linux/lib/bitmap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * lib/bitmap.c
   4 * Helper functions for bitmap.h.
   5 */
   6#include <linux/export.h>
   7#include <linux/thread_info.h>
   8#include <linux/ctype.h>
   9#include <linux/errno.h>
  10#include <linux/bitmap.h>
  11#include <linux/bitops.h>
  12#include <linux/bug.h>
  13#include <linux/kernel.h>
  14#include <linux/mm.h>
  15#include <linux/slab.h>
  16#include <linux/string.h>
  17#include <linux/uaccess.h>
  18
  19#include <asm/page.h>
  20
  21#include "kstrtox.h"
  22
  23/**
  24 * DOC: bitmap introduction
  25 *
  26 * bitmaps provide an array of bits, implemented using an an
  27 * array of unsigned longs.  The number of valid bits in a
  28 * given bitmap does _not_ need to be an exact multiple of
  29 * BITS_PER_LONG.
  30 *
  31 * The possible unused bits in the last, partially used word
  32 * of a bitmap are 'don't care'.  The implementation makes
  33 * no particular effort to keep them zero.  It ensures that
  34 * their value will not affect the results of any operation.
  35 * The bitmap operations that return Boolean (bitmap_empty,
  36 * for example) or scalar (bitmap_weight, for example) results
  37 * carefully filter out these unused bits from impacting their
  38 * results.
  39 *
  40 * The byte ordering of bitmaps is more natural on little
  41 * endian architectures.  See the big-endian headers
  42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  43 * for the best explanations of this ordering.
  44 */
  45
  46int __bitmap_equal(const unsigned long *bitmap1,
  47                const unsigned long *bitmap2, unsigned int bits)
  48{
  49        unsigned int k, lim = bits/BITS_PER_LONG;
  50        for (k = 0; k < lim; ++k)
  51                if (bitmap1[k] != bitmap2[k])
  52                        return 0;
  53
  54        if (bits % BITS_PER_LONG)
  55                if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  56                        return 0;
  57
  58        return 1;
  59}
  60EXPORT_SYMBOL(__bitmap_equal);
  61
  62bool __bitmap_or_equal(const unsigned long *bitmap1,
  63                       const unsigned long *bitmap2,
  64                       const unsigned long *bitmap3,
  65                       unsigned int bits)
  66{
  67        unsigned int k, lim = bits / BITS_PER_LONG;
  68        unsigned long tmp;
  69
  70        for (k = 0; k < lim; ++k) {
  71                if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
  72                        return false;
  73        }
  74
  75        if (!(bits % BITS_PER_LONG))
  76                return true;
  77
  78        tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
  79        return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
  80}
  81
  82void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  83{
  84        unsigned int k, lim = BITS_TO_LONGS(bits);
  85        for (k = 0; k < lim; ++k)
  86                dst[k] = ~src[k];
  87}
  88EXPORT_SYMBOL(__bitmap_complement);
  89
  90/**
  91 * __bitmap_shift_right - logical right shift of the bits in a bitmap
  92 *   @dst : destination bitmap
  93 *   @src : source bitmap
  94 *   @shift : shift by this many bits
  95 *   @nbits : bitmap size, in bits
  96 *
  97 * Shifting right (dividing) means moving bits in the MS -> LS bit
  98 * direction.  Zeros are fed into the vacated MS positions and the
  99 * LS bits shifted off the bottom are lost.
 100 */
 101void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 102                        unsigned shift, unsigned nbits)
 103{
 104        unsigned k, lim = BITS_TO_LONGS(nbits);
 105        unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 106        unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 107        for (k = 0; off + k < lim; ++k) {
 108                unsigned long upper, lower;
 109
 110                /*
 111                 * If shift is not word aligned, take lower rem bits of
 112                 * word above and make them the top rem bits of result.
 113                 */
 114                if (!rem || off + k + 1 >= lim)
 115                        upper = 0;
 116                else {
 117                        upper = src[off + k + 1];
 118                        if (off + k + 1 == lim - 1)
 119                                upper &= mask;
 120                        upper <<= (BITS_PER_LONG - rem);
 121                }
 122                lower = src[off + k];
 123                if (off + k == lim - 1)
 124                        lower &= mask;
 125                lower >>= rem;
 126                dst[k] = lower | upper;
 127        }
 128        if (off)
 129                memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 130}
 131EXPORT_SYMBOL(__bitmap_shift_right);
 132
 133
 134/**
 135 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 136 *   @dst : destination bitmap
 137 *   @src : source bitmap
 138 *   @shift : shift by this many bits
 139 *   @nbits : bitmap size, in bits
 140 *
 141 * Shifting left (multiplying) means moving bits in the LS -> MS
 142 * direction.  Zeros are fed into the vacated LS bit positions
 143 * and those MS bits shifted off the top are lost.
 144 */
 145
 146void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 147                        unsigned int shift, unsigned int nbits)
 148{
 149        int k;
 150        unsigned int lim = BITS_TO_LONGS(nbits);
 151        unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 152        for (k = lim - off - 1; k >= 0; --k) {
 153                unsigned long upper, lower;
 154
 155                /*
 156                 * If shift is not word aligned, take upper rem bits of
 157                 * word below and make them the bottom rem bits of result.
