linux/mm/slab_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
  15#include <linux/module.h>
  16#include <linux/cpu.h>
  17#include <linux/uaccess.h>
  18#include <linux/seq_file.h>
  19#include <linux/proc_fs.h>
  20#include <linux/debugfs.h>
  21#include <asm/cacheflush.h>
  22#include <asm/tlbflush.h>
  23#include <asm/page.h>
  24#include <linux/memcontrol.h>
  25
  26#define CREATE_TRACE_POINTS
  27#include <trace/events/kmem.h>
  28
  29#include "internal.h"
  30
  31#include "slab.h"
  32
  33enum slab_state slab_state;
  34LIST_HEAD(slab_caches);
  35DEFINE_MUTEX(slab_mutex);
  36struct kmem_cache *kmem_cache;
  37
  38#ifdef CONFIG_HARDENED_USERCOPY
  39bool usercopy_fallback __ro_after_init =
  40                IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
  41module_param(usercopy_fallback, bool, 0400);
  42MODULE_PARM_DESC(usercopy_fallback,
  43                "WARN instead of reject usercopy whitelist violations");
  44#endif
  45
  46static LIST_HEAD(slab_caches_to_rcu_destroy);
  47static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  48static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  49                    slab_caches_to_rcu_destroy_workfn);
  50
  51/*
  52 * Set of flags that will prevent slab merging
  53 */
  54#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  55                SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  56                SLAB_FAILSLAB | SLAB_KASAN)
  57
  58#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  59                         SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  60
  61/*
  62 * Merge control. If this is set then no merging of slab caches will occur.
  63 */
  64static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  65
  66static int __init setup_slab_nomerge(char *str)
  67{
  68        slab_nomerge = true;
  69        return 1;
  70}
  71
  72#ifdef CONFIG_SLUB
  73__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  74#endif
  75
  76__setup("slab_nomerge", setup_slab_nomerge);
  77
  78/*
  79 * Determine the size of a slab object
  80 */
  81unsigned int kmem_cache_size(struct kmem_cache *s)
  82{
  83        return s->object_size;
  84}
  85EXPORT_SYMBOL(kmem_cache_size);
  86
  87#ifdef CONFIG_DEBUG_VM
  88static int kmem_cache_sanity_check(const char *name, unsigned int size)
  89{
  90        if (!name || in_interrupt() || size < sizeof(void *) ||
  91                size > KMALLOC_MAX_SIZE) {
  92                pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  93                return -EINVAL;
  94        }
  95
  96        WARN_ON(strchr(name, ' '));     /* It confuses parsers */
  97        return 0;
  98}
  99#else
 100static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 101{
 102        return 0;
 103}
 104#endif
 105
 106void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 107{
 108        size_t i;
 109
 110        for (i = 0; i < nr; i++) {
 111                if (s)
 112                        kmem_cache_free(s, p[i]);
 113                else
 114                        kfree(p[i]);
 115        }
 116}
 117
 118int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 119                                                                void **p)
 120{
 121        size_t i;
 122
 123        for (i = 0; i < nr; i++) {
 124                void *x = p[i] = kmem_cache_alloc(s, flags);
 125                if (!x) {
 126                        __kmem_cache_free_bulk(s, i, p);
 127                        return 0;
 128                }
 129        }
 130        return i;
 131}
 132
 133/*
 134 * Figure out what the alignment of the objects will be given a set of
 135 * flags, a user specified alignment and the size of the objects.
 136 */
 137static unsigned int calculate_alignment(slab_flags_t flags,
 138                unsigned int align, unsigned int size)
 139{
 140        /*
 141         * If the user wants hardware cache aligned objects then follow that
 142         * suggestion if the object is sufficiently large.
 143         *
 144         * The hardware cache alignment cannot override the specified
 145         * alignment though. If that is greater then use it.
