linux/mm/mmap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/vmacache.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
  41#include <linux/rbtree_augmented.h>
  42#include <linux/notifier.h>
  43#include <linux/memory.h>
  44#include <linux/printk.h>
  45#include <linux/userfaultfd_k.h>
  46#include <linux/moduleparam.h>
  47#include <linux/pkeys.h>
  48#include <linux/oom.h>
  49#include <linux/sched/mm.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/mmap.h>
  58
  59#include "internal.h"
  60
  61#ifndef arch_mmap_check
  62#define arch_mmap_check(addr, len, flags)       (0)
  63#endif
  64
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  66const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  67const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  68int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  69#endif
  70#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  74#endif
  75
  76static bool ignore_rlimit_data;
  77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  78
  79static void unmap_region(struct mm_struct *mm,
  80                struct vm_area_struct *vma, struct vm_area_struct *prev,
  81                unsigned long start, unsigned long end);
  82
  83/* description of effects of mapping type and prot in current implementation.
  84 * this is due to the limited x86 page protection hardware.  The expected
  85 * behavior is in parens:
  86 *
  87 * map_type     prot
  88 *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
  89 * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  90 *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
  91 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  92 *
  93 * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  94 *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
  95 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  96 */
  97pgprot_t protection_map[16] __ro_after_init = {
  98        __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  99        __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 100};
 101
 102#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 103static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 104{
 105        return prot;
 106}
 107#endif
 108
 109pgprot_t vm_get_page_prot(unsigned long vm_flags)
 110{
 111        pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 112                                (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 113                        pgprot_val(arch_vm_get_page_prot(vm_flags)));
 114
 115        return arch_filter_pgprot(ret);
 116}
 117EXPORT_SYMBOL(vm_get_page_prot);
 118
 119static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 120{
 121        return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 122}
 123
 124/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 125void vma_set_page_prot(struct vm_area_struct *vma)
 126{
 127        unsigned long vm_flags = vma->vm_flags;
 128        pgprot_t vm_page_prot;
 129
 130        vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 131        if (vma_wants_writenotify(vma, vm_page_prot)) {
 132                vm_flags &= ~VM_SHARED;
 133                vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 134        }
 135        /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
 136        WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 137}
 138
 139/*
 140 * Requires inode->i_mapping->i_mmap_rwsem
 141 */
 142static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 143                struct file *file, struct address_space *mapping)
 144{
 145        if (vma->vm_flags & VM_DENYWRITE)
 146                atomic_inc(&file_inode(file)->i_writecount);
 147        if (vma->vm_flags & VM_SHARED)
 148                mapping_unmap_writable(mapping);
 149
 150        flush_dcache_mmap_lock(mapping);
 151        vma_interval_tree_remove(vma, &mapping->i_mmap);
 152        flush_dcache_mmap_unlock(mapping);
 153}
 154
 155/*
 156 * Unlink a file-based vm structure from its interval tree, to hide
 157 * vma from rmap and vmtruncate before freeing its page tables.
 158 */
 159void unlink_file_vma(struct vm_area_struct *vma)
 160{
 161        struct file *file = vma->vm_file;
 162
 163        if (file) {
 164                struct address_space *mapping = file->f_mapping;
 165                i_mmap_lock_write(mapping);
 166                __remove_shared_vm_struct(vma, file, mapping);
 167                i_mmap_unlock_write(mapping);
 168        }
 169}
 170
 171/*
 172 * Close a vm structure and free it, returning the next.
 173 */
 174static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 175{
 176        struct vm_area_struct *next = vma->vm_next;
 177
 178        might_sleep();
 179        if (vma->vm_ops && vma->vm_ops->close)
 180                vma->vm_ops->close(vma);
 181        if (vma->vm_file)
 182                fput(vma->vm_file);
 183        mpol_put(vma_policy(vma));
 184        vm_area_free(vma);
 185        return next;
 186}
 187
 188static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
 189                struct list_head *uf);
 190SYSCALL_DEFINE1(brk, unsigned long, brk)
 191{
 192        unsigned long retval;
 193        unsigned long newbrk, oldbrk, origbrk;
 194        struct mm_struct *mm = current->mm;
 195        struct vm_area_struct *next;
 196        unsigned long min_brk;
 197        bool populate;
 198        bool downgraded = false;
 199        LIST_HEAD(uf);
 200
 201        if (mmap_write_lock_killable(mm))
 202                return -EINTR;
 203
 204        origbrk = mm->brk;
 205
 206#ifdef CONFIG_COMPAT_BRK
 207        /*
 208         * CONFIG_COMPAT_BRK can still be overridden by setting
 209         * randomize_va_space to 2, which will still cause mm->start_brk
 210         * to be arbitrarily shifted
 211         */
 212        if (current->brk_randomized)
 213                min_brk = mm->start_brk;
 214        else
 215                min_brk = mm->end_data;
 216#else
 217        min_brk = mm->start_brk;
 218#endif
 219        if (brk < min_brk)
 220                goto out;
 221
 222        /*
 223         * Check against rlimit here. If this check is done later after the test
 224         * of oldbrk with newbrk then it can escape the test and let the data
 225         * segment grow beyond its set limit the in case where the limit is
 226         * not page aligned -Ram Gupta
 227         */
 228        if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 229                              mm->end_data, mm->start_data))
 230                goto out;
 231
 232        newbrk = PAGE_ALIGN(brk);
 233        oldbrk = PAGE_ALIGN(mm->brk);
 234        if (oldbrk == newbrk) {
 235                mm->brk = brk;
 236                goto success;
 237        }
 238
 239        /*
 240         * Always allow shrinking brk.
 241         * __do_munmap() may downgrade mmap_lock to read.
 242         */
 243        if (brk <= mm->brk) {
 244                int ret;
 245
 246                /*
 247                 * mm->brk must to be protected by write mmap_lock so update it
 248                 * before downgrading mmap_lock. When __do_munmap() fails,
 249                 * mm->brk will be restored from origbrk.
 250                 */
 251                mm->brk = brk;
 252                ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
 253                if (ret < 0) {
 254                        mm->brk = origbrk;
 255                        goto out;
 256                } else if (ret == 1) {
 257                        downgraded = true;
 258                }
 259                goto success;
 260        }
 261
 262        /* Check against existing mmap mappings. */
 263        next = find_vma(mm, oldbrk);
 264        if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 265                goto out;
 266
 267        /* Ok, looks good - let it rip. */
 268        if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
 269                goto out;
 270        mm->brk = brk;
 271
 272success:
 273        populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 274        if (downgraded)
 275                mmap_read_unlock(mm);
 276        else
 277                mmap_write_unlock(mm);
 278        userfaultfd_unmap_complete(mm, &uf);
 279        if (populate)
 280                mm_populate(oldbrk, newbrk - oldbrk);
 281        return brk;
 282
 283out:
 284        retval = origbrk;
 285        mmap_write_unlock(mm);
 286        return retval;
 287}
 288
 289static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
 290{
 291        unsigned long gap, prev_end;
 292
 293        /*
 294         * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 295         * allow two stack_guard_gaps between them here, and when choosing
 296         * an unmapped area; whereas when expanding we only require one.
 297         * That's a little inconsistent, but keeps the code here simpler.
 298         */
 299        gap = vm_start_gap(vma);
 300        if (vma->vm_prev) {
 301                prev_end = vm_end_gap(vma->vm_prev);
 302                if (gap > prev_end)
 303                        gap -= prev_end;
 304                else
 305                        gap = 0;
 306        }
 307        return gap;
 308}
 309
 310#ifdef CONFIG_DEBUG_VM_RB
 311static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
 312{
 313        unsigned long max = vma_compute_gap(vma), subtree_gap;
 314        if (vma->vm_rb.rb_left) {
 315                subtree_gap = rb_entry(vma->vm_rb.rb_left,
 316                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 317                if (subtree_gap > max)
 318                        max = subtree_gap;
 319        }
 320        if (vma->vm_rb.rb_right) {
 321                subtree_gap = rb_entry(vma->vm_rb.rb_right,
 322                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 323                if (subtree_gap > max)
 324                        max = subtree_gap;
 325        }
 326        return max;
 327}
 328
 329static int browse_rb(struct mm_struct *mm)
 330{
 331        struct rb_root *root = &mm->mm_rb;
 332        int i = 0, j, bug = 0;
 333        struct rb_node *nd, *pn = NULL;
 334        unsigned long prev = 0, pend = 0;
 335
 336        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 337                struct vm_area_struct *vma;
 338                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 339                if (vma->vm_start < prev) {
 340                        pr_emerg("vm_start %lx < prev %lx\n",
 341                                  vma->vm_start, prev);
 342                        bug = 1;
 343                }
 344                if (vma->vm_start < pend) {
 345                        pr_emerg("vm_start %lx < pend %lx\n",
 346                                  vma->vm_start, pend);
 347                        bug = 1;
 348                }
 349                if (vma->vm_start > vma->vm_end) {
 350                        pr_emerg("vm_start %lx > vm_end %lx\n",
 351                                  vma->vm_start, vma->vm_end);
 352                        bug = 1;
 353                }
 354                spin_lock(&mm->page_table_lock);
 355                if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 356                        pr_emerg("free gap %lx, correct %lx\n",
 357                               vma->rb_subtree_gap,
 358                               vma_compute_subtree_gap(vma));
 359                        bug = 1;
 360                }
 361                spin_unlock(&mm->page_table_lock);
 362                i++;
 363                pn = nd;
 364                prev = vma->vm_start;
 365                pend = vma->vm_end;
 366        }
 367        j = 0;
 368        for (nd = pn; nd; nd = rb_prev(nd))
 369                j++;
 370        if (i != j) {
 371                pr_emerg("backwards %d, forwards %d\n", j, i);
 372                bug = 1;
 373        }
 374        return bug ? -1 : i;
 375}
 376
 377static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 378{
 379        struct rb_node *nd;
 380
 381        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 382                struct vm_area_struct *vma;
 383                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 384                VM_BUG_ON_VMA(vma != ignore &&
 385                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 386                        vma);
 387        }
 388}
 389
 390static void validate_mm(struct mm_struct *mm)
 391{
 392        int bug = 0;
 393        int i = 0;
 394        unsigned long highest_address = 0;
 395        struct vm_area_struct *vma = mm->mmap;
 396
 397        while (vma) {
 398                struct anon_vma *anon_vma = vma->anon_vma;
 399                struct anon_vma_chain *avc;
 400
 401                if (anon_vma) {
 402                        anon_vma_lock_read(anon_vma);
 403                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 404                                anon_vma_interval_tree_verify(avc);
 405                        anon_vma_unlock_read(anon_vma);
 406                }
 407
 408                highest_address = vm_end_gap(vma);
 409                vma = vma->vm_next;
 410                i++;
 411        }
 412        if (i != mm->map_count) {
 413                pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 414                bug = 1;
 415        }
 416        if (highest_address != mm->highest_vm_end) {
 417                pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 418                          mm->highest_vm_end, highest_address);
 419                bug = 1;
 420        }
 421        i = browse_rb(mm);
 422        if (i != mm->map_count) {
 423                if (i != -1)
 424                        pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 425                bug = 1;
 426        }
 427        VM_BUG_ON_MM(bug, mm);
 428}
 429#else
 430#define validate_mm_rb(root, ignore) do { } while (0)
 431#define validate_mm(mm) do { } while (0)
 432#endif
 433
 434RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
 435                         struct vm_area_struct, vm_rb,
 436                         unsigned long, rb_subtree_gap, vma_compute_gap)
 437
 438/*
 439 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 440 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 441 * in the rbtree.
 442 */
 443static void vma_gap_update(struct vm_area_struct *vma)
 444{
 445        /*
 446         * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
 447         * a callback function that does exactly what we want.
 448         */
 449        vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 450}
 451
 452static inline void vma_rb_insert(struct vm_area_struct *vma,
 453                                 struct rb_root *root)
 454{
 455        /* All rb_subtree_gap values must be consistent prior to insertion */
 456        validate_mm_rb(root, NULL);
 457
 458        rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 459}
 460
 461static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 462{
 463        /*
 464         * Note rb_erase_augmented is a fairly large inline function,
 465         * so make sure we instantiate it only once with our desired
 466         * augmented rbtree callbacks.
 467         */
 468        rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 469}
 470
 471static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 472                                                struct rb_root *root,
 473                                                struct vm_area_struct *ignore)
 474{
 475        /*
 476         * All rb_subtree_gap values must be consistent prior to erase,
 477         * with the possible exception of the "next" vma being erased if
 478         * next->vm_start was reduced.
 479         */
 480        validate_mm_rb(root, ignore);
 481
 482        __vma_rb_erase(vma, root);
 483}
 484
 485static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 486                                         struct rb_root *root)
 487{
 488        /*
 489         * All rb_subtree_gap values must be consistent prior to erase,
 490         * with the possible exception of the vma being erased.
 491         */
 492        validate_mm_rb(root, vma);
 493
 494        __vma_rb_erase(vma, root);
 495}
 496
 497/*
 498 * vma has some anon_vma assigned, and is already inserted on that
 499 * anon_vma's interval trees.
 500 *
 501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 502 * vma must be removed from the anon_vma's interval trees using
 503 * anon_vma_interval_tree_pre_update_vma().
 504 *
 505 * After the update, the vma will be reinserted using
 506 * anon_vma_interval_tree_post_update_vma().
 507 *
 508 * The entire update must be protected by exclusive mmap_lock and by
 509 * the root anon_vma's mutex.
 510 */
 511static inline void
 512anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 513{
 514        struct anon_vma_chain *avc;
 515
 516        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 517                anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 518}
 519
 520static inline void
 521anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 522{
 523        struct anon_vma_chain *avc;
 524
 525        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 526                anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 527}
 528
 529static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 530                unsigned long end, struct vm_area_struct **pprev,
 531                struct rb_node ***rb_link, struct rb_node **rb_parent)
 532{
 533        struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 534
 535        __rb_link = &mm->mm_rb.rb_node;
 536        rb_prev = __rb_parent = NULL;
 537
 538        while (*__rb_link) {
 539                struct vm_area_struct *vma_tmp;
 540
 541                __rb_parent = *__rb_link;
 542                vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 543
 544                if (vma_tmp->vm_end > addr) {
 545                        /* Fail if an existing vma overlaps the area */
 546                        if (vma_tmp->vm_start < end)
 547                                return -ENOMEM;
 548                        __rb_link = &__rb_parent->rb_left;
 549                } else {
 550                        rb_prev = __rb_parent;
 551                        __rb_link = &__rb_parent->rb_right;
 552                }
 553        }
 554
 555        *pprev = NULL;
 556        if (rb_prev)
 557                *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 558        *rb_link = __rb_link;
 559        *rb_parent = __rb_parent;
 560        return 0;
 561}
 562
 563static unsigned long count_vma_pages_range(struct mm_struct *mm,
 564                unsigned long addr, unsigned long end)
 565{
 566        unsigned long nr_pages = 0;
 567        struct vm_area_struct *vma;
 568
 569        /* Find first overlaping mapping */
 570        vma = find_vma_intersection(mm, addr, end);
 571        if (!vma)
 572                return 0;
 573
 574        nr_pages = (min(end, vma->vm_end) -
 575                max(addr, vma->vm_start)) >> PAGE_SHIFT;
 576
 577        /* Iterate over the rest of the overlaps */
 578        for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 579                unsigned long overlap_len;
 580
 581                if (vma->vm_start > end)
 582                        break;
 583
 584                overlap_len = min(end, vma->vm_end) - vma->vm_start;
 585                nr_pages += overlap_len >> PAGE_SHIFT;
 586        }
 587
 588        return nr_pages;
 589}
 590
 591void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 592                struct rb_node **rb_link, struct rb_node *rb_parent)
 593{
 594        /* Update tracking information for the gap following the new vma. */
 595        if (vma->vm_next)
 596                vma_gap_update(vma->vm_next);
 597        else
 598                mm->highest_vm_end = vm_end_gap(vma);
 599
 600        /*
 601         * vma->vm_prev wasn't known when we followed the rbtree to find the
 602         * correct insertion point for that vma. As a result, we could not
 603         * update the vma vm_rb parents rb_subtree_gap values on the way down.
