linux/mm/page_alloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/swap.h>
  22#include <linux/interrupt.h>
  23#include <linux/pagemap.h>
  24#include <linux/jiffies.h>
  25#include <linux/memblock.h>
  26#include <linux/compiler.h>
  27#include <linux/kernel.h>
  28#include <linux/kasan.h>
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
  62#include <linux/sched/rt.h>
  63#include <linux/sched/mm.h>
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/lockdep.h>
  69#include <linux/nmi.h>
  70#include <linux/psi.h>
  71#include <linux/padata.h>
  72#include <linux/khugepaged.h>
  73
  74#include <asm/sections.h>
  75#include <asm/tlbflush.h>
  76#include <asm/div64.h>
  77#include "internal.h"
  78#include "shuffle.h"
  79#include "page_reporting.h"
  80
  81/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  82static DEFINE_MUTEX(pcp_batch_high_lock);
  83#define MIN_PERCPU_PAGELIST_FRACTION    (8)
  84
  85#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  86DEFINE_PER_CPU(int, numa_node);
  87EXPORT_PER_CPU_SYMBOL(numa_node);
  88#endif
  89
  90DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  91
  92#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  93/*
  94 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  95 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  96 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  97 * defined in <linux/topology.h>.
  98 */
  99DEFINE_PER_CPU(int, _numa_mem_);                /* Kernel "local memory" node */
 100EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 101#endif
 102
 103/* work_structs for global per-cpu drains */
 104struct pcpu_drain {
 105        struct zone *zone;
 106        struct work_struct work;
 107};
 108static DEFINE_MUTEX(pcpu_drain_mutex);
 109static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
 110
 111#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 112volatile unsigned long latent_entropy __latent_entropy;
 113EXPORT_SYMBOL(latent_entropy);
 114#endif
 115
 116/*
 117 * Array of node states.
 118 */
 119nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 120        [N_POSSIBLE] = NODE_MASK_ALL,
 121        [N_ONLINE] = { { [0] = 1UL } },
 122#ifndef CONFIG_NUMA
 123        [N_NORMAL_MEMORY] = { { [0] = 1UL } },
 124#ifdef CONFIG_HIGHMEM
 125        [N_HIGH_MEMORY] = { { [0] = 1UL } },
 126#endif
 127        [N_MEMORY] = { { [0] = 1UL } },
 128        [N_CPU] = { { [0] = 1UL } },
 129#endif  /* NUMA */
 130};
 131EXPORT_SYMBOL(node_states);
 132
 133atomic_long_t _totalram_pages __read_mostly;
 134EXPORT_SYMBOL(_totalram_pages);
 135unsigned long totalreserve_pages __read_mostly;
 136unsigned long totalcma_pages __read_mostly;
 137
 138int percpu_pagelist_fraction;
 139gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 140#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
 141DEFINE_STATIC_KEY_TRUE(init_on_alloc);
 142#else
 143DEFINE_STATIC_KEY_FALSE(init_on_alloc);
 144#endif
 145EXPORT_SYMBOL(init_on_alloc);
 146
 147#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
 148DEFINE_STATIC_KEY_TRUE(init_on_free);
 149#else
 150DEFINE_STATIC_KEY_FALSE(init_on_free);
 151#endif
 152EXPORT_SYMBOL(init_on_free);
 153
 154static int __init early_init_on_alloc(char *buf)
 155{
 156        int ret;
 157        bool bool_result;
 158
 159        if (!buf)
 160                return -EINVAL;
 161        ret = kstrtobool(buf, &bool_result);
 162        if (bool_result && page_poisoning_enabled())
 163                pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
 164        if (bool_result)
 165                static_branch_enable(&init_on_alloc);
 166        else
 167                static_branch_disable(&init_on_alloc);
 168        return ret;
 169}
 170early_param("init_on_alloc", early_init_on_alloc);
 171
 172static int __init early_init_on_free(char *buf)
 173{
 174        int ret;
 175        bool bool_result;
 176
 177        if (!buf)
 178                return -EINVAL;
 179        ret = kstrtobool(buf, &bool_result);
 180        if (bool_result && page_poisoning_enabled())
 181                pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
 182        if (bool_result)
 183                static_branch_enable(&init_on_free);
 184        else
 185                static_branch_disable(&init_on_free);
 186        return ret;
 187}
 188early_param("init_on_free", early_init_on_free);
 189
 190/*
 191 * A cached value of the page's pageblock's migratetype, used when the page is
 192 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 193 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 194 * Also the migratetype set in the page does not necessarily match the pcplist
 195 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 196 * other index - this ensures that it will be put on the correct CMA freelist.
 197 */
 198static inline int get_pcppage_migratetype(struct page *page)
 199{
 200        return page->index;
 201}
 202
 203static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 204{
 205        page->index = migratetype;
 206}
 207
 208#ifdef CONFIG_PM_SLEEP
 209/*
 210 * The following functions are used by the suspend/hibernate code to temporarily
 211 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 212 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 213 * they should always be called with system_transition_mutex held
 214 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 215 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 216 * with that modification).
 217 */
 218
 219static gfp_t saved_gfp_mask;
 220
 221void pm_restore_gfp_mask(void)
 222{
 223        WARN_ON(!mutex_is_locked(&system_transition_mutex));
 224        if (saved_gfp_mask) {
 225                gfp_allowed_mask = saved_gfp_mask;
 226                saved_gfp_mask = 0;
 227        }
 228}
 229
 230void pm_restrict_gfp_mask(void)
 231{
 232        WARN_ON(!mutex_is_locked(&system_transition_mutex));
 233        WARN_ON(saved_gfp_mask);
 234        saved_gfp_mask = gfp_allowed_mask;
 235        gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 236}
 237
 238bool pm_suspended_storage(void)
 239{
 240        if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 241                return false;
 242        return true;
 243}
 244#endif /* CONFIG_PM_SLEEP */
 245
 246#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 247unsigned int pageblock_order __read_mostly;
 248#endif
 249
 250static void __free_pages_ok(struct page *page, unsigned int order);
 251
 252/*
 253 * results with 256, 32 in the lowmem_reserve sysctl:
 254 *      1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 255 *      1G machine -> (16M dma, 784M normal, 224M high)
 256 *      NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 257 *      HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 258 *      HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 259 *
 260 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 261 * don't need any ZONE_NORMAL reservation
 262 */
 263int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 264#ifdef CONFIG_ZONE_DMA
 265        [ZONE_DMA] = 256,
 266#endif
 267#ifdef CONFIG_ZONE_DMA32
 268        [ZONE_DMA32] = 256,
 269#endif
 270        [ZONE_NORMAL] = 32,
 271#ifdef CONFIG_HIGHMEM
 272        [ZONE_HIGHMEM] = 0,
 273#endif
 274        [ZONE_MOVABLE] = 0,
 275};
 276
 277static char * const zone_names[MAX_NR_ZONES] = {
 278#ifdef CONFIG_ZONE_DMA
 279         "DMA",
 280#endif
 281#ifdef CONFIG_ZONE_DMA32
 282         "DMA32",
 283#endif
 284         "Normal",
 285#ifdef CONFIG_HIGHMEM
 286         "HighMem",
 287#endif
 288         "Movable",
 289#ifdef CONFIG_ZONE_DEVICE
 290         "Device",
 291#endif
 292};
 293
 294const char * const migratetype_names[MIGRATE_TYPES] = {
 295        "Unmovable",
 296        "Movable",
 297        "Reclaimable",
 298        "HighAtomic",
 299#ifdef CONFIG_CMA
 300        "CMA",
 301#endif
 302#ifdef CONFIG_MEMORY_ISOLATION
 303        "Isolate",
 304#endif
 305};
 306
 307compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
 308        [NULL_COMPOUND_DTOR] = NULL,
 309        [COMPOUND_PAGE_DTOR] = free_compound_page,
 310#ifdef CONFIG_HUGETLB_PAGE
 311        [HUGETLB_PAGE_DTOR] = free_huge_page,
 312#endif
 313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 314        [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
 315#endif
 316};
 317
 318int min_free_kbytes = 1024;
 319int user_min_free_kbytes = -1;
 320#ifdef CONFIG_DISCONTIGMEM
 321/*
 322 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 323 * are not on separate NUMA nodes. Functionally this works but with
 324 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 325 * quite small. By default, do not boost watermarks on discontigmem as in
 326 * many cases very high-order allocations like THP are likely to be
 327 * unsupported and the premature reclaim offsets the advantage of long-term
 328 * fragmentation avoidance.
 329 */
 330int watermark_boost_factor __read_mostly;
 331#else
 332int watermark_boost_factor __read_mostly = 15000;
 333#endif
 334int watermark_scale_factor = 10;
 335
 336static unsigned long nr_kernel_pages __initdata;
 337static unsigned long nr_all_pages __initdata;
 338static unsigned long dma_reserve __initdata;
 339
 340static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
 341static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
 342static unsigned long required_kernelcore __initdata;
 343static unsigned long required_kernelcore_percent __initdata;
 344static unsigned long required_movablecore __initdata;
 345static unsigned long required_movablecore_percent __initdata;
 346static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
 347static bool mirrored_kernelcore __meminitdata;
 348
 349/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 350int movable_zone;
 351EXPORT_SYMBOL(movable_zone);
 352
 353#if MAX_NUMNODES > 1
 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 355unsigned int nr_online_nodes __read_mostly = 1;
 356EXPORT_SYMBOL(nr_node_ids);
 357EXPORT_SYMBOL(nr_online_nodes);
 358#endif
 359
 360int page_group_by_mobility_disabled __read_mostly;
 361
 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 363/*
 364 * During boot we initialize deferred pages on-demand, as needed, but once
 365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 366 * and we can permanently disable that path.
 367 */
 368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
 369
 370/*
 371 * Calling kasan_free_pages() only after deferred memory initialization
 372 * has completed. Poisoning pages during deferred memory init will greatly
 373 * lengthen the process and cause problem in large memory systems as the
 374 * deferred pages initialization is done with interrupt disabled.
 375 *
 376 * Assuming that there will be no reference to those newly initialized
 377 * pages before they are ever allocated, this should have no effect on
 378 * KASAN memory tracking as the poison will be properly inserted at page
 379 * allocation time. The only corner case is when pages are allocated by
 380 * on-demand allocation and then freed again before the deferred pages
 381 * initialization is done, but this is not likely to happen.
 382 */
 383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
 384{
 385        if (!static_branch_unlikely(&deferred_pages))
 386                kasan_free_pages(page, order);
 387}
 388
 389/* Returns true if the struct page for the pfn is uninitialised */
 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 391{
 392        int nid = early_pfn_to_nid(pfn);
 393
 394        if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 395                return true;
 396
 397        return false;
 398}
 399
 400/*
 401 * Returns true when the remaining initialisation should be deferred until
 402 * later in the boot cycle when it can be parallelised.
 403 */
 404static bool __meminit
 405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 406{
 407        static unsigned long prev_end_pfn, nr_initialised;
 408
 409        /*
 410         * prev_end_pfn static that contains the end of previous zone
 411         * No need to protect because called very early in boot before smp_init.
 412         */
 413        if (prev_end_pfn != end_pfn) {
 414                prev_end_pfn = end_pfn;
 415                nr_initialised = 0;
 416        }
 417
 418        /* Always populate low zones for address-constrained allocations */
 419        if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
 420                return false;
 421
 422        /*
 423         * We start only with one section of pages, more pages are added as
 424         * needed until the rest of deferred pages are initialized.
 425         */
 426        nr_initialised++;
 427        if ((nr_initialised > PAGES_PER_SECTION) &&
 428            (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 429                NODE_DATA(nid)->first_deferred_pfn = pfn;
 430                return true;
 431        }
 432        return false;
 433}
 434#else
 435#define kasan_free_nondeferred_pages(p, o)      kasan_free_pages(p, o)
 436
 437static inline bool early_page_uninitialised(unsigned long pfn)
 438{
 439        return false;
 440}
 441
 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 443{
 444        return false;
 445}
 446#endif
 447
 448/* Return a pointer to the bitmap storing bits affecting a block of pages */
 449static inline unsigned long *get_pageblock_bitmap(struct page *page,
 450                                                        unsigned long pfn)
 451{
 452#ifdef CONFIG_SPARSEMEM
 453        return section_to_usemap(__pfn_to_section(pfn));
 454#else
 455        return page_zone(page)->pageblock_flags;
 456#endif /* CONFIG_SPARSEMEM */
 457}
 458
 459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 460{
 461#ifdef CONFIG_SPARSEMEM
 462        pfn &= (PAGES_PER_SECTION-1);
 463#else
 464        pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 465#endif /* CONFIG_SPARSEMEM */
 466        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 467}
 468
 469/**
 470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 471 * @page: The page within the block of interest
 472 * @pfn: The target page frame number
 473 * @mask: mask of bits that the caller is interested in
 474 *
 475 * Return: pageblock_bits flags
 476 */
 477static __always_inline
 478unsigned long __get_pfnblock_flags_mask(struct page *page,
 479                                        unsigned long pfn,
 480                                        unsigned long mask)
 481{
 482        unsigned long *bitmap;
 483        unsigned long bitidx, word_bitidx;
 484        unsigned long word;
 485
 486        bitmap = get_pageblock_bitmap(page, pfn);
 487        bitidx = pfn_to_bitidx(page, pfn);
 488        word_bitidx = bitidx / BITS_PER_LONG;
 489        bitidx &= (BITS_PER_LONG-1);
 490
 491        word = bitmap[word_bitidx];
 492        return (word >> bitidx) & mask;
 493}
 494
 495unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 496                                        unsigned long mask)
 497{
 498        return __get_pfnblock_flags_mask(page, pfn, mask);
 499}
 500
 501static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 502{
 503        return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 504}
 505
 506/**
 507 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 508 * @page: The page within the block of interest
 509 * @flags: The flags to set
 510 * @pfn: The target page frame number
 511 * @mask: mask of bits that the caller is interested in
 512 */
 513void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 514                                        unsigned long pfn,
 515                                        unsigned long mask)
 516{
 517        unsigned long *bitmap;
 518        unsigned long bitidx, word_bitidx;
 519        unsigned long old_word, word;
 520
 521        BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 522        BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 523
 524        bitmap = get_pageblock_bitmap(page, pfn);
 525        bitidx = pfn_to_bitidx(page, pfn);
 526        word_bitidx = bitidx / BITS_PER_LONG;
 527        bitidx &= (BITS_PER_LONG-1);
 528
 529        VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 530
 531        mask <<= bitidx;
 532        flags <<= bitidx;
 533
 534        word = READ_ONCE(bitmap[word_bitidx]);
 535        for (;;) {
 536                old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 537                if (word == old_word)
 538                        break;
 539                word = old_word;
 540        }
 541}
 542
 543void set_pageblock_migratetype(struct page *page, int migratetype)
 544{
 545        if (unlikely(page_group_by_mobility_disabled &&
 546                     migratetype < MIGRATE_PCPTYPES))
 547                migratetype = MIGRATE_UNMOVABLE;
 548
 549        set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 550                                page_to_pfn(page), MIGRATETYPE_MASK);
 551}
 552
 553#ifdef CONFIG_DEBUG_VM
 554static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 555{
 556        int ret = 0;
 557        unsigned seq;
 558        unsigned long pfn = page_to_pfn(page);
 559        unsigned long sp, start_pfn;
 560
 561        do {
 562                seq = zone_span_seqbegin(zone);
 563                start_pfn = zone->zone_start_pfn;
 564                sp = zone->spanned_pages;
 565                if (!zone_spans_pfn(zone, pfn))
 566                        ret = 1;
 567        } while (zone_span_seqretry(zone, seq));
 568
 569        if (ret)
 570                pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 571                        pfn, zone_to_nid(zone), zone->name,
 572                        start_pfn, start_pfn + sp);
 573
 574        return ret;
 575}
 576
 577static int page_is_consistent(struct zone *zone, struct page *page)
 578{
 579        if (!pfn_valid_within(page_to_pfn(page)))
 580                return 0;
 581        if (zone != page_zone(page))
 582                return 0;
 583
 584        return 1;
 585}
 586/*
 587 * Temporary debugging check for pages not lying within a given zone.
 588 */
 589static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 590{
 591        if (page_outside_zone_boundaries(zone, page))
 592                return 1;
 593        if (!page_is_consistent(zone, page))
 594                return 1;
 595
 596        return 0;
 597}
 598#else
 599static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 600{
 601        return 0;
 602}
 603#endif
 604
 605static void bad_page(struct page *page, const char *reason)
 606{
 607        static unsigned long resume;
 608        static unsigned long nr_shown;
 609        static unsigned long nr_unshown;
 610
 611        /*
 612         * Allow a burst of 60 reports, then keep quiet for that minute;
 613         * or allow a steady drip of one report per second.
 614         */
 615        if (nr_shown == 60) {
 616                if (time_before(jiffies, resume)) {
 617                        nr_unshown++;
 618                        goto out;
 619                }
 620                if (nr_unshown) {
 621                        pr_alert(
 622                              "BUG: Bad page state: %lu messages suppressed\n",
 623                                nr_unshown);
 624                        nr_unshown = 0;
 625                }
 626                nr_shown = 0;
 627        }
 628        if (nr_shown++ == 0)
 629                resume = jiffies + 60 * HZ;
 630
 631        pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 632                current->comm, page_to_pfn(page));
 633        __dump_page(page, reason);
 634        dump_page_owner(page);
 635
 636        print_modules();
 637        dump_stack();
 638out:
 639        /* Leave bad fields for debug, except PageBuddy could make trouble */
 640        page_mapcount_reset(page); /* remove PageBuddy */
 641        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 642}
 643
 644/*
 645 * Higher-order pages are called "compound pages".  They are structured thusly:
 646 *
 647 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 648 *
 649 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 650 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 651 *
 652 * The first tail page's ->compound_dtor holds the offset in array of compound
 653 * page destructors. See compound_page_dtors.
 654 *
 655 * The first tail page's ->compound_order holds the order of allocation.
 656 * This usage means that zero-order pages may not be compound.
 657 */
 658
 659void free_compound_page(struct page *page)
 660{
 661        mem_cgroup_uncharge(page);
 662        __free_pages_ok(page, compound_order(page));
 663}
 664
 665void prep_compound_page(struct page *page, unsigned int order)
 666{
 667        int i;
 668        int nr_pages = 1 << order;
 669
 670        __SetPageHead(page);
 671        for (i = 1; i < nr_pages; i++) {
 672                struct page *p = page + i;
 673                set_page_count(p, 0);
 674                p->mapping = TAIL_MAPPING;
 675                set_compound_head(p, page);
 676        }
 677
 678        set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 679        set_compound_order(page, order);
 680        atomic_set(compound_mapcount_ptr(page), -1);
 681        if (hpage_pincount_available(page))
 682                atomic_set(compound_pincount_ptr(page), 0);
 683}
 684
 685#ifdef CONFIG_DEBUG_PAGEALLOC
 686unsigned int _debug_guardpage_minorder;
 687
 688bool _debug_pagealloc_enabled_early __read_mostly
 689                        = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 690EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
 691DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
 692EXPORT_SYMBOL(_debug_pagealloc_enabled);
 693
 694DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
 695
 696static int __init early_debug_pagealloc(char *buf)
 697{
 698        return kstrtobool(buf, &_debug_pagealloc_enabled_early);
 699}
 700early_param("debug_pagealloc", early_debug_pagealloc);
 701
 702void init_debug_pagealloc(void)
 703{
 704        if (!debug_pagealloc_enabled())
 705                return;
 706
 707        static_branch_enable(&_debug_pagealloc_enabled);
 708
 709        if (!debug_guardpage_minorder())
 710                return;
 711
 712        static_branch_enable(&_debug_guardpage_enabled);
 713}
 714
 715static int __init debug_guardpage_minorder_setup(char *buf)
 716{
 717        unsigned long res;
 718
 719        if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 720                pr_err("Bad debug_guardpage_minorder value\n");
 721                return 0;
 722        }
 723        _debug_guardpage_minorder = res;
 724        pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 725        return 0;
 726}
 727early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 728
 729static inline bool set_page_guard(struct zone *zone, struct page *page,
 730                                unsigned int order, int migratetype)
 731{
 732        if (!debug_guardpage_enabled())
 733                return false;
 734
 735        if (order >= debug_guardpage_minorder())
 736                return false;
 737
 738        __SetPageGuard(page);
 739        INIT_LIST_HEAD(&page->lru);
 740        set_page_private(page, order);
 741        /* Guard pages are not available for any usage */
 742        __mod_zone_freepage_state(zone, -(1 << order), migratetype);
 743
 744        return true;
 745}
 746
 747static inline void clear_page_guard(struct zone *zone, struct page *page,
 748                                unsigned int order, int migratetype)
 749{
 750        if (!debug_guardpage_enabled())
 751                return;
 752
 753        __ClearPageGuard(page);
 754
 755        set_page_private(page, 0);
 756        if (!is_migrate_isolate(migratetype))
 757                __mod_zone_freepage_state(zone, (1 << order), migratetype);
 758}
 759#else
 760static inline bool set_page_guard(struct zone *zone, struct page *page,
 761                        unsigned int order, int migratetype) { return false; }
 762static inline void clear_page_guard(struct zone *zone, struct page *page,
 763                                unsigned int order, int migratetype) {}
 764#endif
 765
 766static inline void set_page_order(struct page *page, unsigned int order)
 767{
 768        set_page_private(page, order);
 769        __SetPageBuddy(page);
 770}
 771
 772/*
 773 * This function checks whether a page is free && is the buddy
 774 * we can coalesce a page and its buddy if
 775 * (a) the buddy is not in a hole (check before calling!) &&
 776 * (b) the buddy is in the buddy system &&
 777 * (c) a page and its buddy have the same order &&
 778 * (d) a page and its buddy are in the same zone.
 779 *
 780 * For recording whether a page is in the buddy system, we set PageBuddy.
 781 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 782 *
 783 * For recording page's order, we use page_private(page).
 784 */
 785static inline bool page_is_buddy(struct page *page, struct page *buddy,
 786                                                        unsigned int order)
 787{
 788        if (!page_is_guard(buddy) && !PageBuddy(buddy))
 789                return false;
 790
 791        if (page_order(buddy) != order)
 792                return false;
 793
 794        /*
 795         * zone check is done late to avoid uselessly calculating
 796         * zone/node ids for pages that could never merge.
 797         */
 798        if (page_zone_id(page) != page_zone_id(buddy))
 799                return false;
 800
 801        VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 802
 803        return true;
 804}
 805
 806#ifdef CONFIG_COMPACTION
 807static inline struct capture_control *task_capc(struct zone *zone)
 808{
 809        struct capture_control *capc = current->capture_control;
 810
 811        return unlikely(capc) &&
 812                !(current->flags & PF_KTHREAD) &&
 813                !capc->page &&
 814                capc->cc->zone == zone ? capc : NULL;
 815}
 816
 817static inline bool
 818compaction_capture(struct capture_control *capc, struct page *page,
 819                   int order, int migratetype)
 820{
 821        if (!capc || order != capc->cc->order)
 822                return false;
 823
 824        /* Do not accidentally pollute CMA or isolated regions*/
 825        if (is_migrate_cma(migratetype) ||
 826            is_migrate_isolate(migratetype))
 827                return false;
 828
 829        /*
 830         * Do not let lower order allocations polluate a movable pageblock.
 831         * This might let an unmovable request use a reclaimable pageblock
 832         * and vice-versa but no more than normal fallback logic which can
 833         * have trouble finding a high-order free page.
 834         */
 835        if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 836                return false;
 837
 838        capc->page = page;
 839        return true;
 840}
 841
 842#else
 843static inline struct capture_control *task_capc(struct zone *zone)
 844{
 845        return NULL;
 846}
 847
 848static inline bool
 849compaction_capture(struct capture_control *capc, struct page *page,
 850                   int order, int migratetype)
 851{
 852        return false;
 853}
 854#endif /* CONFIG_COMPACTION */
 855
 856/* Used for pages not on another list */
 857static inline void add_to_free_list(struct page *page, struct zone *zone,
 858                                    unsigned int order, int migratetype)
 859{
 860        struct free_area *area = &zone->free_area[order];
 861
 862        list_add(&page->lru, &area->free_list[migratetype]);
 863        area->nr_free++;
 864}
 865
 866/* Used for pages not on another list */
 867static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
 868                                         unsigned int order, int migratetype)
 869{
 870        struct free_area *area = &zone->free_area[order];
 871
 872        list_add_tail(&page->lru, &area->free_list[migratetype]);
 873        area->nr_free++;
 874}
 875
 876/* Used for pages which are on another list */
 877static inline void move_to_free_list(struct page *page, struct zone *zone,
 878                                     unsigned int order, int migratetype)
 879{
 880        struct free_area *area = &zone->free_area[order];
 881
 882        list_move(&page->lru, &area->free_list[migratetype]);
 883}
 884
 885static inline void del_page_from_free_list(struct page *page, struct zone *zone,
 886                                           unsigned int order)
 887{
 888        /* clear reported state and update reported page count */
 889        if (page_reported(page))
 890                __ClearPageReported(page);
 891
 892        list_del(&page->lru);
 893        __ClearPageBuddy(page);
 894        set_page_private(page, 0);
 895        zone->free_area[order].nr_free--;
 896}
 897
 898/*
 899 * If this is not the largest possible page, check if the buddy
 900 * of the next-highest order is free. If it is, it's possible
 901 * that pages are being freed that will coalesce soon. In case,
 902 * that is happening, add the free page to the tail of the list
 903 * so it's less likely to be used soon and more likely to be merged
 904 * as a higher order page
 905 */
 906static inline bool
 907buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
 908                   struct page *page, unsigned int order)
 909{
 910        struct page *higher_page, *higher_buddy;
 911        unsigned long combined_pfn;
 912
 913        if (order >= MAX_ORDER - 2)
 914                return false;
 915
 916        if (!pfn_valid_within(buddy_pfn))
 917                return false;
 918
 919        combined_pfn = buddy_pfn & pfn;
 920        higher_page = page + (combined_pfn - pfn);
 921        buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 922        higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 923
 924        return pfn_valid_within(buddy_pfn) &&
 925               page_is_buddy(higher_page, higher_buddy, order + 1);
 926}
 927
 928/*
 929 * Freeing function for a buddy system allocator.
 930 *
 931 * The concept of a buddy system is to maintain direct-mapped table
 932 * (containing bit values) for memory blocks of various "orders".
 933 * The bottom level table contains the map for the smallest allocatable
 934 * units of memory (here, pages), and each level above it describes
 935 * pairs of units from the levels below, hence, "buddies".
 936 * At a high level, all that happens here is marking the table entry
 937 * at the bottom level available, and propagating the changes upward
 938 * as necessary, plus some accounting needed to play nicely with other
 939 * parts of the VM system.
 940 * At each level, we keep a list of pages, which are heads of continuous
 941 * free pages of length of (1 << order) and marked with PageBuddy.
 942 * Page's order is recorded in page_private(page) field.
 943 * So when we are allocating or freeing one, we can derive the state of the
 944 * other.  That is, if we allocate a small block, and both were
 945 * free, the remainder of the region must be split into blocks.
 946 * If a block is freed, and its buddy is also free, then this
 947 * triggers coalescing into a block of larger size.
 948 *
 949 * -- nyc
 950 */
 951
 952static inline void __free_one_page(struct page *page,
 953                unsigned long pfn,
 954                struct zone *zone, unsigned int order,
 955                int migratetype, bool report)
 956{
 957        struct capture_control *capc = task_capc(zone);
 958        unsigned long buddy_pfn;
 959        unsigned long combined_pfn;
 960        unsigned int max_order;
 961        struct page *buddy;
 962        bool to_tail;
 963
 964        max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 965
 966        VM_BUG_ON(!zone_is_initialized(zone));
 967        VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 968
 969        VM_BUG_ON(migratetype == -1);
 970        if (likely(!is_migrate_isolate(migratetype)))
 971                __mod_zone_freepage_state(zone, 1 << order, migratetype);
 972
 973        VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 974        VM_BUG_ON_PAGE(bad_range(zone, page), page);
 975
 976continue_merging:
 977        while (order < max_order - 1) {
 978                if (compaction_capture(capc, page, order, migratetype)) {
 979                        __mod_zone_freepage_state(zone, -(1 << order),
 980                                                                migratetype);
 981                        return;
 982                }
 983                buddy_pfn = __find_buddy_pfn(pfn, order);
 984                buddy = page + (buddy_pfn - pfn);
 985
 986                if (!pfn_valid_within(buddy_pfn))
 987                        goto done_merging;
 988                if (!page_is_buddy(page, buddy, order))
 989                        goto done_merging;
 990                /*
 991                 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 992                 * merge with it and move up one order.
 993                 */
 994                if (page_is_guard(buddy))
 995                        clear_page_guard(zone, buddy, order, migratetype);
 996                else
 997                        del_page_from_free_list(buddy, zone, order);
 998                combined_pfn = buddy_pfn & pfn;
 999                page = page + (combined_pfn - pfn);
1000                pfn = combined_pfn;
1001                order++;
1002        }
1003        if (max_order < MAX_ORDER) {
1004                /* If we are here, it means order is >= pageblock_order.
1005                 * We want to prevent merge between freepages on isolate
1006                 * pageblock and normal pageblock. Without this, pageblock
1007                 * isolation could cause incorrect freepage or CMA accounting.
1008                 *
1009                 * We don't want to hit this code for the more frequent
1010                 * low-order merging.
1011                 */
1012                if (unlikely(has_isolate_pageblock(zone))) {
1013                        int buddy_mt;
1014
1015                        buddy_pfn = __find_buddy_pfn(pfn, order);
1016                        buddy = page + (buddy_pfn - pfn);
1017                        buddy_mt = get_pageblock_migratetype(buddy);
1018
1019                        if (migratetype != buddy_mt
1020                                        && (is_migrate_isolate(migratetype) ||
1021                                                is_migrate_isolate(buddy_mt)))
1022                                goto done_merging;
1023                }
1024                max_order++;
1025                goto continue_merging;
1026        }
1027
1028done_merging:
1029        set_page_order(page, order);
1030
1031        if (is_shuffle_order(order))
1032                to_tail = shuffle_pick_tail();
1033        else
1034                to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1035
1036        if (to_tail)
1037                add_to_free_list_tail(page, zone, order, migratetype);
1038        else
1039                add_to_free_list(page, zone, order, migratetype);
1040
1041        /* Notify page reporting subsystem of freed page */
1042        if (report)
1043                page_reporting_notify_free(order);
1044}
1045
1046/*
1047 * A bad page could be due to a number of fields. Instead of multiple branches,
1048 * try and check multiple fields with one check. The caller must do a detailed
1049 * check if necessary.
1050 */
1051static inline bool page_expected_state(struct page *page,
1052                                        unsigned long check_flags)
1053{
1054        if (unlikely(atomic_read(&page->_mapcount) != -1))
1055                return false;
1056
1057        if (unlikely((unsigned long)page->mapping |
1058                        page_ref_count(page) |
1059#ifdef CONFIG_MEMCG
1060                        (unsigned long)page->mem_cgroup |
1061#endif
1062                        (page->flags & check_flags)))
1063                return false;
1064
1065        return true;
1066}
1067
1068static const char *page_bad_reason(struct page *page, unsigned long flags)
1069{
1070        const char *bad_reason = NULL;
1071
1072        if (unlikely(atomic_read(&page->_mapcount) != -1))
1073                bad_reason = "nonzero mapcount";
1074        if (unlikely(page->mapping != NULL))
1075                bad_reason = "non-NULL mapping";
1076        if (unlikely(page_ref_count(page) != 0))
1077                bad_reason = "nonzero _refcount";
1078        if (unlikely(page->flags & flags)) {
1079                if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1080                        bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1081                else
1082                        bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1083        }
1084#ifdef CONFIG_MEMCG
1085        if (unlikely(page->mem_cgroup))
1086                bad_reason = "page still charged to cgroup";
1087#endif
1088        return bad_reason;
1089}
1090
1091static void check_free_page_bad(struct page *page)
1092{
1093        bad_page(page,
1094                 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1095}
1096
1097static inline int check_free_page(struct page *page)
1098{
1099        if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1100                return 0;
1101
1102        /* Something has gone sideways, find it */
1103        check_free_page_bad(page);
1104        return 1;
1105}
1106
1107static int free_tail_pages_check(struct page *head_page, struct page *page)
1108{
1109        int ret = 1;
1110
1111        /*
1112         * We rely page->lru.next never has bit 0 set, unless the page
1113         * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1114         */
1115        BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1116
1117        if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1118                ret = 0;
1119                goto out;
1120        }
1121        switch (page - head_page) {
1122        case 1:
1123                /* the first tail page: ->mapping may be compound_mapcount() */
1124                if (unlikely(compound_mapcount(page))) {
1125                        bad_page(page, "nonzero compound_mapcount");
1126                        goto out;
1127                }
1128                break;
1129        case 2:
1130                /*
1131                 * the second tail page: ->mapping is
1132                 * deferred_list.next -- ignore value.
1133                 */
1134                break;
1135        default:
1136                if (page->mapping != TAIL_MAPPING) {
1137                        bad_page(page, "corrupted mapping in tail page");
1138                        goto out;
1139                }
1140                break;
1141        }
1142        if (unlikely(!PageTail(page))) {
1143                bad_page(page, "PageTail not set");
1144                goto out;
1145        }
1146        if (unlikely(compound_head(page) != head_page)) {
1147                bad_page(page, "compound_head not consistent");
1148                goto out;
1149        }
1150        ret = 0;
1151out:
1152        page->mapping = NULL;
1153        clear_compound_head(page);
1154        return ret;
1155}
1156
1157static void kernel_init_free_pages(struct page *page, int numpages)
1158{
1159        int i;
1160
1161        /* s390's use of memset() could override KASAN redzones. */
1162        kasan_disable_current();
1163        for (i = 0; i < numpages; i++)
1164                clear_highpage(page + i);
1165        kasan_enable_current();
1166}
1167
1168static __always_inline bool free_pages_prepare(struct page *page,
1169                                        unsigned int order, bool check_free)
1170{
1171        int bad = 0;
1172
1173        VM_BUG_ON_PAGE(PageTail(page), page);
1174
1175        trace_mm_page_free(page, order);
1176
1177        /*
1178         * Check tail pages before head page information is cleared to
1179         * avoid checking PageCompound for order-0 pages.
