linux/mm/gup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/kernel.h>
   3#include <linux/errno.h>
   4#include <linux/err.h>
   5#include <linux/spinlock.h>
   6
   7#include <linux/mm.h>
   8#include <linux/memremap.h>
   9#include <linux/pagemap.h>
  10#include <linux/rmap.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13
  14#include <linux/sched/signal.h>
  15#include <linux/rwsem.h>
  16#include <linux/hugetlb.h>
  17#include <linux/migrate.h>
  18#include <linux/mm_inline.h>
  19#include <linux/sched/mm.h>
  20
  21#include <asm/mmu_context.h>
  22#include <asm/tlbflush.h>
  23
  24#include "internal.h"
  25
  26struct follow_page_context {
  27        struct dev_pagemap *pgmap;
  28        unsigned int page_mask;
  29};
  30
  31static void hpage_pincount_add(struct page *page, int refs)
  32{
  33        VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
  34        VM_BUG_ON_PAGE(page != compound_head(page), page);
  35
  36        atomic_add(refs, compound_pincount_ptr(page));
  37}
  38
  39static void hpage_pincount_sub(struct page *page, int refs)
  40{
  41        VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
  42        VM_BUG_ON_PAGE(page != compound_head(page), page);
  43
  44        atomic_sub(refs, compound_pincount_ptr(page));
  45}
  46
  47/*
  48 * Return the compound head page with ref appropriately incremented,
  49 * or NULL if that failed.
  50 */
  51static inline struct page *try_get_compound_head(struct page *page, int refs)
  52{
  53        struct page *head = compound_head(page);
  54
  55        if (WARN_ON_ONCE(page_ref_count(head) < 0))
  56                return NULL;
  57        if (unlikely(!page_cache_add_speculative(head, refs)))
  58                return NULL;
  59        return head;
  60}
  61
  62/*
  63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
  64 * flags-dependent amount.
  65 *
  66 * "grab" names in this file mean, "look at flags to decide whether to use
  67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
  68 *
  69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
  70 * same time. (That's true throughout the get_user_pages*() and
  71 * pin_user_pages*() APIs.) Cases:
  72 *
  73 *    FOLL_GET: page's refcount will be incremented by 1.
  74 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
  75 *
  76 * Return: head page (with refcount appropriately incremented) for success, or
  77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
  78 * considered failure, and furthermore, a likely bug in the caller, so a warning
  79 * is also emitted.
  80 */
  81static __maybe_unused struct page *try_grab_compound_head(struct page *page,
  82                                                          int refs,
  83                                                          unsigned int flags)
  84{
  85        if (flags & FOLL_GET)
  86                return try_get_compound_head(page, refs);
  87        else if (flags & FOLL_PIN) {
  88                int orig_refs = refs;
  89
  90                /*
  91                 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
  92                 * path, so fail and let the caller fall back to the slow path.
  93                 */
  94                if (unlikely(flags & FOLL_LONGTERM) &&
  95                                is_migrate_cma_page(page))
  96                        return NULL;
  97
  98                /*
  99                 * When pinning a compound page of order > 1 (which is what
 100                 * hpage_pincount_available() checks for), use an exact count to
 101                 * track it, via hpage_pincount_add/_sub().
 102                 *
 103                 * However, be sure to *also* increment the normal page refcount
 104                 * field at least once, so that the page really is pinned.
 105                 */
 106                if (!hpage_pincount_available(page))
 107                        refs *= GUP_PIN_COUNTING_BIAS;
 108
 109                page = try_get_compound_head(page, refs);
 110                if (!page)
 111                        return NULL;
 112
 113                if (hpage_pincount_available(page))
 114                        hpage_pincount_add(page, refs);
 115
 116                mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
 117                                    orig_refs);
 118
 119                return page;
 120        }
 121
 122        WARN_ON_ONCE(1);
 123        return NULL;
 124}
 125
 126/**
 127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 128 *
 129 * This might not do anything at all, depending on the flags argument.
 130 *
 131 * "grab" names in this file mean, "look at flags to decide whether to use
 132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 133 *
 134 * @page:    pointer to page to be grabbed
 135 * @flags:   gup flags: these are the FOLL_* flag values.
 136 *
 137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 138 * time. Cases:
 139 *
 140 *    FOLL_GET: page's refcount will be incremented by 1.
 141 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 142 *
 143 * Return: true for success, or if no action was required (if neither FOLL_PIN
 144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 145 * FOLL_PIN was set, but the page could not be grabbed.
 146 */
 147bool __must_check try_grab_page(struct page *page, unsigned int flags)
 148{
 149        WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
 150
 151        if (flags & FOLL_GET)
 152                return try_get_page(page);
 153        else if (flags & FOLL_PIN) {
 154                int refs = 1;
 155
 156                page = compound_head(page);
 157
 158                if (WARN_ON_ONCE(page_ref_count(page) <= 0))
 159                        return false;
 160
 161                if (hpage_pincount_available(page))
 162                        hpage_pincount_add(page, 1);
 163                else
 164                        refs = GUP_PIN_COUNTING_BIAS;
 165
 166                /*
 167                 * Similar to try_grab_compound_head(): even if using the
 168                 * hpage_pincount_add/_sub() routines, be sure to
 169                 * *also* increment the normal page refcount field at least
 170                 * once, so that the page really is pinned.
 171                 */
 172                page_ref_add(page, refs);
 173
 174                mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
 175        }
 176
 177        return true;
 178}
 179
 180#ifdef CONFIG_DEV_PAGEMAP_OPS
 181static bool __unpin_devmap_managed_user_page(struct page *page)
 182{
 183        int count, refs = 1;
 184
 185        if (!page_is_devmap_managed(page))
 186                return false;
 187
 188        if (hpage_pincount_available(page))
 189                hpage_pincount_sub(page, 1);
 190        else
 191                refs = GUP_PIN_COUNTING_BIAS;
 192
 193        count = page_ref_sub_return(page, refs);
 194
 195        mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
 196        /*
 197         * devmap page refcounts are 1-based, rather than 0-based: if
 198         * refcount is 1, then the page is free and the refcount is
 199         * stable because nobody holds a reference on the page.
 200         */
 201        if (count == 1)
 202                free_devmap_managed_page(page);
 203        else if (!count)
 204                __put_page(page);
 205
 206        return true;
 207}
 208#else
 209static bool __unpin_devmap_managed_user_page(struct page *page)
 210{
 211        return false;
 212}
 213#endif /* CONFIG_DEV_PAGEMAP_OPS */
 214
 215/**
 216 * unpin_user_page() - release a dma-pinned page
 217 * @page:            pointer to page to be released
 218 *
 219 * Pages that were pinned via pin_user_pages*() must be released via either
 220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 221 * that such pages can be separately tracked and uniquely handled. In
 222 * particular, interactions with RDMA and filesystems need special handling.
 223 */
 224void unpin_user_page(struct page *page)
 225{
 226        int refs = 1;
 227
 228        page = compound_head(page);
 229
 230        /*
 231         * For devmap managed pages we need to catch refcount transition from
 232         * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
 233         * page is free and we need to inform the device driver through
 234         * callback. See include/linux/memremap.h and HMM for details.
 235         */
 236        if (__unpin_devmap_managed_user_page(page))
 237                return;
 238
 239        if (hpage_pincount_available(page))
 240                hpage_pincount_sub(page, 1);
 241        else
 242                refs = GUP_PIN_COUNTING_BIAS;
 243
 244        if (page_ref_sub_and_test(page, refs))
 245                __put_page(page);
 246
 247        mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
 248}
 249EXPORT_SYMBOL(unpin_user_page);
 250
 251/**
 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
 253 * @pages:  array of pages to be maybe marked dirty, and definitely released.
 254 * @npages: number of pages in the @pages array.
 255 * @make_dirty: whether to mark the pages dirty
 256 *
 257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 258 * variants called on that page.
 259 *
 260 * For each page in the @pages array, make that page (or its head page, if a
 261 * compound page) dirty, if @make_dirty is true, and if the page was previously
 262 * listed as clean. In any case, releases all pages using unpin_user_page(),
 263 * possibly via unpin_user_pages(), for the non-dirty case.
 264 *
 265 * Please see the unpin_user_page() documentation for details.
 266 *
 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 268 * required, then the caller should a) verify that this is really correct,
 269 * because _lock() is usually required, and b) hand code it:
 270 * set_page_dirty_lock(), unpin_user_page().
 271 *
 272 */
 273void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
 274                                 bool make_dirty)
 275{
 276        unsigned long index;
 277
 278        /*
 279         * TODO: this can be optimized for huge pages: if a series of pages is
 280         * physically contiguous and part of the same compound page, then a
 281         * single operation to the head page should suffice.
 282         */
 283
 284        if (!make_dirty) {
 285                unpin_user_pages(pages, npages);
 286                return;
 287        }
 288
 289        for (index = 0; index < npages; index++) {
 290                struct page *page = compound_head(pages[index]);
 291                /*
 292                 * Checking PageDirty at this point may race with
 293                 * clear_page_dirty_for_io(), but that's OK. Two key
 294                 * cases:
 295                 *
 296                 * 1) This code sees the page as already dirty, so it
 297                 * skips the call to set_page_dirty(). That could happen
 298                 * because clear_page_dirty_for_io() called
 299                 * page_mkclean(), followed by set_page_dirty().
 300                 * However, now the page is going to get written back,
 301                 * which meets the original intention of setting it
 302                 * dirty, so all is well: clear_page_dirty_for_io() goes
 303                 * on to call TestClearPageDirty(), and write the page
 304                 * back.
 305                 *
 306                 * 2) This code sees the page as clean, so it calls
 307                 * set_page_dirty(). The page stays dirty, despite being
 308                 * written back, so it gets written back again in the
 309                 * next writeback cycle. This is harmless.
 310                 */
 311                if (!PageDirty(page))
 312                        set_page_dirty_lock(page);
 313                unpin_user_page(page);
 314        }
 315}
 316EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
 317
 318/**
 319 * unpin_user_pages() - release an array of gup-pinned pages.
 320 * @pages:  array of pages to be marked dirty and released.
 321 * @npages: number of pages in the @pages array.
 322 *
 323 * For each page in the @pages array, release the page using unpin_user_page().
 324 *
 325 * Please see the unpin_user_page() documentation for details.
 326 */
 327void unpin_user_pages(struct page **pages, unsigned long npages)
 328{
 329        unsigned long index;
 330
 331        /*
 332         * TODO: this can be optimized for huge pages: if a series of pages is
 333         * physically contiguous and part of the same compound page, then a
 334         * single operation to the head page should suffice.
 335         */
 336        for (index = 0; index < npages; index++)
 337                unpin_user_page(pages[index]);
 338}
 339EXPORT_SYMBOL(unpin_user_pages);
 340
 341#ifdef CONFIG_MMU
 342static struct page *no_page_table(struct vm_area_struct *vma,
 343                unsigned int flags)
 344{
 345        /*
 346         * When core dumping an enormous anonymous area that nobody
 347         * has touched so far, we don't want to allocate unnecessary pages or
 348         * page tables.  Return error instead of NULL to skip handle_mm_fault,
 349         * then get_dump_page() will return NULL to leave a hole in the dump.
 350         * But we can only make this optimization where a hole would surely
 351         * be zero-filled if handle_mm_fault() actually did handle it.
 352         */
 353        if ((flags & FOLL_DUMP) &&
 354                        (vma_is_anonymous(vma) || !vma->vm_ops->fault))
 355                return ERR_PTR(-EFAULT);
 356        return NULL;
 357}
 358
 359static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
 360                pte_t *pte, unsigned int flags)
 361{
 362        /* No page to get reference */
 363        if (flags & FOLL_GET)
 364                return -EFAULT;
 365
 366        if (flags & FOLL_TOUCH) {
 367                pte_t entry = *pte;
 368
 369                if (flags & FOLL_WRITE)
 370                        entry = pte_mkdirty(entry);
 371                entry = pte_mkyoung(entry);
 372
 373                if (!pte_same(*pte, entry)) {
 374                        set_pte_at(vma->vm_mm, address, pte, entry);
 375                        update_mmu_cache(vma, address, pte);
 376                }
 377        }
 378
 379        /* Proper page table entry exists, but no corresponding struct page */
 380        return -EEXIST;
 381}
 382
 383/*
 384 * FOLL_FORCE can write to even unwritable pte's, but only
 385 * after we've gone through a COW cycle and they are dirty.
