linux/mm/page-writeback.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/page-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Contains functions related to writing back dirty pages at the
   9 * address_space level.
  10 *
  11 * 10Apr2002    Andrew Morton
  12 *              Initial version
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/mm.h>
  20#include <linux/swap.h>
  21#include <linux/slab.h>
  22#include <linux/pagemap.h>
  23#include <linux/writeback.h>
  24#include <linux/init.h>
  25#include <linux/backing-dev.h>
  26#include <linux/task_io_accounting_ops.h>
  27#include <linux/blkdev.h>
  28#include <linux/mpage.h>
  29#include <linux/rmap.h>
  30#include <linux/percpu.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/mm_inline.h>
  41#include <trace/events/writeback.h>
  42
  43#include "internal.h"
  44
  45/*
  46 * Sleep at most 200ms at a time in balance_dirty_pages().
  47 */
  48#define MAX_PAUSE               max(HZ/5, 1)
  49
  50/*
  51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  52 * by raising pause time to max_pause when falls below it.
  53 */
  54#define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
  55
  56/*
  57 * Estimate write bandwidth at 200ms intervals.
  58 */
  59#define BANDWIDTH_INTERVAL      max(HZ/5, 1)
  60
  61#define RATELIMIT_CALC_SHIFT    10
  62
  63/*
  64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  65 * will look to see if it needs to force writeback or throttling.
  66 */
  67static long ratelimit_pages = 32;
  68
  69/* The following parameters are exported via /proc/sys/vm */
  70
  71/*
  72 * Start background writeback (via writeback threads) at this percentage
  73 */
  74int dirty_background_ratio = 10;
  75
  76/*
  77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  78 * dirty_background_ratio * the amount of dirtyable memory
  79 */
  80unsigned long dirty_background_bytes;
  81
  82/*
  83 * free highmem will not be subtracted from the total free memory
  84 * for calculating free ratios if vm_highmem_is_dirtyable is true
  85 */
  86int vm_highmem_is_dirtyable;
  87
  88/*
  89 * The generator of dirty data starts writeback at this percentage
  90 */
  91int vm_dirty_ratio = 20;
  92
  93/*
  94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  95 * vm_dirty_ratio * the amount of dirtyable memory
  96 */
  97unsigned long vm_dirty_bytes;
  98
  99/*
 100 * The interval between `kupdate'-style writebacks
 101 */
 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 103
 104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 105
 106/*
 107 * The longest time for which data is allowed to remain dirty
 108 */
 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 110
 111/*
 112 * Flag that makes the machine dump writes/reads and block dirtyings.
 113 */
 114int block_dump;
 115
 116/*
 117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 118 * a full sync is triggered after this time elapses without any disk activity.
 119 */
 120int laptop_mode;
 121
 122EXPORT_SYMBOL(laptop_mode);
 123
 124/* End of sysctl-exported parameters */
 125
 126struct wb_domain global_wb_domain;
 127
 128/* consolidated parameters for balance_dirty_pages() and its subroutines */
 129struct dirty_throttle_control {
 130#ifdef CONFIG_CGROUP_WRITEBACK
 131        struct wb_domain        *dom;
 132        struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
 133#endif
 134        struct bdi_writeback    *wb;
 135        struct fprop_local_percpu *wb_completions;
 136
 137        unsigned long           avail;          /* dirtyable */
 138        unsigned long           dirty;          /* file_dirty + write + nfs */
 139        unsigned long           thresh;         /* dirty threshold */
 140        unsigned long           bg_thresh;      /* dirty background threshold */
 141
 142        unsigned long           wb_dirty;       /* per-wb counterparts */
 143        unsigned long           wb_thresh;
 144        unsigned long           wb_bg_thresh;
 145
 146        unsigned long           pos_ratio;
 147};
 148
 149/*
 150 * Length of period for aging writeout fractions of bdis. This is an
 151 * arbitrarily chosen number. The longer the period, the slower fractions will
 152 * reflect changes in current writeout rate.
 153 */
 154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 155
 156#ifdef CONFIG_CGROUP_WRITEBACK
 157
 158#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 159                                .dom = &global_wb_domain,               \
 160                                .wb_completions = &(__wb)->completions
 161
 162#define GDTC_INIT_NO_WB         .dom = &global_wb_domain
 163
 164#define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
 165                                .dom = mem_cgroup_wb_domain(__wb),      \
 166                                .wb_completions = &(__wb)->memcg_completions, \
 167                                .gdtc = __gdtc
 168
 169static bool mdtc_valid(struct dirty_throttle_control *dtc)
 170{
 171        return dtc->dom;
 172}
 173
 174static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 175{
 176        return dtc->dom;
 177}
 178
 179static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 180{
 181        return mdtc->gdtc;
 182}
 183
 184static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 185{
 186        return &wb->memcg_completions;
 187}
 188
 189static void wb_min_max_ratio(struct bdi_writeback *wb,
 190                             unsigned long *minp, unsigned long *maxp)
 191{
 192        unsigned long this_bw = wb->avg_write_bandwidth;
 193        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 194        unsigned long long min = wb->bdi->min_ratio;
 195        unsigned long long max = wb->bdi->max_ratio;
 196
 197        /*
 198         * @wb may already be clean by the time control reaches here and
 199         * the total may not include its bw.
 200         */
 201        if (this_bw < tot_bw) {
 202                if (min) {
 203                        min *= this_bw;
 204                        min = div64_ul(min, tot_bw);
 205                }
 206                if (max < 100) {
 207                        max *= this_bw;
 208                        max = div64_ul(max, tot_bw);
 209                }
 210        }
 211
 212        *minp = min;
 213        *maxp = max;
 214}
 215
 216#else   /* CONFIG_CGROUP_WRITEBACK */
 217
 218#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 219                                .wb_completions = &(__wb)->completions
 220#define GDTC_INIT_NO_WB
 221#define MDTC_INIT(__wb, __gdtc)
 222
 223static bool mdtc_valid(struct dirty_throttle_control *dtc)
 224{
 225        return false;
 226}
 227
 228static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 229{
 230        return &global_wb_domain;
 231}
 232
 233static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 234{
 235        return NULL;
 236}
 237
 238static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 239{
 240        return NULL;
 241}
 242
 243static void wb_min_max_ratio(struct bdi_writeback *wb,
 244                             unsigned long *minp, unsigned long *maxp)
 245{
 246        *minp = wb->bdi->min_ratio;
 247        *maxp = wb->bdi->max_ratio;
 248}
 249
 250#endif  /* CONFIG_CGROUP_WRITEBACK */
 251
 252/*
 253 * In a memory zone, there is a certain amount of pages we consider
 254 * available for the page cache, which is essentially the number of
 255 * free and reclaimable pages, minus some zone reserves to protect
 256 * lowmem and the ability to uphold the zone's watermarks without
 257 * requiring writeback.
 258 *
 259 * This number of dirtyable pages is the base value of which the
 260 * user-configurable dirty ratio is the effective number of pages that
 261 * are allowed to be actually dirtied.  Per individual zone, or
 262 * globally by using the sum of dirtyable pages over all zones.
 263 *
 264 * Because the user is allowed to specify the dirty limit globally as
 265 * absolute number of bytes, calculating the per-zone dirty limit can
 266 * require translating the configured limit into a percentage of
 267 * global dirtyable memory first.
 268 */
 269
 270/**
 271 * node_dirtyable_memory - number of dirtyable pages in a node
 272 * @pgdat: the node
 273 *
 274 * Return: the node's number of pages potentially available for dirty
 275 * page cache.  This is the base value for the per-node dirty limits.
 276 */
 277static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 278{
 279        unsigned long nr_pages = 0;
 280        int z;
 281
 282        for (z = 0; z < MAX_NR_ZONES; z++) {
 283                struct zone *zone = pgdat->node_zones + z;
 284
 285                if (!populated_zone(zone))
 286                        continue;
 287
 288                nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 289        }
 290
 291        /*
 292         * Pages reserved for the kernel should not be considered
 293         * dirtyable, to prevent a situation where reclaim has to
 294         * clean pages in order to balance the zones.
 295         */
 296        nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 297
 298        nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 299        nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 300
 301        return nr_pages;
 302}
 303
 304static unsigned long highmem_dirtyable_memory(unsigned long total)
 305{
 306#ifdef CONFIG_HIGHMEM
 307        int node;
 308        unsigned long x = 0;
 309        int i;
 310
 311        for_each_node_state(node, N_HIGH_MEMORY) {
 312                for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 313                        struct zone *z;
 314                        unsigned long nr_pages;
 315
 316                        if (!is_highmem_idx(i))
 317                                continue;
 318
 319                        z = &NODE_DATA(node)->node_zones[i];
 320                        if (!populated_zone(z))
 321                                continue;
 322
 323                        nr_pages = zone_page_state(z, NR_FREE_PAGES);
 324                        /* watch for underflows */
 325                        nr_pages -= min(nr_pages, high_wmark_pages(z));
 326                        nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 327                        nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 328                        x += nr_pages;
 329                }
 330        }
 331
 332        /*
 333         * Unreclaimable memory (kernel memory or anonymous memory
 334         * without swap) can bring down the dirtyable pages below
 335         * the zone's dirty balance reserve and the above calculation
 336         * will underflow.  However we still want to add in nodes
 337         * which are below threshold (negative values) to get a more
 338         * accurate calculation but make sure that the total never
 339         * underflows.
 340         */
 341        if ((long)x < 0)
 342                x = 0;
 343
 344        /*
 345         * Make sure that the number of highmem pages is never larger
 346         * than the number of the total dirtyable memory. This can only
 347         * occur in very strange VM situations but we want to make sure
 348         * that this does not occur.
 349         */
 350        return min(x, total);
 351#else
 352        return 0;
 353#endif
 354}
 355
 356/**
 357 * global_dirtyable_memory - number of globally dirtyable pages
 358 *
 359 * Return: the global number of pages potentially available for dirty
 360 * page cache.  This is the base value for the global dirty limits.
 361 */
 362static unsigned long global_dirtyable_memory(void)
 363{
 364        unsigned long x;
 365
 366        x = global_zone_page_state(NR_FREE_PAGES);
 367        /*
 368         * Pages reserved for the kernel should not be considered
 369         * dirtyable, to prevent a situation where reclaim has to
 370         * clean pages in order to balance the zones.
 371         */
 372        x -= min(x, totalreserve_pages);
 373
 374        x += global_node_page_state(NR_INACTIVE_FILE);
 375        x += global_node_page_state(NR_ACTIVE_FILE);
 376
 377        if (!vm_highmem_is_dirtyable)
 378                x -= highmem_dirtyable_memory(x);
 379
 380        return x + 1;   /* Ensure that we never return 0 */
 381}
 382
 383/**
 384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 385 * @dtc: dirty_throttle_control of interest
 386 *
 387 * Calculate @dtc->thresh and ->bg_thresh considering
 388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 389 * must ensure that @dtc->avail is set before calling this function.  The
 390 * dirty limits will be lifted by 1/4 for real-time tasks.
 391 */
 392static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 393{
 394        const unsigned long available_memory = dtc->avail;
 395        struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 396        unsigned long bytes = vm_dirty_bytes;
 397        unsigned long bg_bytes = dirty_background_bytes;
 398        /* convert ratios to per-PAGE_SIZE for higher precision */
 399        unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 400        unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 401        unsigned long thresh;
 402        unsigned long bg_thresh;
 403        struct task_struct *tsk;
 404
 405        /* gdtc is !NULL iff @dtc is for memcg domain */
 406        if (gdtc) {
 407                unsigned long global_avail = gdtc->avail;
 408
 409                /*
 410                 * The byte settings can't be applied directly to memcg
 411                 * domains.  Convert them to ratios by scaling against
 412                 * globally available memory.  As the ratios are in
 413                 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 414                 * number of pages.