 604         * So, we first insert the vma with a zero rb_subtree_gap value
 605         * (to be consistent with what we did on the way down), and then
 606         * immediately update the gap to the correct value. Finally we
 607         * rebalance the rbtree after all augmented values have been set.
 608         */
 609        rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 610        vma->rb_subtree_gap = 0;
 611        vma_gap_update(vma);
 612        vma_rb_insert(vma, &mm->mm_rb);
 613}
 614
 615static void __vma_link_file(struct vm_area_struct *vma)
 616{
 617        struct file *file;
 618
 619        file = vma->vm_file;
 620        if (file) {
 621                struct address_space *mapping = file->f_mapping;
 622
 623                if (vma->vm_flags & VM_DENYWRITE)
 624                        atomic_dec(&file_inode(file)->i_writecount);
 625                if (vma->vm_flags & VM_SHARED)
 626                        atomic_inc(&mapping->i_mmap_writable);
 627
 628                flush_dcache_mmap_lock(mapping);
 629                vma_interval_tree_insert(vma, &mapping->i_mmap);
 630                flush_dcache_mmap_unlock(mapping);
 631        }
 632}
 633
 634static void
 635__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 636        struct vm_area_struct *prev, struct rb_node **rb_link,
 637        struct rb_node *rb_parent)
 638{
 639        __vma_link_list(mm, vma, prev);
 640        __vma_link_rb(mm, vma, rb_link, rb_parent);
 641}
 642
 643static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 644                        struct vm_area_struct *prev, struct rb_node **rb_link,
 645                        struct rb_node *rb_parent)
 646{
 647        struct address_space *mapping = NULL;
 648
 649        if (vma->vm_file) {
 650                mapping = vma->vm_file->f_mapping;
 651                i_mmap_lock_write(mapping);
 652        }
 653
 654        __vma_link(mm, vma, prev, rb_link, rb_parent);
 655        __vma_link_file(vma);
 656
 657        if (mapping)
 658                i_mmap_unlock_write(mapping);
 659
 660        mm->map_count++;
 661        validate_mm(mm);
 662}
 663
 664/*
 665 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 666 * mm's list and rbtree.  It has already been inserted into the interval tree.
 667 */
 668static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 669{
 670        struct vm_area_struct *prev;
 671        struct rb_node **rb_link, *rb_parent;
 672
 673        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 674                           &prev, &rb_link, &rb_parent))
 675                BUG();
 676        __vma_link(mm, vma, prev, rb_link, rb_parent);
 677        mm->map_count++;
 678}
 679
 680static __always_inline void __vma_unlink_common(struct mm_struct *mm,
 681                                                struct vm_area_struct *vma,
 682                                                struct vm_area_struct *ignore)
 683{
 684        vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 685        __vma_unlink_list(mm, vma);
 686        /* Kill the cache */
 687        vmacache_invalidate(mm);
 688}
 689
 690/*
 691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 692 * is already present in an i_mmap tree without adjusting the tree.
 693 * The following helper function should be used when such adjustments
 694 * are necessary.  The "insert" vma (if any) is to be inserted
 695 * before we drop the necessary locks.
 696 */
 697int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 698        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 699        struct vm_area_struct *expand)
 700{
 701        struct mm_struct *mm = vma->vm_mm;
 702        struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 703        struct address_space *mapping = NULL;
 704        struct rb_root_cached *root = NULL;
 705        struct anon_vma *anon_vma = NULL;
 706        struct file *file = vma->vm_file;
 707        bool start_changed = false, end_changed = false;
 708        long adjust_next = 0;
 709        int remove_next = 0;
 710
 711        if (next && !insert) {
 712                struct vm_area_struct *exporter = NULL, *importer = NULL;
 713
 714                if (end >= next->vm_end) {
 715                        /*
 716                         * vma expands, overlapping all the next, and
 717                         * perhaps the one after too (mprotect case 6).
 718                         * The only other cases that gets here are
 719                         * case 1, case 7 and case 8.
 720                         */
 721                        if (next == expand) {
 722                                /*
 723                                 * The only case where we don't expand "vma"
 724                                 * and we expand "next" instead is case 8.
 725                                 */
 726                                VM_WARN_ON(end != next->vm_end);
 727                                /*
 728                                 * remove_next == 3 means we're
 729                                 * removing "vma" and that to do so we
 730                                 * swapped "vma" and "next".
 731                                 */
 732                                remove_next = 3;
 733                                VM_WARN_ON(file != next->vm_file);
 734                                swap(vma, next);
 735                        } else {
 736                                VM_WARN_ON(expand != vma);
 737                                /*
 738                                 * case 1, 6, 7, remove_next == 2 is case 6,
 739                                 * remove_next == 1 is case 1 or 7.
 740                                 */
 741                                remove_next = 1 + (end > next->vm_end);
 742                                VM_WARN_ON(remove_next == 2 &&
 743                                           end != next->vm_next->vm_end);
 744                                /* trim end to next, for case 6 first pass */
 745                                end = next->vm_end;
 746                        }
 747
 748                        exporter = next;
 749                        importer = vma;
 750
 751                        /*
 752                         * If next doesn't have anon_vma, import from vma after
 753                         * next, if the vma overlaps with it.
 754                         */
 755                        if (remove_next == 2 && !next->anon_vma)
 756                                exporter = next->vm_next;
 757
 758                } else if (end > next->vm_start) {
 759                        /*
 760                         * vma expands, overlapping part of the next:
 761                         * mprotect case 5 shifting the boundary up.
 762                         */
 763                        adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 764                        exporter = next;
 765                        importer = vma;
 766                        VM_WARN_ON(expand != importer);
 767                } else if (end < vma->vm_end) {
 768                        /*
 769                         * vma shrinks, and !insert tells it's not
 770                         * split_vma inserting another: so it must be
 771                         * mprotect case 4 shifting the boundary down.
 772                         */
 773                        adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 774                        exporter = vma;
 775                        importer = next;
 776                        VM_WARN_ON(expand != importer);
 777                }
 778
 779                /*
 780                 * Easily overlooked: when mprotect shifts the boundary,
 781                 * make sure the expanding vma has anon_vma set if the
 782                 * shrinking vma had, to cover any anon pages imported.
 783                 */
 784                if (exporter && exporter->anon_vma && !importer->anon_vma) {
 785                        int error;
 786
 787                        importer->anon_vma = exporter->anon_vma;
 788                        error = anon_vma_clone(importer, exporter);
 789                        if (error)
 790                                return error;
 791                }
 792        }
 793again:
 794        vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 795
 796        if (file) {
 797                mapping = file->f_mapping;
 798                root = &mapping->i_mmap;
 799                uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 800
 801                if (adjust_next)
 802                        uprobe_munmap(next, next->vm_start, next->vm_end);
 803
 804                i_mmap_lock_write(mapping);
 805                if (insert) {
 806                        /*
 807                         * Put into interval tree now, so instantiated pages
 808                         * are visible to arm/parisc __flush_dcache_page
 809                         * throughout; but we cannot insert into address
 810                         * space until vma start or end is updated.
 811                         */
 812                        __vma_link_file(insert);
 813                }
 814        }
 815
 816        anon_vma = vma->anon_vma;
 817        if (!anon_vma && adjust_next)
 818                anon_vma = next->anon_vma;
 819        if (anon_vma) {
 820                VM_WARN_ON(adjust_next && next->anon_vma &&
 821                           anon_vma != next->anon_vma);
 822                anon_vma_lock_write(anon_vma);
 823                anon_vma_interval_tree_pre_update_vma(vma);
 824                if (adjust_next)
 825                        anon_vma_interval_tree_pre_update_vma(next);
 826        }
 827
 828        if (root) {
 829                flush_dcache_mmap_lock(mapping);
 830                vma_interval_tree_remove(vma, root);
 831                if (adjust_next)
 832                        vma_interval_tree_remove(next, root);
 833        }
 834
 835        if (start != vma->vm_start) {
 836                vma->vm_start = start;
 837                start_changed = true;
 838        }
 839        if (end != vma->vm_end) {
 840                vma->vm_end = end;
 841                end_changed = true;
 842        }
 843        vma->vm_pgoff = pgoff;
 844        if (adjust_next) {
 845                next->vm_start += adjust_next << PAGE_SHIFT;
 846                next->vm_pgoff += adjust_next;
 847        }
 848
 849        if (root) {
 850                if (adjust_next)
 851                        vma_interval_tree_insert(next, root);
 852                vma_interval_tree_insert(vma, root);
 853                flush_dcache_mmap_unlock(mapping);
 854        }
 855
 856        if (remove_next) {
 857                /*
 858                 * vma_merge has merged next into vma, and needs
 859                 * us to remove next before dropping the locks.
 860                 */
 861                if (remove_next != 3)
 862                        __vma_unlink_common(mm, next, next);
 863                else
 864                        /*
 865                         * vma is not before next if they've been
 866                         * swapped.
 867                         *
 868                         * pre-swap() next->vm_start was reduced so
 869                         * tell validate_mm_rb to ignore pre-swap()
 870                         * "next" (which is stored in post-swap()
 871                         * "vma").
 872                         */
 873                        __vma_unlink_common(mm, next, vma);
 874                if (file)
 875                        __remove_shared_vm_struct(next, file, mapping);
 876        } else if (insert) {
 877                /*
 878                 * split_vma has split insert from vma, and needs
 879                 * us to insert it before dropping the locks
 880                 * (it may either follow vma or precede it).
 881                 */
 882                __insert_vm_struct(mm, insert);
 883        } else {
 884                if (start_changed)
 885                        vma_gap_update(vma);
 886                if (end_changed) {
 887                        if (!next)
 888                                mm->highest_vm_end = vm_end_gap(vma);
 889                        else if (!adjust_next)
 890                                vma_gap_update(next);
 891                }
 892        }
 893
 894        if (anon_vma) {
 895                anon_vma_interval_tree_post_update_vma(vma);
 896                if (adjust_next)
 897                        anon_vma_interval_tree_post_update_vma(next);
 898                anon_vma_unlock_write(anon_vma);
 899        }
 900        if (mapping)
 901                i_mmap_unlock_write(mapping);
 902
 903        if (root) {
 904                uprobe_mmap(vma);
 905
 906                if (adjust_next)
 907                        uprobe_mmap(next);
 908        }
 909
 910        if (remove_next) {
 911                if (file) {
 912                        uprobe_munmap(next, next->vm_start, next->vm_end);
 913                        fput(file);
 914                }
 915                if (next->anon_vma)
 916                        anon_vma_merge(vma, next);
 917                mm->map_count--;
 918                mpol_put(vma_policy(next));
 919                vm_area_free(next);
 920                /*
 921                 * In mprotect's case 6 (see comments on vma_merge),
 922                 * we must remove another next too. It would clutter
 923                 * up the code too much to do both in one go.
 924                 */
 925                if (remove_next != 3) {
 926                        /*
 927                         * If "next" was removed and vma->vm_end was
 928                         * expanded (up) over it, in turn
 929                         * "next->vm_prev->vm_end" changed and the
 930                         * "vma->vm_next" gap must be updated.
 931                         */
 932                        next = vma->vm_next;
 933                } else {
 934                        /*
 935                         * For the scope of the comment "next" and
 936                         * "vma" considered pre-swap(): if "vma" was
 937                         * removed, next->vm_start was expanded (down)
 938                         * over it and the "next" gap must be updated.
 939                         * Because of the swap() the post-swap() "vma"
 940                         * actually points to pre-swap() "next"
 941                         * (post-swap() "next" as opposed is now a
 942                         * dangling pointer).
 943                         */
 944                        next = vma;
 945                }
 946                if (remove_next == 2) {
 947                        remove_next = 1;
 948                        end = next->vm_end;
 949                        goto again;
 950                }
 951                else if (next)
 952                        vma_gap_update(next);
 953                else {
 954                        /*
 955                         * If remove_next == 2 we obviously can't
 956                         * reach this path.
 957                         *
 958                         * If remove_next == 3 we can't reach this
 959                         * path because pre-swap() next is always not
 960                         * NULL. pre-swap() "next" is not being
 961                         * removed and its next->vm_end is not altered
 962                         * (and furthermore "end" already matches
 963                         * next->vm_end in remove_next == 3).
 964                         *
 965                         * We reach this only in the remove_next == 1
 966                         * case if the "next" vma that was removed was
 967                         * the highest vma of the mm. However in such
 968                         * case next->vm_end == "end" and the extended
 969                         * "vma" has vma->vm_end == next->vm_end so
 970                         * mm->highest_vm_end doesn't need any update
 971                         * in remove_next == 1 case.
 972                         */
 973                        VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
 974                }
 975        }
 976        if (insert && file)
 977                uprobe_mmap(insert);
 978
 979        validate_mm(mm);
 980
 981        return 0;
 982}
 983
 984/*
 985 * If the vma has a ->close operation then the driver probably needs to release
 986 * per-vma resources, so we don't attempt to merge those.
 987 */
 988static inline int is_mergeable_vma(struct vm_area_struct *vma,
 989                                struct file *file, unsigned long vm_flags,
 990                                struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 991{
 992        /*
 993         * VM_SOFTDIRTY should not prevent from VMA merging, if we
 994         * match the flags but dirty bit -- the caller should mark
 995         * merged VMA as dirty. If dirty bit won't be excluded from
 996         * comparison, we increase pressure on the memory system forcing
 997         * the kernel to generate new VMAs when old one could be
 998         * extended instead.
 999         */
1000        if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1001                return 0;
1002        if (vma->vm_file != file)
1003                return 0;
1004        if (vma->vm_ops && vma->vm_ops->close)
1005                return 0;
1006        if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1007                return 0;
1008        return 1;
1009}
1010
1011static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1012                                        struct anon_vma *anon_vma2,
1013                                        struct vm_area_struct *vma)
1014{
1015        /*
1016         * The list_is_singular() test is to avoid merging VMA cloned from
1017         * parents. This can improve scalability caused by anon_vma lock.