 386 */
 387static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
 388{
 389        return pte_write(pte) ||
 390                ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
 391}
 392
 393static struct page *follow_page_pte(struct vm_area_struct *vma,
 394                unsigned long address, pmd_t *pmd, unsigned int flags,
 395                struct dev_pagemap **pgmap)
 396{
 397        struct mm_struct *mm = vma->vm_mm;
 398        struct page *page;
 399        spinlock_t *ptl;
 400        pte_t *ptep, pte;
 401        int ret;
 402
 403        /* FOLL_GET and FOLL_PIN are mutually exclusive. */
 404        if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 405                         (FOLL_PIN | FOLL_GET)))
 406                return ERR_PTR(-EINVAL);
 407retry:
 408        if (unlikely(pmd_bad(*pmd)))
 409                return no_page_table(vma, flags);
 410
 411        ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 412        pte = *ptep;
 413        if (!pte_present(pte)) {
 414                swp_entry_t entry;
 415                /*
 416                 * KSM's break_ksm() relies upon recognizing a ksm page
 417                 * even while it is being migrated, so for that case we
 418                 * need migration_entry_wait().
 419                 */
 420                if (likely(!(flags & FOLL_MIGRATION)))
 421                        goto no_page;
 422                if (pte_none(pte))
 423                        goto no_page;
 424                entry = pte_to_swp_entry(pte);
 425                if (!is_migration_entry(entry))
 426                        goto no_page;
 427                pte_unmap_unlock(ptep, ptl);
 428                migration_entry_wait(mm, pmd, address);
 429                goto retry;
 430        }
 431        if ((flags & FOLL_NUMA) && pte_protnone(pte))
 432                goto no_page;
 433        if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
 434                pte_unmap_unlock(ptep, ptl);
 435                return NULL;
 436        }
 437
 438        page = vm_normal_page(vma, address, pte);
 439        if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
 440                /*
 441                 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
 442                 * case since they are only valid while holding the pgmap
 443                 * reference.
 444                 */
 445                *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
 446                if (*pgmap)
 447                        page = pte_page(pte);
 448                else
 449                        goto no_page;
 450        } else if (unlikely(!page)) {
 451                if (flags & FOLL_DUMP) {
 452                        /* Avoid special (like zero) pages in core dumps */
 453                        page = ERR_PTR(-EFAULT);
 454                        goto out;
 455                }
 456
 457                if (is_zero_pfn(pte_pfn(pte))) {
 458                        page = pte_page(pte);
 459                } else {
 460                        ret = follow_pfn_pte(vma, address, ptep, flags);
 461                        page = ERR_PTR(ret);
 462                        goto out;
 463                }
 464        }
 465
 466        if (flags & FOLL_SPLIT && PageTransCompound(page)) {
 467                get_page(page);
 468                pte_unmap_unlock(ptep, ptl);
 469                lock_page(page);
 470                ret = split_huge_page(page);
 471                unlock_page(page);
 472                put_page(page);
 473                if (ret)
 474                        return ERR_PTR(ret);
 475                goto retry;
 476        }
 477
 478        /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
 479        if (unlikely(!try_grab_page(page, flags))) {
 480                page = ERR_PTR(-ENOMEM);
 481                goto out;
 482        }
 483        /*
 484         * We need to make the page accessible if and only if we are going
 485         * to access its content (the FOLL_PIN case).  Please see
 486         * Documentation/core-api/pin_user_pages.rst for details.
 487         */
 488        if (flags & FOLL_PIN) {
 489                ret = arch_make_page_accessible(page);
 490                if (ret) {
 491                        unpin_user_page(page);
 492                        page = ERR_PTR(ret);
 493                        goto out;
 494                }
 495        }
 496        if (flags & FOLL_TOUCH) {
 497                if ((flags & FOLL_WRITE) &&
 498                    !pte_dirty(pte) && !PageDirty(page))
 499                        set_page_dirty(page);
 500                /*
 501                 * pte_mkyoung() would be more correct here, but atomic care
 502                 * is needed to avoid losing the dirty bit: it is easier to use
 503                 * mark_page_accessed().
 504                 */
 505                mark_page_accessed(page);
 506        }
 507        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 508                /* Do not mlock pte-mapped THP */
 509                if (PageTransCompound(page))
 510                        goto out;
 511
 512                /*
 513                 * The preliminary mapping check is mainly to avoid the
 514                 * pointless overhead of lock_page on the ZERO_PAGE
 515                 * which might bounce very badly if there is contention.
 516                 *
 517                 * If the page is already locked, we don't need to
 518                 * handle it now - vmscan will handle it later if and
 519                 * when it attempts to reclaim the page.
 520                 */
 521                if (page->mapping && trylock_page(page)) {
 522                        lru_add_drain();  /* push cached pages to LRU */
 523                        /*
 524                         * Because we lock page here, and migration is
 525                         * blocked by the pte's page reference, and we
 526                         * know the page is still mapped, we don't even
 527                         * need to check for file-cache page truncation.
 528                         */
 529                        mlock_vma_page(page);
 530                        unlock_page(page);
 531                }
 532        }
 533out:
 534        pte_unmap_unlock(ptep, ptl);
 535        return page;
 536no_page:
 537        pte_unmap_unlock(ptep, ptl);
 538        if (!pte_none(pte))
 539                return NULL;
 540        return no_page_table(vma, flags);
 541}
 542
 543static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 544                                    unsigned long address, pud_t *pudp,
 545                                    unsigned int flags,
 546                                    struct follow_page_context *ctx)
 547{
 548        pmd_t *pmd, pmdval;
 549        spinlock_t *ptl;
 550        struct page *page;
 551        struct mm_struct *mm = vma->vm_mm;
 552
 553        pmd = pmd_offset(pudp, address);
 554        /*
 555         * The READ_ONCE() will stabilize the pmdval in a register or
 556         * on the stack so that it will stop changing under the code.
 557         */
 558        pmdval = READ_ONCE(*pmd);
 559        if (pmd_none(pmdval))
 560                return no_page_table(vma, flags);
 561        if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
 562                page = follow_huge_pmd(mm, address, pmd, flags);
 563                if (page)
 564                        return page;
 565                return no_page_table(vma, flags);
 566        }
 567        if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
 568                page = follow_huge_pd(vma, address,
 569                                      __hugepd(pmd_val(pmdval)), flags,
 570                                      PMD_SHIFT);
 571                if (page)
 572                        return page;
 573                return no_page_table(vma, flags);
 574        }
 575retry:
 576        if (!pmd_present(pmdval)) {
 577                if (likely(!(flags & FOLL_MIGRATION)))
 578                        return no_page_table(vma, flags);
 579                VM_BUG_ON(thp_migration_supported() &&
 580                                  !is_pmd_migration_entry(pmdval));
 581                if (is_pmd_migration_entry(pmdval))
 582                        pmd_migration_entry_wait(mm, pmd);
 583                pmdval = READ_ONCE(*pmd);
 584                /*
 585                 * MADV_DONTNEED may convert the pmd to null because
 586                 * mmap_lock is held in read mode
 587                 */
 588                if (pmd_none(pmdval))
 589                        return no_page_table(vma, flags);
 590                goto retry;
 591        }
 592        if (pmd_devmap(pmdval)) {
 593                ptl = pmd_lock(mm, pmd);
 594                page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
 595                spin_unlock(ptl);
 596                if (page)
 597                        return page;
 598        }
 599        if (likely(!pmd_trans_huge(pmdval)))
 600                return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 601
 602        if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
 603                return no_page_table(vma, flags);
 604
 605retry_locked:
 606        ptl = pmd_lock(mm, pmd);
 607        if (unlikely(pmd_none(*pmd))) {
 608                spin_unlock(ptl);
 609                return no_page_table(vma, flags);
 610        }
 611        if (unlikely(!pmd_present(*pmd))) {
 612                spin_unlock(ptl);
 613                if (likely(!(flags & FOLL_MIGRATION)))
 614                        return no_page_table(vma, flags);
 615                pmd_migration_entry_wait(mm, pmd);
 616                goto retry_locked;
 617        }
 618        if (unlikely(!pmd_trans_huge(*pmd))) {
 619                spin_unlock(ptl);
 620                return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 621        }
 622        if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
 623                int ret;
 624                page = pmd_page(*pmd);
 625                if (is_huge_zero_page(page)) {
 626                        spin_unlock(ptl);
 627                        ret = 0;
 628                        split_huge_pmd(vma, pmd, address);
 629                        if (pmd_trans_unstable(pmd))
 630                                ret = -EBUSY;
 631                } else if (flags & FOLL_SPLIT) {
 632                        if (unlikely(!try_get_page(page))) {
 633                                spin_unlock(ptl);
 634                                return ERR_PTR(-ENOMEM);
 635                        }
 636                        spin_unlock(ptl);
 637                        lock_page(page);
 638                        ret = split_huge_page(page);
 639                        unlock_page(page);
 640                        put_page(page);
 641                        if (pmd_none(*pmd))
 642                                return no_page_table(vma, flags);
 643                } else {  /* flags & FOLL_SPLIT_PMD */
 644                        spin_unlock(ptl);
 645                        split_huge_pmd(vma, pmd, address);
 646                        ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
 647                }
 648
 649                return ret ? ERR_PTR(ret) :
 650                        follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 651        }
 652        page = follow_trans_huge_pmd(vma, address, pmd, flags);
 653        spin_unlock(ptl);
 654        ctx->page_mask = HPAGE_PMD_NR - 1;
 655        return page;
 656}
 657
 658static struct page *follow_pud_mask(struct vm_area_struct *vma,
 659                                    unsigned long address, p4d_t *p4dp,
 660                                    unsigned int flags,
 661                                    struct follow_page_context *ctx)
 662{
 663        pud_t *pud;
 664        spinlock_t *ptl;
 665        struct page *page;
 666        struct mm_struct *mm = vma->vm_mm;
 667
 668        pud = pud_offset(p4dp, address);
 669        if (pud_none(*pud))
 670                return no_page_table(vma, flags);
 671        if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
 672                page = follow_huge_pud(mm, address, pud, flags);
 673                if (page)
 674                        return page;
 675                return no_page_table(vma, flags);
 676        }
 677        if (is_hugepd(__hugepd(pud_val(*pud)))) {
 678                page = follow_huge_pd(vma, address,
 679                                      __hugepd(pud_val(*pud)), flags,
 680                                      PUD_SHIFT);
 681                if (page)
 682                        return page;
 683                return no_page_table(vma, flags);
 684        }
 685        if (pud_devmap(*pud)) {
 686                ptl = pud_lock(mm, pud);
 687                page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
 688                spin_unlock(ptl);
 689                if (page)
 690                        return page;
 691        }
 692        if (unlikely(pud_bad(*pud)))
 693                return no_page_table(vma, flags);
 694
 695        return follow_pmd_mask(vma, address, pud, flags, ctx);
 696}
 697
 698static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 699                                    unsigned long address, pgd_t *pgdp,
 700                                    unsigned int flags,
 701                                    struct follow_page_context *ctx)
 702{
 703        p4d_t *p4d;
 704        struct page *page;
 705
 706        p4d = p4d_offset(pgdp, address);
 707        if (p4d_none(*p4d))
 708                return no_page_table(vma, flags);
 709        BUILD_BUG_ON(p4d_huge(*p4d));
 710        if (unlikely(p4d_bad(*p4d)))
 711                return no_page_table(vma, flags);
 712
 713        if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
 714                page = follow_huge_pd(vma, address,
 715                                      __hugepd(p4d_val(*p4d)), flags,
 716                                      P4D_SHIFT);
 717                if (page)
 718                        return page;
 719                return no_page_table(vma, flags);
 720        }
 721        return follow_pud_mask(vma, address, p4d, flags, ctx);
 722}
 723
 724/**
 725 * follow_page_mask - look up a page descriptor from a user-virtual address
 726 * @vma: vm_area_struct mapping @address
 727 * @address: virtual address to look up
 728 * @flags: flags modifying lookup behaviour
 729 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 730 *       pointer to output page_mask
 731 *
 732 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 733 *
 734 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 735 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 736 *
 737 * On output, the @ctx->page_mask is set according to the size of the page.
