linux/kernel/trace/ring_buffer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_events.h>
   8#include <linux/ring_buffer.h>
   9#include <linux/trace_clock.h>
  10#include <linux/sched/clock.h>
  11#include <linux/trace_seq.h>
  12#include <linux/spinlock.h>
  13#include <linux/irq_work.h>
  14#include <linux/security.h>
  15#include <linux/uaccess.h>
  16#include <linux/hardirq.h>
  17#include <linux/kthread.h>      /* for self test */
  18#include <linux/module.h>
  19#include <linux/percpu.h>
  20#include <linux/mutex.h>
  21#include <linux/delay.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/hash.h>
  25#include <linux/list.h>
  26#include <linux/cpu.h>
  27#include <linux/oom.h>
  28
  29#include <asm/local.h>
  30
  31static void update_pages_handler(struct work_struct *work);
  32
  33/*
  34 * The ring buffer header is special. We must manually up keep it.
  35 */
  36int ring_buffer_print_entry_header(struct trace_seq *s)
  37{
  38        trace_seq_puts(s, "# compressed entry header\n");
  39        trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  40        trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  41        trace_seq_puts(s, "\tarray       :   32 bits\n");
  42        trace_seq_putc(s, '\n');
  43        trace_seq_printf(s, "\tpadding     : type == %d\n",
  44                         RINGBUF_TYPE_PADDING);
  45        trace_seq_printf(s, "\ttime_extend : type == %d\n",
  46                         RINGBUF_TYPE_TIME_EXTEND);
  47        trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  48                         RINGBUF_TYPE_TIME_STAMP);
  49        trace_seq_printf(s, "\tdata max type_len  == %d\n",
  50                         RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  51
  52        return !trace_seq_has_overflowed(s);
  53}
  54
  55/*
  56 * The ring buffer is made up of a list of pages. A separate list of pages is
  57 * allocated for each CPU. A writer may only write to a buffer that is
  58 * associated with the CPU it is currently executing on.  A reader may read
  59 * from any per cpu buffer.
  60 *
  61 * The reader is special. For each per cpu buffer, the reader has its own
  62 * reader page. When a reader has read the entire reader page, this reader
  63 * page is swapped with another page in the ring buffer.
  64 *
  65 * Now, as long as the writer is off the reader page, the reader can do what
  66 * ever it wants with that page. The writer will never write to that page
  67 * again (as long as it is out of the ring buffer).
  68 *
  69 * Here's some silly ASCII art.
  70 *
  71 *   +------+
  72 *   |reader|          RING BUFFER
  73 *   |page  |
  74 *   +------+        +---+   +---+   +---+
  75 *                   |   |-->|   |-->|   |
  76 *                   +---+   +---+   +---+
  77 *                     ^               |
  78 *                     |               |
  79 *                     +---------------+
  80 *
  81 *
  82 *   +------+
  83 *   |reader|          RING BUFFER
  84 *   |page  |------------------v
  85 *   +------+        +---+   +---+   +---+
  86 *                   |   |-->|   |-->|   |
  87 *                   +---+   +---+   +---+
  88 *                     ^               |
  89 *                     |               |
  90 *                     +---------------+
  91 *
  92 *
  93 *   +------+
  94 *   |reader|          RING BUFFER
  95 *   |page  |------------------v
  96 *   +------+        +---+   +---+   +---+
  97 *      ^            |   |-->|   |-->|   |
  98 *      |            +---+   +---+   +---+
  99 *      |                              |
 100 *      |                              |
 101 *      +------------------------------+
 102 *
 103 *
 104 *   +------+
 105 *   |buffer|          RING BUFFER
 106 *   |page  |------------------v
 107 *   +------+        +---+   +---+   +---+
 108 *      ^            |   |   |   |-->|   |
 109 *      |   New      +---+   +---+   +---+
 110 *      |  Reader------^               |
 111 *      |   page                       |
 112 *      +------------------------------+
 113 *
 114 *
 115 * After we make this swap, the reader can hand this page off to the splice
 116 * code and be done with it. It can even allocate a new page if it needs to
 117 * and swap that into the ring buffer.
 118 *
 119 * We will be using cmpxchg soon to make all this lockless.
 120 *
 121 */
 122
 123/* Used for individual buffers (after the counter) */
 124#define RB_BUFFER_OFF           (1 << 20)
 125
 126#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 127
 128#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 129#define RB_ALIGNMENT            4U
 130#define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 131#define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 132#define RB_ALIGN_DATA           __aligned(RB_ALIGNMENT)
 133
 134/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 135#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 136
 137enum {
 138        RB_LEN_TIME_EXTEND = 8,
 139        RB_LEN_TIME_STAMP =  8,
 140};
 141
 142#define skip_time_extend(event) \
 143        ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 144
 145#define extended_time(event) \
 146        (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 147
 148static inline int rb_null_event(struct ring_buffer_event *event)
 149{
 150        return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 151}
 152
 153static void rb_event_set_padding(struct ring_buffer_event *event)
 154{
 155        /* padding has a NULL time_delta */
 156        event->type_len = RINGBUF_TYPE_PADDING;
 157        event->time_delta = 0;
 158}
 159
 160static unsigned
 161rb_event_data_length(struct ring_buffer_event *event)
 162{
 163        unsigned length;
 164
 165        if (event->type_len)
 166                length = event->type_len * RB_ALIGNMENT;
 167        else
 168                length = event->array[0];
 169        return length + RB_EVNT_HDR_SIZE;
 170}
 171
 172/*
 173 * Return the length of the given event. Will return
 174 * the length of the time extend if the event is a
 175 * time extend.
 176 */
 177static inline unsigned
 178rb_event_length(struct ring_buffer_event *event)
 179{
 180        switch (event->type_len) {
 181        case RINGBUF_TYPE_PADDING:
 182                if (rb_null_event(event))
 183                        /* undefined */
 184                        return -1;
 185                return  event->array[0] + RB_EVNT_HDR_SIZE;
 186
 187        case RINGBUF_TYPE_TIME_EXTEND:
 188                return RB_LEN_TIME_EXTEND;
 189
 190        case RINGBUF_TYPE_TIME_STAMP:
 191                return RB_LEN_TIME_STAMP;
 192
 193        case RINGBUF_TYPE_DATA:
 194                return rb_event_data_length(event);
 195        default:
 196                WARN_ON_ONCE(1);
 197        }
 198        /* not hit */
 199        return 0;
 200}
 201
 202/*
 203 * Return total length of time extend and data,
 204 *   or just the event length for all other events.
 205 */
 206static inline unsigned
 207rb_event_ts_length(struct ring_buffer_event *event)
 208{
 209        unsigned len = 0;
 210
 211        if (extended_time(event)) {
 212                /* time extends include the data event after it */
 213                len = RB_LEN_TIME_EXTEND;
 214                event = skip_time_extend(event);
 215        }
 216        return len + rb_event_length(event);
 217}
 218
 219/**
 220 * ring_buffer_event_length - return the length of the event
 221 * @event: the event to get the length of
 222 *
 223 * Returns the size of the data load of a data event.
 224 * If the event is something other than a data event, it
 225 * returns the size of the event itself. With the exception
 226 * of a TIME EXTEND, where it still returns the size of the
 227 * data load of the data event after it.
 228 */
 229unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 230{
 231        unsigned length;
 232
 233        if (extended_time(event))
 234                event = skip_time_extend(event);
 235
 236        length = rb_event_length(event);
 237        if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 238                return length;
 239        length -= RB_EVNT_HDR_SIZE;
 240        if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 241                length -= sizeof(event->array[0]);
 242        return length;
 243}
 244EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 245
 246/* inline for ring buffer fast paths */
 247static __always_inline void *
 248rb_event_data(struct ring_buffer_event *event)
 249{
 250        if (extended_time(event))
 251                event = skip_time_extend(event);
 252        WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 253        /* If length is in len field, then array[0] has the data */
 254        if (event->type_len)
 255                return (void *)&event->array[0];
 256        /* Otherwise length is in array[0] and array[1] has the data */
 257        return (void *)&event->array[1];
 258}
 259
 260/**
 261 * ring_buffer_event_data - return the data of the event
 262 * @event: the event to get the data from
 263 */
 264void *ring_buffer_event_data(struct ring_buffer_event *event)
 265{
 266        return rb_event_data(event);
 267}
 268EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 269
 270#define for_each_buffer_cpu(buffer, cpu)                \
 271        for_each_cpu(cpu, buffer->cpumask)
 272
 273#define for_each_online_buffer_cpu(buffer, cpu)         \
 274        for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
 275
 276#define TS_SHIFT        27
 277#define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 278#define TS_DELTA_TEST   (~TS_MASK)
 279
 280/**
 281 * ring_buffer_event_time_stamp - return the event's extended timestamp
 282 * @event: the event to get the timestamp of
 283 *
 284 * Returns the extended timestamp associated with a data event.
 285 * An extended time_stamp is a 64-bit timestamp represented
 286 * internally in a special way that makes the best use of space
 287 * contained within a ring buffer event.  This function decodes
 288 * it and maps it to a straight u64 value.
 289 */
 290u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 291{
 292        u64 ts;
 293
 294        ts = event->array[0];
 295        ts <<= TS_SHIFT;
 296        ts += event->time_delta;
 297
 298        return ts;
 299}
 300
 301/* Flag when events were overwritten */
 302#define RB_MISSED_EVENTS        (1 << 31)
 303/* Missed count stored at end */
 304#define RB_MISSED_STORED        (1 << 30)
 305
 306struct buffer_data_page {
 307        u64              time_stamp;    /* page time stamp */
 308        local_t          commit;        /* write committed index */
 309        unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 310};
 311
 312/*
 313 * Note, the buffer_page list must be first. The buffer pages
 314 * are allocated in cache lines, which means that each buffer
 315 * page will be at the beginning of a cache line, and thus
 316 * the least significant bits will be zero. We use this to
 317 * add flags in the list struct pointers, to make the ring buffer
 318 * lockless.
 319 */
 320struct buffer_page {
 321        struct list_head list;          /* list of buffer pages */
 322        local_t          write;         /* index for next write */
 323        unsigned         read;          /* index for next read */
 324        local_t          entries;       /* entries on this page */
 325        unsigned long    real_end;      /* real end of data */
 326        struct buffer_data_page *page;  /* Actual data page */
 327};
 328
 329/*
 330 * The buffer page counters, write and entries, must be reset
 331 * atomically when crossing page boundaries. To synchronize this
 332 * update, two counters are inserted into the number. One is
 333 * the actual counter for the write position or count on the page.
 334 *
 335 * The other is a counter of updaters. Before an update happens
 336 * the update partition of the counter is incremented. This will
 337 * allow the updater to update the counter atomically.
 338 *
 339 * The counter is 20 bits, and the state data is 12.
 340 */
 341#define RB_WRITE_MASK           0xfffff
 342#define RB_WRITE_INTCNT         (1 << 20)
 343
 344static void rb_init_page(struct buffer_data_page *bpage)
 345{
 346        local_set(&bpage->commit, 0);
 347}
 348
 349/*
 350 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 351 * this issue out.
 352 */
 353static void free_buffer_page(struct buffer_page *bpage)
 354{
 355        free_page((unsigned long)bpage->page);
 356        kfree(bpage);
 357}
 358
 359/*
 360 * We need to fit the time_stamp delta into 27 bits.
 361 */
 362static inline int test_time_stamp(u64 delta)
 363{
 364        if (delta & TS_DELTA_TEST)
 365                return 1;
 366        return 0;
 367}
 368
 369#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 370
 371/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 372#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 373
 374int ring_buffer_print_page_header(struct trace_seq *s)
 375{
 376        struct buffer_data_page field;
 377
 378        trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 379                         "offset:0;\tsize:%u;\tsigned:%u;\n",
 380                         (unsigned int)sizeof(field.time_stamp),
 381                         (unsigned int)is_signed_type(u64));
 382
 383        trace_seq_printf(s, "\tfield: local_t commit;\t"
 384                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 385                         (unsigned int)offsetof(typeof(field), commit),
 386                         (unsigned int)sizeof(field.commit),
 387                         (unsigned int)is_signed_type(long));
 388
 389        trace_seq_printf(s, "\tfield: int overwrite;\t"
 390                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 391                         (unsigned int)offsetof(typeof(field), commit),
 392                         1,
 393                         (unsigned int)is_signed_type(long));
 394
 395        trace_seq_printf(s, "\tfield: char data;\t"
 396                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 397                         (unsigned int)offsetof(typeof(field), data),
 398                         (unsigned int)BUF_PAGE_SIZE,
 399                         (unsigned int)is_signed_type(char));
 400
 401        return !trace_seq_has_overflowed(s);
 402}
 403
 404struct rb_irq_work {
 405        struct irq_work                 work;
 406        wait_queue_head_t               waiters;
 407        wait_queue_head_t               full_waiters;
 408        bool                            waiters_pending;
 409        bool                            full_waiters_pending;
 410        bool                            wakeup_full;
 411};
 412
 413/*
 414 * Structure to hold event state and handle nested events.
 415 */
 416struct rb_event_info {
 417        u64                     ts;
 418        u64                     delta;
 419        u64                     before;
 420        u64                     after;
 421        unsigned long           length;
 422        struct buffer_page      *tail_page;
 423        int                     add_timestamp;
 424};
 425
 426/*
 427 * Used for the add_timestamp
 428 *  NONE
 429 *  EXTEND - wants a time extend
 430 *  ABSOLUTE - the buffer requests all events to have absolute time stamps
 431 *  FORCE - force a full time stamp.
 432 */
 433enum {
 434        RB_ADD_STAMP_NONE               = 0,
 435        RB_ADD_STAMP_EXTEND             = BIT(1),
 436        RB_ADD_STAMP_ABSOLUTE           = BIT(2),
 437        RB_ADD_STAMP_FORCE              = BIT(3)
 438};
 439/*
 440 * Used for which event context the event is in.
 441 *  NMI     = 0
 442 *  IRQ     = 1
 443 *  SOFTIRQ = 2
 444 *  NORMAL  = 3
 445 *
 446 * See trace_recursive_lock() comment below for more details.
 447 */
 448enum {
 449        RB_CTX_NMI,
 450        RB_CTX_IRQ,
 451        RB_CTX_SOFTIRQ,
 452        RB_CTX_NORMAL,
 453        RB_CTX_MAX
 454};
 455
 456#if BITS_PER_LONG == 32
 457#define RB_TIME_32
 458#endif
 459
 460/* To test on 64 bit machines */
 461//#define RB_TIME_32
 462
 463#ifdef RB_TIME_32
 464
 465struct rb_time_struct {
 466        local_t         cnt;
 467        local_t         top;
 468        local_t         bottom;
 469};
 470#else
 471#include <asm/local64.h>
 472struct rb_time_struct {
 473        local64_t       time;
 474};
 475#endif
 476typedef struct rb_time_struct rb_time_t;
 477
 478/*
 479 * head_page == tail_page && head == tail then buffer is empty.
 480 */
 481struct ring_buffer_per_cpu {
 482        int                             cpu;
 483        atomic_t                        record_disabled;
 484        atomic_t                        resize_disabled;
 485        struct trace_buffer     *buffer;
 486        raw_spinlock_t                  reader_lock;    /* serialize readers */
 487        arch_spinlock_t                 lock;
 488        struct lock_class_key           lock_key;
 489        struct buffer_data_page         *free_page;
 490        unsigned long                   nr_pages;
 491        unsigned int                    current_context;
 492        struct list_head                *pages;
 493        struct buffer_page              *head_page;     /* read from head */
 494        struct buffer_page              *tail_page;     /* write to tail */
 495        struct buffer_page              *commit_page;   /* committed pages */
 496        struct buffer_page              *reader_page;
 497        unsigned long                   lost_events;
 498        unsigned long                   last_overrun;
 499        unsigned long                   nest;
 500        local_t                         entries_bytes;
 501        local_t                         entries;
 502        local_t                         overrun;
 503        local_t                         commit_overrun;
 504        local_t                         dropped_events;
 505        local_t                         committing;
 506        local_t                         commits;
 507        local_t                         pages_touched;
 508        local_t                         pages_read;
 509        long                            last_pages_touch;
 510        size_t                          shortest_full;
 511        unsigned long                   read;
 512        unsigned long                   read_bytes;
 513        rb_time_t                       write_stamp;
 514        rb_time_t                       before_stamp;
 515        u64                             read_stamp;
 516        /* ring buffer pages to update, > 0 to add, < 0 to remove */
 517        long                            nr_pages_to_update;
 518        struct list_head                new_pages; /* new pages to add */
 519        struct work_struct              update_pages_work;
 520        struct completion               update_done;
 521
 522        struct rb_irq_work              irq_work;
 523};
 524
 525struct trace_buffer {
 526        unsigned                        flags;
 527        int                             cpus;
 528        atomic_t                        record_disabled;
 529        cpumask_var_t                   cpumask;
 530
 531        struct lock_class_key           *reader_lock_key;
 532
 533        struct mutex                    mutex;
 534
 535        struct ring_buffer_per_cpu      **buffers;
 536
 537        struct hlist_node               node;
 538        u64                             (*clock)(void);
 539
 540        struct rb_irq_work              irq_work;
 541        bool                            time_stamp_abs;
 542};
 543
 544struct ring_buffer_iter {
 545        struct ring_buffer_per_cpu      *cpu_buffer;
 546        unsigned long                   head;
 547        unsigned long                   next_event;
 548        struct buffer_page              *head_page;
 549        struct buffer_page              *cache_reader_page;
 550        unsigned long                   cache_read;
 551        u64                             read_stamp;
 552        u64                             page_stamp;
 553        struct ring_buffer_event        *event;
 554        int                             missed_events;
 555};
 556
 557#ifdef RB_TIME_32
 558
 559/*
 560 * On 32 bit machines, local64_t is very expensive. As the ring
 561 * buffer doesn't need all the features of a true 64 bit atomic,
 562 * on 32 bit, it uses these functions (64 still uses local64_t).
 563 *
 564 * For the ring buffer, 64 bit required operations for the time is
 565 * the following:
 566 *
 567 *  - Only need 59 bits (uses 60 to make it even).
 568 *  - Reads may fail if it interrupted a modification of the time stamp.
 569 *      It will succeed if it did not interrupt another write even if
 570 *      the read itself is interrupted by a write.
 571 *      It returns whether it was successful or not.
 572 *
 573 *  - Writes always succeed and will overwrite other writes and writes
 574 *      that were done by events interrupting the current write.
 575 *
 576 *  - A write followed by a read of the same time stamp will always succeed,
 577 *      but may not contain the same value.
 578 *
 579 *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
 580 *      Other than that, it acts like a normal cmpxchg.
 581 *
 582 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
 583 *  (bottom being the least significant 30 bits of the 60 bit time stamp).
 584 *
 585 * The two most significant bits of each half holds a 2 bit counter (0-3).
 586 * Each update will increment this counter by one.
 587 * When reading the top and bottom, if the two counter bits match then the
 588 *  top and bottom together make a valid 60 bit number.
 589 */
 590#define RB_TIME_SHIFT   30
 591#define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
 592
 593static inline int rb_time_cnt(unsigned long val)
 594{
 595        return (val >> RB_TIME_SHIFT) & 3;
 596}
 597
 598static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
 599{
 600        u64 val;
 601
 602        val = top & RB_TIME_VAL_MASK;
 603        val <<= RB_TIME_SHIFT;
 604        val |= bottom & RB_TIME_VAL_MASK;
 605
 606        return val;
 607}
 608
 609static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
 610{
 611        unsigned long top, bottom;
 612        unsigned long c;
 613
 614        /*
 615         * If the read is interrupted by a write, then the cnt will
 616         * be different. Loop until both top and bottom have been read
 617         * without interruption.
 618         */
 619        do {
 620                c = local_read(&t->cnt);
 621                top = local_read(&t->top);
 622                bottom = local_read(&t->bottom);
 623        } while (c != local_read(&t->cnt));
 624
 625        *cnt = rb_time_cnt(top);
 626
 627        /* If top and bottom counts don't match, this interrupted a write */
 628        if (*cnt != rb_time_cnt(bottom))
 629                return false;
 630
 631        *ret = rb_time_val(top, bottom);
 632        return true;
 633}
 634
 635static bool rb_time_read(rb_time_t *t, u64 *ret)
 636{
 637        unsigned long cnt;
 638
 639        return __rb_time_read(t, ret, &cnt);
 640}
 641
 642static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
 643{
 644        return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
 645}
 646
 647static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
 648{
 649        *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
 650        *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
 651}
 652
 653static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
 654{
 655        val = rb_time_val_cnt(val, cnt);
 656        local_set(t, val);
 657}
 658
 659static void rb_time_set(rb_time_t *t, u64 val)
 660{
 661        unsigned long cnt, top, bottom;
 662
 663        rb_time_split(val, &top, &bottom);
 664
 665        /* Writes always succeed with a valid number even if it gets interrupted. */
 666        do {
 667                cnt = local_inc_return(&t->cnt);
 668                rb_time_val_set(&t->top, top, cnt);
 669                rb_time_val_set(&t->bottom, bottom, cnt);
 670        } while (cnt != local_read(&t->cnt));
 671}
 672
 673static inline bool
 674rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
 675{
 676        unsigned long ret;
 677
 678        ret = local_cmpxchg(l, expect, set);
 679        return ret == expect;
 680}
 681
 682static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 683{
 684        unsigned long cnt, top, bottom;
 685        unsigned long cnt2, top2, bottom2;
 686        u64 val;
 687
 688        /* The cmpxchg always fails if it interrupted an update */
 689         if (!__rb_time_read(t, &val, &cnt2))
 690                 return false;
 691
 692         if (val != expect)
 693                 return false;
 694
 695         cnt = local_read(&t->cnt);
 696         if ((cnt & 3) != cnt2)
 697                 return false;
 698
 699         cnt2 = cnt + 1;
 700
 701         rb_time_split(val, &top, &bottom);
 702         top = rb_time_val_cnt(top, cnt);
 703         bottom = rb_time_val_cnt(bottom, cnt);
 704
 705         rb_time_split(set, &top2, &bottom2);
 706         top2 = rb_time_val_cnt(top2, cnt2);
 707         bottom2 = rb_time_val_cnt(bottom2, cnt2);
 708
 709        if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
 710                return false;
 711        if (!rb_time_read_cmpxchg(&t->top, top, top2))
 712                return false;
 713        if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
 714                return false;
 715        return true;
 716}
 717
 718#else /* 64 bits */
 719
 720/* local64_t always succeeds */
 721
 722static inline bool rb_time_read(rb_time_t *t, u64 *ret)
 723{
 724        *ret = local64_read(&t->time);
 725        return true;
 726}
 727static void rb_time_set(rb_time_t *t, u64 val)
 728{
 729        local64_set(&t->time, val);
 730}
 731
 732static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 733{
 734        u64 val;
 735        val = local64_cmpxchg(&t->time, expect, set);
 736        return val == expect;
 737}
 738#endif
 739
 740/**
 741 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 742 * @buffer: The ring_buffer to get the number of pages from
 743 * @cpu: The cpu of the ring_buffer to get the number of pages from
 744 *
 745 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 746 */
 747size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
 748{
 749        return buffer->buffers[cpu]->nr_pages;
 750}
 751
 752/**
 753 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
 754 * @buffer: The ring_buffer to get the number of pages from
 755 * @cpu: The cpu of the ring_buffer to get the number of pages from
 756 *
 757 * Returns the number of pages that have content in the ring buffer.
