule() with
2936         * this task as prev, considering queueing p on the remote CPUs wake_list
2937         * which potentially sends an IPI instead of spinning on p->on_cpu to
2938         * let the waker make forward progress. This is safe because IRQs are
2939         * disabled and the IPI will deliver after on_cpu is cleared.
2940         *
2941         * Ensure we load task_cpu(p) after p->on_cpu:
2942         *
2943         * set_task_cpu(p, cpu);
2944         *   STORE p->cpu = @cpu
2945         * __schedule() (switch to task 'p')
2946         *   LOCK rq->lock
2947         *   smp_mb__after_spin_lock()          smp_cond_load_acquire(&p->on_cpu)
2948         *   STORE p->on_cpu = 1                LOAD p->cpu
2949         *
2950         * to ensure we observe the correct CPU on which the task is currently
2951         * scheduling.
2952         */
2953        if (smp_load_acquire(&p->on_cpu) &&
2954            ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2955                goto unlock;
2956
2957        /*
2958         * If the owning (remote) CPU is still in the middle of schedule() with
2959         * this task as prev, wait until its done referencing the task.
2960         *
2961         * Pairs with the smp_store_release() in finish_task().
2962         *
2963         * This ensures that tasks getting woken will be fully ordered against
2964         * their previous state and preserve Program Order.
2965         */
2966        smp_cond_load_acquire(&p->on_cpu, !VAL);
2967
2968        cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2969        if (task_cpu(p) != cpu) {
2970                wake_flags |= WF_MIGRATED;
2971                psi_ttwu_dequeue(p);
2972                set_task_cpu(p, cpu);
2973        }
2974#else
2975        cpu = task_cpu(p);
2976#endif /* CONFIG_SMP */
2977
2978        ttwu_queue(p, cpu, wake_flags);
2979unlock:
2980        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2981out:
2982        if (success)
2983                ttwu_stat(p, task_cpu(p), wake_flags);
2984        preempt_enable();
2985
2986        return success;
2987}
2988
2989/**
2990 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2991 * @p: Process for which the function is to be invoked.
2992 * @func: Function to invoke.
2993 * @arg: Argument to function.
2994 *
2995 * If the specified task can be quickly locked into a definite state
2996 * (either sleeping or on a given runqueue), arrange to keep it in that
2997 * state while invoking @func(@arg).  This function can use ->on_rq and
2998 * task_curr() to work out what the state is, if required.  Given that
2999 * @func can be invoked with a runqueue lock held, it had better be quite
3000 * lightweight.
3001 *
3002 * Returns:
3003 *      @false if the task slipped out from under the locks.
3004 *      @true if the task was locked onto a runqueue or is sleeping.
3005 *              However, @func can override this by returning @false.
3006 */
3007bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3008{
3009        bool ret = false;
3010        struct rq_flags rf;
3011        struct rq *rq;
3012
3013        lockdep_assert_irqs_enabled();
3014        raw_spin_lock_irq(&p->pi_lock);
3015        if (p->on_rq) {
3016                rq = __task_rq_lock(p, &rf);
3017                if (task_rq(p) == rq)
3018                        ret = func(p, arg);
3019                rq_unlock(rq, &rf);
3020        } else {
3021                switch (p->state) {
3022                case TASK_RUNNING:
3023                case TASK_WAKING:
3024                        break;
3025                default:
3026                        smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3027                        if (!p->on_rq)
3028                                ret = func(p, arg);
3029                }
3030        }
3031        raw_spin_unlock_irq(&p->pi_lock);
3032        return ret;
3033}
3034
3035/**
3036 * wake_up_process - Wake up a specific process
3037 * @p: The process to be woken up.
3038 *
3039 * Attempt to wake up the nominated process and move it to the set of runnable
3040 * processes.
3041 *
3042 * Return: 1 if the process was woken up, 0 if it was already running.
3043 *
3044 * This function executes a full memory barrier before accessing the task state.
3045 */
3046int wake_up_process(struct task_struct *p)
3047{
3048        return try_to_wake_up(p, TASK_NORMAL, 0);
3049}
3050EXPORT_SYMBOL(wake_up_process);
3051
3052int wake_up_state(struct task_struct *p, unsigned int state)
3053{
3054        return try_to_wake_up(p, state, 0);
3055}
3056
3057/*
3058 * Perform scheduler related setup for a newly forked process p.
3059 * p is forked by current.
3060 *
3061 * __sched_fork() is basic setup used by init_idle() too:
3062 */
3063static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3064{
3065        p->on_rq                        = 0;
3066
3067        p->se.on_rq                     = 0;
3068        p->se.exec_start                = 0;
3069        p->se.sum_exec_runtime          = 0;
3070        p->se.prev_sum_exec_runtime     = 0;
3071        p->se.nr_migrations             = 0;
3072        p->se.vruntime                  = 0;
3073        INIT_LIST_HEAD(&p->se.group_node);
3074
3075#ifdef CONFIG_FAIR_GROUP_SCHED
3076        p->se.cfs_rq                    = NULL;
3077#endif
3078
3079#ifdef CONFIG_SCHEDSTATS
3080        /* Even if schedstat is disabled, there should not be garbage */
3081        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3082#endif
3083
3084        RB_CLEAR_NODE(&p->dl.rb_node);
3085        init_dl_task_timer(&p->dl);
3086        init_dl_inactive_task_timer(&p->dl);
3087        __dl_clear_params(p);
3088
3089        INIT_LIST_HEAD(&p->rt.run_list);
3090        p->rt.timeout           = 0;
3091        p->rt.time_slice        = sched_rr_timeslice;
3092        p->rt.on_rq             = 0;
3093        p->rt.on_list           = 0;
3094
3095#ifdef CONFIG_PREEMPT_NOTIFIERS
3096        INIT_HLIST_HEAD(&p->preempt_notifiers);
3097#endif
3098
3099#ifdef CONFIG_COMPACTION
3100        p->capture_control = NULL;
3101#endif
3102        init_numa_balancing(clone_flags, p);
3103#ifdef CONFIG_SMP
3104        p->wake_entry.u_flags = CSD_TYPE_TTWU;
3105#endif
3106}
3107
3108DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3109
3110#ifdef CONFIG_NUMA_BALANCING
3111
3112void set_numabalancing_state(bool enabled)
3113{
3114        if (enabled)
3115                static_branch_enable(&sched_numa_balancing);
3116        else
3117                static_branch_disable(&sched_numa_balancing);
3118}
3119
3120#ifdef CONFIG_PROC_SYSCTL
3121int sysctl_numa_balancing(struct ctl_table *table, int write,
3122                          void *buffer, size_t *lenp, loff_t *ppos)
3123{
3124        struct ctl_table t;
3125        int err;
3126        int state = static_branch_likely(&sched_numa_balancing);
3127
3128        if (write && !capable(CAP_SYS_ADMIN))
3129                return -EPERM;
3130
3131        t = *table;
3132        t.data = &state;
3133        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3134        if (err < 0)
3135                return err;
3136        if (write)
3137                set_numabalancing_state(state);
3138        return err;
3139}
3140#endif
3141#endif
3142
3143#ifdef CONFIG_SCHEDSTATS
3144
3145DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3146static bool __initdata __sched_schedstats = false;
3147
3148static void set_schedstats(bool enabled)
3149{
3150        if (enabled)
3151                static_branch_enable(&sched_schedstats);
3152        else
3153                static_branch_disable(&sched_schedstats);
3154}
3155
3156void force_schedstat_enabled(void)
3157{
3158        if (!schedstat_enabled()) {
3159                pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3160                static_branch_enable(&sched_schedstats);
3161        }
3162}
3163
3164static int __init setup_schedstats(char *str)
3165{
3166        int ret = 0;
3167        if (!str)
3168                goto out;
3169
3170        /*
3171         * This code is called before jump labels have been set up, so we can't
3172         * change the static branch directly just yet.  Instead set a temporary
3173         * variable so init_schedstats() can do it later.
3174         */
3175        if (!strcmp(str, "enable")) {
3176                __sched_schedstats = true;
3177                ret = 1;
3178        } else if (!strcmp(str, "disable")) {
3179                __sched_schedstats = false;
3180                ret = 1;
3181        }
3182out:
3183        if (!ret)
3184                pr_warn("Unable to parse schedstats=\n");
3185
3186        return ret;
3187}
3188__setup("schedstats=", setup_schedstats);
3189
3190static void __init init_schedstats(void)
3191{
3192        set_schedstats(__sched_schedstats);
3193}
3194
3195#ifdef CONFIG_PROC_SYSCTL
3196int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3197                size_t *lenp, loff_t *ppos)
3198{
3199        struct ctl_table t;
3200        int err;
3201        int state = static_branch_likely(&sched_schedstats);
3202
3203        if (write && !capable(CAP_SYS_ADMIN))
3204                return -EPERM;
3205
3206        t = *table;
3207        t.data = &state;
3208        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3209        if (err < 0)
3210                return err;
3211        if (write)
3212                set_schedstats(state);
3213        return err;
3214}
3215#endif /* CONFIG_PROC_SYSCTL */
3216#else  /* !CONFIG_SCHEDSTATS */
3217static inline void init_schedstats(void) {}
3218#endif /* CONFIG_SCHEDSTATS */
3219
3220/*
3221 * fork()/clone()-time setup:
3222 */
3223int sched_fork(unsigned long clone_flags, struct task_struct *p)
3224{
3225        unsigned long flags;
3226
3227        __sched_fork(clone_flags, p);
3228        /*
3229         * We mark the process as NEW here. This guarantees that
3230         * nobody will actually run it, and a signal or other external
3231         * event cannot wake it up and insert it on the runqueue either.
3232         */
3233        p->state = TASK_NEW;
3234
3235        /*
3236         * Make sure we do not leak PI boosting priority to the child.
3237         */
3238        p->prio = current->normal_prio;
3239
3240        uclamp_fork(p);
3241
3242        /*
3243         * Revert to default priority/policy on fork if requested.
3244         */
3245        if (unlikely(p->sched_reset_on_fork)) {
3246                if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3247                        p->policy = SCHED_NORMAL;
3248                        p->static_prio = NICE_TO_PRIO(0);
3249                        p->rt_priority = 0;
3250                } else if (PRIO_TO_NICE(p->static_prio) < 0)
3251                        p->static_prio = NICE_TO_PRIO(0);
3252
3253                p->prio = p->normal_prio = __normal_prio(p);
3254                set_load_weight(p, false);
3255
3256                /*
3257                 * We don't need the reset flag anymore after the fork. It has
3258                 * fulfilled its duty:
3259                 */
3260                p->sched_reset_on_fork = 0;
3261        }
3262
3263        if (dl_prio(p->prio))
3264                return -EAGAIN;
3265        else if (rt_prio(p->prio))
3266                p->sched_class = &rt_sched_class;
3267        else
3268                p->sched_class = &fair_sched_class;
3269
3270        init_entity_runnable_average(&p->se);
3271
3272        /*
3273         * The child is not yet in the pid-hash so no cgroup attach races,
3274         * and the cgroup is pinned to this child due to cgroup_fork()
3275         * is ran before sched_fork().
3276         *
3277         * Silence PROVE_RCU.
3278         */
3279        raw_spin_lock_irqsave(&p->pi_lock, flags);
3280        rseq_migrate(p);
3281        /*
3282         * We're setting the CPU for the first time, we don't migrate,
3283         * so use __set_task_cpu().
3284         */
3285        __set_task_cpu(p, smp_processor_id());
3286        if (p->sched_class->task_fork)
3287                p->sched_class->task_fork(p);
3288        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3289
3290#ifdef CONFIG_SCHED_INFO
3291        if (likely(sched_info_on()))
3292                memset(&p->sched_info, 0, sizeof(p->sched_info));
3293#endif
3294#if defined(CONFIG_SMP)
3295        p->on_cpu = 0;
3296#endif
3297        init_task_preempt_count(p);
3298#ifdef CONFIG_SMP
3299        plist_node_init(&p->pushable_tasks, MAX_PRIO);
3300        RB_CLEAR_NODE(&p->pushable_dl_tasks);
3301#endif
3302        return 0;
3303}
3304
3305void sched_post_fork(struct task_struct *p)
3306{
3307        uclamp_post_fork(p);
3308}
3309
3310unsigned long to_ratio(u64 period, u64 runtime)
3311{
3312        if (runtime == RUNTIME_INF)
3313                return BW_UNIT;
3314
3315        /*
3316         * Doing this here saves a lot of checks in all
3317         * the calling paths, and returning zero seems
3318         * safe for them anyway.
3319         */
3320        if (period == 0)
3321                return 0;
3322
3323        return div64_u64(runtime << BW_SHIFT, period);
3324}
3325
3326/*
3327 * wake_up_new_task - wake up a newly created task for the first time.
3328 *
3329 * This function will do some initial scheduler statistics housekeeping
3330 * that must be done for every newly created context, then puts the task
3331 * on the runqueue and wakes it.
3332 */
3333void wake_up_new_task(struct task_struct *p)
3334{
3335        struct rq_flags rf;
3336        struct rq *rq;
3337
3338        raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3339        p->state = TASK_RUNNING;
3340#ifdef CONFIG_SMP
3341        /*
3342         * Fork balancing, do it here and not earlier because:
3343         *  - cpus_ptr can change in the fork path
3344         *  - any previously selected CPU might disappear through hotplug
3345         *
3346         * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3347         * as we're not fully set-up yet.
3348         */
3349        p->recent_used_cpu = task_cpu(p);
3350        rseq_migrate(p);
3351        __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3352#endif
3353        rq = __task_rq_lock(p, &rf);
3354        update_rq_clock(rq);
3355        post_init_entity_util_avg(p);
3356
3357        activate_task(rq, p, ENQUEUE_NOCLOCK);
3358        trace_sched_wakeup_new(p);
3359        check_preempt_curr(rq, p, WF_FORK);
3360#ifdef CONFIG_SMP
3361        if (p->sched_class->task_woken) {
3362                /*
3363                 * Nothing relies on rq->lock after this, so its fine to
3364                 * drop it.
3365                 */
3366                rq_unpin_lock(rq, &rf);
3367                p->sched_class->task_woken(rq, p);
3368                rq_repin_lock(rq, &rf);
3369        }
3370#endif
3371        task_rq_unlock(rq, p, &rf);
3372}
3373
3374#ifdef CONFIG_PREEMPT_NOTIFIERS
3375
3376static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3377
3378void preempt_notifier_inc(void)
3379{
3380        static_branch_inc(&preempt_notifier_key);
3381}
3382EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3383
3384void preempt_notifier_dec(void)
3385{
3386        static_branch_dec(&preempt_notifier_key);
3387}
3388EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3389
3390/**
3391 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3392 * @notifier: notifier struct to register
3393 */
3394void preempt_notifier_register(struct preempt_notifier *notifier)
3395{
3396        if (!static_branch_unlikely(&preempt_notifier_key))
3397                WARN(1, "registering preempt_notifier while notifiers disabled\n");
3398
3399        hlist_add_head(&notifier->link, &current->preempt_notifiers);
3400}
3401EXPORT_SYMBOL_GPL(preempt_notifier_register);
3402
3403/**
3404 * preempt_notifier_unregister - no longer interested in preemption notifications
3405 * @notifier: notifier struct to unregister
3406 *
3407 * This is *not* safe to call from within a preemption notifier.
3408 */
3409void preempt_notifier_unregister(struct preempt_notifier *notifier)
3410{
3411        hlist_del(&notifier->link);
3412}
3413EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3414
3415static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3416{
3417        struct preempt_notifier *notifier;
3418
3419        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3420                notifier->ops->sched_in(notifier, raw_smp_processor_id());
3421}
3422
3423static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3424{
3425        if (static_branch_unlikely(&preempt_notifier_key))
3426                __fire_sched_in_preempt_notifiers(curr);
3427}
3428
3429static void
3430__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3431                                   struct task_struct *next)
3432{
3433        struct preempt_notifier *notifier;
3434
3435        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3436                notifier->ops->sched_out(notifier, next);
3437}
3438
3439static __always_inline void
3440fire_sched_out_preempt_notifiers(struct task_struct *curr,
3441                                 struct task_struct *next)
3442{
3443        if (static_branch_unlikely(&preempt_notifier_key))
3444                __fire_sched_out_preempt_notifiers(curr, next);
3445}
3446
3447#else /* !CONFIG_PREEMPT_NOTIFIERS */
3448
3449static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3450{
3451}
3452
3453static inline void
3454fire_sched_out_preempt_notifiers(struct task_struct *curr,
3455                                 struct task_struct *next)
3456{
3457}
3458
3459#endif /* CONFIG_PREEMPT_NOTIFIERS */
3460
3461static inline void prepare_task(struct task_struct *next)
3462{
3463#ifdef CONFIG_SMP
3464        /*
3465         * Claim the task as running, we do this before switching to it
3466         * such that any running task will have this set.
3467         *
3468         * See the ttwu() WF_ON_CPU case and its ordering comment.
3469         */
3470        WRITE_ONCE(next->on_cpu, 1);
3471#endif
3472}
3473
3474static inline void finish_task(struct task_struct *prev)
3475{
3476#ifdef CONFIG_SMP
3477        /*
3478         * This must be the very last reference to @prev from this CPU. After
3479         * p->on_cpu is cleared, the task can be moved to a different CPU. We
3480         * must ensure this doesn't happen until the switch is completely
3481         * finished.
3482         *
3483         * In particular, the load of prev->state in finish_task_switch() must
3484         * happen before this.
3485         *
3486         * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3487         */
3488        smp_store_release(&prev->on_cpu, 0);
3489#endif
3490}
3491
3492static inline void
3493prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3494{
3495        /*
3496         * Since the runqueue lock will be released by the next
3497         * task (which is an invalid locking op but in the case
3498         * of the scheduler it's an obvious special-case), so we
3499         * do an early lockdep release here:
3500         */
3501        rq_unpin_lock(rq, rf);
3502        spin_release(&rq->lock.dep_map, _THIS_IP_);
3503#ifdef CONFIG_DEBUG_SPINLOCK
3504        /* this is a valid case when another task releases the spinlock */
3505        rq->lock.owner = next;
3506#endif
3507}
3508
3509static inline void finish_lock_switch(struct rq *rq)
3510{
3511        /*
3512         * If we are tracking spinlock dependencies then we have to
3513         * fix up the runqueue lock - which gets 'carried over' from
3514         * prev into current:
3515         */
3516        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3517        raw_spin_unlock_irq(&rq->lock);
3518}
3519
3520/*
3521 * NOP if the arch has not defined these:
3522 */
3523
3524#ifndef prepare_arch_switch
3525# define prepare_arch_switch(next)      do { } while (0)
3526#endif
3527
3528#ifndef finish_arch_post_lock_switch
3529# define finish_arch_post_lock_switch() do { } while (0)
3530#endif
3531
3532/**
3533 * prepare_task_switch - prepare to switch tasks
3534 * @rq: the runqueue preparing to switch
3535 * @prev: the current task that is being switched out
3536 * @next: the task we are going to switch to.
3537 *
3538 * This is called with the rq lock held and interrupts off. It must
3539 * be paired with a subsequent finish_task_switch after the context
3540 * switch.
3541 *
3542 * prepare_task_switch sets up locking and calls architecture specific
3543 * hooks.
3544 */
3545static inline void
3546prepare_task_switch(struct rq *rq, struct task_struct *prev,
3547                    struct task_struct *next)
3548{
3549        kcov_prepare_switch(prev);
3550        sched_info_switch(rq, prev, next);
3551        perf_event_task_sched_out(prev, next);
3552        rseq_preempt(prev);
3553        fire_sched_out_preempt_notifiers(prev, next);
3554        prepare_task(next);
3555        prepare_arch_switch(next);
3556}
3557
3558/**
3559 * finish_task_switch - clean up after a task-switch
3560 * @prev: the thread we just switched away from.
3561 *
3562 * finish_task_switch must be called after the context switch, paired
3563 * with a prepare_task_switch call before the context switch.
3564 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3565 * and do any other architecture-specific cleanup actions.
3566 *
3567 * Note that we may have delayed dropping an mm in context_switch(). If
3568 * so, we finish that here outside of the runqueue lock. (Doing it
3569 * with the lock held can cause deadlocks; see schedule() for
3570 * details.)
3571 *
3572 * The context switch have flipped the stack from under us and restored the
3573 * local variables which were saved when this task called schedule() in the
3574 * past. prev == current is still correct but we need to recalculate this_rq
3575 * because prev may have moved to another CPU.
3576 */
3577static struct rq *finish_task_switch(struct task_struct *prev)
3578        __releases(rq->lock)
3579{
3580        struct rq *rq = this_rq();
3581        struct mm_struct *mm = rq->prev_mm;
3582        long prev_state;
3583
3584        /*
3585         * The previous task will have left us with a preempt_count of 2
3586         * because it left us after:
3587         *
3588         *      schedule()
3589         *        preempt_disable();                    // 1
3590         *        __schedule()
3591         *          raw_spin_lock_irq(&rq->lock)        // 2
3592         *
3593         * Also, see FORK_PREEMPT_COUNT.
