linux/kernel/time/timekeeping.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel timekeeping code and accessor functions. Based on code from
   4 *  timer.c, moved in commit 8524070b7982.
   5 */
   6#include <linux/timekeeper_internal.h>
   7#include <linux/module.h>
   8#include <linux/interrupt.h>
   9#include <linux/percpu.h>
  10#include <linux/init.h>
  11#include <linux/mm.h>
  12#include <linux/nmi.h>
  13#include <linux/sched.h>
  14#include <linux/sched/loadavg.h>
  15#include <linux/sched/clock.h>
  16#include <linux/syscore_ops.h>
  17#include <linux/clocksource.h>
  18#include <linux/jiffies.h>
  19#include <linux/time.h>
  20#include <linux/tick.h>
  21#include <linux/stop_machine.h>
  22#include <linux/pvclock_gtod.h>
  23#include <linux/compiler.h>
  24#include <linux/audit.h>
  25
  26#include "tick-internal.h"
  27#include "ntp_internal.h"
  28#include "timekeeping_internal.h"
  29
  30#define TK_CLEAR_NTP            (1 << 0)
  31#define TK_MIRROR               (1 << 1)
  32#define TK_CLOCK_WAS_SET        (1 << 2)
  33
  34enum timekeeping_adv_mode {
  35        /* Update timekeeper when a tick has passed */
  36        TK_ADV_TICK,
  37
  38        /* Update timekeeper on a direct frequency change */
  39        TK_ADV_FREQ
  40};
  41
  42DEFINE_RAW_SPINLOCK(timekeeper_lock);
  43
  44/*
  45 * The most important data for readout fits into a single 64 byte
  46 * cache line.
  47 */
  48static struct {
  49        seqcount_raw_spinlock_t seq;
  50        struct timekeeper       timekeeper;
  51} tk_core ____cacheline_aligned = {
  52        .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
  53};
  54
  55static struct timekeeper shadow_timekeeper;
  56
  57/**
  58 * struct tk_fast - NMI safe timekeeper
  59 * @seq:        Sequence counter for protecting updates. The lowest bit
  60 *              is the index for the tk_read_base array
  61 * @base:       tk_read_base array. Access is indexed by the lowest bit of
  62 *              @seq.
  63 *
  64 * See @update_fast_timekeeper() below.
  65 */
  66struct tk_fast {
  67        seqcount_raw_spinlock_t seq;
  68        struct tk_read_base     base[2];
  69};
  70
  71/* Suspend-time cycles value for halted fast timekeeper. */
  72static u64 cycles_at_suspend;
  73
  74static u64 dummy_clock_read(struct clocksource *cs)
  75{
  76        return cycles_at_suspend;
  77}
  78
  79static struct clocksource dummy_clock = {
  80        .read = dummy_clock_read,
  81};
  82
  83static struct tk_fast tk_fast_mono ____cacheline_aligned = {
  84        .seq     = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_mono.seq, &timekeeper_lock),
  85        .base[0] = { .clock = &dummy_clock, },
  86        .base[1] = { .clock = &dummy_clock, },
  87};
  88
  89static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
  90        .seq     = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_raw.seq, &timekeeper_lock),
  91        .base[0] = { .clock = &dummy_clock, },
  92        .base[1] = { .clock = &dummy_clock, },
  93};
  94
  95/* flag for if timekeeping is suspended */
  96int __read_mostly timekeeping_suspended;
  97
  98static inline void tk_normalize_xtime(struct timekeeper *tk)
  99{
 100        while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
 101                tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
 102                tk->xtime_sec++;
 103        }
 104        while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
 105                tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
 106                tk->raw_sec++;
 107        }
 108}
 109
 110static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
 111{
 112        struct timespec64 ts;
 113
 114        ts.tv_sec = tk->xtime_sec;
 115        ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 116        return ts;
 117}
 118
 119static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
 120{
 121        tk->xtime_sec = ts->tv_sec;
 122        tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
 123}
 124
 125static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
 126{
 127        tk->xtime_sec += ts->tv_sec;
 128        tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
 129        tk_normalize_xtime(tk);
 130}
 131
 132static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
 133{
 134        struct timespec64 tmp;
 135
 136        /*
 137         * Verify consistency of: offset_real = -wall_to_monotonic
 138         * before modifying anything
 139         */
 140        set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 141                                        -tk->wall_to_monotonic.tv_nsec);
 142        WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
 143        tk->wall_to_monotonic = wtm;
 144        set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 145        tk->offs_real = timespec64_to_ktime(tmp);
 146        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 147}
 148
 149static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 150{
 151        tk->offs_boot = ktime_add(tk->offs_boot, delta);
 152        /*
 153         * Timespec representation for VDSO update to avoid 64bit division
 154         * on every update.
 155         */
 156        tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
 157}
 158
 159/*
 160 * tk_clock_read - atomic clocksource read() helper
 161 *
 162 * This helper is necessary to use in the read paths because, while the
 163 * seqcount ensures we don't return a bad value while structures are updated,
 164 * it doesn't protect from potential crashes. There is the possibility that
 165 * the tkr's clocksource may change between the read reference, and the
 166 * clock reference passed to the read function.  This can cause crashes if
 167 * the wrong clocksource is passed to the wrong read function.
 168 * This isn't necessary to use when holding the timekeeper_lock or doing
 169 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 170 * and update logic).
 171 */
 172static inline u64 tk_clock_read(const struct tk_read_base *tkr)
 173{
 174        struct clocksource *clock = READ_ONCE(tkr->clock);
 175
 176        return clock->read(clock);
 177}
 178
 179#ifdef CONFIG_DEBUG_TIMEKEEPING
 180#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 181
 182static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 183{
 184
 185        u64 max_cycles = tk->tkr_mono.clock->max_cycles;
 186        const char *name = tk->tkr_mono.clock->name;
 187
 188        if (offset > max_cycles) {
 189                printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 190                                offset, name, max_cycles);
 191                printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 192        } else {
 193                if (offset > (max_cycles >> 1)) {
 194                        printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 195                                        offset, name, max_cycles >> 1);
 196                        printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 197                }
 198        }
 199
 200        if (tk->underflow_seen) {
 201                if (jiffies - tk->last_warning > WARNING_FREQ) {
 202                        printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 203                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 204                        printk_deferred("         Your kernel is probably still fine.\n");
 205                        tk->last_warning = jiffies;
 206                }
 207                tk->underflow_seen = 0;
 208        }
 209
 210        if (tk->overflow_seen) {
 211                if (jiffies - tk->last_warning > WARNING_FREQ) {
 212                        printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 213                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 214                        printk_deferred("         Your kernel is probably still fine.\n");
 215                        tk->last_warning = jiffies;
 216                }
 217                tk->overflow_seen = 0;
 218        }
 219}
 220
 221static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 222{
 223        struct timekeeper *tk = &tk_core.timekeeper;
 224        u64 now, last, mask, max, delta;
 225        unsigned int seq;
 226
 227        /*
 228         * Since we're called holding a seqcount, the data may shift
 229         * under us while we're doing the calculation. This can cause
 230         * false positives, since we'd note a problem but throw the
 231         * results away. So nest another seqcount here to atomically
 232         * grab the points we are checking with.
 233         */
 234        do {
 235                seq = read_seqcount_begin(&tk_core.seq);
 236                now = tk_clock_read(tkr);
 237                last = tkr->cycle_last;
 238                mask = tkr->mask;
 239                max = tkr->clock->max_cycles;
 240        } while (read_seqcount_retry(&tk_core.seq, seq));
 241
 242        delta = clocksource_delta(now, last, mask);
 243
 244        /*
 245         * Try to catch underflows by checking if we are seeing small
 246         * mask-relative negative values.
 247         */
 248        if (unlikely((~delta & mask) < (mask >> 3))) {
 249                tk->underflow_seen = 1;
 250                delta = 0;
 251        }
 252
 253        /* Cap delta value to the max_cycles values to avoid mult overflows */
 254        if (unlikely(delta > max)) {
 255                tk->overflow_seen = 1;
 256                delta = tkr->clock->max_cycles;
 257        }
 258
 259        return delta;
 260}
 261#else
 262static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 263{
 264}
 265static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 266{
 267        u64 cycle_now, delta;
 268
 269        /* read clocksource */
 270        cycle_now = tk_clock_read(tkr);
 271
 272        /* calculate the delta since the last update_wall_time */
 273        delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 274
 275        return delta;
 276}
 277#endif
 278
 279/**
 280 * tk_setup_internals - Set up internals to use clocksource clock.
 281 *
 282 * @tk:         The target timekeeper to setup.
 283 * @clock:              Pointer to clocksource.
 284 *
 285 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 286 * pair and interval request.
 287 *
 288 * Unless you're the timekeeping code, you should not be using this!