 158                 */
 159                if (rem && k > 0)
 160                        lower = src[k - 1] >> (BITS_PER_LONG - rem);
 161                else
 162                        lower = 0;
 163                upper = src[k] << rem;
 164                dst[k + off] = lower | upper;
 165        }
 166        if (off)
 167                memset(dst, 0, off*sizeof(unsigned long));
 168}
 169EXPORT_SYMBOL(__bitmap_shift_left);
 170
 171/**
 172 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
 173 * @dst: destination bitmap, might overlap with src
 174 * @src: source bitmap
 175 * @first: start bit of region to be removed
 176 * @cut: number of bits to remove
 177 * @nbits: bitmap size, in bits
 178 *
 179 * Set the n-th bit of @dst iff the n-th bit of @src is set and
 180 * n is less than @first, or the m-th bit of @src is set for any
 181 * m such that @first <= n < nbits, and m = n + @cut.
 182 *
 183 * In pictures, example for a big-endian 32-bit architecture:
 184 *
 185 * The @src bitmap is::
 186 *
 187 *   31                                   63
 188 *   |                                    |
 189 *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
 190 *                   |  |              |                                    |
 191 *                  16  14             0                                   32
 192 *
 193 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
 194 *
 195 *   31                                   63
 196 *   |                                    |
 197 *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
 198 *                      |              |                                    |
 199 *                      14 (bit 17     0                                   32
 200 *                          from @src)
 201 *
 202 * Note that @dst and @src might overlap partially or entirely.
 203 *
 204 * This is implemented in the obvious way, with a shift and carry
 205 * step for each moved bit. Optimisation is left as an exercise
 206 * for the compiler.
 207 */
 208void bitmap_cut(unsigned long *dst, const unsigned long *src,
 209                unsigned int first, unsigned int cut, unsigned int nbits)
 210{
 211        unsigned int len = BITS_TO_LONGS(nbits);
 212        unsigned long keep = 0, carry;
 213        int i;
 214
 215        if (first % BITS_PER_LONG) {
 216                keep = src[first / BITS_PER_LONG] &
 217                       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
 218        }
 219
 220        memmove(dst, src, len * sizeof(*dst));
 221
 222        while (cut--) {
 223                for (i = first / BITS_PER_LONG; i < len; i++) {
 224                        if (i < len - 1)
 225                                carry = dst[i + 1] & 1UL;
 226                        else
 227                                carry = 0;
 228
 229                        dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
 230                }
 231        }
 232
 233        dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
 234        dst[first / BITS_PER_LONG] |= keep;
 235}
 236EXPORT_SYMBOL(bitmap_cut);
 237
 238int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 239                                const unsigned long *bitmap2, unsigned int bits)
 240{
 241        unsigned int k;
 242        unsigned int lim = bits/BITS_PER_LONG;
 243        unsigned long result = 0;
 244
 245        for (k = 0; k < lim; k++)
 246                result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 247        if (bits % BITS_PER_LONG)
 248                result |= (dst[k] = bitmap1[k] & bitmap2[k] &
 249                           BITMAP_LAST_WORD_MASK(bits));
 250        return result != 0;
 251}
 252EXPORT_SYMBOL(__bitmap_and);
 253
 254void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 255                                const unsigned long *bitmap2, unsigned int bits)
 256{
 257        unsigned int k;
 258        unsigned int nr = BITS_TO_LONGS(bits);
 259
 260        for (k = 0; k < nr; k++)
 261                dst[k] = bitmap1[k] | bitmap2[k];
 262}
 263EXPORT_SYMBOL(__bitmap_or);
 264
 265void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 266                                const unsigned long *bitmap2, unsigned int bits)
 267{
 268        unsigned int k;
 269        unsigned int nr = BITS_TO_LONGS(bits);
 270
 271        for (k = 0; k < nr; k++)
 272                dst[k] = bitmap1[k] ^ bitmap2[k];
 273}
 274EXPORT_SYMBOL(__bitmap_xor);
 275
 276int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 277                                const unsigned long *bitmap2, unsigned int bits)
 278{
 279        unsigned int k;
 280        unsigned int lim = bits/BITS_PER_LONG;
 281        unsigned long result = 0;
 282
 283        for (k = 0; k < lim; k++)
 284                result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 285        if (bits % BITS_PER_LONG)
 286                result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
 287                           BITMAP_LAST_WORD_MASK(bits));
 288        return result != 0;
 289}
 290EXPORT_SYMBOL(__bitmap_andnot);
 291
 292void __bitmap_replace(unsigned long *dst,
 293                      const unsigned long *old, const unsigned long *new,
 294                      const unsigned long *mask, unsigned int nbits)
 295{
 296        unsigned int k;
 297        unsigned int nr = BITS_TO_LONGS(nbits);
 298
 299        for (k = 0; k < nr; k++)
 300                dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
 301}
 302EXPORT_SYMBOL(__bitmap_replace);
 303
 304int __bitmap_intersects(const unsigned long *bitmap1,
 305                        const unsigned long *bitmap2, unsigned int bits)
 306{
 307        unsigned int k, lim = bits/BITS_PER_LONG;
 308        for (k = 0; k < lim; ++k)
 309                if (bitmap1[k] & bitmap2[k])
 310                        return 1;
 311
 312        if (bits % BITS_PER_LONG)
 313                if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 314                        return 1;
 315        return 0;
 316}
 317EXPORT_SYMBOL(__bitmap_intersects);
 318
 319int __bitmap_subset(const unsigned long *bitmap1,
 320                    const unsigned long *bitmap2, unsigned int bits)
 321{
