linux/kernel/time/tick-sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/module.h>
  24#include <linux/irq_work.h>
  25#include <linux/posix-timers.h>
  26#include <linux/context_tracking.h>
  27#include <linux/mm.h>
  28
  29#include <asm/irq_regs.h>
  30
  31#include "tick-internal.h"
  32
  33#include <trace/events/timer.h>
  34
  35/*
  36 * Per-CPU nohz control structure
  37 */
  38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  39
  40struct tick_sched *tick_get_tick_sched(int cpu)
  41{
  42        return &per_cpu(tick_cpu_sched, cpu);
  43}
  44
  45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  46/*
  47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  48 */
  49static ktime_t last_jiffies_update;
  50
  51/*
  52 * Must be called with interrupts disabled !
  53 */
  54static void tick_do_update_jiffies64(ktime_t now)
  55{
  56        unsigned long ticks = 0;
  57        ktime_t delta;
  58
  59        /*
  60         * Do a quick check without holding jiffies_lock:
  61         * The READ_ONCE() pairs with two updates done later in this function.
  62         */
  63        delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
  64        if (delta < tick_period)
  65                return;
  66
  67        /* Reevaluate with jiffies_lock held */
  68        raw_spin_lock(&jiffies_lock);
  69        write_seqcount_begin(&jiffies_seq);
  70
  71        delta = ktime_sub(now, last_jiffies_update);
  72        if (delta >= tick_period) {
  73
  74                delta = ktime_sub(delta, tick_period);
  75                /* Pairs with the lockless read in this function. */
  76                WRITE_ONCE(last_jiffies_update,
  77                           ktime_add(last_jiffies_update, tick_period));
  78
  79                /* Slow path for long timeouts */
  80                if (unlikely(delta >= tick_period)) {
  81                        s64 incr = ktime_to_ns(tick_period);
  82
  83                        ticks = ktime_divns(delta, incr);
  84
  85                        /* Pairs with the lockless read in this function. */
  86                        WRITE_ONCE(last_jiffies_update,
  87                                   ktime_add_ns(last_jiffies_update,
  88                                                incr * ticks));
  89                }
  90                do_timer(++ticks);
  91
  92                /* Keep the tick_next_period variable up to date */
  93                tick_next_period = ktime_add(last_jiffies_update, tick_period);
  94        } else {
  95                write_seqcount_end(&jiffies_seq);
  96                raw_spin_unlock(&jiffies_lock);
  97                return;
  98        }
  99        write_seqcount_end(&jiffies_seq);
 100        raw_spin_unlock(&jiffies_lock);
 101        update_wall_time();
 102}
 103
 104/*
 105 * Initialize and return retrieve the jiffies update.
 106 */
 107static ktime_t tick_init_jiffy_update(void)
 108{
 109        ktime_t period;
 110
 111        raw_spin_lock(&jiffies_lock);
 112        write_seqcount_begin(&jiffies_seq);
 113        /* Did we start the jiffies update yet ? */
 114        if (last_jiffies_update == 0)
 115                last_jiffies_update = tick_next_period;
 116        period = last_jiffies_update;
 117        write_seqcount_end(&jiffies_seq);
 118        raw_spin_unlock(&jiffies_lock);
 119        return period;
 120}
 121
 122static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 123{
 124        int cpu = smp_processor_id();
 125
 126#ifdef CONFIG_NO_HZ_COMMON
 127        /*
 128         * Check if the do_timer duty was dropped. We don't care about
 129         * concurrency: This happens only when the CPU in charge went
 130         * into a long sleep. If two CPUs happen to assign themselves to
 131         * this duty, then the jiffies update is still serialized by
 132         * jiffies_lock.
 133         *
 134         * If nohz_full is enabled, this should not happen because the
 135         * tick_do_timer_cpu never relinquishes.
 136         */
 137        if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 138#ifdef CONFIG_NO_HZ_FULL
 139                WARN_ON(tick_nohz_full_running);
 140#endif
 141                tick_do_timer_cpu = cpu;
 142        }
 143#endif
 144
 145        /* Check, if the jiffies need an update */
 146        if (tick_do_timer_cpu == cpu)
 147                tick_do_update_jiffies64(now);
 148
 149        if (ts->inidle)
 150                ts->got_idle_tick = 1;
 151}
 152
 153static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 154{
 155#ifdef CONFIG_NO_HZ_COMMON
 156        /*
 157         * When we are idle and the tick is stopped, we have to touch
 158         * the watchdog as we might not schedule for a really long
 159         * time. This happens on complete idle SMP systems while
 160         * waiting on the login prompt. We also increment the "start of
 161         * idle" jiffy stamp so the idle accounting adjustment we do
 162         * when we go busy again does not account too much ticks.
 163         */
 164        if (ts->tick_stopped) {
 165                touch_softlockup_watchdog_sched();
 166                if (is_idle_task(current))
 167                        ts->idle_jiffies++;
 168                /*
 169                 * In case the current tick fired too early past its expected
 170                 * expiration, make sure we don't bypass the next clock reprogramming
 171                 * to the same deadline.