 289 */
 290static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 291{
 292        u64 interval;
 293        u64 tmp, ntpinterval;
 294        struct clocksource *old_clock;
 295
 296        ++tk->cs_was_changed_seq;
 297        old_clock = tk->tkr_mono.clock;
 298        tk->tkr_mono.clock = clock;
 299        tk->tkr_mono.mask = clock->mask;
 300        tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
 301
 302        tk->tkr_raw.clock = clock;
 303        tk->tkr_raw.mask = clock->mask;
 304        tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 305
 306        /* Do the ns -> cycle conversion first, using original mult */
 307        tmp = NTP_INTERVAL_LENGTH;
 308        tmp <<= clock->shift;
 309        ntpinterval = tmp;
 310        tmp += clock->mult/2;
 311        do_div(tmp, clock->mult);
 312        if (tmp == 0)
 313                tmp = 1;
 314
 315        interval = (u64) tmp;
 316        tk->cycle_interval = interval;
 317
 318        /* Go back from cycles -> shifted ns */
 319        tk->xtime_interval = interval * clock->mult;
 320        tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 321        tk->raw_interval = interval * clock->mult;
 322
 323         /* if changing clocks, convert xtime_nsec shift units */
 324        if (old_clock) {
 325                int shift_change = clock->shift - old_clock->shift;
 326                if (shift_change < 0) {
 327                        tk->tkr_mono.xtime_nsec >>= -shift_change;
 328                        tk->tkr_raw.xtime_nsec >>= -shift_change;
 329                } else {
 330                        tk->tkr_mono.xtime_nsec <<= shift_change;
 331                        tk->tkr_raw.xtime_nsec <<= shift_change;
 332                }
 333        }
 334
 335        tk->tkr_mono.shift = clock->shift;
 336        tk->tkr_raw.shift = clock->shift;
 337
 338        tk->ntp_error = 0;
 339        tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 340        tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 341
 342        /*
 343         * The timekeeper keeps its own mult values for the currently
 344         * active clocksource. These value will be adjusted via NTP
 345         * to counteract clock drifting.
 346         */
 347        tk->tkr_mono.mult = clock->mult;
 348        tk->tkr_raw.mult = clock->mult;
 349        tk->ntp_err_mult = 0;
 350        tk->skip_second_overflow = 0;
 351}
 352
 353/* Timekeeper helper functions. */
 354
 355#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 356static u32 default_arch_gettimeoffset(void) { return 0; }
 357u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 358#else
 359static inline u32 arch_gettimeoffset(void) { return 0; }
 360#endif
 361
 362static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
 363{
 364        u64 nsec;
 365
 366        nsec = delta * tkr->mult + tkr->xtime_nsec;
 367        nsec >>= tkr->shift;
 368
 369        /* If arch requires, add in get_arch_timeoffset() */
 370        return nsec + arch_gettimeoffset();
 371}
 372
 373static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
 374{
 375        u64 delta;
 376
 377        delta = timekeeping_get_delta(tkr);
 378        return timekeeping_delta_to_ns(tkr, delta);
 379}
 380
 381static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
 382{
 383        u64 delta;
 384
 385        /* calculate the delta since the last update_wall_time */
 386        delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 387        return timekeeping_delta_to_ns(tkr, delta);
 388}
 389
 390/**
 391 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 392 * @tkr: Timekeeping readout base from which we take the update
 393 *
 394 * We want to use this from any context including NMI and tracing /
 395 * instrumenting the timekeeping code itself.
 396 *
 397 * Employ the latch technique; see @raw_write_seqcount_latch.
 398 *
 399 * So if a NMI hits the update of base[0] then it will use base[1]
 400 * which is still consistent. In the worst case this can result is a
 401 * slightly wrong timestamp (a few nanoseconds). See
 402 * @ktime_get_mono_fast_ns.
 403 */
 404static void update_fast_timekeeper(const struct tk_read_base *tkr,
 405                                   struct tk_fast *tkf)
 406{
 407        struct tk_read_base *base = tkf->base;
 408
 409        /* Force readers off to base[1] */
 410        raw_write_seqcount_latch(&tkf->seq);
 411
 412        /* Update base[0] */
 413        memcpy(base, tkr, sizeof(*base));
 414
 415        /* Force readers back to base[0] */
 416        raw_write_seqcount_latch(&tkf->seq);
 417
 418        /* Update base[1] */
 419        memcpy(base + 1, base, sizeof(*base));
 420}
 421
 422/**
 423 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 424 *
 425 * This timestamp is not guaranteed to be monotonic across an update.
 426 * The timestamp is calculated by:
 427 *
 428 *      now = base_mono + clock_delta * slope
 429 *
 430 * So if the update lowers the slope, readers who are forced to the
 431 * not yet updated second array are still using the old steeper slope.
 432 *
 433 * tmono
 434 * ^
 435 * |    o  n
 436 * |   o n
 437 * |  u
 438 * | o
 439 * |o
 440 * |12345678---> reader order
 441 *
 442 * o = old slope
 443 * u = update
 444 * n = new slope
 445 *
 446 * So reader 6 will observe time going backwards versus reader 5.
 447 *
 448 * While other CPUs are likely to be able observe that, the only way
 449 * for a CPU local observation is when an NMI hits in the middle of
 450 * the update. Timestamps taken from that NMI context might be ahead
 451 * of the following timestamps. Callers need to be aware of that and
 452 * deal with it.
 453 */
 454static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 455{
 456        struct tk_read_base *tkr;
 457        unsigned int seq;
 458        u64 now;
 459
 460        do {
 461                seq = raw_read_seqcount_latch(&tkf->seq);
 462                tkr = tkf->base + (seq & 0x01);
 463                now = ktime_to_ns(tkr->base);
 464
 465                now += timekeeping_delta_to_ns(tkr,
 466                                clocksource_delta(
 467                                        tk_clock_read(tkr),
 468                                        tkr->cycle_last,
 469                                        tkr->mask));
 470        } while (read_seqcount_retry(&tkf->seq, seq));
 471
 472        return now;
 473}
 474
 475u64 ktime_get_mono_fast_ns(void)
 476{
 477        return __ktime_get_fast_ns(&tk_fast_mono);
 478}
 479EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 480
 481u64 ktime_get_raw_fast_ns(void)
 482{
 483        return __ktime_get_fast_ns(&tk_fast_raw);
 484}
 485EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 486
 487/**
 488 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 489 *
 490 * To keep it NMI safe since we're accessing from tracing, we're not using a
 491 * separate timekeeper with updates to monotonic clock and boot offset
 492 * protected with seqcounts. This has the following minor side effects:
 493 *
 494 * (1) Its possible that a timestamp be taken after the boot offset is updated
 495 * but before the timekeeper is updated. If this happens, the new boot offset
 496 * is added to the old timekeeping making the clock appear to update slightly
 497 * earlier:
 498 *    CPU 0                                        CPU 1
 499 *    timekeeping_inject_sleeptime64()
 500 *    __timekeeping_inject_sleeptime(tk, delta);
 501 *                                                 timestamp();
 502 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 503 *
 504 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 505 * partially updated.  Since the tk->offs_boot update is a rare event, this
 506 * should be a rare occurrence which postprocessing should be able to handle.
 507 */
 508u64 notrace ktime_get_boot_fast_ns(void)
 509{
 510        struct timekeeper *tk = &tk_core.timekeeper;
 511
 512        return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
 513}
 514EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
 515
 516
 517/*
 518 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 519 */
 520static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
 521{
 522        struct tk_read_base *tkr;
 523        unsigned int seq;
 524        u64 now;
 525
 526        do {
 527                seq = raw_read_seqcount_latch(&tkf->seq);
 528                tkr = tkf->base + (seq & 0x01);
 529                now = ktime_to_ns(tkr->base_real);
 530
 531                now += timekeeping_delta_to_ns(tkr,
 532                                clocksource_delta(
 533                                        tk_clock_read(tkr),
 534                                        tkr->cycle_last,
 535                                        tkr->mask));
 536        } while (read_seqcount_retry(&tkf->seq, seq));
 537
 538        return now;
 539}
 540
 541/**
 542 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 543 */
 544u64 ktime_get_real_fast_ns(void)
 545{
 546        return __ktime_get_real_fast_ns(&tk_fast_mono);
 547}
 548EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
 549
 550/**
 551 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 552 * @tk: Timekeeper to snapshot.
 553 *
 554 * It generally is unsafe to access the clocksource after timekeeping has been
 555 * suspended, so take a snapshot of the readout base of @tk and use it as the
 556 * fast timekeeper's readout base while suspended.  It will return the same
 557 * number of cycles every time until timekeeping is resumed at which time the
 558 * proper readout base for the fast timekeeper will be restored automatically.
 559 */
 560static void halt_fast_timekeeper(const struct timekeeper *tk)
 561{
 562        static struct tk_read_base tkr_dummy;
 563        const struct tk_read_base *tkr = &tk->tkr_mono;
 564
 565        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 566        cycles_at_suspend = tk_clock_read(tkr);
 567        tkr_dummy.clock = &dummy_clock;
 568        tkr_dummy.base_real = tkr->base + tk->offs_real;
 569        update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 570
 571        tkr = &tk->tkr_raw;
 572        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 573        tkr_dummy.clock = &dummy_clock;
 574        update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 575}
 576
 577static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 578
 579static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 580{
 581        raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 582}
 583
 584/**
 585 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 586 */
 587int pvclock_gtod_register_notifier(struct notifier_block *nb)
 588{
 589        struct timekeeper *tk = &tk_core.timekeeper;
 590        unsigned long flags;
 591        int ret;
 592
 593        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 594        ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 595        update_pvclock_gtod(tk, true);
 596        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 597
 598        return ret;
 599}
 600EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 601
 602/**
 603 * pvclock_gtod_unregister_notifier - unregister a pvclock
 604 * timedata update listener
 605 */
 606int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 607{
 608        unsigned long flags;
 609        int ret;
 610
 611        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 612        ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 613        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 614
 615        return ret;
 616}
 617EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 618
 619/*
 620 * tk_update_leap_state - helper to update the next_leap_ktime
 621 */
 622static inline void tk_update_leap_state(struct timekeeper *tk)
 623{
 624        tk->next_leap_ktime = ntp_get_next_leap();
 625        if (tk->next_leap_ktime != KTIME_MAX)
 626                /* Convert to monotonic time */
 627                tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 628}
 629
 630/*
 631 * Update the ktime_t based scalar nsec members of the timekeeper
 632 */
 633static inline void tk_update_ktime_data(struct timekeeper *tk)
 634{
 635        u64 seconds;
 636        u32 nsec;
 637
 638        /*
 639         * The xtime based monotonic readout is:
 640         *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 641         * The ktime based monotonic readout is:
 642         *      nsec = base_mono + now();
 643         * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 644         */
 645        seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 646        nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 647        tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 648
 649        /*
 650         * The sum of the nanoseconds portions of xtime and
 651         * wall_to_monotonic can be greater/equal one second. Take
 652         * this into account before updating tk->ktime_sec.