 322        unsigned int k, lim = bits/BITS_PER_LONG;
 323        for (k = 0; k < lim; ++k)
 324                if (bitmap1[k] & ~bitmap2[k])
 325                        return 0;
 326
 327        if (bits % BITS_PER_LONG)
 328                if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 329                        return 0;
 330        return 1;
 331}
 332EXPORT_SYMBOL(__bitmap_subset);
 333
 334int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
 335{
 336        unsigned int k, lim = bits/BITS_PER_LONG;
 337        int w = 0;
 338
 339        for (k = 0; k < lim; k++)
 340                w += hweight_long(bitmap[k]);
 341
 342        if (bits % BITS_PER_LONG)
 343                w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 344
 345        return w;
 346}
 347EXPORT_SYMBOL(__bitmap_weight);
 348
 349void __bitmap_set(unsigned long *map, unsigned int start, int len)
 350{
 351        unsigned long *p = map + BIT_WORD(start);
 352        const unsigned int size = start + len;
 353        int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 354        unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 355
 356        while (len - bits_to_set >= 0) {
 357                *p |= mask_to_set;
 358                len -= bits_to_set;
 359                bits_to_set = BITS_PER_LONG;
 360                mask_to_set = ~0UL;
 361                p++;
 362        }
 363        if (len) {
 364                mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 365                *p |= mask_to_set;
 366        }
 367}
 368EXPORT_SYMBOL(__bitmap_set);
 369
 370void __bitmap_clear(unsigned long *map, unsigned int start, int len)
 371{
 372        unsigned long *p = map + BIT_WORD(start);
 373        const unsigned int size = start + len;
 374        int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 375        unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 376
 377        while (len - bits_to_clear >= 0) {
 378                *p &= ~mask_to_clear;
 379                len -= bits_to_clear;
 380                bits_to_clear = BITS_PER_LONG;
 381                mask_to_clear = ~0UL;
 382                p++;
 383        }
 384        if (len) {
 385                mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 386                *p &= ~mask_to_clear;
 387        }
 388}
 389EXPORT_SYMBOL(__bitmap_clear);
 390
 391/**
 392 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 393 * @map: The address to base the search on
 394 * @size: The bitmap size in bits
 395 * @start: The bitnumber to start searching at
 396 * @nr: The number of zeroed bits we're looking for
 397 * @align_mask: Alignment mask for zero area
 398 * @align_offset: Alignment offset for zero area.
 399 *
 400 * The @align_mask should be one less than a power of 2; the effect is that
 401 * the bit offset of all zero areas this function finds plus @align_offset
 402 * is multiple of that power of 2.
 403 */
 404unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 405                                             unsigned long size,
 406                                             unsigned long start,
 407                                             unsigned int nr,
 408                                             unsigned long align_mask,
 409                                             unsigned long align_offset)
 410{
 411        unsigned long index, end, i;
 412again:
 413        index = find_next_zero_bit(map, size, start);
 414
 415        /* Align allocation */
 416        index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
 417
 418        end = index + nr;
 419        if (end > size)
 420                return end;
 421        i = find_next_bit(map, end, index);
 422        if (i < end) {
 423                start = i + 1;
 424                goto again;
 425        }
 426        return index;
 427}
 428EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 429
 430/*
 431 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 432 * second version by Paul Jackson, third by Joe Korty.
 433 */
 434
 435/**
 436 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 437 *
 438 * @ubuf: pointer to user buffer containing string.
 439 * @ulen: buffer size in bytes.  If string is smaller than this
 440 *    then it must be terminated with a \0.
 441 * @maskp: pointer to bitmap array that will contain result.
 442 * @nmaskbits: size of bitmap, in bits.
 443 */
 444int bitmap_parse_user(const char __user *ubuf,
 445                        unsigned int ulen, unsigned long *maskp,
 446                        int nmaskbits)
 447{
 448        char *buf;
 449        int ret;
 450
 451        buf = memdup_user_nul(ubuf, ulen);
 452        if (IS_ERR(buf))
 453                return PTR_ERR(buf);
 454
 455        ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
 456
 457        kfree(buf);
 458        return ret;
 459}
 460EXPORT_SYMBOL(bitmap_parse_user);
 461
 462/**
 463 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 464 * @list: indicates whether the bitmap must be list
 465 * @buf: page aligned buffer into which string is placed
 466 * @maskp: pointer to bitmap to convert
 467 * @nmaskbits: size of bitmap, in bits
 468 *
 469 * Output format is a comma-separated list of decimal numbers and
 470 * ranges if list is specified or hex digits grouped into comma-separated
 471 * sets of 8 digits/set. Returns the number of characters written to buf.
 472 *
 473 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
 474 * area and that sufficient storage remains at @buf to accommodate the
 475 * bitmap_print_to_pagebuf() output. Returns the number of characters
 476 * actually printed to @buf, excluding terminating '\0'.
 477 */
 478int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 479                            int nmaskbits)
 480{
 481        ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
 482
 483        return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
 484                      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
 485}
 486EXPORT_SYMBOL(bitmap_print_to_pagebuf);
 487
 488/*
 489 * Region 9-38:4/10 describes the following bitmap structure:
 490 * 0       9  12    18                  38
 491 * .........****......****......****......