1018         */
1019        if ((!anon_vma1 || !anon_vma2) && (!vma ||
1020                list_is_singular(&vma->anon_vma_chain)))
1021                return 1;
1022        return anon_vma1 == anon_vma2;
1023}
1024
1025/*
1026 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1027 * in front of (at a lower virtual address and file offset than) the vma.
1028 *
1029 * We cannot merge two vmas if they have differently assigned (non-NULL)
1030 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1031 *
1032 * We don't check here for the merged mmap wrapping around the end of pagecache
1033 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1034 * wrap, nor mmaps which cover the final page at index -1UL.
1035 */
1036static int
1037can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1038                     struct anon_vma *anon_vma, struct file *file,
1039                     pgoff_t vm_pgoff,
1040                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1041{
1042        if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1043            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1044                if (vma->vm_pgoff == vm_pgoff)
1045                        return 1;
1046        }
1047        return 0;
1048}
1049
1050/*
1051 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1052 * beyond (at a higher virtual address and file offset than) the vma.
1053 *
1054 * We cannot merge two vmas if they have differently assigned (non-NULL)
1055 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1056 */
1057static int
1058can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1059                    struct anon_vma *anon_vma, struct file *file,
1060                    pgoff_t vm_pgoff,
1061                    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1062{
1063        if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1064            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1065                pgoff_t vm_pglen;
1066                vm_pglen = vma_pages(vma);
1067                if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1068                        return 1;
1069        }
1070        return 0;
1071}
1072
1073/*
1074 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1075 * whether that can be merged with its predecessor or its successor.
1076 * Or both (it neatly fills a hole).
1077 *
1078 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1079 * certain not to be mapped by the time vma_merge is called; but when
1080 * called for mprotect, it is certain to be already mapped (either at
1081 * an offset within prev, or at the start of next), and the flags of
1082 * this area are about to be changed to vm_flags - and the no-change
1083 * case has already been eliminated.
1084 *
1085 * The following mprotect cases have to be considered, where AAAA is
1086 * the area passed down from mprotect_fixup, never extending beyond one
1087 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1088 *
1089 *     AAAA             AAAA                   AAAA
1090 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1091 *    cannot merge    might become       might become
1092 *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1093 *    mmap, brk or    case 4 below       case 5 below
1094 *    mremap move:
1095 *                        AAAA               AAAA
1096 *                    PPPP    NNNN       PPPPNNNNXXXX
1097 *                    might become       might become
1098 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1099 *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1100 *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1101 *
1102 * It is important for case 8 that the vma NNNN overlapping the
1103 * region AAAA is never going to extended over XXXX. Instead XXXX must
1104 * be extended in region AAAA and NNNN must be removed. This way in
1105 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1106 * rmap_locks, the properties of the merged vma will be already
1107 * correct for the whole merged range. Some of those properties like
1108 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1109 * be correct for the whole merged range immediately after the
1110 * rmap_locks are released. Otherwise if XXXX would be removed and
1111 * NNNN would be extended over the XXXX range, remove_migration_ptes
1112 * or other rmap walkers (if working on addresses beyond the "end"
1113 * parameter) may establish ptes with the wrong permissions of NNNN
1114 * instead of the right permissions of XXXX.
1115 */
1116struct vm_area_struct *vma_merge(struct mm_struct *mm,
1117                        struct vm_area_struct *prev, unsigned long addr,
1118                        unsigned long end, unsigned long vm_flags,
1119                        struct anon_vma *anon_vma, struct file *file,
1120                        pgoff_t pgoff, struct mempolicy *policy,
1121                        struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1122{
1123        pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1124        struct vm_area_struct *area, *next;
1125        int err;
1126
1127        /*
1128         * We later require that vma->vm_flags == vm_flags,
1129         * so this tests vma->vm_flags & VM_SPECIAL, too.
1130         */
1131        if (vm_flags & VM_SPECIAL)
1132                return NULL;
1133
1134        if (prev)
1135                next = prev->vm_next;
1136        else
1137                next = mm->mmap;
1138        area = next;
1139        if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1140                next = next->vm_next;
1141
1142        /* verify some invariant that must be enforced by the caller */
1143        VM_WARN_ON(prev && addr <= prev->vm_start);
1144        VM_WARN_ON(area && end > area->vm_end);
1145        VM_WARN_ON(addr >= end);
1146
1147        /*
1148         * Can it merge with the predecessor?
1149         */
1150        if (prev && prev->vm_end == addr &&
1151                        mpol_equal(vma_policy(prev), policy) &&
1152                        can_vma_merge_after(prev, vm_flags,
1153                                            anon_vma, file, pgoff,
1154                                            vm_userfaultfd_ctx)) {
1155                /*
1156                 * OK, it can.  Can we now merge in the successor as well?
1157                 */
1158                if (next && end == next->vm_start &&
1159                                mpol_equal(policy, vma_policy(next)) &&
1160                                can_vma_merge_before(next, vm_flags,
1161                                                     anon_vma, file,
1162                                                     pgoff+pglen,
1163                                                     vm_userfaultfd_ctx) &&
1164                                is_mergeable_anon_vma(prev->anon_vma,
1165                                                      next->anon_vma, NULL)) {
1166                                                        /* cases 1, 6 */
1167                        err = __vma_adjust(prev, prev->vm_start,
1168                                         next->vm_end, prev->vm_pgoff, NULL,
1169                                         prev);
1170                } else                                  /* cases 2, 5, 7 */
1171                        err = __vma_adjust(prev, prev->vm_start,
1172                                         end, prev->vm_pgoff, NULL, prev);
1173                if (err)
1174                        return NULL;
1175                khugepaged_enter_vma_merge(prev, vm_flags);
1176                return prev;
1177        }
1178
1179        /*
1180         * Can this new request be merged in front of next?
1181         */
1182        if (next && end == next->vm_start &&
1183                        mpol_equal(policy, vma_policy(next)) &&
1184                        can_vma_merge_before(next, vm_flags,
1185                                             anon_vma, file, pgoff+pglen,
1186                                             vm_userfaultfd_ctx)) {
1187                if (prev && addr < prev->vm_end)        /* case 4 */
1188                        err = __vma_adjust(prev, prev->vm_start,
1189                                         addr, prev->vm_pgoff, NULL, next);
1190                else {                                  /* cases 3, 8 */
1191                        err = __vma_adjust(area, addr, next->vm_end,
1192                                         next->vm_pgoff - pglen, NULL, next);
1193                        /*
1194                         * In case 3 area is already equal to next and
1195                         * this is a noop, but in case 8 "area" has
1196                         * been removed and next was expanded over it.
1197                         */
1198                        area = next;
1199                }
1200                if (err)
1201                        return NULL;
1202                khugepaged_enter_vma_merge(area, vm_flags);
1203                return area;
1204        }
1205
1206        return NULL;
1207}
1208
1209/*
1210 * Rough compatibility check to quickly see if it's even worth looking
1211 * at sharing an anon_vma.
1212 *
1213 * They need to have the same vm_file, and the flags can only differ
1214 * in things that mprotect may change.
1215 *
1216 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1217 * we can merge the two vma's. For example, we refuse to merge a vma if
1218 * there is a vm_ops->close() function, because that indicates that the
1219 * driver is doing some kind of reference counting. But that doesn't
1220 * really matter for the anon_vma sharing case.
1221 */
1222static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1223{
1224        return a->vm_end == b->vm_start &&
1225                mpol_equal(vma_policy(a), vma_policy(b)) &&
1226                a->vm_file == b->vm_file &&
1227                !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1228                b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1229}
1230
1231/*
1232 * Do some basic sanity checking to see if we can re-use the anon_vma
1233 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1234 * the same as 'old', the other will be the new one that is trying
1235 * to share the anon_vma.
1236 *
1237 * NOTE! This runs with mm_sem held for reading, so it is possible that
1238 * the anon_vma of 'old' is concurrently in the process of being set up
1239 * by another page fault trying to merge _that_. But that's ok: if it
1240 * is being set up, that automatically means that it will be a singleton
1241 * acceptable for merging, so we can do all of this optimistically. But
1242 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1243 *
1244 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1245 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1246 * is to return an anon_vma that is "complex" due to having gone through
1247 * a fork).
1248 *
1249 * We also make sure that the two vma's are compatible (adjacent,
1250 * and with the same memory policies). That's all stable, even with just
1251 * a read lock on the mm_sem.
1252 */
1253static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1254{
1255        if (anon_vma_compatible(a, b)) {
1256                struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1257
1258                if (anon_vma && list_is_singular(&old->anon_vma_chain))
1259                        return anon_vma;
1260        }
1261        return NULL;
1262}
1263
1264/*
1265 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1266 * neighbouring vmas for a suitable anon_vma, before it goes off
1267 * to allocate a new anon_vma.  It checks because a repetitive
1268 * sequence of mprotects and faults may otherwise lead to distinct
1269 * anon_vmas being allocated, preventing vma merge in subsequent
1270 * mprotect.
1271 */
1272struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1273{
1274        struct anon_vma *anon_vma = NULL;
1275
1276        /* Try next first. */
1277        if (vma->vm_next) {
1278                anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1279                if (anon_vma)
1280                        return anon_vma;
1281        }
1282
1283        /* Try prev next. */
1284        if (vma->vm_prev)
1285                anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1286
1287        /*
1288         * We might reach here with anon_vma == NULL if we can't find
1289         * any reusable anon_vma.
1290         * There's no absolute need to look only at touching neighbours:
1291         * we could search further afield for "compatible" anon_vmas.
1292         * But it would probably just be a waste of time searching,
1293         * or lead to too many vmas hanging off the same anon_vma.
1294         * We're trying to allow mprotect remerging later on,
1295         * not trying to minimize memory used for anon_vmas.
1296         */
1297        return anon_vma;
1298}
1299
1300/*
1301 * If a hint addr is less than mmap_min_addr change hint to be as
1302 * low as possible but still greater than mmap_min_addr
1303 */
1304static inline unsigned long round_hint_to_min(unsigned long hint)
1305{
1306        hint &= PAGE_MASK;
1307        if (((void *)hint != NULL) &&
1308            (hint < mmap_min_addr))
1309                return PAGE_ALIGN(mmap_min_addr);
1310        return hint;
1311}
1312
1313static inline int mlock_future_check(struct mm_struct *mm,
1314                                     unsigned long flags,
1315                                     unsigned long len)
1316{
1317        unsigned long locked, lock_limit;
1318
1319        /*  mlock MCL_FUTURE? */
1320        if (flags & VM_LOCKED) {
1321                locked = len >> PAGE_SHIFT;
1322                locked += mm->locked_vm;
1323                lock_limit = rlimit(RLIMIT_MEMLOCK);
1324                lock_limit >>= PAGE_SHIFT;
1325                if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1326                        return -EAGAIN;
1327        }
1328        return 0;
1329}
1330
1331static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1332{
1333        if (S_ISREG(inode->i_mode))
1334                return MAX_LFS_FILESIZE;
1335
1336        if (S_ISBLK(inode->i_mode))
1337                return MAX_LFS_FILESIZE;
1338
1339        if (S_ISSOCK(inode->i_mode))
1340                return MAX_LFS_FILESIZE;
1341
1342        /* Special "we do even unsigned file positions" case */
1343        if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1344                return 0;
1345
1346        /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1347        return ULONG_MAX;
1348}
1349
1350static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1351                                unsigned long pgoff, unsigned long len)
1352{
1353        u64 maxsize = file_mmap_size_max(file, inode);
1354
1355        if (maxsize && len > maxsize)
1356                return false;
1357        maxsize -= len;
1358        if (pgoff > maxsize >> PAGE_SHIFT)
1359                return false;
1360        return true;
1361}
1362
1363/*
1364 * The caller must write-lock current->mm->mmap_lock.
1365 */
1366unsigned long do_mmap(struct file *file, unsigned long addr,
1367                        unsigned long len, unsigned long prot,
1368                        unsigned long flags, unsigned long pgoff,
1369                        unsigned long *populate, struct list_head *uf)
1370{
1371        struct mm_struct *mm = current->mm;
1372        vm_flags_t vm_flags;
1373        int pkey = 0;
1374
1375        *populate = 0;
1376
1377        if (!len)
1378                return -EINVAL;
1379
1380        /*
1381         * Does the application expect PROT_READ to imply PROT_EXEC?
1382         *
1383         * (the exception is when the underlying filesystem is noexec
1384         *  mounted, in which case we dont add PROT_EXEC.)
1385         */
1386        if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1387                if (!(file && path_noexec(&file->f_path)))
1388                        prot |= PROT_EXEC;
1389
1390        /* force arch specific MAP_FIXED handling in get_unmapped_area */
1391        if (flags & MAP_FIXED_NOREPLACE)
1392                flags |= MAP_FIXED;
1393
1394        if (!(flags & MAP_FIXED))
1395                addr = round_hint_to_min(addr);
1396
1397        /* Careful about overflows.. */
1398        len = PAGE_ALIGN(len);
1399        if (!len)
1400                return -ENOMEM;
1401
1402        /* offset overflow? */
1403        if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1404                return -EOVERFLOW;
1405
1406        /* Too many mappings? */
1407        if (mm->map_count > sysctl_max_map_count)
1408                return -ENOMEM;
1409
1410        /* Obtain the address to map to. we verify (or select) it and ensure
1411         * that it represents a valid section of the address space.
1412         */
1413        addr = get_unmapped_area(file, addr, len, pgoff, flags);
1414        if (IS_ERR_VALUE(addr))
1415                return addr;
1416
1417        if (flags & MAP_FIXED_NOREPLACE) {
1418                struct vm_area_struct *vma = find_vma(mm, addr);
1419
1420                if (vma && vma->vm_start < addr + len)
1421                        return -EEXIST;
1422        }
1423
1424        if (prot == PROT_EXEC) {
1425                pkey = execute_only_pkey(mm);
1426                if (pkey < 0)
1427                        pkey = 0;
1428        }
1429
1430        /* Do simple checking here so the lower-level routines won't have
1431         * to. we assume access permissions have been handled by the open
1432         * of the memory object, so we don't do any here.
1433         */
1434        vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1435                        mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1436
1437        if (flags & MAP_LOCKED)
1438                if (!can_do_mlock())
1439                        return -EPERM;
1440
1441        if (mlock_future_check(mm, vm_flags, len))
1442                return -EAGAIN;
1443
1444        if (file) {
1445                struct inode *inode = file_inode(file);
1446                unsigned long flags_mask;
1447
1448                if (!file_mmap_ok(file, inode, pgoff, len))
1449                        return -EOVERFLOW;
1450
1451                flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1452
1453                switch (flags & MAP_TYPE) {
1454                case MAP_SHARED:
1455                        /*
1456                         * Force use of MAP_SHARED_VALIDATE with non-legacy
1457                         * flags. E.g. MAP_SYNC is dangerous to use with
1458                         * MAP_SHARED as you don't know which consistency model
1459                         * you will get. We silently ignore unsupported flags
1460                         * with MAP_SHARED to preserve backward compatibility.