 758 */
 759size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
 760{
 761        size_t read;
 762        size_t cnt;
 763
 764        read = local_read(&buffer->buffers[cpu]->pages_read);
 765        cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 766        /* The reader can read an empty page, but not more than that */
 767        if (cnt < read) {
 768                WARN_ON_ONCE(read > cnt + 1);
 769                return 0;
 770        }
 771
 772        return cnt - read;
 773}
 774
 775/*
 776 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 777 *
 778 * Schedules a delayed work to wake up any task that is blocked on the
 779 * ring buffer waiters queue.
 780 */
 781static void rb_wake_up_waiters(struct irq_work *work)
 782{
 783        struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 784
 785        wake_up_all(&rbwork->waiters);
 786        if (rbwork->wakeup_full) {
 787                rbwork->wakeup_full = false;
 788                wake_up_all(&rbwork->full_waiters);
 789        }
 790}
 791
 792/**
 793 * ring_buffer_wait - wait for input to the ring buffer
 794 * @buffer: buffer to wait on
 795 * @cpu: the cpu buffer to wait on
 796 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 797 *
 798 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 799 * as data is added to any of the @buffer's cpu buffers. Otherwise
 800 * it will wait for data to be added to a specific cpu buffer.
 801 */
 802int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
 803{
 804        struct ring_buffer_per_cpu *cpu_buffer;
 805        DEFINE_WAIT(wait);
 806        struct rb_irq_work *work;
 807        int ret = 0;
 808
 809        /*
 810         * Depending on what the caller is waiting for, either any
 811         * data in any cpu buffer, or a specific buffer, put the
 812         * caller on the appropriate wait queue.
 813         */
 814        if (cpu == RING_BUFFER_ALL_CPUS) {
 815                work = &buffer->irq_work;
 816                /* Full only makes sense on per cpu reads */
 817                full = 0;
 818        } else {
 819                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 820                        return -ENODEV;
 821                cpu_buffer = buffer->buffers[cpu];
 822                work = &cpu_buffer->irq_work;
 823        }
 824
 825
 826        while (true) {
 827                if (full)
 828                        prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 829                else
 830                        prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 831
 832                /*
 833                 * The events can happen in critical sections where
 834                 * checking a work queue can cause deadlocks.
 835                 * After adding a task to the queue, this flag is set
 836                 * only to notify events to try to wake up the queue
 837                 * using irq_work.
 838                 *
 839                 * We don't clear it even if the buffer is no longer
 840                 * empty. The flag only causes the next event to run
 841                 * irq_work to do the work queue wake up. The worse
 842                 * that can happen if we race with !trace_empty() is that
 843                 * an event will cause an irq_work to try to wake up
 844                 * an empty queue.
 845                 *
 846                 * There's no reason to protect this flag either, as
 847                 * the work queue and irq_work logic will do the necessary
 848                 * synchronization for the wake ups. The only thing
 849                 * that is necessary is that the wake up happens after
 850                 * a task has been queued. It's OK for spurious wake ups.
 851                 */
 852                if (full)
 853                        work->full_waiters_pending = true;
 854                else
 855                        work->waiters_pending = true;
 856
 857                if (signal_pending(current)) {
 858                        ret = -EINTR;
 859                        break;
 860                }
 861
 862                if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 863                        break;
 864
 865                if (cpu != RING_BUFFER_ALL_CPUS &&
 866                    !ring_buffer_empty_cpu(buffer, cpu)) {
 867                        unsigned long flags;
 868                        bool pagebusy;
 869                        size_t nr_pages;
 870                        size_t dirty;
 871
 872                        if (!full)
 873                                break;
 874
 875                        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 876                        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 877                        nr_pages = cpu_buffer->nr_pages;
 878                        dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 879                        if (!cpu_buffer->shortest_full ||
 880                            cpu_buffer->shortest_full < full)
 881                                cpu_buffer->shortest_full = full;
 882                        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 883                        if (!pagebusy &&
 884                            (!nr_pages || (dirty * 100) > full * nr_pages))
 885                                break;
 886                }
 887
 888                schedule();
 889        }
 890
 891        if (full)
 892                finish_wait(&work->full_waiters, &wait);
 893        else
 894                finish_wait(&work->waiters, &wait);
 895
 896        return ret;
 897}
 898
 899/**
 900 * ring_buffer_poll_wait - poll on buffer input
 901 * @buffer: buffer to wait on
 902 * @cpu: the cpu buffer to wait on
 903 * @filp: the file descriptor
 904 * @poll_table: The poll descriptor
 905 *
 906 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 907 * as data is added to any of the @buffer's cpu buffers. Otherwise
 908 * it will wait for data to be added to a specific cpu buffer.
 909 *
 910 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 911 * zero otherwise.
 912 */
 913__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
 914                          struct file *filp, poll_table *poll_table)
 915{
 916        struct ring_buffer_per_cpu *cpu_buffer;
 917        struct rb_irq_work *work;
 918
 919        if (cpu == RING_BUFFER_ALL_CPUS)
 920                work = &buffer->irq_work;
 921        else {
 922                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 923                        return -EINVAL;
 924
 925                cpu_buffer = buffer->buffers[cpu];
 926                work = &cpu_buffer->irq_work;
 927        }
 928
 929        poll_wait(filp, &work->waiters, poll_table);
 930        work->waiters_pending = true;
 931        /*
 932         * There's a tight race between setting the waiters_pending and
 933         * checking if the ring buffer is empty.  Once the waiters_pending bit
 934         * is set, the next event will wake the task up, but we can get stuck
 935         * if there's only a single event in.
 936         *
 937         * FIXME: Ideally, we need a memory barrier on the writer side as well,
 938         * but adding a memory barrier to all events will cause too much of a
 939         * performance hit in the fast path.  We only need a memory barrier when
 940         * the buffer goes from empty to having content.  But as this race is
 941         * extremely small, and it's not a problem if another event comes in, we
 942         * will fix it later.
 943         */
 944        smp_mb();
 945
 946        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 947            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 948                return EPOLLIN | EPOLLRDNORM;
 949        return 0;
 950}
 951
 952/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 953#define RB_WARN_ON(b, cond)                                             \
 954        ({                                                              \
 955                int _____ret = unlikely(cond);                          \
 956                if (_____ret) {                                         \
 957                        if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 958                                struct ring_buffer_per_cpu *__b =       \
 959                                        (void *)b;                      \
 960                                atomic_inc(&__b->buffer->record_disabled); \
 961                        } else                                          \
 962                                atomic_inc(&b->record_disabled);        \
 963                        WARN_ON(1);                                     \
 964                }                                                       \
 965                _____ret;                                               \
 966        })
 967
 968/* Up this if you want to test the TIME_EXTENTS and normalization */
 969#define DEBUG_SHIFT 0
 970
 971static inline u64 rb_time_stamp(struct trace_buffer *buffer)
 972{
 973        u64 ts;
 974
 975        /* Skip retpolines :-( */
 976        if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
 977                ts = trace_clock_local();
 978        else
 979                ts = buffer->clock();
 980
 981        /* shift to debug/test normalization and TIME_EXTENTS */
 982        return ts << DEBUG_SHIFT;
 983}
 984
 985u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
 986{
 987        u64 time;
 988
 989        preempt_disable_notrace();
 990        time = rb_time_stamp(buffer);
 991        preempt_enable_notrace();
 992
 993        return time;
 994}
 995EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 996
 997void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
 998                                      int cpu, u64 *ts)
 999{
1000        /* Just stupid testing the normalize function and deltas */
1001        *ts >>= DEBUG_SHIFT;
1002}
1003EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1004
1005/*
1006 * Making the ring buffer lockless makes things tricky.
1007 * Although writes only happen on the CPU that they are on,
1008 * and they only need to worry about interrupts. Reads can
1009 * happen on any CPU.
1010 *
1011 * The reader page is always off the ring buffer, but when the
1012 * reader finishes with a page, it needs to swap its page with
1013 * a new one from the buffer. The reader needs to take from
1014 * the head (writes go to the tail). But if a writer is in overwrite
1015 * mode and wraps, it must push the head page forward.
1016 *
1017 * Here lies the problem.
1018 *
1019 * The reader must be careful to replace only the head page, and
1020 * not another one. As described at the top of the file in the
1021 * ASCII art, the reader sets its old page to point to the next
1022 * page after head. It then sets the page after head to point to
1023 * the old reader page. But if the writer moves the head page
1024 * during this operation, the reader could end up with the tail.
1025 *
1026 * We use cmpxchg to help prevent this race. We also do something
1027 * special with the page before head. We set the LSB to 1.
1028 *
1029 * When the writer must push the page forward, it will clear the
1030 * bit that points to the head page, move the head, and then set
1031 * the bit that points to the new head page.
1032 *
1033 * We also don't want an interrupt coming in and moving the head
1034 * page on another writer. Thus we use the second LSB to catch
1035 * that too. Thus:
1036 *
1037 * head->list->prev->next        bit 1          bit 0
1038 *                              -------        -------
1039 * Normal page                     0              0
1040 * Points to head page             0              1
1041 * New head page                   1              0
1042 *
1043 * Note we can not trust the prev pointer of the head page, because:
1044 *
1045 * +----+       +-----+        +-----+
1046 * |    |------>|  T  |---X--->|  N  |
1047 * |    |<------|     |        |     |
1048 * +----+       +-----+        +-----+
1049 *   ^                           ^ |
1050 *   |          +-----+          | |
1051 *   +----------|  R  |----------+ |
1052 *              |     |<-----------+
1053 *              +-----+
1054 *
1055 * Key:  ---X-->  HEAD flag set in pointer
1056 *         T      Tail page
1057 *         R      Reader page
1058 *         N      Next page
1059 *
1060 * (see __rb_reserve_next() to see where this happens)
1061 *
1062 *  What the above shows is that the reader just swapped out
1063 *  the reader page with a page in the buffer, but before it
1064 *  could make the new header point back to the new page added
1065 *  it was preempted by a writer. The writer moved forward onto
1066 *  the new page added by the reader and is about to move forward
1067 *  again.
1068 *
1069 *  You can see, it is legitimate for the previous pointer of
1070 *  the head (or any page) not to point back to itself. But only
1071 *  temporarily.
1072 */
1073
1074#define RB_PAGE_NORMAL          0UL
1075#define RB_PAGE_HEAD            1UL
1076#define RB_PAGE_UPDATE          2UL
1077
1078
1079#define RB_FLAG_MASK            3UL
1080
1081/* PAGE_MOVED is not part of the mask */
1082#define RB_PAGE_MOVED           4UL
1083
1084/*
1085 * rb_list_head - remove any bit
1086 */
1087static struct list_head *rb_list_head(struct list_head *list)
1088{
1089        unsigned long val = (unsigned long)list;
1090
1091        return (struct list_head *)(val & ~RB_FLAG_MASK);
1092}
1093
1094/*
1095 * rb_is_head_page - test if the given page is the head page
1096 *
1097 * Because the reader may move the head_page pointer, we can
1098 * not trust what the head page is (it may be pointing to
1099 * the reader page). But if the next page is a header page,
1100 * its flags will be non zero.
1101 */
1102static inline int
1103rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1104                struct buffer_page *page, struct list_head *list)
1105{
1106        unsigned long val;
1107
1108        val = (unsigned long)list->next;
1109
1110        if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1111                return RB_PAGE_MOVED;
1112
1113        return val & RB_FLAG_MASK;
1114}
1115
1116/*
1117 * rb_is_reader_page
1118 *
1119 * The unique thing about the reader page, is that, if the
1120 * writer is ever on it, the previous pointer never points
1121 * back to the reader page.
1122 */
1123static bool rb_is_reader_page(struct buffer_page *page)
1124{
1125        struct list_head *list = page->list.prev;
1126
1127        return rb_list_head(list->next) != &page->list;
1128}
1129
1130/*
1131 * rb_set_list_to_head - set a list_head to be pointing to head.
1132 */
1133static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1134                                struct list_head *list)
1135{
1136        unsigned long *ptr;
1137
1138        ptr = (unsigned long *)&list->next;
1139        *ptr |= RB_PAGE_HEAD;
1140        *ptr &= ~RB_PAGE_UPDATE;
1141}
1142
1143/*
1144 * rb_head_page_activate - sets up head page
1145 */
1146static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1147{
1148        struct buffer_page *head;
1149
1150        head = cpu_buffer->head_page;
1151        if (!head)
1152                return;
1153
1154        /*
1155         * Set the previous list pointer to have the HEAD flag.
1156         */
1157        rb_set_list_to_head(cpu_buffer, head->list.prev);
1158}
1159
1160static void rb_list_head_clear(struct list_head *list)
1161{
1162        unsigned long *ptr = (unsigned long *)&list->next;
1163
1164        *ptr &= ~RB_FLAG_MASK;
1165}
1166
1167/*
1168 * rb_head_page_deactivate - clears head page ptr (for free list)
1169 */
1170static void
1171rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1172{
1173        struct list_head *hd;
1174
1175        /* Go through the whole list and clear any pointers found. */
1176        rb_list_head_clear(cpu_buffer->pages);
1177
1178        list_for_each(hd, cpu_buffer->pages)
1179                rb_list_head_clear(hd);
1180}
1181
1182static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1183                            struct buffer_page *head,
1184                            struct buffer_page *prev,
1185                            int old_flag, int new_flag)
1186{
1187        struct list_head *list;
1188        unsigned long val = (unsigned long)&head->list;
1189        unsigned long ret;
1190
1191        list = &prev->list;
1192
1193        val &= ~RB_FLAG_MASK;
1194
1195        ret = cmpxchg((unsigned long *)&list->next,
1196                      val | old_flag, val | new_flag);
1197
1198        /* check if the reader took the page */
1199        if ((ret & ~RB_FLAG_MASK) != val)
1200                return RB_PAGE_MOVED;
1201
1202        return ret & RB_FLAG_MASK;
1203}
1204
1205static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1206                                   struct buffer_page *head,
1207                                   struct buffer_page *prev,
1208                                   int old_flag)
1209{
1210        return rb_head_page_set(cpu_buffer, head, prev,
1211                                old_flag, RB_PAGE_UPDATE);
1212}
1213
1214static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1215                                 struct buffer_page *head,
1216                                 struct buffer_page *prev,
1217                                 int old_flag)
1218{
1219        return rb_head_page_set(cpu_buffer, head, prev,
1220                                old_flag, RB_PAGE_HEAD);
1221}
1222
1223static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1224                                   struct buffer_page *head,
1225                                   struct buffer_page *prev,
1226                                   int old_flag)
1227{
1228        return rb_head_page_set(cpu_buffer, head, prev,
1229                                old_flag, RB_PAGE_NORMAL);
1230}
1231
1232static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1233                               struct buffer_page **bpage)
1234{
1235        struct list_head *p = rb_list_head((*bpage)->list.next);
1236
1237        *bpage = list_entry(p, struct buffer_page, list);
1238}
1239
1240static struct buffer_page *
1241rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1242{
1243        struct buffer_page *head;
1244        struct buffer_page *page;
1245        struct list_head *list;
1246        int i;
1247
1248        if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1249                return NULL;
1250
1251        /* sanity check */
1252        list = cpu_buffer->pages;
1253        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1254                return NULL;
1255
1256        page = head = cpu_buffer->head_page;
1257        /*
1258         * It is possible that the writer moves the header behind
1259         * where we started, and we miss in one loop.
1260         * A second loop should grab the header, but we'll do
1261         * three loops just because I'm paranoid.
1262         */
1263        for (i = 0; i < 3; i++) {
1264                do {
1265                        if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1266                                cpu_buffer->head_page = page;
1267                                return page;
1268                        }
1269                        rb_inc_page(cpu_buffer, &page);
1270                } while (page != head);
1271        }
1272
1273        RB_WARN_ON(cpu_buffer, 1);
1274
1275        return NULL;
1276}
1277
1278static int rb_head_page_replace(struct buffer_page *old,
1279                                struct buffer_page *new)
1280{
1281        unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1282        unsigned long val;
1283        unsigned long ret;
1284
1285        val = *ptr & ~RB_FLAG_MASK;
1286        val |= RB_PAGE_HEAD;
1287
1288        ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1289
1290        return ret == val;
1291}
1292
1293/*
1294 * rb_tail_page_update - move the tail page forward
1295 */
1296static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1297                               struct buffer_page *tail_page,
1298                               struct buffer_page *next_page)
1299{
1300        unsigned long old_entries;
1301        unsigned long old_write;
1302
1303        /*
1304         * The tail page now needs to be moved forward.
1305         *
1306         * We need to reset the tail page, but without messing
1307         * with possible erasing of data brought in by interrupts
1308         * that have moved the tail page and are currently on it.
1309         *
1310         * We add a counter to the write field to denote this.
1311         */
1312        old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1313        old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1314
1315        local_inc(&cpu_buffer->pages_touched);
1316        /*
1317         * Just make sure we have seen our old_write and synchronize
1318         * with any interrupts that come in.
1319         */
1320        barrier();
1321
1322        /*
1323         * If the tail page is still the same as what we think
1324         * it is, then it is up to us to update the tail
1325         * pointer.
1326         */
1327        if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1328                /* Zero the write counter */
1329                unsigned long val = old_write & ~RB_WRITE_MASK;
1330                unsigned long eval = old_entries & ~RB_WRITE_MASK;
1331
1332                /*
1333                 * This will only succeed if an interrupt did
1334                 * not come in and change it. In which case, we
1335                 * do not want to modify it.
1336                 *
1337                 * We add (void) to let the compiler know that we do not care
1338                 * about the return value of these functions. We use the
1339                 * cmpxchg to only update if an interrupt did not already
1340                 * do it for us. If the cmpxchg fails, we don't care.
1341                 */
1342                (void)local_cmpxchg(&next_page->write, old_write, val);
1343                (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1344
1345                /*
1346                 * No need to worry about races with clearing out the commit.
1347                 * it only can increment when a commit takes place. But that
1348                 * only happens in the outer most nested commit.
1349                 */
1350                local_set(&next_page->page->commit, 0);
1351
1352                /* Again, either we update tail_page or an interrupt does */
1353                (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1354        }
1355}
1356
1357static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1358                          struct buffer_page *bpage)
1359{
1360        unsigned long val = (unsigned long)bpage;
1361
1362        if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1363                return 1;
1364
1365        return 0;
1366}
1367
1368/**
1369 * rb_check_list - make sure a pointer to a list has the last bits zero
1370 */
1371static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1372                         struct list_head *list)
1373{
1374        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1375                return 1;
1376        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1377                return 1;
1378        return 0;
1379}
1380
1381/**
1382 * rb_check_pages - integrity check of buffer pages
1383 * @cpu_buffer: CPU buffer with pages to test
1384 *
1385 * As a safety measure we check to make sure the data pages have not
1386 * been corrupted.
1387 */
1388static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1389{
1390        struct list_head *head = cpu_buffer->pages;
1391        struct buffer_page *bpage, *tmp;
1392
1393        /* Reset the head page if it exists */
1394        if (cpu_buffer->head_page)
1395                rb_set_head_page(cpu_buffer);
1396
1397        rb_head_page_deactivate(cpu_buffer);
1398
1399        if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1400                return -1;
1401        if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1402                return -1;
1403
1404        if (rb_check_list(cpu_buffer, head))
1405                return -1;
1406
1407        list_for_each_entry_safe(bpage, tmp, head, list) {
1408                if (RB_WARN_ON(cpu_buffer,
1409                               bpage->list.next->prev != &bpage->list))
1410                        return -1;
1411                if (RB_WARN_ON(cpu_buffer,
1412                               bpage->list.prev->next != &bpage->list))
1413                        return -1;
1414                if (rb_check_list(cpu_buffer, &bpage->list))
1415                        return -1;
1416        }
1417
1418        rb_head_page_activate(cpu_buffer);
1419
1420        return 0;
1421}
1422
1423static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1424{
1425        struct buffer_page *bpage, *tmp;
1426        bool user_thread = current->mm != NULL;
1427        gfp_t mflags;
1428        long i;
1429
1430        /*
1431         * Check if the available memory is there first.
