linux/mm/slab.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *      (c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 *      (c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *      Jeff Bonwick (Sun Microsystems).
  21 *      Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *      are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *      and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *      The sem is only needed when accessing/extending the cache-chain, which
  74 *      can never happen inside an interrupt (kmem_cache_create(),
  75 *      kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *      At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *      Shai Fultheim <shai@scalex86.org>.
  81 *      Shobhit Dayal <shobhit@calsoftinc.com>
  82 *      Alok N Kataria <alokk@calsoftinc.com>
  83 *      Christoph Lameter <christoph@lameter.com>
  84 *
  85 *      Modified the slab allocator to be node aware on NUMA systems.
  86 *      Each node has its own list of partial, free and full slabs.
  87 *      All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include        <linux/slab.h>
  91#include        <linux/mm.h>
  92#include        <linux/poison.h>
  93#include        <linux/swap.h>
  94#include        <linux/cache.h>
  95#include        <linux/interrupt.h>
  96#include        <linux/init.h>
  97#include        <linux/compiler.h>
  98#include        <linux/cpuset.h>
  99#include        <linux/proc_fs.h>
 100#include        <linux/seq_file.h>
 101#include        <linux/notifier.h>
 102#include        <linux/kallsyms.h>
 103#include        <linux/cpu.h>
 104#include        <linux/sysctl.h>
 105#include        <linux/module.h>
 106#include        <linux/rcupdate.h>
 107#include        <linux/string.h>
 108#include        <linux/uaccess.h>
 109#include        <linux/nodemask.h>
 110#include        <linux/kmemleak.h>
 111#include        <linux/mempolicy.h>
 112#include        <linux/mutex.h>
 113#include        <linux/fault-inject.h>
 114#include        <linux/rtmutex.h>
 115#include        <linux/reciprocal_div.h>
 116#include        <linux/debugobjects.h>
 117#include        <linux/memory.h>
 118#include        <linux/prefetch.h>
 119#include        <linux/sched/task_stack.h>
 120
 121#include        <net/sock.h>
 122
 123#include        <asm/cacheflush.h>
 124#include        <asm/tlbflush.h>
 125#include        <asm/page.h>
 126
 127#include <trace/events/kmem.h>
 128
 129#include        "internal.h"
 130
 131#include        "slab.h"
 132
 133/*
 134 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 135 *                0 for faster, smaller code (especially in the critical paths).
 136 *
 137 * STATS        - 1 to collect stats for /proc/slabinfo.
 138 *                0 for faster, smaller code (especially in the critical paths).
 139 *
 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 141 */
 142
 143#ifdef CONFIG_DEBUG_SLAB
 144#define DEBUG           1
 145#define STATS           1
 146#define FORCED_DEBUG    1
 147#else
 148#define DEBUG           0
 149#define STATS           0
 150#define FORCED_DEBUG    0
 151#endif
 152
 153/* Shouldn't this be in a header file somewhere? */
 154#define BYTES_PER_WORD          sizeof(void *)
 155#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 156
 157#ifndef ARCH_KMALLOC_FLAGS
 158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 159#endif
 160
 161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 162                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 163
 164#if FREELIST_BYTE_INDEX
 165typedef unsigned char freelist_idx_t;
 166#else
 167typedef unsigned short freelist_idx_t;
 168#endif
 169
 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 171
 172/*
 173 * struct array_cache
 174 *
 175 * Purpose:
 176 * - LIFO ordering, to hand out cache-warm objects from _alloc
 177 * - reduce the number of linked list operations
 178 * - reduce spinlock operations
 179 *
 180 * The limit is stored in the per-cpu structure to reduce the data cache
 181 * footprint.
 182 *
 183 */
 184struct array_cache {
 185        unsigned int avail;
 186        unsigned int limit;
 187        unsigned int batchcount;
 188        unsigned int touched;
 189        void *entry[];  /*
 190                         * Must have this definition in here for the proper
 191                         * alignment of array_cache. Also simplifies accessing
 192                         * the entries.
 193                         */
 194};
 195
 196struct alien_cache {
 197        spinlock_t lock;
 198        struct array_cache ac;
 199};
 200
 201/*
 202 * Need this for bootstrapping a per node allocator.
 203 */
 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 206#define CACHE_CACHE 0
 207#define SIZE_NODE (MAX_NUMNODES)
 208
 209static int drain_freelist(struct kmem_cache *cache,
 210                        struct kmem_cache_node *n, int tofree);
 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 212                        int node, struct list_head *list);
 213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 215static void cache_reap(struct work_struct *unused);
 216
 217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 218                                                void **list);
 219static inline void fixup_slab_list(struct kmem_cache *cachep,
 220                                struct kmem_cache_node *n, struct page *page,
 221                                void **list);
 222static int slab_early_init = 1;
 223
 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 225
 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
 227{
 228        INIT_LIST_HEAD(&parent->slabs_full);
 229        INIT_LIST_HEAD(&parent->slabs_partial);
 230        INIT_LIST_HEAD(&parent->slabs_free);
 231        parent->total_slabs = 0;
 232        parent->free_slabs = 0;
 233        parent->shared = NULL;
 234        parent->alien = NULL;
 235        parent->colour_next = 0;
 236        spin_lock_init(&parent->list_lock);
 237        parent->free_objects = 0;
 238        parent->free_touched = 0;
 239}
 240
 241#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 242        do {                                                            \
 243                INIT_LIST_HEAD(listp);                                  \
 244                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 245        } while (0)
 246
 247#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 248        do {                                                            \
 249        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 250        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 251        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 252        } while (0)
 253
 254#define CFLGS_OBJFREELIST_SLAB  ((slab_flags_t __force)0x40000000U)
 255#define CFLGS_OFF_SLAB          ((slab_flags_t __force)0x80000000U)
 256#define OBJFREELIST_SLAB(x)     ((x)->flags & CFLGS_OBJFREELIST_SLAB)
 257#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 258
 259#define BATCHREFILL_LIMIT       16
 260/*
 261 * Optimization question: fewer reaps means less probability for unnessary
 262 * cpucache drain/refill cycles.
 263 *
 264 * OTOH the cpuarrays can contain lots of objects,
 265 * which could lock up otherwise freeable slabs.
 266 */
 267#define REAPTIMEOUT_AC          (2*HZ)
 268#define REAPTIMEOUT_NODE        (4*HZ)
 269
 270#if STATS
 271#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 272#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 273#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 274#define STATS_INC_GROWN(x)      ((x)->grown++)
 275#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 276#define STATS_SET_HIGH(x)                                               \
 277        do {                                                            \
 278                if ((x)->num_active > (x)->high_mark)                   \
 279                        (x)->high_mark = (x)->num_active;               \
 280        } while (0)
 281#define STATS_INC_ERR(x)        ((x)->errors++)
 282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 283#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 284#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 285#define STATS_SET_FREEABLE(x, i)                                        \
 286        do {                                                            \
 287                if ((x)->max_freeable < i)                              \
 288                        (x)->max_freeable = i;                          \
 289        } while (0)
 290#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 291#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 292#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 293#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 294#else
 295#define STATS_INC_ACTIVE(x)     do { } while (0)
 296#define STATS_DEC_ACTIVE(x)     do { } while (0)
 297#define STATS_INC_ALLOCED(x)    do { } while (0)
 298#define STATS_INC_GROWN(x)      do { } while (0)
 299#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 300#define STATS_SET_HIGH(x)       do { } while (0)
 301#define STATS_INC_ERR(x)        do { } while (0)
 302#define STATS_INC_NODEALLOCS(x) do { } while (0)
 303#define STATS_INC_NODEFREES(x)  do { } while (0)
 304#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
 306#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 307#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 308#define STATS_INC_FREEHIT(x)    do { } while (0)
 309#define STATS_INC_FREEMISS(x)   do { } while (0)
 310#endif
 311
 312#if DEBUG
 313
 314/*
 315 * memory layout of objects:
 316 * 0            : objp
 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 318 *              the end of an object is aligned with the end of the real
 319 *              allocation. Catches writes behind the end of the allocation.
 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 321 *              redzone word.
 322 * cachep->obj_offset: The real object.
 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 324 * cachep->size - 1* BYTES_PER_WORD: last caller address
 325 *                                      [BYTES_PER_WORD long]
 326 */
 327static int obj_offset(struct kmem_cache *cachep)
 328{
 329        return cachep->obj_offset;
 330}
 331
 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 333{
 334        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 335        return (unsigned long long*) (objp + obj_offset(cachep) -
 336                                      sizeof(unsigned long long));
 337}
 338
 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 340{
 341        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 342        if (cachep->flags & SLAB_STORE_USER)
 343                return (unsigned long long *)(objp + cachep->size -
 344                                              sizeof(unsigned long long) -
 345                                              REDZONE_ALIGN);
 346        return (unsigned long long *) (objp + cachep->size -
 347                                       sizeof(unsigned long long));
 348}
 349
 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 351{
 352        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 353        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 354}
 355
 356#else
 357
 358#define obj_offset(x)                   0
 359#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 360#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 361#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 362
 363#endif
 364
 365/*
 366 * Do not go above this order unless 0 objects fit into the slab or
 367 * overridden on the command line.
 368 */
 369#define SLAB_MAX_ORDER_HI       1
 370#define SLAB_MAX_ORDER_LO       0
 371static int slab_max_order = SLAB_MAX_ORDER_LO;
 372static bool slab_max_order_set __initdata;
 373
 374static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 375                                 unsigned int idx)
 376{
 377        return page->s_mem + cache->size * idx;
 378}
 379
 380#define BOOT_CPUCACHE_ENTRIES   1
 381/* internal cache of cache description objs */
 382static struct kmem_cache kmem_cache_boot = {
 383        .batchcount = 1,
 384        .limit = BOOT_CPUCACHE_ENTRIES,
 385        .shared = 1,
 386        .size = sizeof(struct kmem_cache),
 387        .name = "kmem_cache",
 388};
 389
 390static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 391
 392static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 393{
 394        return this_cpu_ptr(cachep->cpu_cache);
 395}
 396
 397/*
 398 * Calculate the number of objects and left-over bytes for a given buffer size.
 399 */
 400static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 401                slab_flags_t flags, size_t *left_over)
 402{
 403        unsigned int num;
 404        size_t slab_size = PAGE_SIZE << gfporder;
 405
 406        /*
 407         * The slab management structure can be either off the slab or
 408         * on it. For the latter case, the memory allocated for a
 409         * slab is used for:
 410         *
 411         * - @buffer_size bytes for each object
 412         * - One freelist_idx_t for each object
 413         *
 414         * We don't need to consider alignment of freelist because
 415         * freelist will be at the end of slab page. The objects will be
 416         * at the correct alignment.
 417         *
 418         * If the slab management structure is off the slab, then the
 419         * alignment will already be calculated into the size. Because
 420         * the slabs are all pages aligned, the objects will be at the
 421         * correct alignment when allocated.
 422         */
 423        if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 424                num = slab_size / buffer_size;
 425                *left_over = slab_size % buffer_size;
 426        } else {
 427                num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 428                *left_over = slab_size %
 429                        (buffer_size + sizeof(freelist_idx_t));
 430        }
 431
 432        return num;
 433}
 434
 435#if DEBUG
 436#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 437
 438static void __slab_error(const char *function, struct kmem_cache *cachep,
 439                        char *msg)
 440{
 441        pr_err("slab error in %s(): cache `%s': %s\n",
 442               function, cachep->name, msg);
 443        dump_stack();
 444        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 445}
 446#endif
 447
 448/*
 449 * By default on NUMA we use alien caches to stage the freeing of
 450 * objects allocated from other nodes. This causes massive memory
 451 * inefficiencies when using fake NUMA setup to split memory into a
 452 * large number of small nodes, so it can be disabled on the command
 453 * line
 454  */
 455
 456static int use_alien_caches __read_mostly = 1;
 457static int __init noaliencache_setup(char *s)
 458{
 459        use_alien_caches = 0;
 460        return 1;
 461}
 462__setup("noaliencache", noaliencache_setup);
 463
 464static int __init slab_max_order_setup(char *str)
 465{
 466        get_option(&str, &slab_max_order);
 467        slab_max_order = slab_max_order < 0 ? 0 :
 468                                min(slab_max_order, MAX_ORDER - 1);
 469        slab_max_order_set = true;
 470
 471        return 1;
 472}
 473__setup("slab_max_order=", slab_max_order_setup);
 474
 475#ifdef CONFIG_NUMA
 476/*
 477 * Special reaping functions for NUMA systems called from cache_reap().
 478 * These take care of doing round robin flushing of alien caches (containing
 479 * objects freed on different nodes from which they were allocated) and the
 480 * flushing of remote pcps by calling drain_node_pages.
 481 */
 482static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 483
 484static void init_reap_node(int cpu)
 485{
 486        per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 487                                                    node_online_map);
 488}
 489
 490static void next_reap_node(void)
 491{
 492        int node = __this_cpu_read(slab_reap_node);
 493
 494        node = next_node_in(node, node_online_map);
 495        __this_cpu_write(slab_reap_node, node);
 496}
 497
 498#else
 499#define init_reap_node(cpu) do { } while (0)
 500#define next_reap_node(void) do { } while (0)
 501#endif
 502
 503/*
 504 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 505 * via the workqueue/eventd.
 506 * Add the CPU number into the expiration time to minimize the possibility of
 507 * the CPUs getting into lockstep and contending for the global cache chain
 508 * lock.
 509 */
 510static void start_cpu_timer(int cpu)
 511{
 512        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 513
 514        if (reap_work->work.func == NULL) {
 515                init_reap_node(cpu);
 516                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 517                schedule_delayed_work_on(cpu, reap_work,
 518                                        __round_jiffies_relative(HZ, cpu));
 519        }
 520}
 521
 522static void init_arraycache(struct array_cache *ac, int limit, int batch)
 523{
 524        if (ac) {
 525                ac->avail = 0;
 526                ac->limit = limit;
 527                ac->batchcount = batch;
 528                ac->touched = 0;
 529        }
 530}
 531
 532static struct array_cache *alloc_arraycache(int node, int entries,
 533                                            int batchcount, gfp_t gfp)
 534{
 535        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 536        struct array_cache *ac = NULL;
 537
 538        ac = kmalloc_node(memsize, gfp, node);
 539        /*
 540         * The array_cache structures contain pointers to free object.
 541         * However, when such objects are allocated or transferred to another
 542         * cache the pointers are not cleared and they could be counted as
 543         * valid references during a kmemleak scan. Therefore, kmemleak must
 544         * not scan such objects.
 545         */
 546        kmemleak_no_scan(ac);
 547        init_arraycache(ac, entries, batchcount);
 548        return ac;
 549}
 550
 551static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 552                                        struct page *page, void *objp)
 553{
 554        struct kmem_cache_node *n;
 555        int page_node;
 556        LIST_HEAD(list);
 557
 558        page_node = page_to_nid(page);
 559        n = get_node(cachep, page_node);
 560
 561        spin_lock(&n->list_lock);
 562        free_block(cachep, &objp, 1, page_node, &list);
 563        spin_unlock(&n->list_lock);
 564
 565        slabs_destroy(cachep, &list);
 566}
 567
 568/*
 569 * Transfer objects in one arraycache to another.
 570 * Locking must be handled by the caller.
 571 *
 572 * Return the number of entries transferred.