3594         */
3595        if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3596                      "corrupted preempt_count: %s/%d/0x%x\n",
3597                      current->comm, current->pid, preempt_count()))
3598                preempt_count_set(FORK_PREEMPT_COUNT);
3599
3600        rq->prev_mm = NULL;
3601
3602        /*
3603         * A task struct has one reference for the use as "current".
3604         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3605         * schedule one last time. The schedule call will never return, and
3606         * the scheduled task must drop that reference.
3607         *
3608         * We must observe prev->state before clearing prev->on_cpu (in
3609         * finish_task), otherwise a concurrent wakeup can get prev
3610         * running on another CPU and we could rave with its RUNNING -> DEAD
3611         * transition, resulting in a double drop.
3612         */
3613        prev_state = prev->state;
3614        vtime_task_switch(prev);
3615        perf_event_task_sched_in(prev, current);
3616        finish_task(prev);
3617        finish_lock_switch(rq);
3618        finish_arch_post_lock_switch();
3619        kcov_finish_switch(current);
3620
3621        fire_sched_in_preempt_notifiers(current);
3622        /*
3623         * When switching through a kernel thread, the loop in
3624         * membarrier_{private,global}_expedited() may have observed that
3625         * kernel thread and not issued an IPI. It is therefore possible to
3626         * schedule between user->kernel->user threads without passing though
3627         * switch_mm(). Membarrier requires a barrier after storing to
3628         * rq->curr, before returning to userspace, so provide them here:
3629         *
3630         * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3631         *   provided by mmdrop(),
3632         * - a sync_core for SYNC_CORE.
3633         */
3634        if (mm) {
3635                membarrier_mm_sync_core_before_usermode(mm);
3636                mmdrop(mm);
3637        }
3638        if (unlikely(prev_state == TASK_DEAD)) {
3639                if (prev->sched_class->task_dead)
3640                        prev->sched_class->task_dead(prev);
3641
3642                /*
3643                 * Remove function-return probe instances associated with this
3644                 * task and put them back on the free list.
3645                 */
3646                kprobe_flush_task(prev);
3647
3648                /* Task is done with its stack. */
3649                put_task_stack(prev);
3650
3651                put_task_struct_rcu_user(prev);
3652        }
3653
3654        tick_nohz_task_switch();
3655        return rq;
3656}
3657
3658#ifdef CONFIG_SMP
3659
3660/* rq->lock is NOT held, but preemption is disabled */
3661static void __balance_callback(struct rq *rq)
3662{
3663        struct callback_head *head, *next;
3664        void (*func)(struct rq *rq);
3665        unsigned long flags;
3666
3667        raw_spin_lock_irqsave(&rq->lock, flags);
3668        head = rq->balance_callback;
3669        rq->balance_callback = NULL;
3670        while (head) {
3671                func = (void (*)(struct rq *))head->func;
3672                next = head->next;
3673                head->next = NULL;
3674                head = next;
3675
3676                func(rq);
3677        }
3678        raw_spin_unlock_irqrestore(&rq->lock, flags);
3679}
3680
3681static inline void balance_callback(struct rq *rq)
3682{
3683        if (unlikely(rq->balance_callback))
3684                __balance_callback(rq);
3685}
3686
3687#else
3688
3689static inline void balance_callback(struct rq *rq)
3690{
3691}
3692
3693#endif
3694
3695/**
3696 * schedule_tail - first thing a freshly forked thread must call.
3697 * @prev: the thread we just switched away from.
3698 */
3699asmlinkage __visible void schedule_tail(struct task_struct *prev)
3700        __releases(rq->lock)
3701{
3702        struct rq *rq;
3703
3704        /*
3705         * New tasks start with FORK_PREEMPT_COUNT, see there and
3706         * finish_task_switch() for details.
3707         *
3708         * finish_task_switch() will drop rq->lock() and lower preempt_count
3709         * and the preempt_enable() will end up enabling preemption (on
3710         * PREEMPT_COUNT kernels).
3711         */
3712
3713        rq = finish_task_switch(prev);
3714        balance_callback(rq);
3715        preempt_enable();
3716
3717        if (current->set_child_tid)
3718                put_user(task_pid_vnr(current), current->set_child_tid);
3719
3720        calculate_sigpending();
3721}
3722
3723/*
3724 * context_switch - switch to the new MM and the new thread's register state.
3725 */
3726static __always_inline struct rq *
3727context_switch(struct rq *rq, struct task_struct *prev,
3728               struct task_struct *next, struct rq_flags *rf)
3729{
3730        prepare_task_switch(rq, prev, next);
3731
3732        /*
3733         * For paravirt, this is coupled with an exit in switch_to to
3734         * combine the page table reload and the switch backend into
3735         * one hypercall.
3736         */
3737        arch_start_context_switch(prev);
3738
3739        /*
3740         * kernel -> kernel   lazy + transfer active
3741         *   user -> kernel   lazy + mmgrab() active
3742         *
3743         * kernel ->   user   switch + mmdrop() active
3744         *   user ->   user   switch
3745         */
3746        if (!next->mm) {                                // to kernel
3747                enter_lazy_tlb(prev->active_mm, next);
3748
3749                next->active_mm = prev->active_mm;
3750                if (prev->mm)                           // from user
3751                        mmgrab(prev->active_mm);
3752                else
3753                        prev->active_mm = NULL;
3754        } else {                                        // to user
3755                membarrier_switch_mm(rq, prev->active_mm, next->mm);
3756                /*
3757                 * sys_membarrier() requires an smp_mb() between setting
3758                 * rq->curr / membarrier_switch_mm() and returning to userspace.
3759                 *
3760                 * The below provides this either through switch_mm(), or in
3761                 * case 'prev->active_mm == next->mm' through
3762                 * finish_task_switch()'s mmdrop().
3763                 */
3764                switch_mm_irqs_off(prev->active_mm, next->mm, next);
3765
3766                if (!prev->mm) {                        // from kernel
3767                        /* will mmdrop() in finish_task_switch(). */
3768                        rq->prev_mm = prev->active_mm;
3769                        prev->active_mm = NULL;
3770                }
3771        }
3772
3773        rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3774
3775        prepare_lock_switch(rq, next, rf);
3776
3777        /* Here we just switch the register state and the stack. */
3778        switch_to(prev, next, prev);
3779        barrier();
3780
3781        return finish_task_switch(prev);
3782}
3783
3784/*
3785 * nr_running and nr_context_switches:
3786 *
3787 * externally visible scheduler statistics: current number of runnable
3788 * threads, total number of context switches performed since bootup.
3789 */
3790unsigned long nr_running(void)
3791{
3792        unsigned long i, sum = 0;
3793
3794        for_each_online_cpu(i)
3795                sum += cpu_rq(i)->nr_running;
3796
3797        return sum;
3798}
3799
3800/*
3801 * Check if only the current task is running on the CPU.
3802 *
3803 * Caution: this function does not check that the caller has disabled
3804 * preemption, thus the result might have a time-of-check-to-time-of-use
3805 * race.  The caller is responsible to use it correctly, for example:
3806 *
3807 * - from a non-preemptible section (of course)
3808 *
3809 * - from a thread that is bound to a single CPU
3810 *
3811 * - in a loop with very short iterations (e.g. a polling loop)
3812 */
3813bool single_task_running(void)
3814{
3815        return raw_rq()->nr_running == 1;
3816}
3817EXPORT_SYMBOL(single_task_running);
3818
3819unsigned long long nr_context_switches(void)
3820{
3821        int i;
3822        unsigned long long sum = 0;
3823
3824        for_each_possible_cpu(i)
3825                sum += cpu_rq(i)->nr_switches;
3826
3827        return sum;
3828}
3829
3830/*
3831 * Consumers of these two interfaces, like for example the cpuidle menu
3832 * governor, are using nonsensical data. Preferring shallow idle state selection
3833 * for a CPU that has IO-wait which might not even end up running the task when
3834 * it does become runnable.
3835 */
3836
3837unsigned long nr_iowait_cpu(int cpu)
3838{
3839        return atomic_read(&cpu_rq(cpu)->nr_iowait);
3840}
3841
3842/*
3843 * IO-wait accounting, and how its mostly bollocks (on SMP).
3844 *
3845 * The idea behind IO-wait account is to account the idle time that we could
3846 * have spend running if it were not for IO. That is, if we were to improve the
3847 * storage performance, we'd have a proportional reduction in IO-wait time.
3848 *
3849 * This all works nicely on UP, where, when a task blocks on IO, we account
3850 * idle time as IO-wait, because if the storage were faster, it could've been
3851 * running and we'd not be idle.
3852 *
3853 * This has been extended to SMP, by doing the same for each CPU. This however
3854 * is broken.
3855 *
3856 * Imagine for instance the case where two tasks block on one CPU, only the one
3857 * CPU will have IO-wait accounted, while the other has regular idle. Even
3858 * though, if the storage were faster, both could've ran at the same time,
3859 * utilising both CPUs.
3860 *
3861 * This means, that when looking globally, the current IO-wait accounting on
3862 * SMP is a lower bound, by reason of under accounting.
3863 *
3864 * Worse, since the numbers are provided per CPU, they are sometimes
3865 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3866 * associated with any one particular CPU, it can wake to another CPU than it
3867 * blocked on. This means the per CPU IO-wait number is meaningless.
3868 *
3869 * Task CPU affinities can make all that even more 'interesting'.
3870 */
3871
3872unsigned long nr_iowait(void)
3873{
3874        unsigned long i, sum = 0;
3875
3876        for_each_possible_cpu(i)
3877                sum += nr_iowait_cpu(i);
3878
3879        return sum;
3880}
3881
3882#ifdef CONFIG_SMP
3883
3884/*
3885 * sched_exec - execve() is a valuable balancing opportunity, because at
3886 * this point the task has the smallest effective memory and cache footprint.
3887 */
3888void sched_exec(void)
3889{
3890        struct task_struct *p = current;
3891        unsigned long flags;
3892        int dest_cpu;
3893
3894        raw_spin_lock_irqsave(&p->pi_lock, flags);
3895        dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3896        if (dest_cpu == smp_processor_id())
3897                goto unlock;
3898
3899        if (likely(cpu_active(dest_cpu))) {
3900                struct migration_arg arg = { p, dest_cpu };
3901
3902                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3903                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3904                return;
3905        }
3906unlock:
3907        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3908}
3909
3910#endif
3911
3912DEFINE_PER_CPU(struct kernel_stat, kstat);
3913DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3914
3915EXPORT_PER_CPU_SYMBOL(kstat);
3916EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3917
3918/*
3919 * The function fair_sched_class.update_curr accesses the struct curr
3920 * and its field curr->exec_start; when called from task_sched_runtime(),
3921 * we observe a high rate of cache misses in practice.
3922 * Prefetching this data results in improved performance.
3923 */
3924static inline void prefetch_curr_exec_start(struct task_struct *p)
3925{
3926#ifdef CONFIG_FAIR_GROUP_SCHED
3927        struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3928#else
3929        struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3930#endif
3931        prefetch(curr);
3932        prefetch(&curr->exec_start);
3933}
3934
3935/*
3936 * Return accounted runtime for the task.
3937 * In case the task is currently running, return the runtime plus current's
3938 * pending runtime that have not been accounted yet.
3939 */
3940unsigned long long task_sched_runtime(struct task_struct *p)
3941{
3942        struct rq_flags rf;
3943        struct rq *rq;
3944        u64 ns;
3945
3946#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3947        /*
3948         * 64-bit doesn't need locks to atomically read a 64-bit value.
3949         * So we have a optimization chance when the task's delta_exec is 0.
3950         * Reading ->on_cpu is racy, but this is ok.
3951         *
3952         * If we race with it leaving CPU, we'll take a lock. So we're correct.
3953         * If we race with it entering CPU, unaccounted time is 0. This is
3954         * indistinguishable from the read occurring a few cycles earlier.
3955         * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3956         * been accounted, so we're correct here as well.
3957         */
3958        if (!p->on_cpu || !task_on_rq_queued(p))
3959                return p->se.sum_exec_runtime;
3960#endif
3961
3962        rq = task_rq_lock(p, &rf);
3963        /*
3964         * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3965         * project cycles that may never be accounted to this
3966         * thread, breaking clock_gettime().
3967         */
3968        if (task_current(rq, p) && task_on_rq_queued(p)) {
3969                prefetch_curr_exec_start(p);
3970                update_rq_clock(rq);
3971                p->sched_class->update_curr(rq);
3972        }
3973        ns = p->se.sum_exec_runtime;
3974        task_rq_unlock(rq, p, &rf);
3975
3976        return ns;
3977}
3978
3979/*
3980 * This function gets called by the timer code, with HZ frequency.
3981 * We call it with interrupts disabled.
3982 */
3983void scheduler_tick(void)
3984{
3985        int cpu = smp_processor_id();
3986        struct rq *rq = cpu_rq(cpu);
3987        struct task_struct *curr = rq->curr;
3988        struct rq_flags rf;
3989        unsigned long thermal_pressure;
3990
3991        arch_scale_freq_tick();
3992        sched_clock_tick();
3993
3994        rq_lock(rq, &rf);
3995
3996        update_rq_clock(rq);
3997        thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3998        update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3999        curr->sched_class->task_tick(rq, curr, 0);
4000        calc_global_load_tick(rq);
4001        psi_task_tick(rq);
4002
4003        rq_unlock(rq, &rf);
4004
4005        perf_event_task_tick();
4006
4007#ifdef CONFIG_SMP
4008        rq->idle_balance = idle_cpu(cpu);
4009        trigger_load_balance(rq);
4010#endif
4011}
4012
4013#ifdef CONFIG_NO_HZ_FULL
4014
4015struct tick_work {
4016        int                     cpu;
4017        atomic_t                state;
4018        struct delayed_work     work;
4019};
4020/* Values for ->state, see diagram below. */
4021#define TICK_SCHED_REMOTE_OFFLINE       0
4022#define TICK_SCHED_REMOTE_OFFLINING     1
4023#define TICK_SCHED_REMOTE_RUNNING       2
4024
4025/*
4026 * State diagram for ->state:
4027 *
4028 *
4029 *          TICK_SCHED_REMOTE_OFFLINE
4030 *                    |   ^
4031 *                    |   |
4032 *                    |   | sched_tick_remote()
4033 *                    |   |
4034 *                    |   |
4035 *                    +--TICK_SCHED_REMOTE_OFFLINING
4036 *                    |   ^
4037 *                    |   |
4038 * sched_tick_start() |   | sched_tick_stop()
4039 *                    |   |
4040 *                    V   |
4041 *          TICK_SCHED_REMOTE_RUNNING
4042 *
4043 *
4044 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4045 * and sched_tick_start() are happy to leave the state in RUNNING.
4046 */
4047
4048static struct tick_work __percpu *tick_work_cpu;
4049
4050static void sched_tick_remote(struct work_struct *work)
4051{
4052        struct delayed_work *dwork = to_delayed_work(work);
4053        struct tick_work *twork = container_of(dwork, struct tick_work, work);
4054        int cpu = twork->cpu;
4055        struct rq *rq = cpu_rq(cpu);
4056        struct task_struct *curr;
4057        struct rq_flags rf;
4058        u64 delta;
4059        int os;
4060
4061        /*
4062         * Handle the tick only if it appears the remote CPU is running in full
4063         * dynticks mode. The check is racy by nature, but missing a tick or
4064         * having one too much is no big deal because the scheduler tick updates
4065         * statistics and checks timeslices in a time-independent way, regardless
4066         * of when exactly it is running.
4067         */
4068        if (!tick_nohz_tick_stopped_cpu(cpu))
4069                goto out_requeue;
4070
4071        rq_lock_irq(rq, &rf);
4072        curr = rq->curr;
4073        if (cpu_is_offline(cpu))
4074                goto out_unlock;
4075
4076        update_rq_clock(rq);
4077
4078        if (!is_idle_task(curr)) {
4079                /*
4080                 * Make sure the next tick runs within a reasonable
4081                 * amount of time.
4082                 */
4083                delta = rq_clock_task(rq) - curr->se.exec_start;
4084                WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4085        }
4086        curr->sched_class->task_tick(rq, curr, 0);
4087
4088        calc_load_nohz_remote(rq);
4089out_unlock:
4090        rq_unlock_irq(rq, &rf);
4091out_requeue:
4092
4093        /*
4094         * Run the remote tick once per second (1Hz). This arbitrary
4095         * frequency is large enough to avoid overload but short enough
4096         * to keep scheduler internal stats reasonably up to date.  But
4097         * first update state to reflect hotplug activity if required.
4098         */
4099        os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4100        WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4101        if (os == TICK_SCHED_REMOTE_RUNNING)
4102                queue_delayed_work(system_unbound_wq, dwork, HZ);
4103}
4104
4105static void sched_tick_start(int cpu)
4106{
4107        int os;
4108        struct tick_work *twork;
4109
4110        if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4111                return;
4112
4113        WARN_ON_ONCE(!tick_work_cpu);
4114
4115        twork = per_cpu_ptr(tick_work_cpu, cpu);
4116        os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4117        WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4118        if (os == TICK_SCHED_REMOTE_OFFLINE) {
4119                twork->cpu = cpu;
4120                INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4121                queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4122        }
4123}
4124
4125#ifdef CONFIG_HOTPLUG_CPU
4126static void sched_tick_stop(int cpu)
4127{
4128        struct tick_work *twork;
4129        int os;
4130
4131        if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4132                return;
4133
4134        WARN_ON_ONCE(!tick_work_cpu);
4135
4136        twork = per_cpu_ptr(tick_work_cpu, cpu);
4137        /* There cannot be competing actions, but don't rely on stop-machine. */
4138        os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4139        WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4140        /* Don't cancel, as this would mess up the state machine. */
4141}
4142#endif /* CONFIG_HOTPLUG_CPU */
4143
4144int __init sched_tick_offload_init(void)
4145{
4146        tick_work_cpu = alloc_percpu(struct tick_work);
4147        BUG_ON(!tick_work_cpu);
4148        return 0;
4149}
4150
4151#else /* !CONFIG_NO_HZ_FULL */
4152static inline void sched_tick_start(int cpu) { }
4153static inline void sched_tick_stop(int cpu) { }
4154#endif
4155
4156#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4157                                defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4158/*
4159 * If the value passed in is equal to the current preempt count
4160 * then we just disabled preemption. Start timing the latency.
4161 */
4162static inline void preempt_latency_start(int val)
4163{
4164        if (preempt_count() == val) {
4165                unsigned long ip = get_lock_parent_ip();
4166#ifdef CONFIG_DEBUG_PREEMPT
4167                current->preempt_disable_ip = ip;
4168#endif
4169                trace_preempt_off(CALLER_ADDR0, ip);
4170        }
4171}
4172
4173void preempt_count_add(int val)
4174{
4175#ifdef CONFIG_DEBUG_PREEMPT
4176        /*
4177         * Underflow?
4178         */
4179        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4180                return;
4181#endif
4182        __preempt_count_add(val);
4183#ifdef CONFIG_DEBUG_PREEMPT
4184        /*
4185         * Spinlock count overflowing soon?
4186         */
4187        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4188                                PREEMPT_MASK - 10);
4189#endif
4190        preempt_latency_start(val);
4191}
4192EXPORT_SYMBOL(preempt_count_add);
4193NOKPROBE_SYMBOL(preempt_count_add);
4194
4195/*
4196 * If the value passed in equals to the current preempt count
4197 * then we just enabled preemption. Stop timing the latency.
4198 */
4199static inline void preempt_latency_stop(int val)
4200{
4201        if (preempt_count() == val)
4202                trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4203}
4204
4205void preempt_count_sub(int val)
4206{
4207#ifdef CONFIG_DEBUG_PREEMPT
4208        /*
4209         * Underflow?
4210         */
4211        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4212                return;
4213        /*
4214         * Is the spinlock portion underflowing?
4215         */
4216        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4217                        !(preempt_count() & PREEMPT_MASK)))
4218                return;
4219#endif
4220
4221        preempt_latency_stop(val);
4222        __preempt_count_sub(val);
4223}
4224EXPORT_SYMBOL(preempt_count_sub);
4225NOKPROBE_SYMBOL(preempt_count_sub);
4226
4227#else
4228static inline void preempt_latency_start(int val) { }
4229static inline void preempt_latency_stop(int val) { }
4230#endif
4231
4232static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4233{
4234#ifdef CONFIG_DEBUG_PREEMPT
4235        return p->preempt_disable_ip;
4236#else
4237        return 0;
4238#endif
4239}
4240
4241/*
4242 * Print scheduling while atomic bug:
4243 */
4244static noinline void __schedule_bug(struct task_struct *prev)
4245{
4246        /* Save this before calling printk(), since that will clobber it */
4247        unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4248
4249        if (oops_in_progress)
4250                return;
4251
4252        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4253                prev->comm, prev->pid, preempt_count());
4254
4255        debug_show_held_locks(prev);
4256        print_modules();
4257        if (irqs_disabled())
4258                print_irqtrace_events(prev);
4259        if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4260            && in_atomic_preempt_off()) {
4261                pr_err("Preemption disabled at:");
4262                print_ip_sym(KERN_ERR, preempt_disable_ip);
4263        }
4264        if (panic_on_warn)
4265                panic("scheduling while atomic\n");
4266
4267        dump_stack();
4268        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4269}
4270
4271/*
4272 * Various schedule()-time debugging checks and statistics:
4273 */
4274static inline void schedule_debug(struct task_struct *prev, bool preempt)
4275{
4276#ifdef CONFIG_SCHED_STACK_END_CHECK
4277        if (task_stack_end_corrupted(prev))
4278                panic("corrupted stack end detected inside scheduler\n");
4279
4280        if (task_scs_end_corrupted(prev))
4281                panic("corrupted shadow stack detected inside scheduler\n");
4282#endif
4283
4284#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4285        if (!preempt && prev->state && prev->non_block_count) {
4286                printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4287                        prev->comm, prev->pid, prev->non_block_count);
4288                dump_stack();
4289                add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4290        }
4291#endif
4292
4293        if (unlikely(in_atomic_preempt_off())) {
4294                __schedule_bug(prev);
4295                preempt_count_set(PREEMPT_DISABLED);
4296        }
4297        rcu_sleep_check();
4298
4299        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4300
4301        schedstat_inc(this_rq()->sched_count);
4302}
4303
4304static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4305                                  struct rq_flags *rf)
4306{
4307#ifdef CONFIG_SMP
4308        const struct sched_class *class;
4309        /*
4310         * We must do the balancing pass before put_prev_task(), such
4311         * that when we release the rq->lock the task is in the same
4312         * state as before we took rq->lock.