 172                 */
 173                ts->next_tick = 0;
 174        }
 175#endif
 176        update_process_times(user_mode(regs));
 177        profile_tick(CPU_PROFILING);
 178}
 179#endif
 180
 181#ifdef CONFIG_NO_HZ_FULL
 182cpumask_var_t tick_nohz_full_mask;
 183bool tick_nohz_full_running;
 184EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 185static atomic_t tick_dep_mask;
 186
 187static bool check_tick_dependency(atomic_t *dep)
 188{
 189        int val = atomic_read(dep);
 190
 191        if (val & TICK_DEP_MASK_POSIX_TIMER) {
 192                trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 193                return true;
 194        }
 195
 196        if (val & TICK_DEP_MASK_PERF_EVENTS) {
 197                trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 198                return true;
 199        }
 200
 201        if (val & TICK_DEP_MASK_SCHED) {
 202                trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 203                return true;
 204        }
 205
 206        if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 207                trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 208                return true;
 209        }
 210
 211        if (val & TICK_DEP_MASK_RCU) {
 212                trace_tick_stop(0, TICK_DEP_MASK_RCU);
 213                return true;
 214        }
 215
 216        return false;
 217}
 218
 219static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 220{
 221        lockdep_assert_irqs_disabled();
 222
 223        if (unlikely(!cpu_online(cpu)))
 224                return false;
 225
 226        if (check_tick_dependency(&tick_dep_mask))
 227                return false;
 228
 229        if (check_tick_dependency(&ts->tick_dep_mask))
 230                return false;
 231
 232        if (check_tick_dependency(&current->tick_dep_mask))
 233                return false;
 234
 235        if (check_tick_dependency(&current->signal->tick_dep_mask))
 236                return false;
 237
 238        return true;
 239}
 240
 241static void nohz_full_kick_func(struct irq_work *work)
 242{
 243        /* Empty, the tick restart happens on tick_nohz_irq_exit() */
 244}
 245
 246static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 247        .func = nohz_full_kick_func,
 248        .flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ),
 249};
 250
 251/*
 252 * Kick this CPU if it's full dynticks in order to force it to
 253 * re-evaluate its dependency on the tick and restart it if necessary.
 254 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 255 * is NMI safe.
 256 */
 257static void tick_nohz_full_kick(void)
 258{
 259        if (!tick_nohz_full_cpu(smp_processor_id()))
 260                return;
 261
 262        irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 263}
 264
 265/*
 266 * Kick the CPU if it's full dynticks in order to force it to
 267 * re-evaluate its dependency on the tick and restart it if necessary.
 268 */
 269void tick_nohz_full_kick_cpu(int cpu)
 270{
 271        if (!tick_nohz_full_cpu(cpu))
 272                return;
 273
 274        irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 275}
 276
 277/*
 278 * Kick all full dynticks CPUs in order to force these to re-evaluate
 279 * their dependency on the tick and restart it if necessary.
 280 */
 281static void tick_nohz_full_kick_all(void)
 282{
 283        int cpu;
 284
 285        if (!tick_nohz_full_running)
 286                return;
 287
 288        preempt_disable();
 289        for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 290                tick_nohz_full_kick_cpu(cpu);
 291        preempt_enable();
 292}
 293
 294static void tick_nohz_dep_set_all(atomic_t *dep,
 295                                  enum tick_dep_bits bit)
 296{
 297        int prev;
 298
 299        prev = atomic_fetch_or(BIT(bit), dep);
 300        if (!prev)
 301                tick_nohz_full_kick_all();
 302}
 303
 304/*
 305 * Set a global tick dependency. Used by perf events that rely on freq and
 306 * by unstable clock.
 307 */
 308void tick_nohz_dep_set(enum tick_dep_bits bit)
 309{
 310        tick_nohz_dep_set_all(&tick_dep_mask, bit);
 311}
 312
 313void tick_nohz_dep_clear(enum tick_dep_bits bit)
 314{
 315        atomic_andnot(BIT(bit), &tick_dep_mask);
 316}
 317
 318/*
 319 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 320 * manage events throttling.
 321 */
 322void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 323{
 324        int prev;
 325        struct tick_sched *ts;
 326
 327        ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 328
 329        prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 330        if (!prev) {
 331                preempt_disable();
 332                /* Perf needs local kick that is NMI safe */
 333                if (cpu == smp_processor_id()) {
 334                        tick_nohz_full_kick();
 335                } else {
 336                        /* Remote irq work not NMI-safe */
 337                        if (!WARN_ON_ONCE(in_nmi()))
 338                                tick_nohz_full_kick_cpu(cpu);
 339                }
 340                preempt_enable();
 341        }
 342}
 343EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 344
 345void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 346{
 347        struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 348
 349        atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 350}
 351EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 352
 353/*
 354 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
 355 * in order to elapse per task timers.
 356 */
 357void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 358{
 359        if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
 360                if (tsk == current) {
 361                        preempt_disable();
 362                        tick_nohz_full_kick();
 363                        preempt_enable();
 364                } else {
 365                        /*
 366                         * Some future tick_nohz_full_kick_task()
 367                         * should optimize this.