 573 */
 574static int transfer_objects(struct array_cache *to,
 575                struct array_cache *from, unsigned int max)
 576{
 577        /* Figure out how many entries to transfer */
 578        int nr = min3(from->avail, max, to->limit - to->avail);
 579
 580        if (!nr)
 581                return 0;
 582
 583        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 584                        sizeof(void *) *nr);
 585
 586        from->avail -= nr;
 587        to->avail += nr;
 588        return nr;
 589}
 590
 591/* &alien->lock must be held by alien callers. */
 592static __always_inline void __free_one(struct array_cache *ac, void *objp)
 593{
 594        /* Avoid trivial double-free. */
 595        if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 596            WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
 597                return;
 598        ac->entry[ac->avail++] = objp;
 599}
 600
 601#ifndef CONFIG_NUMA
 602
 603#define drain_alien_cache(cachep, alien) do { } while (0)
 604#define reap_alien(cachep, n) do { } while (0)
 605
 606static inline struct alien_cache **alloc_alien_cache(int node,
 607                                                int limit, gfp_t gfp)
 608{
 609        return NULL;
 610}
 611
 612static inline void free_alien_cache(struct alien_cache **ac_ptr)
 613{
 614}
 615
 616static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 617{
 618        return 0;
 619}
 620
 621static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 622                gfp_t flags)
 623{
 624        return NULL;
 625}
 626
 627static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 628                 gfp_t flags, int nodeid)
 629{
 630        return NULL;
 631}
 632
 633static inline gfp_t gfp_exact_node(gfp_t flags)
 634{
 635        return flags & ~__GFP_NOFAIL;
 636}
 637
 638#else   /* CONFIG_NUMA */
 639
 640static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 641static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 642
 643static struct alien_cache *__alloc_alien_cache(int node, int entries,
 644                                                int batch, gfp_t gfp)
 645{
 646        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 647        struct alien_cache *alc = NULL;
 648
 649        alc = kmalloc_node(memsize, gfp, node);
 650        if (alc) {
 651                kmemleak_no_scan(alc);
 652                init_arraycache(&alc->ac, entries, batch);
 653                spin_lock_init(&alc->lock);
 654        }
 655        return alc;
 656}
 657
 658static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 659{
 660        struct alien_cache **alc_ptr;
 661        int i;
 662
 663        if (limit > 1)
 664                limit = 12;
 665        alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 666        if (!alc_ptr)
 667                return NULL;
 668
 669        for_each_node(i) {
 670                if (i == node || !node_online(i))
 671                        continue;
 672                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 673                if (!alc_ptr[i]) {
 674                        for (i--; i >= 0; i--)
 675                                kfree(alc_ptr[i]);
 676                        kfree(alc_ptr);
 677                        return NULL;
 678                }
 679        }
 680        return alc_ptr;
 681}
 682
 683static void free_alien_cache(struct alien_cache **alc_ptr)
 684{
 685        int i;
 686
 687        if (!alc_ptr)
 688                return;
 689        for_each_node(i)
 690            kfree(alc_ptr[i]);
 691        kfree(alc_ptr);
 692}
 693
 694static void __drain_alien_cache(struct kmem_cache *cachep,
 695                                struct array_cache *ac, int node,
 696                                struct list_head *list)
 697{
 698        struct kmem_cache_node *n = get_node(cachep, node);
 699
 700        if (ac->avail) {
 701                spin_lock(&n->list_lock);
 702                /*
 703                 * Stuff objects into the remote nodes shared array first.
 704                 * That way we could avoid the overhead of putting the objects
 705                 * into the free lists and getting them back later.
 706                 */
 707                if (n->shared)
 708                        transfer_objects(n->shared, ac, ac->limit);
 709
 710                free_block(cachep, ac->entry, ac->avail, node, list);
 711                ac->avail = 0;
 712                spin_unlock(&n->list_lock);
 713        }
 714}
 715
 716/*
 717 * Called from cache_reap() to regularly drain alien caches round robin.
 718 */
 719static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 720{
 721        int node = __this_cpu_read(slab_reap_node);
 722
 723        if (n->alien) {
 724                struct alien_cache *alc = n->alien[node];
 725                struct array_cache *ac;
 726
 727                if (alc) {
 728                        ac = &alc->ac;
 729                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 730                                LIST_HEAD(list);
 731
 732                                __drain_alien_cache(cachep, ac, node, &list);
 733                                spin_unlock_irq(&alc->lock);
 734                                slabs_destroy(cachep, &list);
 735                        }
 736                }
 737        }
 738}
 739
 740static void drain_alien_cache(struct kmem_cache *cachep,
 741                                struct alien_cache **alien)
 742{
 743        int i = 0;
 744        struct alien_cache *alc;
 745        struct array_cache *ac;
 746        unsigned long flags;
 747
 748        for_each_online_node(i) {
 749                alc = alien[i];
 750                if (alc) {
 751                        LIST_HEAD(list);
 752
 753                        ac = &alc->ac;
 754                        spin_lock_irqsave(&alc->lock, flags);
 755                        __drain_alien_cache(cachep, ac, i, &list);
 756                        spin_unlock_irqrestore(&alc->lock, flags);
 757                        slabs_destroy(cachep, &list);
 758                }
 759        }
 760}
 761
 762static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 763                                int node, int page_node)
 764{
 765        struct kmem_cache_node *n;
 766        struct alien_cache *alien = NULL;
 767        struct array_cache *ac;
 768        LIST_HEAD(list);
 769
 770        n = get_node(cachep, node);
 771        STATS_INC_NODEFREES(cachep);
 772        if (n->alien && n->alien[page_node]) {
 773                alien = n->alien[page_node];
 774                ac = &alien->ac;
 775                spin_lock(&alien->lock);
 776                if (unlikely(ac->avail == ac->limit)) {
 777                        STATS_INC_ACOVERFLOW(cachep);
 778                        __drain_alien_cache(cachep, ac, page_node, &list);
 779                }
 780                __free_one(ac, objp);
 781                spin_unlock(&alien->lock);
 782                slabs_destroy(cachep, &list);
 783        } else {
 784                n = get_node(cachep, page_node);
 785                spin_lock(&n->list_lock);
 786                free_block(cachep, &objp, 1, page_node, &list);
 787                spin_unlock(&n->list_lock);
 788                slabs_destroy(cachep, &list);
 789        }
 790        return 1;
 791}
 792
 793static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 794{
 795        int page_node = page_to_nid(virt_to_page(objp));
 796        int node = numa_mem_id();
 797        /*
 798         * Make sure we are not freeing a object from another node to the array
 799         * cache on this cpu.
 800         */
 801        if (likely(node == page_node))
 802                return 0;
 803
 804        return __cache_free_alien(cachep, objp, node, page_node);
 805}
 806
 807/*
 808 * Construct gfp mask to allocate from a specific node but do not reclaim or
 809 * warn about failures.
 810 */
 811static inline gfp_t gfp_exact_node(gfp_t flags)
 812{
 813        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 814}
 815#endif
 816
 817static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 818{
 819        struct kmem_cache_node *n;
 820
 821        /*
 822         * Set up the kmem_cache_node for cpu before we can
 823         * begin anything. Make sure some other cpu on this
 824         * node has not already allocated this
 825         */
 826        n = get_node(cachep, node);
 827        if (n) {
 828                spin_lock_irq(&n->list_lock);
 829                n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 830                                cachep->num;
 831                spin_unlock_irq(&n->list_lock);
 832
 833                return 0;
 834        }
 835
 836        n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 837        if (!n)
 838                return -ENOMEM;
 839
 840        kmem_cache_node_init(n);
 841        n->next_reap = jiffies + REAPTIMEOUT_NODE +
 842                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 843
 844        n->free_limit =
 845                (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 846
 847        /*
 848         * The kmem_cache_nodes don't come and go as CPUs
 849         * come and go.  slab_mutex is sufficient
 850         * protection here.
 851         */
 852        cachep->node[node] = n;
 853
 854        return 0;
 855}
 856
 857#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 858/*
 859 * Allocates and initializes node for a node on each slab cache, used for
 860 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 861 * will be allocated off-node since memory is not yet online for the new node.
 862 * When hotplugging memory or a cpu, existing node are not replaced if
 863 * already in use.
 864 *
 865 * Must hold slab_mutex.
 866 */
 867static int init_cache_node_node(int node)
 868{
 869        int ret;
 870        struct kmem_cache *cachep;
 871
 872        list_for_each_entry(cachep, &slab_caches, list) {
 873                ret = init_cache_node(cachep, node, GFP_KERNEL);
 874                if (ret)
 875                        return ret;
 876        }
 877
 878        return 0;
 879}
 880#endif
 881
 882static int setup_kmem_cache_node(struct kmem_cache *cachep,
 883                                int node, gfp_t gfp, bool force_change)
 884{
 885        int ret = -ENOMEM;
 886        struct kmem_cache_node *n;
 887        struct array_cache *old_shared = NULL;
 888        struct array_cache *new_shared = NULL;
 889        struct alien_cache **new_alien = NULL;
 890        LIST_HEAD(list);
 891
 892        if (use_alien_caches) {
 893                new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 894                if (!new_alien)
 895                        goto fail;
 896        }
 897
 898        if (cachep->shared) {
 899                new_shared = alloc_arraycache(node,
 900                        cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 901                if (!new_shared)
 902                        goto fail;
 903        }
 904
 905        ret = init_cache_node(cachep, node, gfp);
 906        if (ret)
 907                goto fail;
 908
 909        n = get_node(cachep, node);
 910        spin_lock_irq(&n->list_lock);
 911        if (n->shared && force_change) {
 912                free_block(cachep, n->shared->entry,
 913                                n->shared->avail, node, &list);
 914                n->shared->avail = 0;
 915        }
 916
 917        if (!n->shared || force_change) {
 918                old_shared = n->shared;
 919                n->shared = new_shared;
 920                new_shared = NULL;
 921        }
 922
 923        if (!n->alien) {
 924                n->alien = new_alien;
 925                new_alien = NULL;
 926        }
 927
 928        spin_unlock_irq(&n->list_lock);
 929        slabs_destroy(cachep, &list);
 930
 931        /*
 932         * To protect lockless access to n->shared during irq disabled context.
 933         * If n->shared isn't NULL in irq disabled context, accessing to it is
 934         * guaranteed to be valid until irq is re-enabled, because it will be
 935         * freed after synchronize_rcu().
 936         */
 937        if (old_shared && force_change)
 938                synchronize_rcu();
 939
 940fail:
 941        kfree(old_shared);
 942        kfree(new_shared);
 943        free_alien_cache(new_alien);
 944
 945        return ret;
 946}
 947
 948#ifdef CONFIG_SMP
 949
 950static void cpuup_canceled(long cpu)
 951{
 952        struct kmem_cache *cachep;
 953        struct kmem_cache_node *n = NULL;
 954        int node = cpu_to_mem(cpu);
 955        const struct cpumask *mask = cpumask_of_node(node);
 956
 957        list_for_each_entry(cachep, &slab_caches, list) {
 958                struct array_cache *nc;
 959                struct array_cache *shared;
 960                struct alien_cache **alien;
 961                LIST_HEAD(list);
 962
 963                n = get_node(cachep, node);
 964                if (!n)
 965                        continue;
 966
 967                spin_lock_irq(&n->list_lock);
 968
 969                /* Free limit for this kmem_cache_node */
 970                n->free_limit -= cachep->batchcount;
 971
 972                /* cpu is dead; no one can alloc from it. */
 973                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 974                free_block(cachep, nc->entry, nc->avail, node, &list);
 975                nc->avail = 0;
 976
 977                if (!cpumask_empty(mask)) {
 978                        spin_unlock_irq(&n->list_lock);
 979                        goto free_slab;
 980                }
 981
 982                shared = n->shared;
 983                if (shared) {
 984                        free_block(cachep, shared->entry,
 985                                   shared->avail, node, &list);
 986                        n->shared = NULL;
 987                }
 988
 989                alien = n->alien;
 990                n->alien = NULL;
 991
 992                spin_unlock_irq(&n->list_lock);
 993
 994                kfree(shared);
 995                if (alien) {
 996                        drain_alien_cache(cachep, alien);
 997                        free_alien_cache(alien);
 998                }
 999
1000free_slab:
1001                slabs_destroy(cachep, &list);
1002        }
1003        /*
1004         * In the previous loop, all the objects were freed to
1005         * the respective cache's slabs,  now we can go ahead and
1006         * shrink each nodelist to its limit.
1007         */
1008        list_for_each_entry(cachep, &slab_caches, list) {
1009                n = get_node(cachep, node);
1010                if (!n)
1011                        continue;
1012                drain_freelist(cachep, n, INT_MAX);
1013        }
1014}
1015
1016static int cpuup_prepare(long cpu)
1017{
1018        struct kmem_cache *cachep;
1019        int node = cpu_to_mem(cpu);
1020        int err;
1021
1022        /*
1023         * We need to do this right in the beginning since
1024         * alloc_arraycache's are going to use this list.
1025         * kmalloc_node allows us to add the slab to the right
1026         * kmem_cache_node and not this cpu's kmem_cache_node
1027         */
1028        err = init_cache_node_node(node);
1029        if (err < 0)
1030                goto bad;
1031
1032        /*
1033         * Now we can go ahead with allocating the shared arrays and
1034         * array caches
1035         */
1036        list_for_each_entry(cachep, &slab_caches, list) {
1037                err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1038                if (err)
1039                        goto bad;
1040        }
1041
1042        return 0;
1043bad:
1044        cpuup_canceled(cpu);
1045        return -ENOMEM;
1046}
1047
1048int slab_prepare_cpu(unsigned int cpu)
1049{
1050        int err;
1051
1052        mutex_lock(&slab_mutex);
1053        err = cpuup_prepare(cpu);
1054        mutex_unlock(&slab_mutex);
1055        return err;
1056}
1057
1058/*
1059 * This is called for a failed online attempt and for a successful
1060 * offline.
1061 *
1062 * Even if all the cpus of a node are down, we don't free the
1063 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
1064 * a kmalloc allocation from another cpu for memory from the node of
1065 * the cpu going down.  The list3 structure is usually allocated from
1066 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1067 */
1068int slab_dead_cpu(unsigned int cpu)
1069{
1070        mutex_lock(&slab_mutex);
1071        cpuup_canceled(cpu);
1072        mutex_unlock(&slab_mutex);
1073        return 0;
1074}
1075#endif
1076
1077static int slab_online_cpu(unsigned int cpu)
1078{
1079        start_cpu_timer(cpu);
1080        return 0;
1081}
1082
1083static int slab_offline_cpu(unsigned int cpu)
1084{
1085        /*
1086         * Shutdown cache reaper. Note that the slab_mutex is held so
1087         * that if cache_reap() is invoked it cannot do anything
1088         * expensive but will only modify reap_work and reschedule the
1089         * timer.
1090         */
1091        cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1092        /* Now the cache_reaper is guaranteed to be not running. */
1093        per_cpu(slab_reap_work, cpu).work.func = NULL;
1094        return 0;
1095}
1096
1097#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1098/*
1099 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1100 * Returns -EBUSY if all objects cannot be drained so that the node is not
1101 * removed.
1102 *
1103 * Must hold slab_mutex.