4313         *
4314         * We can terminate the balance pass as soon as we know there is
4315         * a runnable task of @class priority or higher.
4316         */
4317        for_class_range(class, prev->sched_class, &idle_sched_class) {
4318                if (class->balance(rq, prev, rf))
4319                        break;
4320        }
4321#endif
4322
4323        put_prev_task(rq, prev);
4324}
4325
4326/*
4327 * Pick up the highest-prio task:
4328 */
4329static inline struct task_struct *
4330pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4331{
4332        const struct sched_class *class;
4333        struct task_struct *p;
4334
4335        /*
4336         * Optimization: we know that if all tasks are in the fair class we can
4337         * call that function directly, but only if the @prev task wasn't of a
4338         * higher scheduling class, because otherwise those loose the
4339         * opportunity to pull in more work from other CPUs.
4340         */
4341        if (likely(prev->sched_class <= &fair_sched_class &&
4342                   rq->nr_running == rq->cfs.h_nr_running)) {
4343
4344                p = pick_next_task_fair(rq, prev, rf);
4345                if (unlikely(p == RETRY_TASK))
4346                        goto restart;
4347
4348                /* Assumes fair_sched_class->next == idle_sched_class */
4349                if (!p) {
4350                        put_prev_task(rq, prev);
4351                        p = pick_next_task_idle(rq);
4352                }
4353
4354                return p;
4355        }
4356
4357restart:
4358        put_prev_task_balance(rq, prev, rf);
4359
4360        for_each_class(class) {
4361                p = class->pick_next_task(rq);
4362                if (p)
4363                        return p;
4364        }
4365
4366        /* The idle class should always have a runnable task: */
4367        BUG();
4368}
4369
4370/*
4371 * __schedule() is the main scheduler function.
4372 *
4373 * The main means of driving the scheduler and thus entering this function are:
4374 *
4375 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4376 *
4377 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4378 *      paths. For example, see arch/x86/entry_64.S.
4379 *
4380 *      To drive preemption between tasks, the scheduler sets the flag in timer
4381 *      interrupt handler scheduler_tick().
4382 *
4383 *   3. Wakeups don't really cause entry into schedule(). They add a
4384 *      task to the run-queue and that's it.
4385 *
4386 *      Now, if the new task added to the run-queue preempts the current
4387 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4388 *      called on the nearest possible occasion:
4389 *
4390 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4391 *
4392 *         - in syscall or exception context, at the next outmost
4393 *           preempt_enable(). (this might be as soon as the wake_up()'s
4394 *           spin_unlock()!)
4395 *
4396 *         - in IRQ context, return from interrupt-handler to
4397 *           preemptible context
4398 *
4399 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4400 *         then at the next:
4401 *
4402 *          - cond_resched() call
4403 *          - explicit schedule() call
4404 *          - return from syscall or exception to user-space
4405 *          - return from interrupt-handler to user-space
4406 *
4407 * WARNING: must be called with preemption disabled!
4408 */
4409static void __sched notrace __schedule(bool preempt)
4410{
4411        struct task_struct *prev, *next;
4412        unsigned long *switch_count;
4413        unsigned long prev_state;
4414        struct rq_flags rf;
4415        struct rq *rq;
4416        int cpu;
4417
4418        cpu = smp_processor_id();
4419        rq = cpu_rq(cpu);
4420        prev = rq->curr;
4421
4422        schedule_debug(prev, preempt);
4423
4424        if (sched_feat(HRTICK))
4425                hrtick_clear(rq);
4426
4427        local_irq_disable();
4428        rcu_note_context_switch(preempt);
4429
4430        /*
4431         * Make sure that signal_pending_state()->signal_pending() below
4432         * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4433         * done by the caller to avoid the race with signal_wake_up():
4434         *
4435         * __set_current_state(@state)          signal_wake_up()
4436         * schedule()                             set_tsk_thread_flag(p, TIF_SIGPENDING)
4437         *                                        wake_up_state(p, state)
4438         *   LOCK rq->lock                          LOCK p->pi_state
4439         *   smp_mb__after_spinlock()               smp_mb__after_spinlock()
4440         *     if (signal_pending_state())          if (p->state & @state)
4441         *
4442         * Also, the membarrier system call requires a full memory barrier
4443         * after coming from user-space, before storing to rq->curr.
4444         */
4445        rq_lock(rq, &rf);
4446        smp_mb__after_spinlock();
4447
4448        /* Promote REQ to ACT */
4449        rq->clock_update_flags <<= 1;
4450        update_rq_clock(rq);
4451
4452        switch_count = &prev->nivcsw;
4453
4454        /*
4455         * We must load prev->state once (task_struct::state is volatile), such
4456         * that:
4457         *
4458         *  - we form a control dependency vs deactivate_task() below.
4459         *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4460         */
4461        prev_state = prev->state;
4462        if (!preempt && prev_state) {
4463                if (signal_pending_state(prev_state, prev)) {
4464                        prev->state = TASK_RUNNING;
4465                } else {
4466                        prev->sched_contributes_to_load =
4467                                (prev_state & TASK_UNINTERRUPTIBLE) &&
4468                                !(prev_state & TASK_NOLOAD) &&
4469                                !(prev->flags & PF_FROZEN);
4470
4471                        if (prev->sched_contributes_to_load)
4472                                rq->nr_uninterruptible++;
4473
4474                        /*
4475                         * __schedule()                 ttwu()
4476                         *   prev_state = prev->state;    if (p->on_rq && ...)
4477                         *   if (prev_state)                goto out;
4478                         *     p->on_rq = 0;              smp_acquire__after_ctrl_dep();
4479                         *                                p->state = TASK_WAKING
4480                         *
4481                         * Where __schedule() and ttwu() have matching control dependencies.
4482                         *
4483                         * After this, schedule() must not care about p->state any more.
4484                         */
4485                        deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4486
4487                        if (prev->in_iowait) {
4488                                atomic_inc(&rq->nr_iowait);
4489                                delayacct_blkio_start();
4490                        }
4491                }
4492                switch_count = &prev->nvcsw;
4493        }
4494
4495        next = pick_next_task(rq, prev, &rf);
4496        clear_tsk_need_resched(prev);
4497        clear_preempt_need_resched();
4498
4499        if (likely(prev != next)) {
4500                rq->nr_switches++;
4501                /*
4502                 * RCU users of rcu_dereference(rq->curr) may not see
4503                 * changes to task_struct made by pick_next_task().
4504                 */
4505                RCU_INIT_POINTER(rq->curr, next);
4506                /*
4507                 * The membarrier system call requires each architecture
4508                 * to have a full memory barrier after updating
4509                 * rq->curr, before returning to user-space.
4510                 *
4511                 * Here are the schemes providing that barrier on the
4512                 * various architectures:
4513                 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4514                 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4515                 * - finish_lock_switch() for weakly-ordered
4516                 *   architectures where spin_unlock is a full barrier,
4517                 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4518                 *   is a RELEASE barrier),
4519                 */
4520                ++*switch_count;
4521
4522                psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4523
4524                trace_sched_switch(preempt, prev, next);
4525
4526                /* Also unlocks the rq: */
4527                rq = context_switch(rq, prev, next, &rf);
4528        } else {
4529                rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4530                rq_unlock_irq(rq, &rf);
4531        }
4532
4533        balance_callback(rq);
4534}
4535
4536void __noreturn do_task_dead(void)
4537{
4538        /* Causes final put_task_struct in finish_task_switch(): */
4539        set_special_state(TASK_DEAD);
4540
4541        /* Tell freezer to ignore us: */
4542        current->flags |= PF_NOFREEZE;
4543
4544        __schedule(false);
4545        BUG();
4546
4547        /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4548        for (;;)
4549                cpu_relax();
4550}
4551
4552static inline void sched_submit_work(struct task_struct *tsk)
4553{
4554        if (!tsk->state)
4555                return;
4556
4557        /*
4558         * If a worker went to sleep, notify and ask workqueue whether
4559         * it wants to wake up a task to maintain concurrency.
4560         * As this function is called inside the schedule() context,
4561         * we disable preemption to avoid it calling schedule() again
4562         * in the possible wakeup of a kworker and because wq_worker_sleeping()
4563         * requires it.
4564         */
4565        if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4566                preempt_disable();
4567                if (tsk->flags & PF_WQ_WORKER)
4568                        wq_worker_sleeping(tsk);
4569                else
4570                        io_wq_worker_sleeping(tsk);
4571                preempt_enable_no_resched();
4572        }
4573
4574        if (tsk_is_pi_blocked(tsk))
4575                return;
4576
4577        /*
4578         * If we are going to sleep and we have plugged IO queued,
4579         * make sure to submit it to avoid deadlocks.
4580         */
4581        if (blk_needs_flush_plug(tsk))
4582                blk_schedule_flush_plug(tsk);
4583}
4584
4585static void sched_update_worker(struct task_struct *tsk)
4586{
4587        if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4588                if (tsk->flags & PF_WQ_WORKER)
4589                        wq_worker_running(tsk);
4590                else
4591                        io_wq_worker_running(tsk);
4592        }
4593}
4594
4595asmlinkage __visible void __sched schedule(void)
4596{
4597        struct task_struct *tsk = current;
4598
4599        sched_submit_work(tsk);
4600        do {
4601                preempt_disable();
4602                __schedule(false);
4603                sched_preempt_enable_no_resched();
4604        } while (need_resched());
4605        sched_update_worker(tsk);
4606}
4607EXPORT_SYMBOL(schedule);
4608
4609/*
4610 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4611 * state (have scheduled out non-voluntarily) by making sure that all
4612 * tasks have either left the run queue or have gone into user space.
4613 * As idle tasks do not do either, they must not ever be preempted
4614 * (schedule out non-voluntarily).
4615 *
4616 * schedule_idle() is similar to schedule_preempt_disable() except that it
4617 * never enables preemption because it does not call sched_submit_work().
4618 */
4619void __sched schedule_idle(void)
4620{
4621        /*
4622         * As this skips calling sched_submit_work(), which the idle task does
4623         * regardless because that function is a nop when the task is in a
4624         * TASK_RUNNING state, make sure this isn't used someplace that the
4625         * current task can be in any other state. Note, idle is always in the
4626         * TASK_RUNNING state.
4627         */
4628        WARN_ON_ONCE(current->state);
4629        do {
4630                __schedule(false);
4631        } while (need_resched());
4632}
4633
4634#ifdef CONFIG_CONTEXT_TRACKING
4635asmlinkage __visible void __sched schedule_user(void)
4636{
4637        /*
4638         * If we come here after a random call to set_need_resched(),
4639         * or we have been woken up remotely but the IPI has not yet arrived,
4640         * we haven't yet exited the RCU idle mode. Do it here manually until
4641         * we find a better solution.
4642         *
4643         * NB: There are buggy callers of this function.  Ideally we
4644         * should warn if prev_state != CONTEXT_USER, but that will trigger
4645         * too frequently to make sense yet.
4646         */
4647        enum ctx_state prev_state = exception_enter();
4648        schedule();
4649        exception_exit(prev_state);
4650}
4651#endif
4652
4653/**
4654 * schedule_preempt_disabled - called with preemption disabled
4655 *
4656 * Returns with preemption disabled. Note: preempt_count must be 1
4657 */
4658void __sched schedule_preempt_disabled(void)
4659{
4660        sched_preempt_enable_no_resched();
4661        schedule();
4662        preempt_disable();
4663}
4664
4665static void __sched notrace preempt_schedule_common(void)
4666{
4667        do {
4668                /*
4669                 * Because the function tracer can trace preempt_count_sub()
4670                 * and it also uses preempt_enable/disable_notrace(), if
4671                 * NEED_RESCHED is set, the preempt_enable_notrace() called
4672                 * by the function tracer will call this function again and
4673                 * cause infinite recursion.
4674                 *
4675                 * Preemption must be disabled here before the function
4676                 * tracer can trace. Break up preempt_disable() into two
4677                 * calls. One to disable preemption without fear of being
4678                 * traced. The other to still record the preemption latency,
4679                 * which can also be traced by the function tracer.
4680                 */
4681                preempt_disable_notrace();
4682                preempt_latency_start(1);
4683                __schedule(true);
4684                preempt_latency_stop(1);
4685                preempt_enable_no_resched_notrace();
4686
4687                /*
4688                 * Check again in case we missed a preemption opportunity
4689                 * between schedule and now.
4690                 */
4691        } while (need_resched());
4692}
4693
4694#ifdef CONFIG_PREEMPTION
4695/*
4696 * This is the entry point to schedule() from in-kernel preemption
4697 * off of preempt_enable.
4698 */
4699asmlinkage __visible void __sched notrace preempt_schedule(void)
4700{
4701        /*
4702         * If there is a non-zero preempt_count or interrupts are disabled,
4703         * we do not want to preempt the current task. Just return..
4704         */
4705        if (likely(!preemptible()))
4706                return;
4707
4708        preempt_schedule_common();
4709}
4710NOKPROBE_SYMBOL(preempt_schedule);
4711EXPORT_SYMBOL(preempt_schedule);
4712
4713/**
4714 * preempt_schedule_notrace - preempt_schedule called by tracing
4715 *
4716 * The tracing infrastructure uses preempt_enable_notrace to prevent
4717 * recursion and tracing preempt enabling caused by the tracing
4718 * infrastructure itself. But as tracing can happen in areas coming
4719 * from userspace or just about to enter userspace, a preempt enable
4720 * can occur before user_exit() is called. This will cause the scheduler
4721 * to be called when the system is still in usermode.
4722 *
4723 * To prevent this, the preempt_enable_notrace will use this function
4724 * instead of preempt_schedule() to exit user context if needed before
4725 * calling the scheduler.
4726 */
4727asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4728{
4729        enum ctx_state prev_ctx;
4730
4731        if (likely(!preemptible()))
4732                return;
4733
4734        do {
4735                /*
4736                 * Because the function tracer can trace preempt_count_sub()
4737                 * and it also uses preempt_enable/disable_notrace(), if
4738                 * NEED_RESCHED is set, the preempt_enable_notrace() called
4739                 * by the function tracer will call this function again and
4740                 * cause infinite recursion.
4741                 *
4742                 * Preemption must be disabled here before the function
4743                 * tracer can trace. Break up preempt_disable() into two
4744                 * calls. One to disable preemption without fear of being
4745                 * traced. The other to still record the preemption latency,
4746                 * which can also be traced by the function tracer.
4747                 */
4748                preempt_disable_notrace();
4749                preempt_latency_start(1);
4750                /*
4751                 * Needs preempt disabled in case user_exit() is traced
4752                 * and the tracer calls preempt_enable_notrace() causing
4753                 * an infinite recursion.
4754                 */
4755                prev_ctx = exception_enter();
4756                __schedule(true);
4757                exception_exit(prev_ctx);
4758
4759                preempt_latency_stop(1);
4760                preempt_enable_no_resched_notrace();
4761        } while (need_resched());
4762}
4763EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4764
4765#endif /* CONFIG_PREEMPTION */
4766
4767/*
4768 * This is the entry point to schedule() from kernel preemption
4769 * off of irq context.
4770 * Note, that this is called and return with irqs disabled. This will
4771 * protect us against recursive calling from irq.
4772 */
4773asmlinkage __visible void __sched preempt_schedule_irq(void)
4774{
4775        enum ctx_state prev_state;
4776
4777        /* Catch callers which need to be fixed */
4778        BUG_ON(preempt_count() || !irqs_disabled());
4779
4780        prev_state = exception_enter();
4781
4782        do {
4783                preempt_disable();
4784                local_irq_enable();
4785                __schedule(true);
4786                local_irq_disable();
4787                sched_preempt_enable_no_resched();
4788        } while (need_resched());
4789
4790        exception_exit(prev_state);
4791}
4792
4793int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4794                          void *key)
4795{
4796        WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4797        return try_to_wake_up(curr->private, mode, wake_flags);
4798}
4799EXPORT_SYMBOL(default_wake_function);
4800
4801#ifdef CONFIG_RT_MUTEXES
4802
4803static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4804{
4805        if (pi_task)
4806                prio = min(prio, pi_task->prio);
4807
4808        return prio;
4809}
4810
4811static inline int rt_effective_prio(struct task_struct *p, int prio)
4812{
4813        struct task_struct *pi_task = rt_mutex_get_top_task(p);
4814
4815        return __rt_effective_prio(pi_task, prio);
4816}
4817
4818/*
4819 * rt_mutex_setprio - set the current priority of a task
4820 * @p: task to boost
4821 * @pi_task: donor task
4822 *
4823 * This function changes the 'effective' priority of a task. It does
4824 * not touch ->normal_prio like __setscheduler().
4825 *
4826 * Used by the rt_mutex code to implement priority inheritance
4827 * logic. Call site only calls if the priority of the task changed.
4828 */
4829void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4830{
4831        int prio, oldprio, queued, running, queue_flag =
4832                DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4833        const struct sched_class *prev_class;
4834        struct rq_flags rf;
4835        struct rq *rq;
4836
4837        /* XXX used to be waiter->prio, not waiter->task->prio */
4838        prio = __rt_effective_prio(pi_task, p->normal_prio);
4839
4840        /*
4841         * If nothing changed; bail early.
4842         */
4843        if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4844                return;
4845
4846        rq = __task_rq_lock(p, &rf);
4847        update_rq_clock(rq);
4848        /*
4849         * Set under pi_lock && rq->lock, such that the value can be used under
4850         * either lock.
4851         *
4852         * Note that there is loads of tricky to make this pointer cache work
4853         * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4854         * ensure a task is de-boosted (pi_task is set to NULL) before the
4855         * task is allowed to run again (and can exit). This ensures the pointer
4856         * points to a blocked task -- which guaratees the task is present.
4857         */
4858        p->pi_top_task = pi_task;
4859
4860        /*
4861         * For FIFO/RR we only need to set prio, if that matches we're done.
4862         */
4863        if (prio == p->prio && !dl_prio(prio))
4864                goto out_unlock;
4865
4866        /*
4867         * Idle task boosting is a nono in general. There is one
4868         * exception, when PREEMPT_RT and NOHZ is active:
4869         *
4870         * The idle task calls get_next_timer_interrupt() and holds
4871         * the timer wheel base->lock on the CPU and another CPU wants
4872         * to access the timer (probably to cancel it). We can safely
4873         * ignore the boosting request, as the idle CPU runs this code
4874         * with interrupts disabled and will complete the lock
4875         * protected section without being interrupted. So there is no
4876         * real need to boost.
4877         */
4878        if (unlikely(p == rq->idle)) {
4879                WARN_ON(p != rq->curr);
4880                WARN_ON(p->pi_blocked_on);
4881                goto out_unlock;
4882        }
4883
4884        trace_sched_pi_setprio(p, pi_task);
4885        oldprio = p->prio;
4886
4887        if (oldprio == prio)
4888                queue_flag &= ~DEQUEUE_MOVE;
4889
4890        prev_class = p->sched_class;
4891        queued = task_on_rq_queued(p);
4892        running = task_current(rq, p);
4893        if (queued)
4894                dequeue_task(rq, p, queue_flag);
4895        if (running)
4896                put_prev_task(rq, p);
4897
4898        /*
4899         * Boosting condition are:
4900         * 1. -rt task is running and holds mutex A
4901         *      --> -dl task blocks on mutex A
4902         *
4903         * 2. -dl task is running and holds mutex A
4904         *      --> -dl task blocks on mutex A and could preempt the
4905         *          running task
4906         */
4907        if (dl_prio(prio)) {
4908                if (!dl_prio(p->normal_prio) ||
4909                    (pi_task && dl_prio(pi_task->prio) &&
4910                     dl_entity_preempt(&pi_task->dl, &p->dl))) {
4911                        p->dl.dl_boosted = 1;
4912                        queue_flag |= ENQUEUE_REPLENISH;
4913                } else
4914                        p->dl.dl_boosted = 0;
4915                p->sched_class = &dl_sched_class;
4916        } else if (rt_prio(prio)) {
4917                if (dl_prio(oldprio))
4918                        p->dl.dl_boosted = 0;
4919                if (oldprio < prio)
4920                        queue_flag |= ENQUEUE_HEAD;
4921                p->sched_class = &rt_sched_class;
4922        } else {
4923                if (dl_prio(oldprio))
4924                        p->dl.dl_boosted = 0;
4925                if (rt_prio(oldprio))
4926                        p->rt.timeout = 0;
4927                p->sched_class = &fair_sched_class;
4928        }
4929
4930        p->prio = prio;
4931
4932        if (queued)
4933                enqueue_task(rq, p, queue_flag);
4934        if (running)
4935                set_next_task(rq, p);
4936
4937        check_class_changed(rq, p, prev_class, oldprio);
4938out_unlock:
4939        /* Avoid rq from going away on us: */
4940        preempt_disable();
4941        __task_rq_unlock(rq, &rf);
4942
4943        balance_callback(rq);
4944        preempt_enable();
4945}
4946#else
4947static inline int rt_effective_prio(struct task_struct *p, int prio)
4948{
4949        return prio;
4950}
4951#endif
4952
4953void set_user_nice(struct task_struct *p, long nice)
4954{
4955        bool queued, running;
4956        int old_prio;
4957        struct rq_flags rf;
4958        struct rq *rq;
4959
4960        if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4961                return;
4962        /*
4963         * We have to be careful, if called from sys_setpriority(),
4964         * the task might be in the middle of scheduling on another CPU.