1461                         */
1462                        flags &= LEGACY_MAP_MASK;
1463                        fallthrough;
1464                case MAP_SHARED_VALIDATE:
1465                        if (flags & ~flags_mask)
1466                                return -EOPNOTSUPP;
1467                        if (prot & PROT_WRITE) {
1468                                if (!(file->f_mode & FMODE_WRITE))
1469                                        return -EACCES;
1470                                if (IS_SWAPFILE(file->f_mapping->host))
1471                                        return -ETXTBSY;
1472                        }
1473
1474                        /*
1475                         * Make sure we don't allow writing to an append-only
1476                         * file..
1477                         */
1478                        if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1479                                return -EACCES;
1480
1481                        /*
1482                         * Make sure there are no mandatory locks on the file.
1483                         */
1484                        if (locks_verify_locked(file))
1485                                return -EAGAIN;
1486
1487                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1488                        if (!(file->f_mode & FMODE_WRITE))
1489                                vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1490                        fallthrough;
1491                case MAP_PRIVATE:
1492                        if (!(file->f_mode & FMODE_READ))
1493                                return -EACCES;
1494                        if (path_noexec(&file->f_path)) {
1495                                if (vm_flags & VM_EXEC)
1496                                        return -EPERM;
1497                                vm_flags &= ~VM_MAYEXEC;
1498                        }
1499
1500                        if (!file->f_op->mmap)
1501                                return -ENODEV;
1502                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503                                return -EINVAL;
1504                        break;
1505
1506                default:
1507                        return -EINVAL;
1508                }
1509        } else {
1510                switch (flags & MAP_TYPE) {
1511                case MAP_SHARED:
1512                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1513                                return -EINVAL;
1514                        /*
1515                         * Ignore pgoff.
1516                         */
1517                        pgoff = 0;
1518                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1519                        break;
1520                case MAP_PRIVATE:
1521                        /*
1522                         * Set pgoff according to addr for anon_vma.
1523                         */
1524                        pgoff = addr >> PAGE_SHIFT;
1525                        break;
1526                default:
1527                        return -EINVAL;
1528                }
1529        }
1530
1531        /*
1532         * Set 'VM_NORESERVE' if we should not account for the
1533         * memory use of this mapping.
1534         */
1535        if (flags & MAP_NORESERVE) {
1536                /* We honor MAP_NORESERVE if allowed to overcommit */
1537                if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1538                        vm_flags |= VM_NORESERVE;
1539
1540                /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541                if (file && is_file_hugepages(file))
1542                        vm_flags |= VM_NORESERVE;
1543        }
1544
1545        addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1546        if (!IS_ERR_VALUE(addr) &&
1547            ((vm_flags & VM_LOCKED) ||
1548             (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1549                *populate = len;
1550        return addr;
1551}
1552
1553unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1554                              unsigned long prot, unsigned long flags,
1555                              unsigned long fd, unsigned long pgoff)
1556{
1557        struct file *file = NULL;
1558        unsigned long retval;
1559
1560        if (!(flags & MAP_ANONYMOUS)) {
1561                audit_mmap_fd(fd, flags);
1562                file = fget(fd);
1563                if (!file)
1564                        return -EBADF;
1565                if (is_file_hugepages(file)) {
1566                        len = ALIGN(len, huge_page_size(hstate_file(file)));
1567                } else if (unlikely(flags & MAP_HUGETLB)) {
1568                        retval = -EINVAL;
1569                        goto out_fput;
1570                }
1571        } else if (flags & MAP_HUGETLB) {
1572                struct user_struct *user = NULL;
1573                struct hstate *hs;
1574
1575                hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1576                if (!hs)
1577                        return -EINVAL;
1578
1579                len = ALIGN(len, huge_page_size(hs));
1580                /*
1581                 * VM_NORESERVE is used because the reservations will be
1582                 * taken when vm_ops->mmap() is called
1583                 * A dummy user value is used because we are not locking
1584                 * memory so no accounting is necessary
1585                 */
1586                file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1587                                VM_NORESERVE,
1588                                &user, HUGETLB_ANONHUGE_INODE,
1589                                (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1590                if (IS_ERR(file))
1591                        return PTR_ERR(file);
1592        }
1593
1594        flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1595
1596        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1597out_fput:
1598        if (file)
1599                fput(file);
1600        return retval;
1601}
1602
1603SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1604                unsigned long, prot, unsigned long, flags,
1605                unsigned long, fd, unsigned long, pgoff)
1606{
1607        return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1608}
1609
1610#ifdef __ARCH_WANT_SYS_OLD_MMAP
1611struct mmap_arg_struct {
1612        unsigned long addr;
1613        unsigned long len;
1614        unsigned long prot;
1615        unsigned long flags;
1616        unsigned long fd;
1617        unsigned long offset;
1618};
1619
1620SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1621{
1622        struct mmap_arg_struct a;
1623
1624        if (copy_from_user(&a, arg, sizeof(a)))
1625                return -EFAULT;
1626        if (offset_in_page(a.offset))
1627                return -EINVAL;
1628
1629        return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1630                               a.offset >> PAGE_SHIFT);
1631}
1632#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1633
1634/*
1635 * Some shared mappings will want the pages marked read-only
1636 * to track write events. If so, we'll downgrade vm_page_prot
1637 * to the private version (using protection_map[] without the
1638 * VM_SHARED bit).
1639 */
1640int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1641{
1642        vm_flags_t vm_flags = vma->vm_flags;
1643        const struct vm_operations_struct *vm_ops = vma->vm_ops;
1644
1645        /* If it was private or non-writable, the write bit is already clear */
1646        if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1647                return 0;
1648
1649        /* The backer wishes to know when pages are first written to? */
1650        if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1651                return 1;
1652
1653        /* The open routine did something to the protections that pgprot_modify
1654         * won't preserve? */
1655        if (pgprot_val(vm_page_prot) !=
1656            pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1657                return 0;
1658
1659        /* Do we need to track softdirty? */
1660        if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1661                return 1;
1662
1663        /* Specialty mapping? */
1664        if (vm_flags & VM_PFNMAP)
1665                return 0;
1666
1667        /* Can the mapping track the dirty pages? */
1668        return vma->vm_file && vma->vm_file->f_mapping &&
1669                mapping_cap_account_dirty(vma->vm_file->f_mapping);
1670}
1671
1672/*
1673 * We account for memory if it's a private writeable mapping,
1674 * not hugepages and VM_NORESERVE wasn't set.
1675 */
1676static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1677{
1678        /*
1679         * hugetlb has its own accounting separate from the core VM
1680         * VM_HUGETLB may not be set yet so we cannot check for that flag.
1681         */
1682        if (file && is_file_hugepages(file))
1683                return 0;
1684
1685        return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1686}
1687
1688unsigned long mmap_region(struct file *file, unsigned long addr,
1689                unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1690                struct list_head *uf)
1691{
1692        struct mm_struct *mm = current->mm;
1693        struct vm_area_struct *vma, *prev, *merge;
1694        int error;
1695        struct rb_node **rb_link, *rb_parent;
1696        unsigned long charged = 0;
1697
1698        /* Check against address space limit. */
1699        if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1700                unsigned long nr_pages;
1701
1702                /*
1703                 * MAP_FIXED may remove pages of mappings that intersects with
1704                 * requested mapping. Account for the pages it would unmap.
1705                 */
1706                nr_pages = count_vma_pages_range(mm, addr, addr + len);
1707
1708                if (!may_expand_vm(mm, vm_flags,
1709                                        (len >> PAGE_SHIFT) - nr_pages))
1710                        return -ENOMEM;
1711        }
1712
1713        /* Clear old maps */
1714        while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1715                              &rb_parent)) {
1716                if (do_munmap(mm, addr, len, uf))
1717                        return -ENOMEM;
1718        }
1719
1720        /*
1721         * Private writable mapping: check memory availability
1722         */
1723        if (accountable_mapping(file, vm_flags)) {
1724                charged = len >> PAGE_SHIFT;
1725                if (security_vm_enough_memory_mm(mm, charged))
1726                        return -ENOMEM;
1727                vm_flags |= VM_ACCOUNT;
1728        }
1729
1730        /*
1731         * Can we just expand an old mapping?
1732         */
1733        vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1734                        NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1735        if (vma)
1736                goto out;
1737
1738        /*
1739         * Determine the object being mapped and call the appropriate
1740         * specific mapper. the address has already been validated, but
1741         * not unmapped, but the maps are removed from the list.
1742         */
1743        vma = vm_area_alloc(mm);
1744        if (!vma) {
1745                error = -ENOMEM;
1746                goto unacct_error;
1747        }
1748
1749        vma->vm_start = addr;
1750        vma->vm_end = addr + len;
1751        vma->vm_flags = vm_flags;
1752        vma->vm_page_prot = vm_get_page_prot(vm_flags);
1753        vma->vm_pgoff = pgoff;
1754
1755        if (file) {
1756                if (vm_flags & VM_DENYWRITE) {
1757                        error = deny_write_access(file);
1758                        if (error)
1759                                goto free_vma;
1760                }
1761                if (vm_flags & VM_SHARED) {
1762                        error = mapping_map_writable(file->f_mapping);
1763                        if (error)
1764                                goto allow_write_and_free_vma;
1765                }
1766
1767                /* ->mmap() can change vma->vm_file, but must guarantee that
1768                 * vma_link() below can deny write-access if VM_DENYWRITE is set
1769                 * and map writably if VM_SHARED is set. This usually means the
1770                 * new file must not have been exposed to user-space, yet.
1771                 */
1772                vma->vm_file = get_file(file);
1773                error = call_mmap(file, vma);
1774                if (error)
1775                        goto unmap_and_free_vma;
1776
1777                /* If vm_flags changed after call_mmap(), we should try merge vma again
1778                 * as we may succeed this time.
1779                 */
1780                if (unlikely(vm_flags != vma->vm_flags && prev)) {
1781                        merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1782                                NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1783                        if (merge) {
1784                                /* ->mmap() can change vma->vm_file and fput the original file. So
1785                                 * fput the vma->vm_file here or we would add an extra fput for file
1786                                 * and cause general protection fault ultimately.
1787                                 */
1788                                fput(vma->vm_file);
1789                                vm_area_free(vma);
1790                                vma = merge;
1791                                /* Update vm_flags and possible addr to pick up the change. We don't
1792                                 * warn here if addr changed as the vma is not linked by vma_link().
1793                                 */
1794                                addr = vma->vm_start;
1795                                vm_flags = vma->vm_flags;
1796                                goto unmap_writable;
1797                        }
1798                }
1799
1800                /* Can addr have changed??
1801                 *
1802                 * Answer: Yes, several device drivers can do it in their
1803                 *         f_op->mmap method. -DaveM
1804                 * Bug: If addr is changed, prev, rb_link, rb_parent should
1805                 *      be updated for vma_link()
1806                 */
1807                WARN_ON_ONCE(addr != vma->vm_start);
1808
1809                addr = vma->vm_start;
1810                vm_flags = vma->vm_flags;
1811        } else if (vm_flags & VM_SHARED) {
1812                error = shmem_zero_setup(vma);
1813                if (error)
1814                        goto free_vma;
1815        } else {
1816                vma_set_anonymous(vma);
1817        }
1818
1819        vma_link(mm, vma, prev, rb_link, rb_parent);
1820        /* Once vma denies write, undo our temporary denial count */
1821        if (file) {
1822unmap_writable:
1823                if (vm_flags & VM_SHARED)
1824                        mapping_unmap_writable(file->f_mapping);
1825                if (vm_flags & VM_DENYWRITE)
1826                        allow_write_access(file);
1827        }
1828        file = vma->vm_file;
1829out:
1830        perf_event_mmap(vma);
1831
1832        vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1833        if (vm_flags & VM_LOCKED) {
1834                if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1835                                        is_vm_hugetlb_page(vma) ||
1836                                        vma == get_gate_vma(current->mm))
1837                        vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1838                else
1839                        mm->locked_vm += (len >> PAGE_SHIFT);
1840        }
1841
1842        if (file)
1843                uprobe_mmap(vma);
1844
1845        /*
1846         * New (or expanded) vma always get soft dirty status.
1847         * Otherwise user-space soft-dirty page tracker won't
1848         * be able to distinguish situation when vma area unmapped,
1849         * then new mapped in-place (which must be aimed as
1850         * a completely new data area).
1851         */
1852        vma->vm_flags |= VM_SOFTDIRTY;
1853
1854        vma_set_page_prot(vma);
1855
1856        return addr;
1857
1858unmap_and_free_vma:
1859        vma->vm_file = NULL;
1860        fput(file);
1861
1862        /* Undo any partial mapping done by a device driver. */
1863        unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1864        charged = 0;
1865        if (vm_flags & VM_SHARED)
1866                mapping_unmap_writable(file->f_mapping);
1867allow_write_and_free_vma:
1868        if (vm_flags & VM_DENYWRITE)
1869                allow_write_access(file);
1870free_vma:
1871        vm_area_free(vma);
1872unacct_error:
1873        if (charged)
1874                vm_unacct_memory(charged);
1875        return error;
1876}
1877
1878static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1879{
1880        /*
1881         * We implement the search by looking for an rbtree node that
1882         * immediately follows a suitable gap. That is,
1883         * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1884         * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1885         * - gap_end - gap_start >= length
1886         */
1887
1888        struct mm_struct *mm = current->mm;
1889        struct vm_area_struct *vma;
1890        unsigned long length, low_limit, high_limit, gap_start, gap_end;
1891
1892        /* Adjust search length to account for worst case alignment overhead */
1893        length = info->length + info->align_mask;
1894        if (length < info->length)
1895                return -ENOMEM;
1896
1897        /* Adjust search limits by the desired length */
1898        if (info->high_limit < length)
1899                return -ENOMEM;
1900        high_limit = info->high_limit - length;
1901
1902        if (info->low_limit > high_limit)
1903                return -ENOMEM;
1904        low_limit = info->low_limit + length;
1905
1906        /* Check if rbtree root looks promising */
1907        if (RB_EMPTY_ROOT(&mm->mm_rb))
1908                goto check_highest;
1909        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1910        if (vma->rb_subtree_gap < length)
1911                goto check_highest;
1912
1913        while (true) {
1914                /* Visit left subtree if it looks promising */
1915                gap_end = vm_start_gap(vma);
1916                if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1917                        struct vm_area_struct *left =
1918                                rb_entry(vma->vm_rb.rb_left,
1919                                         struct vm_area_struct, vm_rb);
1920                        if (left->rb_subtree_gap >= length) {
1921                                vma = left;
1922                                continue;
1923                        }
1924                }
1925
1926                gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1927check_current:
1928                /* Check if current node has a suitable gap */
1929                if (gap_start > high_limit)
1930                        return -ENOMEM;
1931                if (gap_end >= low_limit &&
1932                    gap_end > gap_start && gap_end - gap_start >= length)
1933                        goto found;
1934
1935                /* Visit right subtree if it looks promising */
1936                if (vma->vm_rb.rb_right) {
1937                        struct vm_area_struct *right =
1938                                rb_entry(vma->vm_rb.rb_right,
1939                                         struct vm_area_struct, vm_rb);
1940                        if (right->rb_subtree_gap >= length) {
1941                                vma = right;
1942                                continue;
1943                        }
1944                }
1945
1946                /* Go back up the rbtree to find next candidate node */
1947                while (true) {
1948                        struct rb_node *prev = &vma->vm_rb;
1949                        if (!rb_parent(prev))
1950                                goto check_highest;
1951                        vma = rb_entry(rb_parent(prev),
1952                                       struct vm_area_struct, vm_rb);
1953                        if (prev == vma->vm_rb.rb_left) {
1954                                gap_start = vm_end_gap(vma->vm_prev);
1955                                gap_end = vm_start_gap(vma);
1956                                goto check_current;
1957                        }
1958                }
1959        }
1960
1961check_highest:
1962        /* Check highest gap, which does not precede any rbtree node */
1963        gap_start = mm->highest_vm_end;
1964        gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1965        if (gap_start > high_limit)
1966                return -ENOMEM;
1967
1968found:
1969        /* We found a suitable gap. Clip it with the original low_limit. */
1970        if (gap_start < info->low_limit)
1971                gap_start = info->low_limit;
1972
1973        /* Adjust gap address to the desired alignment */
1974        gap_start += (info->align_offset - gap_start) & info->align_mask;
1975
1976        VM_BUG_ON(gap_start + info->length > info->high_limit);
1977        VM_BUG_ON(gap_start + info->length > gap_end);
1978        return gap_start;
1979}
1980
1981static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1982{
1983        struct mm_struct *mm = current->mm;
1984        struct vm_area_struct *vma;
1985        unsigned long length, low_limit, high_limit, gap_start, gap_end;
1986
1987        /* Adjust search length to account for worst case alignment overhead */
1988        length = info->length + info->align_mask;
1989        if (length < info->length)
1990                return -ENOMEM;
1991
1992        /*
1993         * Adjust search limits by the desired length.