1104 */
1105static int __meminit drain_cache_node_node(int node)
1106{
1107        struct kmem_cache *cachep;
1108        int ret = 0;
1109
1110        list_for_each_entry(cachep, &slab_caches, list) {
1111                struct kmem_cache_node *n;
1112
1113                n = get_node(cachep, node);
1114                if (!n)
1115                        continue;
1116
1117                drain_freelist(cachep, n, INT_MAX);
1118
1119                if (!list_empty(&n->slabs_full) ||
1120                    !list_empty(&n->slabs_partial)) {
1121                        ret = -EBUSY;
1122                        break;
1123                }
1124        }
1125        return ret;
1126}
1127
1128static int __meminit slab_memory_callback(struct notifier_block *self,
1129                                        unsigned long action, void *arg)
1130{
1131        struct memory_notify *mnb = arg;
1132        int ret = 0;
1133        int nid;
1134
1135        nid = mnb->status_change_nid;
1136        if (nid < 0)
1137                goto out;
1138
1139        switch (action) {
1140        case MEM_GOING_ONLINE:
1141                mutex_lock(&slab_mutex);
1142                ret = init_cache_node_node(nid);
1143                mutex_unlock(&slab_mutex);
1144                break;
1145        case MEM_GOING_OFFLINE:
1146                mutex_lock(&slab_mutex);
1147                ret = drain_cache_node_node(nid);
1148                mutex_unlock(&slab_mutex);
1149                break;
1150        case MEM_ONLINE:
1151        case MEM_OFFLINE:
1152        case MEM_CANCEL_ONLINE:
1153        case MEM_CANCEL_OFFLINE:
1154                break;
1155        }
1156out:
1157        return notifier_from_errno(ret);
1158}
1159#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1160
1161/*
1162 * swap the static kmem_cache_node with kmalloced memory
1163 */
1164static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1165                                int nodeid)
1166{
1167        struct kmem_cache_node *ptr;
1168
1169        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1170        BUG_ON(!ptr);
1171
1172        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1173        /*
1174         * Do not assume that spinlocks can be initialized via memcpy:
1175         */
1176        spin_lock_init(&ptr->list_lock);
1177
1178        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1179        cachep->node[nodeid] = ptr;
1180}
1181
1182/*
1183 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1184 * size of kmem_cache_node.
1185 */
1186static void __init set_up_node(struct kmem_cache *cachep, int index)
1187{
1188        int node;
1189
1190        for_each_online_node(node) {
1191                cachep->node[node] = &init_kmem_cache_node[index + node];
1192                cachep->node[node]->next_reap = jiffies +
1193                    REAPTIMEOUT_NODE +
1194                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1195        }
1196}
1197
1198/*
1199 * Initialisation.  Called after the page allocator have been initialised and
1200 * before smp_init().
1201 */
1202void __init kmem_cache_init(void)
1203{
1204        int i;
1205
1206        kmem_cache = &kmem_cache_boot;
1207
1208        if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1209                use_alien_caches = 0;
1210
1211        for (i = 0; i < NUM_INIT_LISTS; i++)
1212                kmem_cache_node_init(&init_kmem_cache_node[i]);
1213
1214        /*
1215         * Fragmentation resistance on low memory - only use bigger
1216         * page orders on machines with more than 32MB of memory if
1217         * not overridden on the command line.
1218         */
1219        if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1220                slab_max_order = SLAB_MAX_ORDER_HI;
1221
1222        /* Bootstrap is tricky, because several objects are allocated
1223         * from caches that do not exist yet:
1224         * 1) initialize the kmem_cache cache: it contains the struct
1225         *    kmem_cache structures of all caches, except kmem_cache itself:
1226         *    kmem_cache is statically allocated.
1227         *    Initially an __init data area is used for the head array and the
1228         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1229         *    array at the end of the bootstrap.
1230         * 2) Create the first kmalloc cache.
1231         *    The struct kmem_cache for the new cache is allocated normally.
1232         *    An __init data area is used for the head array.
1233         * 3) Create the remaining kmalloc caches, with minimally sized
1234         *    head arrays.
1235         * 4) Replace the __init data head arrays for kmem_cache and the first
1236         *    kmalloc cache with kmalloc allocated arrays.
1237         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1238         *    the other cache's with kmalloc allocated memory.
1239         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1240         */
1241
1242        /* 1) create the kmem_cache */
1243
1244        /*
1245         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1246         */
1247        create_boot_cache(kmem_cache, "kmem_cache",
1248                offsetof(struct kmem_cache, node) +
1249                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1250                                  SLAB_HWCACHE_ALIGN, 0, 0);
1251        list_add(&kmem_cache->list, &slab_caches);
1252        slab_state = PARTIAL;
1253
1254        /*
1255         * Initialize the caches that provide memory for the  kmem_cache_node
1256         * structures first.  Without this, further allocations will bug.
1257         */
1258        kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1259                                kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1260                                kmalloc_info[INDEX_NODE].size,
1261                                ARCH_KMALLOC_FLAGS, 0,
1262                                kmalloc_info[INDEX_NODE].size);
1263        slab_state = PARTIAL_NODE;
1264        setup_kmalloc_cache_index_table();
1265
1266        slab_early_init = 0;
1267
1268        /* 5) Replace the bootstrap kmem_cache_node */
1269        {
1270                int nid;
1271
1272                for_each_online_node(nid) {
1273                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1274
1275                        init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1276                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1277                }
1278        }
1279
1280        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1281}
1282
1283void __init kmem_cache_init_late(void)
1284{
1285        struct kmem_cache *cachep;
1286
1287        /* 6) resize the head arrays to their final sizes */
1288        mutex_lock(&slab_mutex);
1289        list_for_each_entry(cachep, &slab_caches, list)
1290                if (enable_cpucache(cachep, GFP_NOWAIT))
1291                        BUG();
1292        mutex_unlock(&slab_mutex);
1293
1294        /* Done! */
1295        slab_state = FULL;
1296
1297#ifdef CONFIG_NUMA
1298        /*
1299         * Register a memory hotplug callback that initializes and frees
1300         * node.
1301         */
1302        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1303#endif
1304
1305        /*
1306         * The reap timers are started later, with a module init call: That part
1307         * of the kernel is not yet operational.
1308         */
1309}
1310
1311static int __init cpucache_init(void)
1312{
1313        int ret;
1314
1315        /*
1316         * Register the timers that return unneeded pages to the page allocator
1317         */
1318        ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1319                                slab_online_cpu, slab_offline_cpu);
1320        WARN_ON(ret < 0);
1321
1322        return 0;
1323}
1324__initcall(cpucache_init);
1325
1326static noinline void
1327slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1328{
1329#if DEBUG
1330        struct kmem_cache_node *n;
1331        unsigned long flags;
1332        int node;
1333        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1334                                      DEFAULT_RATELIMIT_BURST);
1335
1336        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1337                return;
1338
1339        pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1340                nodeid, gfpflags, &gfpflags);
1341        pr_warn("  cache: %s, object size: %d, order: %d\n",
1342                cachep->name, cachep->size, cachep->gfporder);
1343
1344        for_each_kmem_cache_node(cachep, node, n) {
1345                unsigned long total_slabs, free_slabs, free_objs;
1346
1347                spin_lock_irqsave(&n->list_lock, flags);
1348                total_slabs = n->total_slabs;
1349                free_slabs = n->free_slabs;
1350                free_objs = n->free_objects;
1351                spin_unlock_irqrestore(&n->list_lock, flags);
1352
1353                pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1354                        node, total_slabs - free_slabs, total_slabs,
1355                        (total_slabs * cachep->num) - free_objs,
1356                        total_slabs * cachep->num);
1357        }
1358#endif
1359}
1360
1361/*
1362 * Interface to system's page allocator. No need to hold the
1363 * kmem_cache_node ->list_lock.
1364 *
1365 * If we requested dmaable memory, we will get it. Even if we
1366 * did not request dmaable memory, we might get it, but that
1367 * would be relatively rare and ignorable.
1368 */
1369static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1370                                                                int nodeid)
1371{
1372        struct page *page;
1373
1374        flags |= cachep->allocflags;
1375
1376        page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1377        if (!page) {
1378                slab_out_of_memory(cachep, flags, nodeid);
1379                return NULL;
1380        }
1381
1382        account_slab_page(page, cachep->gfporder, cachep);
1383        __SetPageSlab(page);
1384        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1385        if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1386                SetPageSlabPfmemalloc(page);
1387
1388        return page;
1389}
1390
1391/*
1392 * Interface to system's page release.
1393 */
1394static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1395{
1396        int order = cachep->gfporder;
1397
1398        BUG_ON(!PageSlab(page));
1399        __ClearPageSlabPfmemalloc(page);
1400        __ClearPageSlab(page);
1401        page_mapcount_reset(page);
1402        page->mapping = NULL;
1403
1404        if (current->reclaim_state)
1405                current->reclaim_state->reclaimed_slab += 1 << order;
1406        unaccount_slab_page(page, order, cachep);
1407        __free_pages(page, order);
1408}
1409
1410static void kmem_rcu_free(struct rcu_head *head)
1411{
1412        struct kmem_cache *cachep;
1413        struct page *page;
1414
1415        page = container_of(head, struct page, rcu_head);
1416        cachep = page->slab_cache;
1417
1418        kmem_freepages(cachep, page);
1419}
1420
1421#if DEBUG
1422static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1423{
1424        if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1425                (cachep->size % PAGE_SIZE) == 0)
1426                return true;
1427
1428        return false;
1429}
1430
1431#ifdef CONFIG_DEBUG_PAGEALLOC
1432static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1433{
1434        if (!is_debug_pagealloc_cache(cachep))
1435                return;
1436
1437        kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1438}
1439
1440#else
1441static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1442                                int map) {}
1443
1444#endif
1445
1446static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1447{
1448        int size = cachep->object_size;
1449        addr = &((char *)addr)[obj_offset(cachep)];
1450
1451        memset(addr, val, size);
1452        *(unsigned char *)(addr + size - 1) = POISON_END;
1453}
1454
1455static void dump_line(char *data, int offset, int limit)
1456{
1457        int i;
1458        unsigned char error = 0;
1459        int bad_count = 0;
1460
1461        pr_err("%03x: ", offset);
1462        for (i = 0; i < limit; i++) {
1463                if (data[offset + i] != POISON_FREE) {
1464                        error = data[offset + i];
1465                        bad_count++;
1466                }
1467        }
1468        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1469                        &data[offset], limit, 1);
1470
1471        if (bad_count == 1) {
1472                error ^= POISON_FREE;
1473                if (!(error & (error - 1))) {
1474                        pr_err("Single bit error detected. Probably bad RAM.\n");
1475#ifdef CONFIG_X86
1476                        pr_err("Run memtest86+ or a similar memory test tool.\n");
1477#else
1478                        pr_err("Run a memory test tool.\n");
1479#endif
1480                }
1481        }
1482}
1483#endif
1484
1485#if DEBUG
1486
1487static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1488{
1489        int i, size;
1490        char *realobj;
1491
1492        if (cachep->flags & SLAB_RED_ZONE) {
1493                pr_err("Redzone: 0x%llx/0x%llx\n",
1494                       *dbg_redzone1(cachep, objp),
1495                       *dbg_redzone2(cachep, objp));
1496        }
1497
1498        if (cachep->flags & SLAB_STORE_USER)
1499                pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1500        realobj = (char *)objp + obj_offset(cachep);
1501        size = cachep->object_size;
1502        for (i = 0; i < size && lines; i += 16, lines--) {
1503                int limit;
1504                limit = 16;
1505                if (i + limit > size)
1506                        limit = size - i;
1507                dump_line(realobj, i, limit);
1508        }
1509}
1510
1511static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1512{
1513        char *realobj;
1514        int size, i;
1515        int lines = 0;
1516
1517        if (is_debug_pagealloc_cache(cachep))
1518                return;
1519
1520        realobj = (char *)objp + obj_offset(cachep);
1521        size = cachep->object_size;
1522
1523        for (i = 0; i < size; i++) {
1524                char exp = POISON_FREE;
1525                if (i == size - 1)
1526                        exp = POISON_END;
1527                if (realobj[i] != exp) {
1528                        int limit;
1529                        /* Mismatch ! */
1530                        /* Print header */
1531                        if (lines == 0) {
1532                                pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1533                                       print_tainted(), cachep->name,
1534                                       realobj, size);
1535                                print_objinfo(cachep, objp, 0);
1536                        }
1537                        /* Hexdump the affected line */
1538                        i = (i / 16) * 16;
1539                        limit = 16;
1540                        if (i + limit > size)
1541                                limit = size - i;
1542                        dump_line(realobj, i, limit);
1543                        i += 16;
1544                        lines++;
1545                        /* Limit to 5 lines */
1546                        if (lines > 5)
1547                                break;
1548                }
1549        }
1550        if (lines != 0) {
1551                /* Print some data about the neighboring objects, if they
1552                 * exist:
1553                 */
1554                struct page *page = virt_to_head_page(objp);
1555                unsigned int objnr;
1556
1557                objnr = obj_to_index(cachep, page, objp);
1558                if (objnr) {
1559                        objp = index_to_obj(cachep, page, objnr - 1);
1560                        realobj = (char *)objp + obj_offset(cachep);
1561                        pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1562                        print_objinfo(cachep, objp, 2);
1563                }
1564                if (objnr + 1 < cachep->num) {
1565                        objp = index_to_obj(cachep, page, objnr + 1);
1566                        realobj = (char *)objp + obj_offset(cachep);
1567                        pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1568                        print_objinfo(cachep, objp, 2);
1569                }
1570        }
1571}
1572#endif
1573
1574#if DEBUG
1575static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1576                                                struct page *page)
1577{
1578        int i;
1579
1580        if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1581                poison_obj(cachep, page->freelist - obj_offset(cachep),
1582                        POISON_FREE);
1583        }
1584
1585        for (i = 0; i < cachep->num; i++) {
1586                void *objp = index_to_obj(cachep, page, i);
1587
1588                if (cachep->flags & SLAB_POISON) {
1589                        check_poison_obj(cachep, objp);
1590                        slab_kernel_map(cachep, objp, 1);
1591                }
1592                if (cachep->flags & SLAB_RED_ZONE) {
1593                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1594                                slab_error(cachep, "start of a freed object was overwritten");
1595                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1596                                slab_error(cachep, "end of a freed object was overwritten");
1597                }
1598        }
1599}
1600#else
1601static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1602                                                struct page *page)
1603{
1604}
1605#endif
1606
1607/**
1608 * slab_destroy - destroy and release all objects in a slab
1609 * @cachep: cache pointer being destroyed
1610 * @page: page pointer being destroyed
1611 *
1612 * Destroy all the objs in a slab page, and release the mem back to the system.
1613 * Before calling the slab page must have been unlinked from the cache. The
1614 * kmem_cache_node ->list_lock is not held/needed.
1615 */
1616static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1617{
1618        void *freelist;
1619
1620        freelist = page->freelist;
1621        slab_destroy_debugcheck(cachep, page);
1622        if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1623                call_rcu(&page->rcu_head, kmem_rcu_free);
1624        else
1625                kmem_freepages(cachep, page);
1626
1627        /*
1628         * From now on, we don't use freelist
1629         * although actual page can be freed in rcu context
1630         */
1631        if (OFF_SLAB(cachep))
1632                kmem_cache_free(cachep->freelist_cache, freelist);
1633}
1634
1635/*
1636 * Update the size of the caches before calling slabs_destroy as it may
1637 * recursively call kfree.
1638 */
1639static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1640{
1641        struct page *page, *n;
1642
1643        list_for_each_entry_safe(page, n, list, slab_list) {
1644                list_del(&page->slab_list);
1645                slab_destroy(cachep, page);
1646        }
1647}
1648
1649/**
1650 * calculate_slab_order - calculate size (page order) of slabs
1651 * @cachep: pointer to the cache that is being created
1652 * @size: size of objects to be created in this cache.