 653         */
 654        nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 655        if (nsec >= NSEC_PER_SEC)
 656                seconds++;
 657        tk->ktime_sec = seconds;
 658
 659        /* Update the monotonic raw base */
 660        tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
 661}
 662
 663/* must hold timekeeper_lock */
 664static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 665{
 666        if (action & TK_CLEAR_NTP) {
 667                tk->ntp_error = 0;
 668                ntp_clear();
 669        }
 670
 671        tk_update_leap_state(tk);
 672        tk_update_ktime_data(tk);
 673
 674        update_vsyscall(tk);
 675        update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 676
 677        tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
 678        update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 679        update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 680
 681        if (action & TK_CLOCK_WAS_SET)
 682                tk->clock_was_set_seq++;
 683        /*
 684         * The mirroring of the data to the shadow-timekeeper needs
 685         * to happen last here to ensure we don't over-write the
 686         * timekeeper structure on the next update with stale data
 687         */
 688        if (action & TK_MIRROR)
 689                memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 690                       sizeof(tk_core.timekeeper));
 691}
 692
 693/**
 694 * timekeeping_forward_now - update clock to the current time
 695 *
 696 * Forward the current clock to update its state since the last call to
 697 * update_wall_time(). This is useful before significant clock changes,
 698 * as it avoids having to deal with this time offset explicitly.
 699 */
 700static void timekeeping_forward_now(struct timekeeper *tk)
 701{
 702        u64 cycle_now, delta;
 703
 704        cycle_now = tk_clock_read(&tk->tkr_mono);
 705        delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 706        tk->tkr_mono.cycle_last = cycle_now;
 707        tk->tkr_raw.cycle_last  = cycle_now;
 708
 709        tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 710
 711        /* If arch requires, add in get_arch_timeoffset() */
 712        tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 713
 714
 715        tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
 716
 717        /* If arch requires, add in get_arch_timeoffset() */
 718        tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
 719
 720        tk_normalize_xtime(tk);
 721}
 722
 723/**
 724 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
 725 * @ts:         pointer to the timespec to be set
 726 *
 727 * Returns the time of day in a timespec64 (WARN if suspended).
 728 */
 729void ktime_get_real_ts64(struct timespec64 *ts)
 730{
 731        struct timekeeper *tk = &tk_core.timekeeper;
 732        unsigned int seq;
 733        u64 nsecs;
 734
 735        WARN_ON(timekeeping_suspended);
 736
 737        do {
 738                seq = read_seqcount_begin(&tk_core.seq);
 739
 740                ts->tv_sec = tk->xtime_sec;
 741                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 742
 743        } while (read_seqcount_retry(&tk_core.seq, seq));
 744
 745        ts->tv_nsec = 0;
 746        timespec64_add_ns(ts, nsecs);
 747}
 748EXPORT_SYMBOL(ktime_get_real_ts64);
 749
 750ktime_t ktime_get(void)
 751{
 752        struct timekeeper *tk = &tk_core.timekeeper;
 753        unsigned int seq;
 754        ktime_t base;
 755        u64 nsecs;
 756
 757        WARN_ON(timekeeping_suspended);
 758
 759        do {
 760                seq = read_seqcount_begin(&tk_core.seq);
 761                base = tk->tkr_mono.base;
 762                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 763
 764        } while (read_seqcount_retry(&tk_core.seq, seq));
 765
 766        return ktime_add_ns(base, nsecs);
 767}
 768EXPORT_SYMBOL_GPL(ktime_get);
 769
 770u32 ktime_get_resolution_ns(void)
 771{
 772        struct timekeeper *tk = &tk_core.timekeeper;
 773        unsigned int seq;
 774        u32 nsecs;
 775
 776        WARN_ON(timekeeping_suspended);
 777
 778        do {
 779                seq = read_seqcount_begin(&tk_core.seq);
 780                nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 781        } while (read_seqcount_retry(&tk_core.seq, seq));
 782
 783        return nsecs;
 784}
 785EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 786
 787static ktime_t *offsets[TK_OFFS_MAX] = {
 788        [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
 789        [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
 790        [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
 791};
 792
 793ktime_t ktime_get_with_offset(enum tk_offsets offs)
 794{
 795        struct timekeeper *tk = &tk_core.timekeeper;
 796        unsigned int seq;
 797        ktime_t base, *offset = offsets[offs];
 798        u64 nsecs;
 799
 800        WARN_ON(timekeeping_suspended);
 801
 802        do {
 803                seq = read_seqcount_begin(&tk_core.seq);
 804                base = ktime_add(tk->tkr_mono.base, *offset);
 805                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 806
 807        } while (read_seqcount_retry(&tk_core.seq, seq));
 808
 809        return ktime_add_ns(base, nsecs);
 810
 811}
 812EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 813
 814ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
 815{
 816        struct timekeeper *tk = &tk_core.timekeeper;
 817        unsigned int seq;
 818        ktime_t base, *offset = offsets[offs];
 819        u64 nsecs;
 820
 821        WARN_ON(timekeeping_suspended);
 822
 823        do {
 824                seq = read_seqcount_begin(&tk_core.seq);
 825                base = ktime_add(tk->tkr_mono.base, *offset);
 826                nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
 827
 828        } while (read_seqcount_retry(&tk_core.seq, seq));
 829
 830        return ktime_add_ns(base, nsecs);
 831}
 832EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
 833
 834/**
 835 * ktime_mono_to_any() - convert mononotic time to any other time
 836 * @tmono:      time to convert.
 837 * @offs:       which offset to use
 838 */
 839ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 840{
 841        ktime_t *offset = offsets[offs];
 842        unsigned int seq;
 843        ktime_t tconv;
 844
 845        do {
 846                seq = read_seqcount_begin(&tk_core.seq);
 847                tconv = ktime_add(tmono, *offset);
 848        } while (read_seqcount_retry(&tk_core.seq, seq));
 849
 850        return tconv;
 851}
 852EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 853
 854/**
 855 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 856 */
 857ktime_t ktime_get_raw(void)
 858{
 859        struct timekeeper *tk = &tk_core.timekeeper;
 860        unsigned int seq;
 861        ktime_t base;
 862        u64 nsecs;
 863
 864        do {
 865                seq = read_seqcount_begin(&tk_core.seq);
 866                base = tk->tkr_raw.base;
 867                nsecs = timekeeping_get_ns(&tk->tkr_raw);
 868
 869        } while (read_seqcount_retry(&tk_core.seq, seq));
 870
 871        return ktime_add_ns(base, nsecs);
 872}
 873EXPORT_SYMBOL_GPL(ktime_get_raw);
 874
 875/**
 876 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 877 * @ts:         pointer to timespec variable
 878 *
 879 * The function calculates the monotonic clock from the realtime
 880 * clock and the wall_to_monotonic offset and stores the result
 881 * in normalized timespec64 format in the variable pointed to by @ts.
 882 */
 883void ktime_get_ts64(struct timespec64 *ts)
 884{
 885        struct timekeeper *tk = &tk_core.timekeeper;
 886        struct timespec64 tomono;
 887        unsigned int seq;
 888        u64 nsec;
 889
 890        WARN_ON(timekeeping_suspended);
 891
 892        do {
 893                seq = read_seqcount_begin(&tk_core.seq);
 894                ts->tv_sec = tk->xtime_sec;
 895                nsec = timekeeping_get_ns(&tk->tkr_mono);
 896                tomono = tk->wall_to_monotonic;
 897
 898        } while (read_seqcount_retry(&tk_core.seq, seq));
 899
 900        ts->tv_sec += tomono.tv_sec;
 901        ts->tv_nsec = 0;
 902        timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 903}
 904EXPORT_SYMBOL_GPL(ktime_get_ts64);
 905
 906/**
 907 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 908 *
 909 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 910 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 911 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 912 * covers ~136 years of uptime which should be enough to prevent
 913 * premature wrap arounds.
 914 */
 915time64_t ktime_get_seconds(void)
 916{
 917        struct timekeeper *tk = &tk_core.timekeeper;
 918
 919        WARN_ON(timekeeping_suspended);
 920        return tk->ktime_sec;
 921}
 922EXPORT_SYMBOL_GPL(ktime_get_seconds);
 923
 924/**
 925 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 926 *
 927 * Returns the wall clock seconds since 1970. This replaces the
 928 * get_seconds() interface which is not y2038 safe on 32bit systems.
 929 *
 930 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 931 * 32bit systems the access must be protected with the sequence
 932 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 933 * value.