1180         */
1181        if (unlikely(order)) {
1182                bool compound = PageCompound(page);
1183                int i;
1184
1185                VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1186
1187                if (compound)
1188                        ClearPageDoubleMap(page);
1189                for (i = 1; i < (1 << order); i++) {
1190                        if (compound)
1191                                bad += free_tail_pages_check(page, page + i);
1192                        if (unlikely(check_free_page(page + i))) {
1193                                bad++;
1194                                continue;
1195                        }
1196                        (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1197                }
1198        }
1199        if (PageMappingFlags(page))
1200                page->mapping = NULL;
1201        if (memcg_kmem_enabled() && PageKmemcg(page))
1202                __memcg_kmem_uncharge_page(page, order);
1203        if (check_free)
1204                bad += check_free_page(page);
1205        if (bad)
1206                return false;
1207
1208        page_cpupid_reset_last(page);
1209        page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1210        reset_page_owner(page, order);
1211
1212        if (!PageHighMem(page)) {
1213                debug_check_no_locks_freed(page_address(page),
1214                                           PAGE_SIZE << order);
1215                debug_check_no_obj_freed(page_address(page),
1216                                           PAGE_SIZE << order);
1217        }
1218        if (want_init_on_free())
1219                kernel_init_free_pages(page, 1 << order);
1220
1221        kernel_poison_pages(page, 1 << order, 0);
1222        /*
1223         * arch_free_page() can make the page's contents inaccessible.  s390
1224         * does this.  So nothing which can access the page's contents should
1225         * happen after this.
1226         */
1227        arch_free_page(page, order);
1228
1229        if (debug_pagealloc_enabled_static())
1230                kernel_map_pages(page, 1 << order, 0);
1231
1232        kasan_free_nondeferred_pages(page, order);
1233
1234        return true;
1235}
1236
1237#ifdef CONFIG_DEBUG_VM
1238/*
1239 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1240 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1241 * moved from pcp lists to free lists.
1242 */
1243static bool free_pcp_prepare(struct page *page)
1244{
1245        return free_pages_prepare(page, 0, true);
1246}
1247
1248static bool bulkfree_pcp_prepare(struct page *page)
1249{
1250        if (debug_pagealloc_enabled_static())
1251                return check_free_page(page);
1252        else
1253                return false;
1254}
1255#else
1256/*
1257 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1258 * moving from pcp lists to free list in order to reduce overhead. With
1259 * debug_pagealloc enabled, they are checked also immediately when being freed
1260 * to the pcp lists.
1261 */
1262static bool free_pcp_prepare(struct page *page)
1263{
1264        if (debug_pagealloc_enabled_static())
1265                return free_pages_prepare(page, 0, true);
1266        else
1267                return free_pages_prepare(page, 0, false);
1268}
1269
1270static bool bulkfree_pcp_prepare(struct page *page)
1271{
1272        return check_free_page(page);
1273}
1274#endif /* CONFIG_DEBUG_VM */
1275
1276static inline void prefetch_buddy(struct page *page)
1277{
1278        unsigned long pfn = page_to_pfn(page);
1279        unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1280        struct page *buddy = page + (buddy_pfn - pfn);
1281
1282        prefetch(buddy);
1283}
1284
1285/*
1286 * Frees a number of pages from the PCP lists
1287 * Assumes all pages on list are in same zone, and of same order.
1288 * count is the number of pages to free.
1289 *
1290 * If the zone was previously in an "all pages pinned" state then look to
1291 * see if this freeing clears that state.
1292 *
1293 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1294 * pinned" detection logic.
1295 */
1296static void free_pcppages_bulk(struct zone *zone, int count,
1297                                        struct per_cpu_pages *pcp)
1298{
1299        int migratetype = 0;
1300        int batch_free = 0;
1301        int prefetch_nr = 0;
1302        bool isolated_pageblocks;
1303        struct page *page, *tmp;
1304        LIST_HEAD(head);
1305
1306        /*
1307         * Ensure proper count is passed which otherwise would stuck in the
1308         * below while (list_empty(list)) loop.
1309         */
1310        count = min(pcp->count, count);
1311        while (count) {
1312                struct list_head *list;
1313
1314                /*
1315                 * Remove pages from lists in a round-robin fashion. A
1316                 * batch_free count is maintained that is incremented when an
1317                 * empty list is encountered.  This is so more pages are freed
1318                 * off fuller lists instead of spinning excessively around empty
1319                 * lists
1320                 */
1321                do {
1322                        batch_free++;
1323                        if (++migratetype == MIGRATE_PCPTYPES)
1324                                migratetype = 0;
1325                        list = &pcp->lists[migratetype];
1326                } while (list_empty(list));
1327
1328                /* This is the only non-empty list. Free them all. */
1329                if (batch_free == MIGRATE_PCPTYPES)
1330                        batch_free = count;
1331
1332                do {
1333                        page = list_last_entry(list, struct page, lru);
1334                        /* must delete to avoid corrupting pcp list */
1335                        list_del(&page->lru);
1336                        pcp->count--;
1337
1338                        if (bulkfree_pcp_prepare(page))
1339                                continue;
1340
1341                        list_add_tail(&page->lru, &head);
1342
1343                        /*
1344                         * We are going to put the page back to the global
1345                         * pool, prefetch its buddy to speed up later access
1346                         * under zone->lock. It is believed the overhead of
1347                         * an additional test and calculating buddy_pfn here
1348                         * can be offset by reduced memory latency later. To
1349                         * avoid excessive prefetching due to large count, only
1350                         * prefetch buddy for the first pcp->batch nr of pages.
1351                         */
1352                        if (prefetch_nr++ < pcp->batch)
1353                                prefetch_buddy(page);
1354                } while (--count && --batch_free && !list_empty(list));
1355        }
1356
1357        spin_lock(&zone->lock);
1358        isolated_pageblocks = has_isolate_pageblock(zone);
1359
1360        /*
1361         * Use safe version since after __free_one_page(),
1362         * page->lru.next will not point to original list.
1363         */
1364        list_for_each_entry_safe(page, tmp, &head, lru) {
1365                int mt = get_pcppage_migratetype(page);
1366                /* MIGRATE_ISOLATE page should not go to pcplists */
1367                VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368                /* Pageblock could have been isolated meanwhile */
1369                if (unlikely(isolated_pageblocks))
1370                        mt = get_pageblock_migratetype(page);
1371
1372                __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1373                trace_mm_page_pcpu_drain(page, 0, mt);
1374        }
1375        spin_unlock(&zone->lock);
1376}
1377
1378static void free_one_page(struct zone *zone,
1379                                struct page *page, unsigned long pfn,
1380                                unsigned int order,
1381                                int migratetype)
1382{
1383        spin_lock(&zone->lock);
1384        if (unlikely(has_isolate_pageblock(zone) ||
1385                is_migrate_isolate(migratetype))) {
1386                migratetype = get_pfnblock_migratetype(page, pfn);
1387        }
1388        __free_one_page(page, pfn, zone, order, migratetype, true);
1389        spin_unlock(&zone->lock);
1390}
1391
1392static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1393                                unsigned long zone, int nid)
1394{
1395        mm_zero_struct_page(page);
1396        set_page_links(page, zone, nid, pfn);
1397        init_page_count(page);
1398        page_mapcount_reset(page);
1399        page_cpupid_reset_last(page);
1400        page_kasan_tag_reset(page);
1401
1402        INIT_LIST_HEAD(&page->lru);
1403#ifdef WANT_PAGE_VIRTUAL
1404        /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405        if (!is_highmem_idx(zone))
1406                set_page_address(page, __va(pfn << PAGE_SHIFT));
1407#endif
1408}
1409
1410#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411static void __meminit init_reserved_page(unsigned long pfn)
1412{
1413        pg_data_t *pgdat;
1414        int nid, zid;
1415
1416        if (!early_page_uninitialised(pfn))
1417                return;
1418
1419        nid = early_pfn_to_nid(pfn);
1420        pgdat = NODE_DATA(nid);
1421
1422        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423                struct zone *zone = &pgdat->node_zones[zid];
1424
1425                if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426                        break;
1427        }
1428        __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1429}
1430#else
1431static inline void init_reserved_page(unsigned long pfn)
1432{
1433}
1434#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435
1436/*
1437 * Initialised pages do not have PageReserved set. This function is
1438 * called for each range allocated by the bootmem allocator and
1439 * marks the pages PageReserved. The remaining valid pages are later
1440 * sent to the buddy page allocator.
1441 */
1442void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1443{
1444        unsigned long start_pfn = PFN_DOWN(start);
1445        unsigned long end_pfn = PFN_UP(end);
1446
1447        for (; start_pfn < end_pfn; start_pfn++) {
1448                if (pfn_valid(start_pfn)) {
1449                        struct page *page = pfn_to_page(start_pfn);
1450
1451                        init_reserved_page(start_pfn);
1452
1453                        /* Avoid false-positive PageTail() */
1454                        INIT_LIST_HEAD(&page->lru);
1455
1456                        /*
1457                         * no need for atomic set_bit because the struct
1458                         * page is not visible yet so nobody should
1459                         * access it yet.
1460                         */
1461                        __SetPageReserved(page);
1462                }
1463        }
1464}
1465
1466static void __free_pages_ok(struct page *page, unsigned int order)
1467{
1468        unsigned long flags;
1469        int migratetype;
1470        unsigned long pfn = page_to_pfn(page);
1471
1472        if (!free_pages_prepare(page, order, true))
1473                return;
1474
1475        migratetype = get_pfnblock_migratetype(page, pfn);
1476        local_irq_save(flags);
1477        __count_vm_events(PGFREE, 1 << order);
1478        free_one_page(page_zone(page), page, pfn, order, migratetype);
1479        local_irq_restore(flags);
1480}
1481
1482void __free_pages_core(struct page *page, unsigned int order)
1483{
1484        unsigned int nr_pages = 1 << order;
1485        struct page *p = page;
1486        unsigned int loop;
1487
1488        prefetchw(p);
1489        for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490                prefetchw(p + 1);
1491                __ClearPageReserved(p);
1492                set_page_count(p, 0);
1493        }
1494        __ClearPageReserved(p);
1495        set_page_count(p, 0);
1496
1497        atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1498        set_page_refcounted(page);
1499        __free_pages(page, order);
1500}
1501
1502#ifdef CONFIG_NEED_MULTIPLE_NODES
1503
1504static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1505
1506#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1507
1508/*
1509 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1510 */
1511int __meminit __early_pfn_to_nid(unsigned long pfn,
1512                                        struct mminit_pfnnid_cache *state)
1513{
1514        unsigned long start_pfn, end_pfn;
1515        int nid;
1516
1517        if (state->last_start <= pfn && pfn < state->last_end)
1518                return state->last_nid;
1519
1520        nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1521        if (nid != NUMA_NO_NODE) {
1522                state->last_start = start_pfn;
1523                state->last_end = end_pfn;
1524                state->last_nid = nid;
1525        }
1526
1527        return nid;
1528}
1529#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1530
1531int __meminit early_pfn_to_nid(unsigned long pfn)
1532{
1533        static DEFINE_SPINLOCK(early_pfn_lock);
1534        int nid;
1535
1536        spin_lock(&early_pfn_lock);
1537        nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1538        if (nid < 0)
1539                nid = first_online_node;
1540        spin_unlock(&early_pfn_lock);
1541
1542        return nid;
1543}
1544#endif /* CONFIG_NEED_MULTIPLE_NODES */
1545
1546void __init memblock_free_pages(struct page *page, unsigned long pfn,
1547                                                        unsigned int order)
1548{
1549        if (early_page_uninitialised(pfn))
1550                return;
1551        __free_pages_core(page, order);
1552}
1553
1554/*
1555 * Check that the whole (or subset of) a pageblock given by the interval of
1556 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1557 * with the migration of free compaction scanner. The scanners then need to
1558 * use only pfn_valid_within() check for arches that allow holes within
1559 * pageblocks.
1560 *
1561 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1562 *
1563 * It's possible on some configurations to have a setup like node0 node1 node0
1564 * i.e. it's possible that all pages within a zones range of pages do not
1565 * belong to a single zone. We assume that a border between node0 and node1
1566 * can occur within a single pageblock, but not a node0 node1 node0
1567 * interleaving within a single pageblock. It is therefore sufficient to check
1568 * the first and last page of a pageblock and avoid checking each individual
1569 * page in a pageblock.
1570 */
1571struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1572                                     unsigned long end_pfn, struct zone *zone)
1573{
1574        struct page *start_page;
1575        struct page *end_page;
1576
1577        /* end_pfn is one past the range we are checking */
1578        end_pfn--;
1579
1580        if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1581                return NULL;
1582
1583        start_page = pfn_to_online_page(start_pfn);
1584        if (!start_page)
1585                return NULL;
1586
1587        if (page_zone(start_page) != zone)
1588                return NULL;
1589
1590        end_page = pfn_to_page(end_pfn);
1591
1592        /* This gives a shorter code than deriving page_zone(end_page) */
1593        if (page_zone_id(start_page) != page_zone_id(end_page))
1594                return NULL;
1595
1596        return start_page;
1597}
1598
1599void set_zone_contiguous(struct zone *zone)
1600{
1601        unsigned long block_start_pfn = zone->zone_start_pfn;
1602        unsigned long block_end_pfn;
1603
1604        block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1605        for (; block_start_pfn < zone_end_pfn(zone);
1606                        block_start_pfn = block_end_pfn,
1607                         block_end_pfn += pageblock_nr_pages) {
1608
1609                block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1610
1611                if (!__pageblock_pfn_to_page(block_start_pfn,
1612                                             block_end_pfn, zone))
1613                        return;
1614                cond_resched();
1615        }
1616
1617        /* We confirm that there is no hole */
1618        zone->contiguous = true;
1619}
1620
1621void clear_zone_contiguous(struct zone *zone)
1622{
1623        zone->contiguous = false;
1624}
1625
1626#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1627static void __init deferred_free_range(unsigned long pfn,
1628                                       unsigned long nr_pages)
1629{
1630        struct page *page;
1631        unsigned long i;
1632
1633        if (!nr_pages)
1634                return;
1635
1636        page = pfn_to_page(pfn);
1637
1638        /* Free a large naturally-aligned chunk if possible */
1639        if (nr_pages == pageblock_nr_pages &&
1640            (pfn & (pageblock_nr_pages - 1)) == 0) {
1641                set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1642                __free_pages_core(page, pageblock_order);
1643                return;
1644        }
1645
1646        for (i = 0; i < nr_pages; i++, page++, pfn++) {
1647                if ((pfn & (pageblock_nr_pages - 1)) == 0)
1648                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1649                __free_pages_core(page, 0);
1650        }
1651}
1652
1653/* Completion tracking for deferred_init_memmap() threads */
1654static atomic_t pgdat_init_n_undone __initdata;
1655static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1656
1657static inline void __init pgdat_init_report_one_done(void)
1658{
1659        if (atomic_dec_and_test(&pgdat_init_n_undone))
1660                complete(&pgdat_init_all_done_comp);
1661}
1662
1663/*
1664 * Returns true if page needs to be initialized or freed to buddy allocator.
1665 *
1666 * First we check if pfn is valid on architectures where it is possible to have
1667 * holes within pageblock_nr_pages. On systems where it is not possible, this
1668 * function is optimized out.
1669 *
1670 * Then, we check if a current large page is valid by only checking the validity
1671 * of the head pfn.
1672 */
1673static inline bool __init deferred_pfn_valid(unsigned long pfn)
1674{
1675        if (!pfn_valid_within(pfn))
1676                return false;
1677        if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1678                return false;
1679        return true;
1680}
1681
1682/*
1683 * Free pages to buddy allocator. Try to free aligned pages in
1684 * pageblock_nr_pages sizes.
1685 */
1686static void __init deferred_free_pages(unsigned long pfn,
1687                                       unsigned long end_pfn)
1688{
1689        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1690        unsigned long nr_free = 0;
1691
1692        for (; pfn < end_pfn; pfn++) {
1693                if (!deferred_pfn_valid(pfn)) {
1694                        deferred_free_range(pfn - nr_free, nr_free);
1695                        nr_free = 0;
1696                } else if (!(pfn & nr_pgmask)) {
1697                        deferred_free_range(pfn - nr_free, nr_free);
1698                        nr_free = 1;
1699                } else {
1700                        nr_free++;
1701                }
1702        }
1703        /* Free the last block of pages to allocator */
1704        deferred_free_range(pfn - nr_free, nr_free);
1705}
1706
1707/*
1708 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1709 * by performing it only once every pageblock_nr_pages.
1710 * Return number of pages initialized.
1711 */
1712static unsigned long  __init deferred_init_pages(struct zone *zone,
1713                                                 unsigned long pfn,
1714                                                 unsigned long end_pfn)
1715{
1716        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1717        int nid = zone_to_nid(zone);
1718        unsigned long nr_pages = 0;
1719        int zid = zone_idx(zone);
1720        struct page *page = NULL;
1721
1722        for (; pfn < end_pfn; pfn++) {
1723                if (!deferred_pfn_valid(pfn)) {
1724                        page = NULL;
1725                        continue;
1726                } else if (!page || !(pfn & nr_pgmask)) {
1727                        page = pfn_to_page(pfn);
1728                } else {
1729                        page++;
1730                }
1731                __init_single_page(page, pfn, zid, nid);
1732                nr_pages++;
1733        }
1734        return (nr_pages);
1735}
1736
1737/*
1738 * This function is meant to pre-load the iterator for the zone init.
1739 * Specifically it walks through the ranges until we are caught up to the
1740 * first_init_pfn value and exits there. If we never encounter the value we
1741 * return false indicating there are no valid ranges left.
1742 */
1743static bool __init
1744deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1745                                    unsigned long *spfn, unsigned long *epfn,
1746                                    unsigned long first_init_pfn)
1747{
1748        u64 j;
1749
1750        /*
1751         * Start out by walking through the ranges in this zone that have
1752         * already been initialized. We don't need to do anything with them
1753         * so we just need to flush them out of the system.
1754         */
1755        for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1756                if (*epfn <= first_init_pfn)
1757                        continue;
1758                if (*spfn < first_init_pfn)
1759                        *spfn = first_init_pfn;
1760                *i = j;
1761                return true;
1762        }
1763
1764        return false;
1765}
1766
1767/*
1768 * Initialize and free pages. We do it in two loops: first we initialize
1769 * struct page, then free to buddy allocator, because while we are
1770 * freeing pages we can access pages that are ahead (computing buddy
1771 * page in __free_one_page()).
1772 *
1773 * In order to try and keep some memory in the cache we have the loop
1774 * broken along max page order boundaries. This way we will not cause
1775 * any issues with the buddy page computation.
1776 */
1777static unsigned long __init
1778deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1779                       unsigned long *end_pfn)
1780{
1781        unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1782        unsigned long spfn = *start_pfn, epfn = *end_pfn;
1783        unsigned long nr_pages = 0;
1784        u64 j = *i;
1785
1786        /* First we loop through and initialize the page values */
1787        for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1788                unsigned long t;
1789
1790                if (mo_pfn <= *start_pfn)
1791                        break;
1792
1793                t = min(mo_pfn, *end_pfn);
1794                nr_pages += deferred_init_pages(zone, *start_pfn, t);
1795
1796                if (mo_pfn < *end_pfn) {
1797                        *start_pfn = mo_pfn;
1798                        break;
1799                }
1800        }
1801
1802        /* Reset values and now loop through freeing pages as needed */
1803        swap(j, *i);
1804
1805        for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1806                unsigned long t;
1807
1808                if (mo_pfn <= spfn)
1809                        break;
1810
1811                t = min(mo_pfn, epfn);
1812                deferred_free_pages(spfn, t);
1813
1814                if (mo_pfn <= epfn)
1815                        break;
1816        }
1817
1818        return nr_pages;
1819}
1820
1821static void __init
1822deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1823                           void *arg)
1824{
1825        unsigned long spfn, epfn;
1826        struct zone *zone = arg;
1827        u64 i;
1828
1829        deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1830
1831        /*
1832         * Initialize and free pages in MAX_ORDER sized increments so that we
1833         * can avoid introducing any issues with the buddy allocator.
1834         */
1835        while (spfn < end_pfn) {
1836                deferred_init_maxorder(&i, zone, &spfn, &epfn);
1837                cond_resched();
1838        }
1839}
1840
1841/* An arch may override for more concurrency. */
1842__weak int __init
1843deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1844{
1845        return 1;
1846}
1847
1848/* Initialise remaining memory on a node */
1849static int __init deferred_init_memmap(void *data)
1850{
1851        pg_data_t *pgdat = data;
1852        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1853        unsigned long spfn = 0, epfn = 0;
1854        unsigned long first_init_pfn, flags;
1855        unsigned long start = jiffies;
1856        struct zone *zone;
1857        int zid, max_threads;
1858        u64 i;
1859
1860        /* Bind memory initialisation thread to a local node if possible */
1861        if (!cpumask_empty(cpumask))
1862                set_cpus_allowed_ptr(current, cpumask);
1863
1864        pgdat_resize_lock(pgdat, &flags);
1865        first_init_pfn = pgdat->first_deferred_pfn;
1866        if (first_init_pfn == ULONG_MAX) {
1867                pgdat_resize_unlock(pgdat, &flags);
1868                pgdat_init_report_one_done();
1869                return 0;
1870        }
1871
1872        /* Sanity check boundaries */
1873        BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1874        BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1875        pgdat->first_deferred_pfn = ULONG_MAX;
1876
1877        /*
1878         * Once we unlock here, the zone cannot be grown anymore, thus if an
1879         * interrupt thread must allocate this early in boot, zone must be
1880         * pre-grown prior to start of deferred page initialization.
1881         */
1882        pgdat_resize_unlock(pgdat, &flags);
1883
1884        /* Only the highest zone is deferred so find it */
1885        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1886                zone = pgdat->node_zones + zid;
1887                if (first_init_pfn < zone_end_pfn(zone))
1888                        break;
1889        }
1890
1891        /* If the zone is empty somebody else may have cleared out the zone */
1892        if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1893                                                 first_init_pfn))
1894                goto zone_empty;
1895
1896        max_threads = deferred_page_init_max_threads(cpumask);
1897
1898        while (spfn < epfn) {
1899                unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1900                struct padata_mt_job job = {
1901                        .thread_fn   = deferred_init_memmap_chunk,
1902                        .fn_arg      = zone,
1903                        .start       = spfn,
1904                        .size        = epfn_align - spfn,
1905                        .align       = PAGES_PER_SECTION,
1906                        .min_chunk   = PAGES_PER_SECTION,
1907                        .max_threads = max_threads,
1908                };
1909
1910                padata_do_multithreaded(&job);
1911                deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1912                                                    epfn_align);
1913        }
1914zone_empty:
1915        /* Sanity check that the next zone really is unpopulated */
1916        WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1917
1918        pr_info("node %d deferred pages initialised in %ums\n",
1919                pgdat->node_id, jiffies_to_msecs(jiffies - start));
1920
1921        pgdat_init_report_one_done();
1922        return 0;
1923}
1924
1925/*
1926 * If this zone has deferred pages, try to grow it by initializing enough
1927 * deferred pages to satisfy the allocation specified by order, rounded up to
1928 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1929 * of SECTION_SIZE bytes by initializing struct pages in increments of
1930 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1931 *
1932 * Return true when zone was grown, otherwise return false. We return true even
1933 * when we grow less than requested, to let the caller decide if there are
1934 * enough pages to satisfy the allocation.
1935 *
1936 * Note: We use noinline because this function is needed only during boot, and
1937 * it is called from a __ref function _deferred_grow_zone. This way we are
1938 * making sure that it is not inlined into permanent text section.
1939 */
1940static noinline bool __init
1941deferred_grow_zone(struct zone *zone, unsigned int order)
1942{
1943        unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1944        pg_data_t *pgdat = zone->zone_pgdat;
1945        unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1946        unsigned long spfn, epfn, flags;
1947        unsigned long nr_pages = 0;
1948        u64 i;
1949
1950        /* Only the last zone may have deferred pages */
1951        if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1952                return false;
1953
1954        pgdat_resize_lock(pgdat, &flags);
1955
1956        /*
1957         * If someone grew this zone while we were waiting for spinlock, return
1958         * true, as there might be enough pages already.
1959         */
1960        if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1961                pgdat_resize_unlock(pgdat, &flags);
1962                return true;
1963        }
1964
1965        /* If the zone is empty somebody else may have cleared out the zone */
1966        if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1967                                                 first_deferred_pfn)) {
1968                pgdat->first_deferred_pfn = ULONG_MAX;
1969                pgdat_resize_unlock(pgdat, &flags);
1970                /* Retry only once. */
1971                return first_deferred_pfn != ULONG_MAX;
1972        }
1973
1974        /*
1975         * Initialize and free pages in MAX_ORDER sized increments so
1976         * that we can avoid introducing any issues with the buddy
1977         * allocator.
1978         */
1979        while (spfn < epfn) {
1980                /* update our first deferred PFN for this section */
1981                first_deferred_pfn = spfn;
1982
1983                nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1984                touch_nmi_watchdog();
1985
1986                /* We should only stop along section boundaries */
1987                if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1988                        continue;
1989
1990                /* If our quota has been met we can stop here */
1991                if (nr_pages >= nr_pages_needed)
1992                        break;
1993        }
1994
1995        pgdat->first_deferred_pfn = spfn;
1996        pgdat_resize_unlock(pgdat, &flags);
1997
1998        return nr_pages > 0;
1999}
2000
2001/*
2002 * deferred_grow_zone() is __init, but it is called from
2003 * get_page_from_freelist() during early boot until deferred_pages permanently
2004 * disables this call. This is why we have refdata wrapper to avoid warning,
2005 * and to ensure that the function body gets unloaded.
2006 */
2007static bool __ref
2008_deferred_grow_zone(struct zone *zone, unsigned int order)
2009{
2010        return deferred_grow_zone(zone, order);
2011}
2012
2013#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2014
2015void __init page_alloc_init_late(void)
2016{
2017        struct zone *zone;
2018        int nid;
2019
2020#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2021
2022        /* There will be num_node_state(N_MEMORY) threads */
2023        atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2024        for_each_node_state(nid, N_MEMORY) {
2025                kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2026        }
2027
2028        /* Block until all are initialised */
2029        wait_for_completion(&pgdat_init_all_done_comp);
2030
2031        /*
2032         * The number of managed pages has changed due to the initialisation
2033         * so the pcpu batch and high limits needs to be updated or the limits
2034         * will be artificially small.
2035         */
2036        for_each_populated_zone(zone)
2037                zone_pcp_update(zone);
2038
2039        /*
2040         * We initialized the rest of the deferred pages.  Permanently disable
2041         * on-demand struct page initialization.
2042         */
2043        static_branch_disable(&deferred_pages);
2044
2045        /* Reinit limits that are based on free pages after the kernel is up */
2046        files_maxfiles_init();
2047#endif
2048
2049        /* Discard memblock private memory */
2050        memblock_discard();
2051
2052        for_each_node_state(nid, N_MEMORY)
2053                shuffle_free_memory(NODE_DATA(nid));
2054
2055        for_each_populated_zone(zone)
2056                set_zone_contiguous(zone);
2057}
2058
2059#ifdef CONFIG_CMA
2060/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2061void __init init_cma_reserved_pageblock(struct page *page)
2062{
2063        unsigned i = pageblock_nr_pages;
2064        struct page *p = page;
2065
2066        do {
2067                __ClearPageReserved(p);
2068                set_page_count(p, 0);
2069        } while (++p, --i);
2070
2071        set_pageblock_migratetype(page, MIGRATE_CMA);
2072
2073        if (pageblock_order >= MAX_ORDER) {
2074                i = pageblock_nr_pages;
2075                p = page;
2076                do {
2077                        set_page_refcounted(p);
2078                        __free_pages(p, MAX_ORDER - 1);
2079                        p += MAX_ORDER_NR_PAGES;
2080                } while (i -= MAX_ORDER_NR_PAGES);
2081        } else {
2082                set_page_refcounted(page);
2083                __free_pages(page, pageblock_order);
2084        }
2085
2086        adjust_managed_page_count(page, pageblock_nr_pages);
2087}
2088#endif
2089
2090/*
2091 * The order of subdivision here is critical for the IO subsystem.
2092 * Please do not alter this order without good reasons and regression
2093 * testing. Specifically, as large blocks of memory are subdivided,
2094 * the order in which smaller blocks are delivered depends on the order
2095 * they're subdivided in this function. This is the primary factor
2096 * influencing the order in which pages are delivered to the IO
2097 * subsystem according to empirical testing, and this is also justified
2098 * by considering the behavior of a buddy system containing a single
2099 * large block of memory acted on by a series of small allocations.
2100 * This behavior is a critical factor in sglist merging's success.
2101 *
2102 * -- nyc
2103 */
2104static inline void expand(struct zone *zone, struct page *page,
2105        int low, int high, int migratetype)
2106{
2107        unsigned long size = 1 << high;
2108
2109        while (high > low) {
2110                high--;
2111                size >>= 1;
2112                VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2113
2114                /*
2115                 * Mark as guard pages (or page), that will allow to
2116                 * merge back to allocator when buddy will be freed.
2117                 * Corresponding page table entries will not be touched,
2118                 * pages will stay not present in virtual address space
2119                 */
2120                if (set_page_guard(zone, &page[size], high, migratetype))
2121                        continue;
2122
2123                add_to_free_list(&page[size], zone, high, migratetype);
2124                set_page_order(&page[size], high);
2125        }
2126}
2127
2128static void check_new_page_bad(struct page *page)
2129{
2130        if (unlikely(page->flags & __PG_HWPOISON)) {
2131                /* Don't complain about hwpoisoned pages */
2132                page_mapcount_reset(page); /* remove PageBuddy */
2133                return;
2134        }
2135
2136        bad_page(page,
2137                 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2138}
2139
2140/*
2141 * This page is about to be returned from the page allocator
2142 */
2143static inline int check_new_page(struct page *page)
2144{
2145        if (likely(page_expected_state(page,
2146                                PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2147                return 0;
2148
2149        check_new_page_bad(page);
2150        return 1;
2151}
2152
2153static inline bool free_pages_prezeroed(void)
2154{
2155        return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2156                page_poisoning_enabled()) || want_init_on_free();
2157}
2158
2159#ifdef CONFIG_DEBUG_VM
2160/*
2161 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2162 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2163 * also checked when pcp lists are refilled from the free lists.
2164 */
2165static inline bool check_pcp_refill(struct page *page)
2166{
2167        if (debug_pagealloc_enabled_static())
2168                return check_new_page(page);
2169        else
2170                return false;
2171}
2172
2173static inline bool check_new_pcp(struct page *page)
2174{
2175        return check_new_page(page);
2176}
2177#else
2178/*
2179 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2180 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2181 * enabled, they are also checked when being allocated from the pcp lists.
2182 */
2183static inline bool check_pcp_refill(struct page *page)
2184{
2185        return check_new_page(page);
2186}
2187static inline bool check_new_pcp(struct page *page)
2188{
2189        if (debug_pagealloc_enabled_static())
2190                return check_new_page(page);
2191        else
2192                return false;
2193}
2194#endif /* CONFIG_DEBUG_VM */
2195
2196static bool check_new_pages(struct page *page, unsigned int order)
2197{
2198        int i;
2199        for (i = 0; i < (1 << order); i++) {
2200                struct page *p = page + i;
2201
2202                if (unlikely(check_new_page(p)))
2203                        return true;
2204        }
2205
2206        return false;
2207}
2208
2209inline void post_alloc_hook(struct page *page, unsigned int order,
2210                                gfp_t gfp_flags)
2211{
2212        set_page_private(page, 0);
2213        set_page_refcounted(page);
2214
2215        arch_alloc_page(page, order);
2216        if (debug_pagealloc_enabled_static())
2217                kernel_map_pages(page, 1 << order, 1);
2218        kasan_alloc_pages(page, order);
2219        kernel_poison_pages(page, 1 << order, 1);
2220        set_page_owner(page, order, gfp_flags);
2221}
2222
2223static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2224                                                        unsigned int alloc_flags)
2225{
2226        post_alloc_hook(page, order, gfp_flags);
2227
2228        if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2229                kernel_init_free_pages(page, 1 << order);
2230
2231        if (order && (gfp_flags & __GFP_COMP))
2232                prep_compound_page(page, order);
2233
2234        /*
2235         * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2236         * allocate the page. The expectation is that the caller is taking
2237         * steps that will free more memory. The caller should avoid the page
2238         * being used for !PFMEMALLOC purposes.
2239         */
2240        if (alloc_flags & ALLOC_NO_WATERMARKS)
2241                set_page_pfmemalloc(page);
2242        else
2243                clear_page_pfmemalloc(page);
2244}
2245
2246/*
2247 * Go through the free lists for the given migratetype and remove
2248 * the smallest available page from the freelists
2249 */
2250static __always_inline
2251struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2252                                                int migratetype)
2253{
2254        unsigned int current_order;
2255        struct free_area *area;
2256        struct page *page;
2257
2258        /* Find a page of the appropriate size in the preferred list */
2259        for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2260                area = &(zone->free_area[current_order]);
2261                page = get_page_from_free_area(area, migratetype);
2262                if (!page)
2263                        continue;
2264                del_page_from_free_list(page, zone, current_order);
2265                expand(zone, page, order, current_order, migratetype);
2266                set_pcppage_migratetype(page, migratetype);
2267                return page;
2268        }
2269
2270        return NULL;
2271}
2272
2273
2274/*
2275 * This array describes the order lists are fallen back to when
2276 * the free lists for the desirable migrate type are depleted
2277 */
2278static int fallbacks[MIGRATE_TYPES][3] = {
2279        [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2280        [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2281        [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2282#ifdef CONFIG_CMA
2283        [MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2284#endif
2285#ifdef CONFIG_MEMORY_ISOLATION
2286        [MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2287#endif
2288};
2289
2290#ifdef CONFIG_CMA
2291static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2292                                        unsigned int order)
2293{
2294        return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2295}
2296#else
2297static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2298                                        unsigned int order) { return NULL; }
2299#endif
2300
2301/*
2302 * Move the free pages in a range to the free lists of the requested type.