 415                 */
 416                if (bytes)
 417                        ratio = min(DIV_ROUND_UP(bytes, global_avail),
 418                                    PAGE_SIZE);
 419                if (bg_bytes)
 420                        bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 421                                       PAGE_SIZE);
 422                bytes = bg_bytes = 0;
 423        }
 424
 425        if (bytes)
 426                thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 427        else
 428                thresh = (ratio * available_memory) / PAGE_SIZE;
 429
 430        if (bg_bytes)
 431                bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 432        else
 433                bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 434
 435        if (bg_thresh >= thresh)
 436                bg_thresh = thresh / 2;
 437        tsk = current;
 438        if (rt_task(tsk)) {
 439                bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 440                thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 441        }
 442        dtc->thresh = thresh;
 443        dtc->bg_thresh = bg_thresh;
 444
 445        /* we should eventually report the domain in the TP */
 446        if (!gdtc)
 447                trace_global_dirty_state(bg_thresh, thresh);
 448}
 449
 450/**
 451 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 452 * @pbackground: out parameter for bg_thresh
 453 * @pdirty: out parameter for thresh
 454 *
 455 * Calculate bg_thresh and thresh for global_wb_domain.  See
 456 * domain_dirty_limits() for details.
 457 */
 458void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 459{
 460        struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 461
 462        gdtc.avail = global_dirtyable_memory();
 463        domain_dirty_limits(&gdtc);
 464
 465        *pbackground = gdtc.bg_thresh;
 466        *pdirty = gdtc.thresh;
 467}
 468
 469/**
 470 * node_dirty_limit - maximum number of dirty pages allowed in a node
 471 * @pgdat: the node
 472 *
 473 * Return: the maximum number of dirty pages allowed in a node, based
 474 * on the node's dirtyable memory.
 475 */
 476static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 477{
 478        unsigned long node_memory = node_dirtyable_memory(pgdat);
 479        struct task_struct *tsk = current;
 480        unsigned long dirty;
 481
 482        if (vm_dirty_bytes)
 483                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 484                        node_memory / global_dirtyable_memory();
 485        else
 486                dirty = vm_dirty_ratio * node_memory / 100;
 487
 488        if (rt_task(tsk))
 489                dirty += dirty / 4;
 490
 491        return dirty;
 492}
 493
 494/**
 495 * node_dirty_ok - tells whether a node is within its dirty limits
 496 * @pgdat: the node to check
 497 *
 498 * Return: %true when the dirty pages in @pgdat are within the node's
 499 * dirty limit, %false if the limit is exceeded.
 500 */
 501bool node_dirty_ok(struct pglist_data *pgdat)
 502{
 503        unsigned long limit = node_dirty_limit(pgdat);
 504        unsigned long nr_pages = 0;
 505
 506        nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 507        nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 508
 509        return nr_pages <= limit;
 510}
 511
 512int dirty_background_ratio_handler(struct ctl_table *table, int write,
 513                void *buffer, size_t *lenp, loff_t *ppos)
 514{
 515        int ret;
 516
 517        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 518        if (ret == 0 && write)
 519                dirty_background_bytes = 0;
 520        return ret;
 521}
 522
 523int dirty_background_bytes_handler(struct ctl_table *table, int write,
 524                void *buffer, size_t *lenp, loff_t *ppos)
 525{
 526        int ret;
 527
 528        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 529        if (ret == 0 && write)
 530                dirty_background_ratio = 0;
 531        return ret;
 532}
 533
 534int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
 535                size_t *lenp, loff_t *ppos)
 536{
 537        int old_ratio = vm_dirty_ratio;
 538        int ret;
 539
 540        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 541        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 542                writeback_set_ratelimit();
 543                vm_dirty_bytes = 0;
 544        }
 545        return ret;
 546}
 547
 548int dirty_bytes_handler(struct ctl_table *table, int write,
 549                void *buffer, size_t *lenp, loff_t *ppos)
 550{
 551        unsigned long old_bytes = vm_dirty_bytes;
 552        int ret;
 553
 554        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 555        if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 556                writeback_set_ratelimit();
 557                vm_dirty_ratio = 0;
 558        }
 559        return ret;
 560}
 561
 562static unsigned long wp_next_time(unsigned long cur_time)
 563{
 564        cur_time += VM_COMPLETIONS_PERIOD_LEN;
 565        /* 0 has a special meaning... */
 566        if (!cur_time)
 567                return 1;
 568        return cur_time;
 569}
 570
 571static void wb_domain_writeout_inc(struct wb_domain *dom,
 572                                   struct fprop_local_percpu *completions,
 573                                   unsigned int max_prop_frac)
 574{
 575        __fprop_inc_percpu_max(&dom->completions, completions,
 576                               max_prop_frac);
 577        /* First event after period switching was turned off? */
 578        if (unlikely(!dom->period_time)) {
 579                /*
 580                 * We can race with other __bdi_writeout_inc calls here but
 581                 * it does not cause any harm since the resulting time when
 582                 * timer will fire and what is in writeout_period_time will be
 583                 * roughly the same.
 584                 */
 585                dom->period_time = wp_next_time(jiffies);
 586                mod_timer(&dom->period_timer, dom->period_time);
 587        }
 588}
 589
 590/*
 591 * Increment @wb's writeout completion count and the global writeout
 592 * completion count. Called from test_clear_page_writeback().
 593 */
 594static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 595{
 596        struct wb_domain *cgdom;
 597
 598        inc_wb_stat(wb, WB_WRITTEN);
 599        wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 600                               wb->bdi->max_prop_frac);
 601
 602        cgdom = mem_cgroup_wb_domain(wb);
 603        if (cgdom)
 604                wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 605                                       wb->bdi->max_prop_frac);
 606}
 607
 608void wb_writeout_inc(struct bdi_writeback *wb)
 609{
 610        unsigned long flags;
 611
 612        local_irq_save(flags);
 613        __wb_writeout_inc(wb);
 614        local_irq_restore(flags);
 615}
 616EXPORT_SYMBOL_GPL(wb_writeout_inc);
 617
 618/*
 619 * On idle system, we can be called long after we scheduled because we use
 620 * deferred timers so count with missed periods.
 621 */
 622static void writeout_period(struct timer_list *t)
 623{
 624        struct wb_domain *dom = from_timer(dom, t, period_timer);
 625        int miss_periods = (jiffies - dom->period_time) /
 626                                                 VM_COMPLETIONS_PERIOD_LEN;
 627
 628        if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 629                dom->period_time = wp_next_time(dom->period_time +
 630                                miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 631                mod_timer(&dom->period_timer, dom->period_time);
 632        } else {
 633                /*
 634                 * Aging has zeroed all fractions. Stop wasting CPU on period
 635                 * updates.
 636                 */
 637                dom->period_time = 0;
 638        }
 639}
 640
 641int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 642{
 643        memset(dom, 0, sizeof(*dom));
 644
 645        spin_lock_init(&dom->lock);
 646
 647        timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 648
 649        dom->dirty_limit_tstamp = jiffies;
 650
 651        return fprop_global_init(&dom->completions, gfp);
 652}
 653
 654#ifdef CONFIG_CGROUP_WRITEBACK
 655void wb_domain_exit(struct wb_domain *dom)
 656{
 657        del_timer_sync(&dom->period_timer);
 658        fprop_global_destroy(&dom->completions);
 659}
 660#endif
 661
 662/*
 663 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 664 * registered backing devices, which, for obvious reasons, can not
 665 * exceed 100%.
 666 */
 667static unsigned int bdi_min_ratio;
 668
 669int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 670{
 671        int ret = 0;
 672
 673        spin_lock_bh(&bdi_lock);
 674        if (min_ratio > bdi->max_ratio) {
 675                ret = -EINVAL;
 676        } else {
 677                min_ratio -= bdi->min_ratio;
 678                if (bdi_min_ratio + min_ratio < 100) {
 679                        bdi_min_ratio += min_ratio;
 680                        bdi->min_ratio += min_ratio;
 681                } else {
 682                        ret = -EINVAL;
 683                }
 684        }
 685        spin_unlock_bh(&bdi_lock);
 686
 687        return ret;
 688}
 689
 690int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 691{
 692        int ret = 0;
 693
 694        if (max_ratio > 100)
 695                return -EINVAL;
 696
 697        spin_lock_bh(&bdi_lock);
 698        if (bdi->min_ratio > max_ratio) {
 699                ret = -EINVAL;
 700        } else {
 701                bdi->max_ratio = max_ratio;
 702                bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 703        }
 704        spin_unlock_bh(&bdi_lock);
 705
 706        return ret;
 707}
 708EXPORT_SYMBOL(bdi_set_max_ratio);
 709
 710static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 711                                           unsigned long bg_thresh)
 712{
 713        return (thresh + bg_thresh) / 2;
 714}
 715
 716static unsigned long hard_dirty_limit(struct wb_domain *dom,
 717                                      unsigned long thresh)
 718{
 719        return max(thresh, dom->dirty_limit);
 720}
 721
 722/*
 723 * Memory which can be further allocated to a memcg domain is capped by
 724 * system-wide clean memory excluding the amount being used in the domain.
 725 */
 726static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 727                            unsigned long filepages, unsigned long headroom)
 728{
 729        struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 730        unsigned long clean = filepages - min(filepages, mdtc->dirty);
 731        unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 732        unsigned long other_clean = global_clean - min(global_clean, clean);
 733
 734        mdtc->avail = filepages + min(headroom, other_clean);
 735}
 736
 737/**
 738 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 739 * @dtc: dirty_throttle_context of interest
 740 *
 741 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 742 * when sleeping max_pause per page is not enough to keep the dirty pages under
 743 * control. For example, when the device is completely stalled due to some error
 744 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 745 * In the other normal situations, it acts more gently by throttling the tasks
 746 * more (rather than completely block them) when the wb dirty pages go high.
 747 *
 748 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 749 * - starving fast devices
 750 * - piling up dirty pages (that will take long time to sync) on slow devices
 751 *
 752 * The wb's share of dirty limit will be adapting to its throughput and
 753 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 754 *
 755 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
 756 * dirty balancing includes all PG_dirty and PG_writeback pages.
 757 */
 758static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 759{
 760        struct wb_domain *dom = dtc_dom(dtc);
 761        unsigned long thresh = dtc->thresh;
 762        u64 wb_thresh;
 763        unsigned long numerator, denominator;
 764        unsigned long wb_min_ratio, wb_max_ratio;
 765
 766        /*
 767         * Calculate this BDI's share of the thresh ratio.
 768         */
 769        fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 770                              &numerator, &denominator);
 771
 772        wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 773        wb_thresh *= numerator;
 774        wb_thresh = div64_ul(wb_thresh, denominator);
 775
 776        wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 777
 778        wb_thresh += (thresh * wb_min_ratio) / 100;
 779        if (wb_thresh > (thresh * wb_max_ratio) / 100)
 780                wb_thresh = thresh * wb_max_ratio / 100;
 781
 782        return wb_thresh;
 783}
 784
 785unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 786{
 787        struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 788                                               .thresh = thresh };
 789        return __wb_calc_thresh(&gdtc);
 790}
 791
 792/*
 793 *                           setpoint - dirty 3
 794 *        f(dirty) := 1.0 + (----------------)
 795 *                           limit - setpoint
 796 *
 797 * it's a 3rd order polynomial that subjects to
 798 *
 799 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 800 * (2) f(setpoint) = 1.0 => the balance point
 801 * (3) f(limit)    = 0   => the hard limit
 802 * (4) df/dx      <= 0   => negative feedback control
 803 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 804 *     => fast response on large errors; small oscillation near setpoint
 805 */
 806static long long pos_ratio_polynom(unsigned long setpoint,
 807                                          unsigned long dirty,
 808                                          unsigned long limit)
 809{
 810        long long pos_ratio;
 811        long x;
 812
 813        x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 814                      (limit - setpoint) | 1);
 815        pos_ratio = x;
 816        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 817        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 818        pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 819
 820        return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 821}
 822
 823/*
 824 * Dirty position control.