1653 * @flags: slab allocation flags
1654 *
1655 * Also calculates the number of objects per slab.
1656 *
1657 * This could be made much more intelligent.  For now, try to avoid using
1658 * high order pages for slabs.  When the gfp() functions are more friendly
1659 * towards high-order requests, this should be changed.
1660 *
1661 * Return: number of left-over bytes in a slab
1662 */
1663static size_t calculate_slab_order(struct kmem_cache *cachep,
1664                                size_t size, slab_flags_t flags)
1665{
1666        size_t left_over = 0;
1667        int gfporder;
1668
1669        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1670                unsigned int num;
1671                size_t remainder;
1672
1673                num = cache_estimate(gfporder, size, flags, &remainder);
1674                if (!num)
1675                        continue;
1676
1677                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1678                if (num > SLAB_OBJ_MAX_NUM)
1679                        break;
1680
1681                if (flags & CFLGS_OFF_SLAB) {
1682                        struct kmem_cache *freelist_cache;
1683                        size_t freelist_size;
1684
1685                        freelist_size = num * sizeof(freelist_idx_t);
1686                        freelist_cache = kmalloc_slab(freelist_size, 0u);
1687                        if (!freelist_cache)
1688                                continue;
1689
1690                        /*
1691                         * Needed to avoid possible looping condition
1692                         * in cache_grow_begin()
1693                         */
1694                        if (OFF_SLAB(freelist_cache))
1695                                continue;
1696
1697                        /* check if off slab has enough benefit */
1698                        if (freelist_cache->size > cachep->size / 2)
1699                                continue;
1700                }
1701
1702                /* Found something acceptable - save it away */
1703                cachep->num = num;
1704                cachep->gfporder = gfporder;
1705                left_over = remainder;
1706
1707                /*
1708                 * A VFS-reclaimable slab tends to have most allocations
1709                 * as GFP_NOFS and we really don't want to have to be allocating
1710                 * higher-order pages when we are unable to shrink dcache.
1711                 */
1712                if (flags & SLAB_RECLAIM_ACCOUNT)
1713                        break;
1714
1715                /*
1716                 * Large number of objects is good, but very large slabs are
1717                 * currently bad for the gfp()s.
1718                 */
1719                if (gfporder >= slab_max_order)
1720                        break;
1721
1722                /*
1723                 * Acceptable internal fragmentation?
1724                 */
1725                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1726                        break;
1727        }
1728        return left_over;
1729}
1730
1731static struct array_cache __percpu *alloc_kmem_cache_cpus(
1732                struct kmem_cache *cachep, int entries, int batchcount)
1733{
1734        int cpu;
1735        size_t size;
1736        struct array_cache __percpu *cpu_cache;
1737
1738        size = sizeof(void *) * entries + sizeof(struct array_cache);
1739        cpu_cache = __alloc_percpu(size, sizeof(void *));
1740
1741        if (!cpu_cache)
1742                return NULL;
1743
1744        for_each_possible_cpu(cpu) {
1745                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1746                                entries, batchcount);
1747        }
1748
1749        return cpu_cache;
1750}
1751
1752static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1753{
1754        if (slab_state >= FULL)
1755                return enable_cpucache(cachep, gfp);
1756
1757        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1758        if (!cachep->cpu_cache)
1759                return 1;
1760
1761        if (slab_state == DOWN) {
1762                /* Creation of first cache (kmem_cache). */
1763                set_up_node(kmem_cache, CACHE_CACHE);
1764        } else if (slab_state == PARTIAL) {
1765                /* For kmem_cache_node */
1766                set_up_node(cachep, SIZE_NODE);
1767        } else {
1768                int node;
1769
1770                for_each_online_node(node) {
1771                        cachep->node[node] = kmalloc_node(
1772                                sizeof(struct kmem_cache_node), gfp, node);
1773                        BUG_ON(!cachep->node[node]);
1774                        kmem_cache_node_init(cachep->node[node]);
1775                }
1776        }
1777
1778        cachep->node[numa_mem_id()]->next_reap =
1779                        jiffies + REAPTIMEOUT_NODE +
1780                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1781
1782        cpu_cache_get(cachep)->avail = 0;
1783        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1784        cpu_cache_get(cachep)->batchcount = 1;
1785        cpu_cache_get(cachep)->touched = 0;
1786        cachep->batchcount = 1;
1787        cachep->limit = BOOT_CPUCACHE_ENTRIES;
1788        return 0;
1789}
1790
1791slab_flags_t kmem_cache_flags(unsigned int object_size,
1792        slab_flags_t flags, const char *name,
1793        void (*ctor)(void *))
1794{
1795        return flags;
1796}
1797
1798struct kmem_cache *
1799__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1800                   slab_flags_t flags, void (*ctor)(void *))
1801{
1802        struct kmem_cache *cachep;
1803
1804        cachep = find_mergeable(size, align, flags, name, ctor);
1805        if (cachep) {
1806                cachep->refcount++;
1807
1808                /*
1809                 * Adjust the object sizes so that we clear
1810                 * the complete object on kzalloc.
1811                 */
1812                cachep->object_size = max_t(int, cachep->object_size, size);
1813        }
1814        return cachep;
1815}
1816
1817static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1818                        size_t size, slab_flags_t flags)
1819{
1820        size_t left;
1821
1822        cachep->num = 0;
1823
1824        /*
1825         * If slab auto-initialization on free is enabled, store the freelist
1826         * off-slab, so that its contents don't end up in one of the allocated
1827         * objects.
1828         */
1829        if (unlikely(slab_want_init_on_free(cachep)))
1830                return false;
1831
1832        if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1833                return false;
1834
1835        left = calculate_slab_order(cachep, size,
1836                        flags | CFLGS_OBJFREELIST_SLAB);
1837        if (!cachep->num)
1838                return false;
1839
1840        if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1841                return false;
1842
1843        cachep->colour = left / cachep->colour_off;
1844
1845        return true;
1846}
1847
1848static bool set_off_slab_cache(struct kmem_cache *cachep,
1849                        size_t size, slab_flags_t flags)
1850{
1851        size_t left;
1852
1853        cachep->num = 0;
1854
1855        /*
1856         * Always use on-slab management when SLAB_NOLEAKTRACE
1857         * to avoid recursive calls into kmemleak.
1858         */
1859        if (flags & SLAB_NOLEAKTRACE)
1860                return false;
1861
1862        /*
1863         * Size is large, assume best to place the slab management obj
1864         * off-slab (should allow better packing of objs).
1865         */
1866        left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1867        if (!cachep->num)
1868                return false;
1869
1870        /*
1871         * If the slab has been placed off-slab, and we have enough space then
1872         * move it on-slab. This is at the expense of any extra colouring.
1873         */
1874        if (left >= cachep->num * sizeof(freelist_idx_t))
1875                return false;
1876
1877        cachep->colour = left / cachep->colour_off;
1878
1879        return true;
1880}
1881
1882static bool set_on_slab_cache(struct kmem_cache *cachep,
1883                        size_t size, slab_flags_t flags)
1884{
1885        size_t left;
1886
1887        cachep->num = 0;
1888
1889        left = calculate_slab_order(cachep, size, flags);
1890        if (!cachep->num)
1891                return false;
1892
1893        cachep->colour = left / cachep->colour_off;
1894
1895        return true;
1896}
1897
1898/**
1899 * __kmem_cache_create - Create a cache.
1900 * @cachep: cache management descriptor
1901 * @flags: SLAB flags
1902 *
1903 * Returns a ptr to the cache on success, NULL on failure.
1904 * Cannot be called within a int, but can be interrupted.
1905 * The @ctor is run when new pages are allocated by the cache.
1906 *
1907 * The flags are
1908 *
1909 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1910 * to catch references to uninitialised memory.
1911 *
1912 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1913 * for buffer overruns.
1914 *
1915 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1916 * cacheline.  This can be beneficial if you're counting cycles as closely
1917 * as davem.
1918 *
1919 * Return: a pointer to the created cache or %NULL in case of error
1920 */
1921int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1922{
1923        size_t ralign = BYTES_PER_WORD;
1924        gfp_t gfp;
1925        int err;
1926        unsigned int size = cachep->size;
1927
1928#if DEBUG
1929#if FORCED_DEBUG
1930        /*
1931         * Enable redzoning and last user accounting, except for caches with
1932         * large objects, if the increased size would increase the object size
1933         * above the next power of two: caches with object sizes just above a
1934         * power of two have a significant amount of internal fragmentation.
1935         */
1936        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1937                                                2 * sizeof(unsigned long long)))
1938                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1939        if (!(flags & SLAB_TYPESAFE_BY_RCU))
1940                flags |= SLAB_POISON;
1941#endif
1942#endif
1943
1944        /*
1945         * Check that size is in terms of words.  This is needed to avoid
1946         * unaligned accesses for some archs when redzoning is used, and makes
1947         * sure any on-slab bufctl's are also correctly aligned.
1948         */
1949        size = ALIGN(size, BYTES_PER_WORD);
1950
1951        if (flags & SLAB_RED_ZONE) {
1952                ralign = REDZONE_ALIGN;
1953                /* If redzoning, ensure that the second redzone is suitably
1954                 * aligned, by adjusting the object size accordingly. */
1955                size = ALIGN(size, REDZONE_ALIGN);
1956        }
1957
1958        /* 3) caller mandated alignment */
1959        if (ralign < cachep->align) {
1960                ralign = cachep->align;
1961        }
1962        /* disable debug if necessary */
1963        if (ralign > __alignof__(unsigned long long))
1964                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1965        /*
1966         * 4) Store it.
1967         */
1968        cachep->align = ralign;
1969        cachep->colour_off = cache_line_size();
1970        /* Offset must be a multiple of the alignment. */
1971        if (cachep->colour_off < cachep->align)
1972                cachep->colour_off = cachep->align;
1973
1974        if (slab_is_available())
1975                gfp = GFP_KERNEL;
1976        else
1977                gfp = GFP_NOWAIT;
1978
1979#if DEBUG
1980
1981        /*
1982         * Both debugging options require word-alignment which is calculated
1983         * into align above.
1984         */
1985        if (flags & SLAB_RED_ZONE) {
1986                /* add space for red zone words */
1987                cachep->obj_offset += sizeof(unsigned long long);
1988                size += 2 * sizeof(unsigned long long);
1989        }
1990        if (flags & SLAB_STORE_USER) {
1991                /* user store requires one word storage behind the end of
1992                 * the real object. But if the second red zone needs to be
1993                 * aligned to 64 bits, we must allow that much space.
1994                 */
1995                if (flags & SLAB_RED_ZONE)
1996                        size += REDZONE_ALIGN;
1997                else
1998                        size += BYTES_PER_WORD;
1999        }
2000#endif
2001
2002        kasan_cache_create(cachep, &size, &flags);
2003
2004        size = ALIGN(size, cachep->align);
2005        /*
2006         * We should restrict the number of objects in a slab to implement
2007         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2008         */
2009        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2010                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2011
2012#if DEBUG
2013        /*
2014         * To activate debug pagealloc, off-slab management is necessary
2015         * requirement. In early phase of initialization, small sized slab
2016         * doesn't get initialized so it would not be possible. So, we need
2017         * to check size >= 256. It guarantees that all necessary small
2018         * sized slab is initialized in current slab initialization sequence.
2019         */
2020        if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2021                size >= 256 && cachep->object_size > cache_line_size()) {
2022                if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2023                        size_t tmp_size = ALIGN(size, PAGE_SIZE);
2024
2025                        if (set_off_slab_cache(cachep, tmp_size, flags)) {
2026                                flags |= CFLGS_OFF_SLAB;
2027                                cachep->obj_offset += tmp_size - size;
2028                                size = tmp_size;
2029                                goto done;
2030                        }
2031                }
2032        }
2033#endif
2034
2035        if (set_objfreelist_slab_cache(cachep, size, flags)) {
2036                flags |= CFLGS_OBJFREELIST_SLAB;
2037                goto done;
2038        }
2039
2040        if (set_off_slab_cache(cachep, size, flags)) {
2041                flags |= CFLGS_OFF_SLAB;
2042                goto done;
2043        }
2044
2045        if (set_on_slab_cache(cachep, size, flags))
2046                goto done;
2047
2048        return -E2BIG;
2049
2050done:
2051        cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2052        cachep->flags = flags;
2053        cachep->allocflags = __GFP_COMP;
2054        if (flags & SLAB_CACHE_DMA)
2055                cachep->allocflags |= GFP_DMA;
2056        if (flags & SLAB_CACHE_DMA32)
2057                cachep->allocflags |= GFP_DMA32;
2058        if (flags & SLAB_RECLAIM_ACCOUNT)
2059                cachep->allocflags |= __GFP_RECLAIMABLE;
2060        cachep->size = size;
2061        cachep->reciprocal_buffer_size = reciprocal_value(size);
2062
2063#if DEBUG
2064        /*
2065         * If we're going to use the generic kernel_map_pages()
2066         * poisoning, then it's going to smash the contents of
2067         * the redzone and userword anyhow, so switch them off.
2068         */
2069        if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2070                (cachep->flags & SLAB_POISON) &&
2071                is_debug_pagealloc_cache(cachep))
2072                cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2073#endif
2074
2075        if (OFF_SLAB(cachep)) {
2076                cachep->freelist_cache =
2077                        kmalloc_slab(cachep->freelist_size, 0u);
2078        }
2079
2080        err = setup_cpu_cache(cachep, gfp);
2081        if (err) {
2082                __kmem_cache_release(cachep);
2083                return err;
2084        }
2085
2086        return 0;
2087}
2088
2089#if DEBUG
2090static void check_irq_off(void)
2091{
2092        BUG_ON(!irqs_disabled());
2093}
2094
2095static void check_irq_on(void)
2096{
2097        BUG_ON(irqs_disabled());
2098}
2099
2100static void check_mutex_acquired(void)
2101{
2102        BUG_ON(!mutex_is_locked(&slab_mutex));
2103}
2104
2105static void check_spinlock_acquired(struct kmem_cache *cachep)
2106{
2107#ifdef CONFIG_SMP
2108        check_irq_off();
2109        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2110#endif
2111}
2112
2113static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2114{
2115#ifdef CONFIG_SMP
2116        check_irq_off();
2117        assert_spin_locked(&get_node(cachep, node)->list_lock);
2118#endif
2119}
2120
2121#else
2122#define check_irq_off() do { } while(0)
2123#define check_irq_on()  do { } while(0)
2124#define check_mutex_acquired()  do { } while(0)
2125#define check_spinlock_acquired(x) do { } while(0)
2126#define check_spinlock_acquired_node(x, y) do { } while(0)
2127#endif
2128
2129static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2130                                int node, bool free_all, struct list_head *list)
2131{
2132        int tofree;
2133
2134        if (!ac || !ac->avail)
2135                return;
2136
2137        tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2138        if (tofree > ac->avail)
2139                tofree = (ac->avail + 1) / 2;
2140
2141        free_block(cachep, ac->entry, tofree, node, list);
2142        ac->avail -= tofree;
2143        memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2144}
2145
2146static void do_drain(void *arg)
2147{
2148        struct kmem_cache *cachep = arg;
2149        struct array_cache *ac;
2150        int node = numa_mem_id();
2151        struct kmem_cache_node *n;
2152        LIST_HEAD(list);
2153
2154        check_irq_off();
2155        ac = cpu_cache_get(cachep);
2156        n = get_node(cachep, node);
2157        spin_lock(&n->list_lock);
2158        free_block(cachep, ac->entry, ac->avail, node, &list);
2159        spin_unlock(&n->list_lock);
2160        ac->avail = 0;
2161        slabs_destroy(cachep, &list);
2162}
2163
2164static void drain_cpu_caches(struct kmem_cache *cachep)
2165{
2166        struct kmem_cache_node *n;
2167        int node;
2168        LIST_HEAD(list);
2169
2170        on_each_cpu(do_drain, cachep, 1);
2171        check_irq_on();
2172        for_each_kmem_cache_node(cachep, node, n)
2173                if (n->alien)
2174                        drain_alien_cache(cachep, n->alien);
2175
2176        for_each_kmem_cache_node(cachep, node, n) {
2177                spin_lock_irq(&n->list_lock);
2178                drain_array_locked(cachep, n->shared, node, true, &list);
2179                spin_unlock_irq(&n->list_lock);
2180
2181                slabs_destroy(cachep, &list);
2182        }
2183}
2184
2185/*
2186 * Remove slabs from the list of free slabs.