2303 * Note that start_page and end_pages are not aligned on a pageblock
2304 * boundary. If alignment is required, use move_freepages_block()
2305 */
2306static int move_freepages(struct zone *zone,
2307                          struct page *start_page, struct page *end_page,
2308                          int migratetype, int *num_movable)
2309{
2310        struct page *page;
2311        unsigned int order;
2312        int pages_moved = 0;
2313
2314        for (page = start_page; page <= end_page;) {
2315                if (!pfn_valid_within(page_to_pfn(page))) {
2316                        page++;
2317                        continue;
2318                }
2319
2320                if (!PageBuddy(page)) {
2321                        /*
2322                         * We assume that pages that could be isolated for
2323                         * migration are movable. But we don't actually try
2324                         * isolating, as that would be expensive.
2325                         */
2326                        if (num_movable &&
2327                                        (PageLRU(page) || __PageMovable(page)))
2328                                (*num_movable)++;
2329
2330                        page++;
2331                        continue;
2332                }
2333
2334                /* Make sure we are not inadvertently changing nodes */
2335                VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2336                VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2337
2338                order = page_order(page);
2339                move_to_free_list(page, zone, order, migratetype);
2340                page += 1 << order;
2341                pages_moved += 1 << order;
2342        }
2343
2344        return pages_moved;
2345}
2346
2347int move_freepages_block(struct zone *zone, struct page *page,
2348                                int migratetype, int *num_movable)
2349{
2350        unsigned long start_pfn, end_pfn;
2351        struct page *start_page, *end_page;
2352
2353        if (num_movable)
2354                *num_movable = 0;
2355
2356        start_pfn = page_to_pfn(page);
2357        start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2358        start_page = pfn_to_page(start_pfn);
2359        end_page = start_page + pageblock_nr_pages - 1;
2360        end_pfn = start_pfn + pageblock_nr_pages - 1;
2361
2362        /* Do not cross zone boundaries */
2363        if (!zone_spans_pfn(zone, start_pfn))
2364                start_page = page;
2365        if (!zone_spans_pfn(zone, end_pfn))
2366                return 0;
2367
2368        return move_freepages(zone, start_page, end_page, migratetype,
2369                                                                num_movable);
2370}
2371
2372static void change_pageblock_range(struct page *pageblock_page,
2373                                        int start_order, int migratetype)
2374{
2375        int nr_pageblocks = 1 << (start_order - pageblock_order);
2376
2377        while (nr_pageblocks--) {
2378                set_pageblock_migratetype(pageblock_page, migratetype);
2379                pageblock_page += pageblock_nr_pages;
2380        }
2381}
2382
2383/*
2384 * When we are falling back to another migratetype during allocation, try to
2385 * steal extra free pages from the same pageblocks to satisfy further
2386 * allocations, instead of polluting multiple pageblocks.
2387 *
2388 * If we are stealing a relatively large buddy page, it is likely there will
2389 * be more free pages in the pageblock, so try to steal them all. For
2390 * reclaimable and unmovable allocations, we steal regardless of page size,
2391 * as fragmentation caused by those allocations polluting movable pageblocks
2392 * is worse than movable allocations stealing from unmovable and reclaimable
2393 * pageblocks.
2394 */
2395static bool can_steal_fallback(unsigned int order, int start_mt)
2396{
2397        /*
2398         * Leaving this order check is intended, although there is
2399         * relaxed order check in next check. The reason is that
2400         * we can actually steal whole pageblock if this condition met,
2401         * but, below check doesn't guarantee it and that is just heuristic
2402         * so could be changed anytime.
2403         */
2404        if (order >= pageblock_order)
2405                return true;
2406
2407        if (order >= pageblock_order / 2 ||
2408                start_mt == MIGRATE_RECLAIMABLE ||
2409                start_mt == MIGRATE_UNMOVABLE ||
2410                page_group_by_mobility_disabled)
2411                return true;
2412
2413        return false;
2414}
2415
2416static inline void boost_watermark(struct zone *zone)
2417{
2418        unsigned long max_boost;
2419
2420        if (!watermark_boost_factor)
2421                return;
2422        /*
2423         * Don't bother in zones that are unlikely to produce results.
2424         * On small machines, including kdump capture kernels running
2425         * in a small area, boosting the watermark can cause an out of
2426         * memory situation immediately.
2427         */
2428        if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2429                return;
2430
2431        max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2432                        watermark_boost_factor, 10000);
2433
2434        /*
2435         * high watermark may be uninitialised if fragmentation occurs
2436         * very early in boot so do not boost. We do not fall
2437         * through and boost by pageblock_nr_pages as failing
2438         * allocations that early means that reclaim is not going
2439         * to help and it may even be impossible to reclaim the
2440         * boosted watermark resulting in a hang.
2441         */
2442        if (!max_boost)
2443                return;
2444
2445        max_boost = max(pageblock_nr_pages, max_boost);
2446
2447        zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2448                max_boost);
2449}
2450
2451/*
2452 * This function implements actual steal behaviour. If order is large enough,
2453 * we can steal whole pageblock. If not, we first move freepages in this
2454 * pageblock to our migratetype and determine how many already-allocated pages
2455 * are there in the pageblock with a compatible migratetype. If at least half
2456 * of pages are free or compatible, we can change migratetype of the pageblock
2457 * itself, so pages freed in the future will be put on the correct free list.
2458 */
2459static void steal_suitable_fallback(struct zone *zone, struct page *page,
2460                unsigned int alloc_flags, int start_type, bool whole_block)
2461{
2462        unsigned int current_order = page_order(page);
2463        int free_pages, movable_pages, alike_pages;
2464        int old_block_type;
2465
2466        old_block_type = get_pageblock_migratetype(page);
2467
2468        /*
2469         * This can happen due to races and we want to prevent broken
2470         * highatomic accounting.
2471         */
2472        if (is_migrate_highatomic(old_block_type))
2473                goto single_page;
2474
2475        /* Take ownership for orders >= pageblock_order */
2476        if (current_order >= pageblock_order) {
2477                change_pageblock_range(page, current_order, start_type);
2478                goto single_page;
2479        }
2480
2481        /*
2482         * Boost watermarks to increase reclaim pressure to reduce the
2483         * likelihood of future fallbacks. Wake kswapd now as the node
2484         * may be balanced overall and kswapd will not wake naturally.
2485         */
2486        boost_watermark(zone);
2487        if (alloc_flags & ALLOC_KSWAPD)
2488                set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2489
2490        /* We are not allowed to try stealing from the whole block */
2491        if (!whole_block)
2492                goto single_page;
2493
2494        free_pages = move_freepages_block(zone, page, start_type,
2495                                                &movable_pages);
2496        /*
2497         * Determine how many pages are compatible with our allocation.
2498         * For movable allocation, it's the number of movable pages which
2499         * we just obtained. For other types it's a bit more tricky.
2500         */
2501        if (start_type == MIGRATE_MOVABLE) {
2502                alike_pages = movable_pages;
2503        } else {
2504                /*
2505                 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2506                 * to MOVABLE pageblock, consider all non-movable pages as
2507                 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2508                 * vice versa, be conservative since we can't distinguish the
2509                 * exact migratetype of non-movable pages.
2510                 */
2511                if (old_block_type == MIGRATE_MOVABLE)
2512                        alike_pages = pageblock_nr_pages
2513                                                - (free_pages + movable_pages);
2514                else
2515                        alike_pages = 0;
2516        }
2517
2518        /* moving whole block can fail due to zone boundary conditions */
2519        if (!free_pages)
2520                goto single_page;
2521
2522        /*
2523         * If a sufficient number of pages in the block are either free or of
2524         * comparable migratability as our allocation, claim the whole block.
2525         */
2526        if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2527                        page_group_by_mobility_disabled)
2528                set_pageblock_migratetype(page, start_type);
2529
2530        return;
2531
2532single_page:
2533        move_to_free_list(page, zone, current_order, start_type);
2534}
2535
2536/*
2537 * Check whether there is a suitable fallback freepage with requested order.
2538 * If only_stealable is true, this function returns fallback_mt only if
2539 * we can steal other freepages all together. This would help to reduce
2540 * fragmentation due to mixed migratetype pages in one pageblock.
2541 */
2542int find_suitable_fallback(struct free_area *area, unsigned int order,
2543                        int migratetype, bool only_stealable, bool *can_steal)
2544{
2545        int i;
2546        int fallback_mt;
2547
2548        if (area->nr_free == 0)
2549                return -1;
2550
2551        *can_steal = false;
2552        for (i = 0;; i++) {
2553                fallback_mt = fallbacks[migratetype][i];
2554                if (fallback_mt == MIGRATE_TYPES)
2555                        break;
2556
2557                if (free_area_empty(area, fallback_mt))
2558                        continue;
2559
2560                if (can_steal_fallback(order, migratetype))
2561                        *can_steal = true;
2562
2563                if (!only_stealable)
2564                        return fallback_mt;
2565
2566                if (*can_steal)
2567                        return fallback_mt;
2568        }
2569
2570        return -1;
2571}
2572
2573/*
2574 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2575 * there are no empty page blocks that contain a page with a suitable order
2576 */
2577static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2578                                unsigned int alloc_order)
2579{
2580        int mt;
2581        unsigned long max_managed, flags;
2582
2583        /*
2584         * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2585         * Check is race-prone but harmless.
2586         */
2587        max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2588        if (zone->nr_reserved_highatomic >= max_managed)
2589                return;
2590
2591        spin_lock_irqsave(&zone->lock, flags);
2592
2593        /* Recheck the nr_reserved_highatomic limit under the lock */
2594        if (zone->nr_reserved_highatomic >= max_managed)
2595                goto out_unlock;
2596
2597        /* Yoink! */
2598        mt = get_pageblock_migratetype(page);
2599        if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2600            && !is_migrate_cma(mt)) {
2601                zone->nr_reserved_highatomic += pageblock_nr_pages;
2602                set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2603                move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2604        }
2605
2606out_unlock:
2607        spin_unlock_irqrestore(&zone->lock, flags);
2608}
2609
2610/*
2611 * Used when an allocation is about to fail under memory pressure. This
2612 * potentially hurts the reliability of high-order allocations when under
2613 * intense memory pressure but failed atomic allocations should be easier
2614 * to recover from than an OOM.
2615 *
2616 * If @force is true, try to unreserve a pageblock even though highatomic
2617 * pageblock is exhausted.
2618 */
2619static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2620                                                bool force)
2621{
2622        struct zonelist *zonelist = ac->zonelist;
2623        unsigned long flags;
2624        struct zoneref *z;
2625        struct zone *zone;
2626        struct page *page;
2627        int order;
2628        bool ret;
2629
2630        for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2631                                                                ac->nodemask) {
2632                /*
2633                 * Preserve at least one pageblock unless memory pressure
2634                 * is really high.
2635                 */
2636                if (!force && zone->nr_reserved_highatomic <=
2637                                        pageblock_nr_pages)
2638                        continue;
2639
2640                spin_lock_irqsave(&zone->lock, flags);
2641                for (order = 0; order < MAX_ORDER; order++) {
2642                        struct free_area *area = &(zone->free_area[order]);
2643
2644                        page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2645                        if (!page)
2646                                continue;
2647
2648                        /*
2649                         * In page freeing path, migratetype change is racy so
2650                         * we can counter several free pages in a pageblock
2651                         * in this loop althoug we changed the pageblock type
2652                         * from highatomic to ac->migratetype. So we should
2653                         * adjust the count once.
2654                         */
2655                        if (is_migrate_highatomic_page(page)) {
2656                                /*
2657                                 * It should never happen but changes to
2658                                 * locking could inadvertently allow a per-cpu
2659                                 * drain to add pages to MIGRATE_HIGHATOMIC
2660                                 * while unreserving so be safe and watch for
2661                                 * underflows.
2662                                 */
2663                                zone->nr_reserved_highatomic -= min(
2664                                                pageblock_nr_pages,
2665                                                zone->nr_reserved_highatomic);
2666                        }
2667
2668                        /*
2669                         * Convert to ac->migratetype and avoid the normal
2670                         * pageblock stealing heuristics. Minimally, the caller
2671                         * is doing the work and needs the pages. More
2672                         * importantly, if the block was always converted to
2673                         * MIGRATE_UNMOVABLE or another type then the number
2674                         * of pageblocks that cannot be completely freed
2675                         * may increase.
2676                         */
2677                        set_pageblock_migratetype(page, ac->migratetype);
2678                        ret = move_freepages_block(zone, page, ac->migratetype,
2679                                                                        NULL);
2680                        if (ret) {
2681                                spin_unlock_irqrestore(&zone->lock, flags);
2682                                return ret;
2683                        }
2684                }
2685                spin_unlock_irqrestore(&zone->lock, flags);
2686        }
2687
2688        return false;
2689}
2690
2691/*
2692 * Try finding a free buddy page on the fallback list and put it on the free
2693 * list of requested migratetype, possibly along with other pages from the same
2694 * block, depending on fragmentation avoidance heuristics. Returns true if
2695 * fallback was found so that __rmqueue_smallest() can grab it.
2696 *
2697 * The use of signed ints for order and current_order is a deliberate
2698 * deviation from the rest of this file, to make the for loop
2699 * condition simpler.
2700 */
2701static __always_inline bool
2702__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2703                                                unsigned int alloc_flags)
2704{
2705        struct free_area *area;
2706        int current_order;
2707        int min_order = order;
2708        struct page *page;
2709        int fallback_mt;
2710        bool can_steal;
2711
2712        /*
2713         * Do not steal pages from freelists belonging to other pageblocks
2714         * i.e. orders < pageblock_order. If there are no local zones free,
2715         * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2716         */
2717        if (alloc_flags & ALLOC_NOFRAGMENT)
2718                min_order = pageblock_order;
2719
2720        /*
2721         * Find the largest available free page in the other list. This roughly
2722         * approximates finding the pageblock with the most free pages, which
2723         * would be too costly to do exactly.
2724         */
2725        for (current_order = MAX_ORDER - 1; current_order >= min_order;
2726                                --current_order) {
2727                area = &(zone->free_area[current_order]);
2728                fallback_mt = find_suitable_fallback(area, current_order,
2729                                start_migratetype, false, &can_steal);
2730                if (fallback_mt == -1)
2731                        continue;
2732
2733                /*
2734                 * We cannot steal all free pages from the pageblock and the
2735                 * requested migratetype is movable. In that case it's better to
2736                 * steal and split the smallest available page instead of the
2737                 * largest available page, because even if the next movable
2738                 * allocation falls back into a different pageblock than this
2739                 * one, it won't cause permanent fragmentation.
2740                 */
2741                if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2742                                        && current_order > order)
2743                        goto find_smallest;
2744
2745                goto do_steal;
2746        }
2747
2748        return false;
2749
2750find_smallest:
2751        for (current_order = order; current_order < MAX_ORDER;
2752                                                        current_order++) {
2753                area = &(zone->free_area[current_order]);
2754                fallback_mt = find_suitable_fallback(area, current_order,
2755                                start_migratetype, false, &can_steal);
2756                if (fallback_mt != -1)
2757                        break;
2758        }
2759
2760        /*
2761         * This should not happen - we already found a suitable fallback
2762         * when looking for the largest page.
2763         */
2764        VM_BUG_ON(current_order == MAX_ORDER);
2765
2766do_steal:
2767        page = get_page_from_free_area(area, fallback_mt);
2768
2769        steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2770                                                                can_steal);
2771
2772        trace_mm_page_alloc_extfrag(page, order, current_order,
2773                start_migratetype, fallback_mt);
2774
2775        return true;
2776
2777}
2778
2779/*
2780 * Do the hard work of removing an element from the buddy allocator.
2781 * Call me with the zone->lock already held.
2782 */
2783static __always_inline struct page *
2784__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2785                                                unsigned int alloc_flags)
2786{
2787        struct page *page;
2788
2789#ifdef CONFIG_CMA
2790        /*
2791         * Balance movable allocations between regular and CMA areas by
2792         * allocating from CMA when over half of the zone's free memory
2793         * is in the CMA area.
2794         */
2795        if (alloc_flags & ALLOC_CMA &&
2796            zone_page_state(zone, NR_FREE_CMA_PAGES) >
2797            zone_page_state(zone, NR_FREE_PAGES) / 2) {
2798                page = __rmqueue_cma_fallback(zone, order);
2799                if (page)
2800                        return page;
2801        }
2802#endif
2803retry:
2804        page = __rmqueue_smallest(zone, order, migratetype);
2805        if (unlikely(!page)) {
2806                if (alloc_flags & ALLOC_CMA)
2807                        page = __rmqueue_cma_fallback(zone, order);
2808
2809                if (!page && __rmqueue_fallback(zone, order, migratetype,
2810                                                                alloc_flags))
2811                        goto retry;
2812        }
2813
2814        trace_mm_page_alloc_zone_locked(page, order, migratetype);
2815        return page;
2816}
2817
2818/*
2819 * Obtain a specified number of elements from the buddy allocator, all under
2820 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2821 * Returns the number of new pages which were placed at *list.
2822 */
2823static int rmqueue_bulk(struct zone *zone, unsigned int order,
2824                        unsigned long count, struct list_head *list,
2825                        int migratetype, unsigned int alloc_flags)
2826{
2827        int i, alloced = 0;
2828
2829        spin_lock(&zone->lock);
2830        for (i = 0; i < count; ++i) {
2831                struct page *page = __rmqueue(zone, order, migratetype,
2832                                                                alloc_flags);
2833                if (unlikely(page == NULL))
2834                        break;
2835
2836                if (unlikely(check_pcp_refill(page)))
2837                        continue;
2838
2839                /*
2840                 * Split buddy pages returned by expand() are received here in
2841                 * physical page order. The page is added to the tail of
2842                 * caller's list. From the callers perspective, the linked list
2843                 * is ordered by page number under some conditions. This is
2844                 * useful for IO devices that can forward direction from the
2845                 * head, thus also in the physical page order. This is useful
2846                 * for IO devices that can merge IO requests if the physical
2847                 * pages are ordered properly.
2848                 */
2849                list_add_tail(&page->lru, list);
2850                alloced++;
2851                if (is_migrate_cma(get_pcppage_migratetype(page)))
2852                        __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2853                                              -(1 << order));
2854        }
2855
2856        /*
2857         * i pages were removed from the buddy list even if some leak due
2858         * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2859         * on i. Do not confuse with 'alloced' which is the number of
2860         * pages added to the pcp list.
2861         */
2862        __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2863        spin_unlock(&zone->lock);
2864        return alloced;
2865}
2866
2867#ifdef CONFIG_NUMA
2868/*
2869 * Called from the vmstat counter updater to drain pagesets of this
2870 * currently executing processor on remote nodes after they have
2871 * expired.
2872 *
2873 * Note that this function must be called with the thread pinned to
2874 * a single processor.
2875 */
2876void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2877{
2878        unsigned long flags;
2879        int to_drain, batch;
2880
2881        local_irq_save(flags);
2882        batch = READ_ONCE(pcp->batch);
2883        to_drain = min(pcp->count, batch);
2884        if (to_drain > 0)
2885                free_pcppages_bulk(zone, to_drain, pcp);
2886        local_irq_restore(flags);
2887}
2888#endif
2889
2890/*
2891 * Drain pcplists of the indicated processor and zone.
2892 *
2893 * The processor must either be the current processor and the
2894 * thread pinned to the current processor or a processor that
2895 * is not online.
2896 */
2897static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2898{
2899        unsigned long flags;
2900        struct per_cpu_pageset *pset;
2901        struct per_cpu_pages *pcp;
2902
2903        local_irq_save(flags);
2904        pset = per_cpu_ptr(zone->pageset, cpu);
2905
2906        pcp = &pset->pcp;
2907        if (pcp->count)
2908                free_pcppages_bulk(zone, pcp->count, pcp);
2909        local_irq_restore(flags);
2910}
2911
2912/*
2913 * Drain pcplists of all zones on the indicated processor.
2914 *
2915 * The processor must either be the current processor and the
2916 * thread pinned to the current processor or a processor that
2917 * is not online.
2918 */
2919static void drain_pages(unsigned int cpu)
2920{
2921        struct zone *zone;
2922
2923        for_each_populated_zone(zone) {
2924                drain_pages_zone(cpu, zone);
2925        }
2926}
2927
2928/*
2929 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2930 *
2931 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2932 * the single zone's pages.
2933 */
2934void drain_local_pages(struct zone *zone)
2935{
2936        int cpu = smp_processor_id();
2937
2938        if (zone)
2939                drain_pages_zone(cpu, zone);
2940        else
2941                drain_pages(cpu);
2942}
2943
2944static void drain_local_pages_wq(struct work_struct *work)
2945{
2946        struct pcpu_drain *drain;
2947
2948        drain = container_of(work, struct pcpu_drain, work);
2949
2950        /*
2951         * drain_all_pages doesn't use proper cpu hotplug protection so
2952         * we can race with cpu offline when the WQ can move this from
2953         * a cpu pinned worker to an unbound one. We can operate on a different
2954         * cpu which is allright but we also have to make sure to not move to
2955         * a different one.
2956         */
2957        preempt_disable();
2958        drain_local_pages(drain->zone);
2959        preempt_enable();
2960}
2961
2962/*
2963 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2964 *
2965 * When zone parameter is non-NULL, spill just the single zone's pages.
2966 *
2967 * Note that this can be extremely slow as the draining happens in a workqueue.
2968 */
2969void drain_all_pages(struct zone *zone)
2970{
2971        int cpu;
2972
2973        /*
2974         * Allocate in the BSS so we wont require allocation in
2975         * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2976         */
2977        static cpumask_t cpus_with_pcps;
2978
2979        /*
2980         * Make sure nobody triggers this path before mm_percpu_wq is fully
2981         * initialized.
2982         */
2983        if (WARN_ON_ONCE(!mm_percpu_wq))
2984                return;
2985
2986        /*
2987         * Do not drain if one is already in progress unless it's specific to
2988         * a zone. Such callers are primarily CMA and memory hotplug and need
2989         * the drain to be complete when the call returns.
2990         */
2991        if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2992                if (!zone)
2993                        return;
2994                mutex_lock(&pcpu_drain_mutex);
2995        }
2996
2997        /*
2998         * We don't care about racing with CPU hotplug event
2999         * as offline notification will cause the notified
3000         * cpu to drain that CPU pcps and on_each_cpu_mask
3001         * disables preemption as part of its processing
3002         */
3003        for_each_online_cpu(cpu) {
3004                struct per_cpu_pageset *pcp;
3005                struct zone *z;
3006                bool has_pcps = false;
3007
3008                if (zone) {
3009                        pcp = per_cpu_ptr(zone->pageset, cpu);
3010                        if (pcp->pcp.count)
3011                                has_pcps = true;
3012                } else {
3013                        for_each_populated_zone(z) {
3014                                pcp = per_cpu_ptr(z->pageset, cpu);
3015                                if (pcp->pcp.count) {
3016                                        has_pcps = true;
3017                                        break;
3018                                }
3019                        }
3020                }
3021
3022                if (has_pcps)
3023                        cpumask_set_cpu(cpu, &cpus_with_pcps);
3024                else
3025                        cpumask_clear_cpu(cpu, &cpus_with_pcps);
3026        }
3027
3028        for_each_cpu(cpu, &cpus_with_pcps) {
3029                struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3030
3031                drain->zone = zone;
3032                INIT_WORK(&drain->work, drain_local_pages_wq);
3033                queue_work_on(cpu, mm_percpu_wq, &drain->work);
3034        }
3035        for_each_cpu(cpu, &cpus_with_pcps)
3036                flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3037
3038        mutex_unlock(&pcpu_drain_mutex);
3039}
3040
3041#ifdef CONFIG_HIBERNATION
3042
3043/*
3044 * Touch the watchdog for every WD_PAGE_COUNT pages.
3045 */
3046#define WD_PAGE_COUNT   (128*1024)
3047
3048void mark_free_pages(struct zone *zone)
3049{
3050        unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3051        unsigned long flags;
3052        unsigned int order, t;
3053        struct page *page;
3054
3055        if (zone_is_empty(zone))
3056                return;
3057
3058        spin_lock_irqsave(&zone->lock, flags);
3059
3060        max_zone_pfn = zone_end_pfn(zone);
3061        for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3062                if (pfn_valid(pfn)) {
3063                        page = pfn_to_page(pfn);
3064
3065                        if (!--page_count) {
3066                                touch_nmi_watchdog();
3067                                page_count = WD_PAGE_COUNT;
3068                        }
3069
3070                        if (page_zone(page) != zone)
3071                                continue;
3072
3073                        if (!swsusp_page_is_forbidden(page))
3074                                swsusp_unset_page_free(page);
3075                }
3076
3077        for_each_migratetype_order(order, t) {
3078                list_for_each_entry(page,
3079                                &zone->free_area[order].free_list[t], lru) {
3080                        unsigned long i;
3081
3082                        pfn = page_to_pfn(page);
3083                        for (i = 0; i < (1UL << order); i++) {
3084                                if (!--page_count) {
3085                                        touch_nmi_watchdog();
3086                                        page_count = WD_PAGE_COUNT;
3087                                }
3088                                swsusp_set_page_free(pfn_to_page(pfn + i));
3089                        }
3090                }
3091        }
3092        spin_unlock_irqrestore(&zone->lock, flags);
3093}
3094#endif /* CONFIG_PM */
3095
3096static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3097{
3098        int migratetype;
3099
3100        if (!free_pcp_prepare(page))
3101                return false;
3102
3103        migratetype = get_pfnblock_migratetype(page, pfn);
3104        set_pcppage_migratetype(page, migratetype);
3105        return true;
3106}
3107
3108static void free_unref_page_commit(struct page *page, unsigned long pfn)
3109{
3110        struct zone *zone = page_zone(page);
3111        struct per_cpu_pages *pcp;
3112        int migratetype;
3113
3114        migratetype = get_pcppage_migratetype(page);
3115        __count_vm_event(PGFREE);
3116
3117        /*
3118         * We only track unmovable, reclaimable and movable on pcp lists.
3119         * Free ISOLATE pages back to the allocator because they are being
3120         * offlined but treat HIGHATOMIC as movable pages so we can get those
3121         * areas back if necessary. Otherwise, we may have to free
3122         * excessively into the page allocator
3123         */
3124        if (migratetype >= MIGRATE_PCPTYPES) {
3125                if (unlikely(is_migrate_isolate(migratetype))) {
3126                        free_one_page(zone, page, pfn, 0, migratetype);
3127                        return;
3128                }
3129                migratetype = MIGRATE_MOVABLE;
3130        }
3131
3132        pcp = &this_cpu_ptr(zone->pageset)->pcp;
3133        list_add(&page->lru, &pcp->lists[migratetype]);
3134        pcp->count++;
3135        if (pcp->count >= pcp->high) {
3136                unsigned long batch = READ_ONCE(pcp->batch);
3137                free_pcppages_bulk(zone, batch, pcp);
3138        }
3139}
3140
3141/*
3142 * Free a 0-order page
3143 */
3144void free_unref_page(struct page *page)
3145{
3146        unsigned long flags;
3147        unsigned long pfn = page_to_pfn(page);
3148
3149        if (!free_unref_page_prepare(page, pfn))
3150                return;
3151
3152        local_irq_save(flags);
3153        free_unref_page_commit(page, pfn);
3154        local_irq_restore(flags);
3155}
3156
3157/*
3158 * Free a list of 0-order pages
3159 */
3160void free_unref_page_list(struct list_head *list)
3161{
3162        struct page *page, *next;
3163        unsigned long flags, pfn;
3164        int batch_count = 0;
3165
3166        /* Prepare pages for freeing */
3167        list_for_each_entry_safe(page, next, list, lru) {
3168                pfn = page_to_pfn(page);
3169                if (!free_unref_page_prepare(page, pfn))
3170                        list_del(&page->lru);
3171                set_page_private(page, pfn);
3172        }
3173
3174        local_irq_save(flags);
3175        list_for_each_entry_safe(page, next, list, lru) {
3176                unsigned long pfn = page_private(page);
3177
3178                set_page_private(page, 0);
3179                trace_mm_page_free_batched(page);
3180                free_unref_page_commit(page, pfn);
3181
3182                /*
3183                 * Guard against excessive IRQ disabled times when we get
3184                 * a large list of pages to free.
3185                 */
3186                if (++batch_count == SWAP_CLUSTER_MAX) {
3187                        local_irq_restore(flags);
3188                        batch_count = 0;
3189                        local_irq_save(flags);
3190                }
3191        }
3192        local_irq_restore(flags);
3193}
3194
3195/*
3196 * split_page takes a non-compound higher-order page, and splits it into
3197 * n (1<<order) sub-pages: page[0..n]
3198 * Each sub-page must be freed individually.
3199 *
3200 * Note: this is probably too low level an operation for use in drivers.
3201 * Please consult with lkml before using this in your driver.
3202 */
3203void split_page(struct page *page, unsigned int order)
3204{
3205        int i;
3206
3207        VM_BUG_ON_PAGE(PageCompound(page), page);
3208        VM_BUG_ON_PAGE(!page_count(page), page);
3209
3210        for (i = 1; i < (1 << order); i++)
3211                set_page_refcounted(page + i);
3212        split_page_owner(page, order);
3213}
3214EXPORT_SYMBOL_GPL(split_page);
3215
3216int __isolate_free_page(struct page *page, unsigned int order)
3217{
3218        unsigned long watermark;
3219        struct zone *zone;
3220        int mt;
3221
3222        BUG_ON(!PageBuddy(page));
3223
3224        zone = page_zone(page);
3225        mt = get_pageblock_migratetype(page);
3226
3227        if (!is_migrate_isolate(mt)) {
3228                /*
3229                 * Obey watermarks as if the page was being allocated. We can
3230                 * emulate a high-order watermark check with a raised order-0
3231                 * watermark, because we already know our high-order page
3232                 * exists.
3233                 */
3234                watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3235                if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3236                        return 0;
3237
3238                __mod_zone_freepage_state(zone, -(1UL << order), mt);
3239        }
3240
3241        /* Remove page from free list */
3242
3243        del_page_from_free_list(page, zone, order);
3244
3245        /*
3246         * Set the pageblock if the isolated page is at least half of a
3247         * pageblock
3248         */
3249        if (order >= pageblock_order - 1) {
3250                struct page *endpage = page + (1 << order) - 1;
3251                for (; page < endpage; page += pageblock_nr_pages) {
3252                        int mt = get_pageblock_migratetype(page);
3253                        if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3254                            && !is_migrate_highatomic(mt))
3255                                set_pageblock_migratetype(page,
3256                                                          MIGRATE_MOVABLE);
3257                }
3258        }
3259
3260
3261        return 1UL << order;
3262}
3263
3264/**
3265 * __putback_isolated_page - Return a now-isolated page back where we got it
3266 * @page: Page that was isolated
3267 * @order: Order of the isolated page
3268 * @mt: The page's pageblock's migratetype
3269 *
3270 * This function is meant to return a page pulled from the free lists via
3271 * __isolate_free_page back to the free lists they were pulled from.
3272 */
3273void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3274{
3275        struct zone *zone = page_zone(page);
3276
3277        /* zone lock should be held when this function is called */
3278        lockdep_assert_held(&zone->lock);
3279
3280        /* Return isolated page to tail of freelist. */
3281        __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3282}
3283
3284/*
3285 * Update NUMA hit/miss statistics
3286 *
3287 * Must be called with interrupts disabled.
3288 */
3289static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3290{
3291#ifdef CONFIG_NUMA
3292        enum numa_stat_item local_stat = NUMA_LOCAL;
3293
3294        /* skip numa counters update if numa stats is disabled */
3295        if (!static_branch_likely(&vm_numa_stat_key))
3296                return;
3297
3298        if (zone_to_nid(z) != numa_node_id())
3299                local_stat = NUMA_OTHER;
3300
3301        if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3302                __inc_numa_state(z, NUMA_HIT);
3303        else {
3304                __inc_numa_state(z, NUMA_MISS);
3305                __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3306        }
3307        __inc_numa_state(z, local_stat);
3308#endif
3309}
3310
3311/* Remove page from the per-cpu list, caller must protect the list */
3312static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3313                        unsigned int alloc_flags,
3314                        struct per_cpu_pages *pcp,
3315                        struct list_head *list)
3316{
3317        struct page *page;
3318
3319        do {
3320                if (list_empty(list)) {
3321                        pcp->count += rmqueue_bulk(zone, 0,
3322                                        pcp->batch, list,
3323                                        migratetype, alloc_flags);
3324                        if (unlikely(list_empty(list)))
3325                                return NULL;
3326                }
3327
3328                page = list_first_entry(list, struct page, lru);
3329                list_del(&page->lru);
3330                pcp->count--;
3331        } while (check_new_pcp(page));
3332
3333        return page;
3334}
3335
3336/* Lock and remove page from the per-cpu list */
3337static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3338                        struct zone *zone, gfp_t gfp_flags,
3339                        int migratetype, unsigned int alloc_flags)
3340{
3341        struct per_cpu_pages *pcp;
3342        struct list_head *list;
3343        struct page *page;
3344        unsigned long flags;
3345
3346        local_irq_save(flags);
3347        pcp = &this_cpu_ptr(zone->pageset)->pcp;
3348        list = &pcp->lists[migratetype];
3349        page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3350        if (page) {
3351                __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3352                zone_statistics(preferred_zone, zone);
3353        }
3354        local_irq_restore(flags);
3355        return page;
3356}
3357
3358/*
3359 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3360 */
3361static inline
3362struct page *rmqueue(struct zone *preferred_zone,
3363                        struct zone *zone, unsigned int order,
3364                        gfp_t gfp_flags, unsigned int alloc_flags,
3365                        int migratetype)
3366{
3367        unsigned long flags;
3368        struct page *page;
3369
3370        if (likely(order == 0)) {
3371                /*
3372                 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3373                 * we need to skip it when CMA area isn't allowed.
3374                 */
3375                if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3376                                migratetype != MIGRATE_MOVABLE) {
3377                        page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3378                                        migratetype, alloc_flags);
3379                        goto out;
3380                }
3381        }
3382
3383        /*
3384         * We most definitely don't want callers attempting to
3385         * allocate greater than order-1 page units with __GFP_NOFAIL.