 825 *
 826 * (o) global/bdi setpoints
 827 *
 828 * We want the dirty pages be balanced around the global/wb setpoints.
 829 * When the number of dirty pages is higher/lower than the setpoint, the
 830 * dirty position control ratio (and hence task dirty ratelimit) will be
 831 * decreased/increased to bring the dirty pages back to the setpoint.
 832 *
 833 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 834 *
 835 *     if (dirty < setpoint) scale up   pos_ratio
 836 *     if (dirty > setpoint) scale down pos_ratio
 837 *
 838 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 839 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 840 *
 841 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 842 *
 843 * (o) global control line
 844 *
 845 *     ^ pos_ratio
 846 *     |
 847 *     |            |<===== global dirty control scope ======>|
 848 * 2.0 .............*
 849 *     |            .*
 850 *     |            . *
 851 *     |            .   *
 852 *     |            .     *
 853 *     |            .        *
 854 *     |            .            *
 855 * 1.0 ................................*
 856 *     |            .                  .     *
 857 *     |            .                  .          *
 858 *     |            .                  .              *
 859 *     |            .                  .                 *
 860 *     |            .                  .                    *
 861 *   0 +------------.------------------.----------------------*------------->
 862 *           freerun^          setpoint^                 limit^   dirty pages
 863 *
 864 * (o) wb control line
 865 *
 866 *     ^ pos_ratio
 867 *     |
 868 *     |            *
 869 *     |              *
 870 *     |                *
 871 *     |                  *
 872 *     |                    * |<=========== span ============>|
 873 * 1.0 .......................*
 874 *     |                      . *
 875 *     |                      .   *
 876 *     |                      .     *
 877 *     |                      .       *
 878 *     |                      .         *
 879 *     |                      .           *
 880 *     |                      .             *
 881 *     |                      .               *
 882 *     |                      .                 *
 883 *     |                      .                   *
 884 *     |                      .                     *
 885 * 1/4 ...............................................* * * * * * * * * * * *
 886 *     |                      .                         .
 887 *     |                      .                           .
 888 *     |                      .                             .
 889 *   0 +----------------------.-------------------------------.------------->
 890 *                wb_setpoint^                    x_intercept^
 891 *
 892 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 893 * be smoothly throttled down to normal if it starts high in situations like
 894 * - start writing to a slow SD card and a fast disk at the same time. The SD
 895 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 896 * - the wb dirty thresh drops quickly due to change of JBOD workload
 897 */
 898static void wb_position_ratio(struct dirty_throttle_control *dtc)
 899{
 900        struct bdi_writeback *wb = dtc->wb;
 901        unsigned long write_bw = wb->avg_write_bandwidth;
 902        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 903        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 904        unsigned long wb_thresh = dtc->wb_thresh;
 905        unsigned long x_intercept;
 906        unsigned long setpoint;         /* dirty pages' target balance point */
 907        unsigned long wb_setpoint;
 908        unsigned long span;
 909        long long pos_ratio;            /* for scaling up/down the rate limit */
 910        long x;
 911
 912        dtc->pos_ratio = 0;
 913
 914        if (unlikely(dtc->dirty >= limit))
 915                return;
 916
 917        /*
 918         * global setpoint
 919         *
 920         * See comment for pos_ratio_polynom().
 921         */
 922        setpoint = (freerun + limit) / 2;
 923        pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 924
 925        /*
 926         * The strictlimit feature is a tool preventing mistrusted filesystems
 927         * from growing a large number of dirty pages before throttling. For
 928         * such filesystems balance_dirty_pages always checks wb counters
 929         * against wb limits. Even if global "nr_dirty" is under "freerun".
 930         * This is especially important for fuse which sets bdi->max_ratio to
 931         * 1% by default. Without strictlimit feature, fuse writeback may
 932         * consume arbitrary amount of RAM because it is accounted in
 933         * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 934         *
 935         * Here, in wb_position_ratio(), we calculate pos_ratio based on
 936         * two values: wb_dirty and wb_thresh. Let's consider an example:
 937         * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 938         * limits are set by default to 10% and 20% (background and throttle).
 939         * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 940         * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 941         * about ~6K pages (as the average of background and throttle wb
 942         * limits). The 3rd order polynomial will provide positive feedback if
 943         * wb_dirty is under wb_setpoint and vice versa.
 944         *
 945         * Note, that we cannot use global counters in these calculations
 946         * because we want to throttle process writing to a strictlimit wb
 947         * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 948         * in the example above).
 949         */
 950        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 951                long long wb_pos_ratio;
 952
 953                if (dtc->wb_dirty < 8) {
 954                        dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 955                                           2 << RATELIMIT_CALC_SHIFT);
 956                        return;
 957                }
 958
 959                if (dtc->wb_dirty >= wb_thresh)
 960                        return;
 961
 962                wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 963                                                    dtc->wb_bg_thresh);
 964
 965                if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 966                        return;
 967
 968                wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 969                                                 wb_thresh);
 970
 971                /*
 972                 * Typically, for strictlimit case, wb_setpoint << setpoint
 973                 * and pos_ratio >> wb_pos_ratio. In the other words global
 974                 * state ("dirty") is not limiting factor and we have to
 975                 * make decision based on wb counters. But there is an
 976                 * important case when global pos_ratio should get precedence:
 977                 * global limits are exceeded (e.g. due to activities on other
 978                 * wb's) while given strictlimit wb is below limit.
 979                 *
 980                 * "pos_ratio * wb_pos_ratio" would work for the case above,
 981                 * but it would look too non-natural for the case of all
 982                 * activity in the system coming from a single strictlimit wb
 983                 * with bdi->max_ratio == 100%.
 984                 *
 985                 * Note that min() below somewhat changes the dynamics of the
 986                 * control system. Normally, pos_ratio value can be well over 3
 987                 * (when globally we are at freerun and wb is well below wb
 988                 * setpoint). Now the maximum pos_ratio in the same situation
 989                 * is 2. We might want to tweak this if we observe the control
 990                 * system is too slow to adapt.
 991                 */
 992                dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 993                return;
 994        }
 995
 996        /*
 997         * We have computed basic pos_ratio above based on global situation. If
 998         * the wb is over/under its share of dirty pages, we want to scale
 999         * pos_ratio further down/up. That is done by the following mechanism.
1000         */
1001
1002        /*
1003         * wb setpoint
1004         *
1005         *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1006         *
1007         *                        x_intercept - wb_dirty
1008         *                     := --------------------------
1009         *                        x_intercept - wb_setpoint
1010         *
1011         * The main wb control line is a linear function that subjects to
1012         *
1013         * (1) f(wb_setpoint) = 1.0
1014         * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1015         *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1016         *
1017         * For single wb case, the dirty pages are observed to fluctuate
1018         * regularly within range
1019         *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1020         * for various filesystems, where (2) can yield in a reasonable 12.5%
1021         * fluctuation range for pos_ratio.
1022         *
1023         * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1024         * own size, so move the slope over accordingly and choose a slope that
1025         * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1026         */
1027        if (unlikely(wb_thresh > dtc->thresh))
1028                wb_thresh = dtc->thresh;
1029        /*
1030         * It's very possible that wb_thresh is close to 0 not because the
1031         * device is slow, but that it has remained inactive for long time.
1032         * Honour such devices a reasonable good (hopefully IO efficient)
1033         * threshold, so that the occasional writes won't be blocked and active
1034         * writes can rampup the threshold quickly.
1035         */
1036        wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1037        /*
1038         * scale global setpoint to wb's:
1039         *      wb_setpoint = setpoint * wb_thresh / thresh
1040         */
1041        x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1042        wb_setpoint = setpoint * (u64)x >> 16;
1043        /*
1044         * Use span=(8*write_bw) in single wb case as indicated by
1045         * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1046         *
1047         *        wb_thresh                    thresh - wb_thresh
1048         * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1049         *         thresh                           thresh
1050         */
1051        span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1052        x_intercept = wb_setpoint + span;
1053
1054        if (dtc->wb_dirty < x_intercept - span / 4) {
1055                pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1056                                      (x_intercept - wb_setpoint) | 1);
1057        } else
1058                pos_ratio /= 4;
1059
1060        /*
1061         * wb reserve area, safeguard against dirty pool underrun and disk idle
1062         * It may push the desired control point of global dirty pages higher
1063         * than setpoint.
1064         */
1065        x_intercept = wb_thresh / 2;
1066        if (dtc->wb_dirty < x_intercept) {
1067                if (dtc->wb_dirty > x_intercept / 8)
1068                        pos_ratio = div_u64(pos_ratio * x_intercept,
1069                                            dtc->wb_dirty);
1070                else
1071                        pos_ratio *= 8;
1072        }
1073
1074        dtc->pos_ratio = pos_ratio;
1075}
1076
1077static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1078                                      unsigned long elapsed,
1079                                      unsigned long written)
1080{
1081        const unsigned long period = roundup_pow_of_two(3 * HZ);
1082        unsigned long avg = wb->avg_write_bandwidth;
1083        unsigned long old = wb->write_bandwidth;
1084        u64 bw;
1085
1086        /*
1087         * bw = written * HZ / elapsed
1088         *
1089         *                   bw * elapsed + write_bandwidth * (period - elapsed)
1090         * write_bandwidth = ---------------------------------------------------
1091         *                                          period
1092         *
1093         * @written may have decreased due to account_page_redirty().
1094         * Avoid underflowing @bw calculation.
1095         */
1096        bw = written - min(written, wb->written_stamp);
1097        bw *= HZ;
1098        if (unlikely(elapsed > period)) {
1099                bw = div64_ul(bw, elapsed);
1100                avg = bw;
1101                goto out;
1102        }
1103        bw += (u64)wb->write_bandwidth * (period - elapsed);
1104        bw >>= ilog2(period);
1105
1106        /*
1107         * one more level of smoothing, for filtering out sudden spikes
1108         */
1109        if (avg > old && old >= (unsigned long)bw)
1110                avg -= (avg - old) >> 3;
1111
1112        if (avg < old && old <= (unsigned long)bw)
1113                avg += (old - avg) >> 3;
1114
1115out:
1116        /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1117        avg = max(avg, 1LU);
1118        if (wb_has_dirty_io(wb)) {
1119                long delta = avg - wb->avg_write_bandwidth;
1120                WARN_ON_ONCE(atomic_long_add_return(delta,
1121                                        &wb->bdi->tot_write_bandwidth) <= 0);
1122        }
1123        wb->write_bandwidth = bw;
1124        wb->avg_write_bandwidth = avg;
1125}
1126
1127static void update_dirty_limit(struct dirty_throttle_control *dtc)
1128{
1129        struct wb_domain *dom = dtc_dom(dtc);
1130        unsigned long thresh = dtc->thresh;
1131        unsigned long limit = dom->dirty_limit;
1132
1133        /*
1134         * Follow up in one step.