 738 *
 739 * Return: the mapped (struct page *), %NULL if no mapping exists, or
 740 * an error pointer if there is a mapping to something not represented
 741 * by a page descriptor (see also vm_normal_page()).
 742 */
 743static struct page *follow_page_mask(struct vm_area_struct *vma,
 744                              unsigned long address, unsigned int flags,
 745                              struct follow_page_context *ctx)
 746{
 747        pgd_t *pgd;
 748        struct page *page;
 749        struct mm_struct *mm = vma->vm_mm;
 750
 751        ctx->page_mask = 0;
 752
 753        /* make this handle hugepd */
 754        page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
 755        if (!IS_ERR(page)) {
 756                WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
 757                return page;
 758        }
 759
 760        pgd = pgd_offset(mm, address);
 761
 762        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 763                return no_page_table(vma, flags);
 764
 765        if (pgd_huge(*pgd)) {
 766                page = follow_huge_pgd(mm, address, pgd, flags);
 767                if (page)
 768                        return page;
 769                return no_page_table(vma, flags);
 770        }
 771        if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
 772                page = follow_huge_pd(vma, address,
 773                                      __hugepd(pgd_val(*pgd)), flags,
 774                                      PGDIR_SHIFT);
 775                if (page)
 776                        return page;
 777                return no_page_table(vma, flags);
 778        }
 779
 780        return follow_p4d_mask(vma, address, pgd, flags, ctx);
 781}
 782
 783struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 784                         unsigned int foll_flags)
 785{
 786        struct follow_page_context ctx = { NULL };
 787        struct page *page;
 788
 789        page = follow_page_mask(vma, address, foll_flags, &ctx);
 790        if (ctx.pgmap)
 791                put_dev_pagemap(ctx.pgmap);
 792        return page;
 793}
 794
 795static int get_gate_page(struct mm_struct *mm, unsigned long address,
 796                unsigned int gup_flags, struct vm_area_struct **vma,
 797                struct page **page)
 798{
 799        pgd_t *pgd;
 800        p4d_t *p4d;
 801        pud_t *pud;
 802        pmd_t *pmd;
 803        pte_t *pte;
 804        int ret = -EFAULT;
 805
 806        /* user gate pages are read-only */
 807        if (gup_flags & FOLL_WRITE)
 808                return -EFAULT;
 809        if (address > TASK_SIZE)
 810                pgd = pgd_offset_k(address);
 811        else
 812                pgd = pgd_offset_gate(mm, address);
 813        if (pgd_none(*pgd))
 814                return -EFAULT;
 815        p4d = p4d_offset(pgd, address);
 816        if (p4d_none(*p4d))
 817                return -EFAULT;
 818        pud = pud_offset(p4d, address);
 819        if (pud_none(*pud))
 820                return -EFAULT;
 821        pmd = pmd_offset(pud, address);
 822        if (!pmd_present(*pmd))
 823                return -EFAULT;
 824        VM_BUG_ON(pmd_trans_huge(*pmd));
 825        pte = pte_offset_map(pmd, address);
 826        if (pte_none(*pte))
 827                goto unmap;
 828        *vma = get_gate_vma(mm);
 829        if (!page)
 830                goto out;
 831        *page = vm_normal_page(*vma, address, *pte);
 832        if (!*page) {
 833                if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
 834                        goto unmap;
 835                *page = pte_page(*pte);
 836        }
 837        if (unlikely(!try_grab_page(*page, gup_flags))) {
 838                ret = -ENOMEM;
 839                goto unmap;
 840        }
 841out:
 842        ret = 0;
 843unmap:
 844        pte_unmap(pte);
 845        return ret;
 846}
 847
 848/*
 849 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 850 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
 851 * is, *@locked will be set to 0 and -EBUSY returned.
 852 */
 853static int faultin_page(struct vm_area_struct *vma,
 854                unsigned long address, unsigned int *flags, int *locked)
 855{
 856        unsigned int fault_flags = 0;
 857        vm_fault_t ret;
 858
 859        /* mlock all present pages, but do not fault in new pages */
 860        if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
 861                return -ENOENT;
 862        if (*flags & FOLL_WRITE)
 863                fault_flags |= FAULT_FLAG_WRITE;
 864        if (*flags & FOLL_REMOTE)
 865                fault_flags |= FAULT_FLAG_REMOTE;
 866        if (locked)
 867                fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 868        if (*flags & FOLL_NOWAIT)
 869                fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 870        if (*flags & FOLL_TRIED) {
 871                /*
 872                 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
 873                 * can co-exist
 874                 */
 875                fault_flags |= FAULT_FLAG_TRIED;
 876        }
 877
 878        ret = handle_mm_fault(vma, address, fault_flags, NULL);
 879        if (ret & VM_FAULT_ERROR) {
 880                int err = vm_fault_to_errno(ret, *flags);
 881
 882                if (err)
 883                        return err;
 884                BUG();
 885        }
 886
 887        if (ret & VM_FAULT_RETRY) {
 888                if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 889                        *locked = 0;
 890                return -EBUSY;
 891        }
 892
 893        /*
 894         * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
 895         * necessary, even if maybe_mkwrite decided not to set pte_write. We
 896         * can thus safely do subsequent page lookups as if they were reads.
 897         * But only do so when looping for pte_write is futile: in some cases
 898         * userspace may also be wanting to write to the gotten user page,
 899         * which a read fault here might prevent (a readonly page might get
 900         * reCOWed by userspace write).
 901         */
 902        if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
 903                *flags |= FOLL_COW;
 904        return 0;
 905}
 906
 907static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
 908{
 909        vm_flags_t vm_flags = vma->vm_flags;
 910        int write = (gup_flags & FOLL_WRITE);
 911        int foreign = (gup_flags & FOLL_REMOTE);
 912
 913        if (vm_flags & (VM_IO | VM_PFNMAP))
 914                return -EFAULT;
 915
 916        if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
 917                return -EFAULT;
 918
 919        if (write) {
 920                if (!(vm_flags & VM_WRITE)) {
 921                        if (!(gup_flags & FOLL_FORCE))
 922                                return -EFAULT;
 923                        /*
 924                         * We used to let the write,force case do COW in a
 925                         * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
 926                         * set a breakpoint in a read-only mapping of an
 927                         * executable, without corrupting the file (yet only
 928                         * when that file had been opened for writing!).
 929                         * Anon pages in shared mappings are surprising: now
 930                         * just reject it.
 931                         */
 932                        if (!is_cow_mapping(vm_flags))
 933                                return -EFAULT;
 934                }
 935        } else if (!(vm_flags & VM_READ)) {
 936                if (!(gup_flags & FOLL_FORCE))
 937                        return -EFAULT;
 938                /*
 939                 * Is there actually any vma we can reach here which does not
 940                 * have VM_MAYREAD set?
 941                 */
 942                if (!(vm_flags & VM_MAYREAD))
 943                        return -EFAULT;
 944        }
 945        /*
 946         * gups are always data accesses, not instruction
 947         * fetches, so execute=false here
 948         */
 949        if (!arch_vma_access_permitted(vma, write, false, foreign))
 950                return -EFAULT;
 951        return 0;
 952}
 953
 954/**
 955 * __get_user_pages() - pin user pages in memory
 956 * @mm:         mm_struct of target mm
 957 * @start:      starting user address
 958 * @nr_pages:   number of pages from start to pin
 959 * @gup_flags:  flags modifying pin behaviour
 960 * @pages:      array that receives pointers to the pages pinned.
 961 *              Should be at least nr_pages long. Or NULL, if caller
 962 *              only intends to ensure the pages are faulted in.
 963 * @vmas:       array of pointers to vmas corresponding to each page.
 964 *              Or NULL if the caller does not require them.
 965 * @locked:     whether we're still with the mmap_lock held
 966 *
 967 * Returns either number of pages pinned (which may be less than the
 968 * number requested), or an error. Details about the return value:
 969 *
 970 * -- If nr_pages is 0, returns 0.
 971 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 972 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 973 *    pages pinned. Again, this may be less than nr_pages.
 974 * -- 0 return value is possible when the fault would need to be retried.
 975 *
 976 * The caller is responsible for releasing returned @pages, via put_page().
 977 *
 978 * @vmas are valid only as long as mmap_lock is held.
 979 *
 980 * Must be called with mmap_lock held.  It may be released.  See below.
 981 *
 982 * __get_user_pages walks a process's page tables and takes a reference to
 983 * each struct page that each user address corresponds to at a given
 984 * instant. That is, it takes the page that would be accessed if a user
 985 * thread accesses the given user virtual address at that instant.
 986 *
 987 * This does not guarantee that the page exists in the user mappings when
 988 * __get_user_pages returns, and there may even be a completely different
 989 * page there in some cases (eg. if mmapped pagecache has been invalidated
 990 * and subsequently re faulted). However it does guarantee that the page
 991 * won't be freed completely. And mostly callers simply care that the page
 992 * contains data that was valid *at some point in time*. Typically, an IO
 993 * or similar operation cannot guarantee anything stronger anyway because
 994 * locks can't be held over the syscall boundary.
 995 *
 996 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 997 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 998 * appropriate) must be called after the page is finished with, and
 999 * before put_page is called.
1000 *
1001 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1002 * released by an up_read().  That can happen if @gup_flags does not
1003 * have FOLL_NOWAIT.
1004 *
1005 * A caller using such a combination of @locked and @gup_flags
1006 * must therefore hold the mmap_lock for reading only, and recognize
1007 * when it's been released.  Otherwise, it must be held for either
1008 * reading or writing and will not be released.
1009 *
1010 * In most cases, get_user_pages or get_user_pages_fast should be used
1011 * instead of __get_user_pages. __get_user_pages should be used only if
1012 * you need some special @gup_flags.
1013 */
1014static long __get_user_pages(struct mm_struct *mm,
1015                unsigned long start, unsigned long nr_pages,
1016                unsigned int gup_flags, struct page **pages,
1017                struct vm_area_struct **vmas, int *locked)
1018{
1019        long ret = 0, i = 0;
1020        struct vm_area_struct *vma = NULL;
1021        struct follow_page_context ctx = { NULL };
1022
1023        if (!nr_pages)
1024                return 0;
1025
1026        start = untagged_addr(start);
1027
1028        VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1029
1030        /*
1031         * If FOLL_FORCE is set then do not force a full fault as the hinting
1032         * fault information is unrelated to the reference behaviour of a task
1033         * using the address space
1034         */
1035        if (!(gup_flags & FOLL_FORCE))
1036                gup_flags |= FOLL_NUMA;
1037
1038        do {
1039                struct page *page;
1040                unsigned int foll_flags = gup_flags;
1041                unsigned int page_increm;
1042
1043                /* first iteration or cross vma bound */
1044                if (!vma || start >= vma->vm_end) {
1045                        vma = find_extend_vma(mm, start);
1046                        if (!vma && in_gate_area(mm, start)) {
1047                                ret = get_gate_page(mm, start & PAGE_MASK,
1048                                                gup_flags, &vma,
1049                                                pages ? &pages[i] : NULL);
1050                                if (ret)
1051                                        goto out;
1052                                ctx.page_mask = 0;
1053                                goto next_page;
1054                        }
1055
1056                        if (!vma || check_vma_flags(vma, gup_flags)) {
1057                                ret = -EFAULT;
1058                                goto out;
1059                        }
1060                        if (is_vm_hugetlb_page(vma)) {
1061                                i = follow_hugetlb_page(mm, vma, pages, vmas,
1062                                                &start, &nr_pages, i,
1063                                                gup_flags, locked);
1064                                if (locked && *locked == 0) {
1065                                        /*
1066                                         * We've got a VM_FAULT_RETRY
1067                                         * and we've lost mmap_lock.