 492 *          ^  ^     ^                   ^
 493 *      start  off   group_len         end
 494 */
 495struct region {
 496        unsigned int start;
 497        unsigned int off;
 498        unsigned int group_len;
 499        unsigned int end;
 500};
 501
 502static int bitmap_set_region(const struct region *r,
 503                                unsigned long *bitmap, int nbits)
 504{
 505        unsigned int start;
 506
 507        if (r->end >= nbits)
 508                return -ERANGE;
 509
 510        for (start = r->start; start <= r->end; start += r->group_len)
 511                bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
 512
 513        return 0;
 514}
 515
 516static int bitmap_check_region(const struct region *r)
 517{
 518        if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
 519                return -EINVAL;
 520
 521        return 0;
 522}
 523
 524static const char *bitmap_getnum(const char *str, unsigned int *num)
 525{
 526        unsigned long long n;
 527        unsigned int len;
 528
 529        len = _parse_integer(str, 10, &n);
 530        if (!len)
 531                return ERR_PTR(-EINVAL);
 532        if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
 533                return ERR_PTR(-EOVERFLOW);
 534
 535        *num = n;
 536        return str + len;
 537}
 538
 539static inline bool end_of_str(char c)
 540{
 541        return c == '\0' || c == '\n';
 542}
 543
 544static inline bool __end_of_region(char c)
 545{
 546        return isspace(c) || c == ',';
 547}
 548
 549static inline bool end_of_region(char c)
 550{
 551        return __end_of_region(c) || end_of_str(c);
 552}
 553
 554/*
 555 * The format allows commas and whitespases at the beginning
 556 * of the region.
 557 */
 558static const char *bitmap_find_region(const char *str)
 559{
 560        while (__end_of_region(*str))
 561                str++;
 562
 563        return end_of_str(*str) ? NULL : str;
 564}
 565
 566static const char *bitmap_find_region_reverse(const char *start, const char *end)
 567{
 568        while (start <= end && __end_of_region(*end))
 569                end--;
 570
 571        return end;
 572}
 573
 574static const char *bitmap_parse_region(const char *str, struct region *r)
 575{
 576        str = bitmap_getnum(str, &r->start);
 577        if (IS_ERR(str))
 578                return str;
 579
 580        if (end_of_region(*str))
 581                goto no_end;
 582
 583        if (*str != '-')
 584                return ERR_PTR(-EINVAL);
 585
 586        str = bitmap_getnum(str + 1, &r->end);
 587        if (IS_ERR(str))
 588                return str;
 589
 590        if (end_of_region(*str))
 591                goto no_pattern;
 592
 593        if (*str != ':')
 594                return ERR_PTR(-EINVAL);
 595
 596        str = bitmap_getnum(str + 1, &r->off);
 597        if (IS_ERR(str))
 598                return str;
 599
 600        if (*str != '/')
 601                return ERR_PTR(-EINVAL);
 602
 603        return bitmap_getnum(str + 1, &r->group_len);
 604
 605no_end:
 606        r->end = r->start;
 607no_pattern:
 608        r->off = r->end + 1;
 609        r->group_len = r->end + 1;
 610
 611        return end_of_str(*str) ? NULL : str;
 612}
 613
 614/**
 615 * bitmap_parselist - convert list format ASCII string to bitmap
 616 * @buf: read user string from this buffer; must be terminated
 617 *    with a \0 or \n.
 618 * @maskp: write resulting mask here
 619 * @nmaskbits: number of bits in mask to be written
 620 *
 621 * Input format is a comma-separated list of decimal numbers and
 622 * ranges.  Consecutively set bits are shown as two hyphen-separated
 623 * decimal numbers, the smallest and largest bit numbers set in
 624 * the range.
 625 * Optionally each range can be postfixed to denote that only parts of it
 626 * should be set. The range will divided to groups of specific size.
 627 * From each group will be used only defined amount of bits.
 628 * Syntax: range:used_size/group_size
 629 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
 630 *
 631 * Returns: 0 on success, -errno on invalid input strings. Error values:
 632 *
 633 *   - ``-EINVAL``: wrong region format
 634 *   - ``-EINVAL``: invalid character in string
 635 *   - ``-ERANGE``: bit number specified too large for mask
 636 *   - ``-EOVERFLOW``: integer overflow in the input parameters
 637 */
 638int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
 639{
 640        struct region r;
 641        long ret;
 642
 643        bitmap_zero(maskp, nmaskbits);
 644
 645        while (buf) {
 646                buf = bitmap_find_region(buf);
 647                if (buf == NULL)
 648                        return 0;
 649
 650                buf = bitmap_parse_region(buf, &r);
 651                if (IS_ERR(buf))
 652                        return PTR_ERR(buf);
 653
 654                ret = bitmap_check_region(&r);
 655                if (ret)
 656                        return ret;
 657
 658                ret = bitmap_set_region(&r, maskp, nmaskbits);
 659                if (ret)
 660                        return ret;
 661        }
 662
 663        return 0;
 664}
 665EXPORT_SYMBOL(bitmap_parselist);
 666
 667
 668/**
 669 * bitmap_parselist_user()
 670 *
 671 * @ubuf: pointer to user buffer containing string.
 672 * @ulen: buffer size in bytes.  If string is smaller than this
 673 *    then it must be terminated with a \0.
 674 * @maskp: pointer to bitmap array that will contain result.
 675 * @nmaskbits: size of bitmap, in bits.
 676 *
 677 * Wrapper for bitmap_parselist(), providing it with user buffer.