3386         */
3387        WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3388        spin_lock_irqsave(&zone->lock, flags);
3389
3390        do {
3391                page = NULL;
3392                /*
3393                 * order-0 request can reach here when the pcplist is skipped
3394                 * due to non-CMA allocation context. HIGHATOMIC area is
3395                 * reserved for high-order atomic allocation, so order-0
3396                 * request should skip it.
3397                 */
3398                if (order > 0 && alloc_flags & ALLOC_HARDER) {
3399                        page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3400                        if (page)
3401                                trace_mm_page_alloc_zone_locked(page, order, migratetype);
3402                }
3403                if (!page)
3404                        page = __rmqueue(zone, order, migratetype, alloc_flags);
3405        } while (page && check_new_pages(page, order));
3406        spin_unlock(&zone->lock);
3407        if (!page)
3408                goto failed;
3409        __mod_zone_freepage_state(zone, -(1 << order),
3410                                  get_pcppage_migratetype(page));
3411
3412        __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3413        zone_statistics(preferred_zone, zone);
3414        local_irq_restore(flags);
3415
3416out:
3417        /* Separate test+clear to avoid unnecessary atomics */
3418        if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3419                clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3420                wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3421        }
3422
3423        VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3424        return page;
3425
3426failed:
3427        local_irq_restore(flags);
3428        return NULL;
3429}
3430
3431#ifdef CONFIG_FAIL_PAGE_ALLOC
3432
3433static struct {
3434        struct fault_attr attr;
3435
3436        bool ignore_gfp_highmem;
3437        bool ignore_gfp_reclaim;
3438        u32 min_order;
3439} fail_page_alloc = {
3440        .attr = FAULT_ATTR_INITIALIZER,
3441        .ignore_gfp_reclaim = true,
3442        .ignore_gfp_highmem = true,
3443        .min_order = 1,
3444};
3445
3446static int __init setup_fail_page_alloc(char *str)
3447{
3448        return setup_fault_attr(&fail_page_alloc.attr, str);
3449}
3450__setup("fail_page_alloc=", setup_fail_page_alloc);
3451
3452static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3453{
3454        if (order < fail_page_alloc.min_order)
3455                return false;
3456        if (gfp_mask & __GFP_NOFAIL)
3457                return false;
3458        if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3459                return false;
3460        if (fail_page_alloc.ignore_gfp_reclaim &&
3461                        (gfp_mask & __GFP_DIRECT_RECLAIM))
3462                return false;
3463
3464        return should_fail(&fail_page_alloc.attr, 1 << order);
3465}
3466
3467#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3468
3469static int __init fail_page_alloc_debugfs(void)
3470{
3471        umode_t mode = S_IFREG | 0600;
3472        struct dentry *dir;
3473
3474        dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3475                                        &fail_page_alloc.attr);
3476
3477        debugfs_create_bool("ignore-gfp-wait", mode, dir,
3478                            &fail_page_alloc.ignore_gfp_reclaim);
3479        debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3480                            &fail_page_alloc.ignore_gfp_highmem);
3481        debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3482
3483        return 0;
3484}
3485
3486late_initcall(fail_page_alloc_debugfs);
3487
3488#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3489
3490#else /* CONFIG_FAIL_PAGE_ALLOC */
3491
3492static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3493{
3494        return false;
3495}
3496
3497#endif /* CONFIG_FAIL_PAGE_ALLOC */
3498
3499static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3500{
3501        return __should_fail_alloc_page(gfp_mask, order);
3502}
3503ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3504
3505static inline long __zone_watermark_unusable_free(struct zone *z,
3506                                unsigned int order, unsigned int alloc_flags)
3507{
3508        const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3509        long unusable_free = (1 << order) - 1;
3510
3511        /*
3512         * If the caller does not have rights to ALLOC_HARDER then subtract
3513         * the high-atomic reserves. This will over-estimate the size of the
3514         * atomic reserve but it avoids a search.
3515         */
3516        if (likely(!alloc_harder))
3517                unusable_free += z->nr_reserved_highatomic;
3518
3519#ifdef CONFIG_CMA
3520        /* If allocation can't use CMA areas don't use free CMA pages */
3521        if (!(alloc_flags & ALLOC_CMA))
3522                unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3523#endif
3524
3525        return unusable_free;
3526}
3527
3528/*
3529 * Return true if free base pages are above 'mark'. For high-order checks it
3530 * will return true of the order-0 watermark is reached and there is at least
3531 * one free page of a suitable size. Checking now avoids taking the zone lock
3532 * to check in the allocation paths if no pages are free.
3533 */
3534bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3535                         int highest_zoneidx, unsigned int alloc_flags,
3536                         long free_pages)
3537{
3538        long min = mark;
3539        int o;
3540        const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3541
3542        /* free_pages may go negative - that's OK */
3543        free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3544
3545        if (alloc_flags & ALLOC_HIGH)
3546                min -= min / 2;
3547
3548        if (unlikely(alloc_harder)) {
3549                /*
3550                 * OOM victims can try even harder than normal ALLOC_HARDER
3551                 * users on the grounds that it's definitely going to be in
3552                 * the exit path shortly and free memory. Any allocation it
3553                 * makes during the free path will be small and short-lived.
3554                 */
3555                if (alloc_flags & ALLOC_OOM)
3556                        min -= min / 2;
3557                else
3558                        min -= min / 4;
3559        }
3560
3561        /*
3562         * Check watermarks for an order-0 allocation request. If these
3563         * are not met, then a high-order request also cannot go ahead
3564         * even if a suitable page happened to be free.
3565         */
3566        if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3567                return false;
3568
3569        /* If this is an order-0 request then the watermark is fine */
3570        if (!order)
3571                return true;
3572
3573        /* For a high-order request, check at least one suitable page is free */
3574        for (o = order; o < MAX_ORDER; o++) {
3575                struct free_area *area = &z->free_area[o];
3576                int mt;
3577
3578                if (!area->nr_free)
3579                        continue;
3580
3581                for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3582                        if (!free_area_empty(area, mt))
3583                                return true;
3584                }
3585
3586#ifdef CONFIG_CMA
3587                if ((alloc_flags & ALLOC_CMA) &&
3588                    !free_area_empty(area, MIGRATE_CMA)) {
3589                        return true;
3590                }
3591#endif
3592                if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3593                        return true;
3594        }
3595        return false;
3596}
3597
3598bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3599                      int highest_zoneidx, unsigned int alloc_flags)
3600{
3601        return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3602                                        zone_page_state(z, NR_FREE_PAGES));
3603}
3604
3605static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3606                                unsigned long mark, int highest_zoneidx,
3607                                unsigned int alloc_flags, gfp_t gfp_mask)
3608{
3609        long free_pages;
3610
3611        free_pages = zone_page_state(z, NR_FREE_PAGES);
3612
3613        /*
3614         * Fast check for order-0 only. If this fails then the reserves
3615         * need to be calculated.
3616         */
3617        if (!order) {
3618                long fast_free;
3619
3620                fast_free = free_pages;
3621                fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3622                if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3623                        return true;
3624        }
3625
3626        if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3627                                        free_pages))
3628                return true;
3629        /*
3630         * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3631         * when checking the min watermark. The min watermark is the
3632         * point where boosting is ignored so that kswapd is woken up
3633         * when below the low watermark.
3634         */
3635        if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3636                && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3637                mark = z->_watermark[WMARK_MIN];
3638                return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3639                                        alloc_flags, free_pages);
3640        }
3641
3642        return false;
3643}
3644
3645bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3646                        unsigned long mark, int highest_zoneidx)
3647{
3648        long free_pages = zone_page_state(z, NR_FREE_PAGES);
3649
3650        if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3651                free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3652
3653        return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3654                                                                free_pages);
3655}
3656
3657#ifdef CONFIG_NUMA
3658static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3659{
3660        return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3661                                node_reclaim_distance;
3662}
3663#else   /* CONFIG_NUMA */
3664static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3665{
3666        return true;
3667}
3668#endif  /* CONFIG_NUMA */
3669
3670/*
3671 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3672 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3673 * premature use of a lower zone may cause lowmem pressure problems that
3674 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3675 * probably too small. It only makes sense to spread allocations to avoid
3676 * fragmentation between the Normal and DMA32 zones.
3677 */
3678static inline unsigned int
3679alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3680{
3681        unsigned int alloc_flags;
3682
3683        /*
3684         * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3685         * to save a branch.
3686         */
3687        alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3688
3689#ifdef CONFIG_ZONE_DMA32
3690        if (!zone)
3691                return alloc_flags;
3692
3693        if (zone_idx(zone) != ZONE_NORMAL)
3694                return alloc_flags;
3695
3696        /*
3697         * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3698         * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3699         * on UMA that if Normal is populated then so is DMA32.
3700         */
3701        BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3702        if (nr_online_nodes > 1 && !populated_zone(--zone))
3703                return alloc_flags;
3704
3705        alloc_flags |= ALLOC_NOFRAGMENT;
3706#endif /* CONFIG_ZONE_DMA32 */
3707        return alloc_flags;
3708}
3709
3710static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3711                                        unsigned int alloc_flags)
3712{
3713#ifdef CONFIG_CMA
3714        unsigned int pflags = current->flags;
3715
3716        if (!(pflags & PF_MEMALLOC_NOCMA) &&
3717                        gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3718                alloc_flags |= ALLOC_CMA;
3719
3720#endif
3721        return alloc_flags;
3722}
3723
3724/*
3725 * get_page_from_freelist goes through the zonelist trying to allocate
3726 * a page.
3727 */
3728static struct page *
3729get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3730                                                const struct alloc_context *ac)
3731{
3732        struct zoneref *z;
3733        struct zone *zone;
3734        struct pglist_data *last_pgdat_dirty_limit = NULL;
3735        bool no_fallback;
3736
3737retry:
3738        /*
3739         * Scan zonelist, looking for a zone with enough free.
3740         * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3741         */
3742        no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3743        z = ac->preferred_zoneref;
3744        for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3745                                        ac->highest_zoneidx, ac->nodemask) {
3746                struct page *page;
3747                unsigned long mark;
3748
3749                if (cpusets_enabled() &&
3750                        (alloc_flags & ALLOC_CPUSET) &&
3751                        !__cpuset_zone_allowed(zone, gfp_mask))
3752                                continue;
3753                /*
3754                 * When allocating a page cache page for writing, we
3755                 * want to get it from a node that is within its dirty
3756                 * limit, such that no single node holds more than its
3757                 * proportional share of globally allowed dirty pages.
3758                 * The dirty limits take into account the node's
3759                 * lowmem reserves and high watermark so that kswapd
3760                 * should be able to balance it without having to
3761                 * write pages from its LRU list.
3762                 *
3763                 * XXX: For now, allow allocations to potentially
3764                 * exceed the per-node dirty limit in the slowpath
3765                 * (spread_dirty_pages unset) before going into reclaim,
3766                 * which is important when on a NUMA setup the allowed
3767                 * nodes are together not big enough to reach the
3768                 * global limit.  The proper fix for these situations
3769                 * will require awareness of nodes in the
3770                 * dirty-throttling and the flusher threads.
3771                 */
3772                if (ac->spread_dirty_pages) {
3773                        if (last_pgdat_dirty_limit == zone->zone_pgdat)
3774                                continue;
3775
3776                        if (!node_dirty_ok(zone->zone_pgdat)) {
3777                                last_pgdat_dirty_limit = zone->zone_pgdat;
3778                                continue;
3779                        }
3780                }
3781
3782                if (no_fallback && nr_online_nodes > 1 &&
3783                    zone != ac->preferred_zoneref->zone) {
3784                        int local_nid;
3785
3786                        /*
3787                         * If moving to a remote node, retry but allow
3788                         * fragmenting fallbacks. Locality is more important
3789                         * than fragmentation avoidance.
3790                         */
3791                        local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3792                        if (zone_to_nid(zone) != local_nid) {
3793                                alloc_flags &= ~ALLOC_NOFRAGMENT;
3794                                goto retry;
3795                        }
3796                }
3797
3798                mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3799                if (!zone_watermark_fast(zone, order, mark,
3800                                       ac->highest_zoneidx, alloc_flags,
3801                                       gfp_mask)) {
3802                        int ret;
3803
3804#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3805                        /*
3806                         * Watermark failed for this zone, but see if we can
3807                         * grow this zone if it contains deferred pages.
3808                         */
3809                        if (static_branch_unlikely(&deferred_pages)) {
3810                                if (_deferred_grow_zone(zone, order))
3811                                        goto try_this_zone;
3812                        }
3813#endif
3814                        /* Checked here to keep the fast path fast */
3815                        BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3816                        if (alloc_flags & ALLOC_NO_WATERMARKS)
3817                                goto try_this_zone;
3818
3819                        if (node_reclaim_mode == 0 ||
3820                            !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3821                                continue;
3822
3823                        ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3824                        switch (ret) {
3825                        case NODE_RECLAIM_NOSCAN:
3826                                /* did not scan */
3827                                continue;
3828                        case NODE_RECLAIM_FULL:
3829                                /* scanned but unreclaimable */
3830                                continue;
3831                        default:
3832                                /* did we reclaim enough */
3833                                if (zone_watermark_ok(zone, order, mark,
3834                                        ac->highest_zoneidx, alloc_flags))
3835                                        goto try_this_zone;
3836
3837                                continue;
3838                        }
3839                }
3840
3841try_this_zone:
3842                page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3843                                gfp_mask, alloc_flags, ac->migratetype);
3844                if (page) {
3845                        prep_new_page(page, order, gfp_mask, alloc_flags);
3846
3847                        /*
3848                         * If this is a high-order atomic allocation then check
3849                         * if the pageblock should be reserved for the future
3850                         */
3851                        if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3852                                reserve_highatomic_pageblock(page, zone, order);
3853
3854                        return page;
3855                } else {
3856#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3857                        /* Try again if zone has deferred pages */
3858                        if (static_branch_unlikely(&deferred_pages)) {
3859                                if (_deferred_grow_zone(zone, order))
3860                                        goto try_this_zone;
3861                        }
3862#endif
3863                }
3864        }
3865
3866        /*
3867         * It's possible on a UMA machine to get through all zones that are
3868         * fragmented. If avoiding fragmentation, reset and try again.
3869         */
3870        if (no_fallback) {
3871                alloc_flags &= ~ALLOC_NOFRAGMENT;
3872                goto retry;
3873        }
3874
3875        return NULL;
3876}
3877
3878static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3879{
3880        unsigned int filter = SHOW_MEM_FILTER_NODES;
3881
3882        /*
3883         * This documents exceptions given to allocations in certain
3884         * contexts that are allowed to allocate outside current's set
3885         * of allowed nodes.
3886         */
3887        if (!(gfp_mask & __GFP_NOMEMALLOC))
3888                if (tsk_is_oom_victim(current) ||
3889                    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3890                        filter &= ~SHOW_MEM_FILTER_NODES;
3891        if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3892                filter &= ~SHOW_MEM_FILTER_NODES;
3893
3894        show_mem(filter, nodemask);
3895}
3896
3897void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3898{
3899        struct va_format vaf;
3900        va_list args;
3901        static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3902
3903        if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3904                return;
3905
3906        va_start(args, fmt);
3907        vaf.fmt = fmt;
3908        vaf.va = &args;
3909        pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3910                        current->comm, &vaf, gfp_mask, &gfp_mask,
3911                        nodemask_pr_args(nodemask));
3912        va_end(args);
3913
3914        cpuset_print_current_mems_allowed();
3915        pr_cont("\n");
3916        dump_stack();
3917        warn_alloc_show_mem(gfp_mask, nodemask);
3918}
3919
3920static inline struct page *
3921__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3922                              unsigned int alloc_flags,
3923                              const struct alloc_context *ac)
3924{
3925        struct page *page;
3926
3927        page = get_page_from_freelist(gfp_mask, order,
3928                        alloc_flags|ALLOC_CPUSET, ac);
3929        /*
3930         * fallback to ignore cpuset restriction if our nodes
3931         * are depleted
3932         */
3933        if (!page)
3934                page = get_page_from_freelist(gfp_mask, order,
3935                                alloc_flags, ac);
3936
3937        return page;
3938}
3939
3940static inline struct page *
3941__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3942        const struct alloc_context *ac, unsigned long *did_some_progress)
3943{
3944        struct oom_control oc = {
3945                .zonelist = ac->zonelist,
3946                .nodemask = ac->nodemask,
3947                .memcg = NULL,
3948                .gfp_mask = gfp_mask,
3949                .order = order,
3950        };
3951        struct page *page;
3952
3953        *did_some_progress = 0;
3954
3955        /*
3956         * Acquire the oom lock.  If that fails, somebody else is
3957         * making progress for us.
3958         */
3959        if (!mutex_trylock(&oom_lock)) {
3960                *did_some_progress = 1;
3961                schedule_timeout_uninterruptible(1);
3962                return NULL;
3963        }
3964
3965        /*
3966         * Go through the zonelist yet one more time, keep very high watermark
3967         * here, this is only to catch a parallel oom killing, we must fail if
3968         * we're still under heavy pressure. But make sure that this reclaim
3969         * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3970         * allocation which will never fail due to oom_lock already held.
3971         */
3972        page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3973                                      ~__GFP_DIRECT_RECLAIM, order,
3974                                      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3975        if (page)
3976                goto out;
3977
3978        /* Coredumps can quickly deplete all memory reserves */
3979        if (current->flags & PF_DUMPCORE)
3980                goto out;
3981        /* The OOM killer will not help higher order allocs */
3982        if (order > PAGE_ALLOC_COSTLY_ORDER)
3983                goto out;
3984        /*
3985         * We have already exhausted all our reclaim opportunities without any
3986         * success so it is time to admit defeat. We will skip the OOM killer
3987         * because it is very likely that the caller has a more reasonable
3988         * fallback than shooting a random task.
3989         */
3990        if (gfp_mask & __GFP_RETRY_MAYFAIL)
3991                goto out;
3992        /* The OOM killer does not needlessly kill tasks for lowmem */
3993        if (ac->highest_zoneidx < ZONE_NORMAL)
3994                goto out;
3995        if (pm_suspended_storage())
3996                goto out;
3997        /*
3998         * XXX: GFP_NOFS allocations should rather fail than rely on
3999         * other request to make a forward progress.
4000         * We are in an unfortunate situation where out_of_memory cannot
4001         * do much for this context but let's try it to at least get
4002         * access to memory reserved if the current task is killed (see
4003         * out_of_memory). Once filesystems are ready to handle allocation
4004         * failures more gracefully we should just bail out here.
4005         */
4006
4007        /* The OOM killer may not free memory on a specific node */
4008        if (gfp_mask & __GFP_THISNODE)
4009                goto out;
4010
4011        /* Exhausted what can be done so it's blame time */
4012        if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4013                *did_some_progress = 1;
4014
4015                /*
4016                 * Help non-failing allocations by giving them access to memory
4017                 * reserves
4018                 */
4019                if (gfp_mask & __GFP_NOFAIL)
4020                        page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4021                                        ALLOC_NO_WATERMARKS, ac);
4022        }
4023out:
4024        mutex_unlock(&oom_lock);
4025        return page;
4026}
4027
4028/*
4029 * Maximum number of compaction retries wit a progress before OOM
4030 * killer is consider as the only way to move forward.
4031 */
4032#define MAX_COMPACT_RETRIES 16
4033
4034#ifdef CONFIG_COMPACTION
4035/* Try memory compaction for high-order allocations before reclaim */
4036static struct page *
4037__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4038                unsigned int alloc_flags, const struct alloc_context *ac,
4039                enum compact_priority prio, enum compact_result *compact_result)
4040{
4041        struct page *page = NULL;
4042        unsigned long pflags;
4043        unsigned int noreclaim_flag;
4044
4045        if (!order)
4046                return NULL;
4047
4048        psi_memstall_enter(&pflags);
4049        noreclaim_flag = memalloc_noreclaim_save();
4050
4051        *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4052                                                                prio, &page);
4053
4054        memalloc_noreclaim_restore(noreclaim_flag);
4055        psi_memstall_leave(&pflags);
4056
4057        /*
4058         * At least in one zone compaction wasn't deferred or skipped, so let's
4059         * count a compaction stall
4060         */
4061        count_vm_event(COMPACTSTALL);
4062
4063        /* Prep a captured page if available */
4064        if (page)
4065                prep_new_page(page, order, gfp_mask, alloc_flags);
4066
4067        /* Try get a page from the freelist if available */
4068        if (!page)
4069                page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4070
4071        if (page) {
4072                struct zone *zone = page_zone(page);
4073
4074                zone->compact_blockskip_flush = false;
4075                compaction_defer_reset(zone, order, true);
4076                count_vm_event(COMPACTSUCCESS);
4077                return page;
4078        }
4079
4080        /*
4081         * It's bad if compaction run occurs and fails. The most likely reason
4082         * is that pages exist, but not enough to satisfy watermarks.
4083         */
4084        count_vm_event(COMPACTFAIL);
4085
4086        cond_resched();
4087
4088        return NULL;
4089}
4090
4091static inline bool
4092should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4093                     enum compact_result compact_result,
4094                     enum compact_priority *compact_priority,
4095                     int *compaction_retries)
4096{
4097        int max_retries = MAX_COMPACT_RETRIES;
4098        int min_priority;
4099        bool ret = false;
4100        int retries = *compaction_retries;
4101        enum compact_priority priority = *compact_priority;
4102
4103        if (!order)
4104                return false;
4105
4106        if (compaction_made_progress(compact_result))
4107                (*compaction_retries)++;
4108
4109        /*
4110         * compaction considers all the zone as desperately out of memory
4111         * so it doesn't really make much sense to retry except when the
4112         * failure could be caused by insufficient priority
4113         */
4114        if (compaction_failed(compact_result))
4115                goto check_priority;
4116
4117        /*
4118         * compaction was skipped because there are not enough order-0 pages
4119         * to work with, so we retry only if it looks like reclaim can help.
4120         */
4121        if (compaction_needs_reclaim(compact_result)) {
4122                ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4123                goto out;
4124        }
4125
4126        /*
4127         * make sure the compaction wasn't deferred or didn't bail out early
4128         * due to locks contention before we declare that we should give up.
4129         * But the next retry should use a higher priority if allowed, so
4130         * we don't just keep bailing out endlessly.
4131         */
4132        if (compaction_withdrawn(compact_result)) {
4133                goto check_priority;
4134        }
4135
4136        /*
4137         * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4138         * costly ones because they are de facto nofail and invoke OOM
4139         * killer to move on while costly can fail and users are ready
4140         * to cope with that. 1/4 retries is rather arbitrary but we
4141         * would need much more detailed feedback from compaction to
4142         * make a better decision.
4143         */
4144        if (order > PAGE_ALLOC_COSTLY_ORDER)
4145                max_retries /= 4;
4146        if (*compaction_retries <= max_retries) {
4147                ret = true;
4148                goto out;
4149        }
4150
4151        /*
4152         * Make sure there are attempts at the highest priority if we exhausted
4153         * all retries or failed at the lower priorities.
4154         */
4155check_priority:
4156        min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4157                        MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4158
4159        if (*compact_priority > min_priority) {
4160                (*compact_priority)--;
4161                *compaction_retries = 0;
4162                ret = true;
4163        }
4164out:
4165        trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4166        return ret;
4167}
4168#else
4169static inline struct page *
4170__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4171                unsigned int alloc_flags, const struct alloc_context *ac,
4172                enum compact_priority prio, enum compact_result *compact_result)
4173{
4174        *compact_result = COMPACT_SKIPPED;
4175        return NULL;
4176}
4177
4178static inline bool
4179should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4180                     enum compact_result compact_result,
4181                     enum compact_priority *compact_priority,
4182                     int *compaction_retries)
4183{
4184        struct zone *zone;
4185        struct zoneref *z;
4186
4187        if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4188                return false;
4189
4190        /*
4191         * There are setups with compaction disabled which would prefer to loop
4192         * inside the allocator rather than hit the oom killer prematurely.
4193         * Let's give them a good hope and keep retrying while the order-0
4194         * watermarks are OK.
4195         */
4196        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4197                                ac->highest_zoneidx, ac->nodemask) {
4198                if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4199                                        ac->highest_zoneidx, alloc_flags))
4200                        return true;
4201        }
4202        return false;
4203}
4204#endif /* CONFIG_COMPACTION */
4205
4206#ifdef CONFIG_LOCKDEP
4207static struct lockdep_map __fs_reclaim_map =
4208        STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4209
4210static bool __need_fs_reclaim(gfp_t gfp_mask)
4211{
4212        gfp_mask = current_gfp_context(gfp_mask);
4213
4214        /* no reclaim without waiting on it */
4215        if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4216                return false;
4217
4218        /* this guy won't enter reclaim */
4219        if (current->flags & PF_MEMALLOC)
4220                return false;
4221
4222        /* We're only interested __GFP_FS allocations for now */
4223        if (!(gfp_mask & __GFP_FS))
4224                return false;
4225
4226        if (gfp_mask & __GFP_NOLOCKDEP)
4227                return false;
4228
4229        return true;
4230}
4231
4232void __fs_reclaim_acquire(void)
4233{
4234        lock_map_acquire(&__fs_reclaim_map);
4235}
4236
4237void __fs_reclaim_release(void)
4238{
4239        lock_map_release(&__fs_reclaim_map);
4240}
4241
4242void fs_reclaim_acquire(gfp_t gfp_mask)
4243{
4244        if (__need_fs_reclaim(gfp_mask))
4245                __fs_reclaim_acquire();
4246}
4247EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4248
4249void fs_reclaim_release(gfp_t gfp_mask)
4250{
4251        if (__need_fs_reclaim(gfp_mask))
4252                __fs_reclaim_release();
4253}
4254EXPORT_SYMBOL_GPL(fs_reclaim_release);
4255#endif
4256
4257/* Perform direct synchronous page reclaim */
4258static int
4259__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4260                                        const struct alloc_context *ac)
4261{
4262        int progress;
4263        unsigned int noreclaim_flag;
4264        unsigned long pflags;
4265
4266        cond_resched();
4267
4268        /* We now go into synchronous reclaim */
4269        cpuset_memory_pressure_bump();
4270        psi_memstall_enter(&pflags);
4271        fs_reclaim_acquire(gfp_mask);
4272        noreclaim_flag = memalloc_noreclaim_save();
4273
4274        progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4275                                                                ac->nodemask);
4276
4277        memalloc_noreclaim_restore(noreclaim_flag);
4278        fs_reclaim_release(gfp_mask);
4279        psi_memstall_leave(&pflags);
4280
4281        cond_resched();
4282
4283        return progress;
4284}
4285
4286/* The really slow allocator path where we enter direct reclaim */
4287static inline struct page *
4288__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4289                unsigned int alloc_flags, const struct alloc_context *ac,
4290                unsigned long *did_some_progress)
4291{
4292        struct page *page = NULL;
4293        bool drained = false;
4294
4295        *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4296        if (unlikely(!(*did_some_progress)))
4297                return NULL;
4298
4299retry:
4300        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4301
4302        /*
4303         * If an allocation failed after direct reclaim, it could be because
4304         * pages are pinned on the per-cpu lists or in high alloc reserves.
4305         * Shrink them and try again
4306         */
4307        if (!page && !drained) {
4308                unreserve_highatomic_pageblock(ac, false);
4309                drain_all_pages(NULL);
4310                drained = true;
4311                goto retry;
4312        }
4313
4314        return page;
4315}
4316
4317static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4318                             const struct alloc_context *ac)
4319{
4320        struct zoneref *z;
4321        struct zone *zone;
4322        pg_data_t *last_pgdat = NULL;
4323        enum zone_type highest_zoneidx = ac->highest_zoneidx;
4324
4325        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4326                                        ac->nodemask) {
4327                if (last_pgdat != zone->zone_pgdat)
4328                        wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4329                last_pgdat = zone->zone_pgdat;
4330        }
4331}
4332
4333static inline unsigned int
4334gfp_to_alloc_flags(gfp_t gfp_mask)
4335{
4336        unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4337
4338        /*
4339         * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4340         * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4341         * to save two branches.
4342         */
4343        BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4344        BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4345
4346        /*
4347         * The caller may dip into page reserves a bit more if the caller
4348         * cannot run direct reclaim, or if the caller has realtime scheduling
4349         * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4350         * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4351         */
4352        alloc_flags |= (__force int)
4353                (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4354
4355        if (gfp_mask & __GFP_ATOMIC) {
4356                /*
4357                 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4358                 * if it can't schedule.
4359                 */
4360                if (!(gfp_mask & __GFP_NOMEMALLOC))
4361                        alloc_flags |= ALLOC_HARDER;
4362                /*
4363                 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4364                 * comment for __cpuset_node_allowed().
4365                 */
4366                alloc_flags &= ~ALLOC_CPUSET;
4367        } else if (unlikely(rt_task(current)) && !in_interrupt())
4368                alloc_flags |= ALLOC_HARDER;
4369
4370        alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4371
4372        return alloc_flags;
4373}
4374
4375static bool oom_reserves_allowed(struct task_struct *tsk)
4376{
4377        if (!tsk_is_oom_victim(tsk))
4378                return false;
4379
4380        /*
4381         * !MMU doesn't have oom reaper so give access to memory reserves
4382         * only to the thread with TIF_MEMDIE set
4383         */
4384        if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4385                return false;
4386
4387        return true;
4388}
4389
4390/*
4391 * Distinguish requests which really need access to full memory
4392 * reserves from oom victims which can live with a portion of it
4393 */
4394static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4395{
4396        if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4397                return 0;
4398        if (gfp_mask & __GFP_MEMALLOC)
4399                return ALLOC_NO_WATERMARKS;
4400        if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4401                return ALLOC_NO_WATERMARKS;
4402        if (!in_interrupt()) {
4403                if (current->flags & PF_MEMALLOC)
4404                        return ALLOC_NO_WATERMARKS;
4405                else if (oom_reserves_allowed(current))
4406                        return ALLOC_OOM;
4407        }
4408
4409        return 0;
4410}
4411
4412bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4413{
4414        return !!__gfp_pfmemalloc_flags(gfp_mask);
4415}
4416
4417/*
4418 * Checks whether it makes sense to retry the reclaim to make a forward progress
4419 * for the given allocation request.
4420 *
4421 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4422 * without success, or when we couldn't even meet the watermark if we
4423 * reclaimed all remaining pages on the LRU lists.
4424 *
4425 * Returns true if a retry is viable or false to enter the oom path.
4426 */
4427static inline bool
4428should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4429                     struct alloc_context *ac, int alloc_flags,
4430                     bool did_some_progress, int *no_progress_loops)
4431{
4432        struct zone *zone;
4433        struct zoneref *z;
4434        bool ret = false;
4435
4436        /*
4437         * Costly allocations might have made a progress but this doesn't mean
4438         * their order will become available due to high fragmentation so
4439         * always increment the no progress counter for them
4440         */
4441        if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4442                *no_progress_loops = 0;
4443        else
4444                (*no_progress_loops)++;
4445
4446        /*
4447         * Make sure we converge to OOM if we cannot make any progress
4448         * several times in the row.
4449         */
4450        if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4451                /* Before OOM, exhaust highatomic_reserve */
4452                return unreserve_highatomic_pageblock(ac, true);
4453        }
4454
4455        /*
4456         * Keep reclaiming pages while there is a chance this will lead
4457         * somewhere.  If none of the target zones can satisfy our allocation
4458         * request even if all reclaimable pages are considered then we are
4459         * screwed and have to go OOM.
4460         */
4461        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4462                                ac->highest_zoneidx, ac->nodemask) {
4463                unsigned long available;
4464                unsigned long reclaimable;
4465                unsigned long min_wmark = min_wmark_pages(zone);
4466                bool wmark;
4467
4468                available = reclaimable = zone_reclaimable_pages(zone);
4469                available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4470
4471                /*
4472                 * Would the allocation succeed if we reclaimed all
4473                 * reclaimable pages?
4474                 */
4475                wmark = __zone_watermark_ok(zone, order, min_wmark,
4476                                ac->highest_zoneidx, alloc_flags, available);
4477                trace_reclaim_retry_zone(z, order, reclaimable,
4478                                available, min_wmark, *no_progress_loops, wmark);
4479                if (wmark) {
4480                        /*
4481                         * If we didn't make any progress and have a lot of
4482                         * dirty + writeback pages then we should wait for
4483                         * an IO to complete to slow down the reclaim and
4484                         * prevent from pre mature OOM
4485                         */
4486                        if (!did_some_progress) {
4487                                unsigned long write_pending;
4488
4489                                write_pending = zone_page_state_snapshot(zone,
4490                                                        NR_ZONE_WRITE_PENDING);
4491
4492                                if (2 * write_pending > reclaimable) {
4493                                        congestion_wait(BLK_RW_ASYNC, HZ/10);
4494                                        return true;
4495                                }
4496                        }
4497
4498                        ret = true;
4499                        goto out;
4500                }
4501        }
4502
4503out:
4504        /*
4505         * Memory allocation/reclaim might be called from a WQ context and the
4506         * current implementation of the WQ concurrency control doesn't
4507         * recognize that a particular WQ is congested if the worker thread is
4508         * looping without ever sleeping. Therefore we have to do a short sleep
4509         * here rather than calling cond_resched().
4510         */
4511        if (current->flags & PF_WQ_WORKER)
4512                schedule_timeout_uninterruptible(1);
4513        else
4514                cond_resched();
4515        return ret;
4516}
4517
4518static inline bool
4519check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4520{
4521        /*
4522         * It's possible that cpuset's mems_allowed and the nodemask from
4523         * mempolicy don't intersect. This should be normally dealt with by
4524         * policy_nodemask(), but it's possible to race with cpuset update in
4525         * such a way the check therein was true, and then it became false
4526         * before we got our cpuset_mems_cookie here.
4527         * This assumes that for all allocations, ac->nodemask can come only
4528         * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4529         * when it does not intersect with the cpuset restrictions) or the
4530         * caller can deal with a violated nodemask.