4965         */
4966        rq = task_rq_lock(p, &rf);
4967        update_rq_clock(rq);
4968
4969        /*
4970         * The RT priorities are set via sched_setscheduler(), but we still
4971         * allow the 'normal' nice value to be set - but as expected
4972         * it wont have any effect on scheduling until the task is
4973         * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4974         */
4975        if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4976                p->static_prio = NICE_TO_PRIO(nice);
4977                goto out_unlock;
4978        }
4979        queued = task_on_rq_queued(p);
4980        running = task_current(rq, p);
4981        if (queued)
4982                dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4983        if (running)
4984                put_prev_task(rq, p);
4985
4986        p->static_prio = NICE_TO_PRIO(nice);
4987        set_load_weight(p, true);
4988        old_prio = p->prio;
4989        p->prio = effective_prio(p);
4990
4991        if (queued)
4992                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4993        if (running)
4994                set_next_task(rq, p);
4995
4996        /*
4997         * If the task increased its priority or is running and
4998         * lowered its priority, then reschedule its CPU:
4999         */
5000        p->sched_class->prio_changed(rq, p, old_prio);
5001
5002out_unlock:
5003        task_rq_unlock(rq, p, &rf);
5004}
5005EXPORT_SYMBOL(set_user_nice);
5006
5007/*
5008 * can_nice - check if a task can reduce its nice value
5009 * @p: task
5010 * @nice: nice value
5011 */
5012int can_nice(const struct task_struct *p, const int nice)
5013{
5014        /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5015        int nice_rlim = nice_to_rlimit(nice);
5016
5017        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5018                capable(CAP_SYS_NICE));
5019}
5020
5021#ifdef __ARCH_WANT_SYS_NICE
5022
5023/*
5024 * sys_nice - change the priority of the current process.
5025 * @increment: priority increment
5026 *
5027 * sys_setpriority is a more generic, but much slower function that
5028 * does similar things.
5029 */
5030SYSCALL_DEFINE1(nice, int, increment)
5031{
5032        long nice, retval;
5033
5034        /*
5035         * Setpriority might change our priority at the same moment.
5036         * We don't have to worry. Conceptually one call occurs first
5037         * and we have a single winner.
5038         */
5039        increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5040        nice = task_nice(current) + increment;
5041
5042        nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5043        if (increment < 0 && !can_nice(current, nice))
5044                return -EPERM;
5045
5046        retval = security_task_setnice(current, nice);
5047        if (retval)
5048                return retval;
5049
5050        set_user_nice(current, nice);
5051        return 0;
5052}
5053
5054#endif
5055
5056/**
5057 * task_prio - return the priority value of a given task.
5058 * @p: the task in question.
5059 *
5060 * Return: The priority value as seen by users in /proc.
5061 * RT tasks are offset by -200. Normal tasks are centered
5062 * around 0, value goes from -16 to +15.
5063 */
5064int task_prio(const struct task_struct *p)
5065{
5066        return p->prio - MAX_RT_PRIO;
5067}
5068
5069/**
5070 * idle_cpu - is a given CPU idle currently?
5071 * @cpu: the processor in question.
5072 *
5073 * Return: 1 if the CPU is currently idle. 0 otherwise.
5074 */
5075int idle_cpu(int cpu)
5076{
5077        struct rq *rq = cpu_rq(cpu);
5078
5079        if (rq->curr != rq->idle)
5080                return 0;
5081
5082        if (rq->nr_running)
5083                return 0;
5084
5085#ifdef CONFIG_SMP
5086        if (rq->ttwu_pending)
5087                return 0;
5088#endif
5089
5090        return 1;
5091}
5092
5093/**
5094 * available_idle_cpu - is a given CPU idle for enqueuing work.
5095 * @cpu: the CPU in question.
5096 *
5097 * Return: 1 if the CPU is currently idle. 0 otherwise.
5098 */
5099int available_idle_cpu(int cpu)
5100{
5101        if (!idle_cpu(cpu))
5102                return 0;
5103
5104        if (vcpu_is_preempted(cpu))
5105                return 0;
5106
5107        return 1;
5108}
5109
5110/**
5111 * idle_task - return the idle task for a given CPU.
5112 * @cpu: the processor in question.
5113 *
5114 * Return: The idle task for the CPU @cpu.
5115 */
5116struct task_struct *idle_task(int cpu)
5117{
5118        return cpu_rq(cpu)->idle;
5119}
5120
5121/**
5122 * find_process_by_pid - find a process with a matching PID value.
5123 * @pid: the pid in question.
5124 *
5125 * The task of @pid, if found. %NULL otherwise.
5126 */
5127static struct task_struct *find_process_by_pid(pid_t pid)
5128{
5129        return pid ? find_task_by_vpid(pid) : current;
5130}
5131
5132/*
5133 * sched_setparam() passes in -1 for its policy, to let the functions
5134 * it calls know not to change it.
5135 */
5136#define SETPARAM_POLICY -1
5137
5138static void __setscheduler_params(struct task_struct *p,
5139                const struct sched_attr *attr)
5140{
5141        int policy = attr->sched_policy;
5142
5143        if (policy == SETPARAM_POLICY)
5144                policy = p->policy;
5145
5146        p->policy = policy;
5147
5148        if (dl_policy(policy))
5149                __setparam_dl(p, attr);
5150        else if (fair_policy(policy))
5151                p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5152
5153        /*
5154         * __sched_setscheduler() ensures attr->sched_priority == 0 when
5155         * !rt_policy. Always setting this ensures that things like
5156         * getparam()/getattr() don't report silly values for !rt tasks.
5157         */
5158        p->rt_priority = attr->sched_priority;
5159        p->normal_prio = normal_prio(p);
5160        set_load_weight(p, true);
5161}
5162
5163/* Actually do priority change: must hold pi & rq lock. */
5164static void __setscheduler(struct rq *rq, struct task_struct *p,
5165                           const struct sched_attr *attr, bool keep_boost)
5166{
5167        /*
5168         * If params can't change scheduling class changes aren't allowed
5169         * either.
5170         */
5171        if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5172                return;
5173
5174        __setscheduler_params(p, attr);
5175
5176        /*
5177         * Keep a potential priority boosting if called from
5178         * sched_setscheduler().
5179         */
5180        p->prio = normal_prio(p);
5181        if (keep_boost)
5182                p->prio = rt_effective_prio(p, p->prio);
5183
5184        if (dl_prio(p->prio))
5185                p->sched_class = &dl_sched_class;
5186        else if (rt_prio(p->prio))
5187                p->sched_class = &rt_sched_class;
5188        else
5189                p->sched_class = &fair_sched_class;
5190}
5191
5192/*
5193 * Check the target process has a UID that matches the current process's:
5194 */
5195static bool check_same_owner(struct task_struct *p)
5196{
5197        const struct cred *cred = current_cred(), *pcred;
5198        bool match;
5199
5200        rcu_read_lock();
5201        pcred = __task_cred(p);
5202        match = (uid_eq(cred->euid, pcred->euid) ||
5203                 uid_eq(cred->euid, pcred->uid));
5204        rcu_read_unlock();
5205        return match;
5206}
5207
5208static int __sched_setscheduler(struct task_struct *p,
5209                                const struct sched_attr *attr,
5210                                bool user, bool pi)
5211{
5212        int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5213                      MAX_RT_PRIO - 1 - attr->sched_priority;
5214        int retval, oldprio, oldpolicy = -1, queued, running;
5215        int new_effective_prio, policy = attr->sched_policy;
5216        const struct sched_class *prev_class;
5217        struct rq_flags rf;
5218        int reset_on_fork;
5219        int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5220        struct rq *rq;
5221
5222        /* The pi code expects interrupts enabled */
5223        BUG_ON(pi && in_interrupt());
5224recheck:
5225        /* Double check policy once rq lock held: */
5226        if (policy < 0) {
5227                reset_on_fork = p->sched_reset_on_fork;
5228                policy = oldpolicy = p->policy;
5229        } else {
5230                reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5231
5232                if (!valid_policy(policy))
5233                        return -EINVAL;
5234        }
5235
5236        if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5237                return -EINVAL;
5238
5239        /*
5240         * Valid priorities for SCHED_FIFO and SCHED_RR are
5241         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5242         * SCHED_BATCH and SCHED_IDLE is 0.
5243         */
5244        if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5245            (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5246                return -EINVAL;
5247        if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5248            (rt_policy(policy) != (attr->sched_priority != 0)))
5249                return -EINVAL;
5250
5251        /*
5252         * Allow unprivileged RT tasks to decrease priority:
5253         */
5254        if (user && !capable(CAP_SYS_NICE)) {
5255                if (fair_policy(policy)) {
5256                        if (attr->sched_nice < task_nice(p) &&
5257                            !can_nice(p, attr->sched_nice))
5258                                return -EPERM;
5259                }
5260
5261                if (rt_policy(policy)) {
5262                        unsigned long rlim_rtprio =
5263                                        task_rlimit(p, RLIMIT_RTPRIO);
5264
5265                        /* Can't set/change the rt policy: */
5266                        if (policy != p->policy && !rlim_rtprio)
5267                                return -EPERM;
5268
5269                        /* Can't increase priority: */
5270                        if (attr->sched_priority > p->rt_priority &&
5271                            attr->sched_priority > rlim_rtprio)
5272                                return -EPERM;
5273                }
5274
5275                 /*
5276                  * Can't set/change SCHED_DEADLINE policy at all for now
5277                  * (safest behavior); in the future we would like to allow
5278                  * unprivileged DL tasks to increase their relative deadline
5279                  * or reduce their runtime (both ways reducing utilization)
5280                  */
5281                if (dl_policy(policy))
5282                        return -EPERM;
5283
5284                /*
5285                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5286                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5287                 */
5288                if (task_has_idle_policy(p) && !idle_policy(policy)) {
5289                        if (!can_nice(p, task_nice(p)))
5290                                return -EPERM;
5291                }
5292
5293                /* Can't change other user's priorities: */
5294                if (!check_same_owner(p))
5295                        return -EPERM;
5296
5297                /* Normal users shall not reset the sched_reset_on_fork flag: */
5298                if (p->sched_reset_on_fork && !reset_on_fork)
5299                        return -EPERM;
5300        }
5301
5302        if (user) {
5303                if (attr->sched_flags & SCHED_FLAG_SUGOV)
5304                        return -EINVAL;
5305
5306                retval = security_task_setscheduler(p);
5307                if (retval)
5308                        return retval;
5309        }
5310
5311        /* Update task specific "requested" clamps */
5312        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5313                retval = uclamp_validate(p, attr);
5314                if (retval)
5315                        return retval;
5316        }
5317
5318        if (pi)
5319                cpuset_read_lock();
5320
5321        /*
5322         * Make sure no PI-waiters arrive (or leave) while we are
5323         * changing the priority of the task:
5324         *
5325         * To be able to change p->policy safely, the appropriate
5326         * runqueue lock must be held.
5327         */
5328        rq = task_rq_lock(p, &rf);
5329        update_rq_clock(rq);
5330
5331        /*
5332         * Changing the policy of the stop threads its a very bad idea:
5333         */
5334        if (p == rq->stop) {
5335                retval = -EINVAL;
5336                goto unlock;
5337        }
5338
5339        /*
5340         * If not changing anything there's no need to proceed further,
5341         * but store a possible modification of reset_on_fork.
5342         */
5343        if (unlikely(policy == p->policy)) {
5344                if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5345                        goto change;
5346                if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5347                        goto change;
5348                if (dl_policy(policy) && dl_param_changed(p, attr))
5349                        goto change;
5350                if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5351                        goto change;
5352
5353                p->sched_reset_on_fork = reset_on_fork;
5354                retval = 0;
5355                goto unlock;
5356        }
5357change:
5358
5359        if (user) {
5360#ifdef CONFIG_RT_GROUP_SCHED
5361                /*
5362                 * Do not allow realtime tasks into groups that have no runtime
5363                 * assigned.
5364                 */
5365                if (rt_bandwidth_enabled() && rt_policy(policy) &&
5366                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5367                                !task_group_is_autogroup(task_group(p))) {
5368                        retval = -EPERM;
5369                        goto unlock;
5370                }
5371#endif
5372#ifdef CONFIG_SMP
5373                if (dl_bandwidth_enabled() && dl_policy(policy) &&
5374                                !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5375                        cpumask_t *span = rq->rd->span;
5376
5377                        /*
5378                         * Don't allow tasks with an affinity mask smaller than
5379                         * the entire root_domain to become SCHED_DEADLINE. We
5380                         * will also fail if there's no bandwidth available.
5381                         */
5382                        if (!cpumask_subset(span, p->cpus_ptr) ||
5383                            rq->rd->dl_bw.bw == 0) {
5384                                retval = -EPERM;
5385                                goto unlock;
5386                        }
5387                }
5388#endif
5389        }
5390
5391        /* Re-check policy now with rq lock held: */
5392        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5393                policy = oldpolicy = -1;
5394                task_rq_unlock(rq, p, &rf);
5395                if (pi)
5396                        cpuset_read_unlock();
5397                goto recheck;
5398        }
5399
5400        /*
5401         * If setscheduling to SCHED_DEADLINE (or changing the parameters
5402         * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5403         * is available.
5404         */
5405        if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5406                retval = -EBUSY;
5407                goto unlock;
5408        }
5409
5410        p->sched_reset_on_fork = reset_on_fork;
5411        oldprio = p->prio;
5412
5413        if (pi) {
5414                /*
5415                 * Take priority boosted tasks into account. If the new
5416                 * effective priority is unchanged, we just store the new
5417                 * normal parameters and do not touch the scheduler class and
5418                 * the runqueue. This will be done when the task deboost
5419                 * itself.
5420                 */
5421                new_effective_prio = rt_effective_prio(p, newprio);
5422                if (new_effective_prio == oldprio)
5423                        queue_flags &= ~DEQUEUE_MOVE;
5424        }
5425
5426        queued = task_on_rq_queued(p);
5427        running = task_current(rq, p);
5428        if (queued)
5429                dequeue_task(rq, p, queue_flags);
5430        if (running)
5431                put_prev_task(rq, p);
5432
5433        prev_class = p->sched_class;
5434
5435        __setscheduler(rq, p, attr, pi);
5436        __setscheduler_uclamp(p, attr);
5437
5438        if (queued) {
5439                /*
5440                 * We enqueue to tail when the priority of a task is
5441                 * increased (user space view).
5442                 */
5443                if (oldprio < p->prio)
5444                        queue_flags |= ENQUEUE_HEAD;
5445
5446                enqueue_task(rq, p, queue_flags);
5447        }
5448        if (running)
5449                set_next_task(rq, p);
5450
5451        check_class_changed(rq, p, prev_class, oldprio);
5452
5453        /* Avoid rq from going away on us: */
5454        preempt_disable();
5455        task_rq_unlock(rq, p, &rf);
5456
5457        if (pi) {
5458                cpuset_read_unlock();
5459                rt_mutex_adjust_pi(p);
5460        }
5461
5462        /* Run balance callbacks after we've adjusted the PI chain: */
5463        balance_callback(rq);
5464        preempt_enable();
5465
5466        return 0;
5467
5468unlock:
5469        task_rq_unlock(rq, p, &rf);
5470        if (pi)
5471                cpuset_read_unlock();
5472        return retval;
5473}
5474
5475static int _sched_setscheduler(struct task_struct *p, int policy,
5476                               const struct sched_param *param, bool check)
5477{
5478        struct sched_attr attr = {
5479                .sched_policy   = policy,
5480                .sched_priority = param->sched_priority,
5481                .sched_nice     = PRIO_TO_NICE(p->static_prio),
5482        };
5483
5484        /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5485        if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5486                attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5487                policy &= ~SCHED_RESET_ON_FORK;
5488                attr.sched_policy = policy;
5489        }
5490
5491        return __sched_setscheduler(p, &attr, check, true);
5492}
5493/**
5494 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5495 * @p: the task in question.
5496 * @policy: new policy.
5497 * @param: structure containing the new RT priority.
5498 *
5499 * Use sched_set_fifo(), read its comment.
5500 *
5501 * Return: 0 on success. An error code otherwise.
5502 *
5503 * NOTE that the task may be already dead.
5504 */
5505int sched_setscheduler(struct task_struct *p, int policy,
5506                       const struct sched_param *param)
5507{
5508        return _sched_setscheduler(p, policy, param, true);
5509}
5510
5511int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5512{
5513        return __sched_setscheduler(p, attr, true, true);
5514}
5515
5516int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5517{
5518        return __sched_setscheduler(p, attr, false, true);
5519}
5520
5521/**
5522 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5523 * @p: the task in question.
5524 * @policy: new policy.
5525 * @param: structure containing the new RT priority.
5526 *
5527 * Just like sched_setscheduler, only don't bother checking if the
5528 * current context has permission.  For example, this is needed in
5529 * stop_machine(): we create temporary high priority worker threads,
5530 * but our caller might not have that capability.
5531 *
5532 * Return: 0 on success. An error code otherwise.
5533 */
5534int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5535                               const struct sched_param *param)
5536{
5537        return _sched_setscheduler(p, policy, param, false);
5538}
5539
5540/*
5541 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5542 * incapable of resource management, which is the one thing an OS really should
5543 * be doing.
5544 *
5545 * This is of course the reason it is limited to privileged users only.
5546 *
5547 * Worse still; it is fundamentally impossible to compose static priority
5548 * workloads. You cannot take two correctly working static prio workloads
5549 * and smash them together and still expect them to work.
5550 *
5551 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5552 *
5553 *   MAX_RT_PRIO / 2
5554 *
5555 * The administrator _MUST_ configure the system, the kernel simply doesn't
5556 * know enough information to make a sensible choice.
5557 */
5558void sched_set_fifo(struct task_struct *p)
5559{
5560        struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5561        WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5562}
5563EXPORT_SYMBOL_GPL(sched_set_fifo);
5564
5565/*
5566 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5567 */
5568void sched_set_fifo_low(struct task_struct *p)
5569{
5570        struct sched_param sp = { .sched_priority = 1 };
5571        WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5572}
5573EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5574
5575void sched_set_normal(struct task_struct *p, int nice)
5576{
5577        struct sched_attr attr = {
5578                .sched_policy = SCHED_NORMAL,
5579                .sched_nice = nice,
5580        };
5581        WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5582}
5583EXPORT_SYMBOL_GPL(sched_set_normal);
5584
5585static int
5586do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5587{
5588        struct sched_param lparam;
5589        struct task_struct *p;
5590        int retval;
5591
5592        if (!param || pid < 0)
5593                return -EINVAL;
5594        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5595                return -EFAULT;
5596
5597        rcu_read_lock();
5598        retval = -ESRCH;
5599        p = find_process_by_pid(pid);
5600        if (likely(p))
5601                get_task_struct(p);
5602        rcu_read_unlock();
5603
5604        if (likely(p)) {
5605                retval = sched_setscheduler(p, policy, &lparam);
5606                put_task_struct(p);
5607        }
5608
5609        return retval;
5610}
5611
5612/*
5613 * Mimics kernel/events/core.c perf_copy_attr().
5614 */
5615static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5616{
5617        u32 size;
5618        int ret;
5619
5620        /* Zero the full structure, so that a short copy will be nice: */
5621        memset(attr, 0, sizeof(*attr));
5622
5623        ret = get_user(size, &uattr->size);
5624        if (ret)
5625                return ret;
5626
5627        /* ABI compatibility quirk: */
5628        if (!size)
5629                size = SCHED_ATTR_SIZE_VER0;
5630        if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5631                goto err_size;
5632
5633        ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5634        if (ret) {
5635                if (ret == -E2BIG)
5636                        goto err_size;
5637                return ret;
5638        }
5639
5640        if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5641            size < SCHED_ATTR_SIZE_VER1)
5642                return -EINVAL;
5643
5644        /*
5645         * XXX: Do we want to be lenient like existing syscalls; or do we want
5646         * to be strict and return an error on out-of-bounds values?