1135         */
1136        if (limit < thresh) {
1137                limit = thresh;
1138                goto update;
1139        }
1140
1141        /*
1142         * Follow down slowly. Use the higher one as the target, because thresh
1143         * may drop below dirty. This is exactly the reason to introduce
1144         * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1145         */
1146        thresh = max(thresh, dtc->dirty);
1147        if (limit > thresh) {
1148                limit -= (limit - thresh) >> 5;
1149                goto update;
1150        }
1151        return;
1152update:
1153        dom->dirty_limit = limit;
1154}
1155
1156static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1157                                    unsigned long now)
1158{
1159        struct wb_domain *dom = dtc_dom(dtc);
1160
1161        /*
1162         * check locklessly first to optimize away locking for the most time
1163         */
1164        if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1165                return;
1166
1167        spin_lock(&dom->lock);
1168        if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1169                update_dirty_limit(dtc);
1170                dom->dirty_limit_tstamp = now;
1171        }
1172        spin_unlock(&dom->lock);
1173}
1174
1175/*
1176 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1177 *
1178 * Normal wb tasks will be curbed at or below it in long term.
1179 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1180 */
1181static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1182                                      unsigned long dirtied,
1183                                      unsigned long elapsed)
1184{
1185        struct bdi_writeback *wb = dtc->wb;
1186        unsigned long dirty = dtc->dirty;
1187        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1188        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1189        unsigned long setpoint = (freerun + limit) / 2;
1190        unsigned long write_bw = wb->avg_write_bandwidth;
1191        unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1192        unsigned long dirty_rate;
1193        unsigned long task_ratelimit;
1194        unsigned long balanced_dirty_ratelimit;
1195        unsigned long step;
1196        unsigned long x;
1197        unsigned long shift;
1198
1199        /*
1200         * The dirty rate will match the writeout rate in long term, except
1201         * when dirty pages are truncated by userspace or re-dirtied by FS.
1202         */
1203        dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1204
1205        /*
1206         * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1207         */
1208        task_ratelimit = (u64)dirty_ratelimit *
1209                                        dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1210        task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1211
1212        /*
1213         * A linear estimation of the "balanced" throttle rate. The theory is,
1214         * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1215         * dirty_rate will be measured to be (N * task_ratelimit). So the below
1216         * formula will yield the balanced rate limit (write_bw / N).
1217         *
1218         * Note that the expanded form is not a pure rate feedback:
1219         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1220         * but also takes pos_ratio into account:
1221         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1222         *
1223         * (1) is not realistic because pos_ratio also takes part in balancing
1224         * the dirty rate.  Consider the state
1225         *      pos_ratio = 0.5                                              (3)
1226         *      rate = 2 * (write_bw / N)                                    (4)
1227         * If (1) is used, it will stuck in that state! Because each dd will
1228         * be throttled at
1229         *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1230         * yielding
1231         *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1232         * put (6) into (1) we get
1233         *      rate_(i+1) = rate_(i)                                        (7)
1234         *
1235         * So we end up using (2) to always keep
1236         *      rate_(i+1) ~= (write_bw / N)                                 (8)
1237         * regardless of the value of pos_ratio. As long as (8) is satisfied,
1238         * pos_ratio is able to drive itself to 1.0, which is not only where
1239         * the dirty count meet the setpoint, but also where the slope of
1240         * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1241         */
1242        balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1243                                           dirty_rate | 1);
1244        /*
1245         * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1246         */
1247        if (unlikely(balanced_dirty_ratelimit > write_bw))
1248                balanced_dirty_ratelimit = write_bw;
1249
1250        /*
1251         * We could safely do this and return immediately:
1252         *
1253         *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1254         *
1255         * However to get a more stable dirty_ratelimit, the below elaborated
1256         * code makes use of task_ratelimit to filter out singular points and
1257         * limit the step size.
1258         *
1259         * The below code essentially only uses the relative value of
1260         *
1261         *      task_ratelimit - dirty_ratelimit
1262         *      = (pos_ratio - 1) * dirty_ratelimit
1263         *
1264         * which reflects the direction and size of dirty position error.
1265         */
1266
1267        /*
1268         * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1269         * task_ratelimit is on the same side of dirty_ratelimit, too.
1270         * For example, when
1271         * - dirty_ratelimit > balanced_dirty_ratelimit
1272         * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1273         * lowering dirty_ratelimit will help meet both the position and rate
1274         * control targets. Otherwise, don't update dirty_ratelimit if it will
1275         * only help meet the rate target. After all, what the users ultimately
1276         * feel and care are stable dirty rate and small position error.
1277         *
1278         * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1279         * and filter out the singular points of balanced_dirty_ratelimit. Which
1280         * keeps jumping around randomly and can even leap far away at times
1281         * due to the small 200ms estimation period of dirty_rate (we want to
1282         * keep that period small to reduce time lags).
1283         */
1284        step = 0;
1285
1286        /*
1287         * For strictlimit case, calculations above were based on wb counters
1288         * and limits (starting from pos_ratio = wb_position_ratio() and up to
1289         * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1290         * Hence, to calculate "step" properly, we have to use wb_dirty as
1291         * "dirty" and wb_setpoint as "setpoint".
1292         *
1293         * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1294         * it's possible that wb_thresh is close to zero due to inactivity
1295         * of backing device.
1296         */
1297        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1298                dirty = dtc->wb_dirty;
1299                if (dtc->wb_dirty < 8)
1300                        setpoint = dtc->wb_dirty + 1;
1301                else
1302                        setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1303        }
1304
1305        if (dirty < setpoint) {
1306                x = min3(wb->balanced_dirty_ratelimit,
1307                         balanced_dirty_ratelimit, task_ratelimit);
1308                if (dirty_ratelimit < x)
1309                        step = x - dirty_ratelimit;
1310        } else {
1311                x = max3(wb->balanced_dirty_ratelimit,
1312                         balanced_dirty_ratelimit, task_ratelimit);
1313                if (dirty_ratelimit > x)
1314                        step = dirty_ratelimit - x;
1315        }
1316
1317        /*
1318         * Don't pursue 100% rate matching. It's impossible since the balanced
1319         * rate itself is constantly fluctuating. So decrease the track speed
1320         * when it gets close to the target. Helps eliminate pointless tremors.
1321         */
1322        shift = dirty_ratelimit / (2 * step + 1);
1323        if (shift < BITS_PER_LONG)
1324                step = DIV_ROUND_UP(step >> shift, 8);
1325        else
1326                step = 0;
1327
1328        if (dirty_ratelimit < balanced_dirty_ratelimit)
1329                dirty_ratelimit += step;
1330        else
1331                dirty_ratelimit -= step;
1332
1333        wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1334        wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1335
1336        trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1337}
1338
1339static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1340                                  struct dirty_throttle_control *mdtc,
1341                                  unsigned long start_time,
1342                                  bool update_ratelimit)
1343{
1344        struct bdi_writeback *wb = gdtc->wb;
1345        unsigned long now = jiffies;
1346        unsigned long elapsed = now - wb->bw_time_stamp;
1347        unsigned long dirtied;
1348        unsigned long written;
1349
1350        lockdep_assert_held(&wb->list_lock);
1351
1352        /*
1353         * rate-limit, only update once every 200ms.
1354         */
1355        if (elapsed < BANDWIDTH_INTERVAL)
1356                return;
1357
1358        dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1359        written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1360
1361        /*
1362         * Skip quiet periods when disk bandwidth is under-utilized.
1363         * (at least 1s idle time between two flusher runs)
1364         */
1365        if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1366                goto snapshot;
1367
1368        if (update_ratelimit) {
1369                domain_update_bandwidth(gdtc, now);
1370                wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1371
1372                /*
1373                 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1374                 * compiler has no way to figure that out.  Help it.
1375                 */
1376                if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1377                        domain_update_bandwidth(mdtc, now);
1378                        wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1379                }
1380        }
1381        wb_update_write_bandwidth(wb, elapsed, written);
1382
1383snapshot:
1384        wb->dirtied_stamp = dirtied;
1385        wb->written_stamp = written;
1386        wb->bw_time_stamp = now;
1387}
1388
1389void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1390{
1391        struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1392
1393        __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1394}
1395
1396/*
1397 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1398 * will look to see if it needs to start dirty throttling.
1399 *
1400 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1401 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1402 * (the number of pages we may dirty without exceeding the dirty limits).
1403 */
1404static unsigned long dirty_poll_interval(unsigned long dirty,
1405                                         unsigned long thresh)
1406{
1407        if (thresh > dirty)
1408                return 1UL << (ilog2(thresh - dirty) >> 1);
1409
1410        return 1;
1411}
1412
1413static unsigned long wb_max_pause(struct bdi_writeback *wb,
1414                                  unsigned long wb_dirty)
1415{
1416        unsigned long bw = wb->avg_write_bandwidth;
1417        unsigned long t;
1418
1419        /*
1420         * Limit pause time for small memory systems. If sleeping for too long
1421         * time, a small pool of dirty/writeback pages may go empty and disk go
1422         * idle.
1423         *
1424         * 8 serves as the safety ratio.
1425         */
1426        t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1427        t++;
1428
1429        return min_t(unsigned long, t, MAX_PAUSE);
1430}
1431
1432static long wb_min_pause(struct bdi_writeback *wb,
1433                         long max_pause,
1434                         unsigned long task_ratelimit,
1435                         unsigned long dirty_ratelimit,
1436                         int *nr_dirtied_pause)
1437{
1438        long hi = ilog2(wb->avg_write_bandwidth);
1439        long lo = ilog2(wb->dirty_ratelimit);
1440        long t;         /* target pause */
1441        long pause;     /* estimated next pause */
1442        int pages;      /* target nr_dirtied_pause */
1443
1444        /* target for 10ms pause on 1-dd case */
1445        t = max(1, HZ / 100);
1446
1447        /*
1448         * Scale up pause time for concurrent dirtiers in order to reduce CPU
1449         * overheads.
1450         *
1451         * (N * 10ms) on 2^N concurrent tasks.
1452         */
1453        if (hi > lo)
1454                t += (hi - lo) * (10 * HZ) / 1024;
1455
1456        /*
1457         * This is a bit convoluted. We try to base the next nr_dirtied_pause
1458         * on the much more stable dirty_ratelimit. However the next pause time
1459         * will be computed based on task_ratelimit and the two rate limits may
1460         * depart considerably at some time. Especially if task_ratelimit goes
1461         * below dirty_ratelimit/2 and the target pause is max_pause, the next
1462         * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1463         * result task_ratelimit won't be executed faithfully, which could
1464         * eventually bring down dirty_ratelimit.
1465         *
1466         * We apply two rules to fix it up:
1467         * 1) try to estimate the next pause time and if necessary, use a lower
1468         *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1469         *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1470         * 2) limit the target pause time to max_pause/2, so that the normal
1471         *    small fluctuations of task_ratelimit won't trigger rule (1) and
1472         *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1473         */
1474        t = min(t, 1 + max_pause / 2);
1475        pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1476
1477        /*
1478         * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1479         * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1480         * When the 16 consecutive reads are often interrupted by some dirty
1481         * throttling pause during the async writes, cfq will go into idles
1482         * (deadline is fine). So push nr_dirtied_pause as high as possible
1483         * until reaches DIRTY_POLL_THRESH=32 pages.
1484         */
1485        if (pages < DIRTY_POLL_THRESH) {
1486                t = max_pause;
1487                pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1488                if (pages > DIRTY_POLL_THRESH) {
1489                        pages = DIRTY_POLL_THRESH;
1490                        t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1491                }
1492        }
1493
1494        pause = HZ * pages / (task_ratelimit + 1);
1495        if (pause > max_pause) {
1496                t = max_pause;
1497                pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1498        }
1499
1500        *nr_dirtied_pause = pages;
1501        /*
1502         * The minimal pause time will normally be half the target pause time.