1994         * See implementation comment at top of unmapped_area().
1995         */
1996        gap_end = info->high_limit;
1997        if (gap_end < length)
1998                return -ENOMEM;
1999        high_limit = gap_end - length;
2000
2001        if (info->low_limit > high_limit)
2002                return -ENOMEM;
2003        low_limit = info->low_limit + length;
2004
2005        /* Check highest gap, which does not precede any rbtree node */
2006        gap_start = mm->highest_vm_end;
2007        if (gap_start <= high_limit)
2008                goto found_highest;
2009
2010        /* Check if rbtree root looks promising */
2011        if (RB_EMPTY_ROOT(&mm->mm_rb))
2012                return -ENOMEM;
2013        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2014        if (vma->rb_subtree_gap < length)
2015                return -ENOMEM;
2016
2017        while (true) {
2018                /* Visit right subtree if it looks promising */
2019                gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2020                if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2021                        struct vm_area_struct *right =
2022                                rb_entry(vma->vm_rb.rb_right,
2023                                         struct vm_area_struct, vm_rb);
2024                        if (right->rb_subtree_gap >= length) {
2025                                vma = right;
2026                                continue;
2027                        }
2028                }
2029
2030check_current:
2031                /* Check if current node has a suitable gap */
2032                gap_end = vm_start_gap(vma);
2033                if (gap_end < low_limit)
2034                        return -ENOMEM;
2035                if (gap_start <= high_limit &&
2036                    gap_end > gap_start && gap_end - gap_start >= length)
2037                        goto found;
2038
2039                /* Visit left subtree if it looks promising */
2040                if (vma->vm_rb.rb_left) {
2041                        struct vm_area_struct *left =
2042                                rb_entry(vma->vm_rb.rb_left,
2043                                         struct vm_area_struct, vm_rb);
2044                        if (left->rb_subtree_gap >= length) {
2045                                vma = left;
2046                                continue;
2047                        }
2048                }
2049
2050                /* Go back up the rbtree to find next candidate node */
2051                while (true) {
2052                        struct rb_node *prev = &vma->vm_rb;
2053                        if (!rb_parent(prev))
2054                                return -ENOMEM;
2055                        vma = rb_entry(rb_parent(prev),
2056                                       struct vm_area_struct, vm_rb);
2057                        if (prev == vma->vm_rb.rb_right) {
2058                                gap_start = vma->vm_prev ?
2059                                        vm_end_gap(vma->vm_prev) : 0;
2060                                goto check_current;
2061                        }
2062                }
2063        }
2064
2065found:
2066        /* We found a suitable gap. Clip it with the original high_limit. */
2067        if (gap_end > info->high_limit)
2068                gap_end = info->high_limit;
2069
2070found_highest:
2071        /* Compute highest gap address at the desired alignment */
2072        gap_end -= info->length;
2073        gap_end -= (gap_end - info->align_offset) & info->align_mask;
2074
2075        VM_BUG_ON(gap_end < info->low_limit);
2076        VM_BUG_ON(gap_end < gap_start);
2077        return gap_end;
2078}
2079
2080/*
2081 * Search for an unmapped address range.
2082 *
2083 * We are looking for a range that:
2084 * - does not intersect with any VMA;
2085 * - is contained within the [low_limit, high_limit) interval;
2086 * - is at least the desired size.
2087 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2088 */
2089unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2090{
2091        unsigned long addr;
2092
2093        if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2094                addr = unmapped_area_topdown(info);
2095        else
2096                addr = unmapped_area(info);
2097
2098        trace_vm_unmapped_area(addr, info);
2099        return addr;
2100}
2101
2102#ifndef arch_get_mmap_end
2103#define arch_get_mmap_end(addr) (TASK_SIZE)
2104#endif
2105
2106#ifndef arch_get_mmap_base
2107#define arch_get_mmap_base(addr, base) (base)
2108#endif
2109
2110/* Get an address range which is currently unmapped.
2111 * For shmat() with addr=0.
2112 *
2113 * Ugly calling convention alert:
2114 * Return value with the low bits set means error value,
2115 * ie
2116 *      if (ret & ~PAGE_MASK)
2117 *              error = ret;
2118 *
2119 * This function "knows" that -ENOMEM has the bits set.
2120 */
2121#ifndef HAVE_ARCH_UNMAPPED_AREA
2122unsigned long
2123arch_get_unmapped_area(struct file *filp, unsigned long addr,
2124                unsigned long len, unsigned long pgoff, unsigned long flags)
2125{
2126        struct mm_struct *mm = current->mm;
2127        struct vm_area_struct *vma, *prev;
2128        struct vm_unmapped_area_info info;
2129        const unsigned long mmap_end = arch_get_mmap_end(addr);
2130
2131        if (len > mmap_end - mmap_min_addr)
2132                return -ENOMEM;
2133
2134        if (flags & MAP_FIXED)
2135                return addr;
2136
2137        if (addr) {
2138                addr = PAGE_ALIGN(addr);
2139                vma = find_vma_prev(mm, addr, &prev);
2140                if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2141                    (!vma || addr + len <= vm_start_gap(vma)) &&
2142                    (!prev || addr >= vm_end_gap(prev)))
2143                        return addr;
2144        }
2145
2146        info.flags = 0;
2147        info.length = len;
2148        info.low_limit = mm->mmap_base;
2149        info.high_limit = mmap_end;
2150        info.align_mask = 0;
2151        info.align_offset = 0;
2152        return vm_unmapped_area(&info);
2153}
2154#endif
2155
2156/*
2157 * This mmap-allocator allocates new areas top-down from below the
2158 * stack's low limit (the base):
2159 */
2160#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2161unsigned long
2162arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2163                          unsigned long len, unsigned long pgoff,
2164                          unsigned long flags)
2165{
2166        struct vm_area_struct *vma, *prev;
2167        struct mm_struct *mm = current->mm;
2168        struct vm_unmapped_area_info info;
2169        const unsigned long mmap_end = arch_get_mmap_end(addr);
2170
2171        /* requested length too big for entire address space */
2172        if (len > mmap_end - mmap_min_addr)
2173                return -ENOMEM;
2174
2175        if (flags & MAP_FIXED)
2176                return addr;
2177
2178        /* requesting a specific address */
2179        if (addr) {
2180                addr = PAGE_ALIGN(addr);
2181                vma = find_vma_prev(mm, addr, &prev);
2182                if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2183                                (!vma || addr + len <= vm_start_gap(vma)) &&
2184                                (!prev || addr >= vm_end_gap(prev)))
2185                        return addr;
2186        }
2187
2188        info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2189        info.length = len;
2190        info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2191        info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2192        info.align_mask = 0;
2193        info.align_offset = 0;
2194        addr = vm_unmapped_area(&info);
2195
2196        /*
2197         * A failed mmap() very likely causes application failure,
2198         * so fall back to the bottom-up function here. This scenario
2199         * can happen with large stack limits and large mmap()
2200         * allocations.
2201         */
2202        if (offset_in_page(addr)) {
2203                VM_BUG_ON(addr != -ENOMEM);
2204                info.flags = 0;
2205                info.low_limit = TASK_UNMAPPED_BASE;
2206                info.high_limit = mmap_end;
2207                addr = vm_unmapped_area(&info);
2208        }
2209
2210        return addr;
2211}
2212#endif
2213
2214unsigned long
2215get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2216                unsigned long pgoff, unsigned long flags)
2217{
2218        unsigned long (*get_area)(struct file *, unsigned long,
2219                                  unsigned long, unsigned long, unsigned long);
2220
2221        unsigned long error = arch_mmap_check(addr, len, flags);
2222        if (error)
2223                return error;
2224
2225        /* Careful about overflows.. */
2226        if (len > TASK_SIZE)
2227                return -ENOMEM;
2228
2229        get_area = current->mm->get_unmapped_area;
2230        if (file) {
2231                if (file->f_op->get_unmapped_area)
2232                        get_area = file->f_op->get_unmapped_area;
2233        } else if (flags & MAP_SHARED) {
2234                /*
2235                 * mmap_region() will call shmem_zero_setup() to create a file,
2236                 * so use shmem's get_unmapped_area in case it can be huge.
2237                 * do_mmap() will clear pgoff, so match alignment.
2238                 */
2239                pgoff = 0;
2240                get_area = shmem_get_unmapped_area;
2241        }
2242
2243        addr = get_area(file, addr, len, pgoff, flags);
2244        if (IS_ERR_VALUE(addr))
2245                return addr;
2246
2247        if (addr > TASK_SIZE - len)
2248                return -ENOMEM;
2249        if (offset_in_page(addr))
2250                return -EINVAL;
2251
2252        error = security_mmap_addr(addr);
2253        return error ? error : addr;
2254}
2255
2256EXPORT_SYMBOL(get_unmapped_area);
2257
2258/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2259struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2260{
2261        struct rb_node *rb_node;
2262        struct vm_area_struct *vma;
2263
2264        /* Check the cache first. */
2265        vma = vmacache_find(mm, addr);
2266        if (likely(vma))
2267                return vma;
2268
2269        rb_node = mm->mm_rb.rb_node;
2270
2271        while (rb_node) {
2272                struct vm_area_struct *tmp;
2273
2274                tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2275
2276                if (tmp->vm_end > addr) {
2277                        vma = tmp;
2278                        if (tmp->vm_start <= addr)
2279                                break;
2280                        rb_node = rb_node->rb_left;
2281                } else
2282                        rb_node = rb_node->rb_right;
2283        }
2284
2285        if (vma)
2286                vmacache_update(addr, vma);
2287        return vma;
2288}
2289
2290EXPORT_SYMBOL(find_vma);
2291
2292/*
2293 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2294 */
2295struct vm_area_struct *
2296find_vma_prev(struct mm_struct *mm, unsigned long addr,
2297                        struct vm_area_struct **pprev)
2298{
2299        struct vm_area_struct *vma;
2300
2301        vma = find_vma(mm, addr);
2302        if (vma) {
2303                *pprev = vma->vm_prev;
2304        } else {
2305                struct rb_node *rb_node = rb_last(&mm->mm_rb);
2306
2307                *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2308        }
2309        return vma;
2310}
2311
2312/*
2313 * Verify that the stack growth is acceptable and
2314 * update accounting. This is shared with both the
2315 * grow-up and grow-down cases.
2316 */
2317static int acct_stack_growth(struct vm_area_struct *vma,
2318                             unsigned long size, unsigned long grow)
2319{
2320        struct mm_struct *mm = vma->vm_mm;
2321        unsigned long new_start;
2322
2323        /* address space limit tests */
2324        if (!may_expand_vm(mm, vma->vm_flags, grow))
2325                return -ENOMEM;
2326
2327        /* Stack limit test */
2328        if (size > rlimit(RLIMIT_STACK))
2329                return -ENOMEM;
2330
2331        /* mlock limit tests */
2332        if (vma->vm_flags & VM_LOCKED) {
2333                unsigned long locked;
2334                unsigned long limit;
2335                locked = mm->locked_vm + grow;
2336                limit = rlimit(RLIMIT_MEMLOCK);
2337                limit >>= PAGE_SHIFT;
2338                if (locked > limit && !capable(CAP_IPC_LOCK))
2339                        return -ENOMEM;
2340        }
2341
2342        /* Check to ensure the stack will not grow into a hugetlb-only region */
2343        new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2344                        vma->vm_end - size;
2345        if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2346                return -EFAULT;
2347
2348        /*
2349         * Overcommit..  This must be the final test, as it will
2350         * update security statistics.
2351         */
2352        if (security_vm_enough_memory_mm(mm, grow))
2353                return -ENOMEM;
2354
2355        return 0;
2356}
2357
2358#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2359/*
2360 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2361 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2362 */
2363int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2364{
2365        struct mm_struct *mm = vma->vm_mm;
2366        struct vm_area_struct *next;
2367        unsigned long gap_addr;
2368        int error = 0;
2369
2370        if (!(vma->vm_flags & VM_GROWSUP))
2371                return -EFAULT;
2372
2373        /* Guard against exceeding limits of the address space. */
2374        address &= PAGE_MASK;
2375        if (address >= (TASK_SIZE & PAGE_MASK))
2376                return -ENOMEM;
2377        address += PAGE_SIZE;
2378
2379        /* Enforce stack_guard_gap */
2380        gap_addr = address + stack_guard_gap;
2381
2382        /* Guard against overflow */
2383        if (gap_addr < address || gap_addr > TASK_SIZE)
2384                gap_addr = TASK_SIZE;
2385
2386        next = vma->vm_next;
2387        if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2388                if (!(next->vm_flags & VM_GROWSUP))
2389                        return -ENOMEM;
2390                /* Check that both stack segments have the same anon_vma? */
2391        }
2392
2393        /* We must make sure the anon_vma is allocated. */
2394        if (unlikely(anon_vma_prepare(vma)))
2395                return -ENOMEM;
2396
2397        /*
2398         * vma->vm_start/vm_end cannot change under us because the caller
2399         * is required to hold the mmap_lock in read mode.  We need the
2400         * anon_vma lock to serialize against concurrent expand_stacks.