4531         */
4532        if (cpusets_enabled() && ac->nodemask &&
4533                        !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4534                ac->nodemask = NULL;
4535                return true;
4536        }
4537
4538        /*
4539         * When updating a task's mems_allowed or mempolicy nodemask, it is
4540         * possible to race with parallel threads in such a way that our
4541         * allocation can fail while the mask is being updated. If we are about
4542         * to fail, check if the cpuset changed during allocation and if so,
4543         * retry.
4544         */
4545        if (read_mems_allowed_retry(cpuset_mems_cookie))
4546                return true;
4547
4548        return false;
4549}
4550
4551static inline struct page *
4552__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4553                                                struct alloc_context *ac)
4554{
4555        bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4556        const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4557        struct page *page = NULL;
4558        unsigned int alloc_flags;
4559        unsigned long did_some_progress;
4560        enum compact_priority compact_priority;
4561        enum compact_result compact_result;
4562        int compaction_retries;
4563        int no_progress_loops;
4564        unsigned int cpuset_mems_cookie;
4565        int reserve_flags;
4566
4567        /*
4568         * We also sanity check to catch abuse of atomic reserves being used by
4569         * callers that are not in atomic context.
4570         */
4571        if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4572                                (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4573                gfp_mask &= ~__GFP_ATOMIC;
4574
4575retry_cpuset:
4576        compaction_retries = 0;
4577        no_progress_loops = 0;
4578        compact_priority = DEF_COMPACT_PRIORITY;
4579        cpuset_mems_cookie = read_mems_allowed_begin();
4580
4581        /*
4582         * The fast path uses conservative alloc_flags to succeed only until
4583         * kswapd needs to be woken up, and to avoid the cost of setting up
4584         * alloc_flags precisely. So we do that now.
4585         */
4586        alloc_flags = gfp_to_alloc_flags(gfp_mask);
4587
4588        /*
4589         * We need to recalculate the starting point for the zonelist iterator
4590         * because we might have used different nodemask in the fast path, or
4591         * there was a cpuset modification and we are retrying - otherwise we
4592         * could end up iterating over non-eligible zones endlessly.
4593         */
4594        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4595                                        ac->highest_zoneidx, ac->nodemask);
4596        if (!ac->preferred_zoneref->zone)
4597                goto nopage;
4598
4599        if (alloc_flags & ALLOC_KSWAPD)
4600                wake_all_kswapds(order, gfp_mask, ac);
4601
4602        /*
4603         * The adjusted alloc_flags might result in immediate success, so try
4604         * that first
4605         */
4606        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4607        if (page)
4608                goto got_pg;
4609
4610        /*
4611         * For costly allocations, try direct compaction first, as it's likely
4612         * that we have enough base pages and don't need to reclaim. For non-
4613         * movable high-order allocations, do that as well, as compaction will
4614         * try prevent permanent fragmentation by migrating from blocks of the
4615         * same migratetype.
4616         * Don't try this for allocations that are allowed to ignore
4617         * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4618         */
4619        if (can_direct_reclaim &&
4620                        (costly_order ||
4621                           (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4622                        && !gfp_pfmemalloc_allowed(gfp_mask)) {
4623                page = __alloc_pages_direct_compact(gfp_mask, order,
4624                                                alloc_flags, ac,
4625                                                INIT_COMPACT_PRIORITY,
4626                                                &compact_result);
4627                if (page)
4628                        goto got_pg;
4629
4630                /*
4631                 * Checks for costly allocations with __GFP_NORETRY, which
4632                 * includes some THP page fault allocations
4633                 */
4634                if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4635                        /*
4636                         * If allocating entire pageblock(s) and compaction
4637                         * failed because all zones are below low watermarks
4638                         * or is prohibited because it recently failed at this
4639                         * order, fail immediately unless the allocator has
4640                         * requested compaction and reclaim retry.
4641                         *
4642                         * Reclaim is
4643                         *  - potentially very expensive because zones are far
4644                         *    below their low watermarks or this is part of very
4645                         *    bursty high order allocations,
4646                         *  - not guaranteed to help because isolate_freepages()
4647                         *    may not iterate over freed pages as part of its
4648                         *    linear scan, and
4649                         *  - unlikely to make entire pageblocks free on its
4650                         *    own.
4651                         */
4652                        if (compact_result == COMPACT_SKIPPED ||
4653                            compact_result == COMPACT_DEFERRED)
4654                                goto nopage;
4655
4656                        /*
4657                         * Looks like reclaim/compaction is worth trying, but
4658                         * sync compaction could be very expensive, so keep
4659                         * using async compaction.
4660                         */
4661                        compact_priority = INIT_COMPACT_PRIORITY;
4662                }
4663        }
4664
4665retry:
4666        /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4667        if (alloc_flags & ALLOC_KSWAPD)
4668                wake_all_kswapds(order, gfp_mask, ac);
4669
4670        reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4671        if (reserve_flags)
4672                alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4673
4674        /*
4675         * Reset the nodemask and zonelist iterators if memory policies can be
4676         * ignored. These allocations are high priority and system rather than
4677         * user oriented.
4678         */
4679        if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4680                ac->nodemask = NULL;
4681                ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4682                                        ac->highest_zoneidx, ac->nodemask);
4683        }
4684
4685        /* Attempt with potentially adjusted zonelist and alloc_flags */
4686        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4687        if (page)
4688                goto got_pg;
4689
4690        /* Caller is not willing to reclaim, we can't balance anything */
4691        if (!can_direct_reclaim)
4692                goto nopage;
4693
4694        /* Avoid recursion of direct reclaim */
4695        if (current->flags & PF_MEMALLOC)
4696                goto nopage;
4697
4698        /* Try direct reclaim and then allocating */
4699        page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4700                                                        &did_some_progress);
4701        if (page)
4702                goto got_pg;
4703
4704        /* Try direct compaction and then allocating */
4705        page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4706                                        compact_priority, &compact_result);
4707        if (page)
4708                goto got_pg;
4709
4710        /* Do not loop if specifically requested */
4711        if (gfp_mask & __GFP_NORETRY)
4712                goto nopage;
4713
4714        /*
4715         * Do not retry costly high order allocations unless they are
4716         * __GFP_RETRY_MAYFAIL
4717         */
4718        if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4719                goto nopage;
4720
4721        if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4722                                 did_some_progress > 0, &no_progress_loops))
4723                goto retry;
4724
4725        /*
4726         * It doesn't make any sense to retry for the compaction if the order-0
4727         * reclaim is not able to make any progress because the current
4728         * implementation of the compaction depends on the sufficient amount
4729         * of free memory (see __compaction_suitable)
4730         */
4731        if (did_some_progress > 0 &&
4732                        should_compact_retry(ac, order, alloc_flags,
4733                                compact_result, &compact_priority,
4734                                &compaction_retries))
4735                goto retry;
4736
4737
4738        /* Deal with possible cpuset update races before we start OOM killing */
4739        if (check_retry_cpuset(cpuset_mems_cookie, ac))
4740                goto retry_cpuset;
4741
4742        /* Reclaim has failed us, start killing things */
4743        page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4744        if (page)
4745                goto got_pg;
4746
4747        /* Avoid allocations with no watermarks from looping endlessly */
4748        if (tsk_is_oom_victim(current) &&
4749            (alloc_flags & ALLOC_OOM ||
4750             (gfp_mask & __GFP_NOMEMALLOC)))
4751                goto nopage;
4752
4753        /* Retry as long as the OOM killer is making progress */
4754        if (did_some_progress) {
4755                no_progress_loops = 0;
4756                goto retry;
4757        }
4758
4759nopage:
4760        /* Deal with possible cpuset update races before we fail */
4761        if (check_retry_cpuset(cpuset_mems_cookie, ac))
4762                goto retry_cpuset;
4763
4764        /*
4765         * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4766         * we always retry
4767         */
4768        if (gfp_mask & __GFP_NOFAIL) {
4769                /*
4770                 * All existing users of the __GFP_NOFAIL are blockable, so warn
4771                 * of any new users that actually require GFP_NOWAIT
4772                 */
4773                if (WARN_ON_ONCE(!can_direct_reclaim))
4774                        goto fail;
4775
4776                /*
4777                 * PF_MEMALLOC request from this context is rather bizarre
4778                 * because we cannot reclaim anything and only can loop waiting
4779                 * for somebody to do a work for us
4780                 */
4781                WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4782
4783                /*
4784                 * non failing costly orders are a hard requirement which we
4785                 * are not prepared for much so let's warn about these users
4786                 * so that we can identify them and convert them to something
4787                 * else.
4788                 */
4789                WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4790
4791                /*
4792                 * Help non-failing allocations by giving them access to memory
4793                 * reserves but do not use ALLOC_NO_WATERMARKS because this
4794                 * could deplete whole memory reserves which would just make
4795                 * the situation worse
4796                 */
4797                page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4798                if (page)
4799                        goto got_pg;
4800
4801                cond_resched();
4802                goto retry;
4803        }
4804fail:
4805        warn_alloc(gfp_mask, ac->nodemask,
4806                        "page allocation failure: order:%u", order);
4807got_pg:
4808        return page;
4809}
4810
4811static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4812                int preferred_nid, nodemask_t *nodemask,
4813                struct alloc_context *ac, gfp_t *alloc_mask,
4814                unsigned int *alloc_flags)
4815{
4816        ac->highest_zoneidx = gfp_zone(gfp_mask);
4817        ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4818        ac->nodemask = nodemask;
4819        ac->migratetype = gfp_migratetype(gfp_mask);
4820
4821        if (cpusets_enabled()) {
4822                *alloc_mask |= __GFP_HARDWALL;
4823                /*
4824                 * When we are in the interrupt context, it is irrelevant
4825                 * to the current task context. It means that any node ok.
4826                 */
4827                if (!in_interrupt() && !ac->nodemask)
4828                        ac->nodemask = &cpuset_current_mems_allowed;
4829                else
4830                        *alloc_flags |= ALLOC_CPUSET;
4831        }
4832
4833        fs_reclaim_acquire(gfp_mask);
4834        fs_reclaim_release(gfp_mask);
4835
4836        might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4837
4838        if (should_fail_alloc_page(gfp_mask, order))
4839                return false;
4840
4841        *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4842
4843        return true;
4844}
4845
4846/* Determine whether to spread dirty pages and what the first usable zone */
4847static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4848{
4849        /* Dirty zone balancing only done in the fast path */
4850        ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4851
4852        /*
4853         * The preferred zone is used for statistics but crucially it is
4854         * also used as the starting point for the zonelist iterator. It
4855         * may get reset for allocations that ignore memory policies.
4856         */
4857        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4858                                        ac->highest_zoneidx, ac->nodemask);
4859}
4860
4861/*
4862 * This is the 'heart' of the zoned buddy allocator.
4863 */
4864struct page *
4865__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4866                                                        nodemask_t *nodemask)
4867{
4868        struct page *page;
4869        unsigned int alloc_flags = ALLOC_WMARK_LOW;
4870        gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4871        struct alloc_context ac = { };
4872
4873        /*
4874         * There are several places where we assume that the order value is sane
4875         * so bail out early if the request is out of bound.
4876         */
4877        if (unlikely(order >= MAX_ORDER)) {
4878                WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4879                return NULL;
4880        }
4881
4882        gfp_mask &= gfp_allowed_mask;
4883        alloc_mask = gfp_mask;
4884        if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4885                return NULL;
4886
4887        finalise_ac(gfp_mask, &ac);
4888
4889        /*
4890         * Forbid the first pass from falling back to types that fragment
4891         * memory until all local zones are considered.
4892         */
4893        alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4894
4895        /* First allocation attempt */
4896        page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4897        if (likely(page))
4898                goto out;
4899
4900        /*
4901         * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4902         * resp. GFP_NOIO which has to be inherited for all allocation requests
4903         * from a particular context which has been marked by
4904         * memalloc_no{fs,io}_{save,restore}.
4905         */
4906        alloc_mask = current_gfp_context(gfp_mask);
4907        ac.spread_dirty_pages = false;
4908
4909        /*
4910         * Restore the original nodemask if it was potentially replaced with
4911         * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4912         */
4913        ac.nodemask = nodemask;
4914
4915        page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4916
4917out:
4918        if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4919            unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4920                __free_pages(page, order);
4921                page = NULL;
4922        }
4923
4924        trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4925
4926        return page;
4927}
4928EXPORT_SYMBOL(__alloc_pages_nodemask);
4929
4930/*
4931 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4932 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4933 * you need to access high mem.
4934 */
4935unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4936{
4937        struct page *page;
4938
4939        page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4940        if (!page)
4941                return 0;
4942        return (unsigned long) page_address(page);
4943}
4944EXPORT_SYMBOL(__get_free_pages);
4945
4946unsigned long get_zeroed_page(gfp_t gfp_mask)
4947{
4948        return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4949}
4950EXPORT_SYMBOL(get_zeroed_page);
4951
4952static inline void free_the_page(struct page *page, unsigned int order)
4953{
4954        if (order == 0)         /* Via pcp? */
4955                free_unref_page(page);
4956        else
4957                __free_pages_ok(page, order);
4958}
4959
4960void __free_pages(struct page *page, unsigned int order)
4961{
4962        if (put_page_testzero(page))
4963                free_the_page(page, order);
4964}
4965EXPORT_SYMBOL(__free_pages);
4966
4967void free_pages(unsigned long addr, unsigned int order)
4968{
4969        if (addr != 0) {
4970                VM_BUG_ON(!virt_addr_valid((void *)addr));
4971                __free_pages(virt_to_page((void *)addr), order);
4972        }
4973}
4974
4975EXPORT_SYMBOL(free_pages);
4976
4977/*
4978 * Page Fragment:
4979 *  An arbitrary-length arbitrary-offset area of memory which resides
4980 *  within a 0 or higher order page.  Multiple fragments within that page
4981 *  are individually refcounted, in the page's reference counter.
4982 *
4983 * The page_frag functions below provide a simple allocation framework for
4984 * page fragments.  This is used by the network stack and network device
4985 * drivers to provide a backing region of memory for use as either an
4986 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4987 */
4988static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4989                                             gfp_t gfp_mask)
4990{
4991        struct page *page = NULL;
4992        gfp_t gfp = gfp_mask;
4993
4994#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4995        gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4996                    __GFP_NOMEMALLOC;
4997        page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4998                                PAGE_FRAG_CACHE_MAX_ORDER);
4999        nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5000#endif
5001        if (unlikely(!page))
5002                page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5003
5004        nc->va = page ? page_address(page) : NULL;
5005
5006        return page;
5007}
5008
5009void __page_frag_cache_drain(struct page *page, unsigned int count)
5010{
5011        VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5012
5013        if (page_ref_sub_and_test(page, count))
5014                free_the_page(page, compound_order(page));
5015}
5016EXPORT_SYMBOL(__page_frag_cache_drain);
5017
5018void *page_frag_alloc(struct page_frag_cache *nc,
5019                      unsigned int fragsz, gfp_t gfp_mask)
5020{
5021        unsigned int size = PAGE_SIZE;
5022        struct page *page;
5023        int offset;
5024
5025        if (unlikely(!nc->va)) {
5026refill:
5027                page = __page_frag_cache_refill(nc, gfp_mask);
5028                if (!page)
5029                        return NULL;
5030
5031#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5032                /* if size can vary use size else just use PAGE_SIZE */
5033                size = nc->size;
5034#endif
5035                /* Even if we own the page, we do not use atomic_set().
5036                 * This would break get_page_unless_zero() users.
5037                 */
5038                page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5039
5040                /* reset page count bias and offset to start of new frag */
5041                nc->pfmemalloc = page_is_pfmemalloc(page);
5042                nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5043                nc->offset = size;
5044        }
5045
5046        offset = nc->offset - fragsz;
5047        if (unlikely(offset < 0)) {
5048                page = virt_to_page(nc->va);
5049
5050                if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5051                        goto refill;
5052
5053#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5054                /* if size can vary use size else just use PAGE_SIZE */
5055                size = nc->size;
5056#endif
5057                /* OK, page count is 0, we can safely set it */
5058                set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5059
5060                /* reset page count bias and offset to start of new frag */
5061                nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5062                offset = size - fragsz;
5063        }
5064
5065        nc->pagecnt_bias--;
5066        nc->offset = offset;
5067
5068        return nc->va + offset;
5069}
5070EXPORT_SYMBOL(page_frag_alloc);
5071
5072/*
5073 * Frees a page fragment allocated out of either a compound or order 0 page.
5074 */
5075void page_frag_free(void *addr)
5076{
5077        struct page *page = virt_to_head_page(addr);
5078
5079        if (unlikely(put_page_testzero(page)))
5080                free_the_page(page, compound_order(page));
5081}
5082EXPORT_SYMBOL(page_frag_free);
5083
5084static void *make_alloc_exact(unsigned long addr, unsigned int order,
5085                size_t size)
5086{
5087        if (addr) {
5088                unsigned long alloc_end = addr + (PAGE_SIZE << order);
5089                unsigned long used = addr + PAGE_ALIGN(size);
5090
5091                split_page(virt_to_page((void *)addr), order);
5092                while (used < alloc_end) {
5093                        free_page(used);
5094                        used += PAGE_SIZE;
5095                }
5096        }
5097        return (void *)addr;
5098}
5099
5100/**
5101 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5102 * @size: the number of bytes to allocate
5103 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5104 *
5105 * This function is similar to alloc_pages(), except that it allocates the
5106 * minimum number of pages to satisfy the request.  alloc_pages() can only
5107 * allocate memory in power-of-two pages.
5108 *
5109 * This function is also limited by MAX_ORDER.
5110 *
5111 * Memory allocated by this function must be released by free_pages_exact().
5112 *
5113 * Return: pointer to the allocated area or %NULL in case of error.
5114 */
5115void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5116{
5117        unsigned int order = get_order(size);
5118        unsigned long addr;
5119
5120        if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5121                gfp_mask &= ~__GFP_COMP;
5122
5123        addr = __get_free_pages(gfp_mask, order);
5124        return make_alloc_exact(addr, order, size);
5125}
5126EXPORT_SYMBOL(alloc_pages_exact);
5127
5128/**
5129 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5130 *                         pages on a node.
5131 * @nid: the preferred node ID where memory should be allocated
5132 * @size: the number of bytes to allocate
5133 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5134 *
5135 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5136 * back.
5137 *
5138 * Return: pointer to the allocated area or %NULL in case of error.
5139 */
5140void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5141{
5142        unsigned int order = get_order(size);
5143        struct page *p;
5144
5145        if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5146                gfp_mask &= ~__GFP_COMP;
5147
5148        p = alloc_pages_node(nid, gfp_mask, order);
5149        if (!p)
5150                return NULL;
5151        return make_alloc_exact((unsigned long)page_address(p), order, size);
5152}
5153
5154/**
5155 * free_pages_exact - release memory allocated via alloc_pages_exact()
5156 * @virt: the value returned by alloc_pages_exact.
5157 * @size: size of allocation, same value as passed to alloc_pages_exact().
5158 *
5159 * Release the memory allocated by a previous call to alloc_pages_exact.
5160 */
5161void free_pages_exact(void *virt, size_t size)
5162{
5163        unsigned long addr = (unsigned long)virt;
5164        unsigned long end = addr + PAGE_ALIGN(size);
5165
5166        while (addr < end) {
5167                free_page(addr);
5168                addr += PAGE_SIZE;
5169        }
5170}
5171EXPORT_SYMBOL(free_pages_exact);
5172
5173/**
5174 * nr_free_zone_pages - count number of pages beyond high watermark
5175 * @offset: The zone index of the highest zone
5176 *
5177 * nr_free_zone_pages() counts the number of pages which are beyond the
5178 * high watermark within all zones at or below a given zone index.  For each
5179 * zone, the number of pages is calculated as:
5180 *
5181 *     nr_free_zone_pages = managed_pages - high_pages
5182 *
5183 * Return: number of pages beyond high watermark.
5184 */
5185static unsigned long nr_free_zone_pages(int offset)
5186{
5187        struct zoneref *z;
5188        struct zone *zone;
5189
5190        /* Just pick one node, since fallback list is circular */
5191        unsigned long sum = 0;
5192
5193        struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5194
5195        for_each_zone_zonelist(zone, z, zonelist, offset) {
5196                unsigned long size = zone_managed_pages(zone);
5197                unsigned long high = high_wmark_pages(zone);
5198                if (size > high)
5199                        sum += size - high;
5200        }
5201
5202        return sum;
5203}
5204
5205/**
5206 * nr_free_buffer_pages - count number of pages beyond high watermark
5207 *
5208 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5209 * watermark within ZONE_DMA and ZONE_NORMAL.
5210 *
5211 * Return: number of pages beyond high watermark within ZONE_DMA and
5212 * ZONE_NORMAL.
5213 */
5214unsigned long nr_free_buffer_pages(void)
5215{
5216        return nr_free_zone_pages(gfp_zone(GFP_USER));
5217}
5218EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5219
5220static inline void show_node(struct zone *zone)
5221{
5222        if (IS_ENABLED(CONFIG_NUMA))
5223                printk("Node %d ", zone_to_nid(zone));
5224}
5225
5226long si_mem_available(void)
5227{
5228        long available;
5229        unsigned long pagecache;
5230        unsigned long wmark_low = 0;
5231        unsigned long pages[NR_LRU_LISTS];
5232        unsigned long reclaimable;
5233        struct zone *zone;
5234        int lru;
5235
5236        for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5237                pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5238
5239        for_each_zone(zone)
5240                wmark_low += low_wmark_pages(zone);
5241
5242        /*
5243         * Estimate the amount of memory available for userspace allocations,
5244         * without causing swapping.
5245         */
5246        available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5247
5248        /*
5249         * Not all the page cache can be freed, otherwise the system will
5250         * start swapping. Assume at least half of the page cache, or the
5251         * low watermark worth of cache, needs to stay.
5252         */
5253        pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5254        pagecache -= min(pagecache / 2, wmark_low);
5255        available += pagecache;
5256
5257        /*
5258         * Part of the reclaimable slab and other kernel memory consists of
5259         * items that are in use, and cannot be freed. Cap this estimate at the
5260         * low watermark.
5261         */
5262        reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5263                global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5264        available += reclaimable - min(reclaimable / 2, wmark_low);
5265
5266        if (available < 0)
5267                available = 0;
5268        return available;
5269}
5270EXPORT_SYMBOL_GPL(si_mem_available);
5271
5272void si_meminfo(struct sysinfo *val)
5273{
5274        val->totalram = totalram_pages();
5275        val->sharedram = global_node_page_state(NR_SHMEM);
5276        val->freeram = global_zone_page_state(NR_FREE_PAGES);
5277        val->bufferram = nr_blockdev_pages();
5278        val->totalhigh = totalhigh_pages();
5279        val->freehigh = nr_free_highpages();
5280        val->mem_unit = PAGE_SIZE;
5281}
5282
5283EXPORT_SYMBOL(si_meminfo);
5284
5285#ifdef CONFIG_NUMA
5286void si_meminfo_node(struct sysinfo *val, int nid)
5287{
5288        int zone_type;          /* needs to be signed */
5289        unsigned long managed_pages = 0;
5290        unsigned long managed_highpages = 0;
5291        unsigned long free_highpages = 0;
5292        pg_data_t *pgdat = NODE_DATA(nid);
5293
5294        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5295                managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5296        val->totalram = managed_pages;
5297        val->sharedram = node_page_state(pgdat, NR_SHMEM);
5298        val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5299#ifdef CONFIG_HIGHMEM
5300        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5301                struct zone *zone = &pgdat->node_zones[zone_type];
5302
5303                if (is_highmem(zone)) {
5304                        managed_highpages += zone_managed_pages(zone);
5305                        free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5306                }
5307        }
5308        val->totalhigh = managed_highpages;
5309        val->freehigh = free_highpages;
5310#else
5311        val->totalhigh = managed_highpages;
5312        val->freehigh = free_highpages;
5313#endif
5314        val->mem_unit = PAGE_SIZE;
5315}
5316#endif
5317
5318/*
5319 * Determine whether the node should be displayed or not, depending on whether
5320 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5321 */
5322static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5323{
5324        if (!(flags & SHOW_MEM_FILTER_NODES))
5325                return false;
5326
5327        /*
5328         * no node mask - aka implicit memory numa policy. Do not bother with
5329         * the synchronization - read_mems_allowed_begin - because we do not
5330         * have to be precise here.
5331         */
5332        if (!nodemask)
5333                nodemask = &cpuset_current_mems_allowed;
5334
5335        return !node_isset(nid, *nodemask);
5336}
5337
5338#define K(x) ((x) << (PAGE_SHIFT-10))
5339
5340static void show_migration_types(unsigned char type)
5341{
5342        static const char types[MIGRATE_TYPES] = {
5343                [MIGRATE_UNMOVABLE]     = 'U',
5344                [MIGRATE_MOVABLE]       = 'M',
5345                [MIGRATE_RECLAIMABLE]   = 'E',
5346                [MIGRATE_HIGHATOMIC]    = 'H',
5347#ifdef CONFIG_CMA
5348                [MIGRATE_CMA]           = 'C',
5349#endif
5350#ifdef CONFIG_MEMORY_ISOLATION
5351                [MIGRATE_ISOLATE]       = 'I',
5352#endif
5353        };
5354        char tmp[MIGRATE_TYPES + 1];
5355        char *p = tmp;
5356        int i;
5357
5358        for (i = 0; i < MIGRATE_TYPES; i++) {
5359                if (type & (1 << i))
5360                        *p++ = types[i];
5361        }
5362
5363        *p = '\0';
5364        printk(KERN_CONT "(%s) ", tmp);
5365}
5366
5367/*
5368 * Show free area list (used inside shift_scroll-lock stuff)
5369 * We also calculate the percentage fragmentation. We do this by counting the
5370 * memory on each free list with the exception of the first item on the list.
5371 *
5372 * Bits in @filter:
5373 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5374 *   cpuset.
5375 */
5376void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5377{
5378        unsigned long free_pcp = 0;
5379        int cpu;
5380        struct zone *zone;
5381        pg_data_t *pgdat;
5382
5383        for_each_populated_zone(zone) {
5384                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5385                        continue;
5386
5387                for_each_online_cpu(cpu)
5388                        free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5389        }
5390
5391        printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5392                " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5393                " unevictable:%lu dirty:%lu writeback:%lu\n"
5394                " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5395                " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5396                " free:%lu free_pcp:%lu free_cma:%lu\n",
5397                global_node_page_state(NR_ACTIVE_ANON),
5398                global_node_page_state(NR_INACTIVE_ANON),
5399                global_node_page_state(NR_ISOLATED_ANON),
5400                global_node_page_state(NR_ACTIVE_FILE),
5401                global_node_page_state(NR_INACTIVE_FILE),
5402                global_node_page_state(NR_ISOLATED_FILE),
5403                global_node_page_state(NR_UNEVICTABLE),
5404                global_node_page_state(NR_FILE_DIRTY),
5405                global_node_page_state(NR_WRITEBACK),
5406                global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5407                global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5408                global_node_page_state(NR_FILE_MAPPED),
5409                global_node_page_state(NR_SHMEM),
5410                global_zone_page_state(NR_PAGETABLE),
5411                global_zone_page_state(NR_BOUNCE),
5412                global_zone_page_state(NR_FREE_PAGES),
5413                free_pcp,
5414                global_zone_page_state(NR_FREE_CMA_PAGES));
5415
5416        for_each_online_pgdat(pgdat) {
5417                if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5418                        continue;
5419
5420                printk("Node %d"
5421                        " active_anon:%lukB"
5422                        " inactive_anon:%lukB"
5423                        " active_file:%lukB"
5424                        " inactive_file:%lukB"
5425                        " unevictable:%lukB"
5426                        " isolated(anon):%lukB"
5427                        " isolated(file):%lukB"
5428                        " mapped:%lukB"
5429                        " dirty:%lukB"
5430                        " writeback:%lukB"
5431                        " shmem:%lukB"
5432#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5433                        " shmem_thp: %lukB"
5434                        " shmem_pmdmapped: %lukB"
5435                        " anon_thp: %lukB"
5436#endif
5437                        " writeback_tmp:%lukB"
5438                        " kernel_stack:%lukB"
5439#ifdef CONFIG_SHADOW_CALL_STACK
5440                        " shadow_call_stack:%lukB"
5441#endif
5442                        " all_unreclaimable? %s"
5443                        "\n",
5444                        pgdat->node_id,
5445                        K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5446                        K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5447                        K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5448                        K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5449                        K(node_page_state(pgdat, NR_UNEVICTABLE)),
5450                        K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5451                        K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5452                        K(node_page_state(pgdat, NR_FILE_MAPPED)),
5453                        K(node_page_state(pgdat, NR_FILE_DIRTY)),
5454                        K(node_page_state(pgdat, NR_WRITEBACK)),
5455                        K(node_page_state(pgdat, NR_SHMEM)),
5456#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5457                        K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5458                        K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5459                                        * HPAGE_PMD_NR),
5460                        K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5461#endif
5462                        K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5463                        node_page_state(pgdat, NR_KERNEL_STACK_KB),
5464#ifdef CONFIG_SHADOW_CALL_STACK
5465                        node_page_state(pgdat, NR_KERNEL_SCS_KB),
5466#endif
5467                        pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5468                                "yes" : "no");
5469        }
5470
5471        for_each_populated_zone(zone) {
5472                int i;
5473
5474                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5475                        continue;
5476
5477                free_pcp = 0;
5478                for_each_online_cpu(cpu)
5479                        free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5480
5481                show_node(zone);
5482                printk(KERN_CONT
5483                        "%s"
5484                        " free:%lukB"
5485                        " min:%lukB"
5486                        " low:%lukB"
5487                        " high:%lukB"
5488                        " reserved_highatomic:%luKB"
5489                        " active_anon:%lukB"
5490                        " inactive_anon:%lukB"
5491                        " active_file:%lukB"
5492                        " inactive_file:%lukB"
5493                        " unevictable:%lukB"
5494                        " writepending:%lukB"
5495                        " present:%lukB"
5496                        " managed:%lukB"
5497                        " mlocked:%lukB"
5498                        " pagetables:%lukB"
5499                        " bounce:%lukB"
5500                        " free_pcp:%lukB"
5501                        " local_pcp:%ukB"
5502                        " free_cma:%lukB"
5503                        "\n",
5504                        zone->name,
5505                        K(zone_page_state(zone, NR_FREE_PAGES)),
5506                        K(min_wmark_pages(zone)),
5507                        K(low_wmark_pages(zone)),
5508                        K(high_wmark_pages(zone)),
5509                        K(zone->nr_reserved_highatomic),
5510                        K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5511                        K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5512                        K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5513                        K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5514                        K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5515                        K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5516                        K(zone->present_pages),
5517                        K(zone_managed_pages(zone)),
5518                        K(zone_page_state(zone, NR_MLOCK)),
5519                        K(zone_page_state(zone, NR_PAGETABLE)),
5520                        K(zone_page_state(zone, NR_BOUNCE)),
5521                        K(free_pcp),
5522                        K(this_cpu_read(zone->pageset->pcp.count)),
5523                        K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5524                printk("lowmem_reserve[]:");
5525                for (i = 0; i < MAX_NR_ZONES; i++)
5526                        printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5527                printk(KERN_CONT "\n");
5528        }
5529
5530        for_each_populated_zone(zone) {
5531                unsigned int order;
5532                unsigned long nr[MAX_ORDER], flags, total = 0;
5533                unsigned char types[MAX_ORDER];
5534
5535                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5536                        continue;
5537                show_node(zone);
5538                printk(KERN_CONT "%s: ", zone->name);
5539
5540                spin_lock_irqsave(&zone->lock, flags);
5541                for (order = 0; order < MAX_ORDER; order++) {
5542                        struct free_area *area = &zone->free_area[order];
5543                        int type;
5544
5545                        nr[order] = area->nr_free;
5546                        total += nr[order] << order;
5547
5548                        types[order] = 0;
5549                        for (type = 0; type < MIGRATE_TYPES; type++) {
5550                                if (!free_area_empty(area, type))
5551                                        types[order] |= 1 << type;
5552                        }
5553                }
5554                spin_unlock_irqrestore(&zone->lock, flags);
5555                for (order = 0; order < MAX_ORDER; order++) {
5556                        printk(KERN_CONT "%lu*%lukB ",
5557                               nr[order], K(1UL) << order);
5558                        if (nr[order])
5559                                show_migration_types(types[order]);
5560                }
5561                printk(KERN_CONT "= %lukB\n", K(total));
5562        }
5563
5564        hugetlb_show_meminfo();
5565
5566        printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5567
5568        show_swap_cache_info();
5569}
5570
5571static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5572{
5573        zoneref->zone = zone;
5574        zoneref->zone_idx = zone_idx(zone);
5575}
5576
5577/*
5578 * Builds allocation fallback zone lists.
5579 *
5580 * Add all populated zones of a node to the zonelist.
5581 */
5582static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5583{
5584        struct zone *zone;
5585        enum zone_type zone_type = MAX_NR_ZONES;
5586        int nr_zones = 0;
5587
5588        do {
5589                zone_type--;
5590                zone = pgdat->node_zones + zone_type;
5591                if (managed_zone(zone)) {
5592                        zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5593                        check_highest_zone(zone_type);
5594                }
5595        } while (zone_type);
5596
5597        return nr_zones;
5598}
5599
5600#ifdef CONFIG_NUMA
5601
5602static int __parse_numa_zonelist_order(char *s)
5603{
5604        /*
5605         * We used to support different zonlists modes but they turned
5606         * out to be just not useful. Let's keep the warning in place
5607         * if somebody still use the cmd line parameter so that we do
5608         * not fail it silently
5609         */
5610        if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5611                pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5612                return -EINVAL;
5613        }
5614        return 0;
5615}
5616
5617char numa_zonelist_order[] = "Node";
5618
5619/*
5620 * sysctl handler for numa_zonelist_order
5621 */
5622int numa_zonelist_order_handler(struct ctl_table *table, int write,
5623                void *buffer, size_t *length, loff_t *ppos)
5624{
5625        if (write)
5626                return __parse_numa_zonelist_order(buffer);
5627        return proc_dostring(table, write, buffer, length, ppos);
5628}
5629
5630
5631#define MAX_NODE_LOAD (nr_online_nodes)
5632static int node_load[MAX_NUMNODES];
5633
5634/**
5635 * find_next_best_node - find the next node that should appear in a given node's fallback list
5636 * @node: node whose fallback list we're appending
5637 * @used_node_mask: nodemask_t of already used nodes
5638 *
5639 * We use a number of factors to determine which is the next node that should
5640 * appear on a given node's fallback list.  The node should not have appeared
5641 * already in @node's fallback list, and it should be the next closest node
5642 * according to the distance array (which contains arbitrary distance values
5643 * from each node to each node in the system), and should also prefer nodes
5644 * with no CPUs, since presumably they'll have very little allocation pressure
5645 * on them otherwise.