5647         */
5648        attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5649
5650        return 0;
5651
5652err_size:
5653        put_user(sizeof(*attr), &uattr->size);
5654        return -E2BIG;
5655}
5656
5657/**
5658 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5659 * @pid: the pid in question.
5660 * @policy: new policy.
5661 * @param: structure containing the new RT priority.
5662 *
5663 * Return: 0 on success. An error code otherwise.
5664 */
5665SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5666{
5667        if (policy < 0)
5668                return -EINVAL;
5669
5670        return do_sched_setscheduler(pid, policy, param);
5671}
5672
5673/**
5674 * sys_sched_setparam - set/change the RT priority of a thread
5675 * @pid: the pid in question.
5676 * @param: structure containing the new RT priority.
5677 *
5678 * Return: 0 on success. An error code otherwise.
5679 */
5680SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5681{
5682        return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5683}
5684
5685/**
5686 * sys_sched_setattr - same as above, but with extended sched_attr
5687 * @pid: the pid in question.
5688 * @uattr: structure containing the extended parameters.
5689 * @flags: for future extension.
5690 */
5691SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5692                               unsigned int, flags)
5693{
5694        struct sched_attr attr;
5695        struct task_struct *p;
5696        int retval;
5697
5698        if (!uattr || pid < 0 || flags)
5699                return -EINVAL;
5700
5701        retval = sched_copy_attr(uattr, &attr);
5702        if (retval)
5703                return retval;
5704
5705        if ((int)attr.sched_policy < 0)
5706                return -EINVAL;
5707        if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5708                attr.sched_policy = SETPARAM_POLICY;
5709
5710        rcu_read_lock();
5711        retval = -ESRCH;
5712        p = find_process_by_pid(pid);
5713        if (likely(p))
5714                get_task_struct(p);
5715        rcu_read_unlock();
5716
5717        if (likely(p)) {
5718                retval = sched_setattr(p, &attr);
5719                put_task_struct(p);
5720        }
5721
5722        return retval;
5723}
5724
5725/**
5726 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5727 * @pid: the pid in question.
5728 *
5729 * Return: On success, the policy of the thread. Otherwise, a negative error
5730 * code.
5731 */
5732SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5733{
5734        struct task_struct *p;
5735        int retval;
5736
5737        if (pid < 0)
5738                return -EINVAL;
5739
5740        retval = -ESRCH;
5741        rcu_read_lock();
5742        p = find_process_by_pid(pid);
5743        if (p) {
5744                retval = security_task_getscheduler(p);
5745                if (!retval)
5746                        retval = p->policy
5747                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5748        }
5749        rcu_read_unlock();
5750        return retval;
5751}
5752
5753/**
5754 * sys_sched_getparam - get the RT priority of a thread
5755 * @pid: the pid in question.
5756 * @param: structure containing the RT priority.
5757 *
5758 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5759 * code.
5760 */
5761SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5762{
5763        struct sched_param lp = { .sched_priority = 0 };
5764        struct task_struct *p;
5765        int retval;
5766
5767        if (!param || pid < 0)
5768                return -EINVAL;
5769
5770        rcu_read_lock();
5771        p = find_process_by_pid(pid);
5772        retval = -ESRCH;
5773        if (!p)
5774                goto out_unlock;
5775
5776        retval = security_task_getscheduler(p);
5777        if (retval)
5778                goto out_unlock;
5779
5780        if (task_has_rt_policy(p))
5781                lp.sched_priority = p->rt_priority;
5782        rcu_read_unlock();
5783
5784        /*
5785         * This one might sleep, we cannot do it with a spinlock held ...
5786         */
5787        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5788
5789        return retval;
5790
5791out_unlock:
5792        rcu_read_unlock();
5793        return retval;
5794}
5795
5796/*
5797 * Copy the kernel size attribute structure (which might be larger
5798 * than what user-space knows about) to user-space.
5799 *
5800 * Note that all cases are valid: user-space buffer can be larger or
5801 * smaller than the kernel-space buffer. The usual case is that both
5802 * have the same size.
5803 */
5804static int
5805sched_attr_copy_to_user(struct sched_attr __user *uattr,
5806                        struct sched_attr *kattr,
5807                        unsigned int usize)
5808{
5809        unsigned int ksize = sizeof(*kattr);
5810
5811        if (!access_ok(uattr, usize))
5812                return -EFAULT;
5813
5814        /*
5815         * sched_getattr() ABI forwards and backwards compatibility:
5816         *
5817         * If usize == ksize then we just copy everything to user-space and all is good.
5818         *
5819         * If usize < ksize then we only copy as much as user-space has space for,
5820         * this keeps ABI compatibility as well. We skip the rest.
5821         *
5822         * If usize > ksize then user-space is using a newer version of the ABI,
5823         * which part the kernel doesn't know about. Just ignore it - tooling can
5824         * detect the kernel's knowledge of attributes from the attr->size value
5825         * which is set to ksize in this case.
5826         */
5827        kattr->size = min(usize, ksize);
5828
5829        if (copy_to_user(uattr, kattr, kattr->size))
5830                return -EFAULT;
5831
5832        return 0;
5833}
5834
5835/**
5836 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5837 * @pid: the pid in question.
5838 * @uattr: structure containing the extended parameters.
5839 * @usize: sizeof(attr) for fwd/bwd comp.
5840 * @flags: for future extension.
5841 */
5842SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5843                unsigned int, usize, unsigned int, flags)
5844{
5845        struct sched_attr kattr = { };
5846        struct task_struct *p;
5847        int retval;
5848
5849        if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5850            usize < SCHED_ATTR_SIZE_VER0 || flags)
5851                return -EINVAL;
5852
5853        rcu_read_lock();
5854        p = find_process_by_pid(pid);
5855        retval = -ESRCH;
5856        if (!p)
5857                goto out_unlock;
5858
5859        retval = security_task_getscheduler(p);
5860        if (retval)
5861                goto out_unlock;
5862
5863        kattr.sched_policy = p->policy;
5864        if (p->sched_reset_on_fork)
5865                kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5866        if (task_has_dl_policy(p))
5867                __getparam_dl(p, &kattr);
5868        else if (task_has_rt_policy(p))
5869                kattr.sched_priority = p->rt_priority;
5870        else
5871                kattr.sched_nice = task_nice(p);
5872
5873#ifdef CONFIG_UCLAMP_TASK
5874        /*
5875         * This could race with another potential updater, but this is fine
5876         * because it'll correctly read the old or the new value. We don't need
5877         * to guarantee who wins the race as long as it doesn't return garbage.
5878         */
5879        kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5880        kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5881#endif
5882
5883        rcu_read_unlock();
5884
5885        return sched_attr_copy_to_user(uattr, &kattr, usize);
5886
5887out_unlock:
5888        rcu_read_unlock();
5889        return retval;
5890}
5891
5892long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5893{
5894        cpumask_var_t cpus_allowed, new_mask;
5895        struct task_struct *p;
5896        int retval;
5897
5898        rcu_read_lock();
5899
5900        p = find_process_by_pid(pid);
5901        if (!p) {
5902                rcu_read_unlock();
5903                return -ESRCH;
5904        }
5905
5906        /* Prevent p going away */
5907        get_task_struct(p);
5908        rcu_read_unlock();
5909
5910        if (p->flags & PF_NO_SETAFFINITY) {
5911                retval = -EINVAL;
5912                goto out_put_task;
5913        }
5914        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5915                retval = -ENOMEM;
5916                goto out_put_task;
5917        }
5918        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5919                retval = -ENOMEM;
5920                goto out_free_cpus_allowed;
5921        }
5922        retval = -EPERM;
5923        if (!check_same_owner(p)) {
5924                rcu_read_lock();
5925                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5926                        rcu_read_unlock();
5927                        goto out_free_new_mask;
5928                }
5929                rcu_read_unlock();
5930        }
5931
5932        retval = security_task_setscheduler(p);
5933        if (retval)
5934                goto out_free_new_mask;
5935
5936
5937        cpuset_cpus_allowed(p, cpus_allowed);
5938        cpumask_and(new_mask, in_mask, cpus_allowed);
5939
5940        /*
5941         * Since bandwidth control happens on root_domain basis,
5942         * if admission test is enabled, we only admit -deadline
5943         * tasks allowed to run on all the CPUs in the task's
5944         * root_domain.
5945         */
5946#ifdef CONFIG_SMP
5947        if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5948                rcu_read_lock();
5949                if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5950                        retval = -EBUSY;
5951                        rcu_read_unlock();
5952                        goto out_free_new_mask;
5953                }
5954                rcu_read_unlock();
5955        }
5956#endif
5957again:
5958        retval = __set_cpus_allowed_ptr(p, new_mask, true);
5959
5960        if (!retval) {
5961                cpuset_cpus_allowed(p, cpus_allowed);
5962                if (!cpumask_subset(new_mask, cpus_allowed)) {
5963                        /*
5964                         * We must have raced with a concurrent cpuset
5965                         * update. Just reset the cpus_allowed to the
5966                         * cpuset's cpus_allowed
5967                         */
5968                        cpumask_copy(new_mask, cpus_allowed);
5969                        goto again;
5970                }
5971        }
5972out_free_new_mask:
5973        free_cpumask_var(new_mask);
5974out_free_cpus_allowed:
5975        free_cpumask_var(cpus_allowed);
5976out_put_task:
5977        put_task_struct(p);
5978        return retval;
5979}
5980
5981static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5982                             struct cpumask *new_mask)
5983{
5984        if (len < cpumask_size())
5985                cpumask_clear(new_mask);
5986        else if (len > cpumask_size())
5987                len = cpumask_size();
5988
5989        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5990}
5991
5992/**
5993 * sys_sched_setaffinity - set the CPU affinity of a process
5994 * @pid: pid of the process
5995 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5996 * @user_mask_ptr: user-space pointer to the new CPU mask
5997 *
5998 * Return: 0 on success. An error code otherwise.
5999 */
6000SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6001                unsigned long __user *, user_mask_ptr)
6002{
6003        cpumask_var_t new_mask;
6004        int retval;
6005
6006        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6007                return -ENOMEM;
6008
6009        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6010        if (retval == 0)
6011                retval = sched_setaffinity(pid, new_mask);
6012        free_cpumask_var(new_mask);
6013        return retval;
6014}
6015
6016long sched_getaffinity(pid_t pid, struct cpumask *mask)
6017{
6018        struct task_struct *p;
6019        unsigned long flags;
6020        int retval;
6021
6022        rcu_read_lock();
6023
6024        retval = -ESRCH;
6025        p = find_process_by_pid(pid);
6026        if (!p)
6027                goto out_unlock;
6028
6029        retval = security_task_getscheduler(p);
6030        if (retval)
6031                goto out_unlock;
6032
6033        raw_spin_lock_irqsave(&p->pi_lock, flags);
6034        cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6035        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6036
6037out_unlock:
6038        rcu_read_unlock();
6039
6040        return retval;
6041}
6042
6043/**
6044 * sys_sched_getaffinity - get the CPU affinity of a process
6045 * @pid: pid of the process
6046 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6047 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6048 *
6049 * Return: size of CPU mask copied to user_mask_ptr on success. An
6050 * error code otherwise.
6051 */
6052SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6053                unsigned long __user *, user_mask_ptr)
6054{
6055        int ret;
6056        cpumask_var_t mask;
6057
6058        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6059                return -EINVAL;
6060        if (len & (sizeof(unsigned long)-1))
6061                return -EINVAL;
6062
6063        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6064                return -ENOMEM;
6065
6066        ret = sched_getaffinity(pid, mask);
6067        if (ret == 0) {
6068                unsigned int retlen = min(len, cpumask_size());
6069
6070                if (copy_to_user(user_mask_ptr, mask, retlen))
6071                        ret = -EFAULT;
6072                else
6073                        ret = retlen;
6074        }
6075        free_cpumask_var(mask);
6076
6077        return ret;
6078}
6079
6080/**
6081 * sys_sched_yield - yield the current processor to other threads.
6082 *
6083 * This function yields the current CPU to other tasks. If there are no
6084 * other threads running on this CPU then this function will return.
6085 *
6086 * Return: 0.
6087 */
6088static void do_sched_yield(void)
6089{
6090        struct rq_flags rf;
6091        struct rq *rq;
6092
6093        rq = this_rq_lock_irq(&rf);
6094
6095        schedstat_inc(rq->yld_count);
6096        current->sched_class->yield_task(rq);
6097
6098        /*
6099         * Since we are going to call schedule() anyway, there's
6100         * no need to preempt or enable interrupts:
6101         */
6102        preempt_disable();
6103        rq_unlock(rq, &rf);
6104        sched_preempt_enable_no_resched();
6105
6106        schedule();
6107}
6108
6109SYSCALL_DEFINE0(sched_yield)
6110{
6111        do_sched_yield();
6112        return 0;
6113}
6114
6115#ifndef CONFIG_PREEMPTION
6116int __sched _cond_resched(void)
6117{
6118        if (should_resched(0)) {
6119                preempt_schedule_common();
6120                return 1;
6121        }
6122        rcu_all_qs();
6123        return 0;
6124}
6125EXPORT_SYMBOL(_cond_resched);
6126#endif
6127
6128/*
6129 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6130 * call schedule, and on return reacquire the lock.
6131 *
6132 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6133 * operations here to prevent schedule() from being called twice (once via
6134 * spin_unlock(), once by hand).
6135 */
6136int __cond_resched_lock(spinlock_t *lock)
6137{
6138        int resched = should_resched(PREEMPT_LOCK_OFFSET);
6139        int ret = 0;
6140
6141        lockdep_assert_held(lock);
6142
6143        if (spin_needbreak(lock) || resched) {
6144                spin_unlock(lock);
6145                if (resched)
6146                        preempt_schedule_common();
6147                else
6148                        cpu_relax();
6149                ret = 1;
6150                spin_lock(lock);
6151        }
6152        return ret;
6153}
6154EXPORT_SYMBOL(__cond_resched_lock);
6155
6156/**
6157 * yield - yield the current processor to other threads.
6158 *
6159 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6160 *
6161 * The scheduler is at all times free to pick the calling task as the most
6162 * eligible task to run, if removing the yield() call from your code breaks
6163 * it, its already broken.
6164 *
6165 * Typical broken usage is:
6166 *
6167 * while (!event)
6168 *      yield();
6169 *
6170 * where one assumes that yield() will let 'the other' process run that will
6171 * make event true. If the current task is a SCHED_FIFO task that will never
6172 * happen. Never use yield() as a progress guarantee!!
6173 *
6174 * If you want to use yield() to wait for something, use wait_event().
6175 * If you want to use yield() to be 'nice' for others, use cond_resched().
6176 * If you still want to use yield(), do not!
6177 */
6178void __sched yield(void)
6179{
6180        set_current_state(TASK_RUNNING);
6181        do_sched_yield();
6182}
6183EXPORT_SYMBOL(yield);
6184
6185/**
6186 * yield_to - yield the current processor to another thread in
6187 * your thread group, or accelerate that thread toward the
6188 * processor it's on.
6189 * @p: target task
6190 * @preempt: whether task preemption is allowed or not
6191 *
6192 * It's the caller's job to ensure that the target task struct
6193 * can't go away on us before we can do any checks.
6194 *
6195 * Return:
6196 *      true (>0) if we indeed boosted the target task.
6197 *      false (0) if we failed to boost the target.
6198 *      -ESRCH if there's no task to yield to.
6199 */
6200int __sched yield_to(struct task_struct *p, bool preempt)
6201{
6202        struct task_struct *curr = current;
6203        struct rq *rq, *p_rq;
6204        unsigned long flags;
6205        int yielded = 0;
6206
6207        local_irq_save(flags);
6208        rq = this_rq();
6209
6210again:
6211        p_rq = task_rq(p);
6212        /*
6213         * If we're the only runnable task on the rq and target rq also
6214         * has only one task, there's absolutely no point in yielding.
6215         */
6216        if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6217                yielded = -ESRCH;
6218                goto out_irq;
6219        }
6220
6221        double_rq_lock(rq, p_rq);
6222        if (task_rq(p) != p_rq) {
6223                double_rq_unlock(rq, p_rq);
6224                goto again;
6225        }
6226
6227        if (!curr->sched_class->yield_to_task)
6228                goto out_unlock;
6229
6230        if (curr->sched_class != p->sched_class)
6231                goto out_unlock;
6232
6233        if (task_running(p_rq, p) || p->state)
6234                goto out_unlock;
6235
6236        yielded = curr->sched_class->yield_to_task(rq, p);
6237        if (yielded) {
6238                schedstat_inc(rq->yld_count);
6239                /*
6240                 * Make p's CPU reschedule; pick_next_entity takes care of
6241                 * fairness.
6242                 */
6243                if (preempt && rq != p_rq)
6244                        resched_curr(p_rq);
6245        }
6246
6247out_unlock:
6248        double_rq_unlock(rq, p_rq);
6249out_irq:
6250        local_irq_restore(flags);
6251
6252        if (yielded > 0)
6253                schedule();
6254
6255        return yielded;
6256}
6257EXPORT_SYMBOL_GPL(yield_to);
6258
6259int io_schedule_prepare(void)
6260{
6261        int old_iowait = current->in_iowait;
6262
6263        current->in_iowait = 1;
6264        blk_schedule_flush_plug(current);
6265
6266        return old_iowait;
6267}
6268
6269void io_schedule_finish(int token)
6270{
6271        current->in_iowait = token;
6272}
6273
6274/*
6275 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6276 * that process accounting knows that this is a task in IO wait state.
6277 */
6278long __sched io_schedule_timeout(long timeout)
6279{
6280        int token;
6281        long ret;
6282
6283        token = io_schedule_prepare();
6284        ret = schedule_timeout(timeout);
6285        io_schedule_finish(token);
6286
6287        return ret;
6288}
6289EXPORT_SYMBOL(io_schedule_timeout);
6290
6291void __sched io_schedule(void)
6292{
6293        int token;
6294
6295        token = io_schedule_prepare();
6296        schedule();
6297        io_schedule_finish(token);
6298}
6299EXPORT_SYMBOL(io_schedule);
6300
6301/**
6302 * sys_sched_get_priority_max - return maximum RT priority.
6303 * @policy: scheduling class.
6304 *
6305 * Return: On success, this syscall returns the maximum
6306 * rt_priority that can be used by a given scheduling class.
6307 * On failure, a negative error code is returned.
6308 */
6309SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6310{
6311        int ret = -EINVAL;
6312
6313        switch (policy) {
6314        case SCHED_FIFO:
6315        case SCHED_RR:
6316                ret = MAX_USER_RT_PRIO-1;
6317                break;
6318        case SCHED_DEADLINE:
6319        case SCHED_NORMAL:
6320        case SCHED_BATCH:
6321        case SCHED_IDLE:
6322                ret = 0;
6323                break;
6324        }
6325        return ret;
6326}
6327
6328/**
6329 * sys_sched_get_priority_min - return minimum RT priority.
6330 * @policy: scheduling class.
6331 *
6332 * Return: On success, this syscall returns the minimum
6333 * rt_priority that can be used by a given scheduling class.
6334 * On failure, a negative error code is returned.
6335 */
6336SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6337{
6338        int ret = -EINVAL;
6339
6340        switch (policy) {
6341        case SCHED_FIFO:
6342        case SCHED_RR:
6343                ret = 1;
6344                break;
6345        case SCHED_DEADLINE:
6346        case SCHED_NORMAL:
6347        case SCHED_BATCH:
6348        case SCHED_IDLE:
6349                ret = 0;
6350        }
6351        return ret;
6352}
6353
6354static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6355{
6356        struct task_struct *p;
6357        unsigned int time_slice;
6358        struct rq_flags rf;
6359        struct rq *rq;
6360        int retval;
6361
6362        if (pid < 0)
6363                return -EINVAL;
6364
6365        retval = -ESRCH;
6366        rcu_read_lock();
6367        p = find_process_by_pid(pid);
6368        if (!p)
6369                goto out_unlock;
6370
6371        retval = security_task_getscheduler(p);
6372        if (retval)
6373                goto out_unlock;
6374
6375        rq = task_rq_lock(p, &rf);
6376        time_slice = 0;
6377        if (p->sched_class->get_rr_interval)
6378                time_slice = p->sched_class->get_rr_interval(rq, p);
6379        task_rq_unlock(rq, p, &rf);
6380
6381        rcu_read_unlock();
6382        jiffies_to_timespec64(time_slice, t);
6383        return 0;
6384
6385out_unlock:
6386        rcu_read_unlock();
6387        return retval;
6388}
6389
6390/**
6391 * sys_sched_rr_get_interval - return the default timeslice of a process.
6392 * @pid: pid of the process.
6393 * @interval: userspace pointer to the timeslice value.
6394 *
6395 * this syscall writes the default timeslice value of a given process
6396 * into the user-space timespec buffer. A value of '0' means infinity.
6397 *
6398 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6399 * an error code.