1432         * Note, si_mem_available() only gives us a rough estimate of available
1433         * memory. It may not be accurate. But we don't care, we just want
1434         * to prevent doing any allocation when it is obvious that it is
1435         * not going to succeed.
1436         */
1437        i = si_mem_available();
1438        if (i < nr_pages)
1439                return -ENOMEM;
1440
1441        /*
1442         * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1443         * gracefully without invoking oom-killer and the system is not
1444         * destabilized.
1445         */
1446        mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1447
1448        /*
1449         * If a user thread allocates too much, and si_mem_available()
1450         * reports there's enough memory, even though there is not.
1451         * Make sure the OOM killer kills this thread. This can happen
1452         * even with RETRY_MAYFAIL because another task may be doing
1453         * an allocation after this task has taken all memory.
1454         * This is the task the OOM killer needs to take out during this
1455         * loop, even if it was triggered by an allocation somewhere else.
1456         */
1457        if (user_thread)
1458                set_current_oom_origin();
1459        for (i = 0; i < nr_pages; i++) {
1460                struct page *page;
1461
1462                bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1463                                    mflags, cpu_to_node(cpu));
1464                if (!bpage)
1465                        goto free_pages;
1466
1467                list_add(&bpage->list, pages);
1468
1469                page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1470                if (!page)
1471                        goto free_pages;
1472                bpage->page = page_address(page);
1473                rb_init_page(bpage->page);
1474
1475                if (user_thread && fatal_signal_pending(current))
1476                        goto free_pages;
1477        }
1478        if (user_thread)
1479                clear_current_oom_origin();
1480
1481        return 0;
1482
1483free_pages:
1484        list_for_each_entry_safe(bpage, tmp, pages, list) {
1485                list_del_init(&bpage->list);
1486                free_buffer_page(bpage);
1487        }
1488        if (user_thread)
1489                clear_current_oom_origin();
1490
1491        return -ENOMEM;
1492}
1493
1494static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1495                             unsigned long nr_pages)
1496{
1497        LIST_HEAD(pages);
1498
1499        WARN_ON(!nr_pages);
1500
1501        if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1502                return -ENOMEM;
1503
1504        /*
1505         * The ring buffer page list is a circular list that does not
1506         * start and end with a list head. All page list items point to
1507         * other pages.
1508         */
1509        cpu_buffer->pages = pages.next;
1510        list_del(&pages);
1511
1512        cpu_buffer->nr_pages = nr_pages;
1513
1514        rb_check_pages(cpu_buffer);
1515
1516        return 0;
1517}
1518
1519static struct ring_buffer_per_cpu *
1520rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1521{
1522        struct ring_buffer_per_cpu *cpu_buffer;
1523        struct buffer_page *bpage;
1524        struct page *page;
1525        int ret;
1526
1527        cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1528                                  GFP_KERNEL, cpu_to_node(cpu));
1529        if (!cpu_buffer)
1530                return NULL;
1531
1532        cpu_buffer->cpu = cpu;
1533        cpu_buffer->buffer = buffer;
1534        raw_spin_lock_init(&cpu_buffer->reader_lock);
1535        lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1536        cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1537        INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1538        init_completion(&cpu_buffer->update_done);
1539        init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1540        init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1541        init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1542
1543        bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1544                            GFP_KERNEL, cpu_to_node(cpu));
1545        if (!bpage)
1546                goto fail_free_buffer;
1547
1548        rb_check_bpage(cpu_buffer, bpage);
1549
1550        cpu_buffer->reader_page = bpage;
1551        page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1552        if (!page)
1553                goto fail_free_reader;
1554        bpage->page = page_address(page);
1555        rb_init_page(bpage->page);
1556
1557        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1558        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1559
1560        ret = rb_allocate_pages(cpu_buffer, nr_pages);
1561        if (ret < 0)
1562                goto fail_free_reader;
1563
1564        cpu_buffer->head_page
1565                = list_entry(cpu_buffer->pages, struct buffer_page, list);
1566        cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1567
1568        rb_head_page_activate(cpu_buffer);
1569
1570        return cpu_buffer;
1571
1572 fail_free_reader:
1573        free_buffer_page(cpu_buffer->reader_page);
1574
1575 fail_free_buffer:
1576        kfree(cpu_buffer);
1577        return NULL;
1578}
1579
1580static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1581{
1582        struct list_head *head = cpu_buffer->pages;
1583        struct buffer_page *bpage, *tmp;
1584
1585        free_buffer_page(cpu_buffer->reader_page);
1586
1587        rb_head_page_deactivate(cpu_buffer);
1588
1589        if (head) {
1590                list_for_each_entry_safe(bpage, tmp, head, list) {
1591                        list_del_init(&bpage->list);
1592                        free_buffer_page(bpage);
1593                }
1594                bpage = list_entry(head, struct buffer_page, list);
1595                free_buffer_page(bpage);
1596        }
1597
1598        kfree(cpu_buffer);
1599}
1600
1601/**
1602 * __ring_buffer_alloc - allocate a new ring_buffer
1603 * @size: the size in bytes per cpu that is needed.
1604 * @flags: attributes to set for the ring buffer.
1605 * @key: ring buffer reader_lock_key.
1606 *
1607 * Currently the only flag that is available is the RB_FL_OVERWRITE
1608 * flag. This flag means that the buffer will overwrite old data
1609 * when the buffer wraps. If this flag is not set, the buffer will
1610 * drop data when the tail hits the head.
1611 */
1612struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1613                                        struct lock_class_key *key)
1614{
1615        struct trace_buffer *buffer;
1616        long nr_pages;
1617        int bsize;
1618        int cpu;
1619        int ret;
1620
1621        /* keep it in its own cache line */
1622        buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1623                         GFP_KERNEL);
1624        if (!buffer)
1625                return NULL;
1626
1627        if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1628                goto fail_free_buffer;
1629
1630        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1631        buffer->flags = flags;
1632        buffer->clock = trace_clock_local;
1633        buffer->reader_lock_key = key;
1634
1635        init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1636        init_waitqueue_head(&buffer->irq_work.waiters);
1637
1638        /* need at least two pages */
1639        if (nr_pages < 2)
1640                nr_pages = 2;
1641
1642        buffer->cpus = nr_cpu_ids;
1643
1644        bsize = sizeof(void *) * nr_cpu_ids;
1645        buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1646                                  GFP_KERNEL);
1647        if (!buffer->buffers)
1648                goto fail_free_cpumask;
1649
1650        cpu = raw_smp_processor_id();
1651        cpumask_set_cpu(cpu, buffer->cpumask);
1652        buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1653        if (!buffer->buffers[cpu])
1654                goto fail_free_buffers;
1655
1656        ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1657        if (ret < 0)
1658                goto fail_free_buffers;
1659
1660        mutex_init(&buffer->mutex);
1661
1662        return buffer;
1663
1664 fail_free_buffers:
1665        for_each_buffer_cpu(buffer, cpu) {
1666                if (buffer->buffers[cpu])
1667                        rb_free_cpu_buffer(buffer->buffers[cpu]);
1668        }
1669        kfree(buffer->buffers);
1670
1671 fail_free_cpumask:
1672        free_cpumask_var(buffer->cpumask);
1673
1674 fail_free_buffer:
1675        kfree(buffer);
1676        return NULL;
1677}
1678EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1679
1680/**
1681 * ring_buffer_free - free a ring buffer.
1682 * @buffer: the buffer to free.
1683 */
1684void
1685ring_buffer_free(struct trace_buffer *buffer)
1686{
1687        int cpu;
1688
1689        cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1690
1691        for_each_buffer_cpu(buffer, cpu)
1692                rb_free_cpu_buffer(buffer->buffers[cpu]);
1693
1694        kfree(buffer->buffers);
1695        free_cpumask_var(buffer->cpumask);
1696
1697        kfree(buffer);
1698}
1699EXPORT_SYMBOL_GPL(ring_buffer_free);
1700
1701void ring_buffer_set_clock(struct trace_buffer *buffer,
1702                           u64 (*clock)(void))
1703{
1704        buffer->clock = clock;
1705}
1706
1707void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1708{
1709        buffer->time_stamp_abs = abs;
1710}
1711
1712bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1713{
1714        return buffer->time_stamp_abs;
1715}
1716
1717static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1718
1719static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1720{
1721        return local_read(&bpage->entries) & RB_WRITE_MASK;
1722}
1723
1724static inline unsigned long rb_page_write(struct buffer_page *bpage)
1725{
1726        return local_read(&bpage->write) & RB_WRITE_MASK;
1727}
1728
1729static int
1730rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1731{
1732        struct list_head *tail_page, *to_remove, *next_page;
1733        struct buffer_page *to_remove_page, *tmp_iter_page;
1734        struct buffer_page *last_page, *first_page;
1735        unsigned long nr_removed;
1736        unsigned long head_bit;
1737        int page_entries;
1738
1739        head_bit = 0;
1740
1741        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1742        atomic_inc(&cpu_buffer->record_disabled);
1743        /*
1744         * We don't race with the readers since we have acquired the reader
1745         * lock. We also don't race with writers after disabling recording.
1746         * This makes it easy to figure out the first and the last page to be
1747         * removed from the list. We unlink all the pages in between including
1748         * the first and last pages. This is done in a busy loop so that we
1749         * lose the least number of traces.
1750         * The pages are freed after we restart recording and unlock readers.
1751         */
1752        tail_page = &cpu_buffer->tail_page->list;
1753
1754        /*
1755         * tail page might be on reader page, we remove the next page
1756         * from the ring buffer
1757         */
1758        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1759                tail_page = rb_list_head(tail_page->next);
1760        to_remove = tail_page;
1761
1762        /* start of pages to remove */
1763        first_page = list_entry(rb_list_head(to_remove->next),
1764                                struct buffer_page, list);
1765
1766        for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1767                to_remove = rb_list_head(to_remove)->next;
1768                head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1769        }
1770
1771        next_page = rb_list_head(to_remove)->next;
1772
1773        /*
1774         * Now we remove all pages between tail_page and next_page.
1775         * Make sure that we have head_bit value preserved for the
1776         * next page
1777         */
1778        tail_page->next = (struct list_head *)((unsigned long)next_page |
1779                                                head_bit);
1780        next_page = rb_list_head(next_page);
1781        next_page->prev = tail_page;
1782
1783        /* make sure pages points to a valid page in the ring buffer */
1784        cpu_buffer->pages = next_page;
1785
1786        /* update head page */
1787        if (head_bit)
1788                cpu_buffer->head_page = list_entry(next_page,
1789                                                struct buffer_page, list);
1790
1791        /*
1792         * change read pointer to make sure any read iterators reset
1793         * themselves
1794         */
1795        cpu_buffer->read = 0;
1796
1797        /* pages are removed, resume tracing and then free the pages */
1798        atomic_dec(&cpu_buffer->record_disabled);
1799        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1800
1801        RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1802
1803        /* last buffer page to remove */
1804        last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1805                                list);
1806        tmp_iter_page = first_page;
1807
1808        do {
1809                cond_resched();
1810
1811                to_remove_page = tmp_iter_page;
1812                rb_inc_page(cpu_buffer, &tmp_iter_page);
1813
1814                /* update the counters */
1815                page_entries = rb_page_entries(to_remove_page);
1816                if (page_entries) {
1817                        /*
1818                         * If something was added to this page, it was full
1819                         * since it is not the tail page. So we deduct the
1820                         * bytes consumed in ring buffer from here.
1821                         * Increment overrun to account for the lost events.
1822                         */
1823                        local_add(page_entries, &cpu_buffer->overrun);
1824                        local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1825                }
1826
1827                /*
1828                 * We have already removed references to this list item, just
1829                 * free up the buffer_page and its page
1830                 */
1831                free_buffer_page(to_remove_page);
1832                nr_removed--;
1833
1834        } while (to_remove_page != last_page);
1835
1836        RB_WARN_ON(cpu_buffer, nr_removed);
1837
1838        return nr_removed == 0;
1839}
1840
1841static int
1842rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1843{
1844        struct list_head *pages = &cpu_buffer->new_pages;
1845        int retries, success;
1846
1847        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1848        /*
1849         * We are holding the reader lock, so the reader page won't be swapped
1850         * in the ring buffer. Now we are racing with the writer trying to
1851         * move head page and the tail page.
1852         * We are going to adapt the reader page update process where:
1853         * 1. We first splice the start and end of list of new pages between
1854         *    the head page and its previous page.
1855         * 2. We cmpxchg the prev_page->next to point from head page to the
1856         *    start of new pages list.
1857         * 3. Finally, we update the head->prev to the end of new list.
1858         *
1859         * We will try this process 10 times, to make sure that we don't keep
1860         * spinning.
1861         */
1862        retries = 10;
1863        success = 0;
1864        while (retries--) {
1865                struct list_head *head_page, *prev_page, *r;
1866                struct list_head *last_page, *first_page;
1867                struct list_head *head_page_with_bit;
1868
1869                head_page = &rb_set_head_page(cpu_buffer)->list;
1870                if (!head_page)
1871                        break;
1872                prev_page = head_page->prev;
1873
1874                first_page = pages->next;
1875                last_page  = pages->prev;
1876
1877                head_page_with_bit = (struct list_head *)
1878                                     ((unsigned long)head_page | RB_PAGE_HEAD);
1879
1880                last_page->next = head_page_with_bit;
1881                first_page->prev = prev_page;
1882
1883                r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1884
1885                if (r == head_page_with_bit) {
1886                        /*
1887                         * yay, we replaced the page pointer to our new list,
1888                         * now, we just have to update to head page's prev
1889                         * pointer to point to end of list
1890                         */
1891                        head_page->prev = last_page;
1892                        success = 1;
1893                        break;
1894                }
1895        }
1896
1897        if (success)
1898                INIT_LIST_HEAD(pages);
1899        /*
1900         * If we weren't successful in adding in new pages, warn and stop
1901         * tracing
1902         */
1903        RB_WARN_ON(cpu_buffer, !success);
1904        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1905
1906        /* free pages if they weren't inserted */
1907        if (!success) {
1908                struct buffer_page *bpage, *tmp;
1909                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1910                                         list) {
1911                        list_del_init(&bpage->list);
1912                        free_buffer_page(bpage);
1913                }
1914        }
1915        return success;
1916}
1917
1918static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1919{
1920        int success;
1921
1922        if (cpu_buffer->nr_pages_to_update > 0)
1923                success = rb_insert_pages(cpu_buffer);
1924        else
1925                success = rb_remove_pages(cpu_buffer,
1926                                        -cpu_buffer->nr_pages_to_update);
1927
1928        if (success)
1929                cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1930}
1931
1932static void update_pages_handler(struct work_struct *work)
1933{
1934        struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1935                        struct ring_buffer_per_cpu, update_pages_work);
1936        rb_update_pages(cpu_buffer);
1937        complete(&cpu_buffer->update_done);
1938}
1939
1940/**
1941 * ring_buffer_resize - resize the ring buffer
1942 * @buffer: the buffer to resize.
1943 * @size: the new size.
1944 * @cpu_id: the cpu buffer to resize
1945 *
1946 * Minimum size is 2 * BUF_PAGE_SIZE.
1947 *
1948 * Returns 0 on success and < 0 on failure.
1949 */
1950int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1951                        int cpu_id)
1952{
1953        struct ring_buffer_per_cpu *cpu_buffer;
1954        unsigned long nr_pages;
1955        int cpu, err = 0;
1956
1957        /*
1958         * Always succeed at resizing a non-existent buffer:
1959         */
1960        if (!buffer)
1961                return size;
1962
1963        /* Make sure the requested buffer exists */
1964        if (cpu_id != RING_BUFFER_ALL_CPUS &&
1965            !cpumask_test_cpu(cpu_id, buffer->cpumask))
1966                return size;
1967
1968        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1969
1970        /* we need a minimum of two pages */
1971        if (nr_pages < 2)
1972                nr_pages = 2;
1973
1974        size = nr_pages * BUF_PAGE_SIZE;
1975
1976        /* prevent another thread from changing buffer sizes */
1977        mutex_lock(&buffer->mutex);
1978
1979
1980        if (cpu_id == RING_BUFFER_ALL_CPUS) {
1981                /*
1982                 * Don't succeed if resizing is disabled, as a reader might be
1983                 * manipulating the ring buffer and is expecting a sane state while
1984                 * this is true.
1985                 */
1986                for_each_buffer_cpu(buffer, cpu) {
1987                        cpu_buffer = buffer->buffers[cpu];
1988                        if (atomic_read(&cpu_buffer->resize_disabled)) {
1989                                err = -EBUSY;
1990                                goto out_err_unlock;
1991                        }
1992                }
1993
1994                /* calculate the pages to update */
1995                for_each_buffer_cpu(buffer, cpu) {
1996                        cpu_buffer = buffer->buffers[cpu];
1997
1998                        cpu_buffer->nr_pages_to_update = nr_pages -
1999                                                        cpu_buffer->nr_pages;
2000                        /*
2001                         * nothing more to do for removing pages or no update
2002                         */
2003                        if (cpu_buffer->nr_pages_to_update <= 0)
2004                                continue;
2005                        /*
2006                         * to add pages, make sure all new pages can be
2007                         * allocated without receiving ENOMEM
2008                         */
2009                        INIT_LIST_HEAD(&cpu_buffer->new_pages);
2010                        if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2011                                                &cpu_buffer->new_pages, cpu)) {
2012                                /* not enough memory for new pages */
2013                                err = -ENOMEM;
2014                                goto out_err;
2015                        }
2016                }
2017
2018                get_online_cpus();
2019                /*
2020                 * Fire off all the required work handlers
2021                 * We can't schedule on offline CPUs, but it's not necessary
2022                 * since we can change their buffer sizes without any race.
2023                 */
2024                for_each_buffer_cpu(buffer, cpu) {
2025                        cpu_buffer = buffer->buffers[cpu];
2026                        if (!cpu_buffer->nr_pages_to_update)
2027                                continue;
2028
2029                        /* Can't run something on an offline CPU. */
2030                        if (!cpu_online(cpu)) {
2031                                rb_update_pages(cpu_buffer);
2032                                cpu_buffer->nr_pages_to_update = 0;
2033                        } else {
2034                                schedule_work_on(cpu,
2035                                                &cpu_buffer->update_pages_work);
2036                        }
2037                }
2038
2039                /* wait for all the updates to complete */
2040                for_each_buffer_cpu(buffer, cpu) {
2041                        cpu_buffer = buffer->buffers[cpu];
2042                        if (!cpu_buffer->nr_pages_to_update)
2043                                continue;
2044
2045                        if (cpu_online(cpu))
2046                                wait_for_completion(&cpu_buffer->update_done);
2047                        cpu_buffer->nr_pages_to_update = 0;
2048                }
2049
2050                put_online_cpus();
2051        } else {
2052                /* Make sure this CPU has been initialized */
2053                if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2054                        goto out;
2055
2056                cpu_buffer = buffer->buffers[cpu_id];
2057
2058                if (nr_pages == cpu_buffer->nr_pages)
2059                        goto out;
2060
2061                /*
2062                 * Don't succeed if resizing is disabled, as a reader might be
2063                 * manipulating the ring buffer and is expecting a sane state while
2064                 * this is true.
2065                 */
2066                if (atomic_read(&cpu_buffer->resize_disabled)) {
2067                        err = -EBUSY;
2068                        goto out_err_unlock;
2069                }
2070
2071                cpu_buffer->nr_pages_to_update = nr_pages -
2072                                                cpu_buffer->nr_pages;
2073
2074                INIT_LIST_HEAD(&cpu_buffer->new_pages);
2075                if (cpu_buffer->nr_pages_to_update > 0 &&
2076                        __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2077                                            &cpu_buffer->new_pages, cpu_id)) {
2078                        err = -ENOMEM;
2079                        goto out_err;
2080                }
2081
2082                get_online_cpus();
2083
2084                /* Can't run something on an offline CPU. */
2085                if (!cpu_online(cpu_id))
2086                        rb_update_pages(cpu_buffer);
2087                else {
2088                        schedule_work_on(cpu_id,
2089                                         &cpu_buffer->update_pages_work);
2090                        wait_for_completion(&cpu_buffer->update_done);
2091                }
2092
2093                cpu_buffer->nr_pages_to_update = 0;
2094                put_online_cpus();
2095        }
2096
2097 out:
2098        /*
2099         * The ring buffer resize can happen with the ring buffer
2100         * enabled, so that the update disturbs the tracing as little
2101         * as possible. But if the buffer is disabled, we do not need
2102         * to worry about that, and we can take the time to verify
2103         * that the buffer is not corrupt.
2104         */
2105        if (atomic_read(&buffer->record_disabled)) {
2106                atomic_inc(&buffer->record_disabled);
2107                /*
2108                 * Even though the buffer was disabled, we must make sure
2109                 * that it is truly disabled before calling rb_check_pages.
2110                 * There could have been a race between checking
2111                 * record_disable and incrementing it.
