linux/kernel/time/timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel internal timers
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   8 *
   9 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  10 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  11 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  12 *              serialize accesses to xtime/lost_ticks).
  13 *                              Copyright (C) 1998  Andrea Arcangeli
  14 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  15 *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
  16 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  17 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  18 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  19 */
  20
  21#include <linux/kernel_stat.h>
  22#include <linux/export.h>
  23#include <linux/interrupt.h>
  24#include <linux/percpu.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/swap.h>
  28#include <linux/pid_namespace.h>
  29#include <linux/notifier.h>
  30#include <linux/thread_info.h>
  31#include <linux/time.h>
  32#include <linux/jiffies.h>
  33#include <linux/posix-timers.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
  36#include <linux/delay.h>
  37#include <linux/tick.h>
  38#include <linux/kallsyms.h>
  39#include <linux/irq_work.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/sched/nohz.h>
  43#include <linux/sched/debug.h>
  44#include <linux/slab.h>
  45#include <linux/compat.h>
  46#include <linux/random.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/unistd.h>
  50#include <asm/div64.h>
  51#include <asm/timex.h>
  52#include <asm/io.h>
  53
  54#include "tick-internal.h"
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/timer.h>
  58
  59__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  60
  61EXPORT_SYMBOL(jiffies_64);
  62
  63/*
  64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  66 * level has a different granularity.
  67 *
  68 * The level granularity is:            LVL_CLK_DIV ^ lvl
  69 * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
  70 *
  71 * The array level of a newly armed timer depends on the relative expiry
  72 * time. The farther the expiry time is away the higher the array level and
  73 * therefor the granularity becomes.
  74 *
  75 * Contrary to the original timer wheel implementation, which aims for 'exact'
  76 * expiry of the timers, this implementation removes the need for recascading
  77 * the timers into the lower array levels. The previous 'classic' timer wheel
  78 * implementation of the kernel already violated the 'exact' expiry by adding
  79 * slack to the expiry time to provide batched expiration. The granularity
  80 * levels provide implicit batching.
  81 *
  82 * This is an optimization of the original timer wheel implementation for the
  83 * majority of the timer wheel use cases: timeouts. The vast majority of
  84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  85 * the timeout expires it indicates that normal operation is disturbed, so it
  86 * does not matter much whether the timeout comes with a slight delay.
  87 *
  88 * The only exception to this are networking timers with a small expiry
  89 * time. They rely on the granularity. Those fit into the first wheel level,
  90 * which has HZ granularity.
  91 *
  92 * We don't have cascading anymore. timers with a expiry time above the
  93 * capacity of the last wheel level are force expired at the maximum timeout
  94 * value of the last wheel level. From data sampling we know that the maximum
  95 * value observed is 5 days (network connection tracking), so this should not
  96 * be an issue.
  97 *
  98 * The currently chosen array constants values are a good compromise between
  99 * array size and granularity.
 100 *
 101 * This results in the following granularity and range levels:
 102 *
 103 * HZ 1000 steps
 104 * Level Offset  Granularity            Range
 105 *  0      0         1 ms                0 ms -         63 ms
 106 *  1     64         8 ms               64 ms -        511 ms
 107 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 108 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 109 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 110 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 111 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 112 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 113 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 114 *
 115 * HZ  300
 116 * Level Offset  Granularity            Range
 117 *  0      0         3 ms                0 ms -        210 ms
 118 *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 119 *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 120 *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 121 *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 122 *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 123 *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 124 *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 125 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 126 *
 127 * HZ  250
 128 * Level Offset  Granularity            Range
 129 *  0      0         4 ms                0 ms -        255 ms
 130 *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 131 *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 132 *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 133 *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 134 *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 135 *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 136 *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 137 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 138 *
 139 * HZ  100
 140 * Level Offset  Granularity            Range
 141 *  0      0         10 ms               0 ms -        630 ms
 142 *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 143 *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 144 *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 145 *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 146 *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 147 *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 148 *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 149 */
 150
 151/* Clock divisor for the next level */
 152#define LVL_CLK_SHIFT   3
 153#define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
 154#define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
 155#define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
 156#define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
 157
 158/*
 159 * The time start value for each level to select the bucket at enqueue
 160 * time. We start from the last possible delta of the previous level
 161 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
 162 */
 163#define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 164
 165/* Size of each clock level */
 166#define LVL_BITS        6
 167#define LVL_SIZE        (1UL << LVL_BITS)
 168#define LVL_MASK        (LVL_SIZE - 1)
 169#define LVL_OFFS(n)     ((n) * LVL_SIZE)
 170
 171/* Level depth */
 172#if HZ > 100
 173# define LVL_DEPTH      9
 174# else
 175# define LVL_DEPTH      8
 176#endif
 177
 178/* The cutoff (max. capacity of the wheel) */
 179#define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
 180#define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 181
 182/*
 183 * The resulting wheel size. If NOHZ is configured we allocate two
 184 * wheels so we have a separate storage for the deferrable timers.
 185 */
 186#define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
 187
 188#ifdef CONFIG_NO_HZ_COMMON
 189# define NR_BASES       2
 190# define BASE_STD       0
 191# define BASE_DEF       1
 192#else
 193# define NR_BASES       1
 194# define BASE_STD       0
 195# define BASE_DEF       0
 196#endif
 197
 198struct timer_base {
 199        raw_spinlock_t          lock;
 200        struct timer_list       *running_timer;
 201#ifdef CONFIG_PREEMPT_RT
 202        spinlock_t              expiry_lock;
 203        atomic_t                timer_waiters;
 204#endif
 205        unsigned long           clk;
 206        unsigned long           next_expiry;
 207        unsigned int            cpu;
 208        bool                    next_expiry_recalc;
 209        bool                    is_idle;
 210        DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 211        struct hlist_head       vectors[WHEEL_SIZE];
 212} ____cacheline_aligned;
 213
 214static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 215
 216#ifdef CONFIG_NO_HZ_COMMON
 217
 218static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
 219static DEFINE_MUTEX(timer_keys_mutex);
 220
 221static void timer_update_keys(struct work_struct *work);
 222static DECLARE_WORK(timer_update_work, timer_update_keys);
 223
 224#ifdef CONFIG_SMP
 225unsigned int sysctl_timer_migration = 1;
 226
 227DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
 228
 229static void timers_update_migration(void)
 230{
 231        if (sysctl_timer_migration && tick_nohz_active)
 232                static_branch_enable(&timers_migration_enabled);
 233        else
 234                static_branch_disable(&timers_migration_enabled);
 235}
 236#else
 237static inline void timers_update_migration(void) { }
 238#endif /* !CONFIG_SMP */
 239
 240static void timer_update_keys(struct work_struct *work)
 241{
 242        mutex_lock(&timer_keys_mutex);
 243        timers_update_migration();
 244        static_branch_enable(&timers_nohz_active);
 245        mutex_unlock(&timer_keys_mutex);
 246}
 247
 248void timers_update_nohz(void)
 249{
 250        schedule_work(&timer_update_work);
 251}
 252
 253int timer_migration_handler(struct ctl_table *table, int write,
 254                            void *buffer, size_t *lenp, loff_t *ppos)
 255{
 256        int ret;
 257
 258        mutex_lock(&timer_keys_mutex);
 259        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 260        if (!ret && write)
 261                timers_update_migration();
 262        mutex_unlock(&timer_keys_mutex);
 263        return ret;
 264}
 265
 266static inline bool is_timers_nohz_active(void)
 267{
 268        return static_branch_unlikely(&timers_nohz_active);
 269}
 270#else
 271static inline bool is_timers_nohz_active(void) { return false; }
 272#endif /* NO_HZ_COMMON */
 273
 274static unsigned long round_jiffies_common(unsigned long j, int cpu,
 275                bool force_up)
 276{
 277        int rem;
 278        unsigned long original = j;
 279
 280        /*
 281         * We don't want all cpus firing their timers at once hitting the
 282         * same lock or cachelines, so we skew each extra cpu with an extra
 283         * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 284         * already did this.
 285         * The skew is done by adding 3*cpunr, then round, then subtract this
 286         * extra offset again.
 287         */
 288        j += cpu * 3;
 289
 290        rem = j % HZ;
 291
 292        /*
 293         * If the target jiffie is just after a whole second (which can happen
 294         * due to delays of the timer irq, long irq off times etc etc) then
 295         * we should round down to the whole second, not up. Use 1/4th second
 296         * as cutoff for this rounding as an extreme upper bound for this.