 368                         */
 369                        tick_nohz_full_kick_all();
 370                }
 371        }
 372}
 373EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 374
 375void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 376{
 377        atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 378}
 379EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 380
 381/*
 382 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 383 * per process timers.
 384 */
 385void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 386{
 387        tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 388}
 389
 390void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 391{
 392        atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 393}
 394
 395/*
 396 * Re-evaluate the need for the tick as we switch the current task.
 397 * It might need the tick due to per task/process properties:
 398 * perf events, posix CPU timers, ...
 399 */
 400void __tick_nohz_task_switch(void)
 401{
 402        unsigned long flags;
 403        struct tick_sched *ts;
 404
 405        local_irq_save(flags);
 406
 407        if (!tick_nohz_full_cpu(smp_processor_id()))
 408                goto out;
 409
 410        ts = this_cpu_ptr(&tick_cpu_sched);
 411
 412        if (ts->tick_stopped) {
 413                if (atomic_read(&current->tick_dep_mask) ||
 414                    atomic_read(&current->signal->tick_dep_mask))
 415                        tick_nohz_full_kick();
 416        }
 417out:
 418        local_irq_restore(flags);
 419}
 420
 421/* Get the boot-time nohz CPU list from the kernel parameters. */
 422void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 423{
 424        alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 425        cpumask_copy(tick_nohz_full_mask, cpumask);
 426        tick_nohz_full_running = true;
 427}
 428EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
 429
 430static int tick_nohz_cpu_down(unsigned int cpu)
 431{
 432        /*
 433         * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 434         * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 435         * CPUs. It must remain online when nohz full is enabled.
 436         */
 437        if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 438                return -EBUSY;
 439        return 0;
 440}
 441
 442void __init tick_nohz_init(void)
 443{
 444        int cpu, ret;
 445
 446        if (!tick_nohz_full_running)
 447                return;
 448
 449        /*
 450         * Full dynticks uses irq work to drive the tick rescheduling on safe
 451         * locking contexts. But then we need irq work to raise its own
 452         * interrupts to avoid circular dependency on the tick
 453         */
 454        if (!arch_irq_work_has_interrupt()) {
 455                pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 456                cpumask_clear(tick_nohz_full_mask);
 457                tick_nohz_full_running = false;
 458                return;
 459        }
 460
 461        if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 462                        !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 463                cpu = smp_processor_id();
 464
 465                if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 466                        pr_warn("NO_HZ: Clearing %d from nohz_full range "
 467                                "for timekeeping\n", cpu);
 468                        cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 469                }
 470        }
 471
 472        for_each_cpu(cpu, tick_nohz_full_mask)
 473                context_tracking_cpu_set(cpu);
 474
 475        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 476                                        "kernel/nohz:predown", NULL,
 477                                        tick_nohz_cpu_down);
 478        WARN_ON(ret < 0);
 479        pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 480                cpumask_pr_args(tick_nohz_full_mask));
 481}
 482#endif
 483
 484/*
 485 * NOHZ - aka dynamic tick functionality
 486 */
 487#ifdef CONFIG_NO_HZ_COMMON
 488/*
 489 * NO HZ enabled ?
 490 */
 491bool tick_nohz_enabled __read_mostly  = true;
 492unsigned long tick_nohz_active  __read_mostly;
 493/*
 494 * Enable / Disable tickless mode
 495 */
 496static int __init setup_tick_nohz(char *str)
 497{
 498        return (kstrtobool(str, &tick_nohz_enabled) == 0);
 499}
 500
 501__setup("nohz=", setup_tick_nohz);
 502
 503bool tick_nohz_tick_stopped(void)
 504{
 505        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 506
 507        return ts->tick_stopped;
 508}
 509
 510bool tick_nohz_tick_stopped_cpu(int cpu)
 511{
 512        struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 513
 514        return ts->tick_stopped;
 515}
 516
 517/**
 518 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 519 *
 520 * Called from interrupt entry when the CPU was idle
 521 *
 522 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 523 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 524 * value. We do this unconditionally on any CPU, as we don't know whether the
 525 * CPU, which has the update task assigned is in a long sleep.
 526 */
 527static void tick_nohz_update_jiffies(ktime_t now)
 528{
 529        unsigned long flags;
 530
 531        __this_cpu_write(tick_cpu_sched.idle_waketime, now);
 532
 533        local_irq_save(flags);
 534        tick_do_update_jiffies64(now);
 535        local_irq_restore(flags);
 536
 537        touch_softlockup_watchdog_sched();
 538}
 539
 540/*
 541 * Updates the per-CPU time idle statistics counters
 542 */
 543static void
 544update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 545{
 546        ktime_t delta;
 547
 548        if (ts->idle_active) {
 549                delta = ktime_sub(now, ts->idle_entrytime);
 550                if (nr_iowait_cpu(cpu) > 0)
 551                        ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 552                else
 553                        ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 554                ts->idle_entrytime = now;
 555        }
 556
 557        if (last_update_time)
 558                *last_update_time = ktime_to_us(now);
 559
 560}
 561
 562static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 563{
 564        update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 565        ts->idle_active = 0;
 566
 567        sched_clock_idle_wakeup_event();
 568}
 569
 570static void tick_nohz_start_idle(struct tick_sched *ts)
 571{
 572        ts->idle_entrytime = ktime_get();
 573        ts->idle_active = 1;
 574        sched_clock_idle_sleep_event();
 575}
 576
 577/**
 578 * get_cpu_idle_time_us - get the total idle time of a CPU
 579 * @cpu: CPU number to query
 580 * @last_update_time: variable to store update time in. Do not update
 581 * counters if NULL.