 934 */
 935time64_t ktime_get_real_seconds(void)
 936{
 937        struct timekeeper *tk = &tk_core.timekeeper;
 938        time64_t seconds;
 939        unsigned int seq;
 940
 941        if (IS_ENABLED(CONFIG_64BIT))
 942                return tk->xtime_sec;
 943
 944        do {
 945                seq = read_seqcount_begin(&tk_core.seq);
 946                seconds = tk->xtime_sec;
 947
 948        } while (read_seqcount_retry(&tk_core.seq, seq));
 949
 950        return seconds;
 951}
 952EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 953
 954/**
 955 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 956 * but without the sequence counter protect. This internal function
 957 * is called just when timekeeping lock is already held.
 958 */
 959noinstr time64_t __ktime_get_real_seconds(void)
 960{
 961        struct timekeeper *tk = &tk_core.timekeeper;
 962
 963        return tk->xtime_sec;
 964}
 965
 966/**
 967 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 968 * @systime_snapshot:   pointer to struct receiving the system time snapshot
 969 */
 970void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
 971{
 972        struct timekeeper *tk = &tk_core.timekeeper;
 973        unsigned int seq;
 974        ktime_t base_raw;
 975        ktime_t base_real;
 976        u64 nsec_raw;
 977        u64 nsec_real;
 978        u64 now;
 979
 980        WARN_ON_ONCE(timekeeping_suspended);
 981
 982        do {
 983                seq = read_seqcount_begin(&tk_core.seq);
 984                now = tk_clock_read(&tk->tkr_mono);
 985                systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
 986                systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
 987                base_real = ktime_add(tk->tkr_mono.base,
 988                                      tk_core.timekeeper.offs_real);
 989                base_raw = tk->tkr_raw.base;
 990                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
 991                nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
 992        } while (read_seqcount_retry(&tk_core.seq, seq));
 993
 994        systime_snapshot->cycles = now;
 995        systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
 996        systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
 997}
 998EXPORT_SYMBOL_GPL(ktime_get_snapshot);
 999
1000/* Scale base by mult/div checking for overflow */
1001static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1002{
1003        u64 tmp, rem;
1004
1005        tmp = div64_u64_rem(*base, div, &rem);
1006
1007        if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1008            ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1009                return -EOVERFLOW;
1010        tmp *= mult;
1011
1012        rem = div64_u64(rem * mult, div);
1013        *base = tmp + rem;
1014        return 0;
1015}
1016
1017/**
1018 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1019 * @history:                    Snapshot representing start of history
1020 * @partial_history_cycles:     Cycle offset into history (fractional part)
1021 * @total_history_cycles:       Total history length in cycles
1022 * @discontinuity:              True indicates clock was set on history period
1023 * @ts:                         Cross timestamp that should be adjusted using
1024 *      partial/total ratio
1025 *
1026 * Helper function used by get_device_system_crosststamp() to correct the
1027 * crosstimestamp corresponding to the start of the current interval to the
1028 * system counter value (timestamp point) provided by the driver. The
1029 * total_history_* quantities are the total history starting at the provided
1030 * reference point and ending at the start of the current interval. The cycle
1031 * count between the driver timestamp point and the start of the current
1032 * interval is partial_history_cycles.
1033 */
1034static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1035                                         u64 partial_history_cycles,
1036                                         u64 total_history_cycles,
1037                                         bool discontinuity,
1038                                         struct system_device_crosststamp *ts)
1039{
1040        struct timekeeper *tk = &tk_core.timekeeper;
1041        u64 corr_raw, corr_real;
1042        bool interp_forward;
1043        int ret;
1044
1045        if (total_history_cycles == 0 || partial_history_cycles == 0)
1046                return 0;
1047
1048        /* Interpolate shortest distance from beginning or end of history */
1049        interp_forward = partial_history_cycles > total_history_cycles / 2;
1050        partial_history_cycles = interp_forward ?
1051                total_history_cycles - partial_history_cycles :
1052                partial_history_cycles;
1053
1054        /*
1055         * Scale the monotonic raw time delta by:
1056         *      partial_history_cycles / total_history_cycles
1057         */
1058        corr_raw = (u64)ktime_to_ns(
1059                ktime_sub(ts->sys_monoraw, history->raw));
1060        ret = scale64_check_overflow(partial_history_cycles,
1061                                     total_history_cycles, &corr_raw);
1062        if (ret)
1063                return ret;
1064
1065        /*
1066         * If there is a discontinuity in the history, scale monotonic raw
1067         *      correction by:
1068         *      mult(real)/mult(raw) yielding the realtime correction
1069         * Otherwise, calculate the realtime correction similar to monotonic
1070         *      raw calculation
1071         */
1072        if (discontinuity) {
1073                corr_real = mul_u64_u32_div
1074                        (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1075        } else {
1076                corr_real = (u64)ktime_to_ns(
1077                        ktime_sub(ts->sys_realtime, history->real));
1078                ret = scale64_check_overflow(partial_history_cycles,
1079                                             total_history_cycles, &corr_real);
1080                if (ret)
1081                        return ret;
1082        }
1083
1084        /* Fixup monotonic raw and real time time values */
1085        if (interp_forward) {
1086                ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1087                ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1088        } else {
1089                ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1090                ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1091        }
1092
1093        return 0;
1094}
1095
1096/*
1097 * cycle_between - true if test occurs chronologically between before and after
1098 */
1099static bool cycle_between(u64 before, u64 test, u64 after)
1100{
1101        if (test > before && test < after)
1102                return true;
1103        if (test < before && before > after)
1104                return true;
1105        return false;
1106}
1107
1108/**
1109 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1110 * @get_time_fn:        Callback to get simultaneous device time and
1111 *      system counter from the device driver
1112 * @ctx:                Context passed to get_time_fn()
1113 * @history_begin:      Historical reference point used to interpolate system
1114 *      time when counter provided by the driver is before the current interval
1115 * @xtstamp:            Receives simultaneously captured system and device time
1116 *
1117 * Reads a timestamp from a device and correlates it to system time
1118 */
1119int get_device_system_crosststamp(int (*get_time_fn)
1120                                  (ktime_t *device_time,
1121                                   struct system_counterval_t *sys_counterval,
1122                                   void *ctx),
1123                                  void *ctx,
1124                                  struct system_time_snapshot *history_begin,
1125                                  struct system_device_crosststamp *xtstamp)
1126{
1127        struct system_counterval_t system_counterval;
1128        struct timekeeper *tk = &tk_core.timekeeper;
1129        u64 cycles, now, interval_start;
1130        unsigned int clock_was_set_seq = 0;
1131        ktime_t base_real, base_raw;
1132        u64 nsec_real, nsec_raw;
1133        u8 cs_was_changed_seq;
1134        unsigned int seq;
1135        bool do_interp;
1136        int ret;
1137
1138        do {
1139                seq = read_seqcount_begin(&tk_core.seq);
1140                /*
1141                 * Try to synchronously capture device time and a system
1142                 * counter value calling back into the device driver
1143                 */
1144                ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1145                if (ret)
1146                        return ret;
1147
1148                /*
1149                 * Verify that the clocksource associated with the captured
1150                 * system counter value is the same as the currently installed
1151                 * timekeeper clocksource
1152                 */
1153                if (tk->tkr_mono.clock != system_counterval.cs)
1154                        return -ENODEV;
1155                cycles = system_counterval.cycles;
1156
1157                /*
1158                 * Check whether the system counter value provided by the
1159                 * device driver is on the current timekeeping interval.
1160                 */
1161                now = tk_clock_read(&tk->tkr_mono);
1162                interval_start = tk->tkr_mono.cycle_last;
1163                if (!cycle_between(interval_start, cycles, now)) {
1164                        clock_was_set_seq = tk->clock_was_set_seq;
1165                        cs_was_changed_seq = tk->cs_was_changed_seq;
1166                        cycles = interval_start;
1167                        do_interp = true;
1168                } else {
1169                        do_interp = false;
1170                }
1171
1172                base_real = ktime_add(tk->tkr_mono.base,
1173                                      tk_core.timekeeper.offs_real);
1174                base_raw = tk->tkr_raw.base;
1175
1176                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1177                                                     system_counterval.cycles);
1178                nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1179                                                    system_counterval.cycles);
1180        } while (read_seqcount_retry(&tk_core.seq, seq));
1181
1182        xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1183        xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1184
1185        /*
1186         * Interpolate if necessary, adjusting back from the start of the
1187         * current interval
1188         */
1189        if (do_interp) {
1190                u64 partial_history_cycles, total_history_cycles;
1191                bool discontinuity;
1192
1193                /*
1194                 * Check that the counter value occurs after the provided
1195                 * history reference and that the history doesn't cross a
1196                 * clocksource change
1197                 */
1198                if (!history_begin ||
1199                    !cycle_between(history_begin->cycles,
1200                                   system_counterval.cycles, cycles) ||
1201                    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1202                        return -EINVAL;
1203                partial_history_cycles = cycles - system_counterval.cycles;
1204                total_history_cycles = cycles - history_begin->cycles;
1205                discontinuity =
1206                        history_begin->clock_was_set_seq != clock_was_set_seq;
1207
1208                ret = adjust_historical_crosststamp(history_begin,
1209                                                    partial_history_cycles,
1210                                                    total_history_cycles,
1211                                                    discontinuity, xtstamp);
1212                if (ret)
1213                        return ret;
1214        }
1215
1216        return 0;
1217}
1218EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1219
1220/**
1221 * do_settimeofday64 - Sets the time of day.