 297         * But never round down if @force_up is set.
 298         */
 299        if (rem < HZ/4 && !force_up) /* round down */
 300                j = j - rem;
 301        else /* round up */
 302                j = j - rem + HZ;
 303
 304        /* now that we have rounded, subtract the extra skew again */
 305        j -= cpu * 3;
 306
 307        /*
 308         * Make sure j is still in the future. Otherwise return the
 309         * unmodified value.
 310         */
 311        return time_is_after_jiffies(j) ? j : original;
 312}
 313
 314/**
 315 * __round_jiffies - function to round jiffies to a full second
 316 * @j: the time in (absolute) jiffies that should be rounded
 317 * @cpu: the processor number on which the timeout will happen
 318 *
 319 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 320 * up or down to (approximately) full seconds. This is useful for timers
 321 * for which the exact time they fire does not matter too much, as long as
 322 * they fire approximately every X seconds.
 323 *
 324 * By rounding these timers to whole seconds, all such timers will fire
 325 * at the same time, rather than at various times spread out. The goal
 326 * of this is to have the CPU wake up less, which saves power.
 327 *
 328 * The exact rounding is skewed for each processor to avoid all
 329 * processors firing at the exact same time, which could lead
 330 * to lock contention or spurious cache line bouncing.
 331 *
 332 * The return value is the rounded version of the @j parameter.
 333 */
 334unsigned long __round_jiffies(unsigned long j, int cpu)
 335{
 336        return round_jiffies_common(j, cpu, false);
 337}
 338EXPORT_SYMBOL_GPL(__round_jiffies);
 339
 340/**
 341 * __round_jiffies_relative - function to round jiffies to a full second
 342 * @j: the time in (relative) jiffies that should be rounded
 343 * @cpu: the processor number on which the timeout will happen
 344 *
 345 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 346 * up or down to (approximately) full seconds. This is useful for timers
 347 * for which the exact time they fire does not matter too much, as long as
 348 * they fire approximately every X seconds.
 349 *
 350 * By rounding these timers to whole seconds, all such timers will fire
 351 * at the same time, rather than at various times spread out. The goal
 352 * of this is to have the CPU wake up less, which saves power.
 353 *
 354 * The exact rounding is skewed for each processor to avoid all
 355 * processors firing at the exact same time, which could lead
 356 * to lock contention or spurious cache line bouncing.
 357 *
 358 * The return value is the rounded version of the @j parameter.
 359 */
 360unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 361{
 362        unsigned long j0 = jiffies;
 363
 364        /* Use j0 because jiffies might change while we run */
 365        return round_jiffies_common(j + j0, cpu, false) - j0;
 366}
 367EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 368
 369/**
 370 * round_jiffies - function to round jiffies to a full second
 371 * @j: the time in (absolute) jiffies that should be rounded
 372 *
 373 * round_jiffies() rounds an absolute time in the future (in jiffies)
 374 * up or down to (approximately) full seconds. This is useful for timers
 375 * for which the exact time they fire does not matter too much, as long as
 376 * they fire approximately every X seconds.
 377 *
 378 * By rounding these timers to whole seconds, all such timers will fire
 379 * at the same time, rather than at various times spread out. The goal
 380 * of this is to have the CPU wake up less, which saves power.
 381 *
 382 * The return value is the rounded version of the @j parameter.
 383 */
 384unsigned long round_jiffies(unsigned long j)
 385{
 386        return round_jiffies_common(j, raw_smp_processor_id(), false);
 387}
 388EXPORT_SYMBOL_GPL(round_jiffies);
 389
 390/**
 391 * round_jiffies_relative - function to round jiffies to a full second
 392 * @j: the time in (relative) jiffies that should be rounded
 393 *
 394 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 395 * up or down to (approximately) full seconds. This is useful for timers
 396 * for which the exact time they fire does not matter too much, as long as
 397 * they fire approximately every X seconds.
 398 *
 399 * By rounding these timers to whole seconds, all such timers will fire
 400 * at the same time, rather than at various times spread out. The goal
 401 * of this is to have the CPU wake up less, which saves power.
 402 *
 403 * The return value is the rounded version of the @j parameter.
 404 */
 405unsigned long round_jiffies_relative(unsigned long j)
 406{
 407        return __round_jiffies_relative(j, raw_smp_processor_id());
 408}
 409EXPORT_SYMBOL_GPL(round_jiffies_relative);
 410
 411/**
 412 * __round_jiffies_up - function to round jiffies up to a full second
 413 * @j: the time in (absolute) jiffies that should be rounded
 414 * @cpu: the processor number on which the timeout will happen
 415 *
 416 * This is the same as __round_jiffies() except that it will never
 417 * round down.  This is useful for timeouts for which the exact time
 418 * of firing does not matter too much, as long as they don't fire too
 419 * early.
 420 */
 421unsigned long __round_jiffies_up(unsigned long j, int cpu)
 422{
 423        return round_jiffies_common(j, cpu, true);
 424}
 425EXPORT_SYMBOL_GPL(__round_jiffies_up);
 426
 427/**
 428 * __round_jiffies_up_relative - function to round jiffies up to a full second
 429 * @j: the time in (relative) jiffies that should be rounded
 430 * @cpu: the processor number on which the timeout will happen
 431 *
 432 * This is the same as __round_jiffies_relative() except that it will never
 433 * round down.  This is useful for timeouts for which the exact time
 434 * of firing does not matter too much, as long as they don't fire too
 435 * early.
 436 */
 437unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 438{
 439        unsigned long j0 = jiffies;
 440
 441        /* Use j0 because jiffies might change while we run */
 442        return round_jiffies_common(j + j0, cpu, true) - j0;
 443}
 444EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 445
 446/**
 447 * round_jiffies_up - function to round jiffies up to a full second
 448 * @j: the time in (absolute) jiffies that should be rounded
 449 *
 450 * This is the same as round_jiffies() except that it will never
 451 * round down.  This is useful for timeouts for which the exact time
 452 * of firing does not matter too much, as long as they don't fire too
 453 * early.
 454 */
 455unsigned long round_jiffies_up(unsigned long j)
 456{
 457        return round_jiffies_common(j, raw_smp_processor_id(), true);
 458}
 459EXPORT_SYMBOL_GPL(round_jiffies_up);
 460
 461/**
 462 * round_jiffies_up_relative - function to round jiffies up to a full second
 463 * @j: the time in (relative) jiffies that should be rounded
 464 *
 465 * This is the same as round_jiffies_relative() except that it will never
 466 * round down.  This is useful for timeouts for which the exact time
 467 * of firing does not matter too much, as long as they don't fire too
 468 * early.
 469 */
 470unsigned long round_jiffies_up_relative(unsigned long j)
 471{
 472        return __round_jiffies_up_relative(j, raw_smp_processor_id());
 473}
 474EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 475
 476
 477static inline unsigned int timer_get_idx(struct timer_list *timer)
 478{
 479        return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 480}
 481
 482static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 483{
 484        timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 485                        idx << TIMER_ARRAYSHIFT;
 486}
 487
 488/*
 489 * Helper function to calculate the array index for a given expiry
 490 * time.
 491 */
 492static inline unsigned calc_index(unsigned long expires, unsigned lvl,
 493                                  unsigned long *bucket_expiry)
 494{
 495
 496        /*
 497         * The timer wheel has to guarantee that a timer does not fire
 498         * early. Early expiry can happen due to:
 499         * - Timer is armed at the edge of a tick
 500         * - Truncation of the expiry time in the outer wheel levels
 501         *
 502         * Round up with level granularity to prevent this.