2401         */
2402        anon_vma_lock_write(vma->anon_vma);
2403
2404        /* Somebody else might have raced and expanded it already */
2405        if (address > vma->vm_end) {
2406                unsigned long size, grow;
2407
2408                size = address - vma->vm_start;
2409                grow = (address - vma->vm_end) >> PAGE_SHIFT;
2410
2411                error = -ENOMEM;
2412                if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2413                        error = acct_stack_growth(vma, size, grow);
2414                        if (!error) {
2415                                /*
2416                                 * vma_gap_update() doesn't support concurrent
2417                                 * updates, but we only hold a shared mmap_lock
2418                                 * lock here, so we need to protect against
2419                                 * concurrent vma expansions.
2420                                 * anon_vma_lock_write() doesn't help here, as
2421                                 * we don't guarantee that all growable vmas
2422                                 * in a mm share the same root anon vma.
2423                                 * So, we reuse mm->page_table_lock to guard
2424                                 * against concurrent vma expansions.
2425                                 */
2426                                spin_lock(&mm->page_table_lock);
2427                                if (vma->vm_flags & VM_LOCKED)
2428                                        mm->locked_vm += grow;
2429                                vm_stat_account(mm, vma->vm_flags, grow);
2430                                anon_vma_interval_tree_pre_update_vma(vma);
2431                                vma->vm_end = address;
2432                                anon_vma_interval_tree_post_update_vma(vma);
2433                                if (vma->vm_next)
2434                                        vma_gap_update(vma->vm_next);
2435                                else
2436                                        mm->highest_vm_end = vm_end_gap(vma);
2437                                spin_unlock(&mm->page_table_lock);
2438
2439                                perf_event_mmap(vma);
2440                        }
2441                }
2442        }
2443        anon_vma_unlock_write(vma->anon_vma);
2444        khugepaged_enter_vma_merge(vma, vma->vm_flags);
2445        validate_mm(mm);
2446        return error;
2447}
2448#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2449
2450/*
2451 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2452 */
2453int expand_downwards(struct vm_area_struct *vma,
2454                                   unsigned long address)
2455{
2456        struct mm_struct *mm = vma->vm_mm;
2457        struct vm_area_struct *prev;
2458        int error = 0;
2459
2460        address &= PAGE_MASK;
2461        if (address < mmap_min_addr)
2462                return -EPERM;
2463
2464        /* Enforce stack_guard_gap */
2465        prev = vma->vm_prev;
2466        /* Check that both stack segments have the same anon_vma? */
2467        if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2468                        vma_is_accessible(prev)) {
2469                if (address - prev->vm_end < stack_guard_gap)
2470                        return -ENOMEM;
2471        }
2472
2473        /* We must make sure the anon_vma is allocated. */
2474        if (unlikely(anon_vma_prepare(vma)))
2475                return -ENOMEM;
2476
2477        /*
2478         * vma->vm_start/vm_end cannot change under us because the caller
2479         * is required to hold the mmap_lock in read mode.  We need the
2480         * anon_vma lock to serialize against concurrent expand_stacks.
2481         */
2482        anon_vma_lock_write(vma->anon_vma);
2483
2484        /* Somebody else might have raced and expanded it already */
2485        if (address < vma->vm_start) {
2486                unsigned long size, grow;
2487
2488                size = vma->vm_end - address;
2489                grow = (vma->vm_start - address) >> PAGE_SHIFT;
2490
2491                error = -ENOMEM;
2492                if (grow <= vma->vm_pgoff) {
2493                        error = acct_stack_growth(vma, size, grow);
2494                        if (!error) {
2495                                /*
2496                                 * vma_gap_update() doesn't support concurrent
2497                                 * updates, but we only hold a shared mmap_lock
2498                                 * lock here, so we need to protect against
2499                                 * concurrent vma expansions.
2500                                 * anon_vma_lock_write() doesn't help here, as
2501                                 * we don't guarantee that all growable vmas
2502                                 * in a mm share the same root anon vma.
2503                                 * So, we reuse mm->page_table_lock to guard
2504                                 * against concurrent vma expansions.
2505                                 */
2506                                spin_lock(&mm->page_table_lock);
2507                                if (vma->vm_flags & VM_LOCKED)
2508                                        mm->locked_vm += grow;
2509                                vm_stat_account(mm, vma->vm_flags, grow);
2510                                anon_vma_interval_tree_pre_update_vma(vma);
2511                                vma->vm_start = address;
2512                                vma->vm_pgoff -= grow;
2513                                anon_vma_interval_tree_post_update_vma(vma);
2514                                vma_gap_update(vma);
2515                                spin_unlock(&mm->page_table_lock);
2516
2517                                perf_event_mmap(vma);
2518                        }
2519                }
2520        }
2521        anon_vma_unlock_write(vma->anon_vma);
2522        khugepaged_enter_vma_merge(vma, vma->vm_flags);
2523        validate_mm(mm);
2524        return error;
2525}
2526
2527/* enforced gap between the expanding stack and other mappings. */
2528unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2529
2530static int __init cmdline_parse_stack_guard_gap(char *p)
2531{
2532        unsigned long val;
2533        char *endptr;
2534
2535        val = simple_strtoul(p, &endptr, 10);
2536        if (!*endptr)
2537                stack_guard_gap = val << PAGE_SHIFT;
2538
2539        return 0;
2540}
2541__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2542
2543#ifdef CONFIG_STACK_GROWSUP
2544int expand_stack(struct vm_area_struct *vma, unsigned long address)
2545{
2546        return expand_upwards(vma, address);
2547}
2548
2549struct vm_area_struct *
2550find_extend_vma(struct mm_struct *mm, unsigned long addr)
2551{
2552        struct vm_area_struct *vma, *prev;
2553
2554        addr &= PAGE_MASK;
2555        vma = find_vma_prev(mm, addr, &prev);
2556        if (vma && (vma->vm_start <= addr))
2557                return vma;
2558        /* don't alter vm_end if the coredump is running */
2559        if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2560                return NULL;
2561        if (prev->vm_flags & VM_LOCKED)
2562                populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2563        return prev;
2564}
2565#else
2566int expand_stack(struct vm_area_struct *vma, unsigned long address)
2567{
2568        return expand_downwards(vma, address);
2569}
2570
2571struct vm_area_struct *
2572find_extend_vma(struct mm_struct *mm, unsigned long addr)
2573{
2574        struct vm_area_struct *vma;
2575        unsigned long start;
2576
2577        addr &= PAGE_MASK;
2578        vma = find_vma(mm, addr);
2579        if (!vma)
2580                return NULL;
2581        if (vma->vm_start <= addr)
2582                return vma;
2583        if (!(vma->vm_flags & VM_GROWSDOWN))
2584                return NULL;
2585        /* don't alter vm_start if the coredump is running */
2586        if (!mmget_still_valid(mm))
2587                return NULL;
2588        start = vma->vm_start;
2589        if (expand_stack(vma, addr))
2590                return NULL;
2591        if (vma->vm_flags & VM_LOCKED)
2592                populate_vma_page_range(vma, addr, start, NULL);
2593        return vma;
2594}
2595#endif
2596
2597EXPORT_SYMBOL_GPL(find_extend_vma);
2598
2599/*
2600 * Ok - we have the memory areas we should free on the vma list,
2601 * so release them, and do the vma updates.
2602 *
2603 * Called with the mm semaphore held.
2604 */
2605static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2606{
2607        unsigned long nr_accounted = 0;
2608
2609        /* Update high watermark before we lower total_vm */
2610        update_hiwater_vm(mm);
2611        do {
2612                long nrpages = vma_pages(vma);
2613
2614                if (vma->vm_flags & VM_ACCOUNT)
2615                        nr_accounted += nrpages;
2616                vm_stat_account(mm, vma->vm_flags, -nrpages);
2617                vma = remove_vma(vma);
2618        } while (vma);
2619        vm_unacct_memory(nr_accounted);
2620        validate_mm(mm);
2621}
2622
2623/*
2624 * Get rid of page table information in the indicated region.
2625 *
2626 * Called with the mm semaphore held.
2627 */
2628static void unmap_region(struct mm_struct *mm,
2629                struct vm_area_struct *vma, struct vm_area_struct *prev,
2630                unsigned long start, unsigned long end)
2631{
2632        struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2633        struct mmu_gather tlb;
2634
2635        lru_add_drain();
2636        tlb_gather_mmu(&tlb, mm, start, end);
2637        update_hiwater_rss(mm);
2638        unmap_vmas(&tlb, vma, start, end);
2639        free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2640                                 next ? next->vm_start : USER_PGTABLES_CEILING);
2641        tlb_finish_mmu(&tlb, start, end);
2642}
2643
2644/*
2645 * Create a list of vma's touched by the unmap, removing them from the mm's
2646 * vma list as we go..
2647 */
2648static bool
2649detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2650        struct vm_area_struct *prev, unsigned long end)
2651{
2652        struct vm_area_struct **insertion_point;
2653        struct vm_area_struct *tail_vma = NULL;
2654
2655        insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2656        vma->vm_prev = NULL;
2657        do {
2658                vma_rb_erase(vma, &mm->mm_rb);
2659                mm->map_count--;
2660                tail_vma = vma;
2661                vma = vma->vm_next;
2662        } while (vma && vma->vm_start < end);
2663        *insertion_point = vma;
2664        if (vma) {
2665                vma->vm_prev = prev;
2666                vma_gap_update(vma);
2667        } else
2668                mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2669        tail_vma->vm_next = NULL;
2670
2671        /* Kill the cache */
2672        vmacache_invalidate(mm);
2673
2674        /*
2675         * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2676         * VM_GROWSUP VMA. Such VMAs can change their size under
2677         * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2678         */
2679        if (vma && (vma->vm_flags & VM_GROWSDOWN))
2680                return false;
2681        if (prev && (prev->vm_flags & VM_GROWSUP))
2682                return false;
2683        return true;
2684}
2685
2686/*
2687 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2688 * has already been checked or doesn't make sense to fail.
2689 */
2690int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2691                unsigned long addr, int new_below)
2692{
2693        struct vm_area_struct *new;
2694        int err;
2695
2696        if (vma->vm_ops && vma->vm_ops->split) {
2697                err = vma->vm_ops->split(vma, addr);
2698                if (err)
2699                        return err;
2700        }
2701
2702        new = vm_area_dup(vma);
2703        if (!new)
2704                return -ENOMEM;
2705
2706        if (new_below)
2707                new->vm_end = addr;
2708        else {
2709                new->vm_start = addr;
2710                new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2711        }
2712
2713        err = vma_dup_policy(vma, new);
2714        if (err)
2715                goto out_free_vma;
2716
2717        err = anon_vma_clone(new, vma);
2718        if (err)
2719                goto out_free_mpol;
2720
2721        if (new->vm_file)
2722                get_file(new->vm_file);
2723
2724        if (new->vm_ops && new->vm_ops->open)
2725                new->vm_ops->open(new);
2726
2727        if (new_below)
2728                err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2729                        ((addr - new->vm_start) >> PAGE_SHIFT), new);
2730        else
2731                err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2732
2733        /* Success. */
2734        if (!err)
2735                return 0;
2736
2737        /* Clean everything up if vma_adjust failed. */
2738        if (new->vm_ops && new->vm_ops->close)
2739                new->vm_ops->close(new);
2740        if (new->vm_file)
2741                fput(new->vm_file);
2742        unlink_anon_vmas(new);
2743 out_free_mpol:
2744        mpol_put(vma_policy(new));
2745 out_free_vma:
2746        vm_area_free(new);
2747        return err;
2748}
2749
2750/*
2751 * Split a vma into two pieces at address 'addr', a new vma is allocated
2752 * either for the first part or the tail.
2753 */
2754int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2755              unsigned long addr, int new_below)
2756{
2757        if (mm->map_count >= sysctl_max_map_count)
2758                return -ENOMEM;
2759
2760        return __split_vma(mm, vma, addr, new_below);
2761}
2762
2763/* Munmap is split into 2 main parts -- this part which finds
2764 * what needs doing, and the areas themselves, which do the
2765 * work.  This now handles partial unmappings.
2766 * Jeremy Fitzhardinge <jeremy@goop.org>
2767 */
2768int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2769                struct list_head *uf, bool downgrade)
2770{
2771        unsigned long end;
2772        struct vm_area_struct *vma, *prev, *last;
2773
2774        if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2775                return -EINVAL;
2776
2777        len = PAGE_ALIGN(len);
2778        end = start + len;
2779        if (len == 0)
2780                return -EINVAL;
2781
2782        /*
2783         * arch_unmap() might do unmaps itself.  It must be called
2784         * and finish any rbtree manipulation before this code
2785         * runs and also starts to manipulate the rbtree.
2786         */
2787        arch_unmap(mm, start, end);
2788
2789        /* Find the first overlapping VMA */
2790        vma = find_vma(mm, start);
2791        if (!vma)
2792                return 0;
2793        prev = vma->vm_prev;
2794        /* we have  start < vma->vm_end  */
2795
2796        /* if it doesn't overlap, we have nothing.. */
2797        if (vma->vm_start >= end)
2798                return 0;
2799
2800        /*
2801         * If we need to split any vma, do it now to save pain later.
2802         *
2803         * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2804         * unmapped vm_area_struct will remain in use: so lower split_vma
2805         * places tmp vma above, and higher split_vma places tmp vma below.
2806         */
2807        if (start > vma->vm_start) {
2808                int error;
2809
2810                /*
2811                 * Make sure that map_count on return from munmap() will
2812                 * not exceed its limit; but let map_count go just above
2813                 * its limit temporarily, to help free resources as expected.
2814                 */
2815                if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2816                        return -ENOMEM;
2817
2818                error = __split_vma(mm, vma, start, 0);
2819                if (error)
2820                        return error;
2821                prev = vma;
2822        }
2823
2824        /* Does it split the last one? */
2825        last = find_vma(mm, end);
2826        if (last && end > last->vm_start) {
2827                int error = __split_vma(mm, last, end, 1);
2828                if (error)
2829                        return error;
2830        }
2831        vma = prev ? prev->vm_next : mm->mmap;
2832
2833        if (unlikely(uf)) {
2834                /*
2835                 * If userfaultfd_unmap_prep returns an error the vmas
2836                 * will remain splitted, but userland will get a
2837                 * highly unexpected error anyway. This is no
2838                 * different than the case where the first of the two
2839                 * __split_vma fails, but we don't undo the first
2840                 * split, despite we could. This is unlikely enough
2841                 * failure that it's not worth optimizing it for.