1503         */
1504        return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1505}
1506
1507static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1508{
1509        struct bdi_writeback *wb = dtc->wb;
1510        unsigned long wb_reclaimable;
1511
1512        /*
1513         * wb_thresh is not treated as some limiting factor as
1514         * dirty_thresh, due to reasons
1515         * - in JBOD setup, wb_thresh can fluctuate a lot
1516         * - in a system with HDD and USB key, the USB key may somehow
1517         *   go into state (wb_dirty >> wb_thresh) either because
1518         *   wb_dirty starts high, or because wb_thresh drops low.
1519         *   In this case we don't want to hard throttle the USB key
1520         *   dirtiers for 100 seconds until wb_dirty drops under
1521         *   wb_thresh. Instead the auxiliary wb control line in
1522         *   wb_position_ratio() will let the dirtier task progress
1523         *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1524         */
1525        dtc->wb_thresh = __wb_calc_thresh(dtc);
1526        dtc->wb_bg_thresh = dtc->thresh ?
1527                div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1528
1529        /*
1530         * In order to avoid the stacked BDI deadlock we need
1531         * to ensure we accurately count the 'dirty' pages when
1532         * the threshold is low.
1533         *
1534         * Otherwise it would be possible to get thresh+n pages
1535         * reported dirty, even though there are thresh-m pages
1536         * actually dirty; with m+n sitting in the percpu
1537         * deltas.
1538         */
1539        if (dtc->wb_thresh < 2 * wb_stat_error()) {
1540                wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1541                dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1542        } else {
1543                wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1544                dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1545        }
1546}
1547
1548/*
1549 * balance_dirty_pages() must be called by processes which are generating dirty
1550 * data.  It looks at the number of dirty pages in the machine and will force
1551 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1552 * If we're over `background_thresh' then the writeback threads are woken to
1553 * perform some writeout.
1554 */
1555static void balance_dirty_pages(struct bdi_writeback *wb,
1556                                unsigned long pages_dirtied)
1557{
1558        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1559        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1560        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1561        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1562                                                     &mdtc_stor : NULL;
1563        struct dirty_throttle_control *sdtc;
1564        unsigned long nr_reclaimable;   /* = file_dirty */
1565        long period;
1566        long pause;
1567        long max_pause;
1568        long min_pause;
1569        int nr_dirtied_pause;
1570        bool dirty_exceeded = false;
1571        unsigned long task_ratelimit;
1572        unsigned long dirty_ratelimit;
1573        struct backing_dev_info *bdi = wb->bdi;
1574        bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1575        unsigned long start_time = jiffies;
1576
1577        for (;;) {
1578                unsigned long now = jiffies;
1579                unsigned long dirty, thresh, bg_thresh;
1580                unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1581                unsigned long m_thresh = 0;
1582                unsigned long m_bg_thresh = 0;
1583
1584                nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1585                gdtc->avail = global_dirtyable_memory();
1586                gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1587
1588                domain_dirty_limits(gdtc);
1589
1590                if (unlikely(strictlimit)) {
1591                        wb_dirty_limits(gdtc);
1592
1593                        dirty = gdtc->wb_dirty;
1594                        thresh = gdtc->wb_thresh;
1595                        bg_thresh = gdtc->wb_bg_thresh;
1596                } else {
1597                        dirty = gdtc->dirty;
1598                        thresh = gdtc->thresh;
1599                        bg_thresh = gdtc->bg_thresh;
1600                }
1601
1602                if (mdtc) {
1603                        unsigned long filepages, headroom, writeback;
1604
1605                        /*
1606                         * If @wb belongs to !root memcg, repeat the same
1607                         * basic calculations for the memcg domain.
1608                         */
1609                        mem_cgroup_wb_stats(wb, &filepages, &headroom,
1610                                            &mdtc->dirty, &writeback);
1611                        mdtc->dirty += writeback;
1612                        mdtc_calc_avail(mdtc, filepages, headroom);
1613
1614                        domain_dirty_limits(mdtc);
1615
1616                        if (unlikely(strictlimit)) {
1617                                wb_dirty_limits(mdtc);
1618                                m_dirty = mdtc->wb_dirty;
1619                                m_thresh = mdtc->wb_thresh;
1620                                m_bg_thresh = mdtc->wb_bg_thresh;
1621                        } else {
1622                                m_dirty = mdtc->dirty;
1623                                m_thresh = mdtc->thresh;
1624                                m_bg_thresh = mdtc->bg_thresh;
1625                        }
1626                }
1627
1628                /*
1629                 * Throttle it only when the background writeback cannot
1630                 * catch-up. This avoids (excessively) small writeouts
1631                 * when the wb limits are ramping up in case of !strictlimit.
1632                 *
1633                 * In strictlimit case make decision based on the wb counters
1634                 * and limits. Small writeouts when the wb limits are ramping
1635                 * up are the price we consciously pay for strictlimit-ing.
1636                 *
1637                 * If memcg domain is in effect, @dirty should be under
1638                 * both global and memcg freerun ceilings.
1639                 */
1640                if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1641                    (!mdtc ||
1642                     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1643                        unsigned long intv;
1644                        unsigned long m_intv;
1645
1646free_running:
1647                        intv = dirty_poll_interval(dirty, thresh);
1648                        m_intv = ULONG_MAX;
1649
1650                        current->dirty_paused_when = now;
1651                        current->nr_dirtied = 0;
1652                        if (mdtc)
1653                                m_intv = dirty_poll_interval(m_dirty, m_thresh);
1654                        current->nr_dirtied_pause = min(intv, m_intv);
1655                        break;
1656                }
1657
1658                if (unlikely(!writeback_in_progress(wb)))
1659                        wb_start_background_writeback(wb);
1660
1661                mem_cgroup_flush_foreign(wb);
1662
1663                /*
1664                 * Calculate global domain's pos_ratio and select the
1665                 * global dtc by default.
1666                 */
1667                if (!strictlimit) {
1668                        wb_dirty_limits(gdtc);
1669
1670                        if ((current->flags & PF_LOCAL_THROTTLE) &&
1671                            gdtc->wb_dirty <
1672                            dirty_freerun_ceiling(gdtc->wb_thresh,
1673                                                  gdtc->wb_bg_thresh))
1674                                /*
1675                                 * LOCAL_THROTTLE tasks must not be throttled
1676                                 * when below the per-wb freerun ceiling.
1677                                 */
1678                                goto free_running;
1679                }
1680
1681                dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1682                        ((gdtc->dirty > gdtc->thresh) || strictlimit);
1683
1684                wb_position_ratio(gdtc);
1685                sdtc = gdtc;
1686
1687                if (mdtc) {
1688                        /*
1689                         * If memcg domain is in effect, calculate its
1690                         * pos_ratio.  @wb should satisfy constraints from
1691                         * both global and memcg domains.  Choose the one
1692                         * w/ lower pos_ratio.
1693                         */
1694                        if (!strictlimit) {
1695                                wb_dirty_limits(mdtc);
1696
1697                                if ((current->flags & PF_LOCAL_THROTTLE) &&
1698                                    mdtc->wb_dirty <
1699                                    dirty_freerun_ceiling(mdtc->wb_thresh,
1700                                                          mdtc->wb_bg_thresh))
1701                                        /*
1702                                         * LOCAL_THROTTLE tasks must not be
1703                                         * throttled when below the per-wb
1704                                         * freerun ceiling.
1705                                         */
1706                                        goto free_running;
1707                        }
1708                        dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1709                                ((mdtc->dirty > mdtc->thresh) || strictlimit);
1710
1711                        wb_position_ratio(mdtc);
1712                        if (mdtc->pos_ratio < gdtc->pos_ratio)
1713                                sdtc = mdtc;
1714                }
1715
1716                if (dirty_exceeded && !wb->dirty_exceeded)
1717                        wb->dirty_exceeded = 1;
1718
1719                if (time_is_before_jiffies(wb->bw_time_stamp +
1720                                           BANDWIDTH_INTERVAL)) {
1721                        spin_lock(&wb->list_lock);
1722                        __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1723                        spin_unlock(&wb->list_lock);
1724                }
1725
1726                /* throttle according to the chosen dtc */
1727                dirty_ratelimit = wb->dirty_ratelimit;
1728                task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1729                                                        RATELIMIT_CALC_SHIFT;
1730                max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1731                min_pause = wb_min_pause(wb, max_pause,
1732                                         task_ratelimit, dirty_ratelimit,
1733                                         &nr_dirtied_pause);
1734
1735                if (unlikely(task_ratelimit == 0)) {
1736                        period = max_pause;
1737                        pause = max_pause;
1738                        goto pause;
1739                }
1740                period = HZ * pages_dirtied / task_ratelimit;
1741                pause = period;
1742                if (current->dirty_paused_when)
1743                        pause -= now - current->dirty_paused_when;
1744                /*
1745                 * For less than 1s think time (ext3/4 may block the dirtier
1746                 * for up to 800ms from time to time on 1-HDD; so does xfs,
1747                 * however at much less frequency), try to compensate it in
1748                 * future periods by updating the virtual time; otherwise just
1749                 * do a reset, as it may be a light dirtier.
1750                 */
1751                if (pause < min_pause) {
1752                        trace_balance_dirty_pages(wb,
1753                                                  sdtc->thresh,
1754                                                  sdtc->bg_thresh,
1755                                                  sdtc->dirty,
1756                                                  sdtc->wb_thresh,
1757                                                  sdtc->wb_dirty,
1758                                                  dirty_ratelimit,
1759                                                  task_ratelimit,
1760                                                  pages_dirtied,
1761                                                  period,
1762                                                  min(pause, 0L),
1763                                                  start_time);
1764                        if (pause < -HZ) {
1765                                current->dirty_paused_when = now;
1766                                current->nr_dirtied = 0;
1767                        } else if (period) {
1768                                current->dirty_paused_when += period;
1769                                current->nr_dirtied = 0;
1770                        } else if (current->nr_dirtied_pause <= pages_dirtied)
1771                                current->nr_dirtied_pause += pages_dirtied;
1772                        break;
1773                }
1774                if (unlikely(pause > max_pause)) {
1775                        /* for occasional dropped task_ratelimit */
1776                        now += min(pause - max_pause, max_pause);
1777                        pause = max_pause;
1778                }
1779
1780pause:
1781                trace_balance_dirty_pages(wb,
1782                                          sdtc->thresh,
1783                                          sdtc->bg_thresh,
1784                                          sdtc->dirty,
1785                                          sdtc->wb_thresh,
1786                                          sdtc->wb_dirty,
1787                                          dirty_ratelimit,
1788                                          task_ratelimit,
1789                                          pages_dirtied,
1790                                          period,
1791                                          pause,
1792                                          start_time);
1793                __set_current_state(TASK_KILLABLE);
1794                wb->dirty_sleep = now;
1795                io_schedule_timeout(pause);
1796
1797                current->dirty_paused_when = now + pause;
1798                current->nr_dirtied = 0;
1799                current->nr_dirtied_pause = nr_dirtied_pause;
1800
1801                /*
1802                 * This is typically equal to (dirty < thresh) and can also
1803                 * keep "1000+ dd on a slow USB stick" under control.
1804                 */
1805                if (task_ratelimit)
1806                        break;
1807
1808                /*
1809                 * In the case of an unresponding NFS server and the NFS dirty
1810                 * pages exceeds dirty_thresh, give the other good wb's a pipe
1811                 * to go through, so that tasks on them still remain responsive.