2187 * Specify the number of slabs to drain in tofree.
2188 *
2189 * Returns the actual number of slabs released.
2190 */
2191static int drain_freelist(struct kmem_cache *cache,
2192                        struct kmem_cache_node *n, int tofree)
2193{
2194        struct list_head *p;
2195        int nr_freed;
2196        struct page *page;
2197
2198        nr_freed = 0;
2199        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2200
2201                spin_lock_irq(&n->list_lock);
2202                p = n->slabs_free.prev;
2203                if (p == &n->slabs_free) {
2204                        spin_unlock_irq(&n->list_lock);
2205                        goto out;
2206                }
2207
2208                page = list_entry(p, struct page, slab_list);
2209                list_del(&page->slab_list);
2210                n->free_slabs--;
2211                n->total_slabs--;
2212                /*
2213                 * Safe to drop the lock. The slab is no longer linked
2214                 * to the cache.
2215                 */
2216                n->free_objects -= cache->num;
2217                spin_unlock_irq(&n->list_lock);
2218                slab_destroy(cache, page);
2219                nr_freed++;
2220        }
2221out:
2222        return nr_freed;
2223}
2224
2225bool __kmem_cache_empty(struct kmem_cache *s)
2226{
2227        int node;
2228        struct kmem_cache_node *n;
2229
2230        for_each_kmem_cache_node(s, node, n)
2231                if (!list_empty(&n->slabs_full) ||
2232                    !list_empty(&n->slabs_partial))
2233                        return false;
2234        return true;
2235}
2236
2237int __kmem_cache_shrink(struct kmem_cache *cachep)
2238{
2239        int ret = 0;
2240        int node;
2241        struct kmem_cache_node *n;
2242
2243        drain_cpu_caches(cachep);
2244
2245        check_irq_on();
2246        for_each_kmem_cache_node(cachep, node, n) {
2247                drain_freelist(cachep, n, INT_MAX);
2248
2249                ret += !list_empty(&n->slabs_full) ||
2250                        !list_empty(&n->slabs_partial);
2251        }
2252        return (ret ? 1 : 0);
2253}
2254
2255int __kmem_cache_shutdown(struct kmem_cache *cachep)
2256{
2257        return __kmem_cache_shrink(cachep);
2258}
2259
2260void __kmem_cache_release(struct kmem_cache *cachep)
2261{
2262        int i;
2263        struct kmem_cache_node *n;
2264
2265        cache_random_seq_destroy(cachep);
2266
2267        free_percpu(cachep->cpu_cache);
2268
2269        /* NUMA: free the node structures */
2270        for_each_kmem_cache_node(cachep, i, n) {
2271                kfree(n->shared);
2272                free_alien_cache(n->alien);
2273                kfree(n);
2274                cachep->node[i] = NULL;
2275        }
2276}
2277
2278/*
2279 * Get the memory for a slab management obj.
2280 *
2281 * For a slab cache when the slab descriptor is off-slab, the
2282 * slab descriptor can't come from the same cache which is being created,
2283 * Because if it is the case, that means we defer the creation of
2284 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2285 * And we eventually call down to __kmem_cache_create(), which
2286 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2287 * This is a "chicken-and-egg" problem.
2288 *
2289 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2290 * which are all initialized during kmem_cache_init().
2291 */
2292static void *alloc_slabmgmt(struct kmem_cache *cachep,
2293                                   struct page *page, int colour_off,
2294                                   gfp_t local_flags, int nodeid)
2295{
2296        void *freelist;
2297        void *addr = page_address(page);
2298
2299        page->s_mem = addr + colour_off;
2300        page->active = 0;
2301
2302        if (OBJFREELIST_SLAB(cachep))
2303                freelist = NULL;
2304        else if (OFF_SLAB(cachep)) {
2305                /* Slab management obj is off-slab. */
2306                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2307                                              local_flags, nodeid);
2308                if (!freelist)
2309                        return NULL;
2310        } else {
2311                /* We will use last bytes at the slab for freelist */
2312                freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2313                                cachep->freelist_size;
2314        }
2315
2316        return freelist;
2317}
2318
2319static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2320{
2321        return ((freelist_idx_t *)page->freelist)[idx];
2322}
2323
2324static inline void set_free_obj(struct page *page,
2325                                        unsigned int idx, freelist_idx_t val)
2326{
2327        ((freelist_idx_t *)(page->freelist))[idx] = val;
2328}
2329
2330static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2331{
2332#if DEBUG
2333        int i;
2334
2335        for (i = 0; i < cachep->num; i++) {
2336                void *objp = index_to_obj(cachep, page, i);
2337
2338                if (cachep->flags & SLAB_STORE_USER)
2339                        *dbg_userword(cachep, objp) = NULL;
2340
2341                if (cachep->flags & SLAB_RED_ZONE) {
2342                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2343                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2344                }
2345                /*
2346                 * Constructors are not allowed to allocate memory from the same
2347                 * cache which they are a constructor for.  Otherwise, deadlock.
2348                 * They must also be threaded.
2349                 */
2350                if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2351                        kasan_unpoison_object_data(cachep,
2352                                                   objp + obj_offset(cachep));
2353                        cachep->ctor(objp + obj_offset(cachep));
2354                        kasan_poison_object_data(
2355                                cachep, objp + obj_offset(cachep));
2356                }
2357
2358                if (cachep->flags & SLAB_RED_ZONE) {
2359                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2360                                slab_error(cachep, "constructor overwrote the end of an object");
2361                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2362                                slab_error(cachep, "constructor overwrote the start of an object");
2363                }
2364                /* need to poison the objs? */
2365                if (cachep->flags & SLAB_POISON) {
2366                        poison_obj(cachep, objp, POISON_FREE);
2367                        slab_kernel_map(cachep, objp, 0);
2368                }
2369        }
2370#endif
2371}
2372
2373#ifdef CONFIG_SLAB_FREELIST_RANDOM
2374/* Hold information during a freelist initialization */
2375union freelist_init_state {
2376        struct {
2377                unsigned int pos;
2378                unsigned int *list;
2379                unsigned int count;
2380        };
2381        struct rnd_state rnd_state;
2382};
2383
2384/*
2385 * Initialize the state based on the randomization methode available.
2386 * return true if the pre-computed list is available, false otherwize.
2387 */
2388static bool freelist_state_initialize(union freelist_init_state *state,
2389                                struct kmem_cache *cachep,
2390                                unsigned int count)
2391{
2392        bool ret;
2393        unsigned int rand;
2394
2395        /* Use best entropy available to define a random shift */
2396        rand = get_random_int();
2397
2398        /* Use a random state if the pre-computed list is not available */
2399        if (!cachep->random_seq) {
2400                prandom_seed_state(&state->rnd_state, rand);
2401                ret = false;
2402        } else {
2403                state->list = cachep->random_seq;
2404                state->count = count;
2405                state->pos = rand % count;
2406                ret = true;
2407        }
2408        return ret;
2409}
2410
2411/* Get the next entry on the list and randomize it using a random shift */
2412static freelist_idx_t next_random_slot(union freelist_init_state *state)
2413{
2414        if (state->pos >= state->count)
2415                state->pos = 0;
2416        return state->list[state->pos++];
2417}
2418
2419/* Swap two freelist entries */
2420static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2421{
2422        swap(((freelist_idx_t *)page->freelist)[a],
2423                ((freelist_idx_t *)page->freelist)[b]);
2424}
2425
2426/*
2427 * Shuffle the freelist initialization state based on pre-computed lists.
2428 * return true if the list was successfully shuffled, false otherwise.
2429 */
2430static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2431{
2432        unsigned int objfreelist = 0, i, rand, count = cachep->num;
2433        union freelist_init_state state;
2434        bool precomputed;
2435
2436        if (count < 2)
2437                return false;
2438
2439        precomputed = freelist_state_initialize(&state, cachep, count);
2440
2441        /* Take a random entry as the objfreelist */
2442        if (OBJFREELIST_SLAB(cachep)) {
2443                if (!precomputed)
2444                        objfreelist = count - 1;
2445                else
2446                        objfreelist = next_random_slot(&state);
2447                page->freelist = index_to_obj(cachep, page, objfreelist) +
2448                                                obj_offset(cachep);
2449                count--;
2450        }
2451
2452        /*
2453         * On early boot, generate the list dynamically.
2454         * Later use a pre-computed list for speed.
2455         */
2456        if (!precomputed) {
2457                for (i = 0; i < count; i++)
2458                        set_free_obj(page, i, i);
2459
2460                /* Fisher-Yates shuffle */
2461                for (i = count - 1; i > 0; i--) {
2462                        rand = prandom_u32_state(&state.rnd_state);
2463                        rand %= (i + 1);
2464                        swap_free_obj(page, i, rand);
2465                }
2466        } else {
2467                for (i = 0; i < count; i++)
2468                        set_free_obj(page, i, next_random_slot(&state));
2469        }
2470
2471        if (OBJFREELIST_SLAB(cachep))
2472                set_free_obj(page, cachep->num - 1, objfreelist);
2473
2474        return true;
2475}
2476#else
2477static inline bool shuffle_freelist(struct kmem_cache *cachep,
2478                                struct page *page)
2479{
2480        return false;
2481}
2482#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2483
2484static void cache_init_objs(struct kmem_cache *cachep,
2485                            struct page *page)
2486{
2487        int i;
2488        void *objp;
2489        bool shuffled;
2490
2491        cache_init_objs_debug(cachep, page);
2492
2493        /* Try to randomize the freelist if enabled */
2494        shuffled = shuffle_freelist(cachep, page);
2495
2496        if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2497                page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2498                                                obj_offset(cachep);
2499        }
2500
2501        for (i = 0; i < cachep->num; i++) {
2502                objp = index_to_obj(cachep, page, i);
2503                objp = kasan_init_slab_obj(cachep, objp);
2504
2505                /* constructor could break poison info */
2506                if (DEBUG == 0 && cachep->ctor) {
2507                        kasan_unpoison_object_data(cachep, objp);
2508                        cachep->ctor(objp);
2509                        kasan_poison_object_data(cachep, objp);
2510                }
2511
2512                if (!shuffled)
2513                        set_free_obj(page, i, i);
2514        }
2515}
2516
2517static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2518{
2519        void *objp;
2520
2521        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2522        page->active++;
2523
2524        return objp;
2525}
2526
2527static void slab_put_obj(struct kmem_cache *cachep,
2528                        struct page *page, void *objp)
2529{
2530        unsigned int objnr = obj_to_index(cachep, page, objp);
2531#if DEBUG
2532        unsigned int i;
2533
2534        /* Verify double free bug */
2535        for (i = page->active; i < cachep->num; i++) {
2536                if (get_free_obj(page, i) == objnr) {
2537                        pr_err("slab: double free detected in cache '%s', objp %px\n",
2538                               cachep->name, objp);
2539                        BUG();
2540                }
2541        }
2542#endif
2543        page->active--;
2544        if (!page->freelist)
2545                page->freelist = objp + obj_offset(cachep);
2546
2547        set_free_obj(page, page->active, objnr);
2548}
2549
2550/*
2551 * Map pages beginning at addr to the given cache and slab. This is required
2552 * for the slab allocator to be able to lookup the cache and slab of a
2553 * virtual address for kfree, ksize, and slab debugging.
2554 */
2555static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2556                           void *freelist)
2557{
2558        page->slab_cache = cache;
2559        page->freelist = freelist;
2560}
2561
2562/*
2563 * Grow (by 1) the number of slabs within a cache.  This is called by
2564 * kmem_cache_alloc() when there are no active objs left in a cache.
2565 */
2566static struct page *cache_grow_begin(struct kmem_cache *cachep,
2567                                gfp_t flags, int nodeid)
2568{
2569        void *freelist;
2570        size_t offset;
2571        gfp_t local_flags;
2572        int page_node;
2573        struct kmem_cache_node *n;
2574        struct page *page;
2575
2576        /*
2577         * Be lazy and only check for valid flags here,  keeping it out of the
2578         * critical path in kmem_cache_alloc().
2579         */
2580        if (unlikely(flags & GFP_SLAB_BUG_MASK))
2581                flags = kmalloc_fix_flags(flags);
2582
2583        WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2584        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2585
2586        check_irq_off();
2587        if (gfpflags_allow_blocking(local_flags))
2588                local_irq_enable();
2589
2590        /*
2591         * Get mem for the objs.  Attempt to allocate a physical page from
2592         * 'nodeid'.
2593         */
2594        page = kmem_getpages(cachep, local_flags, nodeid);
2595        if (!page)
2596                goto failed;
2597
2598        page_node = page_to_nid(page);
2599        n = get_node(cachep, page_node);
2600
2601        /* Get colour for the slab, and cal the next value. */
2602        n->colour_next++;
2603        if (n->colour_next >= cachep->colour)
2604                n->colour_next = 0;
2605
2606        offset = n->colour_next;
2607        if (offset >= cachep->colour)
2608                offset = 0;
2609
2610        offset *= cachep->colour_off;
2611
2612        /*
2613         * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2614         * page_address() in the latter returns a non-tagged pointer,
2615         * as it should be for slab pages.
2616         */
2617        kasan_poison_slab(page);
2618
2619        /* Get slab management. */
2620        freelist = alloc_slabmgmt(cachep, page, offset,
2621                        local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2622        if (OFF_SLAB(cachep) && !freelist)
2623                goto opps1;
2624
2625        slab_map_pages(cachep, page, freelist);
2626
2627        cache_init_objs(cachep, page);
2628
2629        if (gfpflags_allow_blocking(local_flags))
2630                local_irq_disable();
2631
2632        return page;
2633
2634opps1:
2635        kmem_freepages(cachep, page);
2636failed:
2637        if (gfpflags_allow_blocking(local_flags))
2638                local_irq_disable();
2639        return NULL;
2640}
2641
2642static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2643{
2644        struct kmem_cache_node *n;
2645        void *list = NULL;
2646
2647        check_irq_off();
2648
2649        if (!page)
2650                return;
2651
2652        INIT_LIST_HEAD(&page->slab_list);
2653        n = get_node(cachep, page_to_nid(page));
2654
2655        spin_lock(&n->list_lock);
2656        n->total_slabs++;
2657        if (!page->active) {
2658                list_add_tail(&page->slab_list, &n->slabs_free);
2659                n->free_slabs++;
2660        } else
2661                fixup_slab_list(cachep, n, page, &list);
2662
2663        STATS_INC_GROWN(cachep);
2664        n->free_objects += cachep->num - page->active;
2665        spin_unlock(&n->list_lock);
2666
2667        fixup_objfreelist_debug(cachep, &list);
2668}
2669
2670#if DEBUG
2671
2672/*
2673 * Perform extra freeing checks:
2674 * - detect bad pointers.