2112                 */
2113                synchronize_rcu();
2114                for_each_buffer_cpu(buffer, cpu) {
2115                        cpu_buffer = buffer->buffers[cpu];
2116                        rb_check_pages(cpu_buffer);
2117                }
2118                atomic_dec(&buffer->record_disabled);
2119        }
2120
2121        mutex_unlock(&buffer->mutex);
2122        return size;
2123
2124 out_err:
2125        for_each_buffer_cpu(buffer, cpu) {
2126                struct buffer_page *bpage, *tmp;
2127
2128                cpu_buffer = buffer->buffers[cpu];
2129                cpu_buffer->nr_pages_to_update = 0;
2130
2131                if (list_empty(&cpu_buffer->new_pages))
2132                        continue;
2133
2134                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2135                                        list) {
2136                        list_del_init(&bpage->list);
2137                        free_buffer_page(bpage);
2138                }
2139        }
2140 out_err_unlock:
2141        mutex_unlock(&buffer->mutex);
2142        return err;
2143}
2144EXPORT_SYMBOL_GPL(ring_buffer_resize);
2145
2146void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2147{
2148        mutex_lock(&buffer->mutex);
2149        if (val)
2150                buffer->flags |= RB_FL_OVERWRITE;
2151        else
2152                buffer->flags &= ~RB_FL_OVERWRITE;
2153        mutex_unlock(&buffer->mutex);
2154}
2155EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2156
2157static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2158{
2159        return bpage->page->data + index;
2160}
2161
2162static __always_inline struct ring_buffer_event *
2163rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2164{
2165        return __rb_page_index(cpu_buffer->reader_page,
2166                               cpu_buffer->reader_page->read);
2167}
2168
2169static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2170{
2171        return local_read(&bpage->page->commit);
2172}
2173
2174static struct ring_buffer_event *
2175rb_iter_head_event(struct ring_buffer_iter *iter)
2176{
2177        struct ring_buffer_event *event;
2178        struct buffer_page *iter_head_page = iter->head_page;
2179        unsigned long commit;
2180        unsigned length;
2181
2182        if (iter->head != iter->next_event)
2183                return iter->event;
2184
2185        /*
2186         * When the writer goes across pages, it issues a cmpxchg which
2187         * is a mb(), which will synchronize with the rmb here.
2188         * (see rb_tail_page_update() and __rb_reserve_next())
2189         */
2190        commit = rb_page_commit(iter_head_page);
2191        smp_rmb();
2192        event = __rb_page_index(iter_head_page, iter->head);
2193        length = rb_event_length(event);
2194
2195        /*
2196         * READ_ONCE() doesn't work on functions and we don't want the
2197         * compiler doing any crazy optimizations with length.
2198         */
2199        barrier();
2200
2201        if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2202                /* Writer corrupted the read? */
2203                goto reset;
2204
2205        memcpy(iter->event, event, length);
2206        /*
2207         * If the page stamp is still the same after this rmb() then the
2208         * event was safely copied without the writer entering the page.
2209         */
2210        smp_rmb();
2211
2212        /* Make sure the page didn't change since we read this */
2213        if (iter->page_stamp != iter_head_page->page->time_stamp ||
2214            commit > rb_page_commit(iter_head_page))
2215                goto reset;
2216
2217        iter->next_event = iter->head + length;
2218        return iter->event;
2219 reset:
2220        /* Reset to the beginning */
2221        iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2222        iter->head = 0;
2223        iter->next_event = 0;
2224        iter->missed_events = 1;
2225        return NULL;
2226}
2227
2228/* Size is determined by what has been committed */
2229static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2230{
2231        return rb_page_commit(bpage);
2232}
2233
2234static __always_inline unsigned
2235rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2236{
2237        return rb_page_commit(cpu_buffer->commit_page);
2238}
2239
2240static __always_inline unsigned
2241rb_event_index(struct ring_buffer_event *event)
2242{
2243        unsigned long addr = (unsigned long)event;
2244
2245        return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2246}
2247
2248static void rb_inc_iter(struct ring_buffer_iter *iter)
2249{
2250        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2251
2252        /*
2253         * The iterator could be on the reader page (it starts there).
2254         * But the head could have moved, since the reader was
2255         * found. Check for this case and assign the iterator
2256         * to the head page instead of next.
2257         */
2258        if (iter->head_page == cpu_buffer->reader_page)
2259                iter->head_page = rb_set_head_page(cpu_buffer);
2260        else
2261                rb_inc_page(cpu_buffer, &iter->head_page);
2262
2263        iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2264        iter->head = 0;
2265        iter->next_event = 0;
2266}
2267
2268/*
2269 * rb_handle_head_page - writer hit the head page
2270 *
2271 * Returns: +1 to retry page
2272 *           0 to continue
2273 *          -1 on error
2274 */
2275static int
2276rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2277                    struct buffer_page *tail_page,
2278                    struct buffer_page *next_page)
2279{
2280        struct buffer_page *new_head;
2281        int entries;
2282        int type;
2283        int ret;
2284
2285        entries = rb_page_entries(next_page);
2286
2287        /*
2288         * The hard part is here. We need to move the head
2289         * forward, and protect against both readers on
2290         * other CPUs and writers coming in via interrupts.
2291         */
2292        type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2293                                       RB_PAGE_HEAD);
2294
2295        /*
2296         * type can be one of four:
2297         *  NORMAL - an interrupt already moved it for us
2298         *  HEAD   - we are the first to get here.
2299         *  UPDATE - we are the interrupt interrupting
2300         *           a current move.
2301         *  MOVED  - a reader on another CPU moved the next
2302         *           pointer to its reader page. Give up
2303         *           and try again.
2304         */
2305
2306        switch (type) {
2307        case RB_PAGE_HEAD:
2308                /*
2309                 * We changed the head to UPDATE, thus
2310                 * it is our responsibility to update
2311                 * the counters.
2312                 */
2313                local_add(entries, &cpu_buffer->overrun);
2314                local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2315
2316                /*
2317                 * The entries will be zeroed out when we move the
2318                 * tail page.
2319                 */
2320
2321                /* still more to do */
2322                break;
2323
2324        case RB_PAGE_UPDATE:
2325                /*
2326                 * This is an interrupt that interrupt the
2327                 * previous update. Still more to do.
2328                 */
2329                break;
2330        case RB_PAGE_NORMAL:
2331                /*
2332                 * An interrupt came in before the update
2333                 * and processed this for us.
2334                 * Nothing left to do.
2335                 */
2336                return 1;
2337        case RB_PAGE_MOVED:
2338                /*
2339                 * The reader is on another CPU and just did
2340                 * a swap with our next_page.
2341                 * Try again.
2342                 */
2343                return 1;
2344        default:
2345                RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2346                return -1;
2347        }
2348
2349        /*
2350         * Now that we are here, the old head pointer is
2351         * set to UPDATE. This will keep the reader from
2352         * swapping the head page with the reader page.
2353         * The reader (on another CPU) will spin till
2354         * we are finished.
2355         *
2356         * We just need to protect against interrupts
2357         * doing the job. We will set the next pointer
2358         * to HEAD. After that, we set the old pointer
2359         * to NORMAL, but only if it was HEAD before.
2360         * otherwise we are an interrupt, and only
2361         * want the outer most commit to reset it.
2362         */
2363        new_head = next_page;
2364        rb_inc_page(cpu_buffer, &new_head);
2365
2366        ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2367                                    RB_PAGE_NORMAL);
2368
2369        /*
2370         * Valid returns are:
2371         *  HEAD   - an interrupt came in and already set it.
2372         *  NORMAL - One of two things:
2373         *            1) We really set it.
2374         *            2) A bunch of interrupts came in and moved
2375         *               the page forward again.
2376         */
2377        switch (ret) {
2378        case RB_PAGE_HEAD:
2379        case RB_PAGE_NORMAL:
2380                /* OK */
2381                break;
2382        default:
2383                RB_WARN_ON(cpu_buffer, 1);
2384                return -1;
2385        }
2386
2387        /*
2388         * It is possible that an interrupt came in,
2389         * set the head up, then more interrupts came in
2390         * and moved it again. When we get back here,
2391         * the page would have been set to NORMAL but we
2392         * just set it back to HEAD.
2393         *
2394         * How do you detect this? Well, if that happened
2395         * the tail page would have moved.
2396         */
2397        if (ret == RB_PAGE_NORMAL) {
2398                struct buffer_page *buffer_tail_page;
2399
2400                buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2401                /*
2402                 * If the tail had moved passed next, then we need
2403                 * to reset the pointer.
2404                 */
2405                if (buffer_tail_page != tail_page &&
2406                    buffer_tail_page != next_page)
2407                        rb_head_page_set_normal(cpu_buffer, new_head,
2408                                                next_page,
2409                                                RB_PAGE_HEAD);
2410        }
2411
2412        /*
2413         * If this was the outer most commit (the one that
2414         * changed the original pointer from HEAD to UPDATE),
2415         * then it is up to us to reset it to NORMAL.
2416         */
2417        if (type == RB_PAGE_HEAD) {
2418                ret = rb_head_page_set_normal(cpu_buffer, next_page,
2419                                              tail_page,
2420                                              RB_PAGE_UPDATE);
2421                if (RB_WARN_ON(cpu_buffer,
2422                               ret != RB_PAGE_UPDATE))
2423                        return -1;
2424        }
2425
2426        return 0;
2427}
2428
2429static inline void
2430rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2431              unsigned long tail, struct rb_event_info *info)
2432{
2433        struct buffer_page *tail_page = info->tail_page;
2434        struct ring_buffer_event *event;
2435        unsigned long length = info->length;
2436
2437        /*
2438         * Only the event that crossed the page boundary
2439         * must fill the old tail_page with padding.
2440         */
2441        if (tail >= BUF_PAGE_SIZE) {
2442                /*
2443                 * If the page was filled, then we still need
2444                 * to update the real_end. Reset it to zero
2445                 * and the reader will ignore it.
2446                 */
2447                if (tail == BUF_PAGE_SIZE)
2448                        tail_page->real_end = 0;
2449
2450                local_sub(length, &tail_page->write);
2451                return;
2452        }
2453
2454        event = __rb_page_index(tail_page, tail);
2455
2456        /* account for padding bytes */
2457        local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2458
2459        /*
2460         * Save the original length to the meta data.
2461         * This will be used by the reader to add lost event
2462         * counter.
2463         */
2464        tail_page->real_end = tail;
2465
2466        /*
2467         * If this event is bigger than the minimum size, then
2468         * we need to be careful that we don't subtract the
2469         * write counter enough to allow another writer to slip
2470         * in on this page.
2471         * We put in a discarded commit instead, to make sure
2472         * that this space is not used again.
2473         *
2474         * If we are less than the minimum size, we don't need to
2475         * worry about it.
2476         */
2477        if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2478                /* No room for any events */
2479
2480                /* Mark the rest of the page with padding */
2481                rb_event_set_padding(event);
2482
2483                /* Set the write back to the previous setting */
2484                local_sub(length, &tail_page->write);
2485                return;
2486        }
2487
2488        /* Put in a discarded event */
2489        event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2490        event->type_len = RINGBUF_TYPE_PADDING;
2491        /* time delta must be non zero */
2492        event->time_delta = 1;
2493
2494        /* Set write to end of buffer */
2495        length = (tail + length) - BUF_PAGE_SIZE;
2496        local_sub(length, &tail_page->write);
2497}
2498
2499static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2500
2501/*
2502 * This is the slow path, force gcc not to inline it.
2503 */
2504static noinline struct ring_buffer_event *
2505rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2506             unsigned long tail, struct rb_event_info *info)
2507{
2508        struct buffer_page *tail_page = info->tail_page;
2509        struct buffer_page *commit_page = cpu_buffer->commit_page;
2510        struct trace_buffer *buffer = cpu_buffer->buffer;
2511        struct buffer_page *next_page;
2512        int ret;
2513
2514        next_page = tail_page;
2515
2516        rb_inc_page(cpu_buffer, &next_page);
2517
2518        /*
2519         * If for some reason, we had an interrupt storm that made
2520         * it all the way around the buffer, bail, and warn
2521         * about it.
2522         */
2523        if (unlikely(next_page == commit_page)) {
2524                local_inc(&cpu_buffer->commit_overrun);
2525                goto out_reset;
2526        }
2527
2528        /*
2529         * This is where the fun begins!
2530         *
2531         * We are fighting against races between a reader that
2532         * could be on another CPU trying to swap its reader
2533         * page with the buffer head.
2534         *
2535         * We are also fighting against interrupts coming in and
2536         * moving the head or tail on us as well.
2537         *
2538         * If the next page is the head page then we have filled
2539         * the buffer, unless the commit page is still on the
2540         * reader page.
2541         */
2542        if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2543
2544                /*
2545                 * If the commit is not on the reader page, then
2546                 * move the header page.
2547                 */
2548                if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2549                        /*
2550                         * If we are not in overwrite mode,
2551                         * this is easy, just stop here.
2552                         */
2553                        if (!(buffer->flags & RB_FL_OVERWRITE)) {
2554                                local_inc(&cpu_buffer->dropped_events);
2555                                goto out_reset;
2556                        }
2557
2558                        ret = rb_handle_head_page(cpu_buffer,
2559                                                  tail_page,
2560                                                  next_page);
2561                        if (ret < 0)
2562                                goto out_reset;
2563                        if (ret)
2564                                goto out_again;
2565                } else {
2566                        /*
2567                         * We need to be careful here too. The
2568                         * commit page could still be on the reader
2569                         * page. We could have a small buffer, and
2570                         * have filled up the buffer with events
2571                         * from interrupts and such, and wrapped.
2572                         *
2573                         * Note, if the tail page is also the on the
2574                         * reader_page, we let it move out.
2575                         */
2576                        if (unlikely((cpu_buffer->commit_page !=
2577                                      cpu_buffer->tail_page) &&
2578                                     (cpu_buffer->commit_page ==
2579                                      cpu_buffer->reader_page))) {
2580                                local_inc(&cpu_buffer->commit_overrun);
2581                                goto out_reset;
2582                        }
2583                }
2584        }
2585
2586        rb_tail_page_update(cpu_buffer, tail_page, next_page);
2587
2588 out_again:
2589
2590        rb_reset_tail(cpu_buffer, tail, info);
2591
2592        /* Commit what we have for now. */
2593        rb_end_commit(cpu_buffer);
2594        /* rb_end_commit() decs committing */
2595        local_inc(&cpu_buffer->committing);
2596
2597        /* fail and let the caller try again */
2598        return ERR_PTR(-EAGAIN);
2599
2600 out_reset:
2601        /* reset write */
2602        rb_reset_tail(cpu_buffer, tail, info);
2603
2604        return NULL;
2605}
2606
2607/* Slow path */
2608static struct ring_buffer_event *
2609rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2610{
2611        if (abs)
2612                event->type_len = RINGBUF_TYPE_TIME_STAMP;
2613        else
2614                event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2615
2616        /* Not the first event on the page, or not delta? */
2617        if (abs || rb_event_index(event)) {
2618                event->time_delta = delta & TS_MASK;
2619                event->array[0] = delta >> TS_SHIFT;
2620        } else {
2621                /* nope, just zero it */
2622                event->time_delta = 0;
2623                event->array[0] = 0;
2624        }
2625
2626        return skip_time_extend(event);
2627}
2628
2629static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2630                                     struct ring_buffer_event *event);
2631
2632#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2633static inline bool sched_clock_stable(void)
2634{
2635        return true;
2636}
2637#endif
2638
2639static void
2640rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2641                   struct rb_event_info *info)
2642{
2643        u64 write_stamp;
2644
2645        WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2646                  (unsigned long long)info->delta,
2647                  (unsigned long long)info->ts,
2648                  (unsigned long long)info->before,
2649                  (unsigned long long)info->after,
2650                  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2651                  sched_clock_stable() ? "" :
2652                  "If you just came from a suspend/resume,\n"
2653                  "please switch to the trace global clock:\n"
2654                  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2655                  "or add trace_clock=global to the kernel command line\n");
2656}
2657
2658static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2659                                      struct ring_buffer_event **event,
2660                                      struct rb_event_info *info,
2661                                      u64 *delta,
2662                                      unsigned int *length)
2663{
2664        bool abs = info->add_timestamp &
2665                (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2666
2667        if (unlikely(info->delta > (1ULL << 59))) {
2668                /* did the clock go backwards */
2669                if (info->before == info->after && info->before > info->ts) {
2670                        /* not interrupted */
2671                        static int once;
2672
2673                        /*
2674                         * This is possible with a recalibrating of the TSC.
2675                         * Do not produce a call stack, but just report it.
2676                         */
2677                        if (!once) {
2678                                once++;
2679                                pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2680                                        info->before, info->ts);
2681                        }
2682                } else
2683                        rb_check_timestamp(cpu_buffer, info);
2684                if (!abs)
2685                        info->delta = 0;
2686        }
2687        *event = rb_add_time_stamp(*event, info->delta, abs);
2688        *length -= RB_LEN_TIME_EXTEND;
2689        *delta = 0;
2690}
2691
2692/**
2693 * rb_update_event - update event type and data
2694 * @cpu_buffer: The per cpu buffer of the @event
2695 * @event: the event to update
2696 * @info: The info to update the @event with (contains length and delta)
2697 *
2698 * Update the type and data fields of the @event. The length
2699 * is the actual size that is written to the ring buffer,
2700 * and with this, we can determine what to place into the
2701 * data field.
2702 */
2703static void
2704rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2705                struct ring_buffer_event *event,
2706                struct rb_event_info *info)
2707{
2708        unsigned length = info->length;
2709        u64 delta = info->delta;
2710
2711        /*
2712         * If we need to add a timestamp, then we
2713         * add it to the start of the reserved space.
2714         */
2715        if (unlikely(info->add_timestamp))
2716                rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2717
2718        event->time_delta = delta;
2719        length -= RB_EVNT_HDR_SIZE;
2720        if (length > RB_MAX_SMALL_DATA) {
2721                event->type_len = 0;
2722                event->array[0] = length;
2723        } else
2724                event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2725}
2726
2727static unsigned rb_calculate_event_length(unsigned length)
2728{
2729        struct ring_buffer_event event; /* Used only for sizeof array */
2730
2731        /* zero length can cause confusions */
2732        if (!length)
2733                length++;
2734
2735        if (length > RB_MAX_SMALL_DATA)
2736                length += sizeof(event.array[0]);
2737
2738        length += RB_EVNT_HDR_SIZE;
2739        length = ALIGN(length, RB_ALIGNMENT);
2740
2741        /*
2742         * In case the time delta is larger than the 27 bits for it
2743         * in the header, we need to add a timestamp. If another
2744         * event comes in when trying to discard this one to increase
2745         * the length, then the timestamp will be added in the allocated
2746         * space of this event. If length is bigger than the size needed
2747         * for the TIME_EXTEND, then padding has to be used. The events
2748         * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2749         * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2750         * As length is a multiple of 4, we only need to worry if it
2751         * is 12 (RB_LEN_TIME_EXTEND + 4).
2752         */
2753        if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2754                length += RB_ALIGNMENT;
2755
2756        return length;
2757}
2758
2759static __always_inline bool
2760rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2761                   struct ring_buffer_event *event)
2762{
2763        unsigned long addr = (unsigned long)event;
2764        unsigned long index;
2765
2766        index = rb_event_index(event);
2767        addr &= PAGE_MASK;
2768
2769        return cpu_buffer->commit_page->page == (void *)addr &&
2770                rb_commit_index(cpu_buffer) == index;
2771}
2772
2773static u64 rb_time_delta(struct ring_buffer_event *event)
2774{
2775        switch (event->type_len) {
2776        case RINGBUF_TYPE_PADDING:
2777                return 0;
2778
2779        case RINGBUF_TYPE_TIME_EXTEND:
2780                return ring_buffer_event_time_stamp(event);
2781
2782        case RINGBUF_TYPE_TIME_STAMP:
2783                return 0;
2784
2785        case RINGBUF_TYPE_DATA:
2786                return event->time_delta;
2787        default:
2788                return 0;
2789        }
2790}
2791
2792static inline int
2793rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2794                  struct ring_buffer_event *event)
2795{
2796        unsigned long new_index, old_index;
2797        struct buffer_page *bpage;
2798        unsigned long index;
2799        unsigned long addr;
2800        u64 write_stamp;
2801        u64 delta;
2802
2803        new_index = rb_event_index(event);
2804        old_index = new_index + rb_event_ts_length(event);
2805        addr = (unsigned long)event;
2806        addr &= PAGE_MASK;
2807
2808        bpage = READ_ONCE(cpu_buffer->tail_page);
2809
2810        delta = rb_time_delta(event);
2811
2812        if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2813                return 0;
2814
2815        /* Make sure the write stamp is read before testing the location */
2816        barrier();
2817
2818        if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2819                unsigned long write_mask =
2820                        local_read(&bpage->write) & ~RB_WRITE_MASK;
2821                unsigned long event_length = rb_event_length(event);
2822
2823                /* Something came in, can't discard */
2824                if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2825                                       write_stamp, write_stamp - delta))
2826                        return 0;
2827
2828                /*
2829                 * If an event were to come in now, it would see that the
2830                 * write_stamp and the before_stamp are different, and assume
2831                 * that this event just added itself before updating
2832                 * the write stamp. The interrupting event will fix the
2833                 * write stamp for us, and use the before stamp as its delta.
2834                 */
2835
2836                /*
2837                 * This is on the tail page. It is possible that
2838                 * a write could come in and move the tail page
2839                 * and write to the next page. That is fine
2840                 * because we just shorten what is on this page.
2841                 */
2842                old_index += write_mask;
2843                new_index += write_mask;
2844                index = local_cmpxchg(&bpage->write, old_index, new_index);
2845                if (index == old_index) {
2846                        /* update counters */
2847                        local_sub(event_length, &cpu_buffer->entries_bytes);
2848                        return 1;
2849                }
2850        }
2851
2852        /* could not discard */
2853        return 0;
2854}
2855
2856static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2857{
2858        local_inc(&cpu_buffer->committing);
2859        local_inc(&cpu_buffer->commits);
2860}
2861
2862static __always_inline void
2863rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2864{
2865        unsigned long max_count;
2866
2867        /*
2868         * We only race with interrupts and NMIs on this CPU.
2869         * If we own the commit event, then we can commit
2870         * all others that interrupted us, since the interruptions
2871         * are in stack format (they finish before they come
2872         * back to us). This allows us to do a simple loop to
2873         * assign the commit to the tail.