5646 *
5647 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5648 */
5649static int find_next_best_node(int node, nodemask_t *used_node_mask)
5650{
5651        int n, val;
5652        int min_val = INT_MAX;
5653        int best_node = NUMA_NO_NODE;
5654        const struct cpumask *tmp = cpumask_of_node(0);
5655
5656        /* Use the local node if we haven't already */
5657        if (!node_isset(node, *used_node_mask)) {
5658                node_set(node, *used_node_mask);
5659                return node;
5660        }
5661
5662        for_each_node_state(n, N_MEMORY) {
5663
5664                /* Don't want a node to appear more than once */
5665                if (node_isset(n, *used_node_mask))
5666                        continue;
5667
5668                /* Use the distance array to find the distance */
5669                val = node_distance(node, n);
5670
5671                /* Penalize nodes under us ("prefer the next node") */
5672                val += (n < node);
5673
5674                /* Give preference to headless and unused nodes */
5675                tmp = cpumask_of_node(n);
5676                if (!cpumask_empty(tmp))
5677                        val += PENALTY_FOR_NODE_WITH_CPUS;
5678
5679                /* Slight preference for less loaded node */
5680                val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5681                val += node_load[n];
5682
5683                if (val < min_val) {
5684                        min_val = val;
5685                        best_node = n;
5686                }
5687        }
5688
5689        if (best_node >= 0)
5690                node_set(best_node, *used_node_mask);
5691
5692        return best_node;
5693}
5694
5695
5696/*
5697 * Build zonelists ordered by node and zones within node.
5698 * This results in maximum locality--normal zone overflows into local
5699 * DMA zone, if any--but risks exhausting DMA zone.
5700 */
5701static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5702                unsigned nr_nodes)
5703{
5704        struct zoneref *zonerefs;
5705        int i;
5706
5707        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5708
5709        for (i = 0; i < nr_nodes; i++) {
5710                int nr_zones;
5711
5712                pg_data_t *node = NODE_DATA(node_order[i]);
5713
5714                nr_zones = build_zonerefs_node(node, zonerefs);
5715                zonerefs += nr_zones;
5716        }
5717        zonerefs->zone = NULL;
5718        zonerefs->zone_idx = 0;
5719}
5720
5721/*
5722 * Build gfp_thisnode zonelists
5723 */
5724static void build_thisnode_zonelists(pg_data_t *pgdat)
5725{
5726        struct zoneref *zonerefs;
5727        int nr_zones;
5728
5729        zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5730        nr_zones = build_zonerefs_node(pgdat, zonerefs);
5731        zonerefs += nr_zones;
5732        zonerefs->zone = NULL;
5733        zonerefs->zone_idx = 0;
5734}
5735
5736/*
5737 * Build zonelists ordered by zone and nodes within zones.
5738 * This results in conserving DMA zone[s] until all Normal memory is
5739 * exhausted, but results in overflowing to remote node while memory
5740 * may still exist in local DMA zone.
5741 */
5742
5743static void build_zonelists(pg_data_t *pgdat)
5744{
5745        static int node_order[MAX_NUMNODES];
5746        int node, load, nr_nodes = 0;
5747        nodemask_t used_mask = NODE_MASK_NONE;
5748        int local_node, prev_node;
5749
5750        /* NUMA-aware ordering of nodes */
5751        local_node = pgdat->node_id;
5752        load = nr_online_nodes;
5753        prev_node = local_node;
5754
5755        memset(node_order, 0, sizeof(node_order));
5756        while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5757                /*
5758                 * We don't want to pressure a particular node.
5759                 * So adding penalty to the first node in same
5760                 * distance group to make it round-robin.
5761                 */
5762                if (node_distance(local_node, node) !=
5763                    node_distance(local_node, prev_node))
5764                        node_load[node] = load;
5765
5766                node_order[nr_nodes++] = node;
5767                prev_node = node;
5768                load--;
5769        }
5770
5771        build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5772        build_thisnode_zonelists(pgdat);
5773}
5774
5775#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5776/*
5777 * Return node id of node used for "local" allocations.
5778 * I.e., first node id of first zone in arg node's generic zonelist.
5779 * Used for initializing percpu 'numa_mem', which is used primarily
5780 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5781 */
5782int local_memory_node(int node)
5783{
5784        struct zoneref *z;
5785
5786        z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5787                                   gfp_zone(GFP_KERNEL),
5788                                   NULL);
5789        return zone_to_nid(z->zone);
5790}
5791#endif
5792
5793static void setup_min_unmapped_ratio(void);
5794static void setup_min_slab_ratio(void);
5795#else   /* CONFIG_NUMA */
5796
5797static void build_zonelists(pg_data_t *pgdat)
5798{
5799        int node, local_node;
5800        struct zoneref *zonerefs;
5801        int nr_zones;
5802
5803        local_node = pgdat->node_id;
5804
5805        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5806        nr_zones = build_zonerefs_node(pgdat, zonerefs);
5807        zonerefs += nr_zones;
5808
5809        /*
5810         * Now we build the zonelist so that it contains the zones
5811         * of all the other nodes.
5812         * We don't want to pressure a particular node, so when
5813         * building the zones for node N, we make sure that the
5814         * zones coming right after the local ones are those from
5815         * node N+1 (modulo N)
5816         */
5817        for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5818                if (!node_online(node))
5819                        continue;
5820                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5821                zonerefs += nr_zones;
5822        }
5823        for (node = 0; node < local_node; node++) {
5824                if (!node_online(node))
5825                        continue;
5826                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5827                zonerefs += nr_zones;
5828        }
5829
5830        zonerefs->zone = NULL;
5831        zonerefs->zone_idx = 0;
5832}
5833
5834#endif  /* CONFIG_NUMA */
5835
5836/*
5837 * Boot pageset table. One per cpu which is going to be used for all
5838 * zones and all nodes. The parameters will be set in such a way
5839 * that an item put on a list will immediately be handed over to
5840 * the buddy list. This is safe since pageset manipulation is done
5841 * with interrupts disabled.
5842 *
5843 * The boot_pagesets must be kept even after bootup is complete for
5844 * unused processors and/or zones. They do play a role for bootstrapping
5845 * hotplugged processors.
5846 *
5847 * zoneinfo_show() and maybe other functions do
5848 * not check if the processor is online before following the pageset pointer.
5849 * Other parts of the kernel may not check if the zone is available.
5850 */
5851static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5852static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5853static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5854
5855static void __build_all_zonelists(void *data)
5856{
5857        int nid;
5858        int __maybe_unused cpu;
5859        pg_data_t *self = data;
5860        static DEFINE_SPINLOCK(lock);
5861
5862        spin_lock(&lock);
5863
5864#ifdef CONFIG_NUMA
5865        memset(node_load, 0, sizeof(node_load));
5866#endif
5867
5868        /*
5869         * This node is hotadded and no memory is yet present.   So just
5870         * building zonelists is fine - no need to touch other nodes.
5871         */
5872        if (self && !node_online(self->node_id)) {
5873                build_zonelists(self);
5874        } else {
5875                for_each_online_node(nid) {
5876                        pg_data_t *pgdat = NODE_DATA(nid);
5877
5878                        build_zonelists(pgdat);
5879                }
5880
5881#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5882                /*
5883                 * We now know the "local memory node" for each node--
5884                 * i.e., the node of the first zone in the generic zonelist.
5885                 * Set up numa_mem percpu variable for on-line cpus.  During
5886                 * boot, only the boot cpu should be on-line;  we'll init the
5887                 * secondary cpus' numa_mem as they come on-line.  During
5888                 * node/memory hotplug, we'll fixup all on-line cpus.
5889                 */
5890                for_each_online_cpu(cpu)
5891                        set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5892#endif
5893        }
5894
5895        spin_unlock(&lock);
5896}
5897
5898static noinline void __init
5899build_all_zonelists_init(void)
5900{
5901        int cpu;
5902
5903        __build_all_zonelists(NULL);
5904
5905        /*
5906         * Initialize the boot_pagesets that are going to be used
5907         * for bootstrapping processors. The real pagesets for
5908         * each zone will be allocated later when the per cpu
5909         * allocator is available.
5910         *
5911         * boot_pagesets are used also for bootstrapping offline
5912         * cpus if the system is already booted because the pagesets
5913         * are needed to initialize allocators on a specific cpu too.
5914         * F.e. the percpu allocator needs the page allocator which
5915         * needs the percpu allocator in order to allocate its pagesets
5916         * (a chicken-egg dilemma).
5917         */
5918        for_each_possible_cpu(cpu)
5919                setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5920
5921        mminit_verify_zonelist();
5922        cpuset_init_current_mems_allowed();
5923}
5924
5925/*
5926 * unless system_state == SYSTEM_BOOTING.
5927 *
5928 * __ref due to call of __init annotated helper build_all_zonelists_init
5929 * [protected by SYSTEM_BOOTING].
5930 */
5931void __ref build_all_zonelists(pg_data_t *pgdat)
5932{
5933        unsigned long vm_total_pages;
5934
5935        if (system_state == SYSTEM_BOOTING) {
5936                build_all_zonelists_init();
5937        } else {
5938                __build_all_zonelists(pgdat);
5939                /* cpuset refresh routine should be here */
5940        }
5941        /* Get the number of free pages beyond high watermark in all zones. */
5942        vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5943        /*
5944         * Disable grouping by mobility if the number of pages in the
5945         * system is too low to allow the mechanism to work. It would be
5946         * more accurate, but expensive to check per-zone. This check is
5947         * made on memory-hotadd so a system can start with mobility
5948         * disabled and enable it later
5949         */
5950        if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5951                page_group_by_mobility_disabled = 1;
5952        else
5953                page_group_by_mobility_disabled = 0;
5954
5955        pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5956                nr_online_nodes,
5957                page_group_by_mobility_disabled ? "off" : "on",
5958                vm_total_pages);
5959#ifdef CONFIG_NUMA
5960        pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5961#endif
5962}
5963
5964/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5965static bool __meminit
5966overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5967{
5968        static struct memblock_region *r;
5969
5970        if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5971                if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5972                        for_each_memblock(memory, r) {
5973                                if (*pfn < memblock_region_memory_end_pfn(r))
5974                                        break;
5975                        }
5976                }
5977                if (*pfn >= memblock_region_memory_base_pfn(r) &&
5978                    memblock_is_mirror(r)) {
5979                        *pfn = memblock_region_memory_end_pfn(r);
5980                        return true;
5981                }
5982        }
5983        return false;
5984}
5985
5986/*
5987 * Initially all pages are reserved - free ones are freed
5988 * up by memblock_free_all() once the early boot process is
5989 * done. Non-atomic initialization, single-pass.
5990 */
5991void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5992                unsigned long start_pfn, enum meminit_context context,
5993                struct vmem_altmap *altmap)
5994{
5995        unsigned long pfn, end_pfn = start_pfn + size;
5996        struct page *page;
5997
5998        if (highest_memmap_pfn < end_pfn - 1)
5999                highest_memmap_pfn = end_pfn - 1;
6000
6001#ifdef CONFIG_ZONE_DEVICE
6002        /*
6003         * Honor reservation requested by the driver for this ZONE_DEVICE
6004         * memory. We limit the total number of pages to initialize to just
6005         * those that might contain the memory mapping. We will defer the
6006         * ZONE_DEVICE page initialization until after we have released
6007         * the hotplug lock.
6008         */
6009        if (zone == ZONE_DEVICE) {
6010                if (!altmap)
6011                        return;
6012
6013                if (start_pfn == altmap->base_pfn)
6014                        start_pfn += altmap->reserve;
6015                end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6016        }
6017#endif
6018
6019        for (pfn = start_pfn; pfn < end_pfn; ) {
6020                /*
6021                 * There can be holes in boot-time mem_map[]s handed to this
6022                 * function.  They do not exist on hotplugged memory.
6023                 */
6024                if (context == MEMINIT_EARLY) {
6025                        if (overlap_memmap_init(zone, &pfn))
6026                                continue;
6027                        if (defer_init(nid, pfn, end_pfn))
6028                                break;
6029                }
6030
6031                page = pfn_to_page(pfn);
6032                __init_single_page(page, pfn, zone, nid);
6033                if (context == MEMINIT_HOTPLUG)
6034                        __SetPageReserved(page);
6035
6036                /*
6037                 * Mark the block movable so that blocks are reserved for
6038                 * movable at startup. This will force kernel allocations
6039                 * to reserve their blocks rather than leaking throughout
6040                 * the address space during boot when many long-lived
6041                 * kernel allocations are made.
6042                 *
6043                 * bitmap is created for zone's valid pfn range. but memmap
6044                 * can be created for invalid pages (for alignment)
6045                 * check here not to call set_pageblock_migratetype() against
6046                 * pfn out of zone.
6047                 */
6048                if (!(pfn & (pageblock_nr_pages - 1))) {
6049                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6050                        cond_resched();
6051                }
6052                pfn++;
6053        }
6054}
6055
6056#ifdef CONFIG_ZONE_DEVICE
6057void __ref memmap_init_zone_device(struct zone *zone,
6058                                   unsigned long start_pfn,
6059                                   unsigned long nr_pages,
6060                                   struct dev_pagemap *pgmap)
6061{
6062        unsigned long pfn, end_pfn = start_pfn + nr_pages;
6063        struct pglist_data *pgdat = zone->zone_pgdat;
6064        struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6065        unsigned long zone_idx = zone_idx(zone);
6066        unsigned long start = jiffies;
6067        int nid = pgdat->node_id;
6068
6069        if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6070                return;
6071
6072        /*
6073         * The call to memmap_init_zone should have already taken care
6074         * of the pages reserved for the memmap, so we can just jump to
6075         * the end of that region and start processing the device pages.
6076         */
6077        if (altmap) {
6078                start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6079                nr_pages = end_pfn - start_pfn;
6080        }
6081
6082        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6083                struct page *page = pfn_to_page(pfn);
6084
6085                __init_single_page(page, pfn, zone_idx, nid);
6086
6087                /*
6088                 * Mark page reserved as it will need to wait for onlining
6089                 * phase for it to be fully associated with a zone.
6090                 *
6091                 * We can use the non-atomic __set_bit operation for setting
6092                 * the flag as we are still initializing the pages.
6093                 */
6094                __SetPageReserved(page);
6095
6096                /*
6097                 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6098                 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6099                 * ever freed or placed on a driver-private list.
6100                 */
6101                page->pgmap = pgmap;
6102                page->zone_device_data = NULL;
6103
6104                /*
6105                 * Mark the block movable so that blocks are reserved for
6106                 * movable at startup. This will force kernel allocations
6107                 * to reserve their blocks rather than leaking throughout
6108                 * the address space during boot when many long-lived
6109                 * kernel allocations are made.
6110                 *
6111                 * bitmap is created for zone's valid pfn range. but memmap
6112                 * can be created for invalid pages (for alignment)
6113                 * check here not to call set_pageblock_migratetype() against
6114                 * pfn out of zone.
6115                 *
6116                 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6117                 * because this is done early in section_activate()
6118                 */
6119                if (!(pfn & (pageblock_nr_pages - 1))) {
6120                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6121                        cond_resched();
6122                }
6123        }
6124
6125        pr_info("%s initialised %lu pages in %ums\n", __func__,
6126                nr_pages, jiffies_to_msecs(jiffies - start));
6127}
6128
6129#endif
6130static void __meminit zone_init_free_lists(struct zone *zone)
6131{
6132        unsigned int order, t;
6133        for_each_migratetype_order(order, t) {
6134                INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6135                zone->free_area[order].nr_free = 0;
6136        }
6137}
6138
6139void __meminit __weak memmap_init(unsigned long size, int nid,
6140                                  unsigned long zone,
6141                                  unsigned long range_start_pfn)
6142{
6143        unsigned long start_pfn, end_pfn;
6144        unsigned long range_end_pfn = range_start_pfn + size;
6145        int i;
6146
6147        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6148                start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6149                end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6150
6151                if (end_pfn > start_pfn) {
6152                        size = end_pfn - start_pfn;
6153                        memmap_init_zone(size, nid, zone, start_pfn,
6154                                         MEMINIT_EARLY, NULL);
6155                }
6156        }
6157}
6158
6159static int zone_batchsize(struct zone *zone)
6160{
6161#ifdef CONFIG_MMU
6162        int batch;
6163
6164        /*
6165         * The per-cpu-pages pools are set to around 1000th of the
6166         * size of the zone.
6167         */
6168        batch = zone_managed_pages(zone) / 1024;
6169        /* But no more than a meg. */
6170        if (batch * PAGE_SIZE > 1024 * 1024)
6171                batch = (1024 * 1024) / PAGE_SIZE;
6172        batch /= 4;             /* We effectively *= 4 below */
6173        if (batch < 1)
6174                batch = 1;
6175
6176        /*
6177         * Clamp the batch to a 2^n - 1 value. Having a power
6178         * of 2 value was found to be more likely to have
6179         * suboptimal cache aliasing properties in some cases.
6180         *
6181         * For example if 2 tasks are alternately allocating
6182         * batches of pages, one task can end up with a lot
6183         * of pages of one half of the possible page colors
6184         * and the other with pages of the other colors.
6185         */
6186        batch = rounddown_pow_of_two(batch + batch/2) - 1;
6187
6188        return batch;
6189
6190#else
6191        /* The deferral and batching of frees should be suppressed under NOMMU
6192         * conditions.
6193         *
6194         * The problem is that NOMMU needs to be able to allocate large chunks
6195         * of contiguous memory as there's no hardware page translation to
6196         * assemble apparent contiguous memory from discontiguous pages.
6197         *
6198         * Queueing large contiguous runs of pages for batching, however,
6199         * causes the pages to actually be freed in smaller chunks.  As there
6200         * can be a significant delay between the individual batches being
6201         * recycled, this leads to the once large chunks of space being
6202         * fragmented and becoming unavailable for high-order allocations.
6203         */
6204        return 0;
6205#endif
6206}
6207
6208/*
6209 * pcp->high and pcp->batch values are related and dependent on one another:
6210 * ->batch must never be higher then ->high.
6211 * The following function updates them in a safe manner without read side
6212 * locking.
6213 *
6214 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6215 * those fields changing asynchronously (acording to the above rule).
6216 *
6217 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6218 * outside of boot time (or some other assurance that no concurrent updaters
6219 * exist).
6220 */
6221static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6222                unsigned long batch)
6223{
6224       /* start with a fail safe value for batch */
6225        pcp->batch = 1;
6226        smp_wmb();
6227
6228       /* Update high, then batch, in order */
6229        pcp->high = high;
6230        smp_wmb();
6231
6232        pcp->batch = batch;
6233}
6234
6235/* a companion to pageset_set_high() */
6236static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6237{
6238        pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6239}
6240
6241static void pageset_init(struct per_cpu_pageset *p)
6242{
6243        struct per_cpu_pages *pcp;
6244        int migratetype;
6245
6246        memset(p, 0, sizeof(*p));
6247
6248        pcp = &p->pcp;
6249        for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6250                INIT_LIST_HEAD(&pcp->lists[migratetype]);
6251}
6252
6253static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6254{
6255        pageset_init(p);
6256        pageset_set_batch(p, batch);
6257}
6258
6259/*
6260 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6261 * to the value high for the pageset p.
6262 */
6263static void pageset_set_high(struct per_cpu_pageset *p,
6264                                unsigned long high)
6265{
6266        unsigned long batch = max(1UL, high / 4);
6267        if ((high / 4) > (PAGE_SHIFT * 8))
6268                batch = PAGE_SHIFT * 8;
6269
6270        pageset_update(&p->pcp, high, batch);
6271}
6272
6273static void pageset_set_high_and_batch(struct zone *zone,
6274                                       struct per_cpu_pageset *pcp)
6275{
6276        if (percpu_pagelist_fraction)
6277                pageset_set_high(pcp,
6278                        (zone_managed_pages(zone) /
6279                                percpu_pagelist_fraction));
6280        else
6281                pageset_set_batch(pcp, zone_batchsize(zone));
6282}
6283
6284static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6285{
6286        struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6287
6288        pageset_init(pcp);
6289        pageset_set_high_and_batch(zone, pcp);
6290}
6291
6292void __meminit setup_zone_pageset(struct zone *zone)
6293{
6294        int cpu;
6295        zone->pageset = alloc_percpu(struct per_cpu_pageset);
6296        for_each_possible_cpu(cpu)
6297                zone_pageset_init(zone, cpu);
6298}
6299
6300/*
6301 * Allocate per cpu pagesets and initialize them.
6302 * Before this call only boot pagesets were available.
6303 */
6304void __init setup_per_cpu_pageset(void)
6305{
6306        struct pglist_data *pgdat;
6307        struct zone *zone;
6308        int __maybe_unused cpu;
6309
6310        for_each_populated_zone(zone)
6311                setup_zone_pageset(zone);
6312
6313#ifdef CONFIG_NUMA
6314        /*
6315         * Unpopulated zones continue using the boot pagesets.
6316         * The numa stats for these pagesets need to be reset.
6317         * Otherwise, they will end up skewing the stats of
6318         * the nodes these zones are associated with.
6319         */
6320        for_each_possible_cpu(cpu) {
6321                struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6322                memset(pcp->vm_numa_stat_diff, 0,
6323                       sizeof(pcp->vm_numa_stat_diff));
6324        }
6325#endif
6326
6327        for_each_online_pgdat(pgdat)
6328                pgdat->per_cpu_nodestats =
6329                        alloc_percpu(struct per_cpu_nodestat);
6330}
6331
6332static __meminit void zone_pcp_init(struct zone *zone)
6333{
6334        /*
6335         * per cpu subsystem is not up at this point. The following code
6336         * relies on the ability of the linker to provide the
6337         * offset of a (static) per cpu variable into the per cpu area.
6338         */
6339        zone->pageset = &boot_pageset;
6340
6341        if (populated_zone(zone))
6342                printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6343                        zone->name, zone->present_pages,
6344                                         zone_batchsize(zone));
6345}
6346
6347void __meminit init_currently_empty_zone(struct zone *zone,
6348                                        unsigned long zone_start_pfn,
6349                                        unsigned long size)
6350{
6351        struct pglist_data *pgdat = zone->zone_pgdat;
6352        int zone_idx = zone_idx(zone) + 1;
6353
6354        if (zone_idx > pgdat->nr_zones)
6355                pgdat->nr_zones = zone_idx;
6356
6357        zone->zone_start_pfn = zone_start_pfn;
6358
6359        mminit_dprintk(MMINIT_TRACE, "memmap_init",
6360                        "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6361                        pgdat->node_id,
6362                        (unsigned long)zone_idx(zone),
6363                        zone_start_pfn, (zone_start_pfn + size));
6364
6365        zone_init_free_lists(zone);
6366        zone->initialized = 1;
6367}
6368
6369/**
6370 * get_pfn_range_for_nid - Return the start and end page frames for a node
6371 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6372 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6373 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6374 *
6375 * It returns the start and end page frame of a node based on information
6376 * provided by memblock_set_node(). If called for a node
6377 * with no available memory, a warning is printed and the start and end
6378 * PFNs will be 0.
6379 */
6380void __init get_pfn_range_for_nid(unsigned int nid,
6381                        unsigned long *start_pfn, unsigned long *end_pfn)
6382{
6383        unsigned long this_start_pfn, this_end_pfn;
6384        int i;
6385
6386        *start_pfn = -1UL;
6387        *end_pfn = 0;
6388
6389        for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6390                *start_pfn = min(*start_pfn, this_start_pfn);
6391                *end_pfn = max(*end_pfn, this_end_pfn);
6392        }
6393
6394        if (*start_pfn == -1UL)
6395                *start_pfn = 0;
6396}
6397
6398/*
6399 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6400 * assumption is made that zones within a node are ordered in monotonic
6401 * increasing memory addresses so that the "highest" populated zone is used
6402 */
6403static void __init find_usable_zone_for_movable(void)
6404{
6405        int zone_index;
6406        for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6407                if (zone_index == ZONE_MOVABLE)
6408                        continue;
6409
6410                if (arch_zone_highest_possible_pfn[zone_index] >
6411                                arch_zone_lowest_possible_pfn[zone_index])
6412                        break;
6413        }
6414
6415        VM_BUG_ON(zone_index == -1);
6416        movable_zone = zone_index;
6417}
6418
6419/*
6420 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6421 * because it is sized independent of architecture. Unlike the other zones,
6422 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6423 * in each node depending on the size of each node and how evenly kernelcore
6424 * is distributed. This helper function adjusts the zone ranges
6425 * provided by the architecture for a given node by using the end of the
6426 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6427 * zones within a node are in order of monotonic increases memory addresses
6428 */
6429static void __init adjust_zone_range_for_zone_movable(int nid,
6430                                        unsigned long zone_type,
6431                                        unsigned long node_start_pfn,
6432                                        unsigned long node_end_pfn,
6433                                        unsigned long *zone_start_pfn,
6434                                        unsigned long *zone_end_pfn)
6435{
6436        /* Only adjust if ZONE_MOVABLE is on this node */
6437        if (zone_movable_pfn[nid]) {
6438                /* Size ZONE_MOVABLE */
6439                if (zone_type == ZONE_MOVABLE) {
6440                        *zone_start_pfn = zone_movable_pfn[nid];
6441                        *zone_end_pfn = min(node_end_pfn,
6442                                arch_zone_highest_possible_pfn[movable_zone]);
6443
6444                /* Adjust for ZONE_MOVABLE starting within this range */
6445                } else if (!mirrored_kernelcore &&
6446                        *zone_start_pfn < zone_movable_pfn[nid] &&
6447                        *zone_end_pfn > zone_movable_pfn[nid]) {
6448                        *zone_end_pfn = zone_movable_pfn[nid];
6449
6450                /* Check if this whole range is within ZONE_MOVABLE */
6451                } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6452                        *zone_start_pfn = *zone_end_pfn;
6453        }
6454}
6455
6456/*
6457 * Return the number of pages a zone spans in a node, including holes
6458 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6459 */
6460static unsigned long __init zone_spanned_pages_in_node(int nid,
6461                                        unsigned long zone_type,
6462                                        unsigned long node_start_pfn,
6463                                        unsigned long node_end_pfn,
6464                                        unsigned long *zone_start_pfn,
6465                                        unsigned long *zone_end_pfn)
6466{
6467        unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6468        unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6469        /* When hotadd a new node from cpu_up(), the node should be empty */
6470        if (!node_start_pfn && !node_end_pfn)
6471                return 0;
6472
6473        /* Get the start and end of the zone */
6474        *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6475        *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6476        adjust_zone_range_for_zone_movable(nid, zone_type,
6477                                node_start_pfn, node_end_pfn,
6478                                zone_start_pfn, zone_end_pfn);
6479
6480        /* Check that this node has pages within the zone's required range */
6481        if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6482                return 0;
6483
6484        /* Move the zone boundaries inside the node if necessary */
6485        *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6486        *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6487
6488        /* Return the spanned pages */
6489        return *zone_end_pfn - *zone_start_pfn;
6490}
6491
6492/*
6493 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6494 * then all holes in the requested range will be accounted for.
6495 */
6496unsigned long __init __absent_pages_in_range(int nid,
6497                                unsigned long range_start_pfn,
6498                                unsigned long range_end_pfn)
6499{
6500        unsigned long nr_absent = range_end_pfn - range_start_pfn;
6501        unsigned long start_pfn, end_pfn;
6502        int i;
6503
6504        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6505                start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6506                end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6507                nr_absent -= end_pfn - start_pfn;
6508        }
6509        return nr_absent;
6510}
6511
6512/**
6513 * absent_pages_in_range - Return number of page frames in holes within a range
6514 * @start_pfn: The start PFN to start searching for holes
6515 * @end_pfn: The end PFN to stop searching for holes
6516 *
6517 * Return: the number of pages frames in memory holes within a range.
6518 */
6519unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6520                                                        unsigned long end_pfn)
6521{
6522        return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6523}
6524
6525/* Return the number of page frames in holes in a zone on a node */
6526static unsigned long __init zone_absent_pages_in_node(int nid,
6527                                        unsigned long zone_type,
6528                                        unsigned long node_start_pfn,
6529                                        unsigned long node_end_pfn)
6530{
6531        unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6532        unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6533        unsigned long zone_start_pfn, zone_end_pfn;
6534        unsigned long nr_absent;
6535
6536        /* When hotadd a new node from cpu_up(), the node should be empty */
6537        if (!node_start_pfn && !node_end_pfn)
6538                return 0;
6539
6540        zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6541        zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6542
6543        adjust_zone_range_for_zone_movable(nid, zone_type,
6544                        node_start_pfn, node_end_pfn,
6545                        &zone_start_pfn, &zone_end_pfn);
6546        nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6547
6548        /*
6549         * ZONE_MOVABLE handling.
6550         * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6551         * and vice versa.
6552         */
6553        if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6554                unsigned long start_pfn, end_pfn;
6555                struct memblock_region *r;
6556
6557                for_each_memblock(memory, r) {
6558                        start_pfn = clamp(memblock_region_memory_base_pfn(r),
6559                                          zone_start_pfn, zone_end_pfn);
6560                        end_pfn = clamp(memblock_region_memory_end_pfn(r),
6561                                        zone_start_pfn, zone_end_pfn);
6562
6563                        if (zone_type == ZONE_MOVABLE &&
6564                            memblock_is_mirror(r))
6565                                nr_absent += end_pfn - start_pfn;
6566
6567                        if (zone_type == ZONE_NORMAL &&
6568                            !memblock_is_mirror(r))
6569                                nr_absent += end_pfn - start_pfn;
6570                }
6571        }
6572
6573        return nr_absent;
6574}
6575
6576static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6577                                                unsigned long node_start_pfn,
6578                                                unsigned long node_end_pfn)
6579{
6580        unsigned long realtotalpages = 0, totalpages = 0;
6581        enum zone_type i;
6582
6583        for (i = 0; i < MAX_NR_ZONES; i++) {
6584                struct zone *zone = pgdat->node_zones + i;
6585                unsigned long zone_start_pfn, zone_end_pfn;
6586                unsigned long spanned, absent;
6587                unsigned long size, real_size;
6588
6589                spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6590                                                     node_start_pfn,
6591                                                     node_end_pfn,
6592                                                     &zone_start_pfn,
6593                                                     &zone_end_pfn);
6594                absent = zone_absent_pages_in_node(pgdat->node_id, i,
6595                                                   node_start_pfn,
6596                                                   node_end_pfn);
6597
6598                size = spanned;
6599                real_size = size - absent;
6600
6601                if (size)
6602                        zone->zone_start_pfn = zone_start_pfn;
6603                else
6604                        zone->zone_start_pfn = 0;
6605                zone->spanned_pages = size;
6606                zone->present_pages = real_size;
6607
6608                totalpages += size;
6609                realtotalpages += real_size;
6610        }
6611
6612        pgdat->node_spanned_pages = totalpages;
6613        pgdat->node_present_pages = realtotalpages;
6614        printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6615                                                        realtotalpages);
6616}
6617
6618#ifndef CONFIG_SPARSEMEM
6619/*
6620 * Calculate the size of the zone->blockflags rounded to an unsigned long
6621 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6622 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6623 * round what is now in bits to nearest long in bits, then return it in
6624 * bytes.
6625 */
6626static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6627{
6628        unsigned long usemapsize;
6629
6630        zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6631        usemapsize = roundup(zonesize, pageblock_nr_pages);
6632        usemapsize = usemapsize >> pageblock_order;
6633        usemapsize *= NR_PAGEBLOCK_BITS;
6634        usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6635
6636        return usemapsize / 8;
6637}
6638
6639static void __ref setup_usemap(struct pglist_data *pgdat,
6640                                struct zone *zone,
6641                                unsigned long zone_start_pfn,
6642                                unsigned long zonesize)
6643{
6644        unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6645        zone->pageblock_flags = NULL;
6646        if (usemapsize) {
6647                zone->pageblock_flags =
6648                        memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6649                                            pgdat->node_id);
6650                if (!zone->pageblock_flags)
6651                        panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6652                              usemapsize, zone->name, pgdat->node_id);
6653        }
6654}
6655#else
6656static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6657                                unsigned long zone_start_pfn, unsigned long zonesize) {}
6658#endif /* CONFIG_SPARSEMEM */
6659
6660#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6661
6662/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6663void __init set_pageblock_order(void)
6664{
6665        unsigned int order;
6666
6667        /* Check that pageblock_nr_pages has not already been setup */
6668        if (pageblock_order)
6669                return;
6670
6671        if (HPAGE_SHIFT > PAGE_SHIFT)
6672                order = HUGETLB_PAGE_ORDER;
6673        else
6674                order = MAX_ORDER - 1;
6675
6676        /*
6677         * Assume the largest contiguous order of interest is a huge page.
6678         * This value may be variable depending on boot parameters on IA64 and
6679         * powerpc.
6680         */
6681        pageblock_order = order;
6682}
6683#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6684
6685/*
6686 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6687 * is unused as pageblock_order is set at compile-time. See
6688 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6689 * the kernel config
6690 */
6691void __init set_pageblock_order(void)
6692{
6693}
6694
6695#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6696
6697static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6698                                                unsigned long present_pages)
6699{
6700        unsigned long pages = spanned_pages;
6701
6702        /*
6703         * Provide a more accurate estimation if there are holes within
6704         * the zone and SPARSEMEM is in use. If there are holes within the
6705         * zone, each populated memory region may cost us one or two extra
6706         * memmap pages due to alignment because memmap pages for each
6707         * populated regions may not be naturally aligned on page boundary.
6708         * So the (present_pages >> 4) heuristic is a tradeoff for that.