1068                                         * We must stop here.
1069                                         */
1070                                        BUG_ON(gup_flags & FOLL_NOWAIT);
1071                                        BUG_ON(ret != 0);
1072                                        goto out;
1073                                }
1074                                continue;
1075                        }
1076                }
1077retry:
1078                /*
1079                 * If we have a pending SIGKILL, don't keep faulting pages and
1080                 * potentially allocating memory.
1081                 */
1082                if (fatal_signal_pending(current)) {
1083                        ret = -EINTR;
1084                        goto out;
1085                }
1086                cond_resched();
1087
1088                page = follow_page_mask(vma, start, foll_flags, &ctx);
1089                if (!page) {
1090                        ret = faultin_page(vma, start, &foll_flags, locked);
1091                        switch (ret) {
1092                        case 0:
1093                                goto retry;
1094                        case -EBUSY:
1095                                ret = 0;
1096                                fallthrough;
1097                        case -EFAULT:
1098                        case -ENOMEM:
1099                        case -EHWPOISON:
1100                                goto out;
1101                        case -ENOENT:
1102                                goto next_page;
1103                        }
1104                        BUG();
1105                } else if (PTR_ERR(page) == -EEXIST) {
1106                        /*
1107                         * Proper page table entry exists, but no corresponding
1108                         * struct page.
1109                         */
1110                        goto next_page;
1111                } else if (IS_ERR(page)) {
1112                        ret = PTR_ERR(page);
1113                        goto out;
1114                }
1115                if (pages) {
1116                        pages[i] = page;
1117                        flush_anon_page(vma, page, start);
1118                        flush_dcache_page(page);
1119                        ctx.page_mask = 0;
1120                }
1121next_page:
1122                if (vmas) {
1123                        vmas[i] = vma;
1124                        ctx.page_mask = 0;
1125                }
1126                page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1127                if (page_increm > nr_pages)
1128                        page_increm = nr_pages;
1129                i += page_increm;
1130                start += page_increm * PAGE_SIZE;
1131                nr_pages -= page_increm;
1132        } while (nr_pages);
1133out:
1134        if (ctx.pgmap)
1135                put_dev_pagemap(ctx.pgmap);
1136        return i ? i : ret;
1137}
1138
1139static bool vma_permits_fault(struct vm_area_struct *vma,
1140                              unsigned int fault_flags)
1141{
1142        bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1143        bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1144        vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1145
1146        if (!(vm_flags & vma->vm_flags))
1147                return false;
1148
1149        /*
1150         * The architecture might have a hardware protection
1151         * mechanism other than read/write that can deny access.
1152         *
1153         * gup always represents data access, not instruction
1154         * fetches, so execute=false here:
1155         */
1156        if (!arch_vma_access_permitted(vma, write, false, foreign))
1157                return false;
1158
1159        return true;
1160}
1161
1162/**
1163 * fixup_user_fault() - manually resolve a user page fault
1164 * @mm:         mm_struct of target mm
1165 * @address:    user address
1166 * @fault_flags:flags to pass down to handle_mm_fault()
1167 * @unlocked:   did we unlock the mmap_lock while retrying, maybe NULL if caller
1168 *              does not allow retry. If NULL, the caller must guarantee
1169 *              that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1170 *
1171 * This is meant to be called in the specific scenario where for locking reasons
1172 * we try to access user memory in atomic context (within a pagefault_disable()
1173 * section), this returns -EFAULT, and we want to resolve the user fault before
1174 * trying again.
1175 *
1176 * Typically this is meant to be used by the futex code.
1177 *
1178 * The main difference with get_user_pages() is that this function will
1179 * unconditionally call handle_mm_fault() which will in turn perform all the
1180 * necessary SW fixup of the dirty and young bits in the PTE, while
1181 * get_user_pages() only guarantees to update these in the struct page.
1182 *
1183 * This is important for some architectures where those bits also gate the
1184 * access permission to the page because they are maintained in software.  On
1185 * such architectures, gup() will not be enough to make a subsequent access
1186 * succeed.
1187 *
1188 * This function will not return with an unlocked mmap_lock. So it has not the
1189 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1190 */
1191int fixup_user_fault(struct mm_struct *mm,
1192                     unsigned long address, unsigned int fault_flags,
1193                     bool *unlocked)
1194{
1195        struct vm_area_struct *vma;
1196        vm_fault_t ret, major = 0;
1197
1198        address = untagged_addr(address);
1199
1200        if (unlocked)
1201                fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1202
1203retry:
1204        vma = find_extend_vma(mm, address);
1205        if (!vma || address < vma->vm_start)
1206                return -EFAULT;
1207
1208        if (!vma_permits_fault(vma, fault_flags))
1209                return -EFAULT;
1210
1211        if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1212            fatal_signal_pending(current))
1213                return -EINTR;
1214
1215        ret = handle_mm_fault(vma, address, fault_flags, NULL);
1216        major |= ret & VM_FAULT_MAJOR;
1217        if (ret & VM_FAULT_ERROR) {
1218                int err = vm_fault_to_errno(ret, 0);
1219
1220                if (err)
1221                        return err;
1222                BUG();
1223        }
1224
1225        if (ret & VM_FAULT_RETRY) {
1226                mmap_read_lock(mm);
1227                *unlocked = true;
1228                fault_flags |= FAULT_FLAG_TRIED;
1229                goto retry;
1230        }
1231
1232        return 0;
1233}
1234EXPORT_SYMBOL_GPL(fixup_user_fault);
1235
1236/*
1237 * Please note that this function, unlike __get_user_pages will not
1238 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1239 */
1240static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1241                                                unsigned long start,
1242                                                unsigned long nr_pages,
1243                                                struct page **pages,
1244                                                struct vm_area_struct **vmas,
1245                                                int *locked,
1246                                                unsigned int flags)
1247{
1248        long ret, pages_done;
1249        bool lock_dropped;
1250
1251        if (locked) {
1252                /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1253                BUG_ON(vmas);
1254                /* check caller initialized locked */
1255                BUG_ON(*locked != 1);
1256        }
1257
1258        if (flags & FOLL_PIN)
1259                atomic_set(&mm->has_pinned, 1);
1260
1261        /*
1262         * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1263         * is to set FOLL_GET if the caller wants pages[] filled in (but has
1264         * carelessly failed to specify FOLL_GET), so keep doing that, but only
1265         * for FOLL_GET, not for the newer FOLL_PIN.
1266         *
1267         * FOLL_PIN always expects pages to be non-null, but no need to assert
1268         * that here, as any failures will be obvious enough.
1269         */
1270        if (pages && !(flags & FOLL_PIN))
1271                flags |= FOLL_GET;
1272
1273        pages_done = 0;
1274        lock_dropped = false;
1275        for (;;) {
1276                ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1277                                       vmas, locked);
1278                if (!locked)
1279                        /* VM_FAULT_RETRY couldn't trigger, bypass */
1280                        return ret;
1281
1282                /* VM_FAULT_RETRY cannot return errors */
1283                if (!*locked) {
1284                        BUG_ON(ret < 0);
1285                        BUG_ON(ret >= nr_pages);
1286                }
1287
1288                if (ret > 0) {
1289                        nr_pages -= ret;
1290                        pages_done += ret;
1291                        if (!nr_pages)
1292                                break;
1293                }
1294                if (*locked) {
1295                        /*
1296                         * VM_FAULT_RETRY didn't trigger or it was a
1297                         * FOLL_NOWAIT.
1298                         */
1299                        if (!pages_done)
1300                                pages_done = ret;
1301                        break;
1302                }
1303                /*
1304                 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1305                 * For the prefault case (!pages) we only update counts.
1306                 */
1307                if (likely(pages))
1308                        pages += ret;
1309                start += ret << PAGE_SHIFT;
1310                lock_dropped = true;
1311
1312retry:
1313                /*
1314                 * Repeat on the address that fired VM_FAULT_RETRY
1315                 * with both FAULT_FLAG_ALLOW_RETRY and
1316                 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1317                 * by fatal signals, so we need to check it before we
1318                 * start trying again otherwise it can loop forever.
1319                 */
1320
1321                if (fatal_signal_pending(current)) {
1322                        if (!pages_done)
1323                                pages_done = -EINTR;
1324                        break;
1325                }
1326
1327                ret = mmap_read_lock_killable(mm);
1328                if (ret) {
1329                        BUG_ON(ret > 0);
1330                        if (!pages_done)
1331                                pages_done = ret;
1332                        break;
1333                }
1334
1335                *locked = 1;
1336                ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1337                                       pages, NULL, locked);
1338                if (!*locked) {
1339                        /* Continue to retry until we succeeded */
1340                        BUG_ON(ret != 0);
1341                        goto retry;
1342                }
1343                if (ret != 1) {
1344                        BUG_ON(ret > 1);
1345                        if (!pages_done)
1346                                pages_done = ret;
1347                        break;
1348                }
1349                nr_pages--;
1350                pages_done++;
1351                if (!nr_pages)
1352                        break;
1353                if (likely(pages))
1354                        pages++;
1355                start += PAGE_SIZE;
1356        }
1357        if (lock_dropped && *locked) {
1358                /*
1359                 * We must let the caller know we temporarily dropped the lock
1360                 * and so the critical section protected by it was lost.
1361                 */
1362                mmap_read_unlock(mm);
1363                *locked = 0;
1364        }
1365        return pages_done;
1366}
1367
1368/**
1369 * populate_vma_page_range() -  populate a range of pages in the vma.
1370 * @vma:   target vma
1371 * @start: start address
1372 * @end:   end address
1373 * @locked: whether the mmap_lock is still held
1374 *
1375 * This takes care of mlocking the pages too if VM_LOCKED is set.
1376 *
1377 * Return either number of pages pinned in the vma, or a negative error
1378 * code on error.
1379 *
1380 * vma->vm_mm->mmap_lock must be held.
1381 *
1382 * If @locked is NULL, it may be held for read or write and will
1383 * be unperturbed.
1384 *
1385 * If @locked is non-NULL, it must held for read only and may be
1386 * released.  If it's released, *@locked will be set to 0.
1387 */
1388long populate_vma_page_range(struct vm_area_struct *vma,
1389                unsigned long start, unsigned long end, int *locked)
1390{
1391        struct mm_struct *mm = vma->vm_mm;
1392        unsigned long nr_pages = (end - start) / PAGE_SIZE;
1393        int gup_flags;
1394
1395        VM_BUG_ON(start & ~PAGE_MASK);
1396        VM_BUG_ON(end   & ~PAGE_MASK);
1397        VM_BUG_ON_VMA(start < vma->vm_start, vma);
1398        VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1399        mmap_assert_locked(mm);
1400
1401        gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1402        if (vma->vm_flags & VM_LOCKONFAULT)
1403                gup_flags &= ~FOLL_POPULATE;
1404        /*
1405         * We want to touch writable mappings with a write fault in order
1406         * to break COW, except for shared mappings because these don't COW
1407         * and we would not want to dirty them for nothing.
1408         */
1409        if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1410                gup_flags |= FOLL_WRITE;
1411
1412        /*
1413         * We want mlock to succeed for regions that have any permissions
1414         * other than PROT_NONE.
1415         */
1416        if (vma_is_accessible(vma))
1417                gup_flags |= FOLL_FORCE;
1418
1419        /*
1420         * We made sure addr is within a VMA, so the following will
1421         * not result in a stack expansion that recurses back here.
1422         */
1423        return __get_user_pages(mm, start, nr_pages, gup_flags,
1424                                NULL, NULL, locked);
1425}
1426
1427/*
1428 * __mm_populate - populate and/or mlock pages within a range of address space.
1429 *
1430 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1431 * flags. VMAs must be already marked with the desired vm_flags, and
1432 * mmap_lock must not be held.