2874         */
2875 again:
2876        max_count = cpu_buffer->nr_pages * 100;
2877
2878        while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2879                if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2880                        return;
2881                if (RB_WARN_ON(cpu_buffer,
2882                               rb_is_reader_page(cpu_buffer->tail_page)))
2883                        return;
2884                local_set(&cpu_buffer->commit_page->page->commit,
2885                          rb_page_write(cpu_buffer->commit_page));
2886                rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2887                /* add barrier to keep gcc from optimizing too much */
2888                barrier();
2889        }
2890        while (rb_commit_index(cpu_buffer) !=
2891               rb_page_write(cpu_buffer->commit_page)) {
2892
2893                local_set(&cpu_buffer->commit_page->page->commit,
2894                          rb_page_write(cpu_buffer->commit_page));
2895                RB_WARN_ON(cpu_buffer,
2896                           local_read(&cpu_buffer->commit_page->page->commit) &
2897                           ~RB_WRITE_MASK);
2898                barrier();
2899        }
2900
2901        /* again, keep gcc from optimizing */
2902        barrier();
2903
2904        /*
2905         * If an interrupt came in just after the first while loop
2906         * and pushed the tail page forward, we will be left with
2907         * a dangling commit that will never go forward.
2908         */
2909        if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2910                goto again;
2911}
2912
2913static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2914{
2915        unsigned long commits;
2916
2917        if (RB_WARN_ON(cpu_buffer,
2918                       !local_read(&cpu_buffer->committing)))
2919                return;
2920
2921 again:
2922        commits = local_read(&cpu_buffer->commits);
2923        /* synchronize with interrupts */
2924        barrier();
2925        if (local_read(&cpu_buffer->committing) == 1)
2926                rb_set_commit_to_write(cpu_buffer);
2927
2928        local_dec(&cpu_buffer->committing);
2929
2930        /* synchronize with interrupts */
2931        barrier();
2932
2933        /*
2934         * Need to account for interrupts coming in between the
2935         * updating of the commit page and the clearing of the
2936         * committing counter.
2937         */
2938        if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2939            !local_read(&cpu_buffer->committing)) {
2940                local_inc(&cpu_buffer->committing);
2941                goto again;
2942        }
2943}
2944
2945static inline void rb_event_discard(struct ring_buffer_event *event)
2946{
2947        if (extended_time(event))
2948                event = skip_time_extend(event);
2949
2950        /* array[0] holds the actual length for the discarded event */
2951        event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2952        event->type_len = RINGBUF_TYPE_PADDING;
2953        /* time delta must be non zero */
2954        if (!event->time_delta)
2955                event->time_delta = 1;
2956}
2957
2958static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2959                      struct ring_buffer_event *event)
2960{
2961        local_inc(&cpu_buffer->entries);
2962        rb_end_commit(cpu_buffer);
2963}
2964
2965static __always_inline void
2966rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2967{
2968        size_t nr_pages;
2969        size_t dirty;
2970        size_t full;
2971
2972        if (buffer->irq_work.waiters_pending) {
2973                buffer->irq_work.waiters_pending = false;
2974                /* irq_work_queue() supplies it's own memory barriers */
2975                irq_work_queue(&buffer->irq_work.work);
2976        }
2977
2978        if (cpu_buffer->irq_work.waiters_pending) {
2979                cpu_buffer->irq_work.waiters_pending = false;
2980                /* irq_work_queue() supplies it's own memory barriers */
2981                irq_work_queue(&cpu_buffer->irq_work.work);
2982        }
2983
2984        if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2985                return;
2986
2987        if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2988                return;
2989
2990        if (!cpu_buffer->irq_work.full_waiters_pending)
2991                return;
2992
2993        cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2994
2995        full = cpu_buffer->shortest_full;
2996        nr_pages = cpu_buffer->nr_pages;
2997        dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2998        if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2999                return;
3000
3001        cpu_buffer->irq_work.wakeup_full = true;
3002        cpu_buffer->irq_work.full_waiters_pending = false;
3003        /* irq_work_queue() supplies it's own memory barriers */
3004        irq_work_queue(&cpu_buffer->irq_work.work);
3005}
3006
3007/*
3008 * The lock and unlock are done within a preempt disable section.
3009 * The current_context per_cpu variable can only be modified
3010 * by the current task between lock and unlock. But it can
3011 * be modified more than once via an interrupt. To pass this
3012 * information from the lock to the unlock without having to
3013 * access the 'in_interrupt()' functions again (which do show
3014 * a bit of overhead in something as critical as function tracing,
3015 * we use a bitmask trick.
3016 *
3017 *  bit 0 =  NMI context
3018 *  bit 1 =  IRQ context
3019 *  bit 2 =  SoftIRQ context
3020 *  bit 3 =  normal context.
3021 *
3022 * This works because this is the order of contexts that can
3023 * preempt other contexts. A SoftIRQ never preempts an IRQ
3024 * context.
3025 *
3026 * When the context is determined, the corresponding bit is
3027 * checked and set (if it was set, then a recursion of that context
3028 * happened).
3029 *
3030 * On unlock, we need to clear this bit. To do so, just subtract
3031 * 1 from the current_context and AND it to itself.
3032 *
3033 * (binary)
3034 *  101 - 1 = 100
3035 *  101 & 100 = 100 (clearing bit zero)
3036 *
3037 *  1010 - 1 = 1001
3038 *  1010 & 1001 = 1000 (clearing bit 1)
3039 *
3040 * The least significant bit can be cleared this way, and it
3041 * just so happens that it is the same bit corresponding to
3042 * the current context.
3043 */
3044
3045static __always_inline int
3046trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3047{
3048        unsigned int val = cpu_buffer->current_context;
3049        unsigned long pc = preempt_count();
3050        int bit;
3051
3052        if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3053                bit = RB_CTX_NORMAL;
3054        else
3055                bit = pc & NMI_MASK ? RB_CTX_NMI :
3056                        pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3057
3058        if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
3059                return 1;
3060
3061        val |= (1 << (bit + cpu_buffer->nest));
3062        cpu_buffer->current_context = val;
3063
3064        return 0;
3065}
3066
3067static __always_inline void
3068trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3069{
3070        cpu_buffer->current_context &=
3071                cpu_buffer->current_context - (1 << cpu_buffer->nest);
3072}
3073
3074/* The recursive locking above uses 4 bits */
3075#define NESTED_BITS 4
3076
3077/**
3078 * ring_buffer_nest_start - Allow to trace while nested
3079 * @buffer: The ring buffer to modify
3080 *
3081 * The ring buffer has a safety mechanism to prevent recursion.
3082 * But there may be a case where a trace needs to be done while
3083 * tracing something else. In this case, calling this function
3084 * will allow this function to nest within a currently active
3085 * ring_buffer_lock_reserve().
3086 *
3087 * Call this function before calling another ring_buffer_lock_reserve() and
3088 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3089 */
3090void ring_buffer_nest_start(struct trace_buffer *buffer)
3091{
3092        struct ring_buffer_per_cpu *cpu_buffer;
3093        int cpu;
3094
3095        /* Enabled by ring_buffer_nest_end() */
3096        preempt_disable_notrace();
3097        cpu = raw_smp_processor_id();
3098        cpu_buffer = buffer->buffers[cpu];
3099        /* This is the shift value for the above recursive locking */
3100        cpu_buffer->nest += NESTED_BITS;
3101}
3102
3103/**
3104 * ring_buffer_nest_end - Allow to trace while nested
3105 * @buffer: The ring buffer to modify
3106 *
3107 * Must be called after ring_buffer_nest_start() and after the
3108 * ring_buffer_unlock_commit().
3109 */
3110void ring_buffer_nest_end(struct trace_buffer *buffer)
3111{
3112        struct ring_buffer_per_cpu *cpu_buffer;
3113        int cpu;
3114
3115        /* disabled by ring_buffer_nest_start() */
3116        cpu = raw_smp_processor_id();
3117        cpu_buffer = buffer->buffers[cpu];
3118        /* This is the shift value for the above recursive locking */
3119        cpu_buffer->nest -= NESTED_BITS;
3120        preempt_enable_notrace();
3121}
3122
3123/**
3124 * ring_buffer_unlock_commit - commit a reserved
3125 * @buffer: The buffer to commit to
3126 * @event: The event pointer to commit.
3127 *
3128 * This commits the data to the ring buffer, and releases any locks held.
3129 *
3130 * Must be paired with ring_buffer_lock_reserve.
3131 */
3132int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3133                              struct ring_buffer_event *event)
3134{
3135        struct ring_buffer_per_cpu *cpu_buffer;
3136        int cpu = raw_smp_processor_id();
3137
3138        cpu_buffer = buffer->buffers[cpu];
3139
3140        rb_commit(cpu_buffer, event);
3141
3142        rb_wakeups(buffer, cpu_buffer);
3143
3144        trace_recursive_unlock(cpu_buffer);
3145
3146        preempt_enable_notrace();
3147
3148        return 0;
3149}
3150EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3151
3152static struct ring_buffer_event *
3153__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3154                  struct rb_event_info *info)
3155{
3156        struct ring_buffer_event *event;
3157        struct buffer_page *tail_page;
3158        unsigned long tail, write, w;
3159        bool a_ok;
3160        bool b_ok;
3161
3162        /* Don't let the compiler play games with cpu_buffer->tail_page */
3163        tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3164
3165 /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3166        barrier();
3167        b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3168        a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3169        barrier();
3170        info->ts = rb_time_stamp(cpu_buffer->buffer);
3171
3172        if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3173                info->delta = info->ts;
3174        } else {
3175                /*
3176                 * If interrupting an event time update, we may need an
3177                 * absolute timestamp.
3178                 * Don't bother if this is the start of a new page (w == 0).
3179                 */
3180                if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3181                        info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3182                        info->length += RB_LEN_TIME_EXTEND;
3183                } else {
3184                        info->delta = info->ts - info->after;
3185                        if (unlikely(test_time_stamp(info->delta))) {
3186                                info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3187                                info->length += RB_LEN_TIME_EXTEND;
3188                        }
3189                }
3190        }
3191
3192 /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3193
3194 /*C*/  write = local_add_return(info->length, &tail_page->write);
3195
3196        /* set write to only the index of the write */
3197        write &= RB_WRITE_MASK;
3198
3199        tail = write - info->length;
3200
3201        /* See if we shot pass the end of this buffer page */
3202        if (unlikely(write > BUF_PAGE_SIZE)) {
3203                if (tail != w) {
3204                        /* before and after may now different, fix it up*/
3205                        b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3206                        a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3207                        if (a_ok && b_ok && info->before != info->after)
3208                                (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3209                                                      info->before, info->after);
3210                }
3211                return rb_move_tail(cpu_buffer, tail, info);
3212        }
3213
3214        if (likely(tail == w)) {
3215                u64 save_before;
3216                bool s_ok;
3217
3218                /* Nothing interrupted us between A and C */
3219 /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3220                barrier();
3221 /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3222                RB_WARN_ON(cpu_buffer, !s_ok);
3223                if (likely(!(info->add_timestamp &
3224                             (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3225                        /* This did not interrupt any time update */
3226                        info->delta = info->ts - info->after;
3227                else
3228                        /* Just use full timestamp for inerrupting event */
3229                        info->delta = info->ts;
3230                barrier();
3231                if (unlikely(info->ts != save_before)) {
3232                        /* SLOW PATH - Interrupted between C and E */
3233
3234                        a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3235                        RB_WARN_ON(cpu_buffer, !a_ok);
3236
3237                        /* Write stamp must only go forward */
3238                        if (save_before > info->after) {
3239                                /*
3240                                 * We do not care about the result, only that
3241                                 * it gets updated atomically.
3242                                 */
3243                                (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3244                                                      info->after, save_before);
3245                        }
3246                }
3247        } else {
3248                u64 ts;
3249                /* SLOW PATH - Interrupted between A and C */
3250                a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3251                /* Was interrupted before here, write_stamp must be valid */
3252                RB_WARN_ON(cpu_buffer, !a_ok);
3253                ts = rb_time_stamp(cpu_buffer->buffer);
3254                barrier();
3255 /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3256                    info->after < ts) {
3257                        /* Nothing came after this event between C and E */
3258                        info->delta = ts - info->after;
3259                        (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3260                                              info->after, info->ts);
3261                        info->ts = ts;
3262                } else {
3263                        /*
3264                         * Interrupted beween C and E:
3265                         * Lost the previous events time stamp. Just set the
3266                         * delta to zero, and this will be the same time as
3267                         * the event this event interrupted. And the events that
3268                         * came after this will still be correct (as they would
3269                         * have built their delta on the previous event.
3270                         */
3271                        info->delta = 0;
3272                }
3273                info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3274        }
3275
3276        /*
3277         * If this is the first commit on the page, then it has the same
3278         * timestamp as the page itself.
3279         */
3280        if (unlikely(!tail && !(info->add_timestamp &
3281                                (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3282                info->delta = 0;
3283
3284        /* We reserved something on the buffer */
3285
3286        event = __rb_page_index(tail_page, tail);
3287        rb_update_event(cpu_buffer, event, info);
3288
3289        local_inc(&tail_page->entries);
3290
3291        /*
3292         * If this is the first commit on the page, then update
3293         * its timestamp.
3294         */
3295        if (unlikely(!tail))
3296                tail_page->page->time_stamp = info->ts;
3297
3298        /* account for these added bytes */
3299        local_add(info->length, &cpu_buffer->entries_bytes);
3300
3301        return event;
3302}
3303
3304static __always_inline struct ring_buffer_event *
3305rb_reserve_next_event(struct trace_buffer *buffer,
3306                      struct ring_buffer_per_cpu *cpu_buffer,
3307                      unsigned long length)
3308{
3309        struct ring_buffer_event *event;
3310        struct rb_event_info info;
3311        int nr_loops = 0;
3312        int add_ts_default;
3313
3314        rb_start_commit(cpu_buffer);
3315        /* The commit page can not change after this */
3316
3317#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3318        /*
3319         * Due to the ability to swap a cpu buffer from a buffer
3320         * it is possible it was swapped before we committed.
3321         * (committing stops a swap). We check for it here and
3322         * if it happened, we have to fail the write.
3323         */
3324        barrier();
3325        if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3326                local_dec(&cpu_buffer->committing);
3327                local_dec(&cpu_buffer->commits);
3328                return NULL;
3329        }
3330#endif
3331
3332        info.length = rb_calculate_event_length(length);
3333
3334        if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3335                add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3336                info.length += RB_LEN_TIME_EXTEND;
3337        } else {
3338                add_ts_default = RB_ADD_STAMP_NONE;
3339        }
3340
3341 again:
3342        info.add_timestamp = add_ts_default;
3343        info.delta = 0;
3344
3345        /*
3346         * We allow for interrupts to reenter here and do a trace.
3347         * If one does, it will cause this original code to loop
3348         * back here. Even with heavy interrupts happening, this
3349         * should only happen a few times in a row. If this happens
3350         * 1000 times in a row, there must be either an interrupt
3351         * storm or we have something buggy.
3352         * Bail!
3353         */
3354        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3355                goto out_fail;
3356
3357        event = __rb_reserve_next(cpu_buffer, &info);
3358
3359        if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3360                if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3361                        info.length -= RB_LEN_TIME_EXTEND;
3362                goto again;
3363        }
3364
3365        if (likely(event))
3366                return event;
3367 out_fail:
3368        rb_end_commit(cpu_buffer);
3369        return NULL;
3370}
3371
3372/**
3373 * ring_buffer_lock_reserve - reserve a part of the buffer
3374 * @buffer: the ring buffer to reserve from
3375 * @length: the length of the data to reserve (excluding event header)
3376 *
3377 * Returns a reserved event on the ring buffer to copy directly to.
3378 * The user of this interface will need to get the body to write into
3379 * and can use the ring_buffer_event_data() interface.
3380 *
3381 * The length is the length of the data needed, not the event length
3382 * which also includes the event header.
3383 *
3384 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3385 * If NULL is returned, then nothing has been allocated or locked.
3386 */
3387struct ring_buffer_event *
3388ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3389{
3390        struct ring_buffer_per_cpu *cpu_buffer;
3391        struct ring_buffer_event *event;
3392        int cpu;
3393
3394        /* If we are tracing schedule, we don't want to recurse */
3395        preempt_disable_notrace();
3396
3397        if (unlikely(atomic_read(&buffer->record_disabled)))
3398                goto out;
3399
3400        cpu = raw_smp_processor_id();
3401
3402        if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3403                goto out;
3404
3405        cpu_buffer = buffer->buffers[cpu];
3406
3407        if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3408                goto out;
3409
3410        if (unlikely(length > BUF_MAX_DATA_SIZE))
3411                goto out;
3412
3413        if (unlikely(trace_recursive_lock(cpu_buffer)))
3414                goto out;
3415
3416        event = rb_reserve_next_event(buffer, cpu_buffer, length);
3417        if (!event)
3418                goto out_unlock;
3419
3420        return event;
3421
3422 out_unlock:
3423        trace_recursive_unlock(cpu_buffer);
3424 out:
3425        preempt_enable_notrace();
3426        return NULL;
3427}
3428EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3429
3430/*
3431 * Decrement the entries to the page that an event is on.
3432 * The event does not even need to exist, only the pointer
3433 * to the page it is on. This may only be called before the commit
3434 * takes place.
3435 */
3436static inline void
3437rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3438                   struct ring_buffer_event *event)
3439{
3440        unsigned long addr = (unsigned long)event;
3441        struct buffer_page *bpage = cpu_buffer->commit_page;
3442        struct buffer_page *start;
3443
3444        addr &= PAGE_MASK;
3445
3446        /* Do the likely case first */
3447        if (likely(bpage->page == (void *)addr)) {
3448                local_dec(&bpage->entries);
3449                return;
3450        }
3451
3452        /*
3453         * Because the commit page may be on the reader page we
3454         * start with the next page and check the end loop there.
3455         */
3456        rb_inc_page(cpu_buffer, &bpage);
3457        start = bpage;
3458        do {
3459                if (bpage->page == (void *)addr) {
3460                        local_dec(&bpage->entries);
3461                        return;
3462                }
3463                rb_inc_page(cpu_buffer, &bpage);
3464        } while (bpage != start);
3465
3466        /* commit not part of this buffer?? */
3467        RB_WARN_ON(cpu_buffer, 1);
3468}
3469
3470/**
3471 * ring_buffer_commit_discard - discard an event that has not been committed
3472 * @buffer: the ring buffer
3473 * @event: non committed event to discard
3474 *
3475 * Sometimes an event that is in the ring buffer needs to be ignored.
3476 * This function lets the user discard an event in the ring buffer
3477 * and then that event will not be read later.
3478 *
3479 * This function only works if it is called before the item has been
3480 * committed. It will try to free the event from the ring buffer
3481 * if another event has not been added behind it.
3482 *
3483 * If another event has been added behind it, it will set the event
3484 * up as discarded, and perform the commit.
3485 *
3486 * If this function is called, do not call ring_buffer_unlock_commit on
3487 * the event.
3488 */
3489void ring_buffer_discard_commit(struct trace_buffer *buffer,
3490                                struct ring_buffer_event *event)
3491{
3492        struct ring_buffer_per_cpu *cpu_buffer;
3493        int cpu;
3494
3495        /* The event is discarded regardless */
3496        rb_event_discard(event);
3497
3498        cpu = smp_processor_id();
3499        cpu_buffer = buffer->buffers[cpu];
3500
3501        /*
3502         * This must only be called if the event has not been
3503         * committed yet. Thus we can assume that preemption
3504         * is still disabled.
3505         */
3506        RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3507
3508        rb_decrement_entry(cpu_buffer, event);
3509        if (rb_try_to_discard(cpu_buffer, event))
3510                goto out;
3511
3512 out:
3513        rb_end_commit(cpu_buffer);
3514
3515        trace_recursive_unlock(cpu_buffer);
3516
3517        preempt_enable_notrace();
3518
3519}
3520EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3521
3522/**
3523 * ring_buffer_write - write data to the buffer without reserving
3524 * @buffer: The ring buffer to write to.
3525 * @length: The length of the data being written (excluding the event header)
3526 * @data: The data to write to the buffer.
3527 *
3528 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3529 * one function. If you already have the data to write to the buffer, it
3530 * may be easier to simply call this function.
3531 *
3532 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3533 * and not the length of the event which would hold the header.
3534 */
3535int ring_buffer_write(struct trace_buffer *buffer,
3536                      unsigned long length,
3537                      void *data)
3538{
3539        struct ring_buffer_per_cpu *cpu_buffer;
3540        struct ring_buffer_event *event;
3541        void *body;
3542        int ret = -EBUSY;
3543        int cpu;
3544
3545        preempt_disable_notrace();
3546
3547        if (atomic_read(&buffer->record_disabled))
3548                goto out;
3549
3550        cpu = raw_smp_processor_id();
3551
3552        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3553                goto out;
3554
3555        cpu_buffer = buffer->buffers[cpu];
3556
3557        if (atomic_read(&cpu_buffer->record_disabled))
3558                goto out;
3559
3560        if (length > BUF_MAX_DATA_SIZE)
3561                goto out;
3562
3563        if (unlikely(trace_recursive_lock(cpu_buffer)))
3564                goto out;
3565
3566        event = rb_reserve_next_event(buffer, cpu_buffer, length);
3567        if (!event)
3568                goto out_unlock;
3569
3570        body = rb_event_data(event);
3571
3572        memcpy(body, data, length);
3573
3574        rb_commit(cpu_buffer, event);
3575
3576        rb_wakeups(buffer, cpu_buffer);
3577
3578        ret = 0;
3579
3580 out_unlock:
3581        trace_recursive_unlock(cpu_buffer);
3582
3583 out:
3584        preempt_enable_notrace();
3585
3586        return ret;
3587}
3588EXPORT_SYMBOL_GPL(ring_buffer_write);
3589
3590static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3591{
3592        struct buffer_page *reader = cpu_buffer->reader_page;
3593        struct buffer_page *head = rb_set_head_page(cpu_buffer);
3594        struct buffer_page *commit = cpu_buffer->commit_page;
3595
3596        /* In case of error, head will be NULL */
3597        if (unlikely(!head))
3598                return true;
3599
3600        return reader->read == rb_page_commit(reader) &&
3601                (commit == reader ||
3602                 (commit == head &&
3603                  head->read == rb_page_commit(commit)));
3604}
3605
3606/**
3607 * ring_buffer_record_disable - stop all writes into the buffer
3608 * @buffer: The ring buffer to stop writes to.