6400 */
6401SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6402                struct __kernel_timespec __user *, interval)
6403{
6404        struct timespec64 t;
6405        int retval = sched_rr_get_interval(pid, &t);
6406
6407        if (retval == 0)
6408                retval = put_timespec64(&t, interval);
6409
6410        return retval;
6411}
6412
6413#ifdef CONFIG_COMPAT_32BIT_TIME
6414SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6415                struct old_timespec32 __user *, interval)
6416{
6417        struct timespec64 t;
6418        int retval = sched_rr_get_interval(pid, &t);
6419
6420        if (retval == 0)
6421                retval = put_old_timespec32(&t, interval);
6422        return retval;
6423}
6424#endif
6425
6426void sched_show_task(struct task_struct *p)
6427{
6428        unsigned long free = 0;
6429        int ppid;
6430
6431        if (!try_get_task_stack(p))
6432                return;
6433
6434        pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6435
6436        if (p->state == TASK_RUNNING)
6437                pr_cont("  running task    ");
6438#ifdef CONFIG_DEBUG_STACK_USAGE
6439        free = stack_not_used(p);
6440#endif
6441        ppid = 0;
6442        rcu_read_lock();
6443        if (pid_alive(p))
6444                ppid = task_pid_nr(rcu_dereference(p->real_parent));
6445        rcu_read_unlock();
6446        pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6447                free, task_pid_nr(p), ppid,
6448                (unsigned long)task_thread_info(p)->flags);
6449
6450        print_worker_info(KERN_INFO, p);
6451        show_stack(p, NULL, KERN_INFO);
6452        put_task_stack(p);
6453}
6454EXPORT_SYMBOL_GPL(sched_show_task);
6455
6456static inline bool
6457state_filter_match(unsigned long state_filter, struct task_struct *p)
6458{
6459        /* no filter, everything matches */
6460        if (!state_filter)
6461                return true;
6462
6463        /* filter, but doesn't match */
6464        if (!(p->state & state_filter))
6465                return false;
6466
6467        /*
6468         * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6469         * TASK_KILLABLE).
6470         */
6471        if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6472                return false;
6473
6474        return true;
6475}
6476
6477
6478void show_state_filter(unsigned long state_filter)
6479{
6480        struct task_struct *g, *p;
6481
6482        rcu_read_lock();
6483        for_each_process_thread(g, p) {
6484                /*
6485                 * reset the NMI-timeout, listing all files on a slow
6486                 * console might take a lot of time:
6487                 * Also, reset softlockup watchdogs on all CPUs, because
6488                 * another CPU might be blocked waiting for us to process
6489                 * an IPI.
6490                 */
6491                touch_nmi_watchdog();
6492                touch_all_softlockup_watchdogs();
6493                if (state_filter_match(state_filter, p))
6494                        sched_show_task(p);
6495        }
6496
6497#ifdef CONFIG_SCHED_DEBUG
6498        if (!state_filter)
6499                sysrq_sched_debug_show();
6500#endif
6501        rcu_read_unlock();
6502        /*
6503         * Only show locks if all tasks are dumped:
6504         */
6505        if (!state_filter)
6506                debug_show_all_locks();
6507}
6508
6509/**
6510 * init_idle - set up an idle thread for a given CPU
6511 * @idle: task in question
6512 * @cpu: CPU the idle task belongs to
6513 *
6514 * NOTE: this function does not set the idle thread's NEED_RESCHED
6515 * flag, to make booting more robust.
6516 */
6517void init_idle(struct task_struct *idle, int cpu)
6518{
6519        struct rq *rq = cpu_rq(cpu);
6520        unsigned long flags;
6521
6522        __sched_fork(0, idle);
6523
6524        raw_spin_lock_irqsave(&idle->pi_lock, flags);
6525        raw_spin_lock(&rq->lock);
6526
6527        idle->state = TASK_RUNNING;
6528        idle->se.exec_start = sched_clock();
6529        idle->flags |= PF_IDLE;
6530
6531        scs_task_reset(idle);
6532        kasan_unpoison_task_stack(idle);
6533
6534#ifdef CONFIG_SMP
6535        /*
6536         * Its possible that init_idle() gets called multiple times on a task,
6537         * in that case do_set_cpus_allowed() will not do the right thing.
6538         *
6539         * And since this is boot we can forgo the serialization.
6540         */
6541        set_cpus_allowed_common(idle, cpumask_of(cpu));
6542#endif
6543        /*
6544         * We're having a chicken and egg problem, even though we are
6545         * holding rq->lock, the CPU isn't yet set to this CPU so the
6546         * lockdep check in task_group() will fail.
6547         *
6548         * Similar case to sched_fork(). / Alternatively we could
6549         * use task_rq_lock() here and obtain the other rq->lock.
6550         *
6551         * Silence PROVE_RCU
6552         */
6553        rcu_read_lock();
6554        __set_task_cpu(idle, cpu);
6555        rcu_read_unlock();
6556
6557        rq->idle = idle;
6558        rcu_assign_pointer(rq->curr, idle);
6559        idle->on_rq = TASK_ON_RQ_QUEUED;
6560#ifdef CONFIG_SMP
6561        idle->on_cpu = 1;
6562#endif
6563        raw_spin_unlock(&rq->lock);
6564        raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6565
6566        /* Set the preempt count _outside_ the spinlocks! */
6567        init_idle_preempt_count(idle, cpu);
6568
6569        /*
6570         * The idle tasks have their own, simple scheduling class:
6571         */
6572        idle->sched_class = &idle_sched_class;
6573        ftrace_graph_init_idle_task(idle, cpu);
6574        vtime_init_idle(idle, cpu);
6575#ifdef CONFIG_SMP
6576        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6577#endif
6578}
6579
6580#ifdef CONFIG_SMP
6581
6582int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6583                              const struct cpumask *trial)
6584{
6585        int ret = 1;
6586
6587        if (!cpumask_weight(cur))
6588                return ret;
6589
6590        ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6591
6592        return ret;
6593}
6594
6595int task_can_attach(struct task_struct *p,
6596                    const struct cpumask *cs_cpus_allowed)
6597{
6598        int ret = 0;
6599
6600        /*
6601         * Kthreads which disallow setaffinity shouldn't be moved
6602         * to a new cpuset; we don't want to change their CPU
6603         * affinity and isolating such threads by their set of
6604         * allowed nodes is unnecessary.  Thus, cpusets are not
6605         * applicable for such threads.  This prevents checking for
6606         * success of set_cpus_allowed_ptr() on all attached tasks
6607         * before cpus_mask may be changed.
6608         */
6609        if (p->flags & PF_NO_SETAFFINITY) {
6610                ret = -EINVAL;
6611                goto out;
6612        }
6613
6614        if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6615                                              cs_cpus_allowed))
6616                ret = dl_task_can_attach(p, cs_cpus_allowed);
6617
6618out:
6619        return ret;
6620}
6621
6622bool sched_smp_initialized __read_mostly;
6623
6624#ifdef CONFIG_NUMA_BALANCING
6625/* Migrate current task p to target_cpu */
6626int migrate_task_to(struct task_struct *p, int target_cpu)
6627{
6628        struct migration_arg arg = { p, target_cpu };
6629        int curr_cpu = task_cpu(p);
6630
6631        if (curr_cpu == target_cpu)
6632                return 0;
6633
6634        if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6635                return -EINVAL;
6636
6637        /* TODO: This is not properly updating schedstats */
6638
6639        trace_sched_move_numa(p, curr_cpu, target_cpu);
6640        return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6641}
6642
6643/*
6644 * Requeue a task on a given node and accurately track the number of NUMA
6645 * tasks on the runqueues
6646 */
6647void sched_setnuma(struct task_struct *p, int nid)
6648{
6649        bool queued, running;
6650        struct rq_flags rf;
6651        struct rq *rq;
6652
6653        rq = task_rq_lock(p, &rf);
6654        queued = task_on_rq_queued(p);
6655        running = task_current(rq, p);
6656
6657        if (queued)
6658                dequeue_task(rq, p, DEQUEUE_SAVE);
6659        if (running)
6660                put_prev_task(rq, p);
6661
6662        p->numa_preferred_nid = nid;
6663
6664        if (queued)
6665                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6666        if (running)
6667                set_next_task(rq, p);
6668        task_rq_unlock(rq, p, &rf);
6669}
6670#endif /* CONFIG_NUMA_BALANCING */
6671
6672#ifdef CONFIG_HOTPLUG_CPU
6673/*
6674 * Ensure that the idle task is using init_mm right before its CPU goes
6675 * offline.
6676 */
6677void idle_task_exit(void)
6678{
6679        struct mm_struct *mm = current->active_mm;
6680
6681        BUG_ON(cpu_online(smp_processor_id()));
6682        BUG_ON(current != this_rq()->idle);
6683
6684        if (mm != &init_mm) {
6685                switch_mm(mm, &init_mm, current);
6686                finish_arch_post_lock_switch();
6687        }
6688
6689        /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6690}
6691
6692/*
6693 * Since this CPU is going 'away' for a while, fold any nr_active delta
6694 * we might have. Assumes we're called after migrate_tasks() so that the
6695 * nr_active count is stable. We need to take the teardown thread which
6696 * is calling this into account, so we hand in adjust = 1 to the load
6697 * calculation.
6698 *
6699 * Also see the comment "Global load-average calculations".
6700 */
6701static void calc_load_migrate(struct rq *rq)
6702{
6703        long delta = calc_load_fold_active(rq, 1);
6704        if (delta)
6705                atomic_long_add(delta, &calc_load_tasks);
6706}
6707
6708static struct task_struct *__pick_migrate_task(struct rq *rq)
6709{
6710        const struct sched_class *class;
6711        struct task_struct *next;
6712
6713        for_each_class(class) {
6714                next = class->pick_next_task(rq);
6715                if (next) {
6716                        next->sched_class->put_prev_task(rq, next);
6717                        return next;
6718                }
6719        }
6720
6721        /* The idle class should always have a runnable task */
6722        BUG();
6723}
6724
6725/*
6726 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6727 * try_to_wake_up()->select_task_rq().
6728 *
6729 * Called with rq->lock held even though we'er in stop_machine() and
6730 * there's no concurrency possible, we hold the required locks anyway
6731 * because of lock validation efforts.
6732 */
6733static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6734{
6735        struct rq *rq = dead_rq;
6736        struct task_struct *next, *stop = rq->stop;
6737        struct rq_flags orf = *rf;
6738        int dest_cpu;
6739
6740        /*
6741         * Fudge the rq selection such that the below task selection loop
6742         * doesn't get stuck on the currently eligible stop task.
6743         *
6744         * We're currently inside stop_machine() and the rq is either stuck
6745         * in the stop_machine_cpu_stop() loop, or we're executing this code,
6746         * either way we should never end up calling schedule() until we're
6747         * done here.
6748         */
6749        rq->stop = NULL;
6750
6751        /*
6752         * put_prev_task() and pick_next_task() sched
6753         * class method both need to have an up-to-date
6754         * value of rq->clock[_task]
6755         */
6756        update_rq_clock(rq);
6757
6758        for (;;) {
6759                /*
6760                 * There's this thread running, bail when that's the only
6761                 * remaining thread:
6762                 */
6763                if (rq->nr_running == 1)
6764                        break;
6765
6766                next = __pick_migrate_task(rq);
6767
6768                /*
6769                 * Rules for changing task_struct::cpus_mask are holding
6770                 * both pi_lock and rq->lock, such that holding either
6771                 * stabilizes the mask.
6772                 *
6773                 * Drop rq->lock is not quite as disastrous as it usually is
6774                 * because !cpu_active at this point, which means load-balance
6775                 * will not interfere. Also, stop-machine.
6776                 */
6777                rq_unlock(rq, rf);
6778                raw_spin_lock(&next->pi_lock);
6779                rq_relock(rq, rf);
6780
6781                /*
6782                 * Since we're inside stop-machine, _nothing_ should have
6783                 * changed the task, WARN if weird stuff happened, because in
6784                 * that case the above rq->lock drop is a fail too.
6785                 */
6786                if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6787                        raw_spin_unlock(&next->pi_lock);
6788                        continue;
6789                }
6790
6791                /* Find suitable destination for @next, with force if needed. */
6792                dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6793                rq = __migrate_task(rq, rf, next, dest_cpu);
6794                if (rq != dead_rq) {
6795                        rq_unlock(rq, rf);
6796                        rq = dead_rq;
6797                        *rf = orf;
6798                        rq_relock(rq, rf);
6799                }
6800                raw_spin_unlock(&next->pi_lock);
6801        }
6802
6803        rq->stop = stop;
6804}
6805#endif /* CONFIG_HOTPLUG_CPU */
6806
6807void set_rq_online(struct rq *rq)
6808{
6809        if (!rq->online) {
6810                const struct sched_class *class;
6811
6812                cpumask_set_cpu(rq->cpu, rq->rd->online);
6813                rq->online = 1;
6814
6815                for_each_class(class) {
6816                        if (class->rq_online)
6817                                class->rq_online(rq);
6818                }
6819        }
6820}
6821
6822void set_rq_offline(struct rq *rq)
6823{
6824        if (rq->online) {
6825                const struct sched_class *class;
6826
6827                for_each_class(class) {
6828                        if (class->rq_offline)
6829                                class->rq_offline(rq);
6830                }
6831
6832                cpumask_clear_cpu(rq->cpu, rq->rd->online);
6833                rq->online = 0;
6834        }
6835}
6836
6837/*
6838 * used to mark begin/end of suspend/resume:
6839 */
6840static int num_cpus_frozen;
6841
6842/*
6843 * Update cpusets according to cpu_active mask.  If cpusets are
6844 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6845 * around partition_sched_domains().
6846 *
6847 * If we come here as part of a suspend/resume, don't touch cpusets because we
6848 * want to restore it back to its original state upon resume anyway.
6849 */
6850static void cpuset_cpu_active(void)
6851{
6852        if (cpuhp_tasks_frozen) {
6853                /*
6854                 * num_cpus_frozen tracks how many CPUs are involved in suspend
6855                 * resume sequence. As long as this is not the last online
6856                 * operation in the resume sequence, just build a single sched
6857                 * domain, ignoring cpusets.
6858                 */
6859                partition_sched_domains(1, NULL, NULL);
6860                if (--num_cpus_frozen)
6861                        return;
6862                /*
6863                 * This is the last CPU online operation. So fall through and
6864                 * restore the original sched domains by considering the
6865                 * cpuset configurations.
6866                 */
6867                cpuset_force_rebuild();
6868        }
6869        cpuset_update_active_cpus();
6870}
6871
6872static int cpuset_cpu_inactive(unsigned int cpu)
6873{
6874        if (!cpuhp_tasks_frozen) {
6875                if (dl_cpu_busy(cpu))
6876                        return -EBUSY;
6877                cpuset_update_active_cpus();
6878        } else {
6879                num_cpus_frozen++;
6880                partition_sched_domains(1, NULL, NULL);
6881        }
6882        return 0;
6883}
6884
6885int sched_cpu_activate(unsigned int cpu)
6886{
6887        struct rq *rq = cpu_rq(cpu);
6888        struct rq_flags rf;
6889
6890#ifdef CONFIG_SCHED_SMT
6891        /*
6892         * When going up, increment the number of cores with SMT present.
6893         */
6894        if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6895                static_branch_inc_cpuslocked(&sched_smt_present);
6896#endif
6897        set_cpu_active(cpu, true);
6898
6899        if (sched_smp_initialized) {
6900                sched_domains_numa_masks_set(cpu);
6901                cpuset_cpu_active();
6902        }
6903
6904        /*
6905         * Put the rq online, if not already. This happens:
6906         *
6907         * 1) In the early boot process, because we build the real domains
6908         *    after all CPUs have been brought up.
6909         *
6910         * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6911         *    domains.
6912         */
6913        rq_lock_irqsave(rq, &rf);
6914        if (rq->rd) {
6915                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6916                set_rq_online(rq);
6917        }
6918        rq_unlock_irqrestore(rq, &rf);
6919
6920        return 0;
6921}
6922
6923int sched_cpu_deactivate(unsigned int cpu)
6924{
6925        int ret;
6926
6927        set_cpu_active(cpu, false);
6928        /*
6929         * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6930         * users of this state to go away such that all new such users will
6931         * observe it.
6932         *
6933         * Do sync before park smpboot threads to take care the rcu boost case.
6934         */
6935        synchronize_rcu();
6936
6937#ifdef CONFIG_SCHED_SMT
6938        /*
6939         * When going down, decrement the number of cores with SMT present.
6940         */
6941        if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6942                static_branch_dec_cpuslocked(&sched_smt_present);
6943#endif
6944
6945        if (!sched_smp_initialized)
6946                return 0;
6947
6948        ret = cpuset_cpu_inactive(cpu);
6949        if (ret) {
6950                set_cpu_active(cpu, true);
6951                return ret;
6952        }
6953        sched_domains_numa_masks_clear(cpu);
6954        return 0;
6955}
6956
6957static void sched_rq_cpu_starting(unsigned int cpu)
6958{
6959        struct rq *rq = cpu_rq(cpu);
6960
6961        rq->calc_load_update = calc_load_update;
6962        update_max_interval();
6963}
6964
6965int sched_cpu_starting(unsigned int cpu)
6966{
6967        sched_rq_cpu_starting(cpu);
6968        sched_tick_start(cpu);
6969        return 0;
6970}
6971
6972#ifdef CONFIG_HOTPLUG_CPU
6973int sched_cpu_dying(unsigned int cpu)
6974{
6975        struct rq *rq = cpu_rq(cpu);
6976        struct rq_flags rf;
6977
6978        /* Handle pending wakeups and then migrate everything off */
6979        sched_tick_stop(cpu);
6980
6981        rq_lock_irqsave(rq, &rf);
6982        if (rq->rd) {
6983                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6984                set_rq_offline(rq);
6985        }
6986        migrate_tasks(rq, &rf);
6987        BUG_ON(rq->nr_running != 1);
6988        rq_unlock_irqrestore(rq, &rf);
6989
6990        calc_load_migrate(rq);
6991        update_max_interval();
6992        nohz_balance_exit_idle(rq);
6993        hrtick_clear(rq);
6994        return 0;
6995}
6996#endif
6997
6998void __init sched_init_smp(void)
6999{
7000        sched_init_numa();
7001
7002        /*
7003         * There's no userspace yet to cause hotplug operations; hence all the
7004         * CPU masks are stable and all blatant races in the below code cannot
7005         * happen.
7006         */
7007        mutex_lock(&sched_domains_mutex);
7008        sched_init_domains(cpu_active_mask);
7009        mutex_unlock(&sched_domains_mutex);
7010
7011        /* Move init over to a non-isolated CPU */
7012        if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7013                BUG();
7014        sched_init_granularity();
7015
7016        init_sched_rt_class();
7017        init_sched_dl_class();
7018
7019        sched_smp_initialized = true;
7020}
7021
7022static int __init migration_init(void)
7023{
7024        sched_cpu_starting(smp_processor_id());
7025        return 0;
7026}
7027early_initcall(migration_init);
7028
7029#else
7030void __init sched_init_smp(void)
7031{
7032        sched_init_granularity();
7033}
7034#endif /* CONFIG_SMP */
7035
7036int in_sched_functions(unsigned long addr)
7037{
7038        return in_lock_functions(addr) ||
7039                (addr >= (unsigned long)__sched_text_start
7040                && addr < (unsigned long)__sched_text_end);
7041}
7042
7043#ifdef CONFIG_CGROUP_SCHED
7044/*
7045 * Default task group.
7046 * Every task in system belongs to this group at bootup.
7047 */
7048struct task_group root_task_group;
7049LIST_HEAD(task_groups);
7050
7051/* Cacheline aligned slab cache for task_group */
7052static struct kmem_cache *task_group_cache __read_mostly;
7053#endif
7054
7055DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7056DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7057
7058void __init sched_init(void)
7059{
7060        unsigned long ptr = 0;
7061        int i;
7062
7063        /* Make sure the linker didn't screw up */
7064        BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7065               &fair_sched_class + 1 != &rt_sched_class ||
7066               &rt_sched_class + 1   != &dl_sched_class);
7067#ifdef CONFIG_SMP
7068        BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7069#endif
7070
7071        wait_bit_init();
7072
7073#ifdef CONFIG_FAIR_GROUP_SCHED
7074        ptr += 2 * nr_cpu_ids * sizeof(void **);
7075#endif
7076#ifdef CONFIG_RT_GROUP_SCHED
7077        ptr += 2 * nr_cpu_ids * sizeof(void **);
7078#endif
7079        if (ptr) {
7080                ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7081
7082#ifdef CONFIG_FAIR_GROUP_SCHED
7083                root_task_group.se = (struct sched_entity **)ptr;
7084                ptr += nr_cpu_ids * sizeof(void **);
7085
7086                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7087                ptr += nr_cpu_ids * sizeof(void **);
7088
7089                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7090                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7091#endif /* CONFIG_FAIR_GROUP_SCHED */
7092#ifdef CONFIG_RT_GROUP_SCHED
7093                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7094                ptr += nr_cpu_ids * sizeof(void **);
7095
7096                root_task_group.rt_rq = (struct rt_rq **)ptr;
7097                ptr += nr_cpu_ids * sizeof(void **);
7098
7099#endif /* CONFIG_RT_GROUP_SCHED */
7100        }
7101#ifdef CONFIG_CPUMASK_OFFSTACK
7102        for_each_possible_cpu(i) {
7103                per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7104                        cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7105                per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7106                        cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7107        }
7108#endif /* CONFIG_CPUMASK_OFFSTACK */
7109
7110        init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7111        init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7112
7113#ifdef CONFIG_SMP
7114        init_defrootdomain();
7115#endif
7116
7117#ifdef CONFIG_RT_GROUP_SCHED
7118        init_rt_bandwidth(&root_task_group.rt_bandwidth,
7119                        global_rt_period(), global_rt_runtime());
7120#endif /* CONFIG_RT_GROUP_SCHED */
7121
7122#ifdef CONFIG_CGROUP_SCHED
7123        task_group_cache = KMEM_CACHE(task_group, 0);
7124
7125        list_add(&root_task_group.list, &task_groups);
7126        INIT_LIST_HEAD(&root_task_group.children);
7127        INIT_LIST_HEAD(&root_task_group.siblings);
7128        autogroup_init(&init_task);
7129#endif /* CONFIG_CGROUP_SCHED */
7130
7131        for_each_possible_cpu(i) {
7132                struct rq *rq;
7133
7134                rq = cpu_rq(i);
7135                raw_spin_lock_init(&rq->lock);
7136                rq->nr_running = 0;
7137                rq->calc_load_active = 0;
7138                rq->calc_load_update = jiffies + LOAD_FREQ;
7139                init_cfs_rq(&rq->cfs);
7140                init_rt_rq(&rq->rt);
7141                init_dl_rq(&rq->dl);
7142#ifdef CONFIG_FAIR_GROUP_SCHED
7143                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7144                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7145                /*
7146                 * How much CPU bandwidth does root_task_group get?