 582 *
 583 * Return the cumulative idle time (since boot) for a given
 584 * CPU, in microseconds.
 585 *
 586 * This time is measured via accounting rather than sampling,
 587 * and is as accurate as ktime_get() is.
 588 *
 589 * This function returns -1 if NOHZ is not enabled.
 590 */
 591u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 592{
 593        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 594        ktime_t now, idle;
 595
 596        if (!tick_nohz_active)
 597                return -1;
 598
 599        now = ktime_get();
 600        if (last_update_time) {
 601                update_ts_time_stats(cpu, ts, now, last_update_time);
 602                idle = ts->idle_sleeptime;
 603        } else {
 604                if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 605                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 606
 607                        idle = ktime_add(ts->idle_sleeptime, delta);
 608                } else {
 609                        idle = ts->idle_sleeptime;
 610                }
 611        }
 612
 613        return ktime_to_us(idle);
 614
 615}
 616EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 617
 618/**
 619 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 620 * @cpu: CPU number to query
 621 * @last_update_time: variable to store update time in. Do not update
 622 * counters if NULL.
 623 *
 624 * Return the cumulative iowait time (since boot) for a given
 625 * CPU, in microseconds.
 626 *
 627 * This time is measured via accounting rather than sampling,
 628 * and is as accurate as ktime_get() is.
 629 *
 630 * This function returns -1 if NOHZ is not enabled.
 631 */
 632u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 633{
 634        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 635        ktime_t now, iowait;
 636
 637        if (!tick_nohz_active)
 638                return -1;
 639
 640        now = ktime_get();
 641        if (last_update_time) {
 642                update_ts_time_stats(cpu, ts, now, last_update_time);
 643                iowait = ts->iowait_sleeptime;
 644        } else {
 645                if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 646                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 647
 648                        iowait = ktime_add(ts->iowait_sleeptime, delta);
 649                } else {
 650                        iowait = ts->iowait_sleeptime;
 651                }
 652        }
 653
 654        return ktime_to_us(iowait);
 655}
 656EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 657
 658static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 659{
 660        hrtimer_cancel(&ts->sched_timer);
 661        hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 662
 663        /* Forward the time to expire in the future */
 664        hrtimer_forward(&ts->sched_timer, now, tick_period);
 665
 666        if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 667                hrtimer_start_expires(&ts->sched_timer,
 668                                      HRTIMER_MODE_ABS_PINNED_HARD);
 669        } else {
 670                tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 671        }
 672
 673        /*
 674         * Reset to make sure next tick stop doesn't get fooled by past
 675         * cached clock deadline.
 676         */
 677        ts->next_tick = 0;
 678}
 679
 680static inline bool local_timer_softirq_pending(void)
 681{
 682        return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 683}
 684
 685static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 686{
 687        u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 688        unsigned long basejiff;
 689        unsigned int seq;
 690
 691        /* Read jiffies and the time when jiffies were updated last */
 692        do {
 693                seq = read_seqcount_begin(&jiffies_seq);
 694                basemono = last_jiffies_update;
 695                basejiff = jiffies;
 696        } while (read_seqcount_retry(&jiffies_seq, seq));
 697        ts->last_jiffies = basejiff;
 698        ts->timer_expires_base = basemono;
 699
 700        /*
 701         * Keep the periodic tick, when RCU, architecture or irq_work
 702         * requests it.
 703         * Aside of that check whether the local timer softirq is
 704         * pending. If so its a bad idea to call get_next_timer_interrupt()
 705         * because there is an already expired timer, so it will request
 706         * immeditate expiry, which rearms the hardware timer with a
 707         * minimal delta which brings us back to this place
 708         * immediately. Lather, rinse and repeat...
 709         */
 710        if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 711            irq_work_needs_cpu() || local_timer_softirq_pending()) {
 712                next_tick = basemono + TICK_NSEC;
 713        } else {
 714                /*
 715                 * Get the next pending timer. If high resolution
 716                 * timers are enabled this only takes the timer wheel
 717                 * timers into account. If high resolution timers are
 718                 * disabled this also looks at the next expiring
 719                 * hrtimer.
 720                 */
 721                next_tmr = get_next_timer_interrupt(basejiff, basemono);
 722                ts->next_timer = next_tmr;
 723                /* Take the next rcu event into account */
 724                next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 725        }
 726
 727        /*
 728         * If the tick is due in the next period, keep it ticking or
 729         * force prod the timer.
 730         */
 731        delta = next_tick - basemono;
 732        if (delta <= (u64)TICK_NSEC) {
 733                /*
 734                 * Tell the timer code that the base is not idle, i.e. undo
 735                 * the effect of get_next_timer_interrupt():
 736                 */
 737                timer_clear_idle();
 738                /*
 739                 * We've not stopped the tick yet, and there's a timer in the
 740                 * next period, so no point in stopping it either, bail.