 678 */
 679int bitmap_parselist_user(const char __user *ubuf,
 680                        unsigned int ulen, unsigned long *maskp,
 681                        int nmaskbits)
 682{
 683        char *buf;
 684        int ret;
 685
 686        buf = memdup_user_nul(ubuf, ulen);
 687        if (IS_ERR(buf))
 688                return PTR_ERR(buf);
 689
 690        ret = bitmap_parselist(buf, maskp, nmaskbits);
 691
 692        kfree(buf);
 693        return ret;
 694}
 695EXPORT_SYMBOL(bitmap_parselist_user);
 696
 697static const char *bitmap_get_x32_reverse(const char *start,
 698                                        const char *end, u32 *num)
 699{
 700        u32 ret = 0;
 701        int c, i;
 702
 703        for (i = 0; i < 32; i += 4) {
 704                c = hex_to_bin(*end--);
 705                if (c < 0)
 706                        return ERR_PTR(-EINVAL);
 707
 708                ret |= c << i;
 709
 710                if (start > end || __end_of_region(*end))
 711                        goto out;
 712        }
 713
 714        if (hex_to_bin(*end--) >= 0)
 715                return ERR_PTR(-EOVERFLOW);
 716out:
 717        *num = ret;
 718        return end;
 719}
 720
 721/**
 722 * bitmap_parse - convert an ASCII hex string into a bitmap.
 723 * @start: pointer to buffer containing string.
 724 * @buflen: buffer size in bytes.  If string is smaller than this
 725 *    then it must be terminated with a \0 or \n. In that case,
 726 *    UINT_MAX may be provided instead of string length.
 727 * @maskp: pointer to bitmap array that will contain result.
 728 * @nmaskbits: size of bitmap, in bits.
 729 *
 730 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 731 * bits of the resultant bitmask.  No chunk may specify a value larger
 732 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 733 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 734 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
 735 * Leading, embedded and trailing whitespace accepted.
 736 */
 737int bitmap_parse(const char *start, unsigned int buflen,
 738                unsigned long *maskp, int nmaskbits)
 739{
 740        const char *end = strnchrnul(start, buflen, '\n') - 1;
 741        int chunks = BITS_TO_U32(nmaskbits);
 742        u32 *bitmap = (u32 *)maskp;
 743        int unset_bit;
 744        int chunk;
 745
 746        for (chunk = 0; ; chunk++) {
 747                end = bitmap_find_region_reverse(start, end);
 748                if (start > end)
 749                        break;
 750
 751                if (!chunks--)
 752                        return -EOVERFLOW;
 753
 754#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
 755                end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
 756#else
 757                end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
 758#endif
 759                if (IS_ERR(end))
 760                        return PTR_ERR(end);
 761        }
 762
 763        unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
 764        if (unset_bit < nmaskbits) {
 765                bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
 766                return 0;
 767        }
 768
 769        if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
 770                return -EOVERFLOW;
 771
 772        return 0;
 773}
 774EXPORT_SYMBOL(bitmap_parse);
 775
 776
 777#ifdef CONFIG_NUMA
 778/**
 779 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 780 *      @buf: pointer to a bitmap
 781 *      @pos: a bit position in @buf (0 <= @pos < @nbits)
 782 *      @nbits: number of valid bit positions in @buf
 783 *
 784 * Map the bit at position @pos in @buf (of length @nbits) to the
 785 * ordinal of which set bit it is.  If it is not set or if @pos
 786 * is not a valid bit position, map to -1.
 787 *
 788 * If for example, just bits 4 through 7 are set in @buf, then @pos
 789 * values 4 through 7 will get mapped to 0 through 3, respectively,
 790 * and other @pos values will get mapped to -1.  When @pos value 7
 791 * gets mapped to (returns) @ord value 3 in this example, that means
 792 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 793 *
 794 * The bit positions 0 through @bits are valid positions in @buf.
 795 */
 796static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
 797{
 798        if (pos >= nbits || !test_bit(pos, buf))
 799                return -1;
 800
 801        return __bitmap_weight(buf, pos);
 802}
 803
 804/**
 805 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 806 *      @buf: pointer to bitmap
 807 *      @ord: ordinal bit position (n-th set bit, n >= 0)
 808 *      @nbits: number of valid bit positions in @buf
 809 *
 810 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 811 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 812 * >= weight(buf), returns @nbits.
 813 *
 814 * If for example, just bits 4 through 7 are set in @buf, then @ord
 815 * values 0 through 3 will get mapped to 4 through 7, respectively,
 816 * and all other @ord values returns @nbits.  When @ord value 3
 817 * gets mapped to (returns) @pos value 7 in this example, that means
 818 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 819 *
 820 * The bit positions 0 through @nbits-1 are valid positions in @buf.
 821 */
 822unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
 823{
 824        unsigned int pos;
 825
 826        for (pos = find_first_bit(buf, nbits);
 827             pos < nbits && ord;
 828             pos = find_next_bit(buf, nbits, pos + 1))
 829                ord--;
 830
 831        return pos;
 832}
 833
 834/**
 835 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 836 *      @dst: remapped result
 837 *      @src: subset to be remapped
 838 *      @old: defines domain of map
 839 *      @new: defines range of map
 840 *      @nbits: number of bits in each of these bitmaps
 841 *
 842 * Let @old and @new define a mapping of bit positions, such that
 843 * whatever position is held by the n-th set bit in @old is mapped
 844 * to the n-th set bit in @new.  In the more general case, allowing
 845 * for the possibility that the weight 'w' of @new is less than the
 846 * weight of @old, map the position of the n-th set bit in @old to
 847 * the position of the m-th set bit in @new, where m == n % w.
 848 *
 849 * If either of the @old and @new bitmaps are empty, or if @src and
 850 * @dst point to the same location, then this routine copies @src
 851 * to @dst.
 852 *
 853 * The positions of unset bits in @old are mapped to themselves
 854 * (the identify map).