7147                 *
7148                 * In case of task-groups formed thr' the cgroup filesystem, it
7149                 * gets 100% of the CPU resources in the system. This overall
7150                 * system CPU resource is divided among the tasks of
7151                 * root_task_group and its child task-groups in a fair manner,
7152                 * based on each entity's (task or task-group's) weight
7153                 * (se->load.weight).
7154                 *
7155                 * In other words, if root_task_group has 10 tasks of weight
7156                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7157                 * then A0's share of the CPU resource is:
7158                 *
7159                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7160                 *
7161                 * We achieve this by letting root_task_group's tasks sit
7162                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7163                 */
7164                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7165#endif /* CONFIG_FAIR_GROUP_SCHED */
7166
7167                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7168#ifdef CONFIG_RT_GROUP_SCHED
7169                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7170#endif
7171#ifdef CONFIG_SMP
7172                rq->sd = NULL;
7173                rq->rd = NULL;
7174                rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7175                rq->balance_callback = NULL;
7176                rq->active_balance = 0;
7177                rq->next_balance = jiffies;
7178                rq->push_cpu = 0;
7179                rq->cpu = i;
7180                rq->online = 0;
7181                rq->idle_stamp = 0;
7182                rq->avg_idle = 2*sysctl_sched_migration_cost;
7183                rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7184
7185                INIT_LIST_HEAD(&rq->cfs_tasks);
7186
7187                rq_attach_root(rq, &def_root_domain);
7188#ifdef CONFIG_NO_HZ_COMMON
7189                rq->last_blocked_load_update_tick = jiffies;
7190                atomic_set(&rq->nohz_flags, 0);
7191
7192                rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7193#endif
7194#endif /* CONFIG_SMP */
7195                hrtick_rq_init(rq);
7196                atomic_set(&rq->nr_iowait, 0);
7197        }
7198
7199        set_load_weight(&init_task, false);
7200
7201        /*
7202         * The boot idle thread does lazy MMU switching as well:
7203         */
7204        mmgrab(&init_mm);
7205        enter_lazy_tlb(&init_mm, current);
7206
7207        /*
7208         * Make us the idle thread. Technically, schedule() should not be
7209         * called from this thread, however somewhere below it might be,
7210         * but because we are the idle thread, we just pick up running again
7211         * when this runqueue becomes "idle".
7212         */
7213        init_idle(current, smp_processor_id());
7214
7215        calc_load_update = jiffies + LOAD_FREQ;
7216
7217#ifdef CONFIG_SMP
7218        idle_thread_set_boot_cpu();
7219#endif
7220        init_sched_fair_class();
7221
7222        init_schedstats();
7223
7224        psi_init();
7225
7226        init_uclamp();
7227
7228        scheduler_running = 1;
7229}
7230
7231#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7232static inline int preempt_count_equals(int preempt_offset)
7233{
7234        int nested = preempt_count() + rcu_preempt_depth();
7235
7236        return (nested == preempt_offset);
7237}
7238
7239void __might_sleep(const char *file, int line, int preempt_offset)
7240{
7241        /*
7242         * Blocking primitives will set (and therefore destroy) current->state,
7243         * since we will exit with TASK_RUNNING make sure we enter with it,
7244         * otherwise we will destroy state.
7245         */
7246        WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7247                        "do not call blocking ops when !TASK_RUNNING; "
7248                        "state=%lx set at [<%p>] %pS\n",
7249                        current->state,
7250                        (void *)current->task_state_change,
7251                        (void *)current->task_state_change);
7252
7253        ___might_sleep(file, line, preempt_offset);
7254}
7255EXPORT_SYMBOL(__might_sleep);
7256
7257void ___might_sleep(const char *file, int line, int preempt_offset)
7258{
7259        /* Ratelimiting timestamp: */
7260        static unsigned long prev_jiffy;
7261
7262        unsigned long preempt_disable_ip;
7263
7264        /* WARN_ON_ONCE() by default, no rate limit required: */
7265        rcu_sleep_check();
7266
7267        if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7268             !is_idle_task(current) && !current->non_block_count) ||
7269            system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7270            oops_in_progress)
7271                return;
7272
7273        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7274                return;
7275        prev_jiffy = jiffies;
7276
7277        /* Save this before calling printk(), since that will clobber it: */
7278        preempt_disable_ip = get_preempt_disable_ip(current);
7279
7280        printk(KERN_ERR
7281                "BUG: sleeping function called from invalid context at %s:%d\n",
7282                        file, line);
7283        printk(KERN_ERR
7284                "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7285                        in_atomic(), irqs_disabled(), current->non_block_count,
7286                        current->pid, current->comm);
7287
7288        if (task_stack_end_corrupted(current))
7289                printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7290
7291        debug_show_held_locks(current);
7292        if (irqs_disabled())
7293                print_irqtrace_events(current);
7294        if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7295            && !preempt_count_equals(preempt_offset)) {
7296                pr_err("Preemption disabled at:");
7297                print_ip_sym(KERN_ERR, preempt_disable_ip);
7298        }
7299        dump_stack();
7300        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7301}
7302EXPORT_SYMBOL(___might_sleep);
7303
7304void __cant_sleep(const char *file, int line, int preempt_offset)
7305{
7306        static unsigned long prev_jiffy;
7307
7308        if (irqs_disabled())
7309                return;
7310
7311        if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7312                return;
7313
7314        if (preempt_count() > preempt_offset)
7315                return;
7316
7317        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7318                return;
7319        prev_jiffy = jiffies;
7320
7321        printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7322        printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7323                        in_atomic(), irqs_disabled(),
7324                        current->pid, current->comm);
7325
7326        debug_show_held_locks(current);
7327        dump_stack();
7328        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7329}
7330EXPORT_SYMBOL_GPL(__cant_sleep);
7331#endif
7332
7333#ifdef CONFIG_MAGIC_SYSRQ
7334void normalize_rt_tasks(void)
7335{
7336        struct task_struct *g, *p;
7337        struct sched_attr attr = {
7338                .sched_policy = SCHED_NORMAL,
7339        };
7340
7341        read_lock(&tasklist_lock);
7342        for_each_process_thread(g, p) {
7343                /*
7344                 * Only normalize user tasks:
7345                 */
7346                if (p->flags & PF_KTHREAD)
7347                        continue;
7348
7349                p->se.exec_start = 0;
7350                schedstat_set(p->se.statistics.wait_start,  0);
7351                schedstat_set(p->se.statistics.sleep_start, 0);
7352                schedstat_set(p->se.statistics.block_start, 0);
7353
7354                if (!dl_task(p) && !rt_task(p)) {
7355                        /*
7356                         * Renice negative nice level userspace
7357                         * tasks back to 0:
7358                         */
7359                        if (task_nice(p) < 0)
7360                                set_user_nice(p, 0);
7361                        continue;
7362                }
7363
7364                __sched_setscheduler(p, &attr, false, false);
7365        }
7366        read_unlock(&tasklist_lock);
7367}
7368
7369#endif /* CONFIG_MAGIC_SYSRQ */
7370
7371#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7372/*
7373 * These functions are only useful for the IA64 MCA handling, or kdb.
7374 *
7375 * They can only be called when the whole system has been
7376 * stopped - every CPU needs to be quiescent, and no scheduling
7377 * activity can take place. Using them for anything else would
7378 * be a serious bug, and as a result, they aren't even visible
7379 * under any other configuration.
7380 */
7381
7382/**
7383 * curr_task - return the current task for a given CPU.
7384 * @cpu: the processor in question.
7385 *
7386 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7387 *
7388 * Return: The current task for @cpu.
7389 */
7390struct task_struct *curr_task(int cpu)
7391{
7392        return cpu_curr(cpu);
7393}
7394
7395#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7396
7397#ifdef CONFIG_IA64
7398/**
7399 * ia64_set_curr_task - set the current task for a given CPU.
7400 * @cpu: the processor in question.
7401 * @p: the task pointer to set.
7402 *
7403 * Description: This function must only be used when non-maskable interrupts
7404 * are serviced on a separate stack. It allows the architecture to switch the
7405 * notion of the current task on a CPU in a non-blocking manner. This function
7406 * must be called with all CPU's synchronized, and interrupts disabled, the
7407 * and caller must save the original value of the current task (see
7408 * curr_task() above) and restore that value before reenabling interrupts and
7409 * re-starting the system.
7410 *
7411 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7412 */
7413void ia64_set_curr_task(int cpu, struct task_struct *p)
7414{
7415        cpu_curr(cpu) = p;
7416}
7417
7418#endif
7419
7420#ifdef CONFIG_CGROUP_SCHED
7421/* task_group_lock serializes the addition/removal of task groups */
7422static DEFINE_SPINLOCK(task_group_lock);
7423
7424static inline void alloc_uclamp_sched_group(struct task_group *tg,
7425                                            struct task_group *parent)
7426{
7427#ifdef CONFIG_UCLAMP_TASK_GROUP
7428        enum uclamp_id clamp_id;
7429
7430        for_each_clamp_id(clamp_id) {
7431                uclamp_se_set(&tg->uclamp_req[clamp_id],
7432                              uclamp_none(clamp_id), false);
7433                tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7434        }
7435#endif
7436}
7437
7438static void sched_free_group(struct task_group *tg)
7439{
7440        free_fair_sched_group(tg);
7441        free_rt_sched_group(tg);
7442        autogroup_free(tg);
7443        kmem_cache_free(task_group_cache, tg);
7444}
7445
7446/* allocate runqueue etc for a new task group */
7447struct task_group *sched_create_group(struct task_group *parent)
7448{
7449        struct task_group *tg;
7450
7451        tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7452        if (!tg)
7453                return ERR_PTR(-ENOMEM);
7454
7455        if (!alloc_fair_sched_group(tg, parent))
7456                goto err;
7457
7458        if (!alloc_rt_sched_group(tg, parent))
7459                goto err;
7460
7461        alloc_uclamp_sched_group(tg, parent);
7462
7463        return tg;
7464
7465err:
7466        sched_free_group(tg);
7467        return ERR_PTR(-ENOMEM);
7468}
7469
7470void sched_online_group(struct task_group *tg, struct task_group *parent)
7471{
7472        unsigned long flags;
7473
7474        spin_lock_irqsave(&task_group_lock, flags);
7475        list_add_rcu(&tg->list, &task_groups);
7476
7477        /* Root should already exist: */
7478        WARN_ON(!parent);
7479
7480        tg->parent = parent;
7481        INIT_LIST_HEAD(&tg->children);
7482        list_add_rcu(&tg->siblings, &parent->children);
7483        spin_unlock_irqrestore(&task_group_lock, flags);
7484
7485        online_fair_sched_group(tg);
7486}
7487
7488/* rcu callback to free various structures associated with a task group */
7489static void sched_free_group_rcu(struct rcu_head *rhp)
7490{
7491        /* Now it should be safe to free those cfs_rqs: */
7492        sched_free_group(container_of(rhp, struct task_group, rcu));
7493}
7494
7495void sched_destroy_group(struct task_group *tg)
7496{
7497        /* Wait for possible concurrent references to cfs_rqs complete: */
7498        call_rcu(&tg->rcu, sched_free_group_rcu);
7499}
7500
7501void sched_offline_group(struct task_group *tg)
7502{
7503        unsigned long flags;
7504
7505        /* End participation in shares distribution: */
7506        unregister_fair_sched_group(tg);
7507
7508        spin_lock_irqsave(&task_group_lock, flags);
7509        list_del_rcu(&tg->list);
7510        list_del_rcu(&tg->siblings);
7511        spin_unlock_irqrestore(&task_group_lock, flags);
7512}
7513
7514static void sched_change_group(struct task_struct *tsk, int type)
7515{
7516        struct task_group *tg;
7517
7518        /*
7519         * All callers are synchronized by task_rq_lock(); we do not use RCU
7520         * which is pointless here. Thus, we pass "true" to task_css_check()
7521         * to prevent lockdep warnings.
7522         */
7523        tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7524                          struct task_group, css);
7525        tg = autogroup_task_group(tsk, tg);
7526        tsk->sched_task_group = tg;
7527
7528#ifdef CONFIG_FAIR_GROUP_SCHED
7529        if (tsk->sched_class->task_change_group)
7530                tsk->sched_class->task_change_group(tsk, type);
7531        else
7532#endif
7533                set_task_rq(tsk, task_cpu(tsk));
7534}
7535
7536/*
7537 * Change task's runqueue when it moves between groups.
7538 *
7539 * The caller of this function should have put the task in its new group by
7540 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7541 * its new group.
7542 */
7543void sched_move_task(struct task_struct *tsk)
7544{
7545        int queued, running, queue_flags =
7546                DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7547        struct rq_flags rf;
7548        struct rq *rq;
7549
7550        rq = task_rq_lock(tsk, &rf);
7551        update_rq_clock(rq);
7552
7553        running = task_current(rq, tsk);
7554        queued = task_on_rq_queued(tsk);
7555
7556        if (queued)
7557                dequeue_task(rq, tsk, queue_flags);
7558        if (running)
7559                put_prev_task(rq, tsk);
7560
7561        sched_change_group(tsk, TASK_MOVE_GROUP);
7562
7563        if (queued)
7564                enqueue_task(rq, tsk, queue_flags);
7565        if (running) {
7566                set_next_task(rq, tsk);
7567                /*
7568                 * After changing group, the running task may have joined a
7569                 * throttled one but it's still the running task. Trigger a
7570                 * resched to make sure that task can still run.
7571                 */
7572                resched_curr(rq);
7573        }
7574
7575        task_rq_unlock(rq, tsk, &rf);
7576}
7577
7578static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7579{
7580        return css ? container_of(css, struct task_group, css) : NULL;
7581}
7582
7583static struct cgroup_subsys_state *
7584cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7585{
7586        struct task_group *parent = css_tg(parent_css);
7587        struct task_group *tg;
7588
7589        if (!parent) {
7590                /* This is early initialization for the top cgroup */
7591                return &root_task_group.css;
7592        }
7593
7594        tg = sched_create_group(parent);
7595        if (IS_ERR(tg))
7596                return ERR_PTR(-ENOMEM);
7597
7598        return &tg->css;
7599}
7600
7601/* Expose task group only after completing cgroup initialization */
7602static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7603{
7604        struct task_group *tg = css_tg(css);
7605        struct task_group *parent = css_tg(css->parent);
7606
7607        if (parent)
7608                sched_online_group(tg, parent);
7609
7610#ifdef CONFIG_UCLAMP_TASK_GROUP
7611        /* Propagate the effective uclamp value for the new group */
7612        cpu_util_update_eff(css);
7613#endif
7614
7615        return 0;
7616}
7617
7618static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7619{
7620        struct task_group *tg = css_tg(css);
7621
7622        sched_offline_group(tg);
7623}
7624
7625static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7626{
7627        struct task_group *tg = css_tg(css);
7628
7629        /*
7630         * Relies on the RCU grace period between css_released() and this.
7631         */
7632        sched_free_group(tg);
7633}
7634
7635/*
7636 * This is called before wake_up_new_task(), therefore we really only
7637 * have to set its group bits, all the other stuff does not apply.
7638 */
7639static void cpu_cgroup_fork(struct task_struct *task)
7640{
7641        struct rq_flags rf;
7642        struct rq *rq;
7643
7644        rq = task_rq_lock(task, &rf);
7645
7646        update_rq_clock(rq);
7647        sched_change_group(task, TASK_SET_GROUP);
7648
7649        task_rq_unlock(rq, task, &rf);
7650}
7651
7652static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7653{
7654        struct task_struct *task;
7655        struct cgroup_subsys_state *css;
7656        int ret = 0;
7657
7658        cgroup_taskset_for_each(task, css, tset) {
7659#ifdef CONFIG_RT_GROUP_SCHED
7660                if (!sched_rt_can_attach(css_tg(css), task))
7661                        return -EINVAL;
7662#endif
7663                /*
7664                 * Serialize against wake_up_new_task() such that if its
7665                 * running, we're sure to observe its full state.
7666                 */
7667                raw_spin_lock_irq(&task->pi_lock);
7668                /*
7669                 * Avoid calling sched_move_task() before wake_up_new_task()
7670                 * has happened. This would lead to problems with PELT, due to
7671                 * move wanting to detach+attach while we're not attached yet.
7672                 */
7673                if (task->state == TASK_NEW)
7674                        ret = -EINVAL;
7675                raw_spin_unlock_irq(&task->pi_lock);
7676
7677                if (ret)
7678                        break;
7679        }
7680        return ret;
7681}
7682
7683static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7684{
7685        struct task_struct *task;
7686        struct cgroup_subsys_state *css;
7687
7688        cgroup_taskset_for_each(task, css, tset)
7689                sched_move_task(task);
7690}
7691
7692#ifdef CONFIG_UCLAMP_TASK_GROUP
7693static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7694{
7695        struct cgroup_subsys_state *top_css = css;
7696        struct uclamp_se *uc_parent = NULL;
7697        struct uclamp_se *uc_se = NULL;
7698        unsigned int eff[UCLAMP_CNT];
7699        enum uclamp_id clamp_id;
7700        unsigned int clamps;
7701
7702        css_for_each_descendant_pre(css, top_css) {
7703                uc_parent = css_tg(css)->parent
7704                        ? css_tg(css)->parent->uclamp : NULL;
7705
7706                for_each_clamp_id(clamp_id) {
7707                        /* Assume effective clamps matches requested clamps */
7708                        eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7709                        /* Cap effective clamps with parent's effective clamps */
7710                        if (uc_parent &&
7711                            eff[clamp_id] > uc_parent[clamp_id].value) {
7712                                eff[clamp_id] = uc_parent[clamp_id].value;
7713                        }
7714                }
7715                /* Ensure protection is always capped by limit */
7716                eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7717
7718                /* Propagate most restrictive effective clamps */
7719                clamps = 0x0;
7720                uc_se = css_tg(css)->uclamp;
7721                for_each_clamp_id(clamp_id) {
7722                        if (eff[clamp_id] == uc_se[clamp_id].value)
7723                                continue;
7724                        uc_se[clamp_id].value = eff[clamp_id];
7725                        uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7726                        clamps |= (0x1 << clamp_id);
7727                }
7728                if (!clamps) {
7729                        css = css_rightmost_descendant(css);
7730                        continue;
7731                }
7732
7733                /* Immediately update descendants RUNNABLE tasks */
7734                uclamp_update_active_tasks(css, clamps);
7735        }
7736}
7737
7738/*
7739 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7740 * C expression. Since there is no way to convert a macro argument (N) into a
7741 * character constant, use two levels of macros.