2842                 */
2843                int error = userfaultfd_unmap_prep(vma, start, end, uf);
2844                if (error)
2845                        return error;
2846        }
2847
2848        /*
2849         * unlock any mlock()ed ranges before detaching vmas
2850         */
2851        if (mm->locked_vm) {
2852                struct vm_area_struct *tmp = vma;
2853                while (tmp && tmp->vm_start < end) {
2854                        if (tmp->vm_flags & VM_LOCKED) {
2855                                mm->locked_vm -= vma_pages(tmp);
2856                                munlock_vma_pages_all(tmp);
2857                        }
2858
2859                        tmp = tmp->vm_next;
2860                }
2861        }
2862
2863        /* Detach vmas from rbtree */
2864        if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2865                downgrade = false;
2866
2867        if (downgrade)
2868                mmap_write_downgrade(mm);
2869
2870        unmap_region(mm, vma, prev, start, end);
2871
2872        /* Fix up all other VM information */
2873        remove_vma_list(mm, vma);
2874
2875        return downgrade ? 1 : 0;
2876}
2877
2878int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2879              struct list_head *uf)
2880{
2881        return __do_munmap(mm, start, len, uf, false);
2882}
2883
2884static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2885{
2886        int ret;
2887        struct mm_struct *mm = current->mm;
2888        LIST_HEAD(uf);
2889
2890        if (mmap_write_lock_killable(mm))
2891                return -EINTR;
2892
2893        ret = __do_munmap(mm, start, len, &uf, downgrade);
2894        /*
2895         * Returning 1 indicates mmap_lock is downgraded.
2896         * But 1 is not legal return value of vm_munmap() and munmap(), reset
2897         * it to 0 before return.
2898         */
2899        if (ret == 1) {
2900                mmap_read_unlock(mm);
2901                ret = 0;
2902        } else
2903                mmap_write_unlock(mm);
2904
2905        userfaultfd_unmap_complete(mm, &uf);
2906        return ret;
2907}
2908
2909int vm_munmap(unsigned long start, size_t len)
2910{
2911        return __vm_munmap(start, len, false);
2912}
2913EXPORT_SYMBOL(vm_munmap);
2914
2915SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2916{
2917        addr = untagged_addr(addr);
2918        profile_munmap(addr);
2919        return __vm_munmap(addr, len, true);
2920}
2921
2922
2923/*
2924 * Emulation of deprecated remap_file_pages() syscall.
2925 */
2926SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2927                unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2928{
2929
2930        struct mm_struct *mm = current->mm;
2931        struct vm_area_struct *vma;
2932        unsigned long populate = 0;
2933        unsigned long ret = -EINVAL;
2934        struct file *file;
2935
2936        pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2937                     current->comm, current->pid);
2938
2939        if (prot)
2940                return ret;
2941        start = start & PAGE_MASK;
2942        size = size & PAGE_MASK;
2943
2944        if (start + size <= start)
2945                return ret;
2946
2947        /* Does pgoff wrap? */
2948        if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2949                return ret;
2950
2951        if (mmap_write_lock_killable(mm))
2952                return -EINTR;
2953
2954        vma = find_vma(mm, start);
2955
2956        if (!vma || !(vma->vm_flags & VM_SHARED))
2957                goto out;
2958
2959        if (start < vma->vm_start)
2960                goto out;
2961
2962        if (start + size > vma->vm_end) {
2963                struct vm_area_struct *next;
2964
2965                for (next = vma->vm_next; next; next = next->vm_next) {
2966                        /* hole between vmas ? */
2967                        if (next->vm_start != next->vm_prev->vm_end)
2968                                goto out;
2969
2970                        if (next->vm_file != vma->vm_file)
2971                                goto out;
2972
2973                        if (next->vm_flags != vma->vm_flags)
2974                                goto out;
2975
2976                        if (start + size <= next->vm_end)
2977                                break;
2978                }
2979
2980                if (!next)
2981                        goto out;
2982        }
2983
2984        prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2985        prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2986        prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2987
2988        flags &= MAP_NONBLOCK;
2989        flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2990        if (vma->vm_flags & VM_LOCKED) {
2991                struct vm_area_struct *tmp;
2992                flags |= MAP_LOCKED;
2993
2994                /* drop PG_Mlocked flag for over-mapped range */
2995                for (tmp = vma; tmp->vm_start >= start + size;
2996                                tmp = tmp->vm_next) {
2997                        /*
2998                         * Split pmd and munlock page on the border
2999                         * of the range.
3000                         */
3001                        vma_adjust_trans_huge(tmp, start, start + size, 0);
3002
3003                        munlock_vma_pages_range(tmp,
3004                                        max(tmp->vm_start, start),
3005                                        min(tmp->vm_end, start + size));
3006                }
3007        }
3008
3009        file = get_file(vma->vm_file);
3010        ret = do_mmap(vma->vm_file, start, size,
3011                        prot, flags, pgoff, &populate, NULL);
3012        fput(file);
3013out:
3014        mmap_write_unlock(mm);
3015        if (populate)
3016                mm_populate(ret, populate);
3017        if (!IS_ERR_VALUE(ret))
3018                ret = 0;
3019        return ret;
3020}
3021
3022/*
3023 *  this is really a simplified "do_mmap".  it only handles
3024 *  anonymous maps.  eventually we may be able to do some
3025 *  brk-specific accounting here.
3026 */
3027static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3028{
3029        struct mm_struct *mm = current->mm;
3030        struct vm_area_struct *vma, *prev;
3031        struct rb_node **rb_link, *rb_parent;
3032        pgoff_t pgoff = addr >> PAGE_SHIFT;
3033        int error;
3034        unsigned long mapped_addr;
3035
3036        /* Until we need other flags, refuse anything except VM_EXEC. */
3037        if ((flags & (~VM_EXEC)) != 0)
3038                return -EINVAL;
3039        flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3040
3041        mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3042        if (IS_ERR_VALUE(mapped_addr))
3043                return mapped_addr;
3044
3045        error = mlock_future_check(mm, mm->def_flags, len);
3046        if (error)
3047                return error;
3048
3049        /*
3050         * Clear old maps.  this also does some error checking for us
3051         */
3052        while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3053                              &rb_parent)) {
3054                if (do_munmap(mm, addr, len, uf))
3055                        return -ENOMEM;
3056        }
3057
3058        /* Check against address space limits *after* clearing old maps... */
3059        if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3060                return -ENOMEM;
3061
3062        if (mm->map_count > sysctl_max_map_count)
3063                return -ENOMEM;
3064
3065        if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3066                return -ENOMEM;
3067
3068        /* Can we just expand an old private anonymous mapping? */
3069        vma = vma_merge(mm, prev, addr, addr + len, flags,
3070                        NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3071        if (vma)
3072                goto out;
3073
3074        /*
3075         * create a vma struct for an anonymous mapping
3076         */
3077        vma = vm_area_alloc(mm);
3078        if (!vma) {
3079                vm_unacct_memory(len >> PAGE_SHIFT);
3080                return -ENOMEM;
3081        }
3082
3083        vma_set_anonymous(vma);
3084        vma->vm_start = addr;
3085        vma->vm_end = addr + len;
3086        vma->vm_pgoff = pgoff;
3087        vma->vm_flags = flags;
3088        vma->vm_page_prot = vm_get_page_prot(flags);
3089        vma_link(mm, vma, prev, rb_link, rb_parent);
3090out:
3091        perf_event_mmap(vma);
3092        mm->total_vm += len >> PAGE_SHIFT;
3093        mm->data_vm += len >> PAGE_SHIFT;
3094        if (flags & VM_LOCKED)
3095                mm->locked_vm += (len >> PAGE_SHIFT);
3096        vma->vm_flags |= VM_SOFTDIRTY;
3097        return 0;
3098}
3099
3100int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3101{
3102        struct mm_struct *mm = current->mm;
3103        unsigned long len;
3104        int ret;
3105        bool populate;
3106        LIST_HEAD(uf);
3107
3108        len = PAGE_ALIGN(request);
3109        if (len < request)
3110                return -ENOMEM;
3111        if (!len)
3112                return 0;
3113
3114        if (mmap_write_lock_killable(mm))
3115                return -EINTR;
3116
3117        ret = do_brk_flags(addr, len, flags, &uf);
3118        populate = ((mm->def_flags & VM_LOCKED) != 0);
3119        mmap_write_unlock(mm);
3120        userfaultfd_unmap_complete(mm, &uf);
3121        if (populate && !ret)
3122                mm_populate(addr, len);
3123        return ret;
3124}
3125EXPORT_SYMBOL(vm_brk_flags);
3126
3127int vm_brk(unsigned long addr, unsigned long len)
3128{
3129        return vm_brk_flags(addr, len, 0);
3130}
3131EXPORT_SYMBOL(vm_brk);
3132
3133/* Release all mmaps. */
3134void exit_mmap(struct mm_struct *mm)
3135{
3136        struct mmu_gather tlb;
3137        struct vm_area_struct *vma;
3138        unsigned long nr_accounted = 0;
3139
3140        /* mm's last user has gone, and its about to be pulled down */
3141        mmu_notifier_release(mm);
3142
3143        if (unlikely(mm_is_oom_victim(mm))) {
3144                /*
3145                 * Manually reap the mm to free as much memory as possible.
3146                 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3147                 * this mm from further consideration.  Taking mm->mmap_lock for
3148                 * write after setting MMF_OOM_SKIP will guarantee that the oom
3149                 * reaper will not run on this mm again after mmap_lock is
3150                 * dropped.
3151                 *
3152                 * Nothing can be holding mm->mmap_lock here and the above call
3153                 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3154                 * __oom_reap_task_mm() will not block.
3155                 *
3156                 * This needs to be done before calling munlock_vma_pages_all(),
3157                 * which clears VM_LOCKED, otherwise the oom reaper cannot
3158                 * reliably test it.
3159                 */
3160                (void)__oom_reap_task_mm(mm);
3161
3162                set_bit(MMF_OOM_SKIP, &mm->flags);
3163                mmap_write_lock(mm);
3164                mmap_write_unlock(mm);
3165        }
3166
3167        if (mm->locked_vm) {
3168                vma = mm->mmap;
3169                while (vma) {
3170                        if (vma->vm_flags & VM_LOCKED)
3171                                munlock_vma_pages_all(vma);
3172                        vma = vma->vm_next;
3173                }
3174        }
3175
3176        arch_exit_mmap(mm);
3177
3178        vma = mm->mmap;
3179        if (!vma)       /* Can happen if dup_mmap() received an OOM */
3180                return;
3181
3182        lru_add_drain();
3183        flush_cache_mm(mm);
3184        tlb_gather_mmu(&tlb, mm, 0, -1);
3185        /* update_hiwater_rss(mm) here? but nobody should be looking */
3186        /* Use -1 here to ensure all VMAs in the mm are unmapped */
3187        unmap_vmas(&tlb, vma, 0, -1);
3188        free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3189        tlb_finish_mmu(&tlb, 0, -1);
3190
3191        /*
3192         * Walk the list again, actually closing and freeing it,
3193         * with preemption enabled, without holding any MM locks.
3194         */
3195        while (vma) {
3196                if (vma->vm_flags & VM_ACCOUNT)
3197                        nr_accounted += vma_pages(vma);
3198                vma = remove_vma(vma);
3199                cond_resched();
3200        }
3201        vm_unacct_memory(nr_accounted);
3202}
3203
3204/* Insert vm structure into process list sorted by address
3205 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3206 * then i_mmap_rwsem is taken here.
3207 */
3208int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3209{
3210        struct vm_area_struct *prev;
3211        struct rb_node **rb_link, *rb_parent;
3212
3213        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3214                           &prev, &rb_link, &rb_parent))
3215                return -ENOMEM;
3216        if ((vma->vm_flags & VM_ACCOUNT) &&
3217             security_vm_enough_memory_mm(mm, vma_pages(vma)))
3218                return -ENOMEM;
3219
3220        /*
3221         * The vm_pgoff of a purely anonymous vma should be irrelevant
3222         * until its first write fault, when page's anon_vma and index
3223         * are set.  But now set the vm_pgoff it will almost certainly
3224         * end up with (unless mremap moves it elsewhere before that
3225         * first wfault), so /proc/pid/maps tells a consistent story.
3226         *
3227         * By setting it to reflect the virtual start address of the
3228         * vma, merges and splits can happen in a seamless way, just
3229         * using the existing file pgoff checks and manipulations.
3230         * Similarly in do_mmap and in do_brk.
3231         */
3232        if (vma_is_anonymous(vma)) {
3233                BUG_ON(vma->anon_vma);
3234                vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3235        }
3236
3237        vma_link(mm, vma, prev, rb_link, rb_parent);
3238        return 0;
3239}
3240
3241/*
3242 * Copy the vma structure to a new location in the same mm,
3243 * prior to moving page table entries, to effect an mremap move.
3244 */
3245struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3246        unsigned long addr, unsigned long len, pgoff_t pgoff,
3247        bool *need_rmap_locks)
3248{
3249        struct vm_area_struct *vma = *vmap;
3250        unsigned long vma_start = vma->vm_start;
3251        struct mm_struct *mm = vma->vm_mm;
3252        struct vm_area_struct *new_vma, *prev;
3253        struct rb_node **rb_link, *rb_parent;
3254        bool faulted_in_anon_vma = true;
3255
3256        /*
3257         * If anonymous vma has not yet been faulted, update new pgoff
3258         * to match new location, to increase its chance of merging.
3259         */
3260        if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3261                pgoff = addr >> PAGE_SHIFT;
3262                faulted_in_anon_vma = false;
3263        }
3264
3265        if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3266                return NULL;    /* should never get here */
3267        new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3268                            vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3269                            vma->vm_userfaultfd_ctx);
3270        if (new_vma) {
3271                /*
3272                 * Source vma may have been merged into new_vma
3273                 */
3274                if (unlikely(vma_start >= new_vma->vm_start &&
3275                             vma_start < new_vma->vm_end)) {
3276                        /*
3277                         * The only way we can get a vma_merge with
3278                         * self during an mremap is if the vma hasn't
3279                         * been faulted in yet and we were allowed to
3280                         * reset the dst vma->vm_pgoff to the
3281                         * destination address of the mremap to allow
3282                         * the merge to happen. mremap must change the
3283                         * vm_pgoff linearity between src and dst vmas
3284                         * (in turn preventing a vma_merge) to be
3285                         * safe. It is only safe to keep the vm_pgoff
3286                         * linear if there are no pages mapped yet.