 503         */
 504        expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
 505        *bucket_expiry = expires << LVL_SHIFT(lvl);
 506        return LVL_OFFS(lvl) + (expires & LVL_MASK);
 507}
 508
 509static int calc_wheel_index(unsigned long expires, unsigned long clk,
 510                            unsigned long *bucket_expiry)
 511{
 512        unsigned long delta = expires - clk;
 513        unsigned int idx;
 514
 515        if (delta < LVL_START(1)) {
 516                idx = calc_index(expires, 0, bucket_expiry);
 517        } else if (delta < LVL_START(2)) {
 518                idx = calc_index(expires, 1, bucket_expiry);
 519        } else if (delta < LVL_START(3)) {
 520                idx = calc_index(expires, 2, bucket_expiry);
 521        } else if (delta < LVL_START(4)) {
 522                idx = calc_index(expires, 3, bucket_expiry);
 523        } else if (delta < LVL_START(5)) {
 524                idx = calc_index(expires, 4, bucket_expiry);
 525        } else if (delta < LVL_START(6)) {
 526                idx = calc_index(expires, 5, bucket_expiry);
 527        } else if (delta < LVL_START(7)) {
 528                idx = calc_index(expires, 6, bucket_expiry);
 529        } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 530                idx = calc_index(expires, 7, bucket_expiry);
 531        } else if ((long) delta < 0) {
 532                idx = clk & LVL_MASK;
 533                *bucket_expiry = clk;
 534        } else {
 535                /*
 536                 * Force expire obscene large timeouts to expire at the
 537                 * capacity limit of the wheel.
 538                 */
 539                if (delta >= WHEEL_TIMEOUT_CUTOFF)
 540                        expires = clk + WHEEL_TIMEOUT_MAX;
 541
 542                idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
 543        }
 544        return idx;
 545}
 546
 547static void
 548trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 549{
 550        if (!is_timers_nohz_active())
 551                return;
 552
 553        /*
 554         * TODO: This wants some optimizing similar to the code below, but we
 555         * will do that when we switch from push to pull for deferrable timers.
 556         */
 557        if (timer->flags & TIMER_DEFERRABLE) {
 558                if (tick_nohz_full_cpu(base->cpu))
 559                        wake_up_nohz_cpu(base->cpu);
 560                return;
 561        }
 562
 563        /*
 564         * We might have to IPI the remote CPU if the base is idle and the
 565         * timer is not deferrable. If the other CPU is on the way to idle
 566         * then it can't set base->is_idle as we hold the base lock:
 567         */
 568        if (base->is_idle)
 569                wake_up_nohz_cpu(base->cpu);
 570}
 571
 572/*
 573 * Enqueue the timer into the hash bucket, mark it pending in
 574 * the bitmap, store the index in the timer flags then wake up
 575 * the target CPU if needed.
 576 */
 577static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 578                          unsigned int idx, unsigned long bucket_expiry)
 579{
 580
 581        hlist_add_head(&timer->entry, base->vectors + idx);
 582        __set_bit(idx, base->pending_map);
 583        timer_set_idx(timer, idx);
 584
 585        trace_timer_start(timer, timer->expires, timer->flags);
 586
 587        /*
 588         * Check whether this is the new first expiring timer. The
 589         * effective expiry time of the timer is required here
 590         * (bucket_expiry) instead of timer->expires.
 591         */
 592        if (time_before(bucket_expiry, base->next_expiry)) {
 593                /*
 594                 * Set the next expiry time and kick the CPU so it
 595                 * can reevaluate the wheel:
 596                 */
 597                base->next_expiry = bucket_expiry;
 598                base->next_expiry_recalc = false;
 599                trigger_dyntick_cpu(base, timer);
 600        }
 601}
 602
 603static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
 604{
 605        unsigned long bucket_expiry;
 606        unsigned int idx;
 607
 608        idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
 609        enqueue_timer(base, timer, idx, bucket_expiry);
 610}
 611
 612#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 613
 614static struct debug_obj_descr timer_debug_descr;
 615
 616static void *timer_debug_hint(void *addr)
 617{
 618        return ((struct timer_list *) addr)->function;
 619}
 620
 621static bool timer_is_static_object(void *addr)
 622{
 623        struct timer_list *timer = addr;
 624
 625        return (timer->entry.pprev == NULL &&
 626                timer->entry.next == TIMER_ENTRY_STATIC);
 627}
 628
 629/*
 630 * fixup_init is called when:
 631 * - an active object is initialized
 632 */
 633static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 634{
 635        struct timer_list *timer = addr;
 636
 637        switch (state) {
 638        case ODEBUG_STATE_ACTIVE:
 639                del_timer_sync(timer);
 640                debug_object_init(timer, &timer_debug_descr);
 641                return true;
 642        default:
 643                return false;
 644        }
 645}
 646
 647/* Stub timer callback for improperly used timers. */
 648static void stub_timer(struct timer_list *unused)
 649{
 650        WARN_ON(1);
 651}
 652
 653/*
 654 * fixup_activate is called when:
 655 * - an active object is activated
 656 * - an unknown non-static object is activated
 657 */
 658static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 659{
 660        struct timer_list *timer = addr;
 661
 662        switch (state) {
 663        case ODEBUG_STATE_NOTAVAILABLE:
 664                timer_setup(timer, stub_timer, 0);
 665                return true;
 666
 667        case ODEBUG_STATE_ACTIVE:
 668                WARN_ON(1);
 669                fallthrough;
 670        default:
 671                return false;
 672        }
 673}
 674
 675/*
 676 * fixup_free is called when:
 677 * - an active object is freed
 678 */
 679static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 680{
 681        struct timer_list *timer = addr;
 682
 683        switch (state) {
 684        case ODEBUG_STATE_ACTIVE:
 685                del_timer_sync(timer);
 686                debug_object_free(timer, &timer_debug_descr);
 687                return true;
 688        default:
 689                return false;
 690        }
 691}
 692
 693/*
 694 * fixup_assert_init is called when:
 695 * - an untracked/uninit-ed object is found
 696 */
 697static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 698{
 699        struct timer_list *timer = addr;
 700
 701        switch (state) {
 702        case ODEBUG_STATE_NOTAVAILABLE:
 703                timer_setup(timer, stub_timer, 0);
 704                return true;
 705        default:
 706                return false;
 707        }
 708}
 709
 710static struct debug_obj_descr timer_debug_descr = {
 711        .name                   = "timer_list",
 712        .debug_hint             = timer_debug_hint,
 713        .is_static_object       = timer_is_static_object,
 714        .fixup_init             = timer_fixup_init,
 715        .fixup_activate         = timer_fixup_activate,
 716        .fixup_free             = timer_fixup_free,
 717        .fixup_assert_init      = timer_fixup_assert_init,
 718};
 719
 720static inline void debug_timer_init(struct timer_list *timer)
 721{
 722        debug_object_init(timer, &timer_debug_descr);
 723}
 724
 725static inline void debug_timer_activate(struct timer_list *timer)
 726{
 727        debug_object_activate(timer, &timer_debug_descr);
 728}
 729
 730static inline void debug_timer_deactivate(struct timer_list *timer)
 731{
 732        debug_object_deactivate(timer, &timer_debug_descr);
 733}
 734
 735static inline void debug_timer_free(struct timer_list *timer)
 736{
 737        debug_object_free(timer, &timer_debug_descr);
 738}
 739
 740static inline void debug_timer_assert_init(struct timer_list *timer)
 741{
 742        debug_object_assert_init(timer, &timer_debug_descr);
 743}
 744
 745static void do_init_timer(struct timer_list *timer,
 746                          void (*func)(struct timer_list *),
 747                          unsigned int flags,
 748                          const char *name, struct lock_class_key *key);
 749
 750void init_timer_on_stack_key(struct timer_list *timer,
 751                             void (*func)(struct timer_list *),
 752                             unsigned int flags,
 753                             const char *name, struct lock_class_key *key)
 754{
 755        debug_object_init_on_stack(timer, &timer_debug_descr);
 756        do_init_timer(timer, func, flags, name, key);
 757}
 758EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 759
 760void destroy_timer_on_stack(struct timer_list *timer)
 761{
 762        debug_object_free(timer, &timer_debug_descr);
 763}
 764EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 765
 766#else
 767static inline void debug_timer_init(struct timer_list *timer) { }
 768static inline void debug_timer_activate(struct timer_list *timer) { }
 769static inline void debug_timer_deactivate(struct timer_list *timer) { }
 770static inline void debug_timer_assert_init(struct timer_list *timer) { }
 771#endif
 772
 773static inline void debug_init(struct timer_list *timer)
 774{
 775        debug_timer_init(timer);
 776        trace_timer_init(timer);
 777}
 778
 779static inline void debug_deactivate(struct timer_list *timer)
 780{
 781        debug_timer_deactivate(timer);
 782        trace_timer_cancel(timer);
 783}
 784
 785static inline void debug_assert_init(struct timer_list *timer)
 786{
 787        debug_timer_assert_init(timer);
 788}
 789
 790static void do_init_timer(struct timer_list *timer,
 791                          void (*func)(struct timer_list *),
 792                          unsigned int flags,
 793                          const char *name, struct lock_class_key *key)
 794{
 795        timer->entry.pprev = NULL;
 796        timer->function = func;
 797        timer->flags = flags | raw_smp_processor_id();
 798        lockdep_init_map(&timer->lockdep_map, name, key, 0);
 799}
 800
 801/**
 802 * init_timer_key - initialize a timer
 803 * @timer: the timer to be initialized
 804 * @func: timer callback function
 805 * @flags: timer flags
 806 * @name: name of the timer
 807 * @key: lockdep class key of the fake lock used for tracking timer
 808 *       sync lock dependencies
 809 *
 810 * init_timer_key() must be done to a timer prior calling *any* of the
 811 * other timer functions.