6709         */
6710        if (spanned_pages > present_pages + (present_pages >> 4) &&
6711            IS_ENABLED(CONFIG_SPARSEMEM))
6712                pages = present_pages;
6713
6714        return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6715}
6716
6717#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6718static void pgdat_init_split_queue(struct pglist_data *pgdat)
6719{
6720        struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6721
6722        spin_lock_init(&ds_queue->split_queue_lock);
6723        INIT_LIST_HEAD(&ds_queue->split_queue);
6724        ds_queue->split_queue_len = 0;
6725}
6726#else
6727static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6728#endif
6729
6730#ifdef CONFIG_COMPACTION
6731static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6732{
6733        init_waitqueue_head(&pgdat->kcompactd_wait);
6734}
6735#else
6736static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6737#endif
6738
6739static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6740{
6741        pgdat_resize_init(pgdat);
6742
6743        pgdat_init_split_queue(pgdat);
6744        pgdat_init_kcompactd(pgdat);
6745
6746        init_waitqueue_head(&pgdat->kswapd_wait);
6747        init_waitqueue_head(&pgdat->pfmemalloc_wait);
6748
6749        pgdat_page_ext_init(pgdat);
6750        spin_lock_init(&pgdat->lru_lock);
6751        lruvec_init(&pgdat->__lruvec);
6752}
6753
6754static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6755                                                        unsigned long remaining_pages)
6756{
6757        atomic_long_set(&zone->managed_pages, remaining_pages);
6758        zone_set_nid(zone, nid);
6759        zone->name = zone_names[idx];
6760        zone->zone_pgdat = NODE_DATA(nid);
6761        spin_lock_init(&zone->lock);
6762        zone_seqlock_init(zone);
6763        zone_pcp_init(zone);
6764}
6765
6766/*
6767 * Set up the zone data structures
6768 * - init pgdat internals
6769 * - init all zones belonging to this node
6770 *
6771 * NOTE: this function is only called during memory hotplug
6772 */
6773#ifdef CONFIG_MEMORY_HOTPLUG
6774void __ref free_area_init_core_hotplug(int nid)
6775{
6776        enum zone_type z;
6777        pg_data_t *pgdat = NODE_DATA(nid);
6778
6779        pgdat_init_internals(pgdat);
6780        for (z = 0; z < MAX_NR_ZONES; z++)
6781                zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6782}
6783#endif
6784
6785/*
6786 * Set up the zone data structures:
6787 *   - mark all pages reserved
6788 *   - mark all memory queues empty
6789 *   - clear the memory bitmaps
6790 *
6791 * NOTE: pgdat should get zeroed by caller.
6792 * NOTE: this function is only called during early init.
6793 */
6794static void __init free_area_init_core(struct pglist_data *pgdat)
6795{
6796        enum zone_type j;
6797        int nid = pgdat->node_id;
6798
6799        pgdat_init_internals(pgdat);
6800        pgdat->per_cpu_nodestats = &boot_nodestats;
6801
6802        for (j = 0; j < MAX_NR_ZONES; j++) {
6803                struct zone *zone = pgdat->node_zones + j;
6804                unsigned long size, freesize, memmap_pages;
6805                unsigned long zone_start_pfn = zone->zone_start_pfn;
6806
6807                size = zone->spanned_pages;
6808                freesize = zone->present_pages;
6809
6810                /*
6811                 * Adjust freesize so that it accounts for how much memory
6812                 * is used by this zone for memmap. This affects the watermark
6813                 * and per-cpu initialisations
6814                 */
6815                memmap_pages = calc_memmap_size(size, freesize);
6816                if (!is_highmem_idx(j)) {
6817                        if (freesize >= memmap_pages) {
6818                                freesize -= memmap_pages;
6819                                if (memmap_pages)
6820                                        printk(KERN_DEBUG
6821                                               "  %s zone: %lu pages used for memmap\n",
6822                                               zone_names[j], memmap_pages);
6823                        } else
6824                                pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6825                                        zone_names[j], memmap_pages, freesize);
6826                }
6827
6828                /* Account for reserved pages */
6829                if (j == 0 && freesize > dma_reserve) {
6830                        freesize -= dma_reserve;
6831                        printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6832                                        zone_names[0], dma_reserve);
6833                }
6834
6835                if (!is_highmem_idx(j))
6836                        nr_kernel_pages += freesize;
6837                /* Charge for highmem memmap if there are enough kernel pages */
6838                else if (nr_kernel_pages > memmap_pages * 2)
6839                        nr_kernel_pages -= memmap_pages;
6840                nr_all_pages += freesize;
6841
6842                /*
6843                 * Set an approximate value for lowmem here, it will be adjusted
6844                 * when the bootmem allocator frees pages into the buddy system.
6845                 * And all highmem pages will be managed by the buddy system.
6846                 */
6847                zone_init_internals(zone, j, nid, freesize);
6848
6849                if (!size)
6850                        continue;
6851
6852                set_pageblock_order();
6853                setup_usemap(pgdat, zone, zone_start_pfn, size);
6854                init_currently_empty_zone(zone, zone_start_pfn, size);
6855                memmap_init(size, nid, j, zone_start_pfn);
6856        }
6857}
6858
6859#ifdef CONFIG_FLAT_NODE_MEM_MAP
6860static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6861{
6862        unsigned long __maybe_unused start = 0;
6863        unsigned long __maybe_unused offset = 0;
6864
6865        /* Skip empty nodes */
6866        if (!pgdat->node_spanned_pages)
6867                return;
6868
6869        start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6870        offset = pgdat->node_start_pfn - start;
6871        /* ia64 gets its own node_mem_map, before this, without bootmem */
6872        if (!pgdat->node_mem_map) {
6873                unsigned long size, end;
6874                struct page *map;
6875
6876                /*
6877                 * The zone's endpoints aren't required to be MAX_ORDER
6878                 * aligned but the node_mem_map endpoints must be in order
6879                 * for the buddy allocator to function correctly.
6880                 */
6881                end = pgdat_end_pfn(pgdat);
6882                end = ALIGN(end, MAX_ORDER_NR_PAGES);
6883                size =  (end - start) * sizeof(struct page);
6884                map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6885                                          pgdat->node_id);
6886                if (!map)
6887                        panic("Failed to allocate %ld bytes for node %d memory map\n",
6888                              size, pgdat->node_id);
6889                pgdat->node_mem_map = map + offset;
6890        }
6891        pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6892                                __func__, pgdat->node_id, (unsigned long)pgdat,
6893                                (unsigned long)pgdat->node_mem_map);
6894#ifndef CONFIG_NEED_MULTIPLE_NODES
6895        /*
6896         * With no DISCONTIG, the global mem_map is just set as node 0's
6897         */
6898        if (pgdat == NODE_DATA(0)) {
6899                mem_map = NODE_DATA(0)->node_mem_map;
6900                if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6901                        mem_map -= offset;
6902        }
6903#endif
6904}
6905#else
6906static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6907#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6908
6909#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6910static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6911{
6912        pgdat->first_deferred_pfn = ULONG_MAX;
6913}
6914#else
6915static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6916#endif
6917
6918static void __init free_area_init_node(int nid)
6919{
6920        pg_data_t *pgdat = NODE_DATA(nid);
6921        unsigned long start_pfn = 0;
6922        unsigned long end_pfn = 0;
6923
6924        /* pg_data_t should be reset to zero when it's allocated */
6925        WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6926
6927        get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6928
6929        pgdat->node_id = nid;
6930        pgdat->node_start_pfn = start_pfn;
6931        pgdat->per_cpu_nodestats = NULL;
6932
6933        pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6934                (u64)start_pfn << PAGE_SHIFT,
6935                end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6936        calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6937
6938        alloc_node_mem_map(pgdat);
6939        pgdat_set_deferred_range(pgdat);
6940
6941        free_area_init_core(pgdat);
6942}
6943
6944void __init free_area_init_memoryless_node(int nid)
6945{
6946        free_area_init_node(nid);
6947}
6948
6949#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6950/*
6951 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6952 * PageReserved(). Return the number of struct pages that were initialized.
6953 */
6954static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6955{
6956        unsigned long pfn;
6957        u64 pgcnt = 0;
6958
6959        for (pfn = spfn; pfn < epfn; pfn++) {
6960                if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6961                        pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6962                                + pageblock_nr_pages - 1;
6963                        continue;
6964                }
6965                /*
6966                 * Use a fake node/zone (0) for now. Some of these pages
6967                 * (in memblock.reserved but not in memblock.memory) will
6968                 * get re-initialized via reserve_bootmem_region() later.
6969                 */
6970                __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6971                __SetPageReserved(pfn_to_page(pfn));
6972                pgcnt++;
6973        }
6974
6975        return pgcnt;
6976}
6977
6978/*
6979 * Only struct pages that are backed by physical memory are zeroed and
6980 * initialized by going through __init_single_page(). But, there are some
6981 * struct pages which are reserved in memblock allocator and their fields
6982 * may be accessed (for example page_to_pfn() on some configuration accesses
6983 * flags). We must explicitly initialize those struct pages.
6984 *
6985 * This function also addresses a similar issue where struct pages are left
6986 * uninitialized because the physical address range is not covered by
6987 * memblock.memory or memblock.reserved. That could happen when memblock
6988 * layout is manually configured via memmap=, or when the highest physical
6989 * address (max_pfn) does not end on a section boundary.
6990 */
6991static void __init init_unavailable_mem(void)
6992{
6993        phys_addr_t start, end;
6994        u64 i, pgcnt;
6995        phys_addr_t next = 0;
6996
6997        /*
6998         * Loop through unavailable ranges not covered by memblock.memory.
6999         */
7000        pgcnt = 0;
7001        for_each_mem_range(i, &memblock.memory, NULL,
7002                        NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7003                if (next < start)
7004                        pgcnt += init_unavailable_range(PFN_DOWN(next),
7005                                                        PFN_UP(start));
7006                next = end;
7007        }
7008
7009        /*
7010         * Early sections always have a fully populated memmap for the whole
7011         * section - see pfn_valid(). If the last section has holes at the
7012         * end and that section is marked "online", the memmap will be
7013         * considered initialized. Make sure that memmap has a well defined
7014         * state.
7015         */
7016        pgcnt += init_unavailable_range(PFN_DOWN(next),
7017                                        round_up(max_pfn, PAGES_PER_SECTION));
7018
7019        /*
7020         * Struct pages that do not have backing memory. This could be because
7021         * firmware is using some of this memory, or for some other reasons.
7022         */
7023        if (pgcnt)
7024                pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7025}
7026#else
7027static inline void __init init_unavailable_mem(void)
7028{
7029}
7030#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7031
7032#if MAX_NUMNODES > 1
7033/*
7034 * Figure out the number of possible node ids.
7035 */
7036void __init setup_nr_node_ids(void)
7037{
7038        unsigned int highest;
7039
7040        highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7041        nr_node_ids = highest + 1;
7042}
7043#endif
7044
7045/**
7046 * node_map_pfn_alignment - determine the maximum internode alignment
7047 *
7048 * This function should be called after node map is populated and sorted.
7049 * It calculates the maximum power of two alignment which can distinguish
7050 * all the nodes.
7051 *
7052 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7053 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7054 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7055 * shifted, 1GiB is enough and this function will indicate so.
7056 *
7057 * This is used to test whether pfn -> nid mapping of the chosen memory
7058 * model has fine enough granularity to avoid incorrect mapping for the
7059 * populated node map.
7060 *
7061 * Return: the determined alignment in pfn's.  0 if there is no alignment
7062 * requirement (single node).
7063 */
7064unsigned long __init node_map_pfn_alignment(void)
7065{
7066        unsigned long accl_mask = 0, last_end = 0;
7067        unsigned long start, end, mask;
7068        int last_nid = NUMA_NO_NODE;
7069        int i, nid;
7070
7071        for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7072                if (!start || last_nid < 0 || last_nid == nid) {
7073                        last_nid = nid;
7074                        last_end = end;
7075                        continue;
7076                }
7077
7078                /*
7079                 * Start with a mask granular enough to pin-point to the
7080                 * start pfn and tick off bits one-by-one until it becomes
7081                 * too coarse to separate the current node from the last.
7082                 */
7083                mask = ~((1 << __ffs(start)) - 1);
7084                while (mask && last_end <= (start & (mask << 1)))
7085                        mask <<= 1;
7086
7087                /* accumulate all internode masks */
7088                accl_mask |= mask;
7089        }
7090
7091        /* convert mask to number of pages */
7092        return ~accl_mask + 1;
7093}
7094
7095/**
7096 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7097 *
7098 * Return: the minimum PFN based on information provided via
7099 * memblock_set_node().
7100 */
7101unsigned long __init find_min_pfn_with_active_regions(void)
7102{
7103        return PHYS_PFN(memblock_start_of_DRAM());
7104}
7105
7106/*
7107 * early_calculate_totalpages()
7108 * Sum pages in active regions for movable zone.
7109 * Populate N_MEMORY for calculating usable_nodes.
7110 */
7111static unsigned long __init early_calculate_totalpages(void)
7112{
7113        unsigned long totalpages = 0;
7114        unsigned long start_pfn, end_pfn;
7115        int i, nid;
7116
7117        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7118                unsigned long pages = end_pfn - start_pfn;
7119
7120                totalpages += pages;
7121                if (pages)
7122                        node_set_state(nid, N_MEMORY);
7123        }
7124        return totalpages;
7125}
7126
7127/*
7128 * Find the PFN the Movable zone begins in each node. Kernel memory
7129 * is spread evenly between nodes as long as the nodes have enough
7130 * memory. When they don't, some nodes will have more kernelcore than
7131 * others
7132 */
7133static void __init find_zone_movable_pfns_for_nodes(void)
7134{
7135        int i, nid;
7136        unsigned long usable_startpfn;
7137        unsigned long kernelcore_node, kernelcore_remaining;
7138        /* save the state before borrow the nodemask */
7139        nodemask_t saved_node_state = node_states[N_MEMORY];
7140        unsigned long totalpages = early_calculate_totalpages();
7141        int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7142        struct memblock_region *r;
7143
7144        /* Need to find movable_zone earlier when movable_node is specified. */
7145        find_usable_zone_for_movable();
7146
7147        /*
7148         * If movable_node is specified, ignore kernelcore and movablecore
7149         * options.
7150         */
7151        if (movable_node_is_enabled()) {
7152                for_each_memblock(memory, r) {
7153                        if (!memblock_is_hotpluggable(r))
7154                                continue;
7155
7156                        nid = memblock_get_region_node(r);
7157
7158                        usable_startpfn = PFN_DOWN(r->base);
7159                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7160                                min(usable_startpfn, zone_movable_pfn[nid]) :
7161                                usable_startpfn;
7162                }
7163
7164                goto out2;
7165        }
7166
7167        /*
7168         * If kernelcore=mirror is specified, ignore movablecore option
7169         */
7170        if (mirrored_kernelcore) {
7171                bool mem_below_4gb_not_mirrored = false;
7172
7173                for_each_memblock(memory, r) {
7174                        if (memblock_is_mirror(r))
7175                                continue;
7176
7177                        nid = memblock_get_region_node(r);
7178
7179                        usable_startpfn = memblock_region_memory_base_pfn(r);
7180
7181                        if (usable_startpfn < 0x100000) {
7182                                mem_below_4gb_not_mirrored = true;
7183                                continue;
7184                        }
7185
7186                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7187                                min(usable_startpfn, zone_movable_pfn[nid]) :
7188                                usable_startpfn;
7189                }
7190
7191                if (mem_below_4gb_not_mirrored)
7192                        pr_warn("This configuration results in unmirrored kernel memory.\n");
7193
7194                goto out2;
7195        }
7196
7197        /*
7198         * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7199         * amount of necessary memory.
7200         */
7201        if (required_kernelcore_percent)
7202                required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7203                                       10000UL;
7204        if (required_movablecore_percent)
7205                required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7206                                        10000UL;
7207
7208        /*
7209         * If movablecore= was specified, calculate what size of
7210         * kernelcore that corresponds so that memory usable for
7211         * any allocation type is evenly spread. If both kernelcore
7212         * and movablecore are specified, then the value of kernelcore
7213         * will be used for required_kernelcore if it's greater than
7214         * what movablecore would have allowed.
7215         */
7216        if (required_movablecore) {
7217                unsigned long corepages;
7218
7219                /*
7220                 * Round-up so that ZONE_MOVABLE is at least as large as what
7221                 * was requested by the user
7222                 */
7223                required_movablecore =
7224                        roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7225                required_movablecore = min(totalpages, required_movablecore);
7226                corepages = totalpages - required_movablecore;
7227
7228                required_kernelcore = max(required_kernelcore, corepages);
7229        }
7230
7231        /*
7232         * If kernelcore was not specified or kernelcore size is larger
7233         * than totalpages, there is no ZONE_MOVABLE.
7234         */
7235        if (!required_kernelcore || required_kernelcore >= totalpages)
7236                goto out;
7237
7238        /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7239        usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7240
7241restart:
7242        /* Spread kernelcore memory as evenly as possible throughout nodes */
7243        kernelcore_node = required_kernelcore / usable_nodes;
7244        for_each_node_state(nid, N_MEMORY) {
7245                unsigned long start_pfn, end_pfn;
7246
7247                /*
7248                 * Recalculate kernelcore_node if the division per node
7249                 * now exceeds what is necessary to satisfy the requested
7250                 * amount of memory for the kernel
7251                 */
7252                if (required_kernelcore < kernelcore_node)
7253                        kernelcore_node = required_kernelcore / usable_nodes;
7254
7255                /*
7256                 * As the map is walked, we track how much memory is usable
7257                 * by the kernel using kernelcore_remaining. When it is
7258                 * 0, the rest of the node is usable by ZONE_MOVABLE
7259                 */
7260                kernelcore_remaining = kernelcore_node;
7261
7262                /* Go through each range of PFNs within this node */
7263                for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7264                        unsigned long size_pages;
7265
7266                        start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7267                        if (start_pfn >= end_pfn)
7268                                continue;
7269
7270                        /* Account for what is only usable for kernelcore */
7271                        if (start_pfn < usable_startpfn) {
7272                                unsigned long kernel_pages;
7273                                kernel_pages = min(end_pfn, usable_startpfn)
7274                                                                - start_pfn;
7275
7276                                kernelcore_remaining -= min(kernel_pages,
7277                                                        kernelcore_remaining);
7278                                required_kernelcore -= min(kernel_pages,
7279                                                        required_kernelcore);
7280
7281                                /* Continue if range is now fully accounted */
7282                                if (end_pfn <= usable_startpfn) {
7283
7284                                        /*
7285                                         * Push zone_movable_pfn to the end so
7286                                         * that if we have to rebalance
7287                                         * kernelcore across nodes, we will
7288                                         * not double account here
7289                                         */
7290                                        zone_movable_pfn[nid] = end_pfn;
7291                                        continue;
7292                                }
7293                                start_pfn = usable_startpfn;
7294                        }
7295
7296                        /*
7297                         * The usable PFN range for ZONE_MOVABLE is from
7298                         * start_pfn->end_pfn. Calculate size_pages as the
7299                         * number of pages used as kernelcore
7300                         */
7301                        size_pages = end_pfn - start_pfn;
7302                        if (size_pages > kernelcore_remaining)
7303                                size_pages = kernelcore_remaining;
7304                        zone_movable_pfn[nid] = start_pfn + size_pages;
7305
7306                        /*
7307                         * Some kernelcore has been met, update counts and
7308                         * break if the kernelcore for this node has been
7309                         * satisfied
7310                         */
7311                        required_kernelcore -= min(required_kernelcore,
7312                                                                size_pages);
7313                        kernelcore_remaining -= size_pages;
7314                        if (!kernelcore_remaining)
7315                                break;
7316                }
7317        }
7318
7319        /*
7320         * If there is still required_kernelcore, we do another pass with one
7321         * less node in the count. This will push zone_movable_pfn[nid] further
7322         * along on the nodes that still have memory until kernelcore is
7323         * satisfied
7324         */
7325        usable_nodes--;
7326        if (usable_nodes && required_kernelcore > usable_nodes)
7327                goto restart;
7328
7329out2:
7330        /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7331        for (nid = 0; nid < MAX_NUMNODES; nid++)
7332                zone_movable_pfn[nid] =
7333                        roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7334
7335out:
7336        /* restore the node_state */
7337        node_states[N_MEMORY] = saved_node_state;
7338}
7339
7340/* Any regular or high memory on that node ? */
7341static void check_for_memory(pg_data_t *pgdat, int nid)
7342{
7343        enum zone_type zone_type;
7344
7345        for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7346                struct zone *zone = &pgdat->node_zones[zone_type];
7347                if (populated_zone(zone)) {
7348                        if (IS_ENABLED(CONFIG_HIGHMEM))
7349                                node_set_state(nid, N_HIGH_MEMORY);
7350                        if (zone_type <= ZONE_NORMAL)
7351                                node_set_state(nid, N_NORMAL_MEMORY);
7352                        break;
7353                }
7354        }
7355}
7356
7357/*
7358 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7359 * such cases we allow max_zone_pfn sorted in the descending order
7360 */
7361bool __weak arch_has_descending_max_zone_pfns(void)
7362{
7363        return false;
7364}
7365
7366/**
7367 * free_area_init - Initialise all pg_data_t and zone data
7368 * @max_zone_pfn: an array of max PFNs for each zone
7369 *
7370 * This will call free_area_init_node() for each active node in the system.
7371 * Using the page ranges provided by memblock_set_node(), the size of each
7372 * zone in each node and their holes is calculated. If the maximum PFN
7373 * between two adjacent zones match, it is assumed that the zone is empty.
7374 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7375 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7376 * starts where the previous one ended. For example, ZONE_DMA32 starts
7377 * at arch_max_dma_pfn.
7378 */
7379void __init free_area_init(unsigned long *max_zone_pfn)
7380{
7381        unsigned long start_pfn, end_pfn;
7382        int i, nid, zone;
7383        bool descending;
7384
7385        /* Record where the zone boundaries are */
7386        memset(arch_zone_lowest_possible_pfn, 0,
7387                                sizeof(arch_zone_lowest_possible_pfn));
7388        memset(arch_zone_highest_possible_pfn, 0,
7389                                sizeof(arch_zone_highest_possible_pfn));
7390
7391        start_pfn = find_min_pfn_with_active_regions();
7392        descending = arch_has_descending_max_zone_pfns();
7393
7394        for (i = 0; i < MAX_NR_ZONES; i++) {
7395                if (descending)
7396                        zone = MAX_NR_ZONES - i - 1;
7397                else
7398                        zone = i;
7399
7400                if (zone == ZONE_MOVABLE)
7401                        continue;
7402
7403                end_pfn = max(max_zone_pfn[zone], start_pfn);
7404                arch_zone_lowest_possible_pfn[zone] = start_pfn;
7405                arch_zone_highest_possible_pfn[zone] = end_pfn;
7406
7407                start_pfn = end_pfn;
7408        }
7409
7410        /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7411        memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7412        find_zone_movable_pfns_for_nodes();
7413
7414        /* Print out the zone ranges */
7415        pr_info("Zone ranges:\n");
7416        for (i = 0; i < MAX_NR_ZONES; i++) {
7417                if (i == ZONE_MOVABLE)
7418                        continue;
7419                pr_info("  %-8s ", zone_names[i]);
7420                if (arch_zone_lowest_possible_pfn[i] ==
7421                                arch_zone_highest_possible_pfn[i])
7422                        pr_cont("empty\n");
7423                else
7424                        pr_cont("[mem %#018Lx-%#018Lx]\n",
7425                                (u64)arch_zone_lowest_possible_pfn[i]
7426                                        << PAGE_SHIFT,
7427                                ((u64)arch_zone_highest_possible_pfn[i]
7428                                        << PAGE_SHIFT) - 1);
7429        }
7430
7431        /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7432        pr_info("Movable zone start for each node\n");
7433        for (i = 0; i < MAX_NUMNODES; i++) {
7434                if (zone_movable_pfn[i])
7435                        pr_info("  Node %d: %#018Lx\n", i,
7436                               (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7437        }
7438
7439        /*
7440         * Print out the early node map, and initialize the
7441         * subsection-map relative to active online memory ranges to
7442         * enable future "sub-section" extensions of the memory map.
7443         */
7444        pr_info("Early memory node ranges\n");
7445        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7446                pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7447                        (u64)start_pfn << PAGE_SHIFT,
7448                        ((u64)end_pfn << PAGE_SHIFT) - 1);
7449                subsection_map_init(start_pfn, end_pfn - start_pfn);
7450        }
7451
7452        /* Initialise every node */
7453        mminit_verify_pageflags_layout();
7454        setup_nr_node_ids();
7455        init_unavailable_mem();
7456        for_each_online_node(nid) {
7457                pg_data_t *pgdat = NODE_DATA(nid);
7458                free_area_init_node(nid);
7459
7460                /* Any memory on that node */
7461                if (pgdat->node_present_pages)
7462                        node_set_state(nid, N_MEMORY);
7463                check_for_memory(pgdat, nid);
7464        }
7465}
7466
7467static int __init cmdline_parse_core(char *p, unsigned long *core,
7468                                     unsigned long *percent)
7469{
7470        unsigned long long coremem;
7471        char *endptr;
7472
7473        if (!p)
7474                return -EINVAL;
7475
7476        /* Value may be a percentage of total memory, otherwise bytes */
7477        coremem = simple_strtoull(p, &endptr, 0);
7478        if (*endptr == '%') {
7479                /* Paranoid check for percent values greater than 100 */
7480                WARN_ON(coremem > 100);
7481
7482                *percent = coremem;
7483        } else {
7484                coremem = memparse(p, &p);
7485                /* Paranoid check that UL is enough for the coremem value */
7486                WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7487
7488                *core = coremem >> PAGE_SHIFT;
7489                *percent = 0UL;
7490        }
7491        return 0;
7492}
7493
7494/*
7495 * kernelcore=size sets the amount of memory for use for allocations that
7496 * cannot be reclaimed or migrated.
7497 */
7498static int __init cmdline_parse_kernelcore(char *p)
7499{
7500        /* parse kernelcore=mirror */
7501        if (parse_option_str(p, "mirror")) {
7502                mirrored_kernelcore = true;
7503                return 0;
7504        }
7505
7506        return cmdline_parse_core(p, &required_kernelcore,
7507                                  &required_kernelcore_percent);
7508}
7509
7510/*
7511 * movablecore=size sets the amount of memory for use for allocations that
7512 * can be reclaimed or migrated.
7513 */
7514static int __init cmdline_parse_movablecore(char *p)
7515{
7516        return cmdline_parse_core(p, &required_movablecore,
7517                                  &required_movablecore_percent);
7518}
7519
7520early_param("kernelcore", cmdline_parse_kernelcore);
7521early_param("movablecore", cmdline_parse_movablecore);
7522
7523void adjust_managed_page_count(struct page *page, long count)
7524{
7525        atomic_long_add(count, &page_zone(page)->managed_pages);
7526        totalram_pages_add(count);
7527#ifdef CONFIG_HIGHMEM
7528        if (PageHighMem(page))
7529                totalhigh_pages_add(count);
7530#endif
7531}
7532EXPORT_SYMBOL(adjust_managed_page_count);
7533
7534unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7535{
7536        void *pos;
7537        unsigned long pages = 0;
7538
7539        start = (void *)PAGE_ALIGN((unsigned long)start);
7540        end = (void *)((unsigned long)end & PAGE_MASK);
7541        for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7542                struct page *page = virt_to_page(pos);
7543                void *direct_map_addr;
7544
7545                /*
7546                 * 'direct_map_addr' might be different from 'pos'
7547                 * because some architectures' virt_to_page()
7548                 * work with aliases.  Getting the direct map
7549                 * address ensures that we get a _writeable_
7550                 * alias for the memset().
7551                 */
7552                direct_map_addr = page_address(page);
7553                if ((unsigned int)poison <= 0xFF)
7554                        memset(direct_map_addr, poison, PAGE_SIZE);
7555
7556                free_reserved_page(page);
7557        }
7558
7559        if (pages && s)
7560                pr_info("Freeing %s memory: %ldK\n",
7561                        s, pages << (PAGE_SHIFT - 10));
7562
7563        return pages;
7564}
7565
7566#ifdef  CONFIG_HIGHMEM
7567void free_highmem_page(struct page *page)
7568{
7569        __free_reserved_page(page);
7570        totalram_pages_inc();
7571        atomic_long_inc(&page_zone(page)->managed_pages);
7572        totalhigh_pages_inc();
7573}
7574#endif
7575
7576
7577void __init mem_init_print_info(const char *str)
7578{
7579        unsigned long physpages, codesize, datasize, rosize, bss_size;
7580        unsigned long init_code_size, init_data_size;
7581
7582        physpages = get_num_physpages();
7583        codesize = _etext - _stext;
7584        datasize = _edata - _sdata;
7585        rosize = __end_rodata - __start_rodata;
7586        bss_size = __bss_stop - __bss_start;
7587        init_data_size = __init_end - __init_begin;
7588        init_code_size = _einittext - _sinittext;
7589
7590        /*
7591         * Detect special cases and adjust section sizes accordingly:
7592         * 1) .init.* may be embedded into .data sections
7593         * 2) .init.text.* may be out of [__init_begin, __init_end],
7594         *    please refer to arch/tile/kernel/vmlinux.lds.S.
7595         * 3) .rodata.* may be embedded into .text or .data sections.
7596         */
7597#define adj_init_size(start, end, size, pos, adj) \
7598        do { \
7599                if (start <= pos && pos < end && size > adj) \
7600                        size -= adj; \
7601        } while (0)
7602
7603        adj_init_size(__init_begin, __init_end, init_data_size,
7604                     _sinittext, init_code_size);
7605        adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7606        adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7607        adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7608        adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7609
7610#undef  adj_init_size
7611
7612        pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7613#ifdef  CONFIG_HIGHMEM
7614                ", %luK highmem"
7615#endif
7616                "%s%s)\n",
7617                nr_free_pages() << (PAGE_SHIFT - 10),
7618                physpages << (PAGE_SHIFT - 10),
7619                codesize >> 10, datasize >> 10, rosize >> 10,
7620                (init_data_size + init_code_size) >> 10, bss_size >> 10,
7621                (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7622                totalcma_pages << (PAGE_SHIFT - 10),
7623#ifdef  CONFIG_HIGHMEM
7624                totalhigh_pages() << (PAGE_SHIFT - 10),
7625#endif
7626                str ? ", " : "", str ? str : "");
7627}
7628
7629/**
7630 * set_dma_reserve - set the specified number of pages reserved in the first zone
7631 * @new_dma_reserve: The number of pages to mark reserved
7632 *
7633 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7634 * In the DMA zone, a significant percentage may be consumed by kernel image
7635 * and other unfreeable allocations which can skew the watermarks badly. This
7636 * function may optionally be used to account for unfreeable pages in the
7637 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7638 * smaller per-cpu batchsize.
7639 */
7640void __init set_dma_reserve(unsigned long new_dma_reserve)
7641{
7642        dma_reserve = new_dma_reserve;
7643}
7644
7645static int page_alloc_cpu_dead(unsigned int cpu)
7646{
7647
7648        lru_add_drain_cpu(cpu);
7649        drain_pages(cpu);
7650
7651        /*
7652         * Spill the event counters of the dead processor
7653         * into the current processors event counters.
7654         * This artificially elevates the count of the current
7655         * processor.
7656         */
7657        vm_events_fold_cpu(cpu);
7658
7659        /*
7660         * Zero the differential counters of the dead processor
7661         * so that the vm statistics are consistent.
7662         *
7663         * This is only okay since the processor is dead and cannot
7664         * race with what we are doing.
7665         */
7666        cpu_vm_stats_fold(cpu);
7667        return 0;
7668}
7669
7670#ifdef CONFIG_NUMA
7671int hashdist = HASHDIST_DEFAULT;
7672
7673static int __init set_hashdist(char *str)
7674{
7675        if (!str)
7676                return 0;
7677        hashdist = simple_strtoul(str, &str, 0);
7678        return 1;
7679}
7680__setup("hashdist=", set_hashdist);
7681#endif
7682
7683void __init page_alloc_init(void)
7684{
7685        int ret;
7686
7687#ifdef CONFIG_NUMA
7688        if (num_node_state(N_MEMORY) == 1)
7689                hashdist = 0;
7690#endif
7691
7692        ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7693                                        "mm/page_alloc:dead", NULL,
7694                                        page_alloc_cpu_dead);
7695        WARN_ON(ret < 0);
7696}
7697
7698/*
7699 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7700 *      or min_free_kbytes changes.
7701 */
7702static void calculate_totalreserve_pages(void)
7703{
7704        struct pglist_data *pgdat;
7705        unsigned long reserve_pages = 0;
7706        enum zone_type i, j;
7707
7708        for_each_online_pgdat(pgdat) {
7709
7710                pgdat->totalreserve_pages = 0;
7711
7712                for (i = 0; i < MAX_NR_ZONES; i++) {
7713                        struct zone *zone = pgdat->node_zones + i;
7714                        long max = 0;
7715                        unsigned long managed_pages = zone_managed_pages(zone);
7716
7717                        /* Find valid and maximum lowmem_reserve in the zone */
7718                        for (j = i; j < MAX_NR_ZONES; j++) {
7719                                if (zone->lowmem_reserve[j] > max)
7720                                        max = zone->lowmem_reserve[j];
7721                        }
7722
7723                        /* we treat the high watermark as reserved pages. */
7724                        max += high_wmark_pages(zone);
7725
7726                        if (max > managed_pages)
7727                                max = managed_pages;
7728
7729                        pgdat->totalreserve_pages += max;
7730
7731                        reserve_pages += max;
7732                }
7733        }
7734        totalreserve_pages = reserve_pages;
7735}
7736
7737/*
7738 * setup_per_zone_lowmem_reserve - called whenever
7739 *      sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7740 *      has a correct pages reserved value, so an adequate number of
7741 *      pages are left in the zone after a successful __alloc_pages().