3609 *
3610 * This prevents all writes to the buffer. Any attempt to write
3611 * to the buffer after this will fail and return NULL.
3612 *
3613 * The caller should call synchronize_rcu() after this.
3614 */
3615void ring_buffer_record_disable(struct trace_buffer *buffer)
3616{
3617        atomic_inc(&buffer->record_disabled);
3618}
3619EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3620
3621/**
3622 * ring_buffer_record_enable - enable writes to the buffer
3623 * @buffer: The ring buffer to enable writes
3624 *
3625 * Note, multiple disables will need the same number of enables
3626 * to truly enable the writing (much like preempt_disable).
3627 */
3628void ring_buffer_record_enable(struct trace_buffer *buffer)
3629{
3630        atomic_dec(&buffer->record_disabled);
3631}
3632EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3633
3634/**
3635 * ring_buffer_record_off - stop all writes into the buffer
3636 * @buffer: The ring buffer to stop writes to.
3637 *
3638 * This prevents all writes to the buffer. Any attempt to write
3639 * to the buffer after this will fail and return NULL.
3640 *
3641 * This is different than ring_buffer_record_disable() as
3642 * it works like an on/off switch, where as the disable() version
3643 * must be paired with a enable().
3644 */
3645void ring_buffer_record_off(struct trace_buffer *buffer)
3646{
3647        unsigned int rd;
3648        unsigned int new_rd;
3649
3650        do {
3651                rd = atomic_read(&buffer->record_disabled);
3652                new_rd = rd | RB_BUFFER_OFF;
3653        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3654}
3655EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3656
3657/**
3658 * ring_buffer_record_on - restart writes into the buffer
3659 * @buffer: The ring buffer to start writes to.
3660 *
3661 * This enables all writes to the buffer that was disabled by
3662 * ring_buffer_record_off().
3663 *
3664 * This is different than ring_buffer_record_enable() as
3665 * it works like an on/off switch, where as the enable() version
3666 * must be paired with a disable().
3667 */
3668void ring_buffer_record_on(struct trace_buffer *buffer)
3669{
3670        unsigned int rd;
3671        unsigned int new_rd;
3672
3673        do {
3674                rd = atomic_read(&buffer->record_disabled);
3675                new_rd = rd & ~RB_BUFFER_OFF;
3676        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3677}
3678EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3679
3680/**
3681 * ring_buffer_record_is_on - return true if the ring buffer can write
3682 * @buffer: The ring buffer to see if write is enabled
3683 *
3684 * Returns true if the ring buffer is in a state that it accepts writes.
3685 */
3686bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3687{
3688        return !atomic_read(&buffer->record_disabled);
3689}
3690
3691/**
3692 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3693 * @buffer: The ring buffer to see if write is set enabled
3694 *
3695 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3696 * Note that this does NOT mean it is in a writable state.
3697 *
3698 * It may return true when the ring buffer has been disabled by
3699 * ring_buffer_record_disable(), as that is a temporary disabling of
3700 * the ring buffer.
3701 */
3702bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3703{
3704        return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3705}
3706
3707/**
3708 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3709 * @buffer: The ring buffer to stop writes to.
3710 * @cpu: The CPU buffer to stop
3711 *
3712 * This prevents all writes to the buffer. Any attempt to write
3713 * to the buffer after this will fail and return NULL.
3714 *
3715 * The caller should call synchronize_rcu() after this.
3716 */
3717void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3718{
3719        struct ring_buffer_per_cpu *cpu_buffer;
3720
3721        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3722                return;
3723
3724        cpu_buffer = buffer->buffers[cpu];
3725        atomic_inc(&cpu_buffer->record_disabled);
3726}
3727EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3728
3729/**
3730 * ring_buffer_record_enable_cpu - enable writes to the buffer
3731 * @buffer: The ring buffer to enable writes
3732 * @cpu: The CPU to enable.
3733 *
3734 * Note, multiple disables will need the same number of enables
3735 * to truly enable the writing (much like preempt_disable).
3736 */
3737void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3738{
3739        struct ring_buffer_per_cpu *cpu_buffer;
3740
3741        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3742                return;
3743
3744        cpu_buffer = buffer->buffers[cpu];
3745        atomic_dec(&cpu_buffer->record_disabled);
3746}
3747EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3748
3749/*
3750 * The total entries in the ring buffer is the running counter
3751 * of entries entered into the ring buffer, minus the sum of
3752 * the entries read from the ring buffer and the number of
3753 * entries that were overwritten.
3754 */
3755static inline unsigned long
3756rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3757{
3758        return local_read(&cpu_buffer->entries) -
3759                (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3760}
3761
3762/**
3763 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3764 * @buffer: The ring buffer
3765 * @cpu: The per CPU buffer to read from.
3766 */
3767u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3768{
3769        unsigned long flags;
3770        struct ring_buffer_per_cpu *cpu_buffer;
3771        struct buffer_page *bpage;
3772        u64 ret = 0;
3773
3774        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3775                return 0;
3776
3777        cpu_buffer = buffer->buffers[cpu];
3778        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3779        /*
3780         * if the tail is on reader_page, oldest time stamp is on the reader
3781         * page
3782         */
3783        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3784                bpage = cpu_buffer->reader_page;
3785        else
3786                bpage = rb_set_head_page(cpu_buffer);
3787        if (bpage)
3788                ret = bpage->page->time_stamp;
3789        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3790
3791        return ret;
3792}
3793EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3794
3795/**
3796 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3797 * @buffer: The ring buffer
3798 * @cpu: The per CPU buffer to read from.
3799 */
3800unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3801{
3802        struct ring_buffer_per_cpu *cpu_buffer;
3803        unsigned long ret;
3804
3805        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3806                return 0;
3807
3808        cpu_buffer = buffer->buffers[cpu];
3809        ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3810
3811        return ret;
3812}
3813EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3814
3815/**
3816 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3817 * @buffer: The ring buffer
3818 * @cpu: The per CPU buffer to get the entries from.
3819 */
3820unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3821{
3822        struct ring_buffer_per_cpu *cpu_buffer;
3823
3824        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3825                return 0;
3826
3827        cpu_buffer = buffer->buffers[cpu];
3828
3829        return rb_num_of_entries(cpu_buffer);
3830}
3831EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3832
3833/**
3834 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3835 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3836 * @buffer: The ring buffer
3837 * @cpu: The per CPU buffer to get the number of overruns from
3838 */
3839unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3840{
3841        struct ring_buffer_per_cpu *cpu_buffer;
3842        unsigned long ret;
3843
3844        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3845                return 0;
3846
3847        cpu_buffer = buffer->buffers[cpu];
3848        ret = local_read(&cpu_buffer->overrun);
3849
3850        return ret;
3851}
3852EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3853
3854/**
3855 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3856 * commits failing due to the buffer wrapping around while there are uncommitted
3857 * events, such as during an interrupt storm.
3858 * @buffer: The ring buffer
3859 * @cpu: The per CPU buffer to get the number of overruns from
3860 */
3861unsigned long
3862ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3863{
3864        struct ring_buffer_per_cpu *cpu_buffer;
3865        unsigned long ret;
3866
3867        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3868                return 0;
3869
3870        cpu_buffer = buffer->buffers[cpu];
3871        ret = local_read(&cpu_buffer->commit_overrun);
3872
3873        return ret;
3874}
3875EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3876
3877/**
3878 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3879 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3880 * @buffer: The ring buffer
3881 * @cpu: The per CPU buffer to get the number of overruns from
3882 */
3883unsigned long
3884ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3885{
3886        struct ring_buffer_per_cpu *cpu_buffer;
3887        unsigned long ret;
3888
3889        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3890                return 0;
3891
3892        cpu_buffer = buffer->buffers[cpu];
3893        ret = local_read(&cpu_buffer->dropped_events);
3894
3895        return ret;
3896}
3897EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3898
3899/**
3900 * ring_buffer_read_events_cpu - get the number of events successfully read
3901 * @buffer: The ring buffer
3902 * @cpu: The per CPU buffer to get the number of events read
3903 */
3904unsigned long
3905ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3906{
3907        struct ring_buffer_per_cpu *cpu_buffer;
3908
3909        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3910                return 0;
3911
3912        cpu_buffer = buffer->buffers[cpu];
3913        return cpu_buffer->read;
3914}
3915EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3916
3917/**
3918 * ring_buffer_entries - get the number of entries in a buffer
3919 * @buffer: The ring buffer
3920 *
3921 * Returns the total number of entries in the ring buffer
3922 * (all CPU entries)
3923 */
3924unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3925{
3926        struct ring_buffer_per_cpu *cpu_buffer;
3927        unsigned long entries = 0;
3928        int cpu;
3929
3930        /* if you care about this being correct, lock the buffer */
3931        for_each_buffer_cpu(buffer, cpu) {
3932                cpu_buffer = buffer->buffers[cpu];
3933                entries += rb_num_of_entries(cpu_buffer);
3934        }
3935
3936        return entries;
3937}
3938EXPORT_SYMBOL_GPL(ring_buffer_entries);
3939
3940/**
3941 * ring_buffer_overruns - get the number of overruns in buffer
3942 * @buffer: The ring buffer
3943 *
3944 * Returns the total number of overruns in the ring buffer
3945 * (all CPU entries)
3946 */
3947unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3948{
3949        struct ring_buffer_per_cpu *cpu_buffer;
3950        unsigned long overruns = 0;
3951        int cpu;
3952
3953        /* if you care about this being correct, lock the buffer */
3954        for_each_buffer_cpu(buffer, cpu) {
3955                cpu_buffer = buffer->buffers[cpu];
3956                overruns += local_read(&cpu_buffer->overrun);
3957        }
3958
3959        return overruns;
3960}
3961EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3962
3963static void rb_iter_reset(struct ring_buffer_iter *iter)
3964{
3965        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3966
3967        /* Iterator usage is expected to have record disabled */
3968        iter->head_page = cpu_buffer->reader_page;
3969        iter->head = cpu_buffer->reader_page->read;
3970        iter->next_event = iter->head;
3971
3972        iter->cache_reader_page = iter->head_page;
3973        iter->cache_read = cpu_buffer->read;
3974
3975        if (iter->head) {
3976                iter->read_stamp = cpu_buffer->read_stamp;
3977                iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3978        } else {
3979                iter->read_stamp = iter->head_page->page->time_stamp;
3980                iter->page_stamp = iter->read_stamp;
3981        }
3982}
3983
3984/**
3985 * ring_buffer_iter_reset - reset an iterator
3986 * @iter: The iterator to reset
3987 *
3988 * Resets the iterator, so that it will start from the beginning
3989 * again.
3990 */
3991void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3992{
3993        struct ring_buffer_per_cpu *cpu_buffer;
3994        unsigned long flags;
3995
3996        if (!iter)
3997                return;
3998
3999        cpu_buffer = iter->cpu_buffer;
4000
4001        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4002        rb_iter_reset(iter);
4003        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4004}
4005EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4006
4007/**
4008 * ring_buffer_iter_empty - check if an iterator has no more to read
4009 * @iter: The iterator to check
4010 */
4011int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4012{
4013        struct ring_buffer_per_cpu *cpu_buffer;
4014        struct buffer_page *reader;
4015        struct buffer_page *head_page;
4016        struct buffer_page *commit_page;
4017        struct buffer_page *curr_commit_page;
4018        unsigned commit;
4019        u64 curr_commit_ts;
4020        u64 commit_ts;
4021
4022        cpu_buffer = iter->cpu_buffer;
4023        reader = cpu_buffer->reader_page;
4024        head_page = cpu_buffer->head_page;
4025        commit_page = cpu_buffer->commit_page;
4026        commit_ts = commit_page->page->time_stamp;
4027
4028        /*
4029         * When the writer goes across pages, it issues a cmpxchg which
4030         * is a mb(), which will synchronize with the rmb here.
4031         * (see rb_tail_page_update())
4032         */
4033        smp_rmb();
4034        commit = rb_page_commit(commit_page);
4035        /* We want to make sure that the commit page doesn't change */
4036        smp_rmb();
4037
4038        /* Make sure commit page didn't change */
4039        curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4040        curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4041
4042        /* If the commit page changed, then there's more data */
4043        if (curr_commit_page != commit_page ||
4044            curr_commit_ts != commit_ts)
4045                return 0;
4046
4047        /* Still racy, as it may return a false positive, but that's OK */
4048        return ((iter->head_page == commit_page && iter->head >= commit) ||
4049                (iter->head_page == reader && commit_page == head_page &&
4050                 head_page->read == commit &&
4051                 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4052}
4053EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4054
4055static void
4056rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4057                     struct ring_buffer_event *event)
4058{
4059        u64 delta;
4060
4061        switch (event->type_len) {
4062        case RINGBUF_TYPE_PADDING:
4063                return;
4064
4065        case RINGBUF_TYPE_TIME_EXTEND:
4066                delta = ring_buffer_event_time_stamp(event);
4067                cpu_buffer->read_stamp += delta;
4068                return;
4069
4070        case RINGBUF_TYPE_TIME_STAMP:
4071                delta = ring_buffer_event_time_stamp(event);
4072                cpu_buffer->read_stamp = delta;
4073                return;
4074
4075        case RINGBUF_TYPE_DATA:
4076                cpu_buffer->read_stamp += event->time_delta;
4077                return;
4078
4079        default:
4080                RB_WARN_ON(cpu_buffer, 1);
4081        }
4082        return;
4083}
4084
4085static void
4086rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4087                          struct ring_buffer_event *event)
4088{
4089        u64 delta;
4090
4091        switch (event->type_len) {
4092        case RINGBUF_TYPE_PADDING:
4093                return;
4094
4095        case RINGBUF_TYPE_TIME_EXTEND:
4096                delta = ring_buffer_event_time_stamp(event);
4097                iter->read_stamp += delta;
4098                return;
4099
4100        case RINGBUF_TYPE_TIME_STAMP:
4101                delta = ring_buffer_event_time_stamp(event);
4102                iter->read_stamp = delta;
4103                return;
4104
4105        case RINGBUF_TYPE_DATA:
4106                iter->read_stamp += event->time_delta;
4107                return;
4108
4109        default:
4110                RB_WARN_ON(iter->cpu_buffer, 1);
4111        }
4112        return;
4113}
4114
4115static struct buffer_page *
4116rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4117{
4118        struct buffer_page *reader = NULL;
4119        unsigned long overwrite;
4120        unsigned long flags;
4121        int nr_loops = 0;
4122        int ret;
4123
4124        local_irq_save(flags);
4125        arch_spin_lock(&cpu_buffer->lock);
4126
4127 again:
4128        /*
4129         * This should normally only loop twice. But because the
4130         * start of the reader inserts an empty page, it causes
4131         * a case where we will loop three times. There should be no
4132         * reason to loop four times (that I know of).
4133         */
4134        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4135                reader = NULL;
4136                goto out;
4137        }
4138
4139        reader = cpu_buffer->reader_page;
4140
4141        /* If there's more to read, return this page */
4142        if (cpu_buffer->reader_page->read < rb_page_size(reader))
4143                goto out;
4144
4145        /* Never should we have an index greater than the size */
4146        if (RB_WARN_ON(cpu_buffer,
4147                       cpu_buffer->reader_page->read > rb_page_size(reader)))
4148                goto out;
4149
4150        /* check if we caught up to the tail */
4151        reader = NULL;
4152        if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4153                goto out;
4154
4155        /* Don't bother swapping if the ring buffer is empty */
4156        if (rb_num_of_entries(cpu_buffer) == 0)
4157                goto out;
4158
4159        /*
4160         * Reset the reader page to size zero.
4161         */
4162        local_set(&cpu_buffer->reader_page->write, 0);
4163        local_set(&cpu_buffer->reader_page->entries, 0);
4164        local_set(&cpu_buffer->reader_page->page->commit, 0);
4165        cpu_buffer->reader_page->real_end = 0;
4166
4167 spin:
4168        /*
4169         * Splice the empty reader page into the list around the head.
4170         */
4171        reader = rb_set_head_page(cpu_buffer);
4172        if (!reader)
4173                goto out;
4174        cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4175        cpu_buffer->reader_page->list.prev = reader->list.prev;
4176
4177        /*
4178         * cpu_buffer->pages just needs to point to the buffer, it
4179         *  has no specific buffer page to point to. Lets move it out
4180         *  of our way so we don't accidentally swap it.
4181         */
4182        cpu_buffer->pages = reader->list.prev;
4183
4184        /* The reader page will be pointing to the new head */
4185        rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4186
4187        /*
4188         * We want to make sure we read the overruns after we set up our
4189         * pointers to the next object. The writer side does a
4190         * cmpxchg to cross pages which acts as the mb on the writer
4191         * side. Note, the reader will constantly fail the swap
4192         * while the writer is updating the pointers, so this
4193         * guarantees that the overwrite recorded here is the one we
4194         * want to compare with the last_overrun.
4195         */
4196        smp_mb();
4197        overwrite = local_read(&(cpu_buffer->overrun));
4198
4199        /*
4200         * Here's the tricky part.
4201         *
4202         * We need to move the pointer past the header page.
4203         * But we can only do that if a writer is not currently
4204         * moving it. The page before the header page has the
4205         * flag bit '1' set if it is pointing to the page we want.
4206         * but if the writer is in the process of moving it
4207         * than it will be '2' or already moved '0'.
4208         */
4209
4210        ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4211
4212        /*
4213         * If we did not convert it, then we must try again.
4214         */
4215        if (!ret)
4216                goto spin;
4217
4218        /*
4219         * Yay! We succeeded in replacing the page.
4220         *
4221         * Now make the new head point back to the reader page.
4222         */
4223        rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4224        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4225
4226        local_inc(&cpu_buffer->pages_read);
4227
4228        /* Finally update the reader page to the new head */
4229        cpu_buffer->reader_page = reader;
4230        cpu_buffer->reader_page->read = 0;
4231
4232        if (overwrite != cpu_buffer->last_overrun) {
4233                cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4234                cpu_buffer->last_overrun = overwrite;
4235        }
4236
4237        goto again;
4238
4239 out:
4240        /* Update the read_stamp on the first event */
4241        if (reader && reader->read == 0)
4242                cpu_buffer->read_stamp = reader->page->time_stamp;
4243
4244        arch_spin_unlock(&cpu_buffer->lock);
4245        local_irq_restore(flags);
4246
4247        return reader;
4248}
4249
4250static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4251{
4252        struct ring_buffer_event *event;
4253        struct buffer_page *reader;
4254        unsigned length;
4255
4256        reader = rb_get_reader_page(cpu_buffer);
4257
4258        /* This function should not be called when buffer is empty */
4259        if (RB_WARN_ON(cpu_buffer, !reader))
4260                return;
4261
4262        event = rb_reader_event(cpu_buffer);
4263
4264        if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4265                cpu_buffer->read++;
4266
4267        rb_update_read_stamp(cpu_buffer, event);
4268
4269        length = rb_event_length(event);
4270        cpu_buffer->reader_page->read += length;
4271}
4272
4273static void rb_advance_iter(struct ring_buffer_iter *iter)
4274{
4275        struct ring_buffer_per_cpu *cpu_buffer;
4276
4277        cpu_buffer = iter->cpu_buffer;
4278
4279        /* If head == next_event then we need to jump to the next event */
4280        if (iter->head == iter->next_event) {
4281                /* If the event gets overwritten again, there's nothing to do */
4282                if (rb_iter_head_event(iter) == NULL)
4283                        return;
4284        }
4285
4286        iter->head = iter->next_event;
4287
4288        /*
4289         * Check if we are at the end of the buffer.
4290         */
4291        if (iter->next_event >= rb_page_size(iter->head_page)) {
4292                /* discarded commits can make the page empty */
4293                if (iter->head_page == cpu_buffer->commit_page)
4294                        return;
4295                rb_inc_iter(iter);
4296                return;
4297        }
4298
4299        rb_update_iter_read_stamp(iter, iter->event);
4300}
4301
4302static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4303{
4304        return cpu_buffer->lost_events;
4305}
4306
4307static struct ring_buffer_event *
4308rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4309               unsigned long *lost_events)
4310{
4311        struct ring_buffer_event *event;
4312        struct buffer_page *reader;
4313        int nr_loops = 0;
4314
4315        if (ts)
4316                *ts = 0;
4317 again:
4318        /*
4319         * We repeat when a time extend is encountered.
4320         * Since the time extend is always attached to a data event,
4321         * we should never loop more than once.
4322         * (We never hit the following condition more than twice).
4323         */
4324        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4325                return NULL;
4326
4327        reader = rb_get_reader_page(cpu_buffer);
4328        if (!reader)
4329                return NULL;
4330
4331        event = rb_reader_event(cpu_buffer);
4332
4333        switch (event->type_len) {
4334        case RINGBUF_TYPE_PADDING:
4335                if (rb_null_event(event))
4336                        RB_WARN_ON(cpu_buffer, 1);
4337                /*
4338                 * Because the writer could be discarding every
4339                 * event it creates (which would probably be bad)
4340                 * if we were to go back to "again" then we may never
4341                 * catch up, and will trigger the warn on, or lock
4342                 * the box. Return the padding, and we will release
4343                 * the current locks, and try again.