2675 * - POISON/RED_ZONE checking
2676 */
2677static void kfree_debugcheck(const void *objp)
2678{
2679        if (!virt_addr_valid(objp)) {
2680                pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2681                       (unsigned long)objp);
2682                BUG();
2683        }
2684}
2685
2686static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2687{
2688        unsigned long long redzone1, redzone2;
2689
2690        redzone1 = *dbg_redzone1(cache, obj);
2691        redzone2 = *dbg_redzone2(cache, obj);
2692
2693        /*
2694         * Redzone is ok.
2695         */
2696        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2697                return;
2698
2699        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2700                slab_error(cache, "double free detected");
2701        else
2702                slab_error(cache, "memory outside object was overwritten");
2703
2704        pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2705               obj, redzone1, redzone2);
2706}
2707
2708static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2709                                   unsigned long caller)
2710{
2711        unsigned int objnr;
2712        struct page *page;
2713
2714        BUG_ON(virt_to_cache(objp) != cachep);
2715
2716        objp -= obj_offset(cachep);
2717        kfree_debugcheck(objp);
2718        page = virt_to_head_page(objp);
2719
2720        if (cachep->flags & SLAB_RED_ZONE) {
2721                verify_redzone_free(cachep, objp);
2722                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2723                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2724        }
2725        if (cachep->flags & SLAB_STORE_USER)
2726                *dbg_userword(cachep, objp) = (void *)caller;
2727
2728        objnr = obj_to_index(cachep, page, objp);
2729
2730        BUG_ON(objnr >= cachep->num);
2731        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2732
2733        if (cachep->flags & SLAB_POISON) {
2734                poison_obj(cachep, objp, POISON_FREE);
2735                slab_kernel_map(cachep, objp, 0);
2736        }
2737        return objp;
2738}
2739
2740#else
2741#define kfree_debugcheck(x) do { } while(0)
2742#define cache_free_debugcheck(x,objp,z) (objp)
2743#endif
2744
2745static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2746                                                void **list)
2747{
2748#if DEBUG
2749        void *next = *list;
2750        void *objp;
2751
2752        while (next) {
2753                objp = next - obj_offset(cachep);
2754                next = *(void **)next;
2755                poison_obj(cachep, objp, POISON_FREE);
2756        }
2757#endif
2758}
2759
2760static inline void fixup_slab_list(struct kmem_cache *cachep,
2761                                struct kmem_cache_node *n, struct page *page,
2762                                void **list)
2763{
2764        /* move slabp to correct slabp list: */
2765        list_del(&page->slab_list);
2766        if (page->active == cachep->num) {
2767                list_add(&page->slab_list, &n->slabs_full);
2768                if (OBJFREELIST_SLAB(cachep)) {
2769#if DEBUG
2770                        /* Poisoning will be done without holding the lock */
2771                        if (cachep->flags & SLAB_POISON) {
2772                                void **objp = page->freelist;
2773
2774                                *objp = *list;
2775                                *list = objp;
2776                        }
2777#endif
2778                        page->freelist = NULL;
2779                }
2780        } else
2781                list_add(&page->slab_list, &n->slabs_partial);
2782}
2783
2784/* Try to find non-pfmemalloc slab if needed */
2785static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2786                                        struct page *page, bool pfmemalloc)
2787{
2788        if (!page)
2789                return NULL;
2790
2791        if (pfmemalloc)
2792                return page;
2793
2794        if (!PageSlabPfmemalloc(page))
2795                return page;
2796
2797        /* No need to keep pfmemalloc slab if we have enough free objects */
2798        if (n->free_objects > n->free_limit) {
2799                ClearPageSlabPfmemalloc(page);
2800                return page;
2801        }
2802
2803        /* Move pfmemalloc slab to the end of list to speed up next search */
2804        list_del(&page->slab_list);
2805        if (!page->active) {
2806                list_add_tail(&page->slab_list, &n->slabs_free);
2807                n->free_slabs++;
2808        } else
2809                list_add_tail(&page->slab_list, &n->slabs_partial);
2810
2811        list_for_each_entry(page, &n->slabs_partial, slab_list) {
2812                if (!PageSlabPfmemalloc(page))
2813                        return page;
2814        }
2815
2816        n->free_touched = 1;
2817        list_for_each_entry(page, &n->slabs_free, slab_list) {
2818                if (!PageSlabPfmemalloc(page)) {
2819                        n->free_slabs--;
2820                        return page;
2821                }
2822        }
2823
2824        return NULL;
2825}
2826
2827static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2828{
2829        struct page *page;
2830
2831        assert_spin_locked(&n->list_lock);
2832        page = list_first_entry_or_null(&n->slabs_partial, struct page,
2833                                        slab_list);
2834        if (!page) {
2835                n->free_touched = 1;
2836                page = list_first_entry_or_null(&n->slabs_free, struct page,
2837                                                slab_list);
2838                if (page)
2839                        n->free_slabs--;
2840        }
2841
2842        if (sk_memalloc_socks())
2843                page = get_valid_first_slab(n, page, pfmemalloc);
2844
2845        return page;
2846}
2847
2848static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2849                                struct kmem_cache_node *n, gfp_t flags)
2850{
2851        struct page *page;
2852        void *obj;
2853        void *list = NULL;
2854
2855        if (!gfp_pfmemalloc_allowed(flags))
2856                return NULL;
2857
2858        spin_lock(&n->list_lock);
2859        page = get_first_slab(n, true);
2860        if (!page) {
2861                spin_unlock(&n->list_lock);
2862                return NULL;
2863        }
2864
2865        obj = slab_get_obj(cachep, page);
2866        n->free_objects--;
2867
2868        fixup_slab_list(cachep, n, page, &list);
2869
2870        spin_unlock(&n->list_lock);
2871        fixup_objfreelist_debug(cachep, &list);
2872
2873        return obj;
2874}
2875
2876/*
2877 * Slab list should be fixed up by fixup_slab_list() for existing slab
2878 * or cache_grow_end() for new slab
2879 */
2880static __always_inline int alloc_block(struct kmem_cache *cachep,
2881                struct array_cache *ac, struct page *page, int batchcount)
2882{
2883        /*
2884         * There must be at least one object available for
2885         * allocation.
2886         */
2887        BUG_ON(page->active >= cachep->num);
2888
2889        while (page->active < cachep->num && batchcount--) {
2890                STATS_INC_ALLOCED(cachep);
2891                STATS_INC_ACTIVE(cachep);
2892                STATS_SET_HIGH(cachep);
2893
2894                ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2895        }
2896
2897        return batchcount;
2898}
2899
2900static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2901{
2902        int batchcount;
2903        struct kmem_cache_node *n;
2904        struct array_cache *ac, *shared;
2905        int node;
2906        void *list = NULL;
2907        struct page *page;
2908
2909        check_irq_off();
2910        node = numa_mem_id();
2911
2912        ac = cpu_cache_get(cachep);
2913        batchcount = ac->batchcount;
2914        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2915                /*
2916                 * If there was little recent activity on this cache, then
2917                 * perform only a partial refill.  Otherwise we could generate
2918                 * refill bouncing.
2919                 */
2920                batchcount = BATCHREFILL_LIMIT;
2921        }
2922        n = get_node(cachep, node);
2923
2924        BUG_ON(ac->avail > 0 || !n);
2925        shared = READ_ONCE(n->shared);
2926        if (!n->free_objects && (!shared || !shared->avail))
2927                goto direct_grow;
2928
2929        spin_lock(&n->list_lock);
2930        shared = READ_ONCE(n->shared);
2931
2932        /* See if we can refill from the shared array */
2933        if (shared && transfer_objects(ac, shared, batchcount)) {
2934                shared->touched = 1;
2935                goto alloc_done;
2936        }
2937
2938        while (batchcount > 0) {
2939                /* Get slab alloc is to come from. */
2940                page = get_first_slab(n, false);
2941                if (!page)
2942                        goto must_grow;
2943
2944                check_spinlock_acquired(cachep);
2945
2946                batchcount = alloc_block(cachep, ac, page, batchcount);
2947                fixup_slab_list(cachep, n, page, &list);
2948        }
2949
2950must_grow:
2951        n->free_objects -= ac->avail;
2952alloc_done:
2953        spin_unlock(&n->list_lock);
2954        fixup_objfreelist_debug(cachep, &list);
2955
2956direct_grow:
2957        if (unlikely(!ac->avail)) {
2958                /* Check if we can use obj in pfmemalloc slab */
2959                if (sk_memalloc_socks()) {
2960                        void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2961
2962                        if (obj)
2963                                return obj;
2964                }
2965
2966                page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2967
2968                /*
2969                 * cache_grow_begin() can reenable interrupts,
2970                 * then ac could change.
2971                 */
2972                ac = cpu_cache_get(cachep);
2973                if (!ac->avail && page)
2974                        alloc_block(cachep, ac, page, batchcount);
2975                cache_grow_end(cachep, page);
2976
2977                if (!ac->avail)
2978                        return NULL;
2979        }
2980        ac->touched = 1;
2981
2982        return ac->entry[--ac->avail];
2983}
2984
2985static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2986                                                gfp_t flags)
2987{
2988        might_sleep_if(gfpflags_allow_blocking(flags));
2989}
2990
2991#if DEBUG
2992static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2993                                gfp_t flags, void *objp, unsigned long caller)
2994{
2995        WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2996        if (!objp)
2997                return objp;
2998        if (cachep->flags & SLAB_POISON) {
2999                check_poison_obj(cachep, objp);
3000                slab_kernel_map(cachep, objp, 1);
3001                poison_obj(cachep, objp, POISON_INUSE);
3002        }
3003        if (cachep->flags & SLAB_STORE_USER)
3004                *dbg_userword(cachep, objp) = (void *)caller;
3005
3006        if (cachep->flags & SLAB_RED_ZONE) {
3007                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3008                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3009                        slab_error(cachep, "double free, or memory outside object was overwritten");
3010                        pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3011                               objp, *dbg_redzone1(cachep, objp),
3012                               *dbg_redzone2(cachep, objp));
3013                }
3014                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3015                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3016        }
3017
3018        objp += obj_offset(cachep);
3019        if (cachep->ctor && cachep->flags & SLAB_POISON)
3020                cachep->ctor(objp);
3021        if (ARCH_SLAB_MINALIGN &&
3022            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3023                pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3024                       objp, (int)ARCH_SLAB_MINALIGN);
3025        }
3026        return objp;
3027}
3028#else
3029#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3030#endif
3031
3032static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3033{
3034        void *objp;
3035        struct array_cache *ac;
3036
3037        check_irq_off();
3038
3039        ac = cpu_cache_get(cachep);
3040        if (likely(ac->avail)) {
3041                ac->touched = 1;
3042                objp = ac->entry[--ac->avail];
3043
3044                STATS_INC_ALLOCHIT(cachep);
3045                goto out;
3046        }
3047
3048        STATS_INC_ALLOCMISS(cachep);
3049        objp = cache_alloc_refill(cachep, flags);
3050        /*
3051         * the 'ac' may be updated by cache_alloc_refill(),
3052         * and kmemleak_erase() requires its correct value.
3053         */
3054        ac = cpu_cache_get(cachep);
3055
3056out:
3057        /*
3058         * To avoid a false negative, if an object that is in one of the
3059         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3060         * treat the array pointers as a reference to the object.
3061         */
3062        if (objp)
3063                kmemleak_erase(&ac->entry[ac->avail]);
3064        return objp;
3065}
3066
3067#ifdef CONFIG_NUMA
3068/*
3069 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3070 *
3071 * If we are in_interrupt, then process context, including cpusets and
3072 * mempolicy, may not apply and should not be used for allocation policy.
3073 */
3074static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3075{
3076        int nid_alloc, nid_here;
3077
3078        if (in_interrupt() || (flags & __GFP_THISNODE))
3079                return NULL;
3080        nid_alloc = nid_here = numa_mem_id();
3081        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3082                nid_alloc = cpuset_slab_spread_node();
3083        else if (current->mempolicy)
3084                nid_alloc = mempolicy_slab_node();
3085        if (nid_alloc != nid_here)
3086                return ____cache_alloc_node(cachep, flags, nid_alloc);
3087        return NULL;
3088}
3089
3090/*
3091 * Fallback function if there was no memory available and no objects on a
3092 * certain node and fall back is permitted. First we scan all the
3093 * available node for available objects. If that fails then we
3094 * perform an allocation without specifying a node. This allows the page
3095 * allocator to do its reclaim / fallback magic. We then insert the
3096 * slab into the proper nodelist and then allocate from it.
3097 */
3098static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3099{
3100        struct zonelist *zonelist;
3101        struct zoneref *z;
3102        struct zone *zone;
3103        enum zone_type highest_zoneidx = gfp_zone(flags);
3104        void *obj = NULL;
3105        struct page *page;
3106        int nid;
3107        unsigned int cpuset_mems_cookie;
3108
3109        if (flags & __GFP_THISNODE)
3110                return NULL;
3111
3112retry_cpuset:
3113        cpuset_mems_cookie = read_mems_allowed_begin();
3114        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3115
3116retry:
3117        /*
3118         * Look through allowed nodes for objects available
3119         * from existing per node queues.
3120         */
3121        for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3122                nid = zone_to_nid(zone);
3123
3124                if (cpuset_zone_allowed(zone, flags) &&
3125                        get_node(cache, nid) &&
3126                        get_node(cache, nid)->free_objects) {
3127                                obj = ____cache_alloc_node(cache,
3128                                        gfp_exact_node(flags), nid);
3129                                if (obj)
3130                                        break;
3131                }
3132        }
3133
3134        if (!obj) {
3135                /*
3136                 * This allocation will be performed within the constraints
3137                 * of the current cpuset / memory policy requirements.
3138                 * We may trigger various forms of reclaim on the allowed
3139                 * set and go into memory reserves if necessary.
3140                 */
3141                page = cache_grow_begin(cache, flags, numa_mem_id());
3142                cache_grow_end(cache, page);
3143                if (page) {
3144                        nid = page_to_nid(page);
3145                        obj = ____cache_alloc_node(cache,
3146                                gfp_exact_node(flags), nid);
3147
3148                        /*
3149                         * Another processor may allocate the objects in
3150                         * the slab since we are not holding any locks.