1433 */
1434int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1435{
1436        struct mm_struct *mm = current->mm;
1437        unsigned long end, nstart, nend;
1438        struct vm_area_struct *vma = NULL;
1439        int locked = 0;
1440        long ret = 0;
1441
1442        end = start + len;
1443
1444        for (nstart = start; nstart < end; nstart = nend) {
1445                /*
1446                 * We want to fault in pages for [nstart; end) address range.
1447                 * Find first corresponding VMA.
1448                 */
1449                if (!locked) {
1450                        locked = 1;
1451                        mmap_read_lock(mm);
1452                        vma = find_vma(mm, nstart);
1453                } else if (nstart >= vma->vm_end)
1454                        vma = vma->vm_next;
1455                if (!vma || vma->vm_start >= end)
1456                        break;
1457                /*
1458                 * Set [nstart; nend) to intersection of desired address
1459                 * range with the first VMA. Also, skip undesirable VMA types.
1460                 */
1461                nend = min(end, vma->vm_end);
1462                if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1463                        continue;
1464                if (nstart < vma->vm_start)
1465                        nstart = vma->vm_start;
1466                /*
1467                 * Now fault in a range of pages. populate_vma_page_range()
1468                 * double checks the vma flags, so that it won't mlock pages
1469                 * if the vma was already munlocked.
1470                 */
1471                ret = populate_vma_page_range(vma, nstart, nend, &locked);
1472                if (ret < 0) {
1473                        if (ignore_errors) {
1474                                ret = 0;
1475                                continue;       /* continue at next VMA */
1476                        }
1477                        break;
1478                }
1479                nend = nstart + ret * PAGE_SIZE;
1480                ret = 0;
1481        }
1482        if (locked)
1483                mmap_read_unlock(mm);
1484        return ret;     /* 0 or negative error code */
1485}
1486
1487/**
1488 * get_dump_page() - pin user page in memory while writing it to core dump
1489 * @addr: user address
1490 *
1491 * Returns struct page pointer of user page pinned for dump,
1492 * to be freed afterwards by put_page().
1493 *
1494 * Returns NULL on any kind of failure - a hole must then be inserted into
1495 * the corefile, to preserve alignment with its headers; and also returns
1496 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1497 * allowing a hole to be left in the corefile to save diskspace.
1498 *
1499 * Called without mmap_lock, but after all other threads have been killed.
1500 */
1501#ifdef CONFIG_ELF_CORE
1502struct page *get_dump_page(unsigned long addr)
1503{
1504        struct vm_area_struct *vma;
1505        struct page *page;
1506
1507        if (__get_user_pages(current->mm, addr, 1,
1508                             FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1509                             NULL) < 1)
1510                return NULL;
1511        flush_cache_page(vma, addr, page_to_pfn(page));
1512        return page;
1513}
1514#endif /* CONFIG_ELF_CORE */
1515#else /* CONFIG_MMU */
1516static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1517                unsigned long nr_pages, struct page **pages,
1518                struct vm_area_struct **vmas, int *locked,
1519                unsigned int foll_flags)
1520{
1521        struct vm_area_struct *vma;
1522        unsigned long vm_flags;
1523        int i;
1524
1525        /* calculate required read or write permissions.
1526         * If FOLL_FORCE is set, we only require the "MAY" flags.
1527         */
1528        vm_flags  = (foll_flags & FOLL_WRITE) ?
1529                        (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1530        vm_flags &= (foll_flags & FOLL_FORCE) ?
1531                        (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1532
1533        for (i = 0; i < nr_pages; i++) {
1534                vma = find_vma(mm, start);
1535                if (!vma)
1536                        goto finish_or_fault;
1537
1538                /* protect what we can, including chardevs */
1539                if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1540                    !(vm_flags & vma->vm_flags))
1541                        goto finish_or_fault;
1542
1543                if (pages) {
1544                        pages[i] = virt_to_page(start);
1545                        if (pages[i])
1546                                get_page(pages[i]);
1547                }
1548                if (vmas)
1549                        vmas[i] = vma;
1550                start = (start + PAGE_SIZE) & PAGE_MASK;
1551        }
1552
1553        return i;
1554
1555finish_or_fault:
1556        return i ? : -EFAULT;
1557}
1558#endif /* !CONFIG_MMU */
1559
1560#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1561static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1562{
1563        long i;
1564        struct vm_area_struct *vma_prev = NULL;
1565
1566        for (i = 0; i < nr_pages; i++) {
1567                struct vm_area_struct *vma = vmas[i];
1568
1569                if (vma == vma_prev)
1570                        continue;
1571
1572                vma_prev = vma;
1573
1574                if (vma_is_fsdax(vma))
1575                        return true;
1576        }
1577        return false;
1578}
1579
1580#ifdef CONFIG_CMA
1581static long check_and_migrate_cma_pages(struct mm_struct *mm,
1582                                        unsigned long start,
1583                                        unsigned long nr_pages,
1584                                        struct page **pages,
1585                                        struct vm_area_struct **vmas,
1586                                        unsigned int gup_flags)
1587{
1588        unsigned long i;
1589        unsigned long step;
1590        bool drain_allow = true;
1591        bool migrate_allow = true;
1592        LIST_HEAD(cma_page_list);
1593        long ret = nr_pages;
1594        struct migration_target_control mtc = {
1595                .nid = NUMA_NO_NODE,
1596                .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1597        };
1598
1599check_again:
1600        for (i = 0; i < nr_pages;) {
1601
1602                struct page *head = compound_head(pages[i]);
1603
1604                /*
1605                 * gup may start from a tail page. Advance step by the left
1606                 * part.
1607                 */
1608                step = compound_nr(head) - (pages[i] - head);
1609                /*
1610                 * If we get a page from the CMA zone, since we are going to
1611                 * be pinning these entries, we might as well move them out
1612                 * of the CMA zone if possible.
1613                 */
1614                if (is_migrate_cma_page(head)) {
1615                        if (PageHuge(head))
1616                                isolate_huge_page(head, &cma_page_list);
1617                        else {
1618                                if (!PageLRU(head) && drain_allow) {
1619                                        lru_add_drain_all();
1620                                        drain_allow = false;
1621                                }
1622
1623                                if (!isolate_lru_page(head)) {
1624                                        list_add_tail(&head->lru, &cma_page_list);
1625                                        mod_node_page_state(page_pgdat(head),
1626                                                            NR_ISOLATED_ANON +
1627                                                            page_is_file_lru(head),
1628                                                            thp_nr_pages(head));
1629                                }
1630                        }
1631                }
1632
1633                i += step;
1634        }
1635
1636        if (!list_empty(&cma_page_list)) {
1637                /*
1638                 * drop the above get_user_pages reference.
1639                 */
1640                for (i = 0; i < nr_pages; i++)
1641                        put_page(pages[i]);
1642
1643                if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1644                        (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1645                        /*
1646                         * some of the pages failed migration. Do get_user_pages
1647                         * without migration.
1648                         */
1649                        migrate_allow = false;
1650
1651                        if (!list_empty(&cma_page_list))
1652                                putback_movable_pages(&cma_page_list);
1653                }
1654                /*
1655                 * We did migrate all the pages, Try to get the page references
1656                 * again migrating any new CMA pages which we failed to isolate
1657                 * earlier.
1658                 */
1659                ret = __get_user_pages_locked(mm, start, nr_pages,
1660                                                   pages, vmas, NULL,
1661                                                   gup_flags);
1662
1663                if ((ret > 0) && migrate_allow) {
1664                        nr_pages = ret;
1665                        drain_allow = true;
1666                        goto check_again;
1667                }
1668        }
1669
1670        return ret;
1671}
1672#else
1673static long check_and_migrate_cma_pages(struct mm_struct *mm,
1674                                        unsigned long start,
1675                                        unsigned long nr_pages,
1676                                        struct page **pages,
1677                                        struct vm_area_struct **vmas,
1678                                        unsigned int gup_flags)
1679{
1680        return nr_pages;
1681}
1682#endif /* CONFIG_CMA */
1683
1684/*
1685 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1686 * allows us to process the FOLL_LONGTERM flag.
1687 */
1688static long __gup_longterm_locked(struct mm_struct *mm,
1689                                  unsigned long start,
1690                                  unsigned long nr_pages,
1691                                  struct page **pages,
1692                                  struct vm_area_struct **vmas,
1693                                  unsigned int gup_flags)
1694{
1695        struct vm_area_struct **vmas_tmp = vmas;
1696        unsigned long flags = 0;
1697        long rc, i;
1698
1699        if (gup_flags & FOLL_LONGTERM) {
1700                if (!pages)
1701                        return -EINVAL;
1702
1703                if (!vmas_tmp) {
1704                        vmas_tmp = kcalloc(nr_pages,
1705                                           sizeof(struct vm_area_struct *),
1706                                           GFP_KERNEL);
1707                        if (!vmas_tmp)
1708                                return -ENOMEM;
1709                }
1710                flags = memalloc_nocma_save();
1711        }
1712
1713        rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1714                                     vmas_tmp, NULL, gup_flags);
1715
1716        if (gup_flags & FOLL_LONGTERM) {
1717                if (rc < 0)
1718                        goto out;
1719
1720                if (check_dax_vmas(vmas_tmp, rc)) {
1721                        for (i = 0; i < rc; i++)
1722                                put_page(pages[i]);
1723                        rc = -EOPNOTSUPP;
1724                        goto out;
1725                }
1726
1727                rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1728                                                 vmas_tmp, gup_flags);
1729out:
1730                memalloc_nocma_restore(flags);
1731        }
1732
1733        if (vmas_tmp != vmas)
1734                kfree(vmas_tmp);
1735        return rc;
1736}
1737#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1738static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1739                                                  unsigned long start,
1740                                                  unsigned long nr_pages,
1741                                                  struct page **pages,
1742                                                  struct vm_area_struct **vmas,
1743                                                  unsigned int flags)
1744{
1745        return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1746                                       NULL, flags);
1747}
1748#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1749
1750#ifdef CONFIG_MMU
1751static long __get_user_pages_remote(struct mm_struct *mm,
1752                                    unsigned long start, unsigned long nr_pages,
1753                                    unsigned int gup_flags, struct page **pages,
1754                                    struct vm_area_struct **vmas, int *locked)
1755{
1756        /*
1757         * Parts of FOLL_LONGTERM behavior are incompatible with
1758         * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1759         * vmas. However, this only comes up if locked is set, and there are
1760         * callers that do request FOLL_LONGTERM, but do not set locked. So,
1761         * allow what we can.
1762         */
1763        if (gup_flags & FOLL_LONGTERM) {
1764                if (WARN_ON_ONCE(locked))
1765                        return -EINVAL;
1766                /*
1767                 * This will check the vmas (even if our vmas arg is NULL)
1768                 * and return -ENOTSUPP if DAX isn't allowed in this case:
1769                 */
1770                return __gup_longterm_locked(mm, start, nr_pages, pages,
1771                                             vmas, gup_flags | FOLL_TOUCH |
1772                                             FOLL_REMOTE);
1773        }
1774
1775        return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1776                                       locked,
1777                                       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1778}
1779
1780/**
1781 * get_user_pages_remote() - pin user pages in memory
1782 * @mm:         mm_struct of target mm
1783 * @start:      starting user address
1784 * @nr_pages:   number of pages from start to pin
1785 * @gup_flags:  flags modifying lookup behaviour
1786 * @pages:      array that receives pointers to the pages pinned.
1787 *              Should be at least nr_pages long. Or NULL, if caller
1788 *              only intends to ensure the pages are faulted in.
1789 * @vmas:       array of pointers to vmas corresponding to each page.
1790 *              Or NULL if the caller does not require them.
1791 * @locked:     pointer to lock flag indicating whether lock is held and
1792 *              subsequently whether VM_FAULT_RETRY functionality can be
1793 *              utilised. Lock must initially be held.
1794 *
1795 * Returns either number of pages pinned (which may be less than the
1796 * number requested), or an error. Details about the return value:
1797 *
1798 * -- If nr_pages is 0, returns 0.