 741                 */
 742                if (!ts->tick_stopped) {
 743                        ts->timer_expires = 0;
 744                        goto out;
 745                }
 746        }
 747
 748        /*
 749         * If this CPU is the one which had the do_timer() duty last, we limit
 750         * the sleep time to the timekeeping max_deferment value.
 751         * Otherwise we can sleep as long as we want.
 752         */
 753        delta = timekeeping_max_deferment();
 754        if (cpu != tick_do_timer_cpu &&
 755            (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 756                delta = KTIME_MAX;
 757
 758        /* Calculate the next expiry time */
 759        if (delta < (KTIME_MAX - basemono))
 760                expires = basemono + delta;
 761        else
 762                expires = KTIME_MAX;
 763
 764        ts->timer_expires = min_t(u64, expires, next_tick);
 765
 766out:
 767        return ts->timer_expires;
 768}
 769
 770static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 771{
 772        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 773        u64 basemono = ts->timer_expires_base;
 774        u64 expires = ts->timer_expires;
 775        ktime_t tick = expires;
 776
 777        /* Make sure we won't be trying to stop it twice in a row. */
 778        ts->timer_expires_base = 0;
 779
 780        /*
 781         * If this CPU is the one which updates jiffies, then give up
 782         * the assignment and let it be taken by the CPU which runs
 783         * the tick timer next, which might be this CPU as well. If we
 784         * don't drop this here the jiffies might be stale and
 785         * do_timer() never invoked. Keep track of the fact that it
 786         * was the one which had the do_timer() duty last.
 787         */
 788        if (cpu == tick_do_timer_cpu) {
 789                tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 790                ts->do_timer_last = 1;
 791        } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 792                ts->do_timer_last = 0;
 793        }
 794
 795        /* Skip reprogram of event if its not changed */
 796        if (ts->tick_stopped && (expires == ts->next_tick)) {
 797                /* Sanity check: make sure clockevent is actually programmed */
 798                if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 799                        return;
 800
 801                WARN_ON_ONCE(1);
 802                printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 803                            basemono, ts->next_tick, dev->next_event,
 804                            hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 805        }
 806
 807        /*
 808         * nohz_stop_sched_tick can be called several times before
 809         * the nohz_restart_sched_tick is called. This happens when
 810         * interrupts arrive which do not cause a reschedule. In the
 811         * first call we save the current tick time, so we can restart
 812         * the scheduler tick in nohz_restart_sched_tick.
 813         */
 814        if (!ts->tick_stopped) {
 815                calc_load_nohz_start();
 816                quiet_vmstat();
 817
 818                ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 819                ts->tick_stopped = 1;
 820                trace_tick_stop(1, TICK_DEP_MASK_NONE);
 821        }
 822
 823        ts->next_tick = tick;
 824
 825        /*
 826         * If the expiration time == KTIME_MAX, then we simply stop
 827         * the tick timer.
 828         */
 829        if (unlikely(expires == KTIME_MAX)) {
 830                if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 831                        hrtimer_cancel(&ts->sched_timer);
 832                return;
 833        }
 834
 835        if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 836                hrtimer_start(&ts->sched_timer, tick,
 837                              HRTIMER_MODE_ABS_PINNED_HARD);
 838        } else {
 839                hrtimer_set_expires(&ts->sched_timer, tick);
 840                tick_program_event(tick, 1);
 841        }
 842}
 843
 844static void tick_nohz_retain_tick(struct tick_sched *ts)
 845{
 846        ts->timer_expires_base = 0;
 847}
 848
 849#ifdef CONFIG_NO_HZ_FULL
 850static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 851{
 852        if (tick_nohz_next_event(ts, cpu))
 853                tick_nohz_stop_tick(ts, cpu);
 854        else
 855                tick_nohz_retain_tick(ts);
 856}
 857#endif /* CONFIG_NO_HZ_FULL */
 858
 859static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 860{
 861        /* Update jiffies first */
 862        tick_do_update_jiffies64(now);
 863
 864        /*
 865         * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 866         * the clock forward checks in the enqueue path:
 867         */
 868        timer_clear_idle();
 869
 870        calc_load_nohz_stop();
 871        touch_softlockup_watchdog_sched();
 872        /*
 873         * Cancel the scheduled timer and restore the tick
 874         */
 875        ts->tick_stopped  = 0;
 876        ts->idle_exittime = now;
 877
 878        tick_nohz_restart(ts, now);
 879}
 880
 881static void tick_nohz_full_update_tick(struct tick_sched *ts)
 882{
 883#ifdef CONFIG_NO_HZ_FULL
 884        int cpu = smp_processor_id();
 885
 886        if (!tick_nohz_full_cpu(cpu))
 887                return;
 888
 889        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 890                return;
 891
 892        if (can_stop_full_tick(cpu, ts))
 893                tick_nohz_stop_sched_tick(ts, cpu);
 894        else if (ts->tick_stopped)
 895                tick_nohz_restart_sched_tick(ts, ktime_get());
 896#endif
 897}
 898
 899static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 900{
 901        /*
 902         * If this CPU is offline and it is the one which updates
 903         * jiffies, then give up the assignment and let it be taken by
 904         * the CPU which runs the tick timer next. If we don't drop
 905         * this here the jiffies might be stale and do_timer() never
 906         * invoked.