3151                         */
3152                        if (!obj)
3153                                goto retry;
3154                }
3155        }
3156
3157        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3158                goto retry_cpuset;
3159        return obj;
3160}
3161
3162/*
3163 * A interface to enable slab creation on nodeid
3164 */
3165static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3166                                int nodeid)
3167{
3168        struct page *page;
3169        struct kmem_cache_node *n;
3170        void *obj = NULL;
3171        void *list = NULL;
3172
3173        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3174        n = get_node(cachep, nodeid);
3175        BUG_ON(!n);
3176
3177        check_irq_off();
3178        spin_lock(&n->list_lock);
3179        page = get_first_slab(n, false);
3180        if (!page)
3181                goto must_grow;
3182
3183        check_spinlock_acquired_node(cachep, nodeid);
3184
3185        STATS_INC_NODEALLOCS(cachep);
3186        STATS_INC_ACTIVE(cachep);
3187        STATS_SET_HIGH(cachep);
3188
3189        BUG_ON(page->active == cachep->num);
3190
3191        obj = slab_get_obj(cachep, page);
3192        n->free_objects--;
3193
3194        fixup_slab_list(cachep, n, page, &list);
3195
3196        spin_unlock(&n->list_lock);
3197        fixup_objfreelist_debug(cachep, &list);
3198        return obj;
3199
3200must_grow:
3201        spin_unlock(&n->list_lock);
3202        page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3203        if (page) {
3204                /* This slab isn't counted yet so don't update free_objects */
3205                obj = slab_get_obj(cachep, page);
3206        }
3207        cache_grow_end(cachep, page);
3208
3209        return obj ? obj : fallback_alloc(cachep, flags);
3210}
3211
3212static __always_inline void *
3213slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3214                   unsigned long caller)
3215{
3216        unsigned long save_flags;
3217        void *ptr;
3218        int slab_node = numa_mem_id();
3219        struct obj_cgroup *objcg = NULL;
3220
3221        flags &= gfp_allowed_mask;
3222        cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3223        if (unlikely(!cachep))
3224                return NULL;
3225
3226        cache_alloc_debugcheck_before(cachep, flags);
3227        local_irq_save(save_flags);
3228
3229        if (nodeid == NUMA_NO_NODE)
3230                nodeid = slab_node;
3231
3232        if (unlikely(!get_node(cachep, nodeid))) {
3233                /* Node not bootstrapped yet */
3234                ptr = fallback_alloc(cachep, flags);
3235                goto out;
3236        }
3237
3238        if (nodeid == slab_node) {
3239                /*
3240                 * Use the locally cached objects if possible.
3241                 * However ____cache_alloc does not allow fallback
3242                 * to other nodes. It may fail while we still have
3243                 * objects on other nodes available.
3244                 */
3245                ptr = ____cache_alloc(cachep, flags);
3246                if (ptr)
3247                        goto out;
3248        }
3249        /* ___cache_alloc_node can fall back to other nodes */
3250        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3251  out:
3252        local_irq_restore(save_flags);
3253        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3254
3255        if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
3256                memset(ptr, 0, cachep->object_size);
3257
3258        slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr);
3259        return ptr;
3260}
3261
3262static __always_inline void *
3263__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3264{
3265        void *objp;
3266
3267        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3268                objp = alternate_node_alloc(cache, flags);
3269                if (objp)
3270                        goto out;
3271        }
3272        objp = ____cache_alloc(cache, flags);
3273
3274        /*
3275         * We may just have run out of memory on the local node.
3276         * ____cache_alloc_node() knows how to locate memory on other nodes
3277         */
3278        if (!objp)
3279                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3280
3281  out:
3282        return objp;
3283}
3284#else
3285
3286static __always_inline void *
3287__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3288{
3289        return ____cache_alloc(cachep, flags);
3290}
3291
3292#endif /* CONFIG_NUMA */
3293
3294static __always_inline void *
3295slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3296{
3297        unsigned long save_flags;
3298        void *objp;
3299        struct obj_cgroup *objcg = NULL;
3300
3301        flags &= gfp_allowed_mask;
3302        cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3303        if (unlikely(!cachep))
3304                return NULL;
3305
3306        cache_alloc_debugcheck_before(cachep, flags);
3307        local_irq_save(save_flags);
3308        objp = __do_cache_alloc(cachep, flags);
3309        local_irq_restore(save_flags);
3310        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3311        prefetchw(objp);
3312
3313        if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
3314                memset(objp, 0, cachep->object_size);
3315
3316        slab_post_alloc_hook(cachep, objcg, flags, 1, &objp);
3317        return objp;
3318}
3319
3320/*
3321 * Caller needs to acquire correct kmem_cache_node's list_lock
3322 * @list: List of detached free slabs should be freed by caller
3323 */
3324static void free_block(struct kmem_cache *cachep, void **objpp,
3325                        int nr_objects, int node, struct list_head *list)
3326{
3327        int i;
3328        struct kmem_cache_node *n = get_node(cachep, node);
3329        struct page *page;
3330
3331        n->free_objects += nr_objects;
3332
3333        for (i = 0; i < nr_objects; i++) {
3334                void *objp;
3335                struct page *page;
3336
3337                objp = objpp[i];
3338
3339                page = virt_to_head_page(objp);
3340                list_del(&page->slab_list);
3341                check_spinlock_acquired_node(cachep, node);
3342                slab_put_obj(cachep, page, objp);
3343                STATS_DEC_ACTIVE(cachep);
3344
3345                /* fixup slab chains */
3346                if (page->active == 0) {
3347                        list_add(&page->slab_list, &n->slabs_free);
3348                        n->free_slabs++;
3349                } else {
3350                        /* Unconditionally move a slab to the end of the
3351                         * partial list on free - maximum time for the
3352                         * other objects to be freed, too.
3353                         */
3354                        list_add_tail(&page->slab_list, &n->slabs_partial);
3355                }
3356        }
3357
3358        while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3359                n->free_objects -= cachep->num;
3360
3361                page = list_last_entry(&n->slabs_free, struct page, slab_list);
3362                list_move(&page->slab_list, list);
3363                n->free_slabs--;
3364                n->total_slabs--;
3365        }
3366}
3367
3368static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3369{
3370        int batchcount;
3371        struct kmem_cache_node *n;
3372        int node = numa_mem_id();
3373        LIST_HEAD(list);
3374
3375        batchcount = ac->batchcount;
3376
3377        check_irq_off();
3378        n = get_node(cachep, node);
3379        spin_lock(&n->list_lock);
3380        if (n->shared) {
3381                struct array_cache *shared_array = n->shared;
3382                int max = shared_array->limit - shared_array->avail;
3383                if (max) {
3384                        if (batchcount > max)
3385                                batchcount = max;
3386                        memcpy(&(shared_array->entry[shared_array->avail]),
3387                               ac->entry, sizeof(void *) * batchcount);
3388                        shared_array->avail += batchcount;
3389                        goto free_done;
3390                }
3391        }
3392
3393        free_block(cachep, ac->entry, batchcount, node, &list);
3394free_done:
3395#if STATS
3396        {
3397                int i = 0;
3398                struct page *page;
3399
3400                list_for_each_entry(page, &n->slabs_free, slab_list) {
3401                        BUG_ON(page->active);
3402
3403                        i++;
3404                }
3405                STATS_SET_FREEABLE(cachep, i);
3406        }
3407#endif
3408        spin_unlock(&n->list_lock);
3409        ac->avail -= batchcount;
3410        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3411        slabs_destroy(cachep, &list);
3412}
3413
3414/*
3415 * Release an obj back to its cache. If the obj has a constructed state, it must
3416 * be in this state _before_ it is released.  Called with disabled ints.
3417 */
3418static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3419                                         unsigned long caller)
3420{
3421        /* Put the object into the quarantine, don't touch it for now. */
3422        if (kasan_slab_free(cachep, objp, _RET_IP_))
3423                return;
3424
3425        /* Use KCSAN to help debug racy use-after-free. */
3426        if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3427                __kcsan_check_access(objp, cachep->object_size,
3428                                     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3429
3430        ___cache_free(cachep, objp, caller);
3431}
3432
3433void ___cache_free(struct kmem_cache *cachep, void *objp,
3434                unsigned long caller)
3435{
3436        struct array_cache *ac = cpu_cache_get(cachep);
3437
3438        check_irq_off();
3439        if (unlikely(slab_want_init_on_free(cachep)))
3440                memset(objp, 0, cachep->object_size);
3441        kmemleak_free_recursive(objp, cachep->flags);
3442        objp = cache_free_debugcheck(cachep, objp, caller);
3443        memcg_slab_free_hook(cachep, virt_to_head_page(objp), objp);
3444
3445        /*
3446         * Skip calling cache_free_alien() when the platform is not numa.
3447         * This will avoid cache misses that happen while accessing slabp (which
3448         * is per page memory  reference) to get nodeid. Instead use a global
3449         * variable to skip the call, which is mostly likely to be present in
3450         * the cache.
3451         */
3452        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3453                return;
3454
3455        if (ac->avail < ac->limit) {
3456                STATS_INC_FREEHIT(cachep);
3457        } else {
3458                STATS_INC_FREEMISS(cachep);
3459                cache_flusharray(cachep, ac);
3460        }
3461
3462        if (sk_memalloc_socks()) {
3463                struct page *page = virt_to_head_page(objp);
3464
3465                if (unlikely(PageSlabPfmemalloc(page))) {
3466                        cache_free_pfmemalloc(cachep, page, objp);
3467                        return;
3468                }
3469        }
3470
3471        __free_one(ac, objp);
3472}
3473
3474/**
3475 * kmem_cache_alloc - Allocate an object
3476 * @cachep: The cache to allocate from.
3477 * @flags: See kmalloc().
3478 *
3479 * Allocate an object from this cache.  The flags are only relevant
3480 * if the cache has no available objects.
3481 *
3482 * Return: pointer to the new object or %NULL in case of error
3483 */
3484void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3485{
3486        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3487
3488        trace_kmem_cache_alloc(_RET_IP_, ret,
3489                               cachep->object_size, cachep->size, flags);
3490
3491        return ret;
3492}
3493EXPORT_SYMBOL(kmem_cache_alloc);
3494
3495static __always_inline void
3496cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3497                                  size_t size, void **p, unsigned long caller)
3498{
3499        size_t i;
3500
3501        for (i = 0; i < size; i++)
3502                p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3503}
3504
3505int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3506                          void **p)
3507{
3508        size_t i;
3509        struct obj_cgroup *objcg = NULL;
3510
3511        s = slab_pre_alloc_hook(s, &objcg, size, flags);
3512        if (!s)
3513                return 0;
3514
3515        cache_alloc_debugcheck_before(s, flags);
3516
3517        local_irq_disable();
3518        for (i = 0; i < size; i++) {
3519                void *objp = __do_cache_alloc(s, flags);
3520
3521                if (unlikely(!objp))
3522                        goto error;
3523                p[i] = objp;
3524        }
3525        local_irq_enable();
3526
3527        cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3528
3529        /* Clear memory outside IRQ disabled section */
3530        if (unlikely(slab_want_init_on_alloc(flags, s)))
3531                for (i = 0; i < size; i++)
3532                        memset(p[i], 0, s->object_size);
3533
3534        slab_post_alloc_hook(s, objcg, flags, size, p);
3535        /* FIXME: Trace call missing. Christoph would like a bulk variant */
3536        return size;
3537error:
3538        local_irq_enable();
3539        cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3540        slab_post_alloc_hook(s, objcg, flags, i, p);
3541        __kmem_cache_free_bulk(s, i, p);
3542        return 0;
3543}
3544EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3545
3546#ifdef CONFIG_TRACING
3547void *
3548kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3549{
3550        void *ret;
3551
3552        ret = slab_alloc(cachep, flags, _RET_IP_);
3553
3554        ret = kasan_kmalloc(cachep, ret, size, flags);
3555        trace_kmalloc(_RET_IP_, ret,
3556                      size, cachep->size, flags);
3557        return ret;
3558}
3559EXPORT_SYMBOL(kmem_cache_alloc_trace);
3560#endif
3561
3562#ifdef CONFIG_NUMA
3563/**
3564 * kmem_cache_alloc_node - Allocate an object on the specified node
3565 * @cachep: The cache to allocate from.
3566 * @flags: See kmalloc().
3567 * @nodeid: node number of the target node.
3568 *
3569 * Identical to kmem_cache_alloc but it will allocate memory on the given
3570 * node, which can improve the performance for cpu bound structures.
3571 *
3572 * Fallback to other node is possible if __GFP_THISNODE is not set.
3573 *
3574 * Return: pointer to the new object or %NULL in case of error
3575 */
3576void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3577{
3578        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3579
3580        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3581                                    cachep->object_size, cachep->size,
3582                                    flags, nodeid);
3583
3584        return ret;
3585}
3586EXPORT_SYMBOL(kmem_cache_alloc_node);
3587
3588#ifdef CONFIG_TRACING
3589void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3590                                  gfp_t flags,
3591                                  int nodeid,
3592                                  size_t size)
3593{
3594        void *ret;
3595
3596        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3597
3598        ret = kasan_kmalloc(cachep, ret, size, flags);
3599        trace_kmalloc_node(_RET_IP_, ret,
3600                           size, cachep->size,
3601                           flags, nodeid);
3602        return ret;
3603}
3604EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3605#endif
3606
3607static __always_inline void *
3608__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3609{
3610        struct kmem_cache *cachep;
3611        void *ret;
3612
3613        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3614                return NULL;
3615        cachep = kmalloc_slab(size, flags);
3616        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3617                return cachep;
3618        ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3619        ret = kasan_kmalloc(cachep, ret, size, flags);
3620
3621        return ret;
3622}
3623
3624void *__kmalloc_node(size_t size, gfp_t flags, int node)
3625{
3626        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3627}
3628EXPORT_SYMBOL(__kmalloc_node);
3629
3630void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3631                int node, unsigned long caller)
3632{
3633        return __do_kmalloc_node(size, flags, node, caller);
3634}
3635EXPORT_SYMBOL(__kmalloc_node_track_caller);
3636#endif /* CONFIG_NUMA */
3637
3638/**
3639 * __do_kmalloc - allocate memory
3640 * @size: how many bytes of memory are required.
3641 * @flags: the type of memory to allocate (see kmalloc).
3642 * @caller: function caller for debug tracking of the caller
3643 *
3644 * Return: pointer to the allocated memory or %NULL in case of error
3645 */
3646static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3647                                          unsigned long caller)
3648{
3649        struct kmem_cache *cachep;
3650        void *ret;
3651
3652        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3653                return NULL;
3654        cachep = kmalloc_slab(size, flags);
3655        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3656                return cachep;
3657        ret = slab_alloc(cachep, flags, caller);
3658
3659        ret = kasan_kmalloc(cachep, ret, size, flags);
3660        trace_kmalloc(caller, ret,
3661                      size, cachep->size, flags);
3662
3663        return ret;
3664}
3665
3666void *__kmalloc(size_t size, gfp_t flags)
3667{
3668        return __do_kmalloc(size, flags, _RET_IP_);
3669}
3670EXPORT_SYMBOL(__kmalloc);
3671
3672void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3673{
3674        return __do_kmalloc(size, flags, caller);
3675}
3676EXPORT_SYMBOL(__kmalloc_track_caller);
3677
3678/**
3679 * kmem_cache_free - Deallocate an object
3680 * @cachep: The cache the allocation was from.
3681 * @objp: The previously allocated object.
3682 *
3683 * Free an object which was previously allocated from this
3684 * cache.