 812 */
 813void init_timer_key(struct timer_list *timer,
 814                    void (*func)(struct timer_list *), unsigned int flags,
 815                    const char *name, struct lock_class_key *key)
 816{
 817        debug_init(timer);
 818        do_init_timer(timer, func, flags, name, key);
 819}
 820EXPORT_SYMBOL(init_timer_key);
 821
 822static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 823{
 824        struct hlist_node *entry = &timer->entry;
 825
 826        debug_deactivate(timer);
 827
 828        __hlist_del(entry);
 829        if (clear_pending)
 830                entry->pprev = NULL;
 831        entry->next = LIST_POISON2;
 832}
 833
 834static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 835                             bool clear_pending)
 836{
 837        unsigned idx = timer_get_idx(timer);
 838
 839        if (!timer_pending(timer))
 840                return 0;
 841
 842        if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
 843                __clear_bit(idx, base->pending_map);
 844                base->next_expiry_recalc = true;
 845        }
 846
 847        detach_timer(timer, clear_pending);
 848        return 1;
 849}
 850
 851static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 852{
 853        struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 854
 855        /*
 856         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 857         * to use the deferrable base.
 858         */
 859        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 860                base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 861        return base;
 862}
 863
 864static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 865{
 866        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 867
 868        /*
 869         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 870         * to use the deferrable base.
 871         */
 872        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 873                base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 874        return base;
 875}
 876
 877static inline struct timer_base *get_timer_base(u32 tflags)
 878{
 879        return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 880}
 881
 882static inline struct timer_base *
 883get_target_base(struct timer_base *base, unsigned tflags)
 884{
 885#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 886        if (static_branch_likely(&timers_migration_enabled) &&
 887            !(tflags & TIMER_PINNED))
 888                return get_timer_cpu_base(tflags, get_nohz_timer_target());
 889#endif
 890        return get_timer_this_cpu_base(tflags);
 891}
 892
 893static inline void forward_timer_base(struct timer_base *base)
 894{
 895        unsigned long jnow = READ_ONCE(jiffies);
 896
 897        /*
 898         * No need to forward if we are close enough below jiffies.
 899         * Also while executing timers, base->clk is 1 offset ahead
 900         * of jiffies to avoid endless requeuing to current jffies.
 901         */
 902        if ((long)(jnow - base->clk) < 1)
 903                return;
 904
 905        /*
 906         * If the next expiry value is > jiffies, then we fast forward to
 907         * jiffies otherwise we forward to the next expiry value.
 908         */
 909        if (time_after(base->next_expiry, jnow)) {
 910                base->clk = jnow;
 911        } else {
 912                if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
 913                        return;
 914                base->clk = base->next_expiry;
 915        }
 916}
 917
 918
 919/*
 920 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 921 * that all timers which are tied to this base are locked, and the base itself
 922 * is locked too.
 923 *
 924 * So __run_timers/migrate_timers can safely modify all timers which could
 925 * be found in the base->vectors array.
 926 *
 927 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 928 * to wait until the migration is done.
 929 */
 930static struct timer_base *lock_timer_base(struct timer_list *timer,
 931                                          unsigned long *flags)
 932        __acquires(timer->base->lock)
 933{
 934        for (;;) {
 935                struct timer_base *base;
 936                u32 tf;
 937
 938                /*
 939                 * We need to use READ_ONCE() here, otherwise the compiler
 940                 * might re-read @tf between the check for TIMER_MIGRATING
 941                 * and spin_lock().
 942                 */
 943                tf = READ_ONCE(timer->flags);
 944
 945                if (!(tf & TIMER_MIGRATING)) {
 946                        base = get_timer_base(tf);
 947                        raw_spin_lock_irqsave(&base->lock, *flags);
 948                        if (timer->flags == tf)
 949                                return base;
 950                        raw_spin_unlock_irqrestore(&base->lock, *flags);
 951                }
 952                cpu_relax();
 953        }
 954}
 955
 956#define MOD_TIMER_PENDING_ONLY          0x01
 957#define MOD_TIMER_REDUCE                0x02
 958#define MOD_TIMER_NOTPENDING            0x04
 959
 960static inline int
 961__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
 962{
 963        unsigned long clk = 0, flags, bucket_expiry;
 964        struct timer_base *base, *new_base;
 965        unsigned int idx = UINT_MAX;
 966        int ret = 0;
 967
 968        BUG_ON(!timer->function);
 969
 970        /*
 971         * This is a common optimization triggered by the networking code - if
 972         * the timer is re-modified to have the same timeout or ends up in the
 973         * same array bucket then just return:
 974         */
 975        if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
 976                /*
 977                 * The downside of this optimization is that it can result in
 978                 * larger granularity than you would get from adding a new
 979                 * timer with this expiry.
 980                 */
 981                long diff = timer->expires - expires;
 982
 983                if (!diff)
 984                        return 1;
 985                if (options & MOD_TIMER_REDUCE && diff <= 0)
 986                        return 1;
 987
 988                /*
 989                 * We lock timer base and calculate the bucket index right
 990                 * here. If the timer ends up in the same bucket, then we
 991                 * just update the expiry time and avoid the whole
 992                 * dequeue/enqueue dance.
 993                 */
 994                base = lock_timer_base(timer, &flags);
 995                forward_timer_base(base);
 996
 997                if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
 998                    time_before_eq(timer->expires, expires)) {
 999                        ret = 1;
1000                        goto out_unlock;
1001                }
1002
1003                clk = base->clk;
1004                idx = calc_wheel_index(expires, clk, &bucket_expiry);
1005
1006                /*
1007                 * Retrieve and compare the array index of the pending
1008                 * timer. If it matches set the expiry to the new value so a
1009                 * subsequent call will exit in the expires check above.
1010                 */
1011                if (idx == timer_get_idx(timer)) {
1012                        if (!(options & MOD_TIMER_REDUCE))
1013                                timer->expires = expires;
1014                        else if (time_after(timer->expires, expires))
1015                                timer->expires = expires;
1016                        ret = 1;
1017                        goto out_unlock;
1018                }
1019        } else {
1020                base = lock_timer_base(timer, &flags);
1021                forward_timer_base(base);
1022        }
1023
1024        ret = detach_if_pending(timer, base, false);
1025        if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1026                goto out_unlock;
1027
1028        new_base = get_target_base(base, timer->flags);
1029
1030        if (base != new_base) {
1031                /*
1032                 * We are trying to schedule the timer on the new base.
1033                 * However we can't change timer's base while it is running,
1034                 * otherwise del_timer_sync() can't detect that the timer's
1035                 * handler yet has not finished. This also guarantees that the
1036                 * timer is serialized wrt itself.
1037                 */
1038                if (likely(base->running_timer != timer)) {
1039                        /* See the comment in lock_timer_base() */
1040                        timer->flags |= TIMER_MIGRATING;
1041
1042                        raw_spin_unlock(&base->lock);
1043                        base = new_base;
1044                        raw_spin_lock(&base->lock);
1045                        WRITE_ONCE(timer->flags,
1046                                   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1047                        forward_timer_base(base);
1048                }
1049        }
1050
1051        debug_timer_activate(timer);
1052
1053        timer->expires = expires;
1054        /*
1055         * If 'idx' was calculated above and the base time did not advance
1056         * between calculating 'idx' and possibly switching the base, only
1057         * enqueue_timer() is required. Otherwise we need to (re)calculate
1058         * the wheel index via internal_add_timer().