 907         */
 908        if (unlikely(!cpu_online(cpu))) {
 909                if (cpu == tick_do_timer_cpu)
 910                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 911                /*
 912                 * Make sure the CPU doesn't get fooled by obsolete tick
 913                 * deadline if it comes back online later.
 914                 */
 915                ts->next_tick = 0;
 916                return false;
 917        }
 918
 919        if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 920                return false;
 921
 922        if (need_resched())
 923                return false;
 924
 925        if (unlikely(local_softirq_pending())) {
 926                static int ratelimit;
 927
 928                if (ratelimit < 10 &&
 929                    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 930                        pr_warn("NOHZ: local_softirq_pending %02x\n",
 931                                (unsigned int) local_softirq_pending());
 932                        ratelimit++;
 933                }
 934                return false;
 935        }
 936
 937        if (tick_nohz_full_enabled()) {
 938                /*
 939                 * Keep the tick alive to guarantee timekeeping progression
 940                 * if there are full dynticks CPUs around
 941                 */
 942                if (tick_do_timer_cpu == cpu)
 943                        return false;
 944                /*
 945                 * Boot safety: make sure the timekeeping duty has been
 946                 * assigned before entering dyntick-idle mode,
 947                 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
 948                 */
 949                if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
 950                        return false;
 951
 952                /* Should not happen for nohz-full */
 953                if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 954                        return false;
 955        }
 956
 957        return true;
 958}
 959
 960static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 961{
 962        ktime_t expires;
 963        int cpu = smp_processor_id();
 964
 965        /*
 966         * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 967         * tick timer expiration time is known already.
 968         */
 969        if (ts->timer_expires_base)
 970                expires = ts->timer_expires;
 971        else if (can_stop_idle_tick(cpu, ts))
 972                expires = tick_nohz_next_event(ts, cpu);
 973        else
 974                return;
 975
 976        ts->idle_calls++;
 977
 978        if (expires > 0LL) {
 979                int was_stopped = ts->tick_stopped;
 980
 981                tick_nohz_stop_tick(ts, cpu);
 982
 983                ts->idle_sleeps++;
 984                ts->idle_expires = expires;
 985
 986                if (!was_stopped && ts->tick_stopped) {
 987                        ts->idle_jiffies = ts->last_jiffies;
 988                        nohz_balance_enter_idle(cpu);
 989                }
 990        } else {
 991                tick_nohz_retain_tick(ts);
 992        }
 993}
 994
 995/**
 996 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 997 *
 998 * When the next event is more than a tick into the future, stop the idle tick
 999 */
1000void tick_nohz_idle_stop_tick(void)
1001{
1002        __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1003}
1004
1005void tick_nohz_idle_retain_tick(void)
1006{
1007        tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1008        /*
1009         * Undo the effect of get_next_timer_interrupt() called from
1010         * tick_nohz_next_event().
1011         */
1012        timer_clear_idle();
1013}
1014
1015/**
1016 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1017 *
1018 * Called when we start the idle loop.
1019 */
1020void tick_nohz_idle_enter(void)
1021{
1022        struct tick_sched *ts;
1023
1024        lockdep_assert_irqs_enabled();
1025
1026        local_irq_disable();
1027
1028        ts = this_cpu_ptr(&tick_cpu_sched);
1029
1030        WARN_ON_ONCE(ts->timer_expires_base);
1031
1032        ts->inidle = 1;
1033        tick_nohz_start_idle(ts);
1034
1035        local_irq_enable();
1036}
1037
1038/**
1039 * tick_nohz_irq_exit - update next tick event from interrupt exit
1040 *
1041 * When an interrupt fires while we are idle and it doesn't cause
1042 * a reschedule, it may still add, modify or delete a timer, enqueue
1043 * an RCU callback, etc...
1044 * So we need to re-calculate and reprogram the next tick event.
1045 */
1046void tick_nohz_irq_exit(void)
1047{
1048        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1049
1050        if (ts->inidle)
1051                tick_nohz_start_idle(ts);
1052        else
1053                tick_nohz_full_update_tick(ts);
1054}
1055
1056/**
1057 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1058 */
1059bool tick_nohz_idle_got_tick(void)
1060{
1061        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1062
1063        if (ts->got_idle_tick) {
1064                ts->got_idle_tick = 0;
1065                return true;
1066        }
1067        return false;
1068}
1069
1070/**
1071 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1072 * or the tick, whatever that expires first. Note that, if the tick has been
1073 * stopped, it returns the next hrtimer.
1074 *
1075 * Called from power state control code with interrupts disabled
1076 */
1077ktime_t tick_nohz_get_next_hrtimer(void)
1078{
1079        return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1080}
1081
1082/**
1083 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1084 * @delta_next: duration until the next event if the tick cannot be stopped
1085 *
1086 * Called from power state control code with interrupts disabled
1087 */
1088ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1089{
1090        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1091        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1092        int cpu = smp_processor_id();
1093        /*
1094         * The idle entry time is expected to be a sufficient approximation of
1095         * the current time at this point.