3685 */
3686void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3687{
3688        unsigned long flags;
3689        cachep = cache_from_obj(cachep, objp);
3690        if (!cachep)
3691                return;
3692
3693        local_irq_save(flags);
3694        debug_check_no_locks_freed(objp, cachep->object_size);
3695        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3696                debug_check_no_obj_freed(objp, cachep->object_size);
3697        __cache_free(cachep, objp, _RET_IP_);
3698        local_irq_restore(flags);
3699
3700        trace_kmem_cache_free(_RET_IP_, objp);
3701}
3702EXPORT_SYMBOL(kmem_cache_free);
3703
3704void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3705{
3706        struct kmem_cache *s;
3707        size_t i;
3708
3709        local_irq_disable();
3710        for (i = 0; i < size; i++) {
3711                void *objp = p[i];
3712
3713                if (!orig_s) /* called via kfree_bulk */
3714                        s = virt_to_cache(objp);
3715                else
3716                        s = cache_from_obj(orig_s, objp);
3717                if (!s)
3718                        continue;
3719
3720                debug_check_no_locks_freed(objp, s->object_size);
3721                if (!(s->flags & SLAB_DEBUG_OBJECTS))
3722                        debug_check_no_obj_freed(objp, s->object_size);
3723
3724                __cache_free(s, objp, _RET_IP_);
3725        }
3726        local_irq_enable();
3727
3728        /* FIXME: add tracing */
3729}
3730EXPORT_SYMBOL(kmem_cache_free_bulk);
3731
3732/**
3733 * kfree - free previously allocated memory
3734 * @objp: pointer returned by kmalloc.
3735 *
3736 * If @objp is NULL, no operation is performed.
3737 *
3738 * Don't free memory not originally allocated by kmalloc()
3739 * or you will run into trouble.
3740 */
3741void kfree(const void *objp)
3742{
3743        struct kmem_cache *c;
3744        unsigned long flags;
3745
3746        trace_kfree(_RET_IP_, objp);
3747
3748        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3749                return;
3750        local_irq_save(flags);
3751        kfree_debugcheck(objp);
3752        c = virt_to_cache(objp);
3753        if (!c) {
3754                local_irq_restore(flags);
3755                return;
3756        }
3757        debug_check_no_locks_freed(objp, c->object_size);
3758
3759        debug_check_no_obj_freed(objp, c->object_size);
3760        __cache_free(c, (void *)objp, _RET_IP_);
3761        local_irq_restore(flags);
3762}
3763EXPORT_SYMBOL(kfree);
3764
3765/*
3766 * This initializes kmem_cache_node or resizes various caches for all nodes.
3767 */
3768static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3769{
3770        int ret;
3771        int node;
3772        struct kmem_cache_node *n;
3773
3774        for_each_online_node(node) {
3775                ret = setup_kmem_cache_node(cachep, node, gfp, true);
3776                if (ret)
3777                        goto fail;
3778
3779        }
3780
3781        return 0;
3782
3783fail:
3784        if (!cachep->list.next) {
3785                /* Cache is not active yet. Roll back what we did */
3786                node--;
3787                while (node >= 0) {
3788                        n = get_node(cachep, node);
3789                        if (n) {
3790                                kfree(n->shared);
3791                                free_alien_cache(n->alien);
3792                                kfree(n);
3793                                cachep->node[node] = NULL;
3794                        }
3795                        node--;
3796                }
3797        }
3798        return -ENOMEM;
3799}
3800
3801/* Always called with the slab_mutex held */
3802static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3803                            int batchcount, int shared, gfp_t gfp)
3804{
3805        struct array_cache __percpu *cpu_cache, *prev;
3806        int cpu;
3807
3808        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3809        if (!cpu_cache)
3810                return -ENOMEM;
3811
3812        prev = cachep->cpu_cache;
3813        cachep->cpu_cache = cpu_cache;
3814        /*
3815         * Without a previous cpu_cache there's no need to synchronize remote
3816         * cpus, so skip the IPIs.
3817         */
3818        if (prev)
3819                kick_all_cpus_sync();
3820
3821        check_irq_on();
3822        cachep->batchcount = batchcount;
3823        cachep->limit = limit;
3824        cachep->shared = shared;
3825
3826        if (!prev)
3827                goto setup_node;
3828
3829        for_each_online_cpu(cpu) {
3830                LIST_HEAD(list);
3831                int node;
3832                struct kmem_cache_node *n;
3833                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3834
3835                node = cpu_to_mem(cpu);
3836                n = get_node(cachep, node);
3837                spin_lock_irq(&n->list_lock);
3838                free_block(cachep, ac->entry, ac->avail, node, &list);
3839                spin_unlock_irq(&n->list_lock);
3840                slabs_destroy(cachep, &list);
3841        }
3842        free_percpu(prev);
3843
3844setup_node:
3845        return setup_kmem_cache_nodes(cachep, gfp);
3846}
3847
3848/* Called with slab_mutex held always */
3849static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3850{
3851        int err;
3852        int limit = 0;
3853        int shared = 0;
3854        int batchcount = 0;
3855
3856        err = cache_random_seq_create(cachep, cachep->num, gfp);
3857        if (err)
3858                goto end;
3859
3860        if (limit && shared && batchcount)
3861                goto skip_setup;
3862        /*
3863         * The head array serves three purposes:
3864         * - create a LIFO ordering, i.e. return objects that are cache-warm
3865         * - reduce the number of spinlock operations.
3866         * - reduce the number of linked list operations on the slab and
3867         *   bufctl chains: array operations are cheaper.
3868         * The numbers are guessed, we should auto-tune as described by
3869         * Bonwick.
3870         */
3871        if (cachep->size > 131072)
3872                limit = 1;
3873        else if (cachep->size > PAGE_SIZE)
3874                limit = 8;
3875        else if (cachep->size > 1024)
3876                limit = 24;
3877        else if (cachep->size > 256)
3878                limit = 54;
3879        else
3880                limit = 120;
3881
3882        /*
3883         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3884         * allocation behaviour: Most allocs on one cpu, most free operations
3885         * on another cpu. For these cases, an efficient object passing between
3886         * cpus is necessary. This is provided by a shared array. The array
3887         * replaces Bonwick's magazine layer.
3888         * On uniprocessor, it's functionally equivalent (but less efficient)
3889         * to a larger limit. Thus disabled by default.
3890         */
3891        shared = 0;
3892        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3893                shared = 8;
3894
3895#if DEBUG
3896        /*
3897         * With debugging enabled, large batchcount lead to excessively long
3898         * periods with disabled local interrupts. Limit the batchcount
3899         */
3900        if (limit > 32)
3901                limit = 32;
3902#endif
3903        batchcount = (limit + 1) / 2;
3904skip_setup:
3905        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3906end:
3907        if (err)
3908                pr_err("enable_cpucache failed for %s, error %d\n",
3909                       cachep->name, -err);
3910        return err;
3911}
3912
3913/*
3914 * Drain an array if it contains any elements taking the node lock only if
3915 * necessary. Note that the node listlock also protects the array_cache
3916 * if drain_array() is used on the shared array.
3917 */
3918static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3919                         struct array_cache *ac, int node)
3920{
3921        LIST_HEAD(list);
3922
3923        /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3924        check_mutex_acquired();
3925
3926        if (!ac || !ac->avail)
3927                return;
3928
3929        if (ac->touched) {
3930                ac->touched = 0;
3931                return;
3932        }
3933
3934        spin_lock_irq(&n->list_lock);
3935        drain_array_locked(cachep, ac, node, false, &list);
3936        spin_unlock_irq(&n->list_lock);
3937
3938        slabs_destroy(cachep, &list);
3939}
3940
3941/**
3942 * cache_reap - Reclaim memory from caches.
3943 * @w: work descriptor
3944 *
3945 * Called from workqueue/eventd every few seconds.
3946 * Purpose:
3947 * - clear the per-cpu caches for this CPU.
3948 * - return freeable pages to the main free memory pool.
3949 *
3950 * If we cannot acquire the cache chain mutex then just give up - we'll try
3951 * again on the next iteration.
3952 */
3953static void cache_reap(struct work_struct *w)
3954{
3955        struct kmem_cache *searchp;
3956        struct kmem_cache_node *n;
3957        int node = numa_mem_id();
3958        struct delayed_work *work = to_delayed_work(w);
3959
3960        if (!mutex_trylock(&slab_mutex))
3961                /* Give up. Setup the next iteration. */
3962                goto out;
3963
3964        list_for_each_entry(searchp, &slab_caches, list) {
3965                check_irq_on();
3966
3967                /*
3968                 * We only take the node lock if absolutely necessary and we
3969                 * have established with reasonable certainty that
3970                 * we can do some work if the lock was obtained.
3971                 */
3972                n = get_node(searchp, node);
3973
3974                reap_alien(searchp, n);
3975
3976                drain_array(searchp, n, cpu_cache_get(searchp), node);
3977
3978                /*
3979                 * These are racy checks but it does not matter
3980                 * if we skip one check or scan twice.
3981                 */
3982                if (time_after(n->next_reap, jiffies))
3983                        goto next;
3984
3985                n->next_reap = jiffies + REAPTIMEOUT_NODE;
3986
3987                drain_array(searchp, n, n->shared, node);
3988
3989                if (n->free_touched)
3990                        n->free_touched = 0;
3991                else {
3992                        int freed;
3993
3994                        freed = drain_freelist(searchp, n, (n->free_limit +
3995                                5 * searchp->num - 1) / (5 * searchp->num));
3996                        STATS_ADD_REAPED(searchp, freed);
3997                }
3998next:
3999                cond_resched();
4000        }
4001        check_irq_on();
4002        mutex_unlock(&slab_mutex);
4003        next_reap_node();
4004out:
4005        /* Set up the next iteration */
4006        schedule_delayed_work_on(smp_processor_id(), work,
4007                                round_jiffies_relative(REAPTIMEOUT_AC));
4008}
4009
4010void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4011{
4012        unsigned long active_objs, num_objs, active_slabs;
4013        unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4014        unsigned long free_slabs = 0;
4015        int node;
4016        struct kmem_cache_node *n;
4017
4018        for_each_kmem_cache_node(cachep, node, n) {
4019                check_irq_on();
4020                spin_lock_irq(&n->list_lock);
4021
4022                total_slabs += n->total_slabs;
4023                free_slabs += n->free_slabs;
4024                free_objs += n->free_objects;
4025
4026                if (n->shared)
4027                        shared_avail += n->shared->avail;
4028
4029                spin_unlock_irq(&n->list_lock);
4030        }
4031        num_objs = total_slabs * cachep->num;
4032        active_slabs = total_slabs - free_slabs;
4033        active_objs = num_objs - free_objs;
4034
4035        sinfo->active_objs = active_objs;
4036        sinfo->num_objs = num_objs;
4037        sinfo->active_slabs = active_slabs;
4038        sinfo->num_slabs = total_slabs;
4039        sinfo->shared_avail = shared_avail;
4040        sinfo->limit = cachep->limit;
4041        sinfo->batchcount = cachep->batchcount;
4042        sinfo->shared = cachep->shared;
4043        sinfo->objects_per_slab = cachep->num;
4044        sinfo->cache_order = cachep->gfporder;
4045}
4046
4047void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4048{
4049#if STATS
4050        {                       /* node stats */
4051                unsigned long high = cachep->high_mark;
4052                unsigned long allocs = cachep->num_allocations;
4053                unsigned long grown = cachep->grown;
4054                unsigned long reaped = cachep->reaped;
4055                unsigned long errors = cachep->errors;
4056                unsigned long max_freeable = cachep->max_freeable;
4057                unsigned long node_allocs = cachep->node_allocs;
4058                unsigned long node_frees = cachep->node_frees;
4059                unsigned long overflows = cachep->node_overflow;
4060
4061                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4062                           allocs, high, grown,
4063                           reaped, errors, max_freeable, node_allocs,
4064                           node_frees, overflows);
4065        }
4066        /* cpu stats */
4067        {
4068                unsigned long allochit = atomic_read(&cachep->allochit);
4069                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4070                unsigned long freehit = atomic_read(&cachep->freehit);
4071                unsigned long freemiss = atomic_read(&cachep->freemiss);
4072
4073                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4074                           allochit, allocmiss, freehit, freemiss);
4075        }
4076#endif
4077}
4078
4079#define MAX_SLABINFO_WRITE 128
4080/**
4081 * slabinfo_write - Tuning for the slab allocator
4082 * @file: unused
4083 * @buffer: user buffer
4084 * @count: data length
4085 * @ppos: unused
4086 *
4087 * Return: %0 on success, negative error code otherwise.
4088 */
4089ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4090                       size_t count, loff_t *ppos)
4091{
4092        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4093        int limit, batchcount, shared, res;
4094        struct kmem_cache *cachep;
4095
4096        if (count > MAX_SLABINFO_WRITE)
4097                return -EINVAL;
4098        if (copy_from_user(&kbuf, buffer, count))
4099                return -EFAULT;
4100        kbuf[MAX_SLABINFO_WRITE] = '\0';
4101
4102        tmp = strchr(kbuf, ' ');
4103        if (!tmp)
4104                return -EINVAL;
4105        *tmp = '\0';
4106        tmp++;
4107        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4108                return -EINVAL;
4109
4110        /* Find the cache in the chain of caches. */
4111        mutex_lock(&slab_mutex);
4112        res = -EINVAL;
4113        list_for_each_entry(cachep, &slab_caches, list) {
4114                if (!strcmp(cachep->name, kbuf)) {
4115                        if (limit < 1 || batchcount < 1 ||
4116                                        batchcount > limit || shared < 0) {
4117                                res = 0;
4118                        } else {
4119                                res = do_tune_cpucache(cachep, limit,
4120                                                       batchcount, shared,
4121                                                       GFP_KERNEL);
4122                        }
4123                        break;
4124                }
4125        }
4126        mutex_unlock(&slab_mutex);
4127        if (res >= 0)
4128                res = count;
4129        return res;
4130}
4131
4132#ifdef CONFIG_HARDENED_USERCOPY
4133/*
4134 * Rejects incorrectly sized objects and objects that are to be copied
4135 * to/from userspace but do not fall entirely within the containing slab
4136 * cache's usercopy region.
4137 *
4138 * Returns NULL if check passes, otherwise const char * to name of cache
4139 * to indicate an error.
4140 */
4141void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4142                         bool to_user)
4143{
4144        struct kmem_cache *cachep;
4145        unsigned int objnr;
4146        unsigned long offset;
4147
4148        ptr = kasan_reset_tag(ptr);
4149
4150        /* Find and validate object. */
4151        cachep = page->slab_cache;
4152        objnr = obj_to_index(cachep, page, (void *)ptr);
4153        BUG_ON(objnr >= cachep->num);
4154
4155        /* Find offset within object. */
4156        offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4157
4158        /* Allow address range falling entirely within usercopy region. */
4159        if (offset >= cachep->useroffset &&
4160            offset - cachep->useroffset <= cachep->usersize &&
4161            n <= cachep->useroffset - offset + cachep->usersize)
4162                return;
4163
4164        /*
4165         * If the copy is still within the allocated object, produce
4166         * a warning instead of rejecting the copy. This is intended
4167         * to be a temporary method to find any missing usercopy
4168         * whitelists.
4169         */
4170        if (usercopy_fallback &&
4171            offset <= cachep->object_size &&
4172            n <= cachep->object_size - offset) {
4173                usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4174                return;
4175        }
4176
4177        usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4178}
4179#endif /* CONFIG_HARDENED_USERCOPY */
4180
4181/**
4182 * __ksize -- Uninstrumented ksize.
4183 * @objp: pointer to the object
4184 *
4185 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4186 * safety checks as ksize() with KASAN instrumentation enabled.
4187 *
4188 * Return: size of the actual memory used by @objp in bytes
4189 */
4190size_t __ksize(const void *objp)
4191{
4192        struct kmem_cache *c;
4193        size_t size;
4194
4195        BUG_ON(!objp);
4196        if (unlikely(objp == ZERO_SIZE_PTR))
4197                return 0;
4198
4199        c = virt_to_cache(objp);
4200        size = c ? c->object_size : 0;
4201
4202        return size;
4203}
4204EXPORT_SYMBOL(__ksize);
4205