7742 */
7743#define _POW10(exp) ((unsigned int)1e##exp)
7744#define POW10(exp) _POW10(exp)
7745
7746struct uclamp_request {
7747#define UCLAMP_PERCENT_SHIFT    2
7748#define UCLAMP_PERCENT_SCALE    (100 * POW10(UCLAMP_PERCENT_SHIFT))
7749        s64 percent;
7750        u64 util;
7751        int ret;
7752};
7753
7754static inline struct uclamp_request
7755capacity_from_percent(char *buf)
7756{
7757        struct uclamp_request req = {
7758                .percent = UCLAMP_PERCENT_SCALE,
7759                .util = SCHED_CAPACITY_SCALE,
7760                .ret = 0,
7761        };
7762
7763        buf = strim(buf);
7764        if (strcmp(buf, "max")) {
7765                req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7766                                             &req.percent);
7767                if (req.ret)
7768                        return req;
7769                if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7770                        req.ret = -ERANGE;
7771                        return req;
7772                }
7773
7774                req.util = req.percent << SCHED_CAPACITY_SHIFT;
7775                req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7776        }
7777
7778        return req;
7779}
7780
7781static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7782                                size_t nbytes, loff_t off,
7783                                enum uclamp_id clamp_id)
7784{
7785        struct uclamp_request req;
7786        struct task_group *tg;
7787
7788        req = capacity_from_percent(buf);
7789        if (req.ret)
7790                return req.ret;
7791
7792        static_branch_enable(&sched_uclamp_used);
7793
7794        mutex_lock(&uclamp_mutex);
7795        rcu_read_lock();
7796
7797        tg = css_tg(of_css(of));
7798        if (tg->uclamp_req[clamp_id].value != req.util)
7799                uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7800
7801        /*
7802         * Because of not recoverable conversion rounding we keep track of the
7803         * exact requested value
7804         */
7805        tg->uclamp_pct[clamp_id] = req.percent;
7806
7807        /* Update effective clamps to track the most restrictive value */
7808        cpu_util_update_eff(of_css(of));
7809
7810        rcu_read_unlock();
7811        mutex_unlock(&uclamp_mutex);
7812
7813        return nbytes;
7814}
7815
7816static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7817                                    char *buf, size_t nbytes,
7818                                    loff_t off)
7819{
7820        return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7821}
7822
7823static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7824                                    char *buf, size_t nbytes,
7825                                    loff_t off)
7826{
7827        return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7828}
7829
7830static inline void cpu_uclamp_print(struct seq_file *sf,
7831                                    enum uclamp_id clamp_id)
7832{
7833        struct task_group *tg;
7834        u64 util_clamp;
7835        u64 percent;
7836        u32 rem;
7837
7838        rcu_read_lock();
7839        tg = css_tg(seq_css(sf));
7840        util_clamp = tg->uclamp_req[clamp_id].value;
7841        rcu_read_unlock();
7842
7843        if (util_clamp == SCHED_CAPACITY_SCALE) {
7844                seq_puts(sf, "max\n");
7845                return;
7846        }
7847
7848        percent = tg->uclamp_pct[clamp_id];
7849        percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7850        seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7851}
7852
7853static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7854{
7855        cpu_uclamp_print(sf, UCLAMP_MIN);
7856        return 0;
7857}
7858
7859static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7860{
7861        cpu_uclamp_print(sf, UCLAMP_MAX);
7862        return 0;
7863}
7864#endif /* CONFIG_UCLAMP_TASK_GROUP */
7865
7866#ifdef CONFIG_FAIR_GROUP_SCHED
7867static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7868                                struct cftype *cftype, u64 shareval)
7869{
7870        if (shareval > scale_load_down(ULONG_MAX))
7871                shareval = MAX_SHARES;
7872        return sched_group_set_shares(css_tg(css), scale_load(shareval));
7873}
7874
7875static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7876                               struct cftype *cft)
7877{
7878        struct task_group *tg = css_tg(css);
7879
7880        return (u64) scale_load_down(tg->shares);
7881}
7882
7883#ifdef CONFIG_CFS_BANDWIDTH
7884static DEFINE_MUTEX(cfs_constraints_mutex);
7885
7886const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7887static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7888/* More than 203 days if BW_SHIFT equals 20. */
7889static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7890
7891static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7892
7893static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7894{
7895        int i, ret = 0, runtime_enabled, runtime_was_enabled;
7896        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7897
7898        if (tg == &root_task_group)
7899                return -EINVAL;
7900
7901        /*
7902         * Ensure we have at some amount of bandwidth every period.  This is
7903         * to prevent reaching a state of large arrears when throttled via
7904         * entity_tick() resulting in prolonged exit starvation.
7905         */
7906        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7907                return -EINVAL;
7908
7909        /*
7910         * Likewise, bound things on the otherside by preventing insane quota
7911         * periods.  This also allows us to normalize in computing quota
7912         * feasibility.
7913         */
7914        if (period > max_cfs_quota_period)
7915                return -EINVAL;
7916
7917        /*
7918         * Bound quota to defend quota against overflow during bandwidth shift.
7919         */
7920        if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7921                return -EINVAL;
7922
7923        /*
7924         * Prevent race between setting of cfs_rq->runtime_enabled and
7925         * unthrottle_offline_cfs_rqs().
7926         */
7927        get_online_cpus();
7928        mutex_lock(&cfs_constraints_mutex);
7929        ret = __cfs_schedulable(tg, period, quota);
7930        if (ret)
7931                goto out_unlock;
7932
7933        runtime_enabled = quota != RUNTIME_INF;
7934        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7935        /*
7936         * If we need to toggle cfs_bandwidth_used, off->on must occur
7937         * before making related changes, and on->off must occur afterwards
7938         */
7939        if (runtime_enabled && !runtime_was_enabled)
7940                cfs_bandwidth_usage_inc();
7941        raw_spin_lock_irq(&cfs_b->lock);
7942        cfs_b->period = ns_to_ktime(period);
7943        cfs_b->quota = quota;
7944
7945        __refill_cfs_bandwidth_runtime(cfs_b);
7946
7947        /* Restart the period timer (if active) to handle new period expiry: */
7948        if (runtime_enabled)
7949                start_cfs_bandwidth(cfs_b);
7950
7951        raw_spin_unlock_irq(&cfs_b->lock);
7952
7953        for_each_online_cpu(i) {
7954                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7955                struct rq *rq = cfs_rq->rq;
7956                struct rq_flags rf;
7957
7958                rq_lock_irq(rq, &rf);
7959                cfs_rq->runtime_enabled = runtime_enabled;
7960                cfs_rq->runtime_remaining = 0;
7961
7962                if (cfs_rq->throttled)
7963                        unthrottle_cfs_rq(cfs_rq);
7964                rq_unlock_irq(rq, &rf);
7965        }
7966        if (runtime_was_enabled && !runtime_enabled)
7967                cfs_bandwidth_usage_dec();
7968out_unlock:
7969        mutex_unlock(&cfs_constraints_mutex);
7970        put_online_cpus();
7971
7972        return ret;
7973}
7974
7975static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7976{
7977        u64 quota, period;
7978
7979        period = ktime_to_ns(tg->cfs_bandwidth.period);
7980        if (cfs_quota_us < 0)
7981                quota = RUNTIME_INF;
7982        else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7983                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7984        else
7985                return -EINVAL;
7986
7987        return tg_set_cfs_bandwidth(tg, period, quota);
7988}
7989
7990static long tg_get_cfs_quota(struct task_group *tg)
7991{
7992        u64 quota_us;
7993
7994        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7995                return -1;
7996
7997        quota_us = tg->cfs_bandwidth.quota;
7998        do_div(quota_us, NSEC_PER_USEC);
7999
8000        return quota_us;
8001}
8002
8003static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8004{
8005        u64 quota, period;
8006
8007        if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8008                return -EINVAL;
8009
8010        period = (u64)cfs_period_us * NSEC_PER_USEC;
8011        quota = tg->cfs_bandwidth.quota;
8012
8013        return tg_set_cfs_bandwidth(tg, period, quota);
8014}
8015
8016static long tg_get_cfs_period(struct task_group *tg)
8017{
8018        u64 cfs_period_us;
8019
8020        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8021        do_div(cfs_period_us, NSEC_PER_USEC);
8022
8023        return cfs_period_us;
8024}
8025
8026static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8027                                  struct cftype *cft)
8028{
8029        return tg_get_cfs_quota(css_tg(css));
8030}
8031
8032static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8033                                   struct cftype *cftype, s64 cfs_quota_us)
8034{
8035        return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8036}
8037
8038static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8039                                   struct cftype *cft)
8040{
8041        return tg_get_cfs_period(css_tg(css));
8042}
8043
8044static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8045                                    struct cftype *cftype, u64 cfs_period_us)
8046{
8047        return tg_set_cfs_period(css_tg(css), cfs_period_us);
8048}
8049
8050struct cfs_schedulable_data {
8051        struct task_group *tg;
8052        u64 period, quota;
8053};
8054
8055/*
8056 * normalize group quota/period to be quota/max_period
8057 * note: units are usecs
8058 */
8059static u64 normalize_cfs_quota(struct task_group *tg,
8060                               struct cfs_schedulable_data *d)
8061{
8062        u64 quota, period;
8063
8064        if (tg == d->tg) {
8065                period = d->period;
8066                quota = d->quota;
8067        } else {
8068                period = tg_get_cfs_period(tg);
8069                quota = tg_get_cfs_quota(tg);
8070        }
8071
8072        /* note: these should typically be equivalent */
8073        if (quota == RUNTIME_INF || quota == -1)
8074                return RUNTIME_INF;
8075
8076        return to_ratio(period, quota);
8077}
8078
8079static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8080{
8081        struct cfs_schedulable_data *d = data;
8082        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8083        s64 quota = 0, parent_quota = -1;
8084
8085        if (!tg->parent) {
8086                quota = RUNTIME_INF;
8087        } else {
8088                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8089
8090                quota = normalize_cfs_quota(tg, d);
8091                parent_quota = parent_b->hierarchical_quota;
8092
8093                /*
8094                 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8095                 * always take the min.  On cgroup1, only inherit when no
8096                 * limit is set:
8097                 */
8098                if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8099                        quota = min(quota, parent_quota);
8100                } else {
8101                        if (quota == RUNTIME_INF)
8102                                quota = parent_quota;
8103                        else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8104                                return -EINVAL;
8105                }
8106        }
8107        cfs_b->hierarchical_quota = quota;
8108
8109        return 0;
8110}
8111
8112static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8113{
8114        int ret;
8115        struct cfs_schedulable_data data = {
8116                .tg = tg,
8117                .period = period,
8118                .quota = quota,
8119        };
8120
8121        if (quota != RUNTIME_INF) {
8122                do_div(data.period, NSEC_PER_USEC);
8123                do_div(data.quota, NSEC_PER_USEC);
8124        }
8125
8126        rcu_read_lock();
8127        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8128        rcu_read_unlock();
8129
8130        return ret;
8131}
8132
8133static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8134{
8135        struct task_group *tg = css_tg(seq_css(sf));
8136        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8137
8138        seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8139        seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8140        seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8141
8142        if (schedstat_enabled() && tg != &root_task_group) {
8143                u64 ws = 0;
8144                int i;
8145
8146                for_each_possible_cpu(i)
8147                        ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8148
8149                seq_printf(sf, "wait_sum %llu\n", ws);
8150        }
8151
8152        return 0;
8153}
8154#endif /* CONFIG_CFS_BANDWIDTH */
8155#endif /* CONFIG_FAIR_GROUP_SCHED */
8156
8157#ifdef CONFIG_RT_GROUP_SCHED
8158static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8159                                struct cftype *cft, s64 val)
8160{
8161        return sched_group_set_rt_runtime(css_tg(css), val);
8162}
8163
8164static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8165                               struct cftype *cft)
8166{
8167        return sched_group_rt_runtime(css_tg(css));
8168}
8169
8170static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8171                                    struct cftype *cftype, u64 rt_period_us)
8172{
8173        return sched_group_set_rt_period(css_tg(css), rt_period_us);
8174}
8175
8176static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8177                                   struct cftype *cft)
8178{
8179        return sched_group_rt_period(css_tg(css));
8180}
8181#endif /* CONFIG_RT_GROUP_SCHED */
8182
8183static struct cftype cpu_legacy_files[] = {
8184#ifdef CONFIG_FAIR_GROUP_SCHED
8185        {
8186                .name = "shares",
8187                .read_u64 = cpu_shares_read_u64,
8188                .write_u64 = cpu_shares_write_u64,
8189        },
8190#endif
8191#ifdef CONFIG_CFS_BANDWIDTH
8192        {
8193                .name = "cfs_quota_us",
8194                .read_s64 = cpu_cfs_quota_read_s64,
8195                .write_s64 = cpu_cfs_quota_write_s64,
8196        },
8197        {
8198                .name = "cfs_period_us",
8199                .read_u64 = cpu_cfs_period_read_u64,
8200                .write_u64 = cpu_cfs_period_write_u64,
8201        },
8202        {
8203                .name = "stat",
8204                .seq_show = cpu_cfs_stat_show,
8205        },
8206#endif
8207#ifdef CONFIG_RT_GROUP_SCHED
8208        {
8209                .name = "rt_runtime_us",
8210                .read_s64 = cpu_rt_runtime_read,
8211                .write_s64 = cpu_rt_runtime_write,
8212        },
8213        {
8214                .name = "rt_period_us",
8215                .read_u64 = cpu_rt_period_read_uint,
8216                .write_u64 = cpu_rt_period_write_uint,
8217        },
8218#endif
8219#ifdef CONFIG_UCLAMP_TASK_GROUP
8220        {
8221                .name = "uclamp.min",
8222                .flags = CFTYPE_NOT_ON_ROOT,
8223                .seq_show = cpu_uclamp_min_show,
8224                .write = cpu_uclamp_min_write,
8225        },
8226        {
8227                .name = "uclamp.max",
8228                .flags = CFTYPE_NOT_ON_ROOT,
8229                .seq_show = cpu_uclamp_max_show,
8230                .write = cpu_uclamp_max_write,
8231        },
8232#endif
8233        { }     /* Terminate */
8234};
8235
8236static int cpu_extra_stat_show(struct seq_file *sf,
8237                               struct cgroup_subsys_state *css)
8238{
8239#ifdef CONFIG_CFS_BANDWIDTH
8240        {
8241                struct task_group *tg = css_tg(css);
8242                struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243                u64 throttled_usec;
8244
8245                throttled_usec = cfs_b->throttled_time;
8246                do_div(throttled_usec, NSEC_PER_USEC);
8247
8248                seq_printf(sf, "nr_periods %d\n"
8249                           "nr_throttled %d\n"
8250                           "throttled_usec %llu\n",
8251                           cfs_b->nr_periods, cfs_b->nr_throttled,
8252                           throttled_usec);
8253        }
8254#endif
8255        return 0;
8256}
8257
8258#ifdef CONFIG_FAIR_GROUP_SCHED
8259static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8260                               struct cftype *cft)
8261{
8262        struct task_group *tg = css_tg(css);
8263        u64 weight = scale_load_down(tg->shares);
8264
8265        return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8266}
8267
8268static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8269                                struct cftype *cft, u64 weight)
8270{
8271        /*
8272         * cgroup weight knobs should use the common MIN, DFL and MAX
8273         * values which are 1, 100 and 10000 respectively.  While it loses
8274         * a bit of range on both ends, it maps pretty well onto the shares
8275         * value used by scheduler and the round-trip conversions preserve
8276         * the original value over the entire range.
8277         */
8278        if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8279                return -ERANGE;
8280
8281        weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8282
8283        return sched_group_set_shares(css_tg(css), scale_load(weight));
8284}
8285
8286static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8287                                    struct cftype *cft)
8288{
8289        unsigned long weight = scale_load_down(css_tg(css)->shares);
8290        int last_delta = INT_MAX;
8291        int prio, delta;
8292
8293        /* find the closest nice value to the current weight */
8294        for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8295                delta = abs(sched_prio_to_weight[prio] - weight);
8296                if (delta >= last_delta)
8297                        break;
8298                last_delta = delta;
8299        }
8300
8301        return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8302}
8303
8304static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8305                                     struct cftype *cft, s64 nice)
8306{
8307        unsigned long weight;
8308        int idx;
8309
8310        if (nice < MIN_NICE || nice > MAX_NICE)
8311                return -ERANGE;
8312
8313        idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8314        idx = array_index_nospec(idx, 40);
8315        weight = sched_prio_to_weight[idx];
8316
8317        return sched_group_set_shares(css_tg(css), scale_load(weight));
8318}
8319#endif
8320
8321static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8322                                                  long period, long quota)
8323{
8324        if (quota < 0)
8325                seq_puts(sf, "max");
8326        else
8327                seq_printf(sf, "%ld", quota);
8328
8329        seq_printf(sf, " %ld\n", period);
8330}
8331
8332/* caller should put the current value in *@periodp before calling */
8333static int __maybe_unused cpu_period_quota_parse(char *buf,
8334                                                 u64 *periodp, u64 *quotap)
8335{
8336        char tok[21];   /* U64_MAX */
8337
8338        if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8339                return -EINVAL;
8340
8341        *periodp *= NSEC_PER_USEC;
8342
8343        if (sscanf(tok, "%llu", quotap))
8344                *quotap *= NSEC_PER_USEC;
8345        else if (!strcmp(tok, "max"))
8346                *quotap = RUNTIME_INF;
8347        else
8348                return -EINVAL;
8349
8350        return 0;
8351}
8352
8353#ifdef CONFIG_CFS_BANDWIDTH
8354static int cpu_max_show(struct seq_file *sf, void *v)
8355{
8356        struct task_group *tg = css_tg(seq_css(sf));
8357
8358        cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8359        return 0;
8360}
8361
8362static ssize_t cpu_max_write(struct kernfs_open_file *of,
8363                             char *buf, size_t nbytes, loff_t off)
8364{
8365        struct task_group *tg = css_tg(of_css(of));
8366        u64 period = tg_get_cfs_period(tg);
8367        u64 quota;
8368        int ret;
8369
8370        ret = cpu_period_quota_parse(buf, &period, &quota);
8371        if (!ret)
8372                ret = tg_set_cfs_bandwidth(tg, period, quota);
8373        return ret ?: nbytes;
8374}
8375#endif
8376
8377static struct cftype cpu_files[] = {
8378#ifdef CONFIG_FAIR_GROUP_SCHED
8379        {
8380                .name = "weight",
8381                .flags = CFTYPE_NOT_ON_ROOT,
8382                .read_u64 = cpu_weight_read_u64,
8383                .write_u64 = cpu_weight_write_u64,
8384        },
8385        {
8386                .name = "weight.nice",
8387                .flags = CFTYPE_NOT_ON_ROOT,
8388                .read_s64 = cpu_weight_nice_read_s64,
8389                .write_s64 = cpu_weight_nice_write_s64,
8390        },
8391#endif
8392#ifdef CONFIG_CFS_BANDWIDTH
8393        {
8394                .name = "max",
8395                .flags = CFTYPE_NOT_ON_ROOT,
8396                .seq_show = cpu_max_show,
8397                .write = cpu_max_write,
8398        },
8399#endif
8400#ifdef CONFIG_UCLAMP_TASK_GROUP
8401        {
8402                .name = "uclamp.min",
8403                .flags = CFTYPE_NOT_ON_ROOT,
8404                .seq_show = cpu_uclamp_min_show,
8405                .write = cpu_uclamp_min_write,
8406        },
8407        {
8408                .name = "uclamp.max",
8409                .flags = CFTYPE_NOT_ON_ROOT,
8410                .seq_show = cpu_uclamp_max_show,
8411                .write = cpu_uclamp_max_write,
8412        },
8413#endif
8414        { }     /* terminate */
8415};
8416
8417struct cgroup_subsys cpu_cgrp_subsys = {
8418        .css_alloc      = cpu_cgroup_css_alloc,
8419        .css_online     = cpu_cgroup_css_online,
8420        .css_released   = cpu_cgroup_css_released,
8421        .css_free       = cpu_cgroup_css_free,
8422        .css_extra_stat_show = cpu_extra_stat_show,
8423        .fork           = cpu_cgroup_fork,
8424        .can_attach     = cpu_cgroup_can_attach,
8425        .attach         = cpu_cgroup_attach,
8426        .legacy_cftypes = cpu_legacy_files,
8427        .dfl_cftypes    = cpu_files,
8428        .early_init     = true,
8429        .threaded       = true,
8430};
8431
8432#endif  /* CONFIG_CGROUP_SCHED */
8433
8434void dump_cpu_task(int cpu)
8435{
8436        pr_info("Task dump for CPU %d:\n", cpu);
8437        sched_show_task(cpu_curr(cpu));
8438}
8439
8440/*
8441 * Nice levels are multiplicative, with a gentle 10% change for every
8442 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8443 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8444 * that remained on nice 0.
8445 *
8446 * The "10% effect" is relative and cumulative: from _any_ nice level,
8447 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8448 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8449 * If a task goes up by ~10% and another task goes down by ~10% then
8450 * the relative distance between them is ~25%.)
8451 */
8452const int sched_prio_to_weight[40] = {
8453 /* -20 */     88761,     71755,     56483,     46273,     36291,
8454 /* -15 */     29154,     23254,     18705,     14949,     11916,
8455 /* -10 */      9548,      7620,      6100,      4904,      3906,
8456 /*  -5 */      3121,      2501,      1991,      1586,      1277,
8457 /*   0 */      1024,       820,       655,       526,       423,
8458 /*   5 */       335,       272,       215,       172,       137,
8459 /*  10 */       110,        87,        70,        56,        45,
8460 /*  15 */        36,        29,        23,        18,        15,
8461};
8462
8463/*
8464 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8465 *
8466 * In cases where the weight does not change often, we can use the
8467 * precalculated inverse to speed up arithmetics by turning divisions
8468 * into multiplications:
8469 */
8470const u32 sched_prio_to_wmult[40] = {
8471 /* -20 */     48388,     59856,     76040,     92818,    118348,
8472 /* -15 */    147320,    184698,    229616,    287308,    360437,
8473 /* -10 */    449829,    563644,    704093,    875809,   1099582,
8474 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8475 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8476 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8477 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8478 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8479};
8480
8481void call_trace_sched_update_nr_running(struct rq *rq, int count)
8482{
8483        trace_sched_update_nr_running_tp(rq, count);
8484}
8485