1059         */
1060        if (idx != UINT_MAX && clk == base->clk)
1061                enqueue_timer(base, timer, idx, bucket_expiry);
1062        else
1063                internal_add_timer(base, timer);
1064
1065out_unlock:
1066        raw_spin_unlock_irqrestore(&base->lock, flags);
1067
1068        return ret;
1069}
1070
1071/**
1072 * mod_timer_pending - modify a pending timer's timeout
1073 * @timer: the pending timer to be modified
1074 * @expires: new timeout in jiffies
1075 *
1076 * mod_timer_pending() is the same for pending timers as mod_timer(),
1077 * but will not re-activate and modify already deleted timers.
1078 *
1079 * It is useful for unserialized use of timers.
1080 */
1081int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1082{
1083        return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1084}
1085EXPORT_SYMBOL(mod_timer_pending);
1086
1087/**
1088 * mod_timer - modify a timer's timeout
1089 * @timer: the timer to be modified
1090 * @expires: new timeout in jiffies
1091 *
1092 * mod_timer() is a more efficient way to update the expire field of an
1093 * active timer (if the timer is inactive it will be activated)
1094 *
1095 * mod_timer(timer, expires) is equivalent to:
1096 *
1097 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1098 *
1099 * Note that if there are multiple unserialized concurrent users of the
1100 * same timer, then mod_timer() is the only safe way to modify the timeout,
1101 * since add_timer() cannot modify an already running timer.
1102 *
1103 * The function returns whether it has modified a pending timer or not.
1104 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1105 * active timer returns 1.)
1106 */
1107int mod_timer(struct timer_list *timer, unsigned long expires)
1108{
1109        return __mod_timer(timer, expires, 0);
1110}
1111EXPORT_SYMBOL(mod_timer);
1112
1113/**
1114 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1115 * @timer:      The timer to be modified
1116 * @expires:    New timeout in jiffies
1117 *
1118 * timer_reduce() is very similar to mod_timer(), except that it will only
1119 * modify a running timer if that would reduce the expiration time (it will
1120 * start a timer that isn't running).
1121 */
1122int timer_reduce(struct timer_list *timer, unsigned long expires)
1123{
1124        return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1125}
1126EXPORT_SYMBOL(timer_reduce);
1127
1128/**
1129 * add_timer - start a timer
1130 * @timer: the timer to be added
1131 *
1132 * The kernel will do a ->function(@timer) callback from the
1133 * timer interrupt at the ->expires point in the future. The
1134 * current time is 'jiffies'.
1135 *
1136 * The timer's ->expires, ->function fields must be set prior calling this
1137 * function.
1138 *
1139 * Timers with an ->expires field in the past will be executed in the next
1140 * timer tick.
1141 */
1142void add_timer(struct timer_list *timer)
1143{
1144        BUG_ON(timer_pending(timer));
1145        __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1146}
1147EXPORT_SYMBOL(add_timer);
1148
1149/**
1150 * add_timer_on - start a timer on a particular CPU
1151 * @timer: the timer to be added
1152 * @cpu: the CPU to start it on
1153 *
1154 * This is not very scalable on SMP. Double adds are not possible.
1155 */
1156void add_timer_on(struct timer_list *timer, int cpu)
1157{
1158        struct timer_base *new_base, *base;
1159        unsigned long flags;
1160
1161        BUG_ON(timer_pending(timer) || !timer->function);
1162
1163        new_base = get_timer_cpu_base(timer->flags, cpu);
1164
1165        /*
1166         * If @timer was on a different CPU, it should be migrated with the
1167         * old base locked to prevent other operations proceeding with the
1168         * wrong base locked.  See lock_timer_base().
1169         */
1170        base = lock_timer_base(timer, &flags);
1171        if (base != new_base) {
1172                timer->flags |= TIMER_MIGRATING;
1173
1174                raw_spin_unlock(&base->lock);
1175                base = new_base;
1176                raw_spin_lock(&base->lock);
1177                WRITE_ONCE(timer->flags,
1178                           (timer->flags & ~TIMER_BASEMASK) | cpu);
1179        }
1180        forward_timer_base(base);
1181
1182        debug_timer_activate(timer);
1183        internal_add_timer(base, timer);
1184        raw_spin_unlock_irqrestore(&base->lock, flags);
1185}
1186EXPORT_SYMBOL_GPL(add_timer_on);
1187
1188/**
1189 * del_timer - deactivate a timer.
1190 * @timer: the timer to be deactivated
1191 *
1192 * del_timer() deactivates a timer - this works on both active and inactive
1193 * timers.
1194 *
1195 * The function returns whether it has deactivated a pending timer or not.
1196 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1197 * active timer returns 1.)
1198 */
1199int del_timer(struct timer_list *timer)
1200{
1201        struct timer_base *base;
1202        unsigned long flags;
1203        int ret = 0;
1204
1205        debug_assert_init(timer);
1206
1207        if (timer_pending(timer)) {
1208                base = lock_timer_base(timer, &flags);
1209                ret = detach_if_pending(timer, base, true);
1210                raw_spin_unlock_irqrestore(&base->lock, flags);
1211        }
1212
1213        return ret;
1214}
1215EXPORT_SYMBOL(del_timer);
1216
1217/**
1218 * try_to_del_timer_sync - Try to deactivate a timer
1219 * @timer: timer to delete
1220 *
1221 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1222 * exit the timer is not queued and the handler is not running on any CPU.
1223 */
1224int try_to_del_timer_sync(struct timer_list *timer)
1225{
1226        struct timer_base *base;
1227        unsigned long flags;
1228        int ret = -1;
1229
1230        debug_assert_init(timer);
1231
1232        base = lock_timer_base(timer, &flags);
1233
1234        if (base->running_timer != timer)
1235                ret = detach_if_pending(timer, base, true);
1236
1237        raw_spin_unlock_irqrestore(&base->lock, flags);
1238
1239        return ret;
1240}
1241EXPORT_SYMBOL(try_to_del_timer_sync);
1242
1243#ifdef CONFIG_PREEMPT_RT
1244static __init void timer_base_init_expiry_lock(struct timer_base *base)
1245{
1246        spin_lock_init(&base->expiry_lock);
1247}
1248
1249static inline void timer_base_lock_expiry(struct timer_base *base)
1250{
1251        spin_lock(&base->expiry_lock);
1252}
1253
1254static inline void timer_base_unlock_expiry(struct timer_base *base)
1255{
1256        spin_unlock(&base->expiry_lock);
1257}
1258
1259/*
1260 * The counterpart to del_timer_wait_running().
1261 *
1262 * If there is a waiter for base->expiry_lock, then it was waiting for the
1263 * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1264 * the waiter to acquire the lock and make progress.
1265 */
1266static void timer_sync_wait_running(struct timer_base *base)
1267{
1268        if (atomic_read(&base->timer_waiters)) {
1269                spin_unlock(&base->expiry_lock);
1270                spin_lock(&base->expiry_lock);
1271        }
1272}
1273
1274/*
1275 * This function is called on PREEMPT_RT kernels when the fast path
1276 * deletion of a timer failed because the timer callback function was
1277 * running.
1278 *
1279 * This prevents priority inversion, if the softirq thread on a remote CPU
1280 * got preempted, and it prevents a life lock when the task which tries to
1281 * delete a timer preempted the softirq thread running the timer callback
1282 * function.
1283 */
1284static void del_timer_wait_running(struct timer_list *timer)
1285{
1286        u32 tf;
1287
1288        tf = READ_ONCE(timer->flags);
1289        if (!(tf & TIMER_MIGRATING)) {
1290                struct timer_base *base = get_timer_base(tf);
1291
1292                /*
1293                 * Mark the base as contended and grab the expiry lock,
1294                 * which is held by the softirq across the timer
1295                 * callback. Drop the lock immediately so the softirq can
1296                 * expire the next timer. In theory the timer could already
1297                 * be running again, but that's more than unlikely and just
1298                 * causes another wait loop.