1799 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1800 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1801 *    pages pinned. Again, this may be less than nr_pages.
1802 *
1803 * The caller is responsible for releasing returned @pages, via put_page().
1804 *
1805 * @vmas are valid only as long as mmap_lock is held.
1806 *
1807 * Must be called with mmap_lock held for read or write.
1808 *
1809 * get_user_pages_remote walks a process's page tables and takes a reference
1810 * to each struct page that each user address corresponds to at a given
1811 * instant. That is, it takes the page that would be accessed if a user
1812 * thread accesses the given user virtual address at that instant.
1813 *
1814 * This does not guarantee that the page exists in the user mappings when
1815 * get_user_pages_remote returns, and there may even be a completely different
1816 * page there in some cases (eg. if mmapped pagecache has been invalidated
1817 * and subsequently re faulted). However it does guarantee that the page
1818 * won't be freed completely. And mostly callers simply care that the page
1819 * contains data that was valid *at some point in time*. Typically, an IO
1820 * or similar operation cannot guarantee anything stronger anyway because
1821 * locks can't be held over the syscall boundary.
1822 *
1823 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1824 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1825 * be called after the page is finished with, and before put_page is called.
1826 *
1827 * get_user_pages_remote is typically used for fewer-copy IO operations,
1828 * to get a handle on the memory by some means other than accesses
1829 * via the user virtual addresses. The pages may be submitted for
1830 * DMA to devices or accessed via their kernel linear mapping (via the
1831 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1832 *
1833 * See also get_user_pages_fast, for performance critical applications.
1834 *
1835 * get_user_pages_remote should be phased out in favor of
1836 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1837 * should use get_user_pages_remote because it cannot pass
1838 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1839 */
1840long get_user_pages_remote(struct mm_struct *mm,
1841                unsigned long start, unsigned long nr_pages,
1842                unsigned int gup_flags, struct page **pages,
1843                struct vm_area_struct **vmas, int *locked)
1844{
1845        /*
1846         * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1847         * never directly by the caller, so enforce that with an assertion:
1848         */
1849        if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1850                return -EINVAL;
1851
1852        return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1853                                       pages, vmas, locked);
1854}
1855EXPORT_SYMBOL(get_user_pages_remote);
1856
1857#else /* CONFIG_MMU */
1858long get_user_pages_remote(struct mm_struct *mm,
1859                           unsigned long start, unsigned long nr_pages,
1860                           unsigned int gup_flags, struct page **pages,
1861                           struct vm_area_struct **vmas, int *locked)
1862{
1863        return 0;
1864}
1865
1866static long __get_user_pages_remote(struct mm_struct *mm,
1867                                    unsigned long start, unsigned long nr_pages,
1868                                    unsigned int gup_flags, struct page **pages,
1869                                    struct vm_area_struct **vmas, int *locked)
1870{
1871        return 0;
1872}
1873#endif /* !CONFIG_MMU */
1874
1875/**
1876 * get_user_pages() - pin user pages in memory
1877 * @start:      starting user address
1878 * @nr_pages:   number of pages from start to pin
1879 * @gup_flags:  flags modifying lookup behaviour
1880 * @pages:      array that receives pointers to the pages pinned.
1881 *              Should be at least nr_pages long. Or NULL, if caller
1882 *              only intends to ensure the pages are faulted in.
1883 * @vmas:       array of pointers to vmas corresponding to each page.
1884 *              Or NULL if the caller does not require them.
1885 *
1886 * This is the same as get_user_pages_remote(), just with a less-flexible
1887 * calling convention where we assume that the mm being operated on belongs to
1888 * the current task, and doesn't allow passing of a locked parameter.  We also
1889 * obviously don't pass FOLL_REMOTE in here.
1890 */
1891long get_user_pages(unsigned long start, unsigned long nr_pages,
1892                unsigned int gup_flags, struct page **pages,
1893                struct vm_area_struct **vmas)
1894{
1895        /*
1896         * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1897         * never directly by the caller, so enforce that with an assertion:
1898         */
1899        if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1900                return -EINVAL;
1901
1902        return __gup_longterm_locked(current->mm, start, nr_pages,
1903                                     pages, vmas, gup_flags | FOLL_TOUCH);
1904}
1905EXPORT_SYMBOL(get_user_pages);
1906
1907/**
1908 * get_user_pages_locked() is suitable to replace the form:
1909 *
1910 *      mmap_read_lock(mm);
1911 *      do_something()
1912 *      get_user_pages(mm, ..., pages, NULL);
1913 *      mmap_read_unlock(mm);
1914 *
1915 *  to:
1916 *
1917 *      int locked = 1;
1918 *      mmap_read_lock(mm);
1919 *      do_something()
1920 *      get_user_pages_locked(mm, ..., pages, &locked);
1921 *      if (locked)
1922 *          mmap_read_unlock(mm);
1923 *
1924 * @start:      starting user address
1925 * @nr_pages:   number of pages from start to pin
1926 * @gup_flags:  flags modifying lookup behaviour
1927 * @pages:      array that receives pointers to the pages pinned.
1928 *              Should be at least nr_pages long. Or NULL, if caller
1929 *              only intends to ensure the pages are faulted in.
1930 * @locked:     pointer to lock flag indicating whether lock is held and
1931 *              subsequently whether VM_FAULT_RETRY functionality can be
1932 *              utilised. Lock must initially be held.
1933 *
1934 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1935 * paths better by using either get_user_pages_locked() or
1936 * get_user_pages_unlocked().
1937 *
1938 */
1939long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1940                           unsigned int gup_flags, struct page **pages,
1941                           int *locked)
1942{
1943        /*
1944         * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1945         * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1946         * vmas.  As there are no users of this flag in this call we simply
1947         * disallow this option for now.
1948         */
1949        if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1950                return -EINVAL;
1951        /*
1952         * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1953         * never directly by the caller, so enforce that:
1954         */
1955        if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1956                return -EINVAL;
1957
1958        return __get_user_pages_locked(current->mm, start, nr_pages,
1959                                       pages, NULL, locked,
1960                                       gup_flags | FOLL_TOUCH);
1961}
1962EXPORT_SYMBOL(get_user_pages_locked);
1963
1964/*
1965 * get_user_pages_unlocked() is suitable to replace the form:
1966 *
1967 *      mmap_read_lock(mm);
1968 *      get_user_pages(mm, ..., pages, NULL);
1969 *      mmap_read_unlock(mm);
1970 *
1971 *  with:
1972 *
1973 *      get_user_pages_unlocked(mm, ..., pages);
1974 *
1975 * It is functionally equivalent to get_user_pages_fast so
1976 * get_user_pages_fast should be used instead if specific gup_flags
1977 * (e.g. FOLL_FORCE) are not required.
1978 */
1979long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1980                             struct page **pages, unsigned int gup_flags)
1981{
1982        struct mm_struct *mm = current->mm;
1983        int locked = 1;
1984        long ret;
1985
1986        /*
1987         * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1988         * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1989         * vmas.  As there are no users of this flag in this call we simply
1990         * disallow this option for now.
1991         */
1992        if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1993                return -EINVAL;
1994
1995        mmap_read_lock(mm);
1996        ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1997                                      &locked, gup_flags | FOLL_TOUCH);
1998        if (locked)
1999                mmap_read_unlock(mm);
2000        return ret;
2001}
2002EXPORT_SYMBOL(get_user_pages_unlocked);
2003
2004/*
2005 * Fast GUP
2006 *
2007 * get_user_pages_fast attempts to pin user pages by walking the page
2008 * tables directly and avoids taking locks. Thus the walker needs to be
2009 * protected from page table pages being freed from under it, and should
2010 * block any THP splits.
2011 *
2012 * One way to achieve this is to have the walker disable interrupts, and
2013 * rely on IPIs from the TLB flushing code blocking before the page table
2014 * pages are freed. This is unsuitable for architectures that do not need
2015 * to broadcast an IPI when invalidating TLBs.
2016 *
2017 * Another way to achieve this is to batch up page table containing pages
2018 * belonging to more than one mm_user, then rcu_sched a callback to free those
2019 * pages. Disabling interrupts will allow the fast_gup walker to both block
2020 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2021 * (which is a relatively rare event). The code below adopts this strategy.
2022 *
2023 * Before activating this code, please be aware that the following assumptions
2024 * are currently made:
2025 *
2026 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2027 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2028 *
2029 *  *) ptes can be read atomically by the architecture.
2030 *
2031 *  *) access_ok is sufficient to validate userspace address ranges.
2032 *
2033 * The last two assumptions can be relaxed by the addition of helper functions.
2034 *
2035 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2036 */
2037#ifdef CONFIG_HAVE_FAST_GUP
2038
2039static void put_compound_head(struct page *page, int refs, unsigned int flags)
2040{
2041        if (flags & FOLL_PIN) {
2042                mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2043                                    refs);
2044
2045                if (hpage_pincount_available(page))
2046                        hpage_pincount_sub(page, refs);
2047                else
2048                        refs *= GUP_PIN_COUNTING_BIAS;
2049        }
2050
2051        VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2052        /*
2053         * Calling put_page() for each ref is unnecessarily slow. Only the last
2054         * ref needs a put_page().
2055         */
2056        if (refs > 1)
2057                page_ref_sub(page, refs - 1);
2058        put_page(page);
2059}
2060
2061#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2062
2063/*
2064 * WARNING: only to be used in the get_user_pages_fast() implementation.
2065 *
2066 * With get_user_pages_fast(), we walk down the pagetables without taking any
2067 * locks.  For this we would like to load the pointers atomically, but sometimes
2068 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2069 * we do have is the guarantee that a PTE will only either go from not present
2070 * to present, or present to not present or both -- it will not switch to a
2071 * completely different present page without a TLB flush in between; something
2072 * that we are blocking by holding interrupts off.
2073 *
2074 * Setting ptes from not present to present goes:
2075 *
2076 *   ptep->pte_high = h;
2077 *   smp_wmb();
2078 *   ptep->pte_low = l;
2079 *
2080 * And present to not present goes:
2081 *
2082 *   ptep->pte_low = 0;
2083 *   smp_wmb();
2084 *   ptep->pte_high = 0;
2085 *
2086 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2087 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2088 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2089 * picked up a changed pte high. We might have gotten rubbish values from
2090 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2091 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2092 * operates on present ptes we're safe.
2093 */
2094static inline pte_t gup_get_pte(pte_t *ptep)
2095{
2096        pte_t pte;
2097
2098        do {
2099                pte.pte_low = ptep->pte_low;
2100                smp_rmb();
2101                pte.pte_high = ptep->pte_high;
2102                smp_rmb();
2103        } while (unlikely(pte.pte_low != ptep->pte_low));
2104
2105        return pte;
2106}
2107#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2108/*
2109 * We require that the PTE can be read atomically.
2110 */
2111static inline pte_t gup_get_pte(pte_t *ptep)
2112{
2113        return ptep_get(ptep);
2114}
2115#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2116
2117static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2118                                            unsigned int flags,
2119                                            struct page **pages)
2120{
2121        while ((*nr) - nr_start) {
2122                struct page *page = pages[--(*nr)];
2123
2124                ClearPageReferenced(page);
2125                if (flags & FOLL_PIN)
2126                        unpin_user_page(page);
2127                else
2128                        put_page(page);
2129        }
2130}
2131
2132#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2133static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2134                         unsigned int flags, struct page **pages, int *nr)
2135{
2136        struct dev_pagemap *pgmap = NULL;
2137        int nr_start = *nr, ret = 0;
2138        pte_t *ptep, *ptem;
2139
2140        ptem = ptep = pte_offset_map(&pmd, addr);
2141        do {
2142                pte_t pte = gup_get_pte(ptep);
2143                struct page *head, *page;
2144
2145                /*
2146                 * Similar to the PMD case below, NUMA hinting must take slow
2147                 * path using the pte_protnone check.