 855 *
 856 * Apply the above specified mapping to @src, placing the result in
 857 * @dst, clearing any bits previously set in @dst.
 858 *
 859 * For example, lets say that @old has bits 4 through 7 set, and
 860 * @new has bits 12 through 15 set.  This defines the mapping of bit
 861 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 862 * bit positions unchanged.  So if say @src comes into this routine
 863 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 864 * 13 and 15 set.
 865 */
 866void bitmap_remap(unsigned long *dst, const unsigned long *src,
 867                const unsigned long *old, const unsigned long *new,
 868                unsigned int nbits)
 869{
 870        unsigned int oldbit, w;
 871
 872        if (dst == src)         /* following doesn't handle inplace remaps */
 873                return;
 874        bitmap_zero(dst, nbits);
 875
 876        w = bitmap_weight(new, nbits);
 877        for_each_set_bit(oldbit, src, nbits) {
 878                int n = bitmap_pos_to_ord(old, oldbit, nbits);
 879
 880                if (n < 0 || w == 0)
 881                        set_bit(oldbit, dst);   /* identity map */
 882                else
 883                        set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
 884        }
 885}
 886
 887/**
 888 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 889 *      @oldbit: bit position to be mapped
 890 *      @old: defines domain of map
 891 *      @new: defines range of map
 892 *      @bits: number of bits in each of these bitmaps
 893 *
 894 * Let @old and @new define a mapping of bit positions, such that
 895 * whatever position is held by the n-th set bit in @old is mapped
 896 * to the n-th set bit in @new.  In the more general case, allowing
 897 * for the possibility that the weight 'w' of @new is less than the
 898 * weight of @old, map the position of the n-th set bit in @old to
 899 * the position of the m-th set bit in @new, where m == n % w.
 900 *
 901 * The positions of unset bits in @old are mapped to themselves
 902 * (the identify map).
 903 *
 904 * Apply the above specified mapping to bit position @oldbit, returning
 905 * the new bit position.
 906 *
 907 * For example, lets say that @old has bits 4 through 7 set, and
 908 * @new has bits 12 through 15 set.  This defines the mapping of bit
 909 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 910 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 911 * returns 13.
 912 */
 913int bitmap_bitremap(int oldbit, const unsigned long *old,
 914                                const unsigned long *new, int bits)
 915{
 916        int w = bitmap_weight(new, bits);
 917        int n = bitmap_pos_to_ord(old, oldbit, bits);
 918        if (n < 0 || w == 0)
 919                return oldbit;
 920        else
 921                return bitmap_ord_to_pos(new, n % w, bits);
 922}
 923
 924/**
 925 * bitmap_onto - translate one bitmap relative to another
 926 *      @dst: resulting translated bitmap
 927 *      @orig: original untranslated bitmap
 928 *      @relmap: bitmap relative to which translated
 929 *      @bits: number of bits in each of these bitmaps
 930 *
 931 * Set the n-th bit of @dst iff there exists some m such that the
 932 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 933 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 934 * (If you understood the previous sentence the first time your
 935 * read it, you're overqualified for your current job.)
 936 *
 937 * In other words, @orig is mapped onto (surjectively) @dst,
 938 * using the map { <n, m> | the n-th bit of @relmap is the
 939 * m-th set bit of @relmap }.
 940 *
 941 * Any set bits in @orig above bit number W, where W is the
 942 * weight of (number of set bits in) @relmap are mapped nowhere.
 943 * In particular, if for all bits m set in @orig, m >= W, then
 944 * @dst will end up empty.  In situations where the possibility
 945 * of such an empty result is not desired, one way to avoid it is
 946 * to use the bitmap_fold() operator, below, to first fold the
 947 * @orig bitmap over itself so that all its set bits x are in the
 948 * range 0 <= x < W.  The bitmap_fold() operator does this by
 949 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 950 *
 951 * Example [1] for bitmap_onto():
 952 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 953 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 954 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 955 *
 956 *  When bit 0 is set in @orig, it means turn on the bit in
 957 *  @dst corresponding to whatever is the first bit (if any)
 958 *  that is turned on in @relmap.  Since bit 0 was off in the
 959 *  above example, we leave off that bit (bit 30) in @dst.
 960 *
 961 *  When bit 1 is set in @orig (as in the above example), it
 962 *  means turn on the bit in @dst corresponding to whatever
 963 *  is the second bit that is turned on in @relmap.  The second
 964 *  bit in @relmap that was turned on in the above example was
 965 *  bit 31, so we turned on bit 31 in @dst.
 966 *
 967 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 968 *  because they were the 4th, 6th, 8th and 10th set bits
 969 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 970 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 971 *
 972 *  When bit 11 is set in @orig, it means turn on the bit in
 973 *  @dst corresponding to whatever is the twelfth bit that is
 974 *  turned on in @relmap.  In the above example, there were
 975 *  only ten bits turned on in @relmap (30..39), so that bit
 976 *  11 was set in @orig had no affect on @dst.
 977 *
 978 * Example [2] for bitmap_fold() + bitmap_onto():
 979 *  Let's say @relmap has these ten bits set::
 980 *
 981 *              40 41 42 43 45 48 53 61 74 95
 982 *
 983 *  (for the curious, that's 40 plus the first ten terms of the
 984 *  Fibonacci sequence.)