1299                 */
1300                atomic_inc(&base->timer_waiters);
1301                spin_lock_bh(&base->expiry_lock);
1302                atomic_dec(&base->timer_waiters);
1303                spin_unlock_bh(&base->expiry_lock);
1304        }
1305}
1306#else
1307static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1308static inline void timer_base_lock_expiry(struct timer_base *base) { }
1309static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1310static inline void timer_sync_wait_running(struct timer_base *base) { }
1311static inline void del_timer_wait_running(struct timer_list *timer) { }
1312#endif
1313
1314#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1315/**
1316 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1317 * @timer: the timer to be deactivated
1318 *
1319 * This function only differs from del_timer() on SMP: besides deactivating
1320 * the timer it also makes sure the handler has finished executing on other
1321 * CPUs.
1322 *
1323 * Synchronization rules: Callers must prevent restarting of the timer,
1324 * otherwise this function is meaningless. It must not be called from
1325 * interrupt contexts unless the timer is an irqsafe one. The caller must
1326 * not hold locks which would prevent completion of the timer's
1327 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1328 * timer is not queued and the handler is not running on any CPU.
1329 *
1330 * Note: For !irqsafe timers, you must not hold locks that are held in
1331 *   interrupt context while calling this function. Even if the lock has
1332 *   nothing to do with the timer in question.  Here's why::
1333 *
1334 *    CPU0                             CPU1
1335 *    ----                             ----
1336 *                                     <SOFTIRQ>
1337 *                                       call_timer_fn();
1338 *                                       base->running_timer = mytimer;
1339 *    spin_lock_irq(somelock);
1340 *                                     <IRQ>
1341 *                                        spin_lock(somelock);
1342 *    del_timer_sync(mytimer);
1343 *    while (base->running_timer == mytimer);
1344 *
1345 * Now del_timer_sync() will never return and never release somelock.
1346 * The interrupt on the other CPU is waiting to grab somelock but
1347 * it has interrupted the softirq that CPU0 is waiting to finish.
1348 *
1349 * The function returns whether it has deactivated a pending timer or not.
1350 */
1351int del_timer_sync(struct timer_list *timer)
1352{
1353        int ret;
1354
1355#ifdef CONFIG_LOCKDEP
1356        unsigned long flags;
1357
1358        /*
1359         * If lockdep gives a backtrace here, please reference
1360         * the synchronization rules above.
1361         */
1362        local_irq_save(flags);
1363        lock_map_acquire(&timer->lockdep_map);
1364        lock_map_release(&timer->lockdep_map);
1365        local_irq_restore(flags);
1366#endif
1367        /*
1368         * don't use it in hardirq context, because it
1369         * could lead to deadlock.
1370         */
1371        WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1372
1373        do {
1374                ret = try_to_del_timer_sync(timer);
1375
1376                if (unlikely(ret < 0)) {
1377                        del_timer_wait_running(timer);
1378                        cpu_relax();
1379                }
1380        } while (ret < 0);
1381
1382        return ret;
1383}
1384EXPORT_SYMBOL(del_timer_sync);
1385#endif
1386
1387static void call_timer_fn(struct timer_list *timer,
1388                          void (*fn)(struct timer_list *),
1389                          unsigned long baseclk)
1390{
1391        int count = preempt_count();
1392
1393#ifdef CONFIG_LOCKDEP
1394        /*
1395         * It is permissible to free the timer from inside the
1396         * function that is called from it, this we need to take into
1397         * account for lockdep too. To avoid bogus "held lock freed"
1398         * warnings as well as problems when looking into
1399         * timer->lockdep_map, make a copy and use that here.
1400         */
1401        struct lockdep_map lockdep_map;
1402
1403        lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1404#endif
1405        /*
1406         * Couple the lock chain with the lock chain at
1407         * del_timer_sync() by acquiring the lock_map around the fn()
1408         * call here and in del_timer_sync().
1409         */
1410        lock_map_acquire(&lockdep_map);
1411
1412        trace_timer_expire_entry(timer, baseclk);
1413        fn(timer);
1414        trace_timer_expire_exit(timer);
1415
1416        lock_map_release(&lockdep_map);
1417
1418        if (count != preempt_count()) {
1419                WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1420                          fn, count, preempt_count());
1421                /*
1422                 * Restore the preempt count. That gives us a decent
1423                 * chance to survive and extract information. If the
1424                 * callback kept a lock held, bad luck, but not worse
1425                 * than the BUG() we had.
1426                 */
1427                preempt_count_set(count);
1428        }
1429}
1430
1431static void expire_timers(struct timer_base *base, struct hlist_head *head)
1432{
1433        /*
1434         * This value is required only for tracing. base->clk was
1435         * incremented directly before expire_timers was called. But expiry
1436         * is related to the old base->clk value.
1437         */
1438        unsigned long baseclk = base->clk - 1;
1439
1440        while (!hlist_empty(head)) {
1441                struct timer_list *timer;
1442                void (*fn)(struct timer_list *);
1443
1444                timer = hlist_entry(head->first, struct timer_list, entry);
1445
1446                base->running_timer = timer;
1447                detach_timer(timer, true);
1448
1449                fn = timer->function;
1450
1451                if (timer->flags & TIMER_IRQSAFE) {
1452                        raw_spin_unlock(&base->lock);
1453                        call_timer_fn(timer, fn, baseclk);
1454                        base->running_timer = NULL;
1455                        raw_spin_lock(&base->lock);
1456                } else {
1457                        raw_spin_unlock_irq(&base->lock);
1458                        call_timer_fn(timer, fn, baseclk);
1459                        base->running_timer = NULL;
1460                        timer_sync_wait_running(base);
1461                        raw_spin_lock_irq(&base->lock);
1462                }
1463        }
1464}
1465
1466static int collect_expired_timers(struct timer_base *base,
1467                                  struct hlist_head *heads)
1468{
1469        unsigned long clk = base->clk = base->next_expiry;
1470        struct hlist_head *vec;
1471        int i, levels = 0;
1472        unsigned int idx;
1473
1474        for (i = 0; i < LVL_DEPTH; i++) {
1475                idx = (clk & LVL_MASK) + i * LVL_SIZE;
1476
1477                if (__test_and_clear_bit(idx, base->pending_map)) {
1478                        vec = base->vectors + idx;
1479                        hlist_move_list(vec, heads++);
1480                        levels++;
1481                }
1482                /* Is it time to look at the next level? */
1483                if (clk & LVL_CLK_MASK)
1484                        break;
1485                /* Shift clock for the next level granularity */
1486                clk >>= LVL_CLK_SHIFT;
1487        }
1488        return levels;
1489}
1490
1491/*
1492 * Find the next pending bucket of a level. Search from level start (@offset)
1493 * + @clk upwards and if nothing there, search from start of the level
1494 * (@offset) up to @offset + clk.
1495 */
1496static int next_pending_bucket(struct timer_base *base, unsigned offset,
1497                               unsigned clk)
1498{
1499        unsigned pos, start = offset + clk;
1500        unsigned end = offset + LVL_SIZE;
1501
1502        pos = find_next_bit(base->pending_map, end, start);
1503        if (pos < end)
1504                return pos - start;
1505
1506        pos = find_next_bit(base->pending_map, start, offset);
1507        return pos < start ? pos + LVL_SIZE - start : -1;
1508}
1509
1510/*
1511 * Search the first expiring timer in the various clock levels. Caller must
1512 * hold base->lock.
1513 */
1514static unsigned long __next_timer_interrupt(struct timer_base *base)
1515{
1516        unsigned long clk, next, adj;
1517        unsigned lvl, offset = 0;
1518
1519        next = base->clk + NEXT_TIMER_MAX_DELTA;
1520        clk = base->clk;
1521        for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1522                int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1523                unsigned long lvl_clk = clk & LVL_CLK_MASK;
1524
1525                if (pos >= 0) {
1526                        unsigned long tmp = clk + (unsigned long) pos;
1527
1528                        tmp <<= LVL_SHIFT(lvl);
1529                        if (time_before(tmp, next))
1530                                next = tmp;
1531
1532                        /*
1533                         * If the next expiration happens before we reach
1534                         * the next level, no need to check further.
1535                         */
1536                        if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1537                                break;
1538                }
1539                /*
1540                 * Clock for the next level. If the current level clock lower
1541                 * bits are zero, we look at the next level as is. If not we
1542                 * need to advance it by one because that's going to be the
1543                 * next expiring bucket in that level. base->clk is the next
1544                 * expiring jiffie. So in case of:
1545                 *
1546                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1547                 *  0    0    0    0    0    0
1548                 *
1549                 * we have to look at all levels @index 0. With
1550                 *
1551                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1552                 *  0    0    0    0    0    2
1553                 *
1554                 * LVL0 has the next expiring bucket @index 2. The upper
1555                 * levels have the next expiring bucket @index 1.