2148                 */
2149                if (pte_protnone(pte))
2150                        goto pte_unmap;
2151
2152                if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2153                        goto pte_unmap;
2154
2155                if (pte_devmap(pte)) {
2156                        if (unlikely(flags & FOLL_LONGTERM))
2157                                goto pte_unmap;
2158
2159                        pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2160                        if (unlikely(!pgmap)) {
2161                                undo_dev_pagemap(nr, nr_start, flags, pages);
2162                                goto pte_unmap;
2163                        }
2164                } else if (pte_special(pte))
2165                        goto pte_unmap;
2166
2167                VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2168                page = pte_page(pte);
2169
2170                head = try_grab_compound_head(page, 1, flags);
2171                if (!head)
2172                        goto pte_unmap;
2173
2174                if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2175                        put_compound_head(head, 1, flags);
2176                        goto pte_unmap;
2177                }
2178
2179                VM_BUG_ON_PAGE(compound_head(page) != head, page);
2180
2181                /*
2182                 * We need to make the page accessible if and only if we are
2183                 * going to access its content (the FOLL_PIN case).  Please
2184                 * see Documentation/core-api/pin_user_pages.rst for
2185                 * details.
2186                 */
2187                if (flags & FOLL_PIN) {
2188                        ret = arch_make_page_accessible(page);
2189                        if (ret) {
2190                                unpin_user_page(page);
2191                                goto pte_unmap;
2192                        }
2193                }
2194                SetPageReferenced(page);
2195                pages[*nr] = page;
2196                (*nr)++;
2197
2198        } while (ptep++, addr += PAGE_SIZE, addr != end);
2199
2200        ret = 1;
2201
2202pte_unmap:
2203        if (pgmap)
2204                put_dev_pagemap(pgmap);
2205        pte_unmap(ptem);
2206        return ret;
2207}
2208#else
2209
2210/*
2211 * If we can't determine whether or not a pte is special, then fail immediately
2212 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2213 * to be special.
2214 *
2215 * For a futex to be placed on a THP tail page, get_futex_key requires a
2216 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2217 * useful to have gup_huge_pmd even if we can't operate on ptes.
2218 */
2219static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2220                         unsigned int flags, struct page **pages, int *nr)
2221{
2222        return 0;
2223}
2224#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2225
2226#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2227static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2228                             unsigned long end, unsigned int flags,
2229                             struct page **pages, int *nr)
2230{
2231        int nr_start = *nr;
2232        struct dev_pagemap *pgmap = NULL;
2233
2234        do {
2235                struct page *page = pfn_to_page(pfn);
2236
2237                pgmap = get_dev_pagemap(pfn, pgmap);
2238                if (unlikely(!pgmap)) {
2239                        undo_dev_pagemap(nr, nr_start, flags, pages);
2240                        return 0;
2241                }
2242                SetPageReferenced(page);
2243                pages[*nr] = page;
2244                if (unlikely(!try_grab_page(page, flags))) {
2245                        undo_dev_pagemap(nr, nr_start, flags, pages);
2246                        return 0;
2247                }
2248                (*nr)++;
2249                pfn++;
2250        } while (addr += PAGE_SIZE, addr != end);
2251
2252        if (pgmap)
2253                put_dev_pagemap(pgmap);
2254        return 1;
2255}
2256
2257static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2258                                 unsigned long end, unsigned int flags,
2259                                 struct page **pages, int *nr)
2260{
2261        unsigned long fault_pfn;
2262        int nr_start = *nr;
2263
2264        fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2265        if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2266                return 0;
2267
2268        if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2269                undo_dev_pagemap(nr, nr_start, flags, pages);
2270                return 0;
2271        }
2272        return 1;
2273}
2274
2275static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2276                                 unsigned long end, unsigned int flags,
2277                                 struct page **pages, int *nr)
2278{
2279        unsigned long fault_pfn;
2280        int nr_start = *nr;
2281
2282        fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2283        if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2284                return 0;
2285
2286        if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2287                undo_dev_pagemap(nr, nr_start, flags, pages);
2288                return 0;
2289        }
2290        return 1;
2291}
2292#else
2293static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2294                                 unsigned long end, unsigned int flags,
2295                                 struct page **pages, int *nr)
2296{
2297        BUILD_BUG();
2298        return 0;
2299}
2300
2301static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2302                                 unsigned long end, unsigned int flags,
2303                                 struct page **pages, int *nr)
2304{
2305        BUILD_BUG();
2306        return 0;
2307}
2308#endif
2309
2310static int record_subpages(struct page *page, unsigned long addr,
2311                           unsigned long end, struct page **pages)
2312{
2313        int nr;
2314
2315        for (nr = 0; addr != end; addr += PAGE_SIZE)
2316                pages[nr++] = page++;
2317
2318        return nr;
2319}
2320
2321#ifdef CONFIG_ARCH_HAS_HUGEPD
2322static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2323                                      unsigned long sz)
2324{
2325        unsigned long __boundary = (addr + sz) & ~(sz-1);
2326        return (__boundary - 1 < end - 1) ? __boundary : end;
2327}
2328
2329static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2330                       unsigned long end, unsigned int flags,
2331                       struct page **pages, int *nr)
2332{
2333        unsigned long pte_end;
2334        struct page *head, *page;
2335        pte_t pte;
2336        int refs;
2337
2338        pte_end = (addr + sz) & ~(sz-1);
2339        if (pte_end < end)
2340                end = pte_end;
2341
2342        pte = huge_ptep_get(ptep);
2343
2344        if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2345                return 0;
2346
2347        /* hugepages are never "special" */
2348        VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2349
2350        head = pte_page(pte);
2351        page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2352        refs = record_subpages(page, addr, end, pages + *nr);
2353
2354        head = try_grab_compound_head(head, refs, flags);
2355        if (!head)
2356                return 0;
2357
2358        if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2359                put_compound_head(head, refs, flags);
2360                return 0;
2361        }
2362
2363        *nr += refs;
2364        SetPageReferenced(head);
2365        return 1;
2366}
2367
2368static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2369                unsigned int pdshift, unsigned long end, unsigned int flags,
2370                struct page **pages, int *nr)
2371{
2372        pte_t *ptep;
2373        unsigned long sz = 1UL << hugepd_shift(hugepd);
2374        unsigned long next;
2375
2376        ptep = hugepte_offset(hugepd, addr, pdshift);
2377        do {
2378                next = hugepte_addr_end(addr, end, sz);
2379                if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2380                        return 0;
2381        } while (ptep++, addr = next, addr != end);
2382
2383        return 1;
2384}
2385#else
2386static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2387                unsigned int pdshift, unsigned long end, unsigned int flags,
2388                struct page **pages, int *nr)
2389{
2390        return 0;
2391}
2392#endif /* CONFIG_ARCH_HAS_HUGEPD */
2393
2394static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2395                        unsigned long end, unsigned int flags,
2396                        struct page **pages, int *nr)
2397{
2398        struct page *head, *page;
2399        int refs;
2400
2401        if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2402                return 0;
2403
2404        if (pmd_devmap(orig)) {
2405                if (unlikely(flags & FOLL_LONGTERM))
2406                        return 0;
2407                return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2408                                             pages, nr);
2409        }
2410
2411        page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2412        refs = record_subpages(page, addr, end, pages + *nr);
2413
2414        head = try_grab_compound_head(pmd_page(orig), refs, flags);
2415        if (!head)
2416                return 0;
2417
2418        if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2419                put_compound_head(head, refs, flags);
2420                return 0;
2421        }
2422
2423        *nr += refs;
2424        SetPageReferenced(head);
2425        return 1;
2426}
2427
2428static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2429                        unsigned long end, unsigned int flags,
2430                        struct page **pages, int *nr)
2431{
2432        struct page *head, *page;
2433        int refs;
2434
2435        if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2436                return 0;
2437
2438        if (pud_devmap(orig)) {
2439                if (unlikely(flags & FOLL_LONGTERM))
2440                        return 0;
2441                return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2442                                             pages, nr);
2443        }
2444
2445        page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2446        refs = record_subpages(page, addr, end, pages + *nr);
2447
2448        head = try_grab_compound_head(pud_page(orig), refs, flags);
2449        if (!head)
2450                return 0;
2451
2452        if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2453                put_compound_head(head, refs, flags);
2454                return 0;
2455        }
2456
2457        *nr += refs;
2458        SetPageReferenced(head);
2459        return 1;
2460}
2461
2462static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2463                        unsigned long end, unsigned int flags,
2464                        struct page **pages, int *nr)
2465{
2466        int refs;
2467        struct page *head, *page;
2468
2469        if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2470                return 0;
2471
2472        BUILD_BUG_ON(pgd_devmap(orig));
2473
2474        page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2475        refs = record_subpages(page, addr, end, pages + *nr);
2476
2477        head = try_grab_compound_head(pgd_page(orig), refs, flags);
2478        if (!head)
2479                return 0;
2480
2481        if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2482                put_compound_head(head, refs, flags);
2483                return 0;
2484        }
2485
2486        *nr += refs;
2487        SetPageReferenced(head);
2488        return 1;
2489}
2490
2491static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2492                unsigned int flags, struct page **pages, int *nr)
2493{
2494        unsigned long next;
2495        pmd_t *pmdp;
2496
2497        pmdp = pmd_offset_lockless(pudp, pud, addr);
2498        do {
2499                pmd_t pmd = READ_ONCE(*pmdp);
2500
2501                next = pmd_addr_end(addr, end);
2502                if (!pmd_present(pmd))
2503                        return 0;
2504
2505                if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2506                             pmd_devmap(pmd))) {
2507                        /*
2508                         * NUMA hinting faults need to be handled in the GUP
2509                         * slowpath for accounting purposes and so that they
2510                         * can be serialised against THP migration.