 985 *
 986 *  Further lets say we use the following code, invoking
 987 *  bitmap_fold() then bitmap_onto, as suggested above to
 988 *  avoid the possibility of an empty @dst result::
 989 *
 990 *      unsigned long *tmp;     // a temporary bitmap's bits
 991 *
 992 *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 993 *      bitmap_onto(dst, tmp, relmap, bits);
 994 *
 995 *  Then this table shows what various values of @dst would be, for
 996 *  various @orig's.  I list the zero-based positions of each set bit.
 997 *  The tmp column shows the intermediate result, as computed by
 998 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 999 *  (the weight of @relmap):
1000 *
1001 *      =============== ============== =================
1002 *      @orig           tmp            @dst
1003 *      0                0             40
1004 *      1                1             41
1005 *      9                9             95
1006 *      10               0             40 [#f1]_
1007 *      1 3 5 7          1 3 5 7       41 43 48 61
1008 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
1009 *      0 9 18 27        0 9 8 7       40 61 74 95
1010 *      0 10 20 30       0             40
1011 *      0 11 22 33       0 1 2 3       40 41 42 43
1012 *      0 12 24 36       0 2 4 6       40 42 45 53
1013 *      78 102 211       1 2 8         41 42 74 [#f1]_
1014 *      =============== ============== =================
1015 *
1016 * .. [#f1]
1017 *
1018 *     For these marked lines, if we hadn't first done bitmap_fold()
1019 *     into tmp, then the @dst result would have been empty.
1020 *
1021 * If either of @orig or @relmap is empty (no set bits), then @dst
1022 * will be returned empty.
1023 *
1024 * If (as explained above) the only set bits in @orig are in positions
1025 * m where m >= W, (where W is the weight of @relmap) then @dst will
1026 * once again be returned empty.
1027 *
1028 * All bits in @dst not set by the above rule are cleared.
1029 */
1030void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1031                        const unsigned long *relmap, unsigned int bits)
1032{
1033        unsigned int n, m;      /* same meaning as in above comment */
1034
1035        if (dst == orig)        /* following doesn't handle inplace mappings */
1036                return;
1037        bitmap_zero(dst, bits);
1038
1039        /*
1040         * The following code is a more efficient, but less
1041         * obvious, equivalent to the loop:
1042         *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1043         *              n = bitmap_ord_to_pos(orig, m, bits);
1044         *              if (test_bit(m, orig))
1045         *                      set_bit(n, dst);
1046         *      }
1047         */
1048
1049        m = 0;
1050        for_each_set_bit(n, relmap, bits) {
1051                /* m == bitmap_pos_to_ord(relmap, n, bits) */
1052                if (test_bit(m, orig))
1053                        set_bit(n, dst);
1054                m++;
1055        }
1056}
1057
1058/**
1059 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1060 *      @dst: resulting smaller bitmap
1061 *      @orig: original larger bitmap
1062 *      @sz: specified size
1063 *      @nbits: number of bits in each of these bitmaps
1064 *
1065 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1066 * Clear all other bits in @dst.  See further the comment and
1067 * Example [2] for bitmap_onto() for why and how to use this.
1068 */
1069void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1070                        unsigned int sz, unsigned int nbits)
1071{
1072        unsigned int oldbit;
1073
1074        if (dst == orig)        /* following doesn't handle inplace mappings */
1075                return;
1076        bitmap_zero(dst, nbits);
1077
1078        for_each_set_bit(oldbit, orig, nbits)
1079                set_bit(oldbit % sz, dst);
1080}
1081#endif /* CONFIG_NUMA */
1082
1083/*
1084 * Common code for bitmap_*_region() routines.
1085 *      bitmap: array of unsigned longs corresponding to the bitmap
1086 *      pos: the beginning of the region
1087 *      order: region size (log base 2 of number of bits)
1088 *      reg_op: operation(s) to perform on that region of bitmap
1089 *
1090 * Can set, verify and/or release a region of bits in a bitmap,
1091 * depending on which combination of REG_OP_* flag bits is set.
1092 *
1093 * A region of a bitmap is a sequence of bits in the bitmap, of
1094 * some size '1 << order' (a power of two), aligned to that same
1095 * '1 << order' power of two.
1096 *
1097 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1098 * Returns 0 in all other cases and reg_ops.
1099 */
1100
1101enum {
1102        REG_OP_ISFREE,          /* true if region is all zero bits */
1103        REG_OP_ALLOC,           /* set all bits in region */
1104        REG_OP_RELEASE,         /* clear all bits in region */
1105};
1106
1107static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1108{
1109        int nbits_reg;          /* number of bits in region */
1110        int index;              /* index first long of region in bitmap */
1111        int offset;             /* bit offset region in bitmap[index] */
1112        int nlongs_reg;         /* num longs spanned by region in bitmap */
1113        int nbitsinlong;        /* num bits of region in each spanned long */
1114        unsigned long mask;     /* bitmask for one long of region */
1115        int i;                  /* scans bitmap by longs */
1116        int ret = 0;            /* return value */
1117
1118        /*
1119         * Either nlongs_reg == 1 (for small orders that fit in one long)
1120         * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1121         */
1122        nbits_reg = 1 << order;
1123        index = pos / BITS_PER_LONG;
1124        offset = pos - (index * BITS_PER_LONG);
1125        nlongs_reg = BITS_TO_LONGS(nbits_reg);
1126        nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1127
1128        /*
1129         * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1130         * overflows if nbitsinlong == BITS_PER_LONG.