1556                 *
1557                 * In case that the propagation wraps the next level the same
1558                 * rules apply:
1559                 *
1560                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1561                 *  0    0    0    0    F    2
1562                 *
1563                 * So after looking at LVL0 we get:
1564                 *
1565                 * LVL5 LVL4 LVL3 LVL2 LVL1
1566                 *  0    0    0    1    0
1567                 *
1568                 * So no propagation from LVL1 to LVL2 because that happened
1569                 * with the add already, but then we need to propagate further
1570                 * from LVL2 to LVL3.
1571                 *
1572                 * So the simple check whether the lower bits of the current
1573                 * level are 0 or not is sufficient for all cases.
1574                 */
1575                adj = lvl_clk ? 1 : 0;
1576                clk >>= LVL_CLK_SHIFT;
1577                clk += adj;
1578        }
1579
1580        base->next_expiry_recalc = false;
1581
1582        return next;
1583}
1584
1585#ifdef CONFIG_NO_HZ_COMMON
1586/*
1587 * Check, if the next hrtimer event is before the next timer wheel
1588 * event:
1589 */
1590static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1591{
1592        u64 nextevt = hrtimer_get_next_event();
1593
1594        /*
1595         * If high resolution timers are enabled
1596         * hrtimer_get_next_event() returns KTIME_MAX.
1597         */
1598        if (expires <= nextevt)
1599                return expires;
1600
1601        /*
1602         * If the next timer is already expired, return the tick base
1603         * time so the tick is fired immediately.
1604         */
1605        if (nextevt <= basem)
1606                return basem;
1607
1608        /*
1609         * Round up to the next jiffie. High resolution timers are
1610         * off, so the hrtimers are expired in the tick and we need to
1611         * make sure that this tick really expires the timer to avoid
1612         * a ping pong of the nohz stop code.
1613         *
1614         * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1615         */
1616        return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1617}
1618
1619/**
1620 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1621 * @basej:      base time jiffies
1622 * @basem:      base time clock monotonic
1623 *
1624 * Returns the tick aligned clock monotonic time of the next pending
1625 * timer or KTIME_MAX if no timer is pending.
1626 */
1627u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1628{
1629        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1630        u64 expires = KTIME_MAX;
1631        unsigned long nextevt;
1632        bool is_max_delta;
1633
1634        /*
1635         * Pretend that there is no timer pending if the cpu is offline.
1636         * Possible pending timers will be migrated later to an active cpu.
1637         */
1638        if (cpu_is_offline(smp_processor_id()))
1639                return expires;
1640
1641        raw_spin_lock(&base->lock);
1642        if (base->next_expiry_recalc)
1643                base->next_expiry = __next_timer_interrupt(base);
1644        nextevt = base->next_expiry;
1645        is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1646
1647        /*
1648         * We have a fresh next event. Check whether we can forward the
1649         * base. We can only do that when @basej is past base->clk
1650         * otherwise we might rewind base->clk.
1651         */
1652        if (time_after(basej, base->clk)) {
1653                if (time_after(nextevt, basej))
1654                        base->clk = basej;
1655                else if (time_after(nextevt, base->clk))
1656                        base->clk = nextevt;
1657        }
1658
1659        if (time_before_eq(nextevt, basej)) {
1660                expires = basem;
1661                base->is_idle = false;
1662        } else {
1663                if (!is_max_delta)
1664                        expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1665                /*
1666                 * If we expect to sleep more than a tick, mark the base idle.
1667                 * Also the tick is stopped so any added timer must forward
1668                 * the base clk itself to keep granularity small. This idle
1669                 * logic is only maintained for the BASE_STD base, deferrable
1670                 * timers may still see large granularity skew (by design).
1671                 */
1672                if ((expires - basem) > TICK_NSEC)
1673                        base->is_idle = true;
1674        }
1675        raw_spin_unlock(&base->lock);
1676
1677        return cmp_next_hrtimer_event(basem, expires);
1678}
1679
1680/**
1681 * timer_clear_idle - Clear the idle state of the timer base
1682 *
1683 * Called with interrupts disabled
1684 */
1685void timer_clear_idle(void)
1686{
1687        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1688
1689        /*
1690         * We do this unlocked. The worst outcome is a remote enqueue sending
1691         * a pointless IPI, but taking the lock would just make the window for
1692         * sending the IPI a few instructions smaller for the cost of taking
1693         * the lock in the exit from idle path.
1694         */
1695        base->is_idle = false;
1696}
1697#endif
1698
1699/*
1700 * Called from the timer interrupt handler to charge one tick to the current
1701 * process.  user_tick is 1 if the tick is user time, 0 for system.
1702 */
1703void update_process_times(int user_tick)
1704{
1705        struct task_struct *p = current;
1706
1707        /* Note: this timer irq context must be accounted for as well. */
1708        account_process_tick(p, user_tick);
1709        run_local_timers();
1710        rcu_sched_clock_irq(user_tick);
1711#ifdef CONFIG_IRQ_WORK
1712        if (in_irq())
1713                irq_work_tick();
1714#endif
1715        scheduler_tick();
1716        if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1717                run_posix_cpu_timers();
1718
1719        /* The current CPU might make use of net randoms without receiving IRQs
1720         * to renew them often enough. Let's update the net_rand_state from a
1721         * non-constant value that's not affine to the number of calls to make
1722         * sure it's updated when there's some activity (we don't care in idle).
1723         */
1724        this_cpu_add(net_rand_state.s1, rol32(jiffies, 24) + user_tick);
1725}
1726
1727/**
1728 * __run_timers - run all expired timers (if any) on this CPU.
1729 * @base: the timer vector to be processed.
1730 */
1731static inline void __run_timers(struct timer_base *base)
1732{
1733        struct hlist_head heads[LVL_DEPTH];
1734        int levels;
1735
1736        if (time_before(jiffies, base->next_expiry))
1737                return;
1738
1739        timer_base_lock_expiry(base);
1740        raw_spin_lock_irq(&base->lock);
1741
1742        while (time_after_eq(jiffies, base->clk) &&
1743               time_after_eq(jiffies, base->next_expiry)) {
1744                levels = collect_expired_timers(base, heads);
1745                /*
1746                 * The only possible reason for not finding any expired
1747                 * timer at this clk is that all matching timers have been
1748                 * dequeued.
1749                 */
1750                WARN_ON_ONCE(!levels && !base->next_expiry_recalc);
1751                base->clk++;
1752                base->next_expiry = __next_timer_interrupt(base);
1753
1754                while (levels--)
1755                        expire_timers(base, heads + levels);
1756        }
1757        raw_spin_unlock_irq(&base->lock);
1758        timer_base_unlock_expiry(base);
1759}
1760
1761/*
1762 * This function runs timers and the timer-tq in bottom half context.
1763 */
1764static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1765{
1766        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1767
1768        __run_timers(base);
1769        if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1770                __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1771}
1772
1773/*
1774 * Called by the local, per-CPU timer interrupt on SMP.
1775 */
1776void run_local_timers(void)
1777{
1778        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1779
1780        hrtimer_run_queues();
1781        /* Raise the softirq only if required. */
1782        if (time_before(jiffies, base->next_expiry)) {
1783                if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1784                        return;
1785                /* CPU is awake, so check the deferrable base. */
1786                base++;
1787                if (time_before(jiffies, base->next_expiry))
1788                        return;
1789        }
1790        raise_softirq(TIMER_SOFTIRQ);
1791}
1792
1793/*
1794 * Since schedule_timeout()'s timer is defined on the stack, it must store
1795 * the target task on the stack as well.
1796 */
1797struct process_timer {
1798        struct timer_list timer;
1799        struct task_struct *task;
1800};
1801
1802static void process_timeout(struct timer_list *t)
1803{
1804        struct process_timer *timeout = from_timer(timeout, t, timer);
1805
1806        wake_up_process(timeout->task);
1807}
1808
1809/**
1810 * schedule_timeout - sleep until timeout
1811 * @timeout: timeout value in jiffies
1812 *
1813 * Make the current task sleep until @timeout jiffies have elapsed.
1814 * The function behavior depends on the current task state
1815 * (see also set_current_state() description):
1816 *
1817 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1818 * at all. That happens because sched_submit_work() does nothing for
1819 * tasks in %TASK_RUNNING state.