1812                 *
1813                 * In theory 1 page is enough to keep the consumer-producer
1814                 * pipe going: the flusher cleans 1 page => the task dirties 1
1815                 * more page. However wb_dirty has accounting errors.  So use
1816                 * the larger and more IO friendly wb_stat_error.
1817                 */
1818                if (sdtc->wb_dirty <= wb_stat_error())
1819                        break;
1820
1821                if (fatal_signal_pending(current))
1822                        break;
1823        }
1824
1825        if (!dirty_exceeded && wb->dirty_exceeded)
1826                wb->dirty_exceeded = 0;
1827
1828        if (writeback_in_progress(wb))
1829                return;
1830
1831        /*
1832         * In laptop mode, we wait until hitting the higher threshold before
1833         * starting background writeout, and then write out all the way down
1834         * to the lower threshold.  So slow writers cause minimal disk activity.
1835         *
1836         * In normal mode, we start background writeout at the lower
1837         * background_thresh, to keep the amount of dirty memory low.
1838         */
1839        if (laptop_mode)
1840                return;
1841
1842        if (nr_reclaimable > gdtc->bg_thresh)
1843                wb_start_background_writeback(wb);
1844}
1845
1846static DEFINE_PER_CPU(int, bdp_ratelimits);
1847
1848/*
1849 * Normal tasks are throttled by
1850 *      loop {
1851 *              dirty tsk->nr_dirtied_pause pages;
1852 *              take a snap in balance_dirty_pages();
1853 *      }
1854 * However there is a worst case. If every task exit immediately when dirtied
1855 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1856 * called to throttle the page dirties. The solution is to save the not yet
1857 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1858 * randomly into the running tasks. This works well for the above worst case,
1859 * as the new task will pick up and accumulate the old task's leaked dirty
1860 * count and eventually get throttled.
1861 */
1862DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1863
1864/**
1865 * balance_dirty_pages_ratelimited - balance dirty memory state
1866 * @mapping: address_space which was dirtied
1867 *
1868 * Processes which are dirtying memory should call in here once for each page
1869 * which was newly dirtied.  The function will periodically check the system's
1870 * dirty state and will initiate writeback if needed.
1871 *
1872 * On really big machines, get_writeback_state is expensive, so try to avoid
1873 * calling it too often (ratelimiting).  But once we're over the dirty memory
1874 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1875 * from overshooting the limit by (ratelimit_pages) each.
1876 */
1877void balance_dirty_pages_ratelimited(struct address_space *mapping)
1878{
1879        struct inode *inode = mapping->host;
1880        struct backing_dev_info *bdi = inode_to_bdi(inode);
1881        struct bdi_writeback *wb = NULL;
1882        int ratelimit;
1883        int *p;
1884
1885        if (!bdi_cap_account_dirty(bdi))
1886                return;
1887
1888        if (inode_cgwb_enabled(inode))
1889                wb = wb_get_create_current(bdi, GFP_KERNEL);
1890        if (!wb)
1891                wb = &bdi->wb;
1892
1893        ratelimit = current->nr_dirtied_pause;
1894        if (wb->dirty_exceeded)
1895                ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1896
1897        preempt_disable();
1898        /*
1899         * This prevents one CPU to accumulate too many dirtied pages without
1900         * calling into balance_dirty_pages(), which can happen when there are
1901         * 1000+ tasks, all of them start dirtying pages at exactly the same
1902         * time, hence all honoured too large initial task->nr_dirtied_pause.
1903         */
1904        p =  this_cpu_ptr(&bdp_ratelimits);
1905        if (unlikely(current->nr_dirtied >= ratelimit))
1906                *p = 0;
1907        else if (unlikely(*p >= ratelimit_pages)) {
1908                *p = 0;
1909                ratelimit = 0;
1910        }
1911        /*
1912         * Pick up the dirtied pages by the exited tasks. This avoids lots of
1913         * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1914         * the dirty throttling and livelock other long-run dirtiers.
1915         */
1916        p = this_cpu_ptr(&dirty_throttle_leaks);
1917        if (*p > 0 && current->nr_dirtied < ratelimit) {
1918                unsigned long nr_pages_dirtied;
1919                nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1920                *p -= nr_pages_dirtied;
1921                current->nr_dirtied += nr_pages_dirtied;
1922        }
1923        preempt_enable();
1924
1925        if (unlikely(current->nr_dirtied >= ratelimit))
1926                balance_dirty_pages(wb, current->nr_dirtied);
1927
1928        wb_put(wb);
1929}
1930EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1931
1932/**
1933 * wb_over_bg_thresh - does @wb need to be written back?
1934 * @wb: bdi_writeback of interest
1935 *
1936 * Determines whether background writeback should keep writing @wb or it's
1937 * clean enough.
1938 *
1939 * Return: %true if writeback should continue.
1940 */
1941bool wb_over_bg_thresh(struct bdi_writeback *wb)
1942{
1943        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1944        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1945        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1946        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1947                                                     &mdtc_stor : NULL;
1948
1949        /*
1950         * Similar to balance_dirty_pages() but ignores pages being written
1951         * as we're trying to decide whether to put more under writeback.
1952         */
1953        gdtc->avail = global_dirtyable_memory();
1954        gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1955        domain_dirty_limits(gdtc);
1956
1957        if (gdtc->dirty > gdtc->bg_thresh)
1958                return true;
1959
1960        if (wb_stat(wb, WB_RECLAIMABLE) >
1961            wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1962                return true;
1963
1964        if (mdtc) {
1965                unsigned long filepages, headroom, writeback;
1966
1967                mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1968                                    &writeback);
1969                mdtc_calc_avail(mdtc, filepages, headroom);
1970                domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1971
1972                if (mdtc->dirty > mdtc->bg_thresh)
1973                        return true;
1974
1975                if (wb_stat(wb, WB_RECLAIMABLE) >
1976                    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1977                        return true;
1978        }
1979
1980        return false;
1981}
1982
1983/*
1984 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1985 */
1986int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1987                void *buffer, size_t *length, loff_t *ppos)
1988{
1989        unsigned int old_interval = dirty_writeback_interval;
1990        int ret;
1991
1992        ret = proc_dointvec(table, write, buffer, length, ppos);
1993
1994        /*
1995         * Writing 0 to dirty_writeback_interval will disable periodic writeback
1996         * and a different non-zero value will wakeup the writeback threads.
1997         * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1998         * iterate over all bdis and wbs.
1999         * The reason we do this is to make the change take effect immediately.
2000         */
2001        if (!ret && write && dirty_writeback_interval &&
2002                dirty_writeback_interval != old_interval)
2003                wakeup_flusher_threads(WB_REASON_PERIODIC);
2004
2005        return ret;
2006}
2007
2008#ifdef CONFIG_BLOCK
2009void laptop_mode_timer_fn(struct timer_list *t)
2010{
2011        struct backing_dev_info *backing_dev_info =
2012                from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2013
2014        wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2015}
2016
2017/*
2018 * We've spun up the disk and we're in laptop mode: schedule writeback
2019 * of all dirty data a few seconds from now.  If the flush is already scheduled
2020 * then push it back - the user is still using the disk.
2021 */
2022void laptop_io_completion(struct backing_dev_info *info)
2023{
2024        mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2025}
2026
2027/*
2028 * We're in laptop mode and we've just synced. The sync's writes will have
2029 * caused another writeback to be scheduled by laptop_io_completion.
2030 * Nothing needs to be written back anymore, so we unschedule the writeback.
2031 */
2032void laptop_sync_completion(void)
2033{
2034        struct backing_dev_info *bdi;
2035
2036        rcu_read_lock();
2037
2038        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2039                del_timer(&bdi->laptop_mode_wb_timer);
2040
2041        rcu_read_unlock();
2042}
2043#endif
2044
2045/*
2046 * If ratelimit_pages is too high then we can get into dirty-data overload
2047 * if a large number of processes all perform writes at the same time.
2048 * If it is too low then SMP machines will call the (expensive)
2049 * get_writeback_state too often.
2050 *
2051 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2052 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2053 * thresholds.
2054 */
2055
2056void writeback_set_ratelimit(void)
2057{
2058        struct wb_domain *dom = &global_wb_domain;
2059        unsigned long background_thresh;
2060        unsigned long dirty_thresh;
2061
2062        global_dirty_limits(&background_thresh, &dirty_thresh);
2063        dom->dirty_limit = dirty_thresh;
2064        ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2065        if (ratelimit_pages < 16)
2066                ratelimit_pages = 16;
2067}
2068
2069static int page_writeback_cpu_online(unsigned int cpu)
2070{
2071        writeback_set_ratelimit();
2072        return 0;
2073}
2074
2075/*
2076 * Called early on to tune the page writeback dirty limits.
2077 *
2078 * We used to scale dirty pages according to how total memory
2079 * related to pages that could be allocated for buffers.
2080 *
2081 * However, that was when we used "dirty_ratio" to scale with
2082 * all memory, and we don't do that any more. "dirty_ratio"
2083 * is now applied to total non-HIGHPAGE memory, and as such we can't
2084 * get into the old insane situation any more where we had
2085 * large amounts of dirty pages compared to a small amount of
2086 * non-HIGHMEM memory.
2087 *
2088 * But we might still want to scale the dirty_ratio by how
2089 * much memory the box has..
2090 */
2091void __init page_writeback_init(void)
2092{
2093        BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2094
2095        cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2096                          page_writeback_cpu_online, NULL);
2097        cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2098                          page_writeback_cpu_online);
2099}
2100
2101/**
2102 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2103 * @mapping: address space structure to write
2104 * @start: starting page index
2105 * @end: ending page index (inclusive)
2106 *
2107 * This function scans the page range from @start to @end (inclusive) and tags
2108 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2109 * that write_cache_pages (or whoever calls this function) will then use
2110 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2111 * used to avoid livelocking of writeback by a process steadily creating new
2112 * dirty pages in the file (thus it is important for this function to be quick
2113 * so that it can tag pages faster than a dirtying process can create them).
2114 */
2115void tag_pages_for_writeback(struct address_space *mapping,
2116                             pgoff_t start, pgoff_t end)
2117{
2118        XA_STATE(xas, &mapping->i_pages, start);
2119        unsigned int tagged = 0;
2120        void *page;
2121
2122        xas_lock_irq(&xas);
2123        xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2124                xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2125                if (++tagged % XA_CHECK_SCHED)
2126                        continue;
2127
2128                xas_pause(&xas);
2129                xas_unlock_irq(&xas);
2130                cond_resched();
2131                xas_lock_irq(&xas);
2132        }
2133        xas_unlock_irq(&xas);
2134}
2135EXPORT_SYMBOL(tag_pages_for_writeback);
2136
2137/**
2138 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2139 * @mapping: address space structure to write
2140 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2141 * @writepage: function called for each page
2142 * @data: data passed to writepage function
2143 *
2144 * If a page is already under I/O, write_cache_pages() skips it, even
2145 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2146 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2147 * and msync() need to guarantee that all the data which was dirty at the time
2148 * the call was made get new I/O started against them.  If wbc->sync_mode is
2149 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2150 * existing IO to complete.
2151 *
2152 * To avoid livelocks (when other process dirties new pages), we first tag
2153 * pages which should be written back with TOWRITE tag and only then start
2154 * writing them. For data-integrity sync we have to be careful so that we do
2155 * not miss some pages (e.g., because some other process has cleared TOWRITE
2156 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2157 * by the process clearing the DIRTY tag (and submitting the page for IO).