7742 */
7743static void setup_per_zone_lowmem_reserve(void)
7744{
7745        struct pglist_data *pgdat;
7746        enum zone_type j, idx;
7747
7748        for_each_online_pgdat(pgdat) {
7749                for (j = 0; j < MAX_NR_ZONES; j++) {
7750                        struct zone *zone = pgdat->node_zones + j;
7751                        unsigned long managed_pages = zone_managed_pages(zone);
7752
7753                        zone->lowmem_reserve[j] = 0;
7754
7755                        idx = j;
7756                        while (idx) {
7757                                struct zone *lower_zone;
7758
7759                                idx--;
7760                                lower_zone = pgdat->node_zones + idx;
7761
7762                                if (!sysctl_lowmem_reserve_ratio[idx] ||
7763                                    !zone_managed_pages(lower_zone)) {
7764                                        lower_zone->lowmem_reserve[j] = 0;
7765                                        continue;
7766                                } else {
7767                                        lower_zone->lowmem_reserve[j] =
7768                                                managed_pages / sysctl_lowmem_reserve_ratio[idx];
7769                                }
7770                                managed_pages += zone_managed_pages(lower_zone);
7771                        }
7772                }
7773        }
7774
7775        /* update totalreserve_pages */
7776        calculate_totalreserve_pages();
7777}
7778
7779static void __setup_per_zone_wmarks(void)
7780{
7781        unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7782        unsigned long lowmem_pages = 0;
7783        struct zone *zone;
7784        unsigned long flags;
7785
7786        /* Calculate total number of !ZONE_HIGHMEM pages */
7787        for_each_zone(zone) {
7788                if (!is_highmem(zone))
7789                        lowmem_pages += zone_managed_pages(zone);
7790        }
7791
7792        for_each_zone(zone) {
7793                u64 tmp;
7794
7795                spin_lock_irqsave(&zone->lock, flags);
7796                tmp = (u64)pages_min * zone_managed_pages(zone);
7797                do_div(tmp, lowmem_pages);
7798                if (is_highmem(zone)) {
7799                        /*
7800                         * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7801                         * need highmem pages, so cap pages_min to a small
7802                         * value here.
7803                         *
7804                         * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7805                         * deltas control async page reclaim, and so should
7806                         * not be capped for highmem.
7807                         */
7808                        unsigned long min_pages;
7809
7810                        min_pages = zone_managed_pages(zone) / 1024;
7811                        min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7812                        zone->_watermark[WMARK_MIN] = min_pages;
7813                } else {
7814                        /*
7815                         * If it's a lowmem zone, reserve a number of pages
7816                         * proportionate to the zone's size.
7817                         */
7818                        zone->_watermark[WMARK_MIN] = tmp;
7819                }
7820
7821                /*
7822                 * Set the kswapd watermarks distance according to the
7823                 * scale factor in proportion to available memory, but
7824                 * ensure a minimum size on small systems.
7825                 */
7826                tmp = max_t(u64, tmp >> 2,
7827                            mult_frac(zone_managed_pages(zone),
7828                                      watermark_scale_factor, 10000));
7829
7830                zone->watermark_boost = 0;
7831                zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7832                zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7833
7834                spin_unlock_irqrestore(&zone->lock, flags);
7835        }
7836
7837        /* update totalreserve_pages */
7838        calculate_totalreserve_pages();
7839}
7840
7841/**
7842 * setup_per_zone_wmarks - called when min_free_kbytes changes
7843 * or when memory is hot-{added|removed}
7844 *
7845 * Ensures that the watermark[min,low,high] values for each zone are set
7846 * correctly with respect to min_free_kbytes.
7847 */
7848void setup_per_zone_wmarks(void)
7849{
7850        static DEFINE_SPINLOCK(lock);
7851
7852        spin_lock(&lock);
7853        __setup_per_zone_wmarks();
7854        spin_unlock(&lock);
7855}
7856
7857/*
7858 * Initialise min_free_kbytes.
7859 *
7860 * For small machines we want it small (128k min).  For large machines
7861 * we want it large (256MB max).  But it is not linear, because network
7862 * bandwidth does not increase linearly with machine size.  We use
7863 *
7864 *      min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7865 *      min_free_kbytes = sqrt(lowmem_kbytes * 16)
7866 *
7867 * which yields
7868 *
7869 * 16MB:        512k
7870 * 32MB:        724k
7871 * 64MB:        1024k
7872 * 128MB:       1448k
7873 * 256MB:       2048k
7874 * 512MB:       2896k
7875 * 1024MB:      4096k
7876 * 2048MB:      5792k
7877 * 4096MB:      8192k
7878 * 8192MB:      11584k
7879 * 16384MB:     16384k
7880 */
7881int __meminit init_per_zone_wmark_min(void)
7882{
7883        unsigned long lowmem_kbytes;
7884        int new_min_free_kbytes;
7885
7886        lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7887        new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7888
7889        if (new_min_free_kbytes > user_min_free_kbytes) {
7890                min_free_kbytes = new_min_free_kbytes;
7891                if (min_free_kbytes < 128)
7892                        min_free_kbytes = 128;
7893                if (min_free_kbytes > 262144)
7894                        min_free_kbytes = 262144;
7895        } else {
7896                pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7897                                new_min_free_kbytes, user_min_free_kbytes);
7898        }
7899        setup_per_zone_wmarks();
7900        refresh_zone_stat_thresholds();
7901        setup_per_zone_lowmem_reserve();
7902
7903#ifdef CONFIG_NUMA
7904        setup_min_unmapped_ratio();
7905        setup_min_slab_ratio();
7906#endif
7907
7908        khugepaged_min_free_kbytes_update();
7909
7910        return 0;
7911}
7912postcore_initcall(init_per_zone_wmark_min)
7913
7914/*
7915 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7916 *      that we can call two helper functions whenever min_free_kbytes
7917 *      changes.
7918 */
7919int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7920                void *buffer, size_t *length, loff_t *ppos)
7921{
7922        int rc;
7923
7924        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7925        if (rc)
7926                return rc;
7927
7928        if (write) {
7929                user_min_free_kbytes = min_free_kbytes;
7930                setup_per_zone_wmarks();
7931        }
7932        return 0;
7933}
7934
7935int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7936                void *buffer, size_t *length, loff_t *ppos)
7937{
7938        int rc;
7939
7940        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7941        if (rc)
7942                return rc;
7943
7944        if (write)
7945                setup_per_zone_wmarks();
7946
7947        return 0;
7948}
7949
7950#ifdef CONFIG_NUMA
7951static void setup_min_unmapped_ratio(void)
7952{
7953        pg_data_t *pgdat;
7954        struct zone *zone;
7955
7956        for_each_online_pgdat(pgdat)
7957                pgdat->min_unmapped_pages = 0;
7958
7959        for_each_zone(zone)
7960                zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7961                                                         sysctl_min_unmapped_ratio) / 100;
7962}
7963
7964
7965int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7966                void *buffer, size_t *length, loff_t *ppos)
7967{
7968        int rc;
7969
7970        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7971        if (rc)
7972                return rc;
7973
7974        setup_min_unmapped_ratio();
7975
7976        return 0;
7977}
7978
7979static void setup_min_slab_ratio(void)
7980{
7981        pg_data_t *pgdat;
7982        struct zone *zone;
7983
7984        for_each_online_pgdat(pgdat)
7985                pgdat->min_slab_pages = 0;
7986
7987        for_each_zone(zone)
7988                zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7989                                                     sysctl_min_slab_ratio) / 100;
7990}
7991
7992int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7993                void *buffer, size_t *length, loff_t *ppos)
7994{
7995        int rc;
7996
7997        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7998        if (rc)
7999                return rc;
8000
8001        setup_min_slab_ratio();
8002
8003        return 0;
8004}
8005#endif
8006
8007/*
8008 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8009 *      proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8010 *      whenever sysctl_lowmem_reserve_ratio changes.
8011 *
8012 * The reserve ratio obviously has absolutely no relation with the
8013 * minimum watermarks. The lowmem reserve ratio can only make sense
8014 * if in function of the boot time zone sizes.
8015 */
8016int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8017                void *buffer, size_t *length, loff_t *ppos)
8018{
8019        int i;
8020
8021        proc_dointvec_minmax(table, write, buffer, length, ppos);
8022
8023        for (i = 0; i < MAX_NR_ZONES; i++) {
8024                if (sysctl_lowmem_reserve_ratio[i] < 1)
8025                        sysctl_lowmem_reserve_ratio[i] = 0;
8026        }
8027
8028        setup_per_zone_lowmem_reserve();
8029        return 0;
8030}
8031
8032static void __zone_pcp_update(struct zone *zone)
8033{
8034        unsigned int cpu;
8035
8036        for_each_possible_cpu(cpu)
8037                pageset_set_high_and_batch(zone,
8038                                per_cpu_ptr(zone->pageset, cpu));
8039}
8040
8041/*
8042 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8043 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8044 * pagelist can have before it gets flushed back to buddy allocator.
8045 */
8046int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8047                void *buffer, size_t *length, loff_t *ppos)
8048{
8049        struct zone *zone;
8050        int old_percpu_pagelist_fraction;
8051        int ret;
8052
8053        mutex_lock(&pcp_batch_high_lock);
8054        old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8055
8056        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8057        if (!write || ret < 0)
8058                goto out;
8059
8060        /* Sanity checking to avoid pcp imbalance */
8061        if (percpu_pagelist_fraction &&
8062            percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8063                percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8064                ret = -EINVAL;
8065                goto out;
8066        }
8067
8068        /* No change? */
8069        if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8070                goto out;
8071
8072        for_each_populated_zone(zone)
8073                __zone_pcp_update(zone);
8074out:
8075        mutex_unlock(&pcp_batch_high_lock);
8076        return ret;
8077}
8078
8079#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8080/*
8081 * Returns the number of pages that arch has reserved but
8082 * is not known to alloc_large_system_hash().
8083 */
8084static unsigned long __init arch_reserved_kernel_pages(void)
8085{
8086        return 0;
8087}
8088#endif
8089
8090/*
8091 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8092 * machines. As memory size is increased the scale is also increased but at
8093 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8094 * quadruples the scale is increased by one, which means the size of hash table
8095 * only doubles, instead of quadrupling as well.
8096 * Because 32-bit systems cannot have large physical memory, where this scaling
8097 * makes sense, it is disabled on such platforms.
8098 */
8099#if __BITS_PER_LONG > 32
8100#define ADAPT_SCALE_BASE        (64ul << 30)
8101#define ADAPT_SCALE_SHIFT       2
8102#define ADAPT_SCALE_NPAGES      (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8103#endif
8104
8105/*
8106 * allocate a large system hash table from bootmem
8107 * - it is assumed that the hash table must contain an exact power-of-2
8108 *   quantity of entries
8109 * - limit is the number of hash buckets, not the total allocation size
8110 */
8111void *__init alloc_large_system_hash(const char *tablename,
8112                                     unsigned long bucketsize,
8113                                     unsigned long numentries,
8114                                     int scale,
8115                                     int flags,
8116                                     unsigned int *_hash_shift,
8117                                     unsigned int *_hash_mask,
8118                                     unsigned long low_limit,
8119                                     unsigned long high_limit)
8120{
8121        unsigned long long max = high_limit;
8122        unsigned long log2qty, size;
8123        void *table = NULL;
8124        gfp_t gfp_flags;
8125        bool virt;
8126
8127        /* allow the kernel cmdline to have a say */
8128        if (!numentries) {
8129                /* round applicable memory size up to nearest megabyte */
8130                numentries = nr_kernel_pages;
8131                numentries -= arch_reserved_kernel_pages();
8132
8133                /* It isn't necessary when PAGE_SIZE >= 1MB */
8134                if (PAGE_SHIFT < 20)
8135                        numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8136
8137#if __BITS_PER_LONG > 32
8138                if (!high_limit) {
8139                        unsigned long adapt;
8140
8141                        for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8142                             adapt <<= ADAPT_SCALE_SHIFT)
8143                                scale++;
8144                }
8145#endif
8146
8147                /* limit to 1 bucket per 2^scale bytes of low memory */
8148                if (scale > PAGE_SHIFT)
8149                        numentries >>= (scale - PAGE_SHIFT);
8150                else
8151                        numentries <<= (PAGE_SHIFT - scale);
8152
8153                /* Make sure we've got at least a 0-order allocation.. */
8154                if (unlikely(flags & HASH_SMALL)) {
8155                        /* Makes no sense without HASH_EARLY */
8156                        WARN_ON(!(flags & HASH_EARLY));
8157                        if (!(numentries >> *_hash_shift)) {
8158                                numentries = 1UL << *_hash_shift;
8159                                BUG_ON(!numentries);
8160                        }
8161                } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8162                        numentries = PAGE_SIZE / bucketsize;
8163        }
8164        numentries = roundup_pow_of_two(numentries);
8165
8166        /* limit allocation size to 1/16 total memory by default */
8167        if (max == 0) {
8168                max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8169                do_div(max, bucketsize);
8170        }
8171        max = min(max, 0x80000000ULL);
8172
8173        if (numentries < low_limit)
8174                numentries = low_limit;
8175        if (numentries > max)
8176                numentries = max;
8177
8178        log2qty = ilog2(numentries);
8179
8180        gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8181        do {
8182                virt = false;
8183                size = bucketsize << log2qty;
8184                if (flags & HASH_EARLY) {
8185                        if (flags & HASH_ZERO)
8186                                table = memblock_alloc(size, SMP_CACHE_BYTES);
8187                        else
8188                                table = memblock_alloc_raw(size,
8189                                                           SMP_CACHE_BYTES);
8190                } else if (get_order(size) >= MAX_ORDER || hashdist) {
8191                        table = __vmalloc(size, gfp_flags);
8192                        virt = true;
8193                } else {
8194                        /*
8195                         * If bucketsize is not a power-of-two, we may free
8196                         * some pages at the end of hash table which
8197                         * alloc_pages_exact() automatically does
8198                         */
8199                        table = alloc_pages_exact(size, gfp_flags);
8200                        kmemleak_alloc(table, size, 1, gfp_flags);
8201                }
8202        } while (!table && size > PAGE_SIZE && --log2qty);
8203
8204        if (!table)
8205                panic("Failed to allocate %s hash table\n", tablename);
8206
8207        pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8208                tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8209                virt ? "vmalloc" : "linear");
8210
8211        if (_hash_shift)
8212                *_hash_shift = log2qty;
8213        if (_hash_mask)
8214                *_hash_mask = (1 << log2qty) - 1;
8215
8216        return table;
8217}
8218
8219/*
8220 * This function checks whether pageblock includes unmovable pages or not.
8221 *
8222 * PageLRU check without isolation or lru_lock could race so that
8223 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8224 * check without lock_page also may miss some movable non-lru pages at
8225 * race condition. So you can't expect this function should be exact.
8226 *
8227 * Returns a page without holding a reference. If the caller wants to
8228 * dereference that page (e.g., dumping), it has to make sure that it
8229 * cannot get removed (e.g., via memory unplug) concurrently.
8230 *
8231 */
8232struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8233                                 int migratetype, int flags)
8234{
8235        unsigned long iter = 0;
8236        unsigned long pfn = page_to_pfn(page);
8237
8238        /*
8239         * TODO we could make this much more efficient by not checking every
8240         * page in the range if we know all of them are in MOVABLE_ZONE and
8241         * that the movable zone guarantees that pages are migratable but
8242         * the later is not the case right now unfortunatelly. E.g. movablecore
8243         * can still lead to having bootmem allocations in zone_movable.
8244         */
8245
8246        if (is_migrate_cma_page(page)) {
8247                /*
8248                 * CMA allocations (alloc_contig_range) really need to mark
8249                 * isolate CMA pageblocks even when they are not movable in fact
8250                 * so consider them movable here.
8251                 */
8252                if (is_migrate_cma(migratetype))
8253                        return NULL;
8254
8255                return page;
8256        }
8257
8258        for (; iter < pageblock_nr_pages; iter++) {
8259                if (!pfn_valid_within(pfn + iter))
8260                        continue;
8261
8262                page = pfn_to_page(pfn + iter);
8263
8264                if (PageReserved(page))
8265                        return page;
8266
8267                /*
8268                 * If the zone is movable and we have ruled out all reserved
8269                 * pages then it should be reasonably safe to assume the rest
8270                 * is movable.
8271                 */
8272                if (zone_idx(zone) == ZONE_MOVABLE)
8273                        continue;
8274
8275                /*
8276                 * Hugepages are not in LRU lists, but they're movable.
8277                 * THPs are on the LRU, but need to be counted as #small pages.
8278                 * We need not scan over tail pages because we don't
8279                 * handle each tail page individually in migration.
8280                 */
8281                if (PageHuge(page) || PageTransCompound(page)) {
8282                        struct page *head = compound_head(page);
8283                        unsigned int skip_pages;
8284
8285                        if (PageHuge(page)) {
8286                                if (!hugepage_migration_supported(page_hstate(head)))
8287                                        return page;
8288                        } else if (!PageLRU(head) && !__PageMovable(head)) {
8289                                return page;
8290                        }
8291
8292                        skip_pages = compound_nr(head) - (page - head);
8293                        iter += skip_pages - 1;
8294                        continue;
8295                }
8296
8297                /*
8298                 * We can't use page_count without pin a page
8299                 * because another CPU can free compound page.
8300                 * This check already skips compound tails of THP
8301                 * because their page->_refcount is zero at all time.
8302                 */
8303                if (!page_ref_count(page)) {
8304                        if (PageBuddy(page))
8305                                iter += (1 << page_order(page)) - 1;
8306                        continue;
8307                }
8308
8309                /*
8310                 * The HWPoisoned page may be not in buddy system, and
8311                 * page_count() is not 0.
8312                 */
8313                if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8314                        continue;
8315
8316                /*
8317                 * We treat all PageOffline() pages as movable when offlining
8318                 * to give drivers a chance to decrement their reference count
8319                 * in MEM_GOING_OFFLINE in order to indicate that these pages
8320                 * can be offlined as there are no direct references anymore.
8321                 * For actually unmovable PageOffline() where the driver does
8322                 * not support this, we will fail later when trying to actually
8323                 * move these pages that still have a reference count > 0.
8324                 * (false negatives in this function only)
8325                 */
8326                if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8327                        continue;
8328
8329                if (__PageMovable(page) || PageLRU(page))
8330                        continue;
8331
8332                /*
8333                 * If there are RECLAIMABLE pages, we need to check
8334                 * it.  But now, memory offline itself doesn't call
8335                 * shrink_node_slabs() and it still to be fixed.
8336                 */
8337                /*
8338                 * If the page is not RAM, page_count()should be 0.
8339                 * we don't need more check. This is an _used_ not-movable page.
8340                 *
8341                 * The problematic thing here is PG_reserved pages. PG_reserved
8342                 * is set to both of a memory hole page and a _used_ kernel
8343                 * page at boot.
8344                 */
8345                return page;
8346        }
8347        return NULL;
8348}
8349
8350#ifdef CONFIG_CONTIG_ALLOC
8351static unsigned long pfn_max_align_down(unsigned long pfn)
8352{
8353        return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8354                             pageblock_nr_pages) - 1);
8355}
8356
8357static unsigned long pfn_max_align_up(unsigned long pfn)
8358{
8359        return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8360                                pageblock_nr_pages));
8361}
8362
8363/* [start, end) must belong to a single zone. */
8364static int __alloc_contig_migrate_range(struct compact_control *cc,
8365                                        unsigned long start, unsigned long end)
8366{
8367        /* This function is based on compact_zone() from compaction.c. */
8368        unsigned int nr_reclaimed;
8369        unsigned long pfn = start;
8370        unsigned int tries = 0;
8371        int ret = 0;
8372        struct migration_target_control mtc = {
8373                .nid = zone_to_nid(cc->zone),
8374                .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8375        };
8376
8377        migrate_prep();
8378
8379        while (pfn < end || !list_empty(&cc->migratepages)) {
8380                if (fatal_signal_pending(current)) {
8381                        ret = -EINTR;
8382                        break;
8383                }
8384
8385                if (list_empty(&cc->migratepages)) {
8386                        cc->nr_migratepages = 0;
8387                        pfn = isolate_migratepages_range(cc, pfn, end);
8388                        if (!pfn) {
8389                                ret = -EINTR;
8390                                break;
8391                        }
8392                        tries = 0;
8393                } else if (++tries == 5) {
8394                        ret = ret < 0 ? ret : -EBUSY;
8395                        break;
8396                }
8397
8398                nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8399                                                        &cc->migratepages);
8400                cc->nr_migratepages -= nr_reclaimed;
8401
8402                ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8403                                NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8404        }
8405        if (ret < 0) {
8406                putback_movable_pages(&cc->migratepages);
8407                return ret;
8408        }
8409        return 0;
8410}
8411
8412/**
8413 * alloc_contig_range() -- tries to allocate given range of pages
8414 * @start:      start PFN to allocate
8415 * @end:        one-past-the-last PFN to allocate
8416 * @migratetype:        migratetype of the underlaying pageblocks (either
8417 *                      #MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8418 *                      in range must have the same migratetype and it must
8419 *                      be either of the two.
8420 * @gfp_mask:   GFP mask to use during compaction
8421 *
8422 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8423 * aligned.  The PFN range must belong to a single zone.
8424 *
8425 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8426 * pageblocks in the range.  Once isolated, the pageblocks should not
8427 * be modified by others.
8428 *
8429 * Return: zero on success or negative error code.  On success all
8430 * pages which PFN is in [start, end) are allocated for the caller and
8431 * need to be freed with free_contig_range().
8432 */
8433int alloc_contig_range(unsigned long start, unsigned long end,
8434                       unsigned migratetype, gfp_t gfp_mask)
8435{
8436        unsigned long outer_start, outer_end;
8437        unsigned int order;
8438        int ret = 0;
8439
8440        struct compact_control cc = {
8441                .nr_migratepages = 0,
8442                .order = -1,
8443                .zone = page_zone(pfn_to_page(start)),
8444                .mode = MIGRATE_SYNC,
8445                .ignore_skip_hint = true,
8446                .no_set_skip_hint = true,
8447                .gfp_mask = current_gfp_context(gfp_mask),
8448                .alloc_contig = true,
8449        };
8450        INIT_LIST_HEAD(&cc.migratepages);
8451
8452        /*
8453         * What we do here is we mark all pageblocks in range as
8454         * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8455         * have different sizes, and due to the way page allocator
8456         * work, we align the range to biggest of the two pages so
8457         * that page allocator won't try to merge buddies from
8458         * different pageblocks and change MIGRATE_ISOLATE to some
8459         * other migration type.
8460         *
8461         * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8462         * migrate the pages from an unaligned range (ie. pages that
8463         * we are interested in).  This will put all the pages in
8464         * range back to page allocator as MIGRATE_ISOLATE.
8465         *
8466         * When this is done, we take the pages in range from page
8467         * allocator removing them from the buddy system.  This way
8468         * page allocator will never consider using them.
8469         *
8470         * This lets us mark the pageblocks back as
8471         * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8472         * aligned range but not in the unaligned, original range are
8473         * put back to page allocator so that buddy can use them.
8474         */
8475
8476        ret = start_isolate_page_range(pfn_max_align_down(start),
8477                                       pfn_max_align_up(end), migratetype, 0);
8478        if (ret < 0)
8479                return ret;
8480
8481        /*
8482         * In case of -EBUSY, we'd like to know which page causes problem.
8483         * So, just fall through. test_pages_isolated() has a tracepoint
8484         * which will report the busy page.
8485         *
8486         * It is possible that busy pages could become available before
8487         * the call to test_pages_isolated, and the range will actually be
8488         * allocated.  So, if we fall through be sure to clear ret so that
8489         * -EBUSY is not accidentally used or returned to caller.
8490         */
8491        ret = __alloc_contig_migrate_range(&cc, start, end);
8492        if (ret && ret != -EBUSY)
8493                goto done;
8494        ret =0;
8495
8496        /*
8497         * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8498         * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8499         * more, all pages in [start, end) are free in page allocator.
8500         * What we are going to do is to allocate all pages from
8501         * [start, end) (that is remove them from page allocator).
8502         *
8503         * The only problem is that pages at the beginning and at the
8504         * end of interesting range may be not aligned with pages that
8505         * page allocator holds, ie. they can be part of higher order
8506         * pages.  Because of this, we reserve the bigger range and
8507         * once this is done free the pages we are not interested in.
8508         *
8509         * We don't have to hold zone->lock here because the pages are
8510         * isolated thus they won't get removed from buddy.
8511         */
8512
8513        lru_add_drain_all();
8514
8515        order = 0;
8516        outer_start = start;
8517        while (!PageBuddy(pfn_to_page(outer_start))) {
8518                if (++order >= MAX_ORDER) {
8519                        outer_start = start;
8520                        break;
8521                }
8522                outer_start &= ~0UL << order;
8523        }
8524
8525        if (outer_start != start) {
8526                order = page_order(pfn_to_page(outer_start));
8527
8528                /*
8529                 * outer_start page could be small order buddy page and
8530                 * it doesn't include start page. Adjust outer_start
8531                 * in this case to report failed page properly
8532                 * on tracepoint in test_pages_isolated()
8533                 */
8534                if (outer_start + (1UL << order) <= start)
8535                        outer_start = start;
8536        }
8537
8538        /* Make sure the range is really isolated. */
8539        if (test_pages_isolated(outer_start, end, 0)) {
8540                pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8541                        __func__, outer_start, end);
8542                ret = -EBUSY;
8543                goto done;
8544        }
8545
8546        /* Grab isolated pages from freelists. */
8547        outer_end = isolate_freepages_range(&cc, outer_start, end);
8548        if (!outer_end) {
8549                ret = -EBUSY;
8550                goto done;
8551        }
8552
8553        /* Free head and tail (if any) */
8554        if (start != outer_start)
8555                free_contig_range(outer_start, start - outer_start);
8556        if (end != outer_end)
8557                free_contig_range(end, outer_end - end);
8558
8559done:
8560        undo_isolate_page_range(pfn_max_align_down(start),
8561                                pfn_max_align_up(end), migratetype);
8562        return ret;
8563}
8564EXPORT_SYMBOL(alloc_contig_range);
8565
8566static int __alloc_contig_pages(unsigned long start_pfn,
8567                                unsigned long nr_pages, gfp_t gfp_mask)
8568{
8569        unsigned long end_pfn = start_pfn + nr_pages;
8570
8571        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8572                                  gfp_mask);
8573}
8574
8575static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8576                                   unsigned long nr_pages)
8577{
8578        unsigned long i, end_pfn = start_pfn + nr_pages;
8579        struct page *page;
8580
8581        for (i = start_pfn; i < end_pfn; i++) {
8582                page = pfn_to_online_page(i);
8583                if (!page)
8584                        return false;
8585
8586                if (page_zone(page) != z)
8587                        return false;
8588
8589                if (PageReserved(page))
8590                        return false;
8591
8592                if (page_count(page) > 0)
8593                        return false;
8594
8595                if (PageHuge(page))
8596                        return false;
8597        }
8598        return true;
8599}
8600
8601static bool zone_spans_last_pfn(const struct zone *zone,
8602                                unsigned long start_pfn, unsigned long nr_pages)
8603{
8604        unsigned long last_pfn = start_pfn + nr_pages - 1;
8605
8606        return zone_spans_pfn(zone, last_pfn);
8607}
8608
8609/**
8610 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8611 * @nr_pages:   Number of contiguous pages to allocate
8612 * @gfp_mask:   GFP mask to limit search and used during compaction
8613 * @nid:        Target node
8614 * @nodemask:   Mask for other possible nodes
8615 *
8616 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8617 * on an applicable zonelist to find a contiguous pfn range which can then be
8618 * tried for allocation with alloc_contig_range(). This routine is intended
8619 * for allocation requests which can not be fulfilled with the buddy allocator.
8620 *
8621 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8622 * power of two then the alignment is guaranteed to be to the given nr_pages
8623 * (e.g. 1GB request would be aligned to 1GB).
8624 *
8625 * Allocated pages can be freed with free_contig_range() or by manually calling
8626 * __free_page() on each allocated page.
8627 *
8628 * Return: pointer to contiguous pages on success, or NULL if not successful.
8629 */
8630struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8631                                int nid, nodemask_t *nodemask)
8632{
8633        unsigned long ret, pfn, flags;
8634        struct zonelist *zonelist;
8635        struct zone *zone;
8636        struct zoneref *z;
8637
8638        zonelist = node_zonelist(nid, gfp_mask);
8639        for_each_zone_zonelist_nodemask(zone, z, zonelist,
8640                                        gfp_zone(gfp_mask), nodemask) {
8641                spin_lock_irqsave(&zone->lock, flags);
8642
8643                pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8644                while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8645                        if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8646                                /*
8647                                 * We release the zone lock here because
8648                                 * alloc_contig_range() will also lock the zone
8649                                 * at some point. If there's an allocation
8650                                 * spinning on this lock, it may win the race
8651                                 * and cause alloc_contig_range() to fail...
8652                                 */
8653                                spin_unlock_irqrestore(&zone->lock, flags);
8654                                ret = __alloc_contig_pages(pfn, nr_pages,
8655                                                        gfp_mask);
8656                                if (!ret)
8657                                        return pfn_to_page(pfn);
8658                                spin_lock_irqsave(&zone->lock, flags);
8659                        }
8660                        pfn += nr_pages;
8661                }
8662                spin_unlock_irqrestore(&zone->lock, flags);
8663        }
8664        return NULL;
8665}
8666#endif /* CONFIG_CONTIG_ALLOC */
8667
8668void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8669{
8670        unsigned int count = 0;
8671
8672        for (; nr_pages--; pfn++) {
8673                struct page *page = pfn_to_page(pfn);
8674
8675                count += page_count(page) != 1;
8676                __free_page(page);
8677        }
8678        WARN(count != 0, "%d pages are still in use!\n", count);
8679}
8680EXPORT_SYMBOL(free_contig_range);
8681
8682/*
8683 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8684 * page high values need to be recalulated.
8685 */
8686void __meminit zone_pcp_update(struct zone *zone)
8687{
8688        mutex_lock(&pcp_batch_high_lock);
8689        __zone_pcp_update(zone);
8690        mutex_unlock(&pcp_batch_high_lock);
8691}
8692
8693void zone_pcp_reset(struct zone *zone)
8694{
8695        unsigned long flags;
8696        int cpu;
8697        struct per_cpu_pageset *pset;
8698
8699        /* avoid races with drain_pages()  */
8700        local_irq_save(flags);
8701        if (zone->pageset != &boot_pageset) {
8702                for_each_online_cpu(cpu) {
8703                        pset = per_cpu_ptr(zone->pageset, cpu);
8704                        drain_zonestat(zone, pset);
8705                }
8706                free_percpu(zone->pageset);
8707                zone->pageset = &boot_pageset;
8708        }
8709        local_irq_restore(flags);
8710}
8711
8712#ifdef CONFIG_MEMORY_HOTREMOVE
8713/*
8714 * All pages in the range must be in a single zone and isolated
8715 * before calling this.
8716 */
8717unsigned long
8718__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8719{
8720        struct page *page;
8721        struct zone *zone;
8722        unsigned int order;
8723        unsigned long pfn;
8724        unsigned long flags;
8725        unsigned long offlined_pages = 0;
8726
8727        /* find the first valid pfn */
8728        for (pfn = start_pfn; pfn < end_pfn; pfn++)
8729                if (pfn_valid(pfn))
8730                        break;
8731        if (pfn == end_pfn)
8732                return offlined_pages;
8733
8734        offline_mem_sections(pfn, end_pfn);
8735        zone = page_zone(pfn_to_page(pfn));
8736        spin_lock_irqsave(&zone->lock, flags);
8737        pfn = start_pfn;
8738        while (pfn < end_pfn) {
8739                if (!pfn_valid(pfn)) {
8740                        pfn++;
8741                        continue;
8742                }
8743                page = pfn_to_page(pfn);
8744                /*
8745                 * The HWPoisoned page may be not in buddy system, and
8746                 * page_count() is not 0.
8747                 */
8748                if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8749                        pfn++;
8750                        offlined_pages++;
8751                        continue;
8752                }
8753                /*
8754                 * At this point all remaining PageOffline() pages have a
8755                 * reference count of 0 and can simply be skipped.
8756                 */
8757                if (PageOffline(page)) {
8758                        BUG_ON(page_count(page));
8759                        BUG_ON(PageBuddy(page));
8760                        pfn++;
8761                        offlined_pages++;
8762                        continue;
8763                }
8764
8765                BUG_ON(page_count(page));
8766                BUG_ON(!PageBuddy(page));
8767                order = page_order(page);
8768                offlined_pages += 1 << order;
8769                del_page_from_free_list(page, zone, order);
8770                pfn += (1 << order);
8771        }
8772        spin_unlock_irqrestore(&zone->lock, flags);
8773
8774        return offlined_pages;
8775}
8776#endif
8777
8778bool is_free_buddy_page(struct page *page)
8779{
8780        struct zone *zone = page_zone(page);
8781        unsigned long pfn = page_to_pfn(page);
8782        unsigned long flags;
8783        unsigned int order;
8784
8785        spin_lock_irqsave(&zone->lock, flags);
8786        for (order = 0; order < MAX_ORDER; order++) {
8787                struct page *page_head = page - (pfn & ((1 << order) - 1));
8788
8789                if (PageBuddy(page_head) && page_order(page_head) >= order)
8790                        break;
8791        }
8792        spin_unlock_irqrestore(&zone->lock, flags);
8793
8794        return order < MAX_ORDER;
8795}
8796
8797#ifdef CONFIG_MEMORY_FAILURE
8798/*
8799 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8800 * test is performed under the zone lock to prevent a race against page
8801 * allocation.
8802 */
8803bool set_hwpoison_free_buddy_page(struct page *page)
8804{
8805        struct zone *zone = page_zone(page);
8806        unsigned long pfn = page_to_pfn(page);
8807        unsigned long flags;
8808        unsigned int order;
8809        bool hwpoisoned = false;
8810
8811        spin_lock_irqsave(&zone->lock, flags);
8812        for (order = 0; order < MAX_ORDER; order++) {
8813                struct page *page_head = page - (pfn & ((1 << order) - 1));
8814
8815                if (PageBuddy(page_head) && page_order(page_head) >= order) {
8816                        if (!TestSetPageHWPoison(page))
8817                                hwpoisoned = true;
8818                        break;
8819                }
8820        }
8821        spin_unlock_irqrestore(&zone->lock, flags);
8822
8823        return hwpoisoned;
8824}
8825#endif
8826