1820 *
1821 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1822 * pass before the routine returns unless the current task is explicitly
1823 * woken up, (e.g. by wake_up_process()).
1824 *
1825 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1826 * delivered to the current task or the current task is explicitly woken
1827 * up.
1828 *
1829 * The current task state is guaranteed to be %TASK_RUNNING when this
1830 * routine returns.
1831 *
1832 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1833 * the CPU away without a bound on the timeout. In this case the return
1834 * value will be %MAX_SCHEDULE_TIMEOUT.
1835 *
1836 * Returns 0 when the timer has expired otherwise the remaining time in
1837 * jiffies will be returned. In all cases the return value is guaranteed
1838 * to be non-negative.
1839 */
1840signed long __sched schedule_timeout(signed long timeout)
1841{
1842        struct process_timer timer;
1843        unsigned long expire;
1844
1845        switch (timeout)
1846        {
1847        case MAX_SCHEDULE_TIMEOUT:
1848                /*
1849                 * These two special cases are useful to be comfortable
1850                 * in the caller. Nothing more. We could take
1851                 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1852                 * but I' d like to return a valid offset (>=0) to allow
1853                 * the caller to do everything it want with the retval.
1854                 */
1855                schedule();
1856                goto out;
1857        default:
1858                /*
1859                 * Another bit of PARANOID. Note that the retval will be
1860                 * 0 since no piece of kernel is supposed to do a check
1861                 * for a negative retval of schedule_timeout() (since it
1862                 * should never happens anyway). You just have the printk()
1863                 * that will tell you if something is gone wrong and where.
1864                 */
1865                if (timeout < 0) {
1866                        printk(KERN_ERR "schedule_timeout: wrong timeout "
1867                                "value %lx\n", timeout);
1868                        dump_stack();
1869                        current->state = TASK_RUNNING;
1870                        goto out;
1871                }
1872        }
1873
1874        expire = timeout + jiffies;
1875
1876        timer.task = current;
1877        timer_setup_on_stack(&timer.timer, process_timeout, 0);
1878        __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1879        schedule();
1880        del_singleshot_timer_sync(&timer.timer);
1881
1882        /* Remove the timer from the object tracker */
1883        destroy_timer_on_stack(&timer.timer);
1884
1885        timeout = expire - jiffies;
1886
1887 out:
1888        return timeout < 0 ? 0 : timeout;
1889}
1890EXPORT_SYMBOL(schedule_timeout);
1891
1892/*
1893 * We can use __set_current_state() here because schedule_timeout() calls
1894 * schedule() unconditionally.
1895 */
1896signed long __sched schedule_timeout_interruptible(signed long timeout)
1897{
1898        __set_current_state(TASK_INTERRUPTIBLE);
1899        return schedule_timeout(timeout);
1900}
1901EXPORT_SYMBOL(schedule_timeout_interruptible);
1902
1903signed long __sched schedule_timeout_killable(signed long timeout)
1904{
1905        __set_current_state(TASK_KILLABLE);
1906        return schedule_timeout(timeout);
1907}
1908EXPORT_SYMBOL(schedule_timeout_killable);
1909
1910signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1911{
1912        __set_current_state(TASK_UNINTERRUPTIBLE);
1913        return schedule_timeout(timeout);
1914}
1915EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1916
1917/*
1918 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1919 * to load average.
1920 */
1921signed long __sched schedule_timeout_idle(signed long timeout)
1922{
1923        __set_current_state(TASK_IDLE);
1924        return schedule_timeout(timeout);
1925}
1926EXPORT_SYMBOL(schedule_timeout_idle);
1927
1928#ifdef CONFIG_HOTPLUG_CPU
1929static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1930{
1931        struct timer_list *timer;
1932        int cpu = new_base->cpu;
1933
1934        while (!hlist_empty(head)) {
1935                timer = hlist_entry(head->first, struct timer_list, entry);
1936                detach_timer(timer, false);
1937                timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1938                internal_add_timer(new_base, timer);
1939        }
1940}
1941
1942int timers_prepare_cpu(unsigned int cpu)
1943{
1944        struct timer_base *base;
1945        int b;
1946
1947        for (b = 0; b < NR_BASES; b++) {
1948                base = per_cpu_ptr(&timer_bases[b], cpu);
1949                base->clk = jiffies;
1950                base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1951                base->is_idle = false;
1952        }
1953        return 0;
1954}
1955
1956int timers_dead_cpu(unsigned int cpu)
1957{
1958        struct timer_base *old_base;
1959        struct timer_base *new_base;
1960        int b, i;
1961
1962        BUG_ON(cpu_online(cpu));
1963
1964        for (b = 0; b < NR_BASES; b++) {
1965                old_base = per_cpu_ptr(&timer_bases[b], cpu);
1966                new_base = get_cpu_ptr(&timer_bases[b]);
1967                /*
1968                 * The caller is globally serialized and nobody else
1969                 * takes two locks at once, deadlock is not possible.
1970                 */
1971                raw_spin_lock_irq(&new_base->lock);
1972                raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1973
1974                /*
1975                 * The current CPUs base clock might be stale. Update it
1976                 * before moving the timers over.
1977                 */
1978                forward_timer_base(new_base);
1979
1980                BUG_ON(old_base->running_timer);
1981
1982                for (i = 0; i < WHEEL_SIZE; i++)
1983                        migrate_timer_list(new_base, old_base->vectors + i);
1984
1985                raw_spin_unlock(&old_base->lock);
1986                raw_spin_unlock_irq(&new_base->lock);
1987                put_cpu_ptr(&timer_bases);
1988        }
1989        return 0;
1990}
1991
1992#endif /* CONFIG_HOTPLUG_CPU */
1993
1994static void __init init_timer_cpu(int cpu)
1995{
1996        struct timer_base *base;
1997        int i;
1998
1999        for (i = 0; i < NR_BASES; i++) {
2000                base = per_cpu_ptr(&timer_bases[i], cpu);
2001                base->cpu = cpu;
2002                raw_spin_lock_init(&base->lock);
2003                base->clk = jiffies;
2004                base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2005                timer_base_init_expiry_lock(base);
2006        }
2007}
2008
2009static void __init init_timer_cpus(void)
2010{
2011        int cpu;
2012
2013        for_each_possible_cpu(cpu)
2014                init_timer_cpu(cpu);
2015}
2016
2017void __init init_timers(void)
2018{
2019        init_timer_cpus();
2020        posix_cputimers_init_work();
2021        open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2022}
2023
2024/**
2025 * msleep - sleep safely even with waitqueue interruptions
2026 * @msecs: Time in milliseconds to sleep for
2027 */
2028void msleep(unsigned int msecs)
2029{
2030        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2031
2032        while (timeout)
2033                timeout = schedule_timeout_uninterruptible(timeout);
2034}
2035
2036EXPORT_SYMBOL(msleep);
2037
2038/**
2039 * msleep_interruptible - sleep waiting for signals
2040 * @msecs: Time in milliseconds to sleep for
2041 */
2042unsigned long msleep_interruptible(unsigned int msecs)
2043{
2044        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2045
2046        while (timeout && !signal_pending(current))
2047                timeout = schedule_timeout_interruptible(timeout);
2048        return jiffies_to_msecs(timeout);
2049}
2050
2051EXPORT_SYMBOL(msleep_interruptible);
2052
2053/**
2054 * usleep_range - Sleep for an approximate time
2055 * @min: Minimum time in usecs to sleep
2056 * @max: Maximum time in usecs to sleep
2057 *
2058 * In non-atomic context where the exact wakeup time is flexible, use
2059 * usleep_range() instead of udelay().  The sleep improves responsiveness
2060 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2061 * power usage by allowing hrtimers to take advantage of an already-
2062 * scheduled interrupt instead of scheduling a new one just for this sleep.
2063 */
2064void __sched usleep_range(unsigned long min, unsigned long max)
2065{
2066        ktime_t exp = ktime_add_us(ktime_get(), min);
2067        u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2068
2069        for (;;) {
2070                __set_current_state(TASK_UNINTERRUPTIBLE);
2071                /* Do not return before the requested sleep time has elapsed */
2072                if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2073                        break;
2074        }
2075}
2076EXPORT_SYMBOL(usleep_range);
2077