1222 * @ts:     pointer to the timespec64 variable containing the new time
1223 *
1224 * Sets the time of day to the new time and update NTP and notify hrtimers
1225 */
1226int do_settimeofday64(const struct timespec64 *ts)
1227{
1228        struct timekeeper *tk = &tk_core.timekeeper;
1229        struct timespec64 ts_delta, xt;
1230        unsigned long flags;
1231        int ret = 0;
1232
1233        if (!timespec64_valid_settod(ts))
1234                return -EINVAL;
1235
1236        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1237        write_seqcount_begin(&tk_core.seq);
1238
1239        timekeeping_forward_now(tk);
1240
1241        xt = tk_xtime(tk);
1242        ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1243        ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1244
1245        if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1246                ret = -EINVAL;
1247                goto out;
1248        }
1249
1250        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1251
1252        tk_set_xtime(tk, ts);
1253out:
1254        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1255
1256        write_seqcount_end(&tk_core.seq);
1257        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1258
1259        /* signal hrtimers about time change */
1260        clock_was_set();
1261
1262        if (!ret)
1263                audit_tk_injoffset(ts_delta);
1264
1265        return ret;
1266}
1267EXPORT_SYMBOL(do_settimeofday64);
1268
1269/**
1270 * timekeeping_inject_offset - Adds or subtracts from the current time.
1271 * @tv:         pointer to the timespec variable containing the offset
1272 *
1273 * Adds or subtracts an offset value from the current time.
1274 */
1275static int timekeeping_inject_offset(const struct timespec64 *ts)
1276{
1277        struct timekeeper *tk = &tk_core.timekeeper;
1278        unsigned long flags;
1279        struct timespec64 tmp;
1280        int ret = 0;
1281
1282        if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1283                return -EINVAL;
1284
1285        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1286        write_seqcount_begin(&tk_core.seq);
1287
1288        timekeeping_forward_now(tk);
1289
1290        /* Make sure the proposed value is valid */
1291        tmp = timespec64_add(tk_xtime(tk), *ts);
1292        if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1293            !timespec64_valid_settod(&tmp)) {
1294                ret = -EINVAL;
1295                goto error;
1296        }
1297
1298        tk_xtime_add(tk, ts);
1299        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1300
1301error: /* even if we error out, we forwarded the time, so call update */
1302        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1303
1304        write_seqcount_end(&tk_core.seq);
1305        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1306
1307        /* signal hrtimers about time change */
1308        clock_was_set();
1309
1310        return ret;
1311}
1312
1313/*
1314 * Indicates if there is an offset between the system clock and the hardware
1315 * clock/persistent clock/rtc.
1316 */
1317int persistent_clock_is_local;
1318
1319/*
1320 * Adjust the time obtained from the CMOS to be UTC time instead of
1321 * local time.
1322 *
1323 * This is ugly, but preferable to the alternatives.  Otherwise we
1324 * would either need to write a program to do it in /etc/rc (and risk
1325 * confusion if the program gets run more than once; it would also be
1326 * hard to make the program warp the clock precisely n hours)  or
1327 * compile in the timezone information into the kernel.  Bad, bad....
1328 *
1329 *                                              - TYT, 1992-01-01
1330 *
1331 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1332 * as real UNIX machines always do it. This avoids all headaches about
1333 * daylight saving times and warping kernel clocks.
1334 */
1335void timekeeping_warp_clock(void)
1336{
1337        if (sys_tz.tz_minuteswest != 0) {
1338                struct timespec64 adjust;
1339
1340                persistent_clock_is_local = 1;
1341                adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1342                adjust.tv_nsec = 0;
1343                timekeeping_inject_offset(&adjust);
1344        }
1345}
1346
1347/**
1348 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1349 *
1350 */
1351static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1352{
1353        tk->tai_offset = tai_offset;
1354        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1355}
1356
1357/**
1358 * change_clocksource - Swaps clocksources if a new one is available
1359 *
1360 * Accumulates current time interval and initializes new clocksource
1361 */
1362static int change_clocksource(void *data)
1363{
1364        struct timekeeper *tk = &tk_core.timekeeper;
1365        struct clocksource *new, *old;
1366        unsigned long flags;
1367
1368        new = (struct clocksource *) data;
1369
1370        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1371        write_seqcount_begin(&tk_core.seq);
1372
1373        timekeeping_forward_now(tk);
1374        /*
1375         * If the cs is in module, get a module reference. Succeeds
1376         * for built-in code (owner == NULL) as well.
1377         */
1378        if (try_module_get(new->owner)) {
1379                if (!new->enable || new->enable(new) == 0) {
1380                        old = tk->tkr_mono.clock;
1381                        tk_setup_internals(tk, new);
1382                        if (old->disable)
1383                                old->disable(old);
1384                        module_put(old->owner);
1385                } else {
1386                        module_put(new->owner);
1387                }
1388        }
1389        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1390
1391        write_seqcount_end(&tk_core.seq);
1392        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1393
1394        return 0;
1395}
1396
1397/**
1398 * timekeeping_notify - Install a new clock source
1399 * @clock:              pointer to the clock source
1400 *
1401 * This function is called from clocksource.c after a new, better clock
1402 * source has been registered. The caller holds the clocksource_mutex.
1403 */
1404int timekeeping_notify(struct clocksource *clock)
1405{
1406        struct timekeeper *tk = &tk_core.timekeeper;
1407
1408        if (tk->tkr_mono.clock == clock)
1409                return 0;
1410        stop_machine(change_clocksource, clock, NULL);
1411        tick_clock_notify();
1412        return tk->tkr_mono.clock == clock ? 0 : -1;
1413}
1414
1415/**
1416 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1417 * @ts:         pointer to the timespec64 to be set
1418 *
1419 * Returns the raw monotonic time (completely un-modified by ntp)
1420 */
1421void ktime_get_raw_ts64(struct timespec64 *ts)
1422{
1423        struct timekeeper *tk = &tk_core.timekeeper;
1424        unsigned int seq;
1425        u64 nsecs;
1426
1427        do {
1428                seq = read_seqcount_begin(&tk_core.seq);
1429                ts->tv_sec = tk->raw_sec;
1430                nsecs = timekeeping_get_ns(&tk->tkr_raw);
1431
1432        } while (read_seqcount_retry(&tk_core.seq, seq));
1433
1434        ts->tv_nsec = 0;
1435        timespec64_add_ns(ts, nsecs);
1436}
1437EXPORT_SYMBOL(ktime_get_raw_ts64);
1438
1439
1440/**
1441 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1442 */
1443int timekeeping_valid_for_hres(void)
1444{
1445        struct timekeeper *tk = &tk_core.timekeeper;
1446        unsigned int seq;
1447        int ret;
1448
1449        do {
1450                seq = read_seqcount_begin(&tk_core.seq);
1451
1452                ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1453
1454        } while (read_seqcount_retry(&tk_core.seq, seq));
1455
1456        return ret;
1457}
1458
1459/**
1460 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1461 */
1462u64 timekeeping_max_deferment(void)
1463{
1464        struct timekeeper *tk = &tk_core.timekeeper;
1465        unsigned int seq;
1466        u64 ret;
1467
1468        do {
1469                seq = read_seqcount_begin(&tk_core.seq);
1470
1471                ret = tk->tkr_mono.clock->max_idle_ns;
1472
1473        } while (read_seqcount_retry(&tk_core.seq, seq));
1474
1475        return ret;
1476}
1477
1478/**
1479 * read_persistent_clock64 -  Return time from the persistent clock.
1480 *
1481 * Weak dummy function for arches that do not yet support it.
1482 * Reads the time from the battery backed persistent clock.
1483 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1484 *
1485 *  XXX - Do be sure to remove it once all arches implement it.
1486 */
1487void __weak read_persistent_clock64(struct timespec64 *ts)
1488{
1489        ts->tv_sec = 0;
1490        ts->tv_nsec = 0;
1491}
1492
1493/**
1494 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1495 *                                        from the boot.
1496 *
1497 * Weak dummy function for arches that do not yet support it.
1498 * wall_time    - current time as returned by persistent clock
1499 * boot_offset  - offset that is defined as wall_time - boot_time
1500 * The default function calculates offset based on the current value of
1501 * local_clock(). This way architectures that support sched_clock() but don't
1502 * support dedicated boot time clock will provide the best estimate of the
1503 * boot time.
1504 */
1505void __weak __init
1506read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1507                                     struct timespec64 *boot_offset)
1508{
1509        read_persistent_clock64(wall_time);
1510        *boot_offset = ns_to_timespec64(local_clock());
1511}
1512
1513/*
1514 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1515 *
1516 * The flag starts of false and is only set when a suspend reaches
1517 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1518 * timekeeper clocksource is not stopping across suspend and has been
1519 * used to update sleep time. If the timekeeper clocksource has stopped
1520 * then the flag stays true and is used by the RTC resume code to decide
1521 * whether sleeptime must be injected and if so the flag gets false then.
1522 *
1523 * If a suspend fails before reaching timekeeping_resume() then the flag
1524 * stays false and prevents erroneous sleeptime injection.