2158 *
2159 * To avoid deadlocks between range_cyclic writeback and callers that hold
2160 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2161 * we do not loop back to the start of the file. Doing so causes a page
2162 * lock/page writeback access order inversion - we should only ever lock
2163 * multiple pages in ascending page->index order, and looping back to the start
2164 * of the file violates that rule and causes deadlocks.
2165 *
2166 * Return: %0 on success, negative error code otherwise
2167 */
2168int write_cache_pages(struct address_space *mapping,
2169                      struct writeback_control *wbc, writepage_t writepage,
2170                      void *data)
2171{
2172        int ret = 0;
2173        int done = 0;
2174        int error;
2175        struct pagevec pvec;
2176        int nr_pages;
2177        pgoff_t index;
2178        pgoff_t end;            /* Inclusive */
2179        pgoff_t done_index;
2180        int range_whole = 0;
2181        xa_mark_t tag;
2182
2183        pagevec_init(&pvec);
2184        if (wbc->range_cyclic) {
2185                index = mapping->writeback_index; /* prev offset */
2186                end = -1;
2187        } else {
2188                index = wbc->range_start >> PAGE_SHIFT;
2189                end = wbc->range_end >> PAGE_SHIFT;
2190                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2191                        range_whole = 1;
2192        }
2193        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2194                tag_pages_for_writeback(mapping, index, end);
2195                tag = PAGECACHE_TAG_TOWRITE;
2196        } else {
2197                tag = PAGECACHE_TAG_DIRTY;
2198        }
2199        done_index = index;
2200        while (!done && (index <= end)) {
2201                int i;
2202
2203                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2204                                tag);
2205                if (nr_pages == 0)
2206                        break;
2207
2208                for (i = 0; i < nr_pages; i++) {
2209                        struct page *page = pvec.pages[i];
2210
2211                        done_index = page->index;
2212
2213                        lock_page(page);
2214
2215                        /*
2216                         * Page truncated or invalidated. We can freely skip it
2217                         * then, even for data integrity operations: the page
2218                         * has disappeared concurrently, so there could be no
2219                         * real expectation of this data interity operation
2220                         * even if there is now a new, dirty page at the same
2221                         * pagecache address.
2222                         */
2223                        if (unlikely(page->mapping != mapping)) {
2224continue_unlock:
2225                                unlock_page(page);
2226                                continue;
2227                        }
2228
2229                        if (!PageDirty(page)) {
2230                                /* someone wrote it for us */
2231                                goto continue_unlock;
2232                        }
2233
2234                        if (PageWriteback(page)) {
2235                                if (wbc->sync_mode != WB_SYNC_NONE)
2236                                        wait_on_page_writeback(page);
2237                                else
2238                                        goto continue_unlock;
2239                        }
2240
2241                        BUG_ON(PageWriteback(page));
2242                        if (!clear_page_dirty_for_io(page))
2243                                goto continue_unlock;
2244
2245                        trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2246                        error = (*writepage)(page, wbc, data);
2247                        if (unlikely(error)) {
2248                                /*
2249                                 * Handle errors according to the type of
2250                                 * writeback. There's no need to continue for
2251                                 * background writeback. Just push done_index
2252                                 * past this page so media errors won't choke
2253                                 * writeout for the entire file. For integrity
2254                                 * writeback, we must process the entire dirty
2255                                 * set regardless of errors because the fs may
2256                                 * still have state to clear for each page. In
2257                                 * that case we continue processing and return
2258                                 * the first error.
2259                                 */
2260                                if (error == AOP_WRITEPAGE_ACTIVATE) {
2261                                        unlock_page(page);
2262                                        error = 0;
2263                                } else if (wbc->sync_mode != WB_SYNC_ALL) {
2264                                        ret = error;
2265                                        done_index = page->index + 1;
2266                                        done = 1;
2267                                        break;
2268                                }
2269                                if (!ret)
2270                                        ret = error;
2271                        }
2272
2273                        /*
2274                         * We stop writing back only if we are not doing
2275                         * integrity sync. In case of integrity sync we have to
2276                         * keep going until we have written all the pages
2277                         * we tagged for writeback prior to entering this loop.
2278                         */
2279                        if (--wbc->nr_to_write <= 0 &&
2280                            wbc->sync_mode == WB_SYNC_NONE) {
2281                                done = 1;
2282                                break;
2283                        }
2284                }
2285                pagevec_release(&pvec);
2286                cond_resched();
2287        }
2288
2289        /*
2290         * If we hit the last page and there is more work to be done: wrap
2291         * back the index back to the start of the file for the next
2292         * time we are called.
2293         */
2294        if (wbc->range_cyclic && !done)
2295                done_index = 0;
2296        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2297                mapping->writeback_index = done_index;
2298
2299        return ret;
2300}
2301EXPORT_SYMBOL(write_cache_pages);
2302
2303/*
2304 * Function used by generic_writepages to call the real writepage
2305 * function and set the mapping flags on error
2306 */
2307static int __writepage(struct page *page, struct writeback_control *wbc,
2308                       void *data)
2309{
2310        struct address_space *mapping = data;
2311        int ret = mapping->a_ops->writepage(page, wbc);
2312        mapping_set_error(mapping, ret);
2313        return ret;
2314}
2315
2316/**
2317 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2318 * @mapping: address space structure to write
2319 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2320 *
2321 * This is a library function, which implements the writepages()
2322 * address_space_operation.
2323 *
2324 * Return: %0 on success, negative error code otherwise
2325 */
2326int generic_writepages(struct address_space *mapping,
2327                       struct writeback_control *wbc)
2328{
2329        struct blk_plug plug;
2330        int ret;
2331
2332        /* deal with chardevs and other special file */
2333        if (!mapping->a_ops->writepage)
2334                return 0;
2335
2336        blk_start_plug(&plug);
2337        ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2338        blk_finish_plug(&plug);
2339        return ret;
2340}
2341
2342EXPORT_SYMBOL(generic_writepages);
2343
2344int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2345{
2346        int ret;
2347
2348        if (wbc->nr_to_write <= 0)
2349                return 0;
2350        while (1) {
2351                if (mapping->a_ops->writepages)
2352                        ret = mapping->a_ops->writepages(mapping, wbc);
2353                else
2354                        ret = generic_writepages(mapping, wbc);
2355                if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2356                        break;
2357                cond_resched();
2358                congestion_wait(BLK_RW_ASYNC, HZ/50);
2359        }
2360        return ret;
2361}
2362
2363/**
2364 * write_one_page - write out a single page and wait on I/O
2365 * @page: the page to write
2366 *
2367 * The page must be locked by the caller and will be unlocked upon return.
2368 *
2369 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2370 * function returns.
2371 *
2372 * Return: %0 on success, negative error code otherwise
2373 */
2374int write_one_page(struct page *page)
2375{
2376        struct address_space *mapping = page->mapping;
2377        int ret = 0;
2378        struct writeback_control wbc = {
2379                .sync_mode = WB_SYNC_ALL,
2380                .nr_to_write = 1,
2381        };
2382
2383        BUG_ON(!PageLocked(page));
2384
2385        wait_on_page_writeback(page);
2386
2387        if (clear_page_dirty_for_io(page)) {
2388                get_page(page);
2389                ret = mapping->a_ops->writepage(page, &wbc);
2390                if (ret == 0)
2391                        wait_on_page_writeback(page);
2392                put_page(page);
2393        } else {
2394                unlock_page(page);
2395        }
2396
2397        if (!ret)
2398                ret = filemap_check_errors(mapping);
2399        return ret;
2400}
2401EXPORT_SYMBOL(write_one_page);
2402
2403/*
2404 * For address_spaces which do not use buffers nor write back.
2405 */
2406int __set_page_dirty_no_writeback(struct page *page)
2407{
2408        if (!PageDirty(page))
2409                return !TestSetPageDirty(page);
2410        return 0;
2411}
2412
2413/*
2414 * Helper function for set_page_dirty family.
2415 *
2416 * Caller must hold lock_page_memcg().
2417 *
2418 * NOTE: This relies on being atomic wrt interrupts.
2419 */
2420void account_page_dirtied(struct page *page, struct address_space *mapping)
2421{
2422        struct inode *inode = mapping->host;
2423
2424        trace_writeback_dirty_page(page, mapping);
2425
2426        if (mapping_cap_account_dirty(mapping)) {
2427                struct bdi_writeback *wb;
2428
2429                inode_attach_wb(inode, page);
2430                wb = inode_to_wb(inode);
2431
2432                __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2433                __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2434                __inc_node_page_state(page, NR_DIRTIED);
2435                inc_wb_stat(wb, WB_RECLAIMABLE);
2436                inc_wb_stat(wb, WB_DIRTIED);
2437                task_io_account_write(PAGE_SIZE);
2438                current->nr_dirtied++;
2439                this_cpu_inc(bdp_ratelimits);
2440
2441                mem_cgroup_track_foreign_dirty(page, wb);
2442        }
2443}
2444
2445/*
2446 * Helper function for deaccounting dirty page without writeback.
2447 *
2448 * Caller must hold lock_page_memcg().
2449 */
2450void account_page_cleaned(struct page *page, struct address_space *mapping,
2451                          struct bdi_writeback *wb)
2452{
2453        if (mapping_cap_account_dirty(mapping)) {
2454                dec_lruvec_page_state(page, NR_FILE_DIRTY);
2455                dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2456                dec_wb_stat(wb, WB_RECLAIMABLE);
2457                task_io_account_cancelled_write(PAGE_SIZE);
2458        }
2459}
2460
2461/*
2462 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2463 * the xarray.
2464 *
2465 * This is also used when a single buffer is being dirtied: we want to set the
2466 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2467 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2468 *
2469 * The caller must ensure this doesn't race with truncation.  Most will simply
2470 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2471 * the pte lock held, which also locks out truncation.
2472 */
2473int __set_page_dirty_nobuffers(struct page *page)
2474{
2475        lock_page_memcg(page);
2476        if (!TestSetPageDirty(page)) {
2477                struct address_space *mapping = page_mapping(page);
2478                unsigned long flags;
2479
2480                if (!mapping) {
2481                        unlock_page_memcg(page);
2482                        return 1;
2483                }
2484
2485                xa_lock_irqsave(&mapping->i_pages, flags);
2486                BUG_ON(page_mapping(page) != mapping);
2487                WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2488                account_page_dirtied(page, mapping);
2489                __xa_set_mark(&mapping->i_pages, page_index(page),
2490                                   PAGECACHE_TAG_DIRTY);
2491                xa_unlock_irqrestore(&mapping->i_pages, flags);
2492                unlock_page_memcg(page);
2493
2494                if (mapping->host) {
2495                        /* !PageAnon && !swapper_space */
2496                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2497                }
2498                return 1;
2499        }
2500        unlock_page_memcg(page);
2501        return 0;
2502}
2503EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2504
2505/*
2506 * Call this whenever redirtying a page, to de-account the dirty counters
2507 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2508 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2509 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2510 * control.
2511 */
2512void account_page_redirty(struct page *page)
2513{
2514        struct address_space *mapping = page->mapping;
2515
2516        if (mapping && mapping_cap_account_dirty(mapping)) {
2517                struct inode *inode = mapping->host;
2518                struct bdi_writeback *wb;
2519                struct wb_lock_cookie cookie = {};
2520
2521                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2522                current->nr_dirtied--;
2523                dec_node_page_state(page, NR_DIRTIED);
2524                dec_wb_stat(wb, WB_DIRTIED);
2525                unlocked_inode_to_wb_end(inode, &cookie);
2526        }
2527}
2528EXPORT_SYMBOL(account_page_redirty);
2529
2530/*
2531 * When a writepage implementation decides that it doesn't want to write this
2532 * page for some reason, it should redirty the locked page via
2533 * redirty_page_for_writepage() and it should then unlock the page and return 0
2534 */
2535int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2536{
2537        int ret;
2538
2539        wbc->pages_skipped++;
2540        ret = __set_page_dirty_nobuffers(page);
2541        account_page_redirty(page);
2542        return ret;
2543}
2544EXPORT_SYMBOL(redirty_page_for_writepage);
2545
2546/*
2547 * Dirty a page.