1096         */
1097        ktime_t now = ts->idle_entrytime;
1098        ktime_t next_event;
1099
1100        WARN_ON_ONCE(!ts->inidle);
1101
1102        *delta_next = ktime_sub(dev->next_event, now);
1103
1104        if (!can_stop_idle_tick(cpu, ts))
1105                return *delta_next;
1106
1107        next_event = tick_nohz_next_event(ts, cpu);
1108        if (!next_event)
1109                return *delta_next;
1110
1111        /*
1112         * If the next highres timer to expire is earlier than next_event, the
1113         * idle governor needs to know that.
1114         */
1115        next_event = min_t(u64, next_event,
1116                           hrtimer_next_event_without(&ts->sched_timer));
1117
1118        return ktime_sub(next_event, now);
1119}
1120
1121/**
1122 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1123 * for a particular CPU.
1124 *
1125 * Called from the schedutil frequency scaling governor in scheduler context.
1126 */
1127unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1128{
1129        struct tick_sched *ts = tick_get_tick_sched(cpu);
1130
1131        return ts->idle_calls;
1132}
1133
1134/**
1135 * tick_nohz_get_idle_calls - return the current idle calls counter value
1136 *
1137 * Called from the schedutil frequency scaling governor in scheduler context.
1138 */
1139unsigned long tick_nohz_get_idle_calls(void)
1140{
1141        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1142
1143        return ts->idle_calls;
1144}
1145
1146static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1147{
1148#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1149        unsigned long ticks;
1150
1151        if (vtime_accounting_enabled_this_cpu())
1152                return;
1153        /*
1154         * We stopped the tick in idle. Update process times would miss the
1155         * time we slept as update_process_times does only a 1 tick
1156         * accounting. Enforce that this is accounted to idle !
1157         */
1158        ticks = jiffies - ts->idle_jiffies;
1159        /*
1160         * We might be one off. Do not randomly account a huge number of ticks!
1161         */
1162        if (ticks && ticks < LONG_MAX)
1163                account_idle_ticks(ticks);
1164#endif
1165}
1166
1167static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1168{
1169        tick_nohz_restart_sched_tick(ts, now);
1170        tick_nohz_account_idle_ticks(ts);
1171}
1172
1173void tick_nohz_idle_restart_tick(void)
1174{
1175        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1176
1177        if (ts->tick_stopped)
1178                __tick_nohz_idle_restart_tick(ts, ktime_get());
1179}
1180
1181/**
1182 * tick_nohz_idle_exit - restart the idle tick from the idle task
1183 *
1184 * Restart the idle tick when the CPU is woken up from idle
1185 * This also exit the RCU extended quiescent state. The CPU
1186 * can use RCU again after this function is called.
1187 */
1188void tick_nohz_idle_exit(void)
1189{
1190        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1191        bool idle_active, tick_stopped;
1192        ktime_t now;
1193
1194        local_irq_disable();
1195
1196        WARN_ON_ONCE(!ts->inidle);
1197        WARN_ON_ONCE(ts->timer_expires_base);
1198
1199        ts->inidle = 0;
1200        idle_active = ts->idle_active;
1201        tick_stopped = ts->tick_stopped;
1202
1203        if (idle_active || tick_stopped)
1204                now = ktime_get();
1205
1206        if (idle_active)
1207                tick_nohz_stop_idle(ts, now);
1208
1209        if (tick_stopped)
1210                __tick_nohz_idle_restart_tick(ts, now);
1211
1212        local_irq_enable();
1213}
1214
1215/*
1216 * The nohz low res interrupt handler
1217 */
1218static void tick_nohz_handler(struct clock_event_device *dev)
1219{
1220        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1221        struct pt_regs *regs = get_irq_regs();
1222        ktime_t now = ktime_get();
1223
1224        dev->next_event = KTIME_MAX;
1225
1226        tick_sched_do_timer(ts, now);
1227        tick_sched_handle(ts, regs);
1228
1229        /* No need to reprogram if we are running tickless  */
1230        if (unlikely(ts->tick_stopped))
1231                return;
1232
1233        hrtimer_forward(&ts->sched_timer, now, tick_period);
1234        tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1235}
1236
1237static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1238{
1239        if (!tick_nohz_enabled)
1240                return;
1241        ts->nohz_mode = mode;
1242        /* One update is enough */
1243        if (!test_and_set_bit(0, &tick_nohz_active))
1244                timers_update_nohz();
1245}
1246
1247/**
1248 * tick_nohz_switch_to_nohz - switch to nohz mode
1249 */
1250static void tick_nohz_switch_to_nohz(void)
1251{
1252        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1253        ktime_t next;
1254
1255        if (!tick_nohz_enabled)
1256                return;
1257
1258        if (tick_switch_to_oneshot(tick_nohz_handler))
1259                return;
1260
1261        /*
1262         * Recycle the hrtimer in ts, so we can share the
1263         * hrtimer_forward with the highres code.