3287                         */
3288                        VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3289                        *vmap = vma = new_vma;
3290                }
3291                *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3292        } else {
3293                new_vma = vm_area_dup(vma);
3294                if (!new_vma)
3295                        goto out;
3296                new_vma->vm_start = addr;
3297                new_vma->vm_end = addr + len;
3298                new_vma->vm_pgoff = pgoff;
3299                if (vma_dup_policy(vma, new_vma))
3300                        goto out_free_vma;
3301                if (anon_vma_clone(new_vma, vma))
3302                        goto out_free_mempol;
3303                if (new_vma->vm_file)
3304                        get_file(new_vma->vm_file);
3305                if (new_vma->vm_ops && new_vma->vm_ops->open)
3306                        new_vma->vm_ops->open(new_vma);
3307                vma_link(mm, new_vma, prev, rb_link, rb_parent);
3308                *need_rmap_locks = false;
3309        }
3310        return new_vma;
3311
3312out_free_mempol:
3313        mpol_put(vma_policy(new_vma));
3314out_free_vma:
3315        vm_area_free(new_vma);
3316out:
3317        return NULL;
3318}
3319
3320/*
3321 * Return true if the calling process may expand its vm space by the passed
3322 * number of pages
3323 */
3324bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3325{
3326        if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3327                return false;
3328
3329        if (is_data_mapping(flags) &&
3330            mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3331                /* Workaround for Valgrind */
3332                if (rlimit(RLIMIT_DATA) == 0 &&
3333                    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3334                        return true;
3335
3336                pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3337                             current->comm, current->pid,
3338                             (mm->data_vm + npages) << PAGE_SHIFT,
3339                             rlimit(RLIMIT_DATA),
3340                             ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3341
3342                if (!ignore_rlimit_data)
3343                        return false;
3344        }
3345
3346        return true;
3347}
3348
3349void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3350{
3351        mm->total_vm += npages;
3352
3353        if (is_exec_mapping(flags))
3354                mm->exec_vm += npages;
3355        else if (is_stack_mapping(flags))
3356                mm->stack_vm += npages;
3357        else if (is_data_mapping(flags))
3358                mm->data_vm += npages;
3359}
3360
3361static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3362
3363/*
3364 * Having a close hook prevents vma merging regardless of flags.
3365 */
3366static void special_mapping_close(struct vm_area_struct *vma)
3367{
3368}
3369
3370static const char *special_mapping_name(struct vm_area_struct *vma)
3371{
3372        return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3373}
3374
3375static int special_mapping_mremap(struct vm_area_struct *new_vma)
3376{
3377        struct vm_special_mapping *sm = new_vma->vm_private_data;
3378
3379        if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3380                return -EFAULT;
3381
3382        if (sm->mremap)
3383                return sm->mremap(sm, new_vma);
3384
3385        return 0;
3386}
3387
3388static const struct vm_operations_struct special_mapping_vmops = {
3389        .close = special_mapping_close,
3390        .fault = special_mapping_fault,
3391        .mremap = special_mapping_mremap,
3392        .name = special_mapping_name,
3393        /* vDSO code relies that VVAR can't be accessed remotely */
3394        .access = NULL,
3395};
3396
3397static const struct vm_operations_struct legacy_special_mapping_vmops = {
3398        .close = special_mapping_close,
3399        .fault = special_mapping_fault,
3400};
3401
3402static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3403{
3404        struct vm_area_struct *vma = vmf->vma;
3405        pgoff_t pgoff;
3406        struct page **pages;
3407
3408        if (vma->vm_ops == &legacy_special_mapping_vmops) {
3409                pages = vma->vm_private_data;
3410        } else {
3411                struct vm_special_mapping *sm = vma->vm_private_data;
3412
3413                if (sm->fault)
3414                        return sm->fault(sm, vmf->vma, vmf);
3415
3416                pages = sm->pages;
3417        }
3418
3419        for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3420                pgoff--;
3421
3422        if (*pages) {
3423                struct page *page = *pages;
3424                get_page(page);
3425                vmf->page = page;
3426                return 0;
3427        }
3428
3429        return VM_FAULT_SIGBUS;
3430}
3431
3432static struct vm_area_struct *__install_special_mapping(
3433        struct mm_struct *mm,
3434        unsigned long addr, unsigned long len,
3435        unsigned long vm_flags, void *priv,
3436        const struct vm_operations_struct *ops)
3437{
3438        int ret;
3439        struct vm_area_struct *vma;
3440
3441        vma = vm_area_alloc(mm);
3442        if (unlikely(vma == NULL))
3443                return ERR_PTR(-ENOMEM);
3444
3445        vma->vm_start = addr;
3446        vma->vm_end = addr + len;
3447
3448        vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3449        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3450
3451        vma->vm_ops = ops;
3452        vma->vm_private_data = priv;
3453
3454        ret = insert_vm_struct(mm, vma);
3455        if (ret)
3456                goto out;
3457
3458        vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3459
3460        perf_event_mmap(vma);
3461
3462        return vma;
3463
3464out:
3465        vm_area_free(vma);
3466        return ERR_PTR(ret);
3467}
3468
3469bool vma_is_special_mapping(const struct vm_area_struct *vma,
3470        const struct vm_special_mapping *sm)
3471{
3472        return vma->vm_private_data == sm &&
3473                (vma->vm_ops == &special_mapping_vmops ||
3474                 vma->vm_ops == &legacy_special_mapping_vmops);
3475}
3476
3477/*
3478 * Called with mm->mmap_lock held for writing.
3479 * Insert a new vma covering the given region, with the given flags.
3480 * Its pages are supplied by the given array of struct page *.
3481 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3482 * The region past the last page supplied will always produce SIGBUS.
3483 * The array pointer and the pages it points to are assumed to stay alive
3484 * for as long as this mapping might exist.
3485 */
3486struct vm_area_struct *_install_special_mapping(
3487        struct mm_struct *mm,
3488        unsigned long addr, unsigned long len,
3489        unsigned long vm_flags, const struct vm_special_mapping *spec)
3490{
3491        return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3492                                        &special_mapping_vmops);
3493}
3494
3495int install_special_mapping(struct mm_struct *mm,
3496                            unsigned long addr, unsigned long len,
3497                            unsigned long vm_flags, struct page **pages)
3498{
3499        struct vm_area_struct *vma = __install_special_mapping(
3500                mm, addr, len, vm_flags, (void *)pages,
3501                &legacy_special_mapping_vmops);
3502
3503        return PTR_ERR_OR_ZERO(vma);
3504}
3505
3506static DEFINE_MUTEX(mm_all_locks_mutex);
3507
3508static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3509{
3510        if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3511                /*
3512                 * The LSB of head.next can't change from under us
3513                 * because we hold the mm_all_locks_mutex.
3514                 */
3515                down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3516                /*
3517                 * We can safely modify head.next after taking the
3518                 * anon_vma->root->rwsem. If some other vma in this mm shares
3519                 * the same anon_vma we won't take it again.
3520                 *
3521                 * No need of atomic instructions here, head.next
3522                 * can't change from under us thanks to the
3523                 * anon_vma->root->rwsem.
3524                 */
3525                if (__test_and_set_bit(0, (unsigned long *)
3526                                       &anon_vma->root->rb_root.rb_root.rb_node))
3527                        BUG();
3528        }
3529}
3530
3531static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3532{
3533        if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3534                /*
3535                 * AS_MM_ALL_LOCKS can't change from under us because
3536                 * we hold the mm_all_locks_mutex.
3537                 *
3538                 * Operations on ->flags have to be atomic because
3539                 * even if AS_MM_ALL_LOCKS is stable thanks to the
3540                 * mm_all_locks_mutex, there may be other cpus
3541                 * changing other bitflags in parallel to us.
3542                 */
3543                if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3544                        BUG();
3545                down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3546        }
3547}
3548
3549/*
3550 * This operation locks against the VM for all pte/vma/mm related
3551 * operations that could ever happen on a certain mm. This includes
3552 * vmtruncate, try_to_unmap, and all page faults.
3553 *
3554 * The caller must take the mmap_lock in write mode before calling
3555 * mm_take_all_locks(). The caller isn't allowed to release the
3556 * mmap_lock until mm_drop_all_locks() returns.
3557 *
3558 * mmap_lock in write mode is required in order to block all operations
3559 * that could modify pagetables and free pages without need of
3560 * altering the vma layout. It's also needed in write mode to avoid new
3561 * anon_vmas to be associated with existing vmas.
3562 *
3563 * A single task can't take more than one mm_take_all_locks() in a row
3564 * or it would deadlock.
3565 *
3566 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3567 * mapping->flags avoid to take the same lock twice, if more than one
3568 * vma in this mm is backed by the same anon_vma or address_space.
3569 *
3570 * We take locks in following order, accordingly to comment at beginning
3571 * of mm/rmap.c:
3572 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3573 *     hugetlb mapping);
3574 *   - all i_mmap_rwsem locks;
3575 *   - all anon_vma->rwseml
3576 *
3577 * We can take all locks within these types randomly because the VM code
3578 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3579 * mm_all_locks_mutex.
3580 *
3581 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3582 * that may have to take thousand of locks.
3583 *
3584 * mm_take_all_locks() can fail if it's interrupted by signals.
3585 */
3586int mm_take_all_locks(struct mm_struct *mm)
3587{
3588        struct vm_area_struct *vma;
3589        struct anon_vma_chain *avc;
3590
3591        BUG_ON(mmap_read_trylock(mm));
3592
3593        mutex_lock(&mm_all_locks_mutex);
3594
3595        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3596                if (signal_pending(current))
3597                        goto out_unlock;
3598                if (vma->vm_file && vma->vm_file->f_mapping &&
3599                                is_vm_hugetlb_page(vma))
3600                        vm_lock_mapping(mm, vma->vm_file->f_mapping);
3601        }
3602
3603        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3604                if (signal_pending(current))
3605                        goto out_unlock;
3606                if (vma->vm_file && vma->vm_file->f_mapping &&
3607                                !is_vm_hugetlb_page(vma))
3608                        vm_lock_mapping(mm, vma->vm_file->f_mapping);
3609        }
3610
3611        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3612                if (signal_pending(current))
3613                        goto out_unlock;
3614                if (vma->anon_vma)
3615                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3616                                vm_lock_anon_vma(mm, avc->anon_vma);
3617        }
3618
3619        return 0;
3620
3621out_unlock:
3622        mm_drop_all_locks(mm);
3623        return -EINTR;
3624}
3625
3626static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3627{
3628        if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3629                /*
3630                 * The LSB of head.next can't change to 0 from under
3631                 * us because we hold the mm_all_locks_mutex.
3632                 *
3633                 * We must however clear the bitflag before unlocking
3634                 * the vma so the users using the anon_vma->rb_root will
3635                 * never see our bitflag.
3636                 *
3637                 * No need of atomic instructions here, head.next
3638                 * can't change from under us until we release the
3639                 * anon_vma->root->rwsem.
3640                 */
3641                if (!__test_and_clear_bit(0, (unsigned long *)
3642                                          &anon_vma->root->rb_root.rb_root.rb_node))
3643                        BUG();
3644                anon_vma_unlock_write(anon_vma);
3645        }
3646}
3647
3648static void vm_unlock_mapping(struct address_space *mapping)
3649{
3650        if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3651                /*
3652                 * AS_MM_ALL_LOCKS can't change to 0 from under us
3653                 * because we hold the mm_all_locks_mutex.
3654                 */
3655                i_mmap_unlock_write(mapping);
3656                if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3657                                        &mapping->flags))
3658                        BUG();
3659        }
3660}
3661
3662/*
3663 * The mmap_lock cannot be released by the caller until
3664 * mm_drop_all_locks() returns.
3665 */
3666void mm_drop_all_locks(struct mm_struct *mm)
3667{
3668        struct vm_area_struct *vma;
3669        struct anon_vma_chain *avc;
3670
3671        BUG_ON(mmap_read_trylock(mm));
3672        BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3673
3674        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3675                if (vma->anon_vma)
3676                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3677                                vm_unlock_anon_vma(avc->anon_vma);
3678                if (vma->vm_file && vma->vm_file->f_mapping)
3679                        vm_unlock_mapping(vma->vm_file->f_mapping);
3680        }
3681
3682        mutex_unlock(&mm_all_locks_mutex);
3683}
3684
3685/*
3686 * initialise the percpu counter for VM
3687 */
3688void __init mmap_init(void)
3689{
3690        int ret;
3691
3692        ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3693        VM_BUG_ON(ret);
3694}
3695
3696/*
3697 * Initialise sysctl_user_reserve_kbytes.
3698 *
3699 * This is intended to prevent a user from starting a single memory hogging
3700 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3701 * mode.
3702 *
3703 * The default value is min(3% of free memory, 128MB)
3704 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3705 */
3706static int init_user_reserve(void)
3707{
3708        unsigned long free_kbytes;
3709
3710        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3711
3712        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3713        return 0;
3714}
3715subsys_initcall(init_user_reserve);
3716
3717/*
3718 * Initialise sysctl_admin_reserve_kbytes.
3719 *
3720 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3721 * to log in and kill a memory hogging process.
3722 *
3723 * Systems with more than 256MB will reserve 8MB, enough to recover
3724 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3725 * only reserve 3% of free pages by default.
3726 */
3727static int init_admin_reserve(void)
3728{
3729        unsigned long free_kbytes;
3730
3731        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3732
3733        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3734        return 0;
3735}
3736subsys_initcall(init_admin_reserve);
3737
3738/*
3739 * Reinititalise user and admin reserves if memory is added or removed.
3740 *
3741 * The default user reserve max is 128MB, and the default max for the
3742 * admin reserve is 8MB. These are usually, but not always, enough to
3743 * enable recovery from a memory hogging process using login/sshd, a shell,
3744 * and tools like top. It may make sense to increase or even disable the
3745 * reserve depending on the existence of swap or variations in the recovery
3746 * tools. So, the admin may have changed them.
3747 *
3748 * If memory is added and the reserves have been eliminated or increased above
3749 * the default max, then we'll trust the admin.
3750 *
3751 * If memory is removed and there isn't enough free memory, then we
3752 * need to reset the reserves.
3753 *
3754 * Otherwise keep the reserve set by the admin.
3755 */
3756static int reserve_mem_notifier(struct notifier_block *nb,
3757                             unsigned long action, void *data)
3758{
3759        unsigned long tmp, free_kbytes;
3760
3761        switch (action) {
3762        case MEM_ONLINE:
3763                /* Default max is 128MB. Leave alone if modified by operator. */
3764                tmp = sysctl_user_reserve_kbytes;
3765                if (0 < tmp && tmp < (1UL << 17))
3766                        init_user_reserve();
3767
3768                /* Default max is 8MB.  Leave alone if modified by operator. */
3769                tmp = sysctl_admin_reserve_kbytes;
3770                if (0 < tmp && tmp < (1UL << 13))
3771                        init_admin_reserve();
3772
3773                break;
3774        case MEM_OFFLINE:
3775                free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3776
3777                if (sysctl_user_reserve_kbytes > free_kbytes) {
3778                        init_user_reserve();
3779                        pr_info("vm.user_reserve_kbytes reset to %lu\n",
3780                                sysctl_user_reserve_kbytes);
3781                }
3782
3783                if (sysctl_admin_reserve_kbytes > free_kbytes) {
3784                        init_admin_reserve();
3785                        pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3786                                sysctl_admin_reserve_kbytes);
3787                }
3788                break;
3789        default:
3790                break;
3791        }
3792        return NOTIFY_OK;
3793}
3794
3795static struct notifier_block reserve_mem_nb = {
3796        .notifier_call = reserve_mem_notifier,
3797};
3798
3799static int __meminit init_reserve_notifier(void)
3800{
3801        if (register_hotmemory_notifier(&reserve_mem_nb))
3802                pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3803
3804        return 0;
3805}
3806subsys_initcall(init_reserve_notifier);
3807