1525 */
1526static bool suspend_timing_needed;
1527
1528/* Flag for if there is a persistent clock on this platform */
1529static bool persistent_clock_exists;
1530
1531/*
1532 * timekeeping_init - Initializes the clocksource and common timekeeping values
1533 */
1534void __init timekeeping_init(void)
1535{
1536        struct timespec64 wall_time, boot_offset, wall_to_mono;
1537        struct timekeeper *tk = &tk_core.timekeeper;
1538        struct clocksource *clock;
1539        unsigned long flags;
1540
1541        read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1542        if (timespec64_valid_settod(&wall_time) &&
1543            timespec64_to_ns(&wall_time) > 0) {
1544                persistent_clock_exists = true;
1545        } else if (timespec64_to_ns(&wall_time) != 0) {
1546                pr_warn("Persistent clock returned invalid value");
1547                wall_time = (struct timespec64){0};
1548        }
1549
1550        if (timespec64_compare(&wall_time, &boot_offset) < 0)
1551                boot_offset = (struct timespec64){0};
1552
1553        /*
1554         * We want set wall_to_mono, so the following is true:
1555         * wall time + wall_to_mono = boot time
1556         */
1557        wall_to_mono = timespec64_sub(boot_offset, wall_time);
1558
1559        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1560        write_seqcount_begin(&tk_core.seq);
1561        ntp_init();
1562
1563        clock = clocksource_default_clock();
1564        if (clock->enable)
1565                clock->enable(clock);
1566        tk_setup_internals(tk, clock);
1567
1568        tk_set_xtime(tk, &wall_time);
1569        tk->raw_sec = 0;
1570
1571        tk_set_wall_to_mono(tk, wall_to_mono);
1572
1573        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1574
1575        write_seqcount_end(&tk_core.seq);
1576        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1577}
1578
1579/* time in seconds when suspend began for persistent clock */
1580static struct timespec64 timekeeping_suspend_time;
1581
1582/**
1583 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1584 * @delta: pointer to a timespec delta value
1585 *
1586 * Takes a timespec offset measuring a suspend interval and properly
1587 * adds the sleep offset to the timekeeping variables.
1588 */
1589static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1590                                           const struct timespec64 *delta)
1591{
1592        if (!timespec64_valid_strict(delta)) {
1593                printk_deferred(KERN_WARNING
1594                                "__timekeeping_inject_sleeptime: Invalid "
1595                                "sleep delta value!\n");
1596                return;
1597        }
1598        tk_xtime_add(tk, delta);
1599        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1600        tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1601        tk_debug_account_sleep_time(delta);
1602}
1603
1604#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1605/**
1606 * We have three kinds of time sources to use for sleep time
1607 * injection, the preference order is:
1608 * 1) non-stop clocksource
1609 * 2) persistent clock (ie: RTC accessible when irqs are off)
1610 * 3) RTC
1611 *
1612 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1613 * If system has neither 1) nor 2), 3) will be used finally.
1614 *
1615 *
1616 * If timekeeping has injected sleeptime via either 1) or 2),
1617 * 3) becomes needless, so in this case we don't need to call
1618 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1619 * means.
1620 */
1621bool timekeeping_rtc_skipresume(void)
1622{
1623        return !suspend_timing_needed;
1624}
1625
1626/**
1627 * 1) can be determined whether to use or not only when doing
1628 * timekeeping_resume() which is invoked after rtc_suspend(),
1629 * so we can't skip rtc_suspend() surely if system has 1).
1630 *
1631 * But if system has 2), 2) will definitely be used, so in this
1632 * case we don't need to call rtc_suspend(), and this is what
1633 * timekeeping_rtc_skipsuspend() means.
1634 */
1635bool timekeeping_rtc_skipsuspend(void)
1636{
1637        return persistent_clock_exists;
1638}
1639
1640/**
1641 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1642 * @delta: pointer to a timespec64 delta value
1643 *
1644 * This hook is for architectures that cannot support read_persistent_clock64
1645 * because their RTC/persistent clock is only accessible when irqs are enabled.
1646 * and also don't have an effective nonstop clocksource.
1647 *
1648 * This function should only be called by rtc_resume(), and allows
1649 * a suspend offset to be injected into the timekeeping values.
1650 */
1651void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1652{
1653        struct timekeeper *tk = &tk_core.timekeeper;
1654        unsigned long flags;
1655
1656        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1657        write_seqcount_begin(&tk_core.seq);
1658
1659        suspend_timing_needed = false;
1660
1661        timekeeping_forward_now(tk);
1662
1663        __timekeeping_inject_sleeptime(tk, delta);
1664
1665        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1666
1667        write_seqcount_end(&tk_core.seq);
1668        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1669
1670        /* signal hrtimers about time change */
1671        clock_was_set();
1672}
1673#endif
1674
1675/**
1676 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1677 */
1678void timekeeping_resume(void)
1679{
1680        struct timekeeper *tk = &tk_core.timekeeper;
1681        struct clocksource *clock = tk->tkr_mono.clock;
1682        unsigned long flags;
1683        struct timespec64 ts_new, ts_delta;
1684        u64 cycle_now, nsec;
1685        bool inject_sleeptime = false;
1686
1687        read_persistent_clock64(&ts_new);
1688
1689        clockevents_resume();
1690        clocksource_resume();
1691
1692        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1693        write_seqcount_begin(&tk_core.seq);
1694
1695        /*
1696         * After system resumes, we need to calculate the suspended time and
1697         * compensate it for the OS time. There are 3 sources that could be
1698         * used: Nonstop clocksource during suspend, persistent clock and rtc
1699         * device.
1700         *
1701         * One specific platform may have 1 or 2 or all of them, and the
1702         * preference will be:
1703         *      suspend-nonstop clocksource -> persistent clock -> rtc
1704         * The less preferred source will only be tried if there is no better
1705         * usable source. The rtc part is handled separately in rtc core code.
1706         */
1707        cycle_now = tk_clock_read(&tk->tkr_mono);
1708        nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1709        if (nsec > 0) {
1710                ts_delta = ns_to_timespec64(nsec);
1711                inject_sleeptime = true;
1712        } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1713                ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1714                inject_sleeptime = true;
1715        }
1716
1717        if (inject_sleeptime) {
1718                suspend_timing_needed = false;
1719                __timekeeping_inject_sleeptime(tk, &ts_delta);
1720        }
1721
1722        /* Re-base the last cycle value */
1723        tk->tkr_mono.cycle_last = cycle_now;
1724        tk->tkr_raw.cycle_last  = cycle_now;
1725
1726        tk->ntp_error = 0;
1727        timekeeping_suspended = 0;
1728        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1729        write_seqcount_end(&tk_core.seq);
1730        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1731
1732        touch_softlockup_watchdog();
1733
1734        tick_resume();
1735        hrtimers_resume();
1736}
1737
1738int timekeeping_suspend(void)
1739{
1740        struct timekeeper *tk = &tk_core.timekeeper;
1741        unsigned long flags;
1742        struct timespec64               delta, delta_delta;
1743        static struct timespec64        old_delta;
1744        struct clocksource *curr_clock;
1745        u64 cycle_now;
1746
1747        read_persistent_clock64(&timekeeping_suspend_time);
1748
1749        /*
1750         * On some systems the persistent_clock can not be detected at
1751         * timekeeping_init by its return value, so if we see a valid
1752         * value returned, update the persistent_clock_exists flag.
1753         */
1754        if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1755                persistent_clock_exists = true;
1756
1757        suspend_timing_needed = true;
1758
1759        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1760        write_seqcount_begin(&tk_core.seq);
1761        timekeeping_forward_now(tk);
1762        timekeeping_suspended = 1;
1763
1764        /*
1765         * Since we've called forward_now, cycle_last stores the value
1766         * just read from the current clocksource. Save this to potentially
1767         * use in suspend timing.
1768         */
1769        curr_clock = tk->tkr_mono.clock;
1770        cycle_now = tk->tkr_mono.cycle_last;
1771        clocksource_start_suspend_timing(curr_clock, cycle_now);
1772
1773        if (persistent_clock_exists) {
1774                /*
1775                 * To avoid drift caused by repeated suspend/resumes,
1776                 * which each can add ~1 second drift error,
1777                 * try to compensate so the difference in system time
1778                 * and persistent_clock time stays close to constant.
1779                 */
1780                delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1781                delta_delta = timespec64_sub(delta, old_delta);
1782                if (abs(delta_delta.tv_sec) >= 2) {
1783                        /*
1784                         * if delta_delta is too large, assume time correction
1785                         * has occurred and set old_delta to the current delta.
1786                         */
1787                        old_delta = delta;
1788                } else {
1789                        /* Otherwise try to adjust old_system to compensate */
1790                        timekeeping_suspend_time =
1791                                timespec64_add(timekeeping_suspend_time, delta_delta);
1792                }
1793        }
1794
1795        timekeeping_update(tk, TK_MIRROR);
1796        halt_fast_timekeeper(tk);
1797        write_seqcount_end(&tk_core.seq);
1798        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1799
1800        tick_suspend();
1801        clocksource_suspend();
1802        clockevents_suspend();
1803
1804        return 0;
1805}
1806
1807/* sysfs resume/suspend bits for timekeeping */
1808static struct syscore_ops timekeeping_syscore_ops = {
1809        .resume         = timekeeping_resume,
1810        .suspend        = timekeeping_suspend,
1811};
1812
1813static int __init timekeeping_init_ops(void)
1814{
1815        register_syscore_ops(&timekeeping_syscore_ops);
1816        return 0;
1817}
1818device_initcall(timekeeping_init_ops);
1819
1820/*
1821 * Apply a multiplier adjustment to the timekeeper
1822 */
1823static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1824                                                         s64 offset,
1825                                                         s32 mult_adj)
1826{
1827        s64 interval = tk->cycle_interval;
1828
1829        if (mult_adj == 0) {
1830                return;
1831        } else if (mult_adj == -1) {
1832                interval = -interval;
1833                offset = -offset;
1834        } else if (mult_adj != 1) {
1835                interval *= mult_adj;
1836                offset *= mult_adj;
1837        }
1838
1839        /*
1840         * So the following can be confusing.
1841         *
1842         * To keep things simple, lets assume mult_adj == 1 for now.