1264         */
1265        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1266        /* Get the next period */
1267        next = tick_init_jiffy_update();
1268
1269        hrtimer_set_expires(&ts->sched_timer, next);
1270        hrtimer_forward_now(&ts->sched_timer, tick_period);
1271        tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1272        tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1273}
1274
1275static inline void tick_nohz_irq_enter(void)
1276{
1277        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1278        ktime_t now;
1279
1280        if (!ts->idle_active && !ts->tick_stopped)
1281                return;
1282        now = ktime_get();
1283        if (ts->idle_active)
1284                tick_nohz_stop_idle(ts, now);
1285        if (ts->tick_stopped)
1286                tick_nohz_update_jiffies(now);
1287}
1288
1289#else
1290
1291static inline void tick_nohz_switch_to_nohz(void) { }
1292static inline void tick_nohz_irq_enter(void) { }
1293static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1294
1295#endif /* CONFIG_NO_HZ_COMMON */
1296
1297/*
1298 * Called from irq_enter to notify about the possible interruption of idle()
1299 */
1300void tick_irq_enter(void)
1301{
1302        tick_check_oneshot_broadcast_this_cpu();
1303        tick_nohz_irq_enter();
1304}
1305
1306/*
1307 * High resolution timer specific code
1308 */
1309#ifdef CONFIG_HIGH_RES_TIMERS
1310/*
1311 * We rearm the timer until we get disabled by the idle code.
1312 * Called with interrupts disabled.
1313 */
1314static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1315{
1316        struct tick_sched *ts =
1317                container_of(timer, struct tick_sched, sched_timer);
1318        struct pt_regs *regs = get_irq_regs();
1319        ktime_t now = ktime_get();
1320
1321        tick_sched_do_timer(ts, now);
1322
1323        /*
1324         * Do not call, when we are not in irq context and have
1325         * no valid regs pointer
1326         */
1327        if (regs)
1328                tick_sched_handle(ts, regs);
1329        else
1330                ts->next_tick = 0;
1331
1332        /* No need to reprogram if we are in idle or full dynticks mode */
1333        if (unlikely(ts->tick_stopped))
1334                return HRTIMER_NORESTART;
1335
1336        hrtimer_forward(timer, now, tick_period);
1337
1338        return HRTIMER_RESTART;
1339}
1340
1341static int sched_skew_tick;
1342
1343static int __init skew_tick(char *str)
1344{
1345        get_option(&str, &sched_skew_tick);
1346
1347        return 0;
1348}
1349early_param("skew_tick", skew_tick);
1350
1351/**
1352 * tick_setup_sched_timer - setup the tick emulation timer
1353 */
1354void tick_setup_sched_timer(void)
1355{
1356        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1357        ktime_t now = ktime_get();
1358
1359        /*
1360         * Emulate tick processing via per-CPU hrtimers:
1361         */
1362        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1363        ts->sched_timer.function = tick_sched_timer;
1364
1365        /* Get the next period (per-CPU) */
1366        hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1367
1368        /* Offset the tick to avert jiffies_lock contention. */
1369        if (sched_skew_tick) {
1370                u64 offset = ktime_to_ns(tick_period) >> 1;
1371                do_div(offset, num_possible_cpus());
1372                offset *= smp_processor_id();
1373                hrtimer_add_expires_ns(&ts->sched_timer, offset);
1374        }
1375
1376        hrtimer_forward(&ts->sched_timer, now, tick_period);
1377        hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1378        tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1379}
1380#endif /* HIGH_RES_TIMERS */
1381
1382#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1383void tick_cancel_sched_timer(int cpu)
1384{
1385        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1386
1387# ifdef CONFIG_HIGH_RES_TIMERS
1388        if (ts->sched_timer.base)
1389                hrtimer_cancel(&ts->sched_timer);
1390# endif
1391
1392        memset(ts, 0, sizeof(*ts));
1393}
1394#endif
1395
1396/**
1397 * Async notification about clocksource changes
1398 */
1399void tick_clock_notify(void)
1400{
1401        int cpu;
1402
1403        for_each_possible_cpu(cpu)
1404                set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1405}
1406
1407/*
1408 * Async notification about clock event changes
1409 */
1410void tick_oneshot_notify(void)
1411{
1412        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1413
1414        set_bit(0, &ts->check_clocks);
1415}
1416
1417/**
1418 * Check, if a change happened, which makes oneshot possible.
1419 *
1420 * Called cyclic from the hrtimer softirq (driven by the timer
1421 * softirq) allow_nohz signals, that we can switch into low-res nohz
1422 * mode, because high resolution timers are disabled (either compile
1423 * or runtime). Called with interrupts disabled.
1424 */
1425int tick_check_oneshot_change(int allow_nohz)
1426{
1427        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1428
1429        if (!test_and_clear_bit(0, &ts->check_clocks))
1430                return 0;
1431
1432        if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1433                return 0;
1434
1435        if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1436                return 0;
1437
1438        if (!allow_nohz)
1439                return 1;
1440
1441        tick_nohz_switch_to_nohz();
1442        return 0;
1443}
1444