2511                         */
2512                        if (pmd_protnone(pmd))
2513                                return 0;
2514
2515                        if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2516                                pages, nr))
2517                                return 0;
2518
2519                } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2520                        /*
2521                         * architecture have different format for hugetlbfs
2522                         * pmd format and THP pmd format
2523                         */
2524                        if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2525                                         PMD_SHIFT, next, flags, pages, nr))
2526                                return 0;
2527                } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2528                        return 0;
2529        } while (pmdp++, addr = next, addr != end);
2530
2531        return 1;
2532}
2533
2534static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2535                         unsigned int flags, struct page **pages, int *nr)
2536{
2537        unsigned long next;
2538        pud_t *pudp;
2539
2540        pudp = pud_offset_lockless(p4dp, p4d, addr);
2541        do {
2542                pud_t pud = READ_ONCE(*pudp);
2543
2544                next = pud_addr_end(addr, end);
2545                if (unlikely(!pud_present(pud)))
2546                        return 0;
2547                if (unlikely(pud_huge(pud))) {
2548                        if (!gup_huge_pud(pud, pudp, addr, next, flags,
2549                                          pages, nr))
2550                                return 0;
2551                } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2552                        if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2553                                         PUD_SHIFT, next, flags, pages, nr))
2554                                return 0;
2555                } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2556                        return 0;
2557        } while (pudp++, addr = next, addr != end);
2558
2559        return 1;
2560}
2561
2562static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2563                         unsigned int flags, struct page **pages, int *nr)
2564{
2565        unsigned long next;
2566        p4d_t *p4dp;
2567
2568        p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2569        do {
2570                p4d_t p4d = READ_ONCE(*p4dp);
2571
2572                next = p4d_addr_end(addr, end);
2573                if (p4d_none(p4d))
2574                        return 0;
2575                BUILD_BUG_ON(p4d_huge(p4d));
2576                if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2577                        if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2578                                         P4D_SHIFT, next, flags, pages, nr))
2579                                return 0;
2580                } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2581                        return 0;
2582        } while (p4dp++, addr = next, addr != end);
2583
2584        return 1;
2585}
2586
2587static void gup_pgd_range(unsigned long addr, unsigned long end,
2588                unsigned int flags, struct page **pages, int *nr)
2589{
2590        unsigned long next;
2591        pgd_t *pgdp;
2592
2593        pgdp = pgd_offset(current->mm, addr);
2594        do {
2595                pgd_t pgd = READ_ONCE(*pgdp);
2596
2597                next = pgd_addr_end(addr, end);
2598                if (pgd_none(pgd))
2599                        return;
2600                if (unlikely(pgd_huge(pgd))) {
2601                        if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2602                                          pages, nr))
2603                                return;
2604                } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2605                        if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2606                                         PGDIR_SHIFT, next, flags, pages, nr))
2607                                return;
2608                } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2609                        return;
2610        } while (pgdp++, addr = next, addr != end);
2611}
2612#else
2613static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2614                unsigned int flags, struct page **pages, int *nr)
2615{
2616}
2617#endif /* CONFIG_HAVE_FAST_GUP */
2618
2619#ifndef gup_fast_permitted
2620/*
2621 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2622 * we need to fall back to the slow version:
2623 */
2624static bool gup_fast_permitted(unsigned long start, unsigned long end)
2625{
2626        return true;
2627}
2628#endif
2629
2630static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2631                                   unsigned int gup_flags, struct page **pages)
2632{
2633        int ret;
2634
2635        /*
2636         * FIXME: FOLL_LONGTERM does not work with
2637         * get_user_pages_unlocked() (see comments in that function)
2638         */
2639        if (gup_flags & FOLL_LONGTERM) {
2640                mmap_read_lock(current->mm);
2641                ret = __gup_longterm_locked(current->mm,
2642                                            start, nr_pages,
2643                                            pages, NULL, gup_flags);
2644                mmap_read_unlock(current->mm);
2645        } else {
2646                ret = get_user_pages_unlocked(start, nr_pages,
2647                                              pages, gup_flags);
2648        }
2649
2650        return ret;
2651}
2652
2653static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2654                                        unsigned int gup_flags,
2655                                        struct page **pages)
2656{
2657        unsigned long addr, len, end;
2658        unsigned long flags;
2659        int nr_pinned = 0, ret = 0;
2660
2661        if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2662                                       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2663                                       FOLL_FAST_ONLY)))
2664                return -EINVAL;
2665
2666        if (gup_flags & FOLL_PIN)
2667                atomic_set(&current->mm->has_pinned, 1);
2668
2669        if (!(gup_flags & FOLL_FAST_ONLY))
2670                might_lock_read(&current->mm->mmap_lock);
2671
2672        start = untagged_addr(start) & PAGE_MASK;
2673        addr = start;
2674        len = (unsigned long) nr_pages << PAGE_SHIFT;
2675        end = start + len;
2676
2677        if (end <= start)
2678                return 0;
2679        if (unlikely(!access_ok((void __user *)start, len)))
2680                return -EFAULT;
2681
2682        /*
2683         * Disable interrupts. The nested form is used, in order to allow
2684         * full, general purpose use of this routine.
2685         *
2686         * With interrupts disabled, we block page table pages from being
2687         * freed from under us. See struct mmu_table_batch comments in
2688         * include/asm-generic/tlb.h for more details.
2689         *
2690         * We do not adopt an rcu_read_lock(.) here as we also want to
2691         * block IPIs that come from THPs splitting.
2692         */
2693        if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2694                unsigned long fast_flags = gup_flags;
2695
2696                local_irq_save(flags);
2697                gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2698                local_irq_restore(flags);
2699                ret = nr_pinned;
2700        }
2701
2702        if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2703                /* Try to get the remaining pages with get_user_pages */
2704                start += nr_pinned << PAGE_SHIFT;
2705                pages += nr_pinned;
2706
2707                ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2708                                              gup_flags, pages);
2709
2710                /* Have to be a bit careful with return values */
2711                if (nr_pinned > 0) {
2712                        if (ret < 0)
2713                                ret = nr_pinned;
2714                        else
2715                                ret += nr_pinned;
2716                }
2717        }
2718
2719        return ret;
2720}
2721/**
2722 * get_user_pages_fast_only() - pin user pages in memory
2723 * @start:      starting user address
2724 * @nr_pages:   number of pages from start to pin
2725 * @gup_flags:  flags modifying pin behaviour
2726 * @pages:      array that receives pointers to the pages pinned.
2727 *              Should be at least nr_pages long.
2728 *
2729 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2730 * the regular GUP.
2731 * Note a difference with get_user_pages_fast: this always returns the
2732 * number of pages pinned, 0 if no pages were pinned.
2733 *
2734 * If the architecture does not support this function, simply return with no
2735 * pages pinned.
2736 *
2737 * Careful, careful! COW breaking can go either way, so a non-write
2738 * access can get ambiguous page results. If you call this function without
2739 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2740 */
2741int get_user_pages_fast_only(unsigned long start, int nr_pages,
2742                             unsigned int gup_flags, struct page **pages)
2743{
2744        int nr_pinned;
2745        /*
2746         * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2747         * because gup fast is always a "pin with a +1 page refcount" request.
2748         *
2749         * FOLL_FAST_ONLY is required in order to match the API description of
2750         * this routine: no fall back to regular ("slow") GUP.
2751         */
2752        gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2753
2754        nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2755                                                 pages);
2756
2757        /*
2758         * As specified in the API description above, this routine is not
2759         * allowed to return negative values. However, the common core
2760         * routine internal_get_user_pages_fast() *can* return -errno.
2761         * Therefore, correct for that here:
2762         */
2763        if (nr_pinned < 0)
2764                nr_pinned = 0;
2765
2766        return nr_pinned;
2767}
2768EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2769
2770/**
2771 * get_user_pages_fast() - pin user pages in memory
2772 * @start:      starting user address
2773 * @nr_pages:   number of pages from start to pin
2774 * @gup_flags:  flags modifying pin behaviour
2775 * @pages:      array that receives pointers to the pages pinned.
2776 *              Should be at least nr_pages long.
2777 *
2778 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2779 * If not successful, it will fall back to taking the lock and
2780 * calling get_user_pages().
2781 *
2782 * Returns number of pages pinned. This may be fewer than the number requested.
2783 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2784 * -errno.
2785 */
2786int get_user_pages_fast(unsigned long start, int nr_pages,
2787                        unsigned int gup_flags, struct page **pages)
2788{
2789        /*
2790         * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2791         * never directly by the caller, so enforce that:
2792         */
2793        if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2794                return -EINVAL;
2795
2796        /*
2797         * The caller may or may not have explicitly set FOLL_GET; either way is
2798         * OK. However, internally (within mm/gup.c), gup fast variants must set
2799         * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2800         * request.
2801         */
2802        gup_flags |= FOLL_GET;
2803        return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2804}
2805EXPORT_SYMBOL_GPL(get_user_pages_fast);
2806
2807/**
2808 * pin_user_pages_fast() - pin user pages in memory without taking locks
2809 *
2810 * @start:      starting user address
2811 * @nr_pages:   number of pages from start to pin
2812 * @gup_flags:  flags modifying pin behaviour
2813 * @pages:      array that receives pointers to the pages pinned.
2814 *              Should be at least nr_pages long.
2815 *
2816 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2817 * get_user_pages_fast() for documentation on the function arguments, because
2818 * the arguments here are identical.
2819 *
2820 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2821 * see Documentation/core-api/pin_user_pages.rst for further details.
2822 */
2823int pin_user_pages_fast(unsigned long start, int nr_pages,
2824                        unsigned int gup_flags, struct page **pages)
2825{
2826        /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2827        if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2828                return -EINVAL;
2829
2830        gup_flags |= FOLL_PIN;
2831        return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2832}
2833EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2834
2835/*
2836 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2837 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2838 *
2839 * The API rules are the same, too: no negative values may be returned.
2840 */
2841int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2842                             unsigned int gup_flags, struct page **pages)
2843{
2844        int nr_pinned;
2845
2846        /*
2847         * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2848         * rules require returning 0, rather than -errno:
2849         */
2850        if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2851                return 0;
2852        /*
2853         * FOLL_FAST_ONLY is required in order to match the API description of
2854         * this routine: no fall back to regular ("slow") GUP.
2855         */
2856        gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2857        nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2858                                                 pages);
2859        /*
2860         * This routine is not allowed to return negative values. However,
2861         * internal_get_user_pages_fast() *can* return -errno. Therefore,
2862         * correct for that here:
2863         */
2864        if (nr_pinned < 0)
2865                nr_pinned = 0;
2866
2867        return nr_pinned;
2868}
2869EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2870
2871/**
2872 * pin_user_pages_remote() - pin pages of a remote process
2873 *
2874 * @mm:         mm_struct of target mm
2875 * @start:      starting user address
2876 * @nr_pages:   number of pages from start to pin
2877 * @gup_flags:  flags modifying lookup behaviour
2878 * @pages:      array that receives pointers to the pages pinned.
2879 *              Should be at least nr_pages long. Or NULL, if caller
2880 *              only intends to ensure the pages are faulted in.
2881 * @vmas:       array of pointers to vmas corresponding to each page.
2882 *              Or NULL if the caller does not require them.
2883 * @locked:     pointer to lock flag indicating whether lock is held and
2884 *              subsequently whether VM_FAULT_RETRY functionality can be
2885 *              utilised. Lock must initially be held.
2886 *
2887 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2888 * get_user_pages_remote() for documentation on the function arguments, because
2889 * the arguments here are identical.
2890 *
2891 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2892 * see Documentation/core-api/pin_user_pages.rst for details.
2893 */
2894long pin_user_pages_remote(struct mm_struct *mm,
2895                           unsigned long start, unsigned long nr_pages,
2896                           unsigned int gup_flags, struct page **pages,
2897                           struct vm_area_struct **vmas, int *locked)
2898{
2899        /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2900        if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2901                return -EINVAL;
2902
2903        gup_flags |= FOLL_PIN;
2904        return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2905                                       pages, vmas, locked);
2906}
2907EXPORT_SYMBOL(pin_user_pages_remote);
2908
2909/**
2910 * pin_user_pages() - pin user pages in memory for use by other devices
2911 *
2912 * @start:      starting user address
2913 * @nr_pages:   number of pages from start to pin
2914 * @gup_flags:  flags modifying lookup behaviour
2915 * @pages:      array that receives pointers to the pages pinned.
2916 *              Should be at least nr_pages long. Or NULL, if caller
2917 *              only intends to ensure the pages are faulted in.
2918 * @vmas:       array of pointers to vmas corresponding to each page.
2919 *              Or NULL if the caller does not require them.
2920 *
2921 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2922 * FOLL_PIN is set.
2923 *
2924 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2925 * see Documentation/core-api/pin_user_pages.rst for details.
2926 */
2927long pin_user_pages(unsigned long start, unsigned long nr_pages,
2928                    unsigned int gup_flags, struct page **pages,
2929                    struct vm_area_struct **vmas)
2930{
2931        /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2932        if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2933                return -EINVAL;
2934
2935        gup_flags |= FOLL_PIN;
2936        return __gup_longterm_locked(current->mm, start, nr_pages,
2937                                     pages, vmas, gup_flags);
2938}
2939EXPORT_SYMBOL(pin_user_pages);
2940
2941/*
2942 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2943 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2944 * FOLL_PIN and rejects FOLL_GET.
2945 */
2946long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2947                             struct page **pages, unsigned int gup_flags)
2948{
2949        /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2950        if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2951                return -EINVAL;
2952
2953        gup_flags |= FOLL_PIN;
2954        return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2955}
2956EXPORT_SYMBOL(pin_user_pages_unlocked);
2957
2958/*
2959 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2960 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2961 * FOLL_GET.
2962 */
2963long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2964                           unsigned int gup_flags, struct page **pages,
2965                           int *locked)
2966{
2967        /*
2968         * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2969         * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2970         * vmas.  As there are no users of this flag in this call we simply
2971         * disallow this option for now.
2972         */
2973        if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2974                return -EINVAL;
2975
2976        /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2977        if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2978                return -EINVAL;
2979
2980        gup_flags |= FOLL_PIN;
2981        return __get_user_pages_locked(current->mm, start, nr_pages,
2982                                       pages, NULL, locked,
2983                                       gup_flags | FOLL_TOUCH);
2984}
2985EXPORT_SYMBOL(pin_user_pages_locked);
2986