2548 *
2549 * For pages with a mapping this should be done under the page lock
2550 * for the benefit of asynchronous memory errors who prefer a consistent
2551 * dirty state. This rule can be broken in some special cases,
2552 * but should be better not to.
2553 *
2554 * If the mapping doesn't provide a set_page_dirty a_op, then
2555 * just fall through and assume that it wants buffer_heads.
2556 */
2557int set_page_dirty(struct page *page)
2558{
2559        struct address_space *mapping = page_mapping(page);
2560
2561        page = compound_head(page);
2562        if (likely(mapping)) {
2563                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2564                /*
2565                 * readahead/lru_deactivate_page could remain
2566                 * PG_readahead/PG_reclaim due to race with end_page_writeback
2567                 * About readahead, if the page is written, the flags would be
2568                 * reset. So no problem.
2569                 * About lru_deactivate_page, if the page is redirty, the flag
2570                 * will be reset. So no problem. but if the page is used by readahead
2571                 * it will confuse readahead and make it restart the size rampup
2572                 * process. But it's a trivial problem.
2573                 */
2574                if (PageReclaim(page))
2575                        ClearPageReclaim(page);
2576#ifdef CONFIG_BLOCK
2577                if (!spd)
2578                        spd = __set_page_dirty_buffers;
2579#endif
2580                return (*spd)(page);
2581        }
2582        if (!PageDirty(page)) {
2583                if (!TestSetPageDirty(page))
2584                        return 1;
2585        }
2586        return 0;
2587}
2588EXPORT_SYMBOL(set_page_dirty);
2589
2590/*
2591 * set_page_dirty() is racy if the caller has no reference against
2592 * page->mapping->host, and if the page is unlocked.  This is because another
2593 * CPU could truncate the page off the mapping and then free the mapping.
2594 *
2595 * Usually, the page _is_ locked, or the caller is a user-space process which
2596 * holds a reference on the inode by having an open file.
2597 *
2598 * In other cases, the page should be locked before running set_page_dirty().
2599 */
2600int set_page_dirty_lock(struct page *page)
2601{
2602        int ret;
2603
2604        lock_page(page);
2605        ret = set_page_dirty(page);
2606        unlock_page(page);
2607        return ret;
2608}
2609EXPORT_SYMBOL(set_page_dirty_lock);
2610
2611/*
2612 * This cancels just the dirty bit on the kernel page itself, it does NOT
2613 * actually remove dirty bits on any mmap's that may be around. It also
2614 * leaves the page tagged dirty, so any sync activity will still find it on
2615 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2616 * look at the dirty bits in the VM.
2617 *
2618 * Doing this should *normally* only ever be done when a page is truncated,
2619 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2620 * this when it notices that somebody has cleaned out all the buffers on a
2621 * page without actually doing it through the VM. Can you say "ext3 is
2622 * horribly ugly"? Thought you could.
2623 */
2624void __cancel_dirty_page(struct page *page)
2625{
2626        struct address_space *mapping = page_mapping(page);
2627
2628        if (mapping_cap_account_dirty(mapping)) {
2629                struct inode *inode = mapping->host;
2630                struct bdi_writeback *wb;
2631                struct wb_lock_cookie cookie = {};
2632
2633                lock_page_memcg(page);
2634                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2635
2636                if (TestClearPageDirty(page))
2637                        account_page_cleaned(page, mapping, wb);
2638
2639                unlocked_inode_to_wb_end(inode, &cookie);
2640                unlock_page_memcg(page);
2641        } else {
2642                ClearPageDirty(page);
2643        }
2644}
2645EXPORT_SYMBOL(__cancel_dirty_page);
2646
2647/*
2648 * Clear a page's dirty flag, while caring for dirty memory accounting.
2649 * Returns true if the page was previously dirty.
2650 *
2651 * This is for preparing to put the page under writeout.  We leave the page
2652 * tagged as dirty in the xarray so that a concurrent write-for-sync
2653 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2654 * implementation will run either set_page_writeback() or set_page_dirty(),
2655 * at which stage we bring the page's dirty flag and xarray dirty tag
2656 * back into sync.
2657 *
2658 * This incoherency between the page's dirty flag and xarray tag is
2659 * unfortunate, but it only exists while the page is locked.
2660 */
2661int clear_page_dirty_for_io(struct page *page)
2662{
2663        struct address_space *mapping = page_mapping(page);
2664        int ret = 0;
2665
2666        VM_BUG_ON_PAGE(!PageLocked(page), page);
2667
2668        if (mapping && mapping_cap_account_dirty(mapping)) {
2669                struct inode *inode = mapping->host;
2670                struct bdi_writeback *wb;
2671                struct wb_lock_cookie cookie = {};
2672
2673                /*
2674                 * Yes, Virginia, this is indeed insane.
2675                 *
2676                 * We use this sequence to make sure that
2677                 *  (a) we account for dirty stats properly
2678                 *  (b) we tell the low-level filesystem to
2679                 *      mark the whole page dirty if it was
2680                 *      dirty in a pagetable. Only to then
2681                 *  (c) clean the page again and return 1 to
2682                 *      cause the writeback.
2683                 *
2684                 * This way we avoid all nasty races with the
2685                 * dirty bit in multiple places and clearing
2686                 * them concurrently from different threads.
2687                 *
2688                 * Note! Normally the "set_page_dirty(page)"
2689                 * has no effect on the actual dirty bit - since
2690                 * that will already usually be set. But we
2691                 * need the side effects, and it can help us
2692                 * avoid races.
2693                 *
2694                 * We basically use the page "master dirty bit"
2695                 * as a serialization point for all the different
2696                 * threads doing their things.
2697                 */
2698                if (page_mkclean(page))
2699                        set_page_dirty(page);
2700                /*
2701                 * We carefully synchronise fault handlers against
2702                 * installing a dirty pte and marking the page dirty
2703                 * at this point.  We do this by having them hold the
2704                 * page lock while dirtying the page, and pages are
2705                 * always locked coming in here, so we get the desired
2706                 * exclusion.
2707                 */
2708                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2709                if (TestClearPageDirty(page)) {
2710                        dec_lruvec_page_state(page, NR_FILE_DIRTY);
2711                        dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2712                        dec_wb_stat(wb, WB_RECLAIMABLE);
2713                        ret = 1;
2714                }
2715                unlocked_inode_to_wb_end(inode, &cookie);
2716                return ret;
2717        }
2718        return TestClearPageDirty(page);
2719}
2720EXPORT_SYMBOL(clear_page_dirty_for_io);
2721
2722int test_clear_page_writeback(struct page *page)
2723{
2724        struct address_space *mapping = page_mapping(page);
2725        struct mem_cgroup *memcg;
2726        struct lruvec *lruvec;
2727        int ret;
2728
2729        memcg = lock_page_memcg(page);
2730        lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2731        if (mapping && mapping_use_writeback_tags(mapping)) {
2732                struct inode *inode = mapping->host;
2733                struct backing_dev_info *bdi = inode_to_bdi(inode);
2734                unsigned long flags;
2735
2736                xa_lock_irqsave(&mapping->i_pages, flags);
2737                ret = TestClearPageWriteback(page);
2738                if (ret) {
2739                        __xa_clear_mark(&mapping->i_pages, page_index(page),
2740                                                PAGECACHE_TAG_WRITEBACK);
2741                        if (bdi_cap_account_writeback(bdi)) {
2742                                struct bdi_writeback *wb = inode_to_wb(inode);
2743
2744                                dec_wb_stat(wb, WB_WRITEBACK);
2745                                __wb_writeout_inc(wb);
2746                        }
2747                }
2748
2749                if (mapping->host && !mapping_tagged(mapping,
2750                                                     PAGECACHE_TAG_WRITEBACK))
2751                        sb_clear_inode_writeback(mapping->host);
2752
2753                xa_unlock_irqrestore(&mapping->i_pages, flags);
2754        } else {
2755                ret = TestClearPageWriteback(page);
2756        }
2757        /*
2758         * NOTE: Page might be free now! Writeback doesn't hold a page
2759         * reference on its own, it relies on truncation to wait for
2760         * the clearing of PG_writeback. The below can only access
2761         * page state that is static across allocation cycles.
2762         */
2763        if (ret) {
2764                dec_lruvec_state(lruvec, NR_WRITEBACK);
2765                dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2766                inc_node_page_state(page, NR_WRITTEN);
2767        }
2768        __unlock_page_memcg(memcg);
2769        return ret;
2770}
2771
2772int __test_set_page_writeback(struct page *page, bool keep_write)
2773{
2774        struct address_space *mapping = page_mapping(page);
2775        int ret, access_ret;
2776
2777        lock_page_memcg(page);
2778        if (mapping && mapping_use_writeback_tags(mapping)) {
2779                XA_STATE(xas, &mapping->i_pages, page_index(page));
2780                struct inode *inode = mapping->host;
2781                struct backing_dev_info *bdi = inode_to_bdi(inode);
2782                unsigned long flags;
2783
2784                xas_lock_irqsave(&xas, flags);
2785                xas_load(&xas);
2786                ret = TestSetPageWriteback(page);
2787                if (!ret) {
2788                        bool on_wblist;
2789
2790                        on_wblist = mapping_tagged(mapping,
2791                                                   PAGECACHE_TAG_WRITEBACK);
2792
2793                        xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2794                        if (bdi_cap_account_writeback(bdi))
2795                                inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2796
2797                        /*
2798                         * We can come through here when swapping anonymous
2799                         * pages, so we don't necessarily have an inode to track
2800                         * for sync.
2801                         */
2802                        if (mapping->host && !on_wblist)
2803                                sb_mark_inode_writeback(mapping->host);
2804                }
2805                if (!PageDirty(page))
2806                        xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2807                if (!keep_write)
2808                        xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2809                xas_unlock_irqrestore(&xas, flags);
2810        } else {
2811                ret = TestSetPageWriteback(page);
2812        }
2813        if (!ret) {
2814                inc_lruvec_page_state(page, NR_WRITEBACK);
2815                inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2816        }
2817        unlock_page_memcg(page);
2818        access_ret = arch_make_page_accessible(page);
2819        /*
2820         * If writeback has been triggered on a page that cannot be made
2821         * accessible, it is too late to recover here.
2822         */
2823        VM_BUG_ON_PAGE(access_ret != 0, page);
2824
2825        return ret;
2826
2827}
2828EXPORT_SYMBOL(__test_set_page_writeback);
2829
2830/*
2831 * Wait for a page to complete writeback
2832 */
2833void wait_on_page_writeback(struct page *page)
2834{
2835        if (PageWriteback(page)) {
2836                trace_wait_on_page_writeback(page, page_mapping(page));
2837                wait_on_page_bit(page, PG_writeback);
2838        }
2839}
2840EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2841
2842/**
2843 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2844 * @page:       The page to wait on.
2845 *
2846 * This function determines if the given page is related to a backing device
2847 * that requires page contents to be held stable during writeback.  If so, then
2848 * it will wait for any pending writeback to complete.
2849 */
2850void wait_for_stable_page(struct page *page)
2851{
2852        if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2853                wait_on_page_writeback(page);
2854}
2855EXPORT_SYMBOL_GPL(wait_for_stable_page);
2856