1843         *
1844         * When mult_adj != 1, remember that the interval and offset values
1845         * have been appropriately scaled so the math is the same.
1846         *
1847         * The basic idea here is that we're increasing the multiplier
1848         * by one, this causes the xtime_interval to be incremented by
1849         * one cycle_interval. This is because:
1850         *      xtime_interval = cycle_interval * mult
1851         * So if mult is being incremented by one:
1852         *      xtime_interval = cycle_interval * (mult + 1)
1853         * Its the same as:
1854         *      xtime_interval = (cycle_interval * mult) + cycle_interval
1855         * Which can be shortened to:
1856         *      xtime_interval += cycle_interval
1857         *
1858         * So offset stores the non-accumulated cycles. Thus the current
1859         * time (in shifted nanoseconds) is:
1860         *      now = (offset * adj) + xtime_nsec
1861         * Now, even though we're adjusting the clock frequency, we have
1862         * to keep time consistent. In other words, we can't jump back
1863         * in time, and we also want to avoid jumping forward in time.
1864         *
1865         * So given the same offset value, we need the time to be the same
1866         * both before and after the freq adjustment.
1867         *      now = (offset * adj_1) + xtime_nsec_1
1868         *      now = (offset * adj_2) + xtime_nsec_2
1869         * So:
1870         *      (offset * adj_1) + xtime_nsec_1 =
1871         *              (offset * adj_2) + xtime_nsec_2
1872         * And we know:
1873         *      adj_2 = adj_1 + 1
1874         * So:
1875         *      (offset * adj_1) + xtime_nsec_1 =
1876         *              (offset * (adj_1+1)) + xtime_nsec_2
1877         *      (offset * adj_1) + xtime_nsec_1 =
1878         *              (offset * adj_1) + offset + xtime_nsec_2
1879         * Canceling the sides:
1880         *      xtime_nsec_1 = offset + xtime_nsec_2
1881         * Which gives us:
1882         *      xtime_nsec_2 = xtime_nsec_1 - offset
1883         * Which simplfies to:
1884         *      xtime_nsec -= offset
1885         */
1886        if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1887                /* NTP adjustment caused clocksource mult overflow */
1888                WARN_ON_ONCE(1);
1889                return;
1890        }
1891
1892        tk->tkr_mono.mult += mult_adj;
1893        tk->xtime_interval += interval;
1894        tk->tkr_mono.xtime_nsec -= offset;
1895}
1896
1897/*
1898 * Adjust the timekeeper's multiplier to the correct frequency
1899 * and also to reduce the accumulated error value.
1900 */
1901static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1902{
1903        u32 mult;
1904
1905        /*
1906         * Determine the multiplier from the current NTP tick length.
1907         * Avoid expensive division when the tick length doesn't change.
1908         */
1909        if (likely(tk->ntp_tick == ntp_tick_length())) {
1910                mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1911        } else {
1912                tk->ntp_tick = ntp_tick_length();
1913                mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1914                                 tk->xtime_remainder, tk->cycle_interval);
1915        }
1916
1917        /*
1918         * If the clock is behind the NTP time, increase the multiplier by 1
1919         * to catch up with it. If it's ahead and there was a remainder in the
1920         * tick division, the clock will slow down. Otherwise it will stay
1921         * ahead until the tick length changes to a non-divisible value.
1922         */
1923        tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1924        mult += tk->ntp_err_mult;
1925
1926        timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1927
1928        if (unlikely(tk->tkr_mono.clock->maxadj &&
1929                (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1930                        > tk->tkr_mono.clock->maxadj))) {
1931                printk_once(KERN_WARNING
1932                        "Adjusting %s more than 11%% (%ld vs %ld)\n",
1933                        tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1934                        (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1935        }
1936
1937        /*
1938         * It may be possible that when we entered this function, xtime_nsec
1939         * was very small.  Further, if we're slightly speeding the clocksource
1940         * in the code above, its possible the required corrective factor to
1941         * xtime_nsec could cause it to underflow.
1942         *
1943         * Now, since we have already accumulated the second and the NTP
1944         * subsystem has been notified via second_overflow(), we need to skip
1945         * the next update.
1946         */
1947        if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1948                tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1949                                                        tk->tkr_mono.shift;
1950                tk->xtime_sec--;
1951                tk->skip_second_overflow = 1;
1952        }
1953}
1954
1955/**
1956 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1957 *
1958 * Helper function that accumulates the nsecs greater than a second
1959 * from the xtime_nsec field to the xtime_secs field.
1960 * It also calls into the NTP code to handle leapsecond processing.
1961 *
1962 */
1963static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1964{
1965        u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1966        unsigned int clock_set = 0;
1967
1968        while (tk->tkr_mono.xtime_nsec >= nsecps) {
1969                int leap;
1970
1971                tk->tkr_mono.xtime_nsec -= nsecps;
1972                tk->xtime_sec++;
1973
1974                /*
1975                 * Skip NTP update if this second was accumulated before,
1976                 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1977                 */
1978                if (unlikely(tk->skip_second_overflow)) {
1979                        tk->skip_second_overflow = 0;
1980                        continue;
1981                }
1982
1983                /* Figure out if its a leap sec and apply if needed */
1984                leap = second_overflow(tk->xtime_sec);
1985                if (unlikely(leap)) {
1986                        struct timespec64 ts;
1987
1988                        tk->xtime_sec += leap;
1989
1990                        ts.tv_sec = leap;
1991                        ts.tv_nsec = 0;
1992                        tk_set_wall_to_mono(tk,
1993                                timespec64_sub(tk->wall_to_monotonic, ts));
1994
1995                        __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1996
1997                        clock_set = TK_CLOCK_WAS_SET;
1998                }
1999        }
2000        return clock_set;
2001}
2002
2003/**
2004 * logarithmic_accumulation - shifted accumulation of cycles
2005 *
2006 * This functions accumulates a shifted interval of cycles into
2007 * a shifted interval nanoseconds. Allows for O(log) accumulation
2008 * loop.
2009 *
2010 * Returns the unconsumed cycles.
2011 */
2012static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2013                                    u32 shift, unsigned int *clock_set)
2014{
2015        u64 interval = tk->cycle_interval << shift;
2016        u64 snsec_per_sec;
2017
2018        /* If the offset is smaller than a shifted interval, do nothing */
2019        if (offset < interval)
2020                return offset;
2021
2022        /* Accumulate one shifted interval */
2023        offset -= interval;
2024        tk->tkr_mono.cycle_last += interval;
2025        tk->tkr_raw.cycle_last  += interval;
2026
2027        tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2028        *clock_set |= accumulate_nsecs_to_secs(tk);
2029
2030        /* Accumulate raw time */
2031        tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2032        snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2033        while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2034                tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2035                tk->raw_sec++;
2036        }
2037
2038        /* Accumulate error between NTP and clock interval */
2039        tk->ntp_error += tk->ntp_tick << shift;
2040        tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2041                                                (tk->ntp_error_shift + shift);
2042
2043        return offset;
2044}
2045
2046/*
2047 * timekeeping_advance - Updates the timekeeper to the current time and
2048 * current NTP tick length
2049 */
2050static void timekeeping_advance(enum timekeeping_adv_mode mode)
2051{
2052        struct timekeeper *real_tk = &tk_core.timekeeper;
2053        struct timekeeper *tk = &shadow_timekeeper;
2054        u64 offset;
2055        int shift = 0, maxshift;
2056        unsigned int clock_set = 0;
2057        unsigned long flags;
2058
2059        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2060
2061        /* Make sure we're fully resumed: */
2062        if (unlikely(timekeeping_suspended))
2063                goto out;
2064
2065#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2066        offset = real_tk->cycle_interval;
2067
2068        if (mode != TK_ADV_TICK)
2069                goto out;
2070#else
2071        offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2072                                   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2073
2074        /* Check if there's really nothing to do */
2075        if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2076                goto out;
2077#endif
2078
2079        /* Do some additional sanity checking */
2080        timekeeping_check_update(tk, offset);
2081
2082        /*
2083         * With NO_HZ we may have to accumulate many cycle_intervals
2084         * (think "ticks") worth of time at once. To do this efficiently,
2085         * we calculate the largest doubling multiple of cycle_intervals
2086         * that is smaller than the offset.  We then accumulate that
2087         * chunk in one go, and then try to consume the next smaller
2088         * doubled multiple.
2089         */
2090        shift = ilog2(offset) - ilog2(tk->cycle_interval);
2091        shift = max(0, shift);
2092        /* Bound shift to one less than what overflows tick_length */
2093        maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2094        shift = min(shift, maxshift);
2095        while (offset >= tk->cycle_interval) {
2096                offset = logarithmic_accumulation(tk, offset, shift,
2097                                                        &clock_set);
2098                if (offset < tk->cycle_interval<<shift)
2099                        shift--;
2100        }
2101
2102        /* Adjust the multiplier to correct NTP error */
2103        timekeeping_adjust(tk, offset);
2104
2105        /*
2106         * Finally, make sure that after the rounding
2107         * xtime_nsec isn't larger than NSEC_PER_SEC
2108         */
2109        clock_set |= accumulate_nsecs_to_secs(tk);
2110
2111        write_seqcount_begin(&tk_core.seq);
2112        /*
2113         * Update the real timekeeper.
2114         *
2115         * We could avoid this memcpy by switching pointers, but that
2116         * requires changes to all other timekeeper usage sites as
2117         * well, i.e. move the timekeeper pointer getter into the
2118         * spinlocked/seqcount protected sections. And we trade this
2119         * memcpy under the tk_core.seq against one before we start
2120         * updating.