1131         */
1132        mask = (1UL << (nbitsinlong - 1));
1133        mask += mask - 1;
1134        mask <<= offset;
1135
1136        switch (reg_op) {
1137        case REG_OP_ISFREE:
1138                for (i = 0; i < nlongs_reg; i++) {
1139                        if (bitmap[index + i] & mask)
1140                                goto done;
1141                }
1142                ret = 1;        /* all bits in region free (zero) */
1143                break;
1144
1145        case REG_OP_ALLOC:
1146                for (i = 0; i < nlongs_reg; i++)
1147                        bitmap[index + i] |= mask;
1148                break;
1149
1150        case REG_OP_RELEASE:
1151                for (i = 0; i < nlongs_reg; i++)
1152                        bitmap[index + i] &= ~mask;
1153                break;
1154        }
1155done:
1156        return ret;
1157}
1158
1159/**
1160 * bitmap_find_free_region - find a contiguous aligned mem region
1161 *      @bitmap: array of unsigned longs corresponding to the bitmap
1162 *      @bits: number of bits in the bitmap
1163 *      @order: region size (log base 2 of number of bits) to find
1164 *
1165 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1166 * allocate them (set them to one).  Only consider regions of length
1167 * a power (@order) of two, aligned to that power of two, which
1168 * makes the search algorithm much faster.
1169 *
1170 * Return the bit offset in bitmap of the allocated region,
1171 * or -errno on failure.
1172 */
1173int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1174{
1175        unsigned int pos, end;          /* scans bitmap by regions of size order */
1176
1177        for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1178                if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1179                        continue;
1180                __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1181                return pos;
1182        }
1183        return -ENOMEM;
1184}
1185EXPORT_SYMBOL(bitmap_find_free_region);
1186
1187/**
1188 * bitmap_release_region - release allocated bitmap region
1189 *      @bitmap: array of unsigned longs corresponding to the bitmap
1190 *      @pos: beginning of bit region to release
1191 *      @order: region size (log base 2 of number of bits) to release
1192 *
1193 * This is the complement to __bitmap_find_free_region() and releases
1194 * the found region (by clearing it in the bitmap).
1195 *
1196 * No return value.
1197 */
1198void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1199{
1200        __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1201}
1202EXPORT_SYMBOL(bitmap_release_region);
1203
1204/**
1205 * bitmap_allocate_region - allocate bitmap region
1206 *      @bitmap: array of unsigned longs corresponding to the bitmap
1207 *      @pos: beginning of bit region to allocate
1208 *      @order: region size (log base 2 of number of bits) to allocate
1209 *
1210 * Allocate (set bits in) a specified region of a bitmap.
1211 *
1212 * Return 0 on success, or %-EBUSY if specified region wasn't
1213 * free (not all bits were zero).
1214 */
1215int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1216{
1217        if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1218                return -EBUSY;
1219        return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1220}
1221EXPORT_SYMBOL(bitmap_allocate_region);
1222
1223/**
1224 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1225 * @dst:   destination buffer
1226 * @src:   bitmap to copy
1227 * @nbits: number of bits in the bitmap
1228 *
1229 * Require nbits % BITS_PER_LONG == 0.
1230 */
1231#ifdef __BIG_ENDIAN
1232void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1233{
1234        unsigned int i;
1235
1236        for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1237                if (BITS_PER_LONG == 64)
1238                        dst[i] = cpu_to_le64(src[i]);
1239                else
1240                        dst[i] = cpu_to_le32(src[i]);
1241        }
1242}
1243EXPORT_SYMBOL(bitmap_copy_le);
1244#endif
1245
1246unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1247{
1248        return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1249                             flags);
1250}
1251EXPORT_SYMBOL(bitmap_alloc);
1252
1253unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1254{
1255        return bitmap_alloc(nbits, flags | __GFP_ZERO);
1256}
1257EXPORT_SYMBOL(bitmap_zalloc);
1258
1259void bitmap_free(const unsigned long *bitmap)
1260{
1261        kfree(bitmap);
1262}
1263EXPORT_SYMBOL(bitmap_free);
1264
1265#if BITS_PER_LONG == 64
1266/**
1267 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1268 *      @bitmap: array of unsigned longs, the destination bitmap
1269 *      @buf: array of u32 (in host byte order), the source bitmap
1270 *      @nbits: number of bits in @bitmap
1271 */
1272void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1273{
1274        unsigned int i, halfwords;
1275
1276        halfwords = DIV_ROUND_UP(nbits, 32);
1277        for (i = 0; i < halfwords; i++) {
1278                bitmap[i/2] = (unsigned long) buf[i];
1279                if (++i < halfwords)
1280                        bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1281        }
1282
1283        /* Clear tail bits in last word beyond nbits. */
1284        if (nbits % BITS_PER_LONG)
1285                bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1286}
1287EXPORT_SYMBOL(bitmap_from_arr32);
1288
1289/**
1290 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1291 *      @buf: array of u32 (in host byte order), the dest bitmap
1292 *      @bitmap: array of unsigned longs, the source bitmap
1293 *      @nbits: number of bits in @bitmap
1294 */
1295void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1296{
1297        unsigned int i, halfwords;
1298
1299        halfwords = DIV_ROUND_UP(nbits, 32);
1300        for (i = 0; i < halfwords; i++) {
1301                buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1302                if (++i < halfwords)
1303                        buf[i] = (u32) (bitmap[i/2] >> 32);
1304        }
1305
1306        /* Clear tail bits in last element of array beyond nbits. */
1307        if (nbits % BITS_PER_LONG)
1308                buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1309}
1310EXPORT_SYMBOL(bitmap_to_arr32);
1311
1312#endif
1313