4344                 */
4345                return event;
4346
4347        case RINGBUF_TYPE_TIME_EXTEND:
4348                /* Internal data, OK to advance */
4349                rb_advance_reader(cpu_buffer);
4350                goto again;
4351
4352        case RINGBUF_TYPE_TIME_STAMP:
4353                if (ts) {
4354                        *ts = ring_buffer_event_time_stamp(event);
4355                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4356                                                         cpu_buffer->cpu, ts);
4357                }
4358                /* Internal data, OK to advance */
4359                rb_advance_reader(cpu_buffer);
4360                goto again;
4361
4362        case RINGBUF_TYPE_DATA:
4363                if (ts && !(*ts)) {
4364                        *ts = cpu_buffer->read_stamp + event->time_delta;
4365                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4366                                                         cpu_buffer->cpu, ts);
4367                }
4368                if (lost_events)
4369                        *lost_events = rb_lost_events(cpu_buffer);
4370                return event;
4371
4372        default:
4373                RB_WARN_ON(cpu_buffer, 1);
4374        }
4375
4376        return NULL;
4377}
4378EXPORT_SYMBOL_GPL(ring_buffer_peek);
4379
4380static struct ring_buffer_event *
4381rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4382{
4383        struct trace_buffer *buffer;
4384        struct ring_buffer_per_cpu *cpu_buffer;
4385        struct ring_buffer_event *event;
4386        int nr_loops = 0;
4387
4388        if (ts)
4389                *ts = 0;
4390
4391        cpu_buffer = iter->cpu_buffer;
4392        buffer = cpu_buffer->buffer;
4393
4394        /*
4395         * Check if someone performed a consuming read to
4396         * the buffer. A consuming read invalidates the iterator
4397         * and we need to reset the iterator in this case.
4398         */
4399        if (unlikely(iter->cache_read != cpu_buffer->read ||
4400                     iter->cache_reader_page != cpu_buffer->reader_page))
4401                rb_iter_reset(iter);
4402
4403 again:
4404        if (ring_buffer_iter_empty(iter))
4405                return NULL;
4406
4407        /*
4408         * As the writer can mess with what the iterator is trying
4409         * to read, just give up if we fail to get an event after
4410         * three tries. The iterator is not as reliable when reading
4411         * the ring buffer with an active write as the consumer is.
4412         * Do not warn if the three failures is reached.
4413         */
4414        if (++nr_loops > 3)
4415                return NULL;
4416
4417        if (rb_per_cpu_empty(cpu_buffer))
4418                return NULL;
4419
4420        if (iter->head >= rb_page_size(iter->head_page)) {
4421                rb_inc_iter(iter);
4422                goto again;
4423        }
4424
4425        event = rb_iter_head_event(iter);
4426        if (!event)
4427                goto again;
4428
4429        switch (event->type_len) {
4430        case RINGBUF_TYPE_PADDING:
4431                if (rb_null_event(event)) {
4432                        rb_inc_iter(iter);
4433                        goto again;
4434                }
4435                rb_advance_iter(iter);
4436                return event;
4437
4438        case RINGBUF_TYPE_TIME_EXTEND:
4439                /* Internal data, OK to advance */
4440                rb_advance_iter(iter);
4441                goto again;
4442
4443        case RINGBUF_TYPE_TIME_STAMP:
4444                if (ts) {
4445                        *ts = ring_buffer_event_time_stamp(event);
4446                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4447                                                         cpu_buffer->cpu, ts);
4448                }
4449                /* Internal data, OK to advance */
4450                rb_advance_iter(iter);
4451                goto again;
4452
4453        case RINGBUF_TYPE_DATA:
4454                if (ts && !(*ts)) {
4455                        *ts = iter->read_stamp + event->time_delta;
4456                        ring_buffer_normalize_time_stamp(buffer,
4457                                                         cpu_buffer->cpu, ts);
4458                }
4459                return event;
4460
4461        default:
4462                RB_WARN_ON(cpu_buffer, 1);
4463        }
4464
4465        return NULL;
4466}
4467EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4468
4469static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4470{
4471        if (likely(!in_nmi())) {
4472                raw_spin_lock(&cpu_buffer->reader_lock);
4473                return true;
4474        }
4475
4476        /*
4477         * If an NMI die dumps out the content of the ring buffer
4478         * trylock must be used to prevent a deadlock if the NMI
4479         * preempted a task that holds the ring buffer locks. If
4480         * we get the lock then all is fine, if not, then continue
4481         * to do the read, but this can corrupt the ring buffer,
4482         * so it must be permanently disabled from future writes.
4483         * Reading from NMI is a oneshot deal.
4484         */
4485        if (raw_spin_trylock(&cpu_buffer->reader_lock))
4486                return true;
4487
4488        /* Continue without locking, but disable the ring buffer */
4489        atomic_inc(&cpu_buffer->record_disabled);
4490        return false;
4491}
4492
4493static inline void
4494rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4495{
4496        if (likely(locked))
4497                raw_spin_unlock(&cpu_buffer->reader_lock);
4498        return;
4499}
4500
4501/**
4502 * ring_buffer_peek - peek at the next event to be read
4503 * @buffer: The ring buffer to read
4504 * @cpu: The cpu to peak at
4505 * @ts: The timestamp counter of this event.
4506 * @lost_events: a variable to store if events were lost (may be NULL)
4507 *
4508 * This will return the event that will be read next, but does
4509 * not consume the data.
4510 */
4511struct ring_buffer_event *
4512ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4513                 unsigned long *lost_events)
4514{
4515        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4516        struct ring_buffer_event *event;
4517        unsigned long flags;
4518        bool dolock;
4519
4520        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4521                return NULL;
4522
4523 again:
4524        local_irq_save(flags);
4525        dolock = rb_reader_lock(cpu_buffer);
4526        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4527        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4528                rb_advance_reader(cpu_buffer);
4529        rb_reader_unlock(cpu_buffer, dolock);
4530        local_irq_restore(flags);
4531
4532        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4533                goto again;
4534
4535        return event;
4536}
4537
4538/** ring_buffer_iter_dropped - report if there are dropped events
4539 * @iter: The ring buffer iterator
4540 *
4541 * Returns true if there was dropped events since the last peek.
4542 */
4543bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4544{
4545        bool ret = iter->missed_events != 0;
4546
4547        iter->missed_events = 0;
4548        return ret;
4549}
4550EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4551
4552/**
4553 * ring_buffer_iter_peek - peek at the next event to be read
4554 * @iter: The ring buffer iterator
4555 * @ts: The timestamp counter of this event.
4556 *
4557 * This will return the event that will be read next, but does
4558 * not increment the iterator.
4559 */
4560struct ring_buffer_event *
4561ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4562{
4563        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4564        struct ring_buffer_event *event;
4565        unsigned long flags;
4566
4567 again:
4568        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4569        event = rb_iter_peek(iter, ts);
4570        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4571
4572        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4573                goto again;
4574
4575        return event;
4576}
4577
4578/**
4579 * ring_buffer_consume - return an event and consume it
4580 * @buffer: The ring buffer to get the next event from
4581 * @cpu: the cpu to read the buffer from
4582 * @ts: a variable to store the timestamp (may be NULL)
4583 * @lost_events: a variable to store if events were lost (may be NULL)
4584 *
4585 * Returns the next event in the ring buffer, and that event is consumed.
4586 * Meaning, that sequential reads will keep returning a different event,
4587 * and eventually empty the ring buffer if the producer is slower.
4588 */
4589struct ring_buffer_event *
4590ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4591                    unsigned long *lost_events)
4592{
4593        struct ring_buffer_per_cpu *cpu_buffer;
4594        struct ring_buffer_event *event = NULL;
4595        unsigned long flags;
4596        bool dolock;
4597
4598 again:
4599        /* might be called in atomic */
4600        preempt_disable();
4601
4602        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4603                goto out;
4604
4605        cpu_buffer = buffer->buffers[cpu];
4606        local_irq_save(flags);
4607        dolock = rb_reader_lock(cpu_buffer);
4608
4609        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4610        if (event) {
4611                cpu_buffer->lost_events = 0;
4612                rb_advance_reader(cpu_buffer);
4613        }
4614
4615        rb_reader_unlock(cpu_buffer, dolock);
4616        local_irq_restore(flags);
4617
4618 out:
4619        preempt_enable();
4620
4621        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4622                goto again;
4623
4624        return event;
4625}
4626EXPORT_SYMBOL_GPL(ring_buffer_consume);
4627
4628/**
4629 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4630 * @buffer: The ring buffer to read from
4631 * @cpu: The cpu buffer to iterate over
4632 * @flags: gfp flags to use for memory allocation
4633 *
4634 * This performs the initial preparations necessary to iterate
4635 * through the buffer.  Memory is allocated, buffer recording
4636 * is disabled, and the iterator pointer is returned to the caller.
4637 *
4638 * Disabling buffer recording prevents the reading from being
4639 * corrupted. This is not a consuming read, so a producer is not
4640 * expected.
4641 *
4642 * After a sequence of ring_buffer_read_prepare calls, the user is
4643 * expected to make at least one call to ring_buffer_read_prepare_sync.
4644 * Afterwards, ring_buffer_read_start is invoked to get things going
4645 * for real.
4646 *
4647 * This overall must be paired with ring_buffer_read_finish.
4648 */
4649struct ring_buffer_iter *
4650ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4651{
4652        struct ring_buffer_per_cpu *cpu_buffer;
4653        struct ring_buffer_iter *iter;
4654
4655        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4656                return NULL;
4657
4658        iter = kzalloc(sizeof(*iter), flags);
4659        if (!iter)
4660                return NULL;
4661
4662        iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4663        if (!iter->event) {
4664                kfree(iter);
4665                return NULL;
4666        }
4667
4668        cpu_buffer = buffer->buffers[cpu];
4669
4670        iter->cpu_buffer = cpu_buffer;
4671
4672        atomic_inc(&cpu_buffer->resize_disabled);
4673
4674        return iter;
4675}
4676EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4677
4678/**
4679 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4680 *
4681 * All previously invoked ring_buffer_read_prepare calls to prepare
4682 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4683 * calls on those iterators are allowed.
4684 */
4685void
4686ring_buffer_read_prepare_sync(void)
4687{
4688        synchronize_rcu();
4689}
4690EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4691
4692/**
4693 * ring_buffer_read_start - start a non consuming read of the buffer
4694 * @iter: The iterator returned by ring_buffer_read_prepare
4695 *
4696 * This finalizes the startup of an iteration through the buffer.
4697 * The iterator comes from a call to ring_buffer_read_prepare and
4698 * an intervening ring_buffer_read_prepare_sync must have been
4699 * performed.
4700 *
4701 * Must be paired with ring_buffer_read_finish.
4702 */
4703void
4704ring_buffer_read_start(struct ring_buffer_iter *iter)
4705{
4706        struct ring_buffer_per_cpu *cpu_buffer;
4707        unsigned long flags;
4708
4709        if (!iter)
4710                return;
4711
4712        cpu_buffer = iter->cpu_buffer;
4713
4714        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4715        arch_spin_lock(&cpu_buffer->lock);
4716        rb_iter_reset(iter);
4717        arch_spin_unlock(&cpu_buffer->lock);
4718        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4719}
4720EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4721
4722/**
4723 * ring_buffer_read_finish - finish reading the iterator of the buffer
4724 * @iter: The iterator retrieved by ring_buffer_start
4725 *
4726 * This re-enables the recording to the buffer, and frees the
4727 * iterator.
4728 */
4729void
4730ring_buffer_read_finish(struct ring_buffer_iter *iter)
4731{
4732        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4733        unsigned long flags;
4734
4735        /*
4736         * Ring buffer is disabled from recording, here's a good place
4737         * to check the integrity of the ring buffer.
4738         * Must prevent readers from trying to read, as the check
4739         * clears the HEAD page and readers require it.
4740         */
4741        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4742        rb_check_pages(cpu_buffer);
4743        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4744
4745        atomic_dec(&cpu_buffer->resize_disabled);
4746        kfree(iter->event);
4747        kfree(iter);
4748}
4749EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4750
4751/**
4752 * ring_buffer_iter_advance - advance the iterator to the next location
4753 * @iter: The ring buffer iterator
4754 *
4755 * Move the location of the iterator such that the next read will
4756 * be the next location of the iterator.
4757 */
4758void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4759{
4760        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4761        unsigned long flags;
4762
4763        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4764
4765        rb_advance_iter(iter);
4766
4767        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4768}
4769EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4770
4771/**
4772 * ring_buffer_size - return the size of the ring buffer (in bytes)
4773 * @buffer: The ring buffer.
4774 * @cpu: The CPU to get ring buffer size from.
4775 */
4776unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4777{
4778        /*
4779         * Earlier, this method returned
4780         *      BUF_PAGE_SIZE * buffer->nr_pages
4781         * Since the nr_pages field is now removed, we have converted this to
4782         * return the per cpu buffer value.
4783         */
4784        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4785                return 0;
4786
4787        return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4788}
4789EXPORT_SYMBOL_GPL(ring_buffer_size);
4790
4791static void
4792rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4793{
4794        rb_head_page_deactivate(cpu_buffer);
4795
4796        cpu_buffer->head_page
4797                = list_entry(cpu_buffer->pages, struct buffer_page, list);
4798        local_set(&cpu_buffer->head_page->write, 0);
4799        local_set(&cpu_buffer->head_page->entries, 0);
4800        local_set(&cpu_buffer->head_page->page->commit, 0);
4801
4802        cpu_buffer->head_page->read = 0;
4803
4804        cpu_buffer->tail_page = cpu_buffer->head_page;
4805        cpu_buffer->commit_page = cpu_buffer->head_page;
4806
4807        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4808        INIT_LIST_HEAD(&cpu_buffer->new_pages);
4809        local_set(&cpu_buffer->reader_page->write, 0);
4810        local_set(&cpu_buffer->reader_page->entries, 0);
4811        local_set(&cpu_buffer->reader_page->page->commit, 0);
4812        cpu_buffer->reader_page->read = 0;
4813
4814        local_set(&cpu_buffer->entries_bytes, 0);
4815        local_set(&cpu_buffer->overrun, 0);
4816        local_set(&cpu_buffer->commit_overrun, 0);
4817        local_set(&cpu_buffer->dropped_events, 0);
4818        local_set(&cpu_buffer->entries, 0);
4819        local_set(&cpu_buffer->committing, 0);
4820        local_set(&cpu_buffer->commits, 0);
4821        local_set(&cpu_buffer->pages_touched, 0);
4822        local_set(&cpu_buffer->pages_read, 0);
4823        cpu_buffer->last_pages_touch = 0;
4824        cpu_buffer->shortest_full = 0;
4825        cpu_buffer->read = 0;
4826        cpu_buffer->read_bytes = 0;
4827
4828        rb_time_set(&cpu_buffer->write_stamp, 0);
4829        rb_time_set(&cpu_buffer->before_stamp, 0);
4830
4831        cpu_buffer->lost_events = 0;
4832        cpu_buffer->last_overrun = 0;
4833
4834        rb_head_page_activate(cpu_buffer);
4835}
4836
4837/* Must have disabled the cpu buffer then done a synchronize_rcu */
4838static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
4839{
4840        unsigned long flags;
4841
4842        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4843
4844        if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4845                goto out;
4846
4847        arch_spin_lock(&cpu_buffer->lock);
4848
4849        rb_reset_cpu(cpu_buffer);
4850
4851        arch_spin_unlock(&cpu_buffer->lock);
4852
4853 out:
4854        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4855}
4856
4857/**
4858 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4859 * @buffer: The ring buffer to reset a per cpu buffer of
4860 * @cpu: The CPU buffer to be reset
4861 */
4862void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4863{
4864        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4865
4866        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4867                return;
4868
4869        atomic_inc(&cpu_buffer->resize_disabled);
4870        atomic_inc(&cpu_buffer->record_disabled);
4871
4872        /* Make sure all commits have finished */
4873        synchronize_rcu();
4874
4875        reset_disabled_cpu_buffer(cpu_buffer);
4876
4877        atomic_dec(&cpu_buffer->record_disabled);
4878        atomic_dec(&cpu_buffer->resize_disabled);
4879}
4880EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4881
4882/**
4883 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4884 * @buffer: The ring buffer to reset a per cpu buffer of
4885 * @cpu: The CPU buffer to be reset
4886 */
4887void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
4888{
4889        struct ring_buffer_per_cpu *cpu_buffer;
4890        int cpu;
4891
4892        for_each_online_buffer_cpu(buffer, cpu) {
4893                cpu_buffer = buffer->buffers[cpu];
4894
4895                atomic_inc(&cpu_buffer->resize_disabled);
4896                atomic_inc(&cpu_buffer->record_disabled);
4897        }
4898
4899        /* Make sure all commits have finished */
4900        synchronize_rcu();
4901
4902        for_each_online_buffer_cpu(buffer, cpu) {
4903                cpu_buffer = buffer->buffers[cpu];
4904
4905                reset_disabled_cpu_buffer(cpu_buffer);
4906
4907                atomic_dec(&cpu_buffer->record_disabled);
4908                atomic_dec(&cpu_buffer->resize_disabled);
4909        }
4910}
4911
4912/**
4913 * ring_buffer_reset - reset a ring buffer
4914 * @buffer: The ring buffer to reset all cpu buffers
4915 */
4916void ring_buffer_reset(struct trace_buffer *buffer)
4917{
4918        struct ring_buffer_per_cpu *cpu_buffer;
4919        int cpu;
4920
4921        for_each_buffer_cpu(buffer, cpu) {
4922                cpu_buffer = buffer->buffers[cpu];
4923
4924                atomic_inc(&cpu_buffer->resize_disabled);
4925                atomic_inc(&cpu_buffer->record_disabled);
4926        }
4927
4928        /* Make sure all commits have finished */
4929        synchronize_rcu();
4930
4931        for_each_buffer_cpu(buffer, cpu) {
4932                cpu_buffer = buffer->buffers[cpu];
4933
4934                reset_disabled_cpu_buffer(cpu_buffer);
4935
4936                atomic_dec(&cpu_buffer->record_disabled);
4937                atomic_dec(&cpu_buffer->resize_disabled);
4938        }
4939}
4940EXPORT_SYMBOL_GPL(ring_buffer_reset);
4941
4942/**
4943 * rind_buffer_empty - is the ring buffer empty?
4944 * @buffer: The ring buffer to test
4945 */
4946bool ring_buffer_empty(struct trace_buffer *buffer)
4947{
4948        struct ring_buffer_per_cpu *cpu_buffer;
4949        unsigned long flags;
4950        bool dolock;
4951        int cpu;
4952        int ret;
4953
4954        /* yes this is racy, but if you don't like the race, lock the buffer */
4955        for_each_buffer_cpu(buffer, cpu) {
4956                cpu_buffer = buffer->buffers[cpu];
4957                local_irq_save(flags);
4958                dolock = rb_reader_lock(cpu_buffer);
4959                ret = rb_per_cpu_empty(cpu_buffer);
4960                rb_reader_unlock(cpu_buffer, dolock);
4961                local_irq_restore(flags);
4962
4963                if (!ret)
4964                        return false;
4965        }
4966
4967        return true;
4968}
4969EXPORT_SYMBOL_GPL(ring_buffer_empty);
4970
4971/**
4972 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4973 * @buffer: The ring buffer
4974 * @cpu: The CPU buffer to test
4975 */
4976bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4977{
4978        struct ring_buffer_per_cpu *cpu_buffer;
4979        unsigned long flags;
4980        bool dolock;
4981        int ret;
4982
4983        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4984                return true;
4985
4986        cpu_buffer = buffer->buffers[cpu];
4987        local_irq_save(flags);
4988        dolock = rb_reader_lock(cpu_buffer);
4989        ret = rb_per_cpu_empty(cpu_buffer);
4990        rb_reader_unlock(cpu_buffer, dolock);
4991        local_irq_restore(flags);
4992
4993        return ret;
4994}
4995EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4996
4997#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4998/**
4999 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5000 * @buffer_a: One buffer to swap with
5001 * @buffer_b: The other buffer to swap with
5002 * @cpu: the CPU of the buffers to swap
5003 *
5004 * This function is useful for tracers that want to take a "snapshot"
5005 * of a CPU buffer and has another back up buffer lying around.
5006 * it is expected that the tracer handles the cpu buffer not being
5007 * used at the moment.
5008 */
5009int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5010                         struct trace_buffer *buffer_b, int cpu)
5011{
5012        struct ring_buffer_per_cpu *cpu_buffer_a;
5013        struct ring_buffer_per_cpu *cpu_buffer_b;
5014        int ret = -EINVAL;
5015
5016        if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5017            !cpumask_test_cpu(cpu, buffer_b->cpumask))
5018                goto out;
5019
5020        cpu_buffer_a = buffer_a->buffers[cpu];
5021        cpu_buffer_b = buffer_b->buffers[cpu];
5022
5023        /* At least make sure the two buffers are somewhat the same */
5024        if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5025                goto out;
5026
5027        ret = -EAGAIN;
5028
5029        if (atomic_read(&buffer_a->record_disabled))
5030                goto out;
5031
5032        if (atomic_read(&buffer_b->record_disabled))
5033                goto out;
5034
5035        if (atomic_read(&cpu_buffer_a->record_disabled))
5036                goto out;
5037
5038        if (atomic_read(&cpu_buffer_b->record_disabled))
5039                goto out;
5040
5041        /*
5042         * We can't do a synchronize_rcu here because this
5043         * function can be called in atomic context.