2121         */
2122        timekeeping_update(tk, clock_set);
2123        memcpy(real_tk, tk, sizeof(*tk));
2124        /* The memcpy must come last. Do not put anything here! */
2125        write_seqcount_end(&tk_core.seq);
2126out:
2127        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2128        if (clock_set)
2129                /* Have to call _delayed version, since in irq context*/
2130                clock_was_set_delayed();
2131}
2132
2133/**
2134 * update_wall_time - Uses the current clocksource to increment the wall time
2135 *
2136 */
2137void update_wall_time(void)
2138{
2139        timekeeping_advance(TK_ADV_TICK);
2140}
2141
2142/**
2143 * getboottime64 - Return the real time of system boot.
2144 * @ts:         pointer to the timespec64 to be set
2145 *
2146 * Returns the wall-time of boot in a timespec64.
2147 *
2148 * This is based on the wall_to_monotonic offset and the total suspend
2149 * time. Calls to settimeofday will affect the value returned (which
2150 * basically means that however wrong your real time clock is at boot time,
2151 * you get the right time here).
2152 */
2153void getboottime64(struct timespec64 *ts)
2154{
2155        struct timekeeper *tk = &tk_core.timekeeper;
2156        ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2157
2158        *ts = ktime_to_timespec64(t);
2159}
2160EXPORT_SYMBOL_GPL(getboottime64);
2161
2162void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2163{
2164        struct timekeeper *tk = &tk_core.timekeeper;
2165        unsigned int seq;
2166
2167        do {
2168                seq = read_seqcount_begin(&tk_core.seq);
2169
2170                *ts = tk_xtime(tk);
2171        } while (read_seqcount_retry(&tk_core.seq, seq));
2172}
2173EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2174
2175void ktime_get_coarse_ts64(struct timespec64 *ts)
2176{
2177        struct timekeeper *tk = &tk_core.timekeeper;
2178        struct timespec64 now, mono;
2179        unsigned int seq;
2180
2181        do {
2182                seq = read_seqcount_begin(&tk_core.seq);
2183
2184                now = tk_xtime(tk);
2185                mono = tk->wall_to_monotonic;
2186        } while (read_seqcount_retry(&tk_core.seq, seq));
2187
2188        set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2189                                now.tv_nsec + mono.tv_nsec);
2190}
2191EXPORT_SYMBOL(ktime_get_coarse_ts64);
2192
2193/*
2194 * Must hold jiffies_lock
2195 */
2196void do_timer(unsigned long ticks)
2197{
2198        jiffies_64 += ticks;
2199        calc_global_load();
2200}
2201
2202/**
2203 * ktime_get_update_offsets_now - hrtimer helper
2204 * @cwsseq:     pointer to check and store the clock was set sequence number
2205 * @offs_real:  pointer to storage for monotonic -> realtime offset
2206 * @offs_boot:  pointer to storage for monotonic -> boottime offset
2207 * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2208 *
2209 * Returns current monotonic time and updates the offsets if the
2210 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2211 * different.
2212 *
2213 * Called from hrtimer_interrupt() or retrigger_next_event()
2214 */
2215ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2216                                     ktime_t *offs_boot, ktime_t *offs_tai)
2217{
2218        struct timekeeper *tk = &tk_core.timekeeper;
2219        unsigned int seq;
2220        ktime_t base;
2221        u64 nsecs;
2222
2223        do {
2224                seq = read_seqcount_begin(&tk_core.seq);
2225
2226                base = tk->tkr_mono.base;
2227                nsecs = timekeeping_get_ns(&tk->tkr_mono);
2228                base = ktime_add_ns(base, nsecs);
2229
2230                if (*cwsseq != tk->clock_was_set_seq) {
2231                        *cwsseq = tk->clock_was_set_seq;
2232                        *offs_real = tk->offs_real;
2233                        *offs_boot = tk->offs_boot;
2234                        *offs_tai = tk->offs_tai;
2235                }
2236
2237                /* Handle leapsecond insertion adjustments */
2238                if (unlikely(base >= tk->next_leap_ktime))
2239                        *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2240
2241        } while (read_seqcount_retry(&tk_core.seq, seq));
2242
2243        return base;
2244}
2245
2246/**
2247 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2248 */
2249static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2250{
2251        if (txc->modes & ADJ_ADJTIME) {
2252                /* singleshot must not be used with any other mode bits */
2253                if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2254                        return -EINVAL;
2255                if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2256                    !capable(CAP_SYS_TIME))
2257                        return -EPERM;
2258        } else {
2259                /* In order to modify anything, you gotta be super-user! */
2260                if (txc->modes && !capable(CAP_SYS_TIME))
2261                        return -EPERM;
2262                /*
2263                 * if the quartz is off by more than 10% then
2264                 * something is VERY wrong!
2265                 */
2266                if (txc->modes & ADJ_TICK &&
2267                    (txc->tick <  900000/USER_HZ ||
2268                     txc->tick > 1100000/USER_HZ))
2269                        return -EINVAL;
2270        }
2271
2272        if (txc->modes & ADJ_SETOFFSET) {
2273                /* In order to inject time, you gotta be super-user! */
2274                if (!capable(CAP_SYS_TIME))
2275                        return -EPERM;
2276
2277                /*
2278                 * Validate if a timespec/timeval used to inject a time
2279                 * offset is valid.  Offsets can be postive or negative, so
2280                 * we don't check tv_sec. The value of the timeval/timespec
2281                 * is the sum of its fields,but *NOTE*:
2282                 * The field tv_usec/tv_nsec must always be non-negative and
2283                 * we can't have more nanoseconds/microseconds than a second.
2284                 */
2285                if (txc->time.tv_usec < 0)
2286                        return -EINVAL;
2287
2288                if (txc->modes & ADJ_NANO) {
2289                        if (txc->time.tv_usec >= NSEC_PER_SEC)
2290                                return -EINVAL;
2291                } else {
2292                        if (txc->time.tv_usec >= USEC_PER_SEC)
2293                                return -EINVAL;
2294                }
2295        }
2296
2297        /*
2298         * Check for potential multiplication overflows that can
2299         * only happen on 64-bit systems:
2300         */
2301        if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2302                if (LLONG_MIN / PPM_SCALE > txc->freq)
2303                        return -EINVAL;
2304                if (LLONG_MAX / PPM_SCALE < txc->freq)
2305                        return -EINVAL;
2306        }
2307
2308        return 0;
2309}
2310
2311
2312/**
2313 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2314 */
2315int do_adjtimex(struct __kernel_timex *txc)
2316{
2317        struct timekeeper *tk = &tk_core.timekeeper;
2318        struct audit_ntp_data ad;
2319        unsigned long flags;
2320        struct timespec64 ts;
2321        s32 orig_tai, tai;
2322        int ret;
2323
2324        /* Validate the data before disabling interrupts */
2325        ret = timekeeping_validate_timex(txc);
2326        if (ret)
2327                return ret;
2328
2329        if (txc->modes & ADJ_SETOFFSET) {
2330                struct timespec64 delta;
2331                delta.tv_sec  = txc->time.tv_sec;
2332                delta.tv_nsec = txc->time.tv_usec;
2333                if (!(txc->modes & ADJ_NANO))
2334                        delta.tv_nsec *= 1000;
2335                ret = timekeeping_inject_offset(&delta);
2336                if (ret)
2337                        return ret;
2338
2339                audit_tk_injoffset(delta);
2340        }
2341
2342        audit_ntp_init(&ad);
2343
2344        ktime_get_real_ts64(&ts);
2345
2346        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2347        write_seqcount_begin(&tk_core.seq);
2348
2349        orig_tai = tai = tk->tai_offset;
2350        ret = __do_adjtimex(txc, &ts, &tai, &ad);
2351
2352        if (tai != orig_tai) {
2353                __timekeeping_set_tai_offset(tk, tai);
2354                timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2355        }
2356        tk_update_leap_state(tk);
2357
2358        write_seqcount_end(&tk_core.seq);
2359        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2360
2361        audit_ntp_log(&ad);
2362
2363        /* Update the multiplier immediately if frequency was set directly */
2364        if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2365                timekeeping_advance(TK_ADV_FREQ);
2366
2367        if (tai != orig_tai)
2368                clock_was_set();
2369
2370        ntp_notify_cmos_timer();
2371
2372        return ret;
2373}
2374
2375#ifdef CONFIG_NTP_PPS
2376/**
2377 * hardpps() - Accessor function to NTP __hardpps function
2378 */
2379void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2380{
2381        unsigned long flags;
2382
2383        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2384        write_seqcount_begin(&tk_core.seq);
2385
2386        __hardpps(phase_ts, raw_ts);
2387
2388        write_seqcount_end(&tk_core.seq);
2389        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2390}
2391EXPORT_SYMBOL(hardpps);
2392#endif /* CONFIG_NTP_PPS */
2393
2394/**
2395 * xtime_update() - advances the timekeeping infrastructure
2396 * @ticks:      number of ticks, that have elapsed since the last call.
2397 *
2398 * Must be called with interrupts disabled.
2399 */
2400void xtime_update(unsigned long ticks)
2401{
2402        raw_spin_lock(&jiffies_lock);
2403        write_seqcount_begin(&jiffies_seq);
2404        do_timer(ticks);
2405        write_seqcount_end(&jiffies_seq);
2406        raw_spin_unlock(&jiffies_lock);
2407        update_wall_time();
2408}
2409