5044         * Normally this will be called from the same CPU as cpu.
5045         * If not it's up to the caller to protect this.
5046         */
5047        atomic_inc(&cpu_buffer_a->record_disabled);
5048        atomic_inc(&cpu_buffer_b->record_disabled);
5049
5050        ret = -EBUSY;
5051        if (local_read(&cpu_buffer_a->committing))
5052                goto out_dec;
5053        if (local_read(&cpu_buffer_b->committing))
5054                goto out_dec;
5055
5056        buffer_a->buffers[cpu] = cpu_buffer_b;
5057        buffer_b->buffers[cpu] = cpu_buffer_a;
5058
5059        cpu_buffer_b->buffer = buffer_a;
5060        cpu_buffer_a->buffer = buffer_b;
5061
5062        ret = 0;
5063
5064out_dec:
5065        atomic_dec(&cpu_buffer_a->record_disabled);
5066        atomic_dec(&cpu_buffer_b->record_disabled);
5067out:
5068        return ret;
5069}
5070EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5071#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5072
5073/**
5074 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5075 * @buffer: the buffer to allocate for.
5076 * @cpu: the cpu buffer to allocate.
5077 *
5078 * This function is used in conjunction with ring_buffer_read_page.
5079 * When reading a full page from the ring buffer, these functions
5080 * can be used to speed up the process. The calling function should
5081 * allocate a few pages first with this function. Then when it
5082 * needs to get pages from the ring buffer, it passes the result
5083 * of this function into ring_buffer_read_page, which will swap
5084 * the page that was allocated, with the read page of the buffer.
5085 *
5086 * Returns:
5087 *  The page allocated, or ERR_PTR
5088 */
5089void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5090{
5091        struct ring_buffer_per_cpu *cpu_buffer;
5092        struct buffer_data_page *bpage = NULL;
5093        unsigned long flags;
5094        struct page *page;
5095
5096        if (!cpumask_test_cpu(cpu, buffer->cpumask))
5097                return ERR_PTR(-ENODEV);
5098
5099        cpu_buffer = buffer->buffers[cpu];
5100        local_irq_save(flags);
5101        arch_spin_lock(&cpu_buffer->lock);
5102
5103        if (cpu_buffer->free_page) {
5104                bpage = cpu_buffer->free_page;
5105                cpu_buffer->free_page = NULL;
5106        }
5107
5108        arch_spin_unlock(&cpu_buffer->lock);
5109        local_irq_restore(flags);
5110
5111        if (bpage)
5112                goto out;
5113
5114        page = alloc_pages_node(cpu_to_node(cpu),
5115                                GFP_KERNEL | __GFP_NORETRY, 0);
5116        if (!page)
5117                return ERR_PTR(-ENOMEM);
5118
5119        bpage = page_address(page);
5120
5121 out:
5122        rb_init_page(bpage);
5123
5124        return bpage;
5125}
5126EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5127
5128/**
5129 * ring_buffer_free_read_page - free an allocated read page
5130 * @buffer: the buffer the page was allocate for
5131 * @cpu: the cpu buffer the page came from
5132 * @data: the page to free
5133 *
5134 * Free a page allocated from ring_buffer_alloc_read_page.
5135 */
5136void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5137{
5138        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5139        struct buffer_data_page *bpage = data;
5140        struct page *page = virt_to_page(bpage);
5141        unsigned long flags;
5142
5143        /* If the page is still in use someplace else, we can't reuse it */
5144        if (page_ref_count(page) > 1)
5145                goto out;
5146
5147        local_irq_save(flags);
5148        arch_spin_lock(&cpu_buffer->lock);
5149
5150        if (!cpu_buffer->free_page) {
5151                cpu_buffer->free_page = bpage;
5152                bpage = NULL;
5153        }
5154
5155        arch_spin_unlock(&cpu_buffer->lock);
5156        local_irq_restore(flags);
5157
5158 out:
5159        free_page((unsigned long)bpage);
5160}
5161EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5162
5163/**
5164 * ring_buffer_read_page - extract a page from the ring buffer
5165 * @buffer: buffer to extract from
5166 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5167 * @len: amount to extract
5168 * @cpu: the cpu of the buffer to extract
5169 * @full: should the extraction only happen when the page is full.
5170 *
5171 * This function will pull out a page from the ring buffer and consume it.
5172 * @data_page must be the address of the variable that was returned
5173 * from ring_buffer_alloc_read_page. This is because the page might be used
5174 * to swap with a page in the ring buffer.
5175 *
5176 * for example:
5177 *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5178 *      if (IS_ERR(rpage))
5179 *              return PTR_ERR(rpage);
5180 *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5181 *      if (ret >= 0)
5182 *              process_page(rpage, ret);
5183 *
5184 * When @full is set, the function will not return true unless
5185 * the writer is off the reader page.
5186 *
5187 * Note: it is up to the calling functions to handle sleeps and wakeups.
5188 *  The ring buffer can be used anywhere in the kernel and can not
5189 *  blindly call wake_up. The layer that uses the ring buffer must be
5190 *  responsible for that.
5191 *
5192 * Returns:
5193 *  >=0 if data has been transferred, returns the offset of consumed data.
5194 *  <0 if no data has been transferred.
5195 */
5196int ring_buffer_read_page(struct trace_buffer *buffer,
5197                          void **data_page, size_t len, int cpu, int full)
5198{
5199        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5200        struct ring_buffer_event *event;
5201        struct buffer_data_page *bpage;
5202        struct buffer_page *reader;
5203        unsigned long missed_events;
5204        unsigned long flags;
5205        unsigned int commit;
5206        unsigned int read;
5207        u64 save_timestamp;
5208        int ret = -1;
5209
5210        if (!cpumask_test_cpu(cpu, buffer->cpumask))
5211                goto out;
5212
5213        /*
5214         * If len is not big enough to hold the page header, then
5215         * we can not copy anything.
5216         */
5217        if (len <= BUF_PAGE_HDR_SIZE)
5218                goto out;
5219
5220        len -= BUF_PAGE_HDR_SIZE;
5221
5222        if (!data_page)
5223                goto out;
5224
5225        bpage = *data_page;
5226        if (!bpage)
5227                goto out;
5228
5229        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5230
5231        reader = rb_get_reader_page(cpu_buffer);
5232        if (!reader)
5233                goto out_unlock;
5234
5235        event = rb_reader_event(cpu_buffer);
5236
5237        read = reader->read;
5238        commit = rb_page_commit(reader);
5239
5240        /* Check if any events were dropped */
5241        missed_events = cpu_buffer->lost_events;
5242
5243        /*
5244         * If this page has been partially read or
5245         * if len is not big enough to read the rest of the page or
5246         * a writer is still on the page, then
5247         * we must copy the data from the page to the buffer.
5248         * Otherwise, we can simply swap the page with the one passed in.
5249         */
5250        if (read || (len < (commit - read)) ||
5251            cpu_buffer->reader_page == cpu_buffer->commit_page) {
5252                struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5253                unsigned int rpos = read;
5254                unsigned int pos = 0;
5255                unsigned int size;
5256
5257                if (full)
5258                        goto out_unlock;
5259
5260                if (len > (commit - read))
5261                        len = (commit - read);
5262
5263                /* Always keep the time extend and data together */
5264                size = rb_event_ts_length(event);
5265
5266                if (len < size)
5267                        goto out_unlock;
5268
5269                /* save the current timestamp, since the user will need it */
5270                save_timestamp = cpu_buffer->read_stamp;
5271
5272                /* Need to copy one event at a time */
5273                do {
5274                        /* We need the size of one event, because
5275                         * rb_advance_reader only advances by one event,
5276                         * whereas rb_event_ts_length may include the size of
5277                         * one or two events.
5278                         * We have already ensured there's enough space if this
5279                         * is a time extend. */
5280                        size = rb_event_length(event);
5281                        memcpy(bpage->data + pos, rpage->data + rpos, size);
5282
5283                        len -= size;
5284
5285                        rb_advance_reader(cpu_buffer);
5286                        rpos = reader->read;
5287                        pos += size;
5288
5289                        if (rpos >= commit)
5290                                break;
5291
5292                        event = rb_reader_event(cpu_buffer);
5293                        /* Always keep the time extend and data together */
5294                        size = rb_event_ts_length(event);
5295                } while (len >= size);
5296
5297                /* update bpage */
5298                local_set(&bpage->commit, pos);
5299                bpage->time_stamp = save_timestamp;
5300
5301                /* we copied everything to the beginning */
5302                read = 0;
5303        } else {
5304                /* update the entry counter */
5305                cpu_buffer->read += rb_page_entries(reader);
5306                cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5307
5308                /* swap the pages */
5309                rb_init_page(bpage);
5310                bpage = reader->page;
5311                reader->page = *data_page;
5312                local_set(&reader->write, 0);
5313                local_set(&reader->entries, 0);
5314                reader->read = 0;
5315                *data_page = bpage;
5316
5317                /*
5318                 * Use the real_end for the data size,
5319                 * This gives us a chance to store the lost events
5320                 * on the page.
5321                 */
5322                if (reader->real_end)
5323                        local_set(&bpage->commit, reader->real_end);
5324        }
5325        ret = read;
5326
5327        cpu_buffer->lost_events = 0;
5328
5329        commit = local_read(&bpage->commit);
5330        /*
5331         * Set a flag in the commit field if we lost events
5332         */
5333        if (missed_events) {
5334                /* If there is room at the end of the page to save the
5335                 * missed events, then record it there.
5336                 */
5337                if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5338                        memcpy(&bpage->data[commit], &missed_events,
5339                               sizeof(missed_events));
5340                        local_add(RB_MISSED_STORED, &bpage->commit);
5341                        commit += sizeof(missed_events);
5342                }
5343                local_add(RB_MISSED_EVENTS, &bpage->commit);
5344        }
5345
5346        /*
5347         * This page may be off to user land. Zero it out here.
5348         */
5349        if (commit < BUF_PAGE_SIZE)
5350                memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5351
5352 out_unlock:
5353        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5354
5355 out:
5356        return ret;
5357}
5358EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5359
5360/*
5361 * We only allocate new buffers, never free them if the CPU goes down.
5362 * If we were to free the buffer, then the user would lose any trace that was in
5363 * the buffer.
5364 */
5365int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5366{
5367        struct trace_buffer *buffer;
5368        long nr_pages_same;
5369        int cpu_i;
5370        unsigned long nr_pages;
5371
5372        buffer = container_of(node, struct trace_buffer, node);
5373        if (cpumask_test_cpu(cpu, buffer->cpumask))
5374                return 0;
5375
5376        nr_pages = 0;
5377        nr_pages_same = 1;
5378        /* check if all cpu sizes are same */
5379        for_each_buffer_cpu(buffer, cpu_i) {
5380                /* fill in the size from first enabled cpu */
5381                if (nr_pages == 0)
5382                        nr_pages = buffer->buffers[cpu_i]->nr_pages;
5383                if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5384                        nr_pages_same = 0;
5385                        break;
5386                }
5387        }
5388        /* allocate minimum pages, user can later expand it */
5389        if (!nr_pages_same)
5390                nr_pages = 2;
5391        buffer->buffers[cpu] =
5392                rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5393        if (!buffer->buffers[cpu]) {
5394                WARN(1, "failed to allocate ring buffer on CPU %u\n",
5395                     cpu);
5396                return -ENOMEM;
5397        }
5398        smp_wmb();
5399        cpumask_set_cpu(cpu, buffer->cpumask);
5400        return 0;
5401}
5402
5403#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5404/*
5405 * This is a basic integrity check of the ring buffer.
5406 * Late in the boot cycle this test will run when configured in.
5407 * It will kick off a thread per CPU that will go into a loop
5408 * writing to the per cpu ring buffer various sizes of data.
5409 * Some of the data will be large items, some small.
5410 *
5411 * Another thread is created that goes into a spin, sending out
5412 * IPIs to the other CPUs to also write into the ring buffer.
5413 * this is to test the nesting ability of the buffer.
5414 *
5415 * Basic stats are recorded and reported. If something in the
5416 * ring buffer should happen that's not expected, a big warning
5417 * is displayed and all ring buffers are disabled.
5418 */
5419static struct task_struct *rb_threads[NR_CPUS] __initdata;
5420
5421struct rb_test_data {
5422        struct trace_buffer *buffer;
5423        unsigned long           events;
5424        unsigned long           bytes_written;
5425        unsigned long           bytes_alloc;
5426        unsigned long           bytes_dropped;
5427        unsigned long           events_nested;
5428        unsigned long           bytes_written_nested;
5429        unsigned long           bytes_alloc_nested;
5430        unsigned long           bytes_dropped_nested;
5431        int                     min_size_nested;
5432        int                     max_size_nested;
5433        int                     max_size;
5434        int                     min_size;
5435        int                     cpu;
5436        int                     cnt;
5437};
5438
5439static struct rb_test_data rb_data[NR_CPUS] __initdata;
5440
5441/* 1 meg per cpu */
5442#define RB_TEST_BUFFER_SIZE     1048576
5443
5444static char rb_string[] __initdata =
5445        "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5446        "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5447        "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5448
5449static bool rb_test_started __initdata;
5450
5451struct rb_item {
5452        int size;
5453        char str[];
5454};
5455
5456static __init int rb_write_something(struct rb_test_data *data, bool nested)
5457{
5458        struct ring_buffer_event *event;
5459        struct rb_item *item;
5460        bool started;
5461        int event_len;
5462        int size;
5463        int len;
5464        int cnt;
5465
5466        /* Have nested writes different that what is written */
5467        cnt = data->cnt + (nested ? 27 : 0);
5468
5469        /* Multiply cnt by ~e, to make some unique increment */
5470        size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5471
5472        len = size + sizeof(struct rb_item);
5473
5474        started = rb_test_started;
5475        /* read rb_test_started before checking buffer enabled */
5476        smp_rmb();
5477
5478        event = ring_buffer_lock_reserve(data->buffer, len);
5479        if (!event) {
5480                /* Ignore dropped events before test starts. */
5481                if (started) {
5482                        if (nested)
5483                                data->bytes_dropped += len;
5484                        else
5485                                data->bytes_dropped_nested += len;
5486                }
5487                return len;
5488        }
5489
5490        event_len = ring_buffer_event_length(event);
5491
5492        if (RB_WARN_ON(data->buffer, event_len < len))
5493                goto out;
5494
5495        item = ring_buffer_event_data(event);
5496        item->size = size;
5497        memcpy(item->str, rb_string, size);
5498
5499        if (nested) {
5500                data->bytes_alloc_nested += event_len;
5501                data->bytes_written_nested += len;
5502                data->events_nested++;
5503                if (!data->min_size_nested || len < data->min_size_nested)
5504                        data->min_size_nested = len;
5505                if (len > data->max_size_nested)
5506                        data->max_size_nested = len;
5507        } else {
5508                data->bytes_alloc += event_len;
5509                data->bytes_written += len;
5510                data->events++;
5511                if (!data->min_size || len < data->min_size)
5512                        data->max_size = len;
5513                if (len > data->max_size)
5514                        data->max_size = len;
5515        }
5516
5517 out:
5518        ring_buffer_unlock_commit(data->buffer, event);
5519
5520        return 0;
5521}
5522
5523static __init int rb_test(void *arg)
5524{
5525        struct rb_test_data *data = arg;
5526
5527        while (!kthread_should_stop()) {
5528                rb_write_something(data, false);
5529                data->cnt++;
5530
5531                set_current_state(TASK_INTERRUPTIBLE);
5532                /* Now sleep between a min of 100-300us and a max of 1ms */
5533                usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5534        }
5535
5536        return 0;
5537}
5538
5539static __init void rb_ipi(void *ignore)
5540{
5541        struct rb_test_data *data;
5542        int cpu = smp_processor_id();
5543
5544        data = &rb_data[cpu];
5545        rb_write_something(data, true);
5546}
5547
5548static __init int rb_hammer_test(void *arg)
5549{
5550        while (!kthread_should_stop()) {
5551
5552                /* Send an IPI to all cpus to write data! */
5553                smp_call_function(rb_ipi, NULL, 1);
5554                /* No sleep, but for non preempt, let others run */
5555                schedule();
5556        }
5557
5558        return 0;
5559}
5560
5561static __init int test_ringbuffer(void)
5562{
5563        struct task_struct *rb_hammer;
5564        struct trace_buffer *buffer;
5565        int cpu;
5566        int ret = 0;
5567
5568        if (security_locked_down(LOCKDOWN_TRACEFS)) {
5569                pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5570                return 0;
5571        }
5572
5573        pr_info("Running ring buffer tests...\n");
5574
5575        buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5576        if (WARN_ON(!buffer))
5577                return 0;
5578
5579        /* Disable buffer so that threads can't write to it yet */
5580        ring_buffer_record_off(buffer);
5581
5582        for_each_online_cpu(cpu) {
5583                rb_data[cpu].buffer = buffer;
5584                rb_data[cpu].cpu = cpu;
5585                rb_data[cpu].cnt = cpu;
5586                rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5587                                                 "rbtester/%d", cpu);
5588                if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5589                        pr_cont("FAILED\n");
5590                        ret = PTR_ERR(rb_threads[cpu]);
5591                        goto out_free;
5592                }
5593
5594                kthread_bind(rb_threads[cpu], cpu);
5595                wake_up_process(rb_threads[cpu]);
5596        }
5597
5598        /* Now create the rb hammer! */
5599        rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5600        if (WARN_ON(IS_ERR(rb_hammer))) {
5601                pr_cont("FAILED\n");
5602                ret = PTR_ERR(rb_hammer);
5603                goto out_free;
5604        }
5605
5606        ring_buffer_record_on(buffer);
5607        /*
5608         * Show buffer is enabled before setting rb_test_started.
5609         * Yes there's a small race window where events could be
5610         * dropped and the thread wont catch it. But when a ring
5611         * buffer gets enabled, there will always be some kind of
5612         * delay before other CPUs see it. Thus, we don't care about
5613         * those dropped events. We care about events dropped after
5614         * the threads see that the buffer is active.
5615         */
5616        smp_wmb();
5617        rb_test_started = true;
5618
5619        set_current_state(TASK_INTERRUPTIBLE);
5620        /* Just run for 10 seconds */;
5621        schedule_timeout(10 * HZ);
5622
5623        kthread_stop(rb_hammer);
5624
5625 out_free:
5626        for_each_online_cpu(cpu) {
5627                if (!rb_threads[cpu])
5628                        break;
5629                kthread_stop(rb_threads[cpu]);
5630        }
5631        if (ret) {
5632                ring_buffer_free(buffer);
5633                return ret;
5634        }
5635
5636        /* Report! */
5637        pr_info("finished\n");
5638        for_each_online_cpu(cpu) {
5639                struct ring_buffer_event *event;
5640                struct rb_test_data *data = &rb_data[cpu];
5641                struct rb_item *item;
5642                unsigned long total_events;
5643                unsigned long total_dropped;
5644                unsigned long total_written;
5645                unsigned long total_alloc;
5646                unsigned long total_read = 0;
5647                unsigned long total_size = 0;
5648                unsigned long total_len = 0;
5649                unsigned long total_lost = 0;
5650                unsigned long lost;
5651                int big_event_size;
5652                int small_event_size;
5653
5654                ret = -1;
5655
5656                total_events = data->events + data->events_nested;
5657                total_written = data->bytes_written + data->bytes_written_nested;
5658                total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5659                total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5660
5661                big_event_size = data->max_size + data->max_size_nested;
5662                small_event_size = data->min_size + data->min_size_nested;
5663
5664                pr_info("CPU %d:\n", cpu);
5665                pr_info("              events:    %ld\n", total_events);
5666                pr_info("       dropped bytes:    %ld\n", total_dropped);
5667                pr_info("       alloced bytes:    %ld\n", total_alloc);
5668                pr_info("       written bytes:    %ld\n", total_written);
5669                pr_info("       biggest event:    %d\n", big_event_size);
5670                pr_info("      smallest event:    %d\n", small_event_size);
5671
5672                if (RB_WARN_ON(buffer, total_dropped))
5673                        break;
5674
5675                ret = 0;
5676
5677                while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5678                        total_lost += lost;
5679                        item = ring_buffer_event_data(event);
5680                        total_len += ring_buffer_event_length(event);
5681                        total_size += item->size + sizeof(struct rb_item);
5682                        if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5683                                pr_info("FAILED!\n");
5684                                pr_info("buffer had: %.*s\n", item->size, item->str);
5685                                pr_info("expected:   %.*s\n", item->size, rb_string);
5686                                RB_WARN_ON(buffer, 1);
5687                                ret = -1;
5688                                break;
5689                        }
5690                        total_read++;
5691                }
5692                if (ret)
5693                        break;
5694
5695                ret = -1;
5696
5697                pr_info("         read events:   %ld\n", total_read);
5698                pr_info("         lost events:   %ld\n", total_lost);
5699                pr_info("        total events:   %ld\n", total_lost + total_read);
5700                pr_info("  recorded len bytes:   %ld\n", total_len);
5701                pr_info(" recorded size bytes:   %ld\n", total_size);
5702                if (total_lost)
5703                        pr_info(" With dropped events, record len and size may not match\n"
5704                                " alloced and written from above\n");
5705                if (!total_lost) {
5706                        if (RB_WARN_ON(buffer, total_len != total_alloc ||
5707                                       total_size != total_written))
5708                                break;
5709                }
5710                if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5711                        break;
5712
5713                ret = 0;
5714        }
5715        if (!ret)
5716                pr_info("Ring buffer PASSED!\n");
5717
5718        ring_buffer_free(buffer);
5719        return 0;
5720}
5721
5722late_initcall(test_ringbuffer);
5723#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5724