 146         */
 147        if (flags & SLAB_HWCACHE_ALIGN) {
 148                unsigned int ralign;
 149
 150                ralign = cache_line_size();
 151                while (size <= ralign / 2)
 152                        ralign /= 2;
 153                align = max(align, ralign);
 154        }
 155
 156        if (align < ARCH_SLAB_MINALIGN)
 157                align = ARCH_SLAB_MINALIGN;
 158
 159        return ALIGN(align, sizeof(void *));
 160}
 161
 162/*
 163 * Find a mergeable slab cache
 164 */
 165int slab_unmergeable(struct kmem_cache *s)
 166{
 167        if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 168                return 1;
 169
 170        if (s->ctor)
 171                return 1;
 172
 173        if (s->usersize)
 174                return 1;
 175
 176        /*
 177         * We may have set a slab to be unmergeable during bootstrap.
 178         */
 179        if (s->refcount < 0)
 180                return 1;
 181
 182        return 0;
 183}
 184
 185struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 186                slab_flags_t flags, const char *name, void (*ctor)(void *))
 187{
 188        struct kmem_cache *s;
 189
 190        if (slab_nomerge)
 191                return NULL;
 192
 193        if (ctor)
 194                return NULL;
 195
 196        size = ALIGN(size, sizeof(void *));
 197        align = calculate_alignment(flags, align, size);
 198        size = ALIGN(size, align);
 199        flags = kmem_cache_flags(size, flags, name, NULL);
 200
 201        if (flags & SLAB_NEVER_MERGE)
 202                return NULL;
 203
 204        list_for_each_entry_reverse(s, &slab_caches, list) {
 205                if (slab_unmergeable(s))
 206                        continue;
 207
 208                if (size > s->size)
 209                        continue;
 210
 211                if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 212                        continue;
 213                /*
 214                 * Check if alignment is compatible.
 215                 * Courtesy of Adrian Drzewiecki
 216                 */
 217                if ((s->size & ~(align - 1)) != s->size)
 218                        continue;
 219
 220                if (s->size - size >= sizeof(void *))
 221                        continue;
 222
 223                if (IS_ENABLED(CONFIG_SLAB) && align &&
 224                        (align > s->align || s->align % align))
 225                        continue;
 226
 227                return s;
 228        }
 229        return NULL;
 230}
 231
 232static struct kmem_cache *create_cache(const char *name,
 233                unsigned int object_size, unsigned int align,
 234                slab_flags_t flags, unsigned int useroffset,
 235                unsigned int usersize, void (*ctor)(void *),
 236                struct kmem_cache *root_cache)
 237{
 238        struct kmem_cache *s;
 239        int err;
 240
 241        if (WARN_ON(useroffset + usersize > object_size))
 242                useroffset = usersize = 0;
 243
 244        err = -ENOMEM;
 245        s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 246        if (!s)
 247                goto out;
 248
 249        s->name = name;
 250        s->size = s->object_size = object_size;
 251        s->align = align;
 252        s->ctor = ctor;
 253        s->useroffset = useroffset;
 254        s->usersize = usersize;
 255
 256        err = __kmem_cache_create(s, flags);
 257        if (err)
 258                goto out_free_cache;
 259
 260        s->refcount = 1;
 261        list_add(&s->list, &slab_caches);
 262out:
 263        if (err)
 264                return ERR_PTR(err);
 265        return s;
 266
 267out_free_cache:
 268        kmem_cache_free(kmem_cache, s);
 269        goto out;
 270}
 271
 272/**
 273 * kmem_cache_create_usercopy - Create a cache with a region suitable
 274 * for copying to userspace
 275 * @name: A string which is used in /proc/slabinfo to identify this cache.
 276 * @size: The size of objects to be created in this cache.
 277 * @align: The required alignment for the objects.
 278 * @flags: SLAB flags
 279 * @useroffset: Usercopy region offset
 280 * @usersize: Usercopy region size
 281 * @ctor: A constructor for the objects.
 282 *
 283 * Cannot be called within a interrupt, but can be interrupted.
 284 * The @ctor is run when new pages are allocated by the cache.
 285 *
 286 * The flags are
 287 *
 288 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 289 * to catch references to uninitialised memory.
 290 *
 291 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 292 * for buffer overruns.
 293 *
 294 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 295 * cacheline.  This can be beneficial if you're counting cycles as closely
 296 * as davem.
 297 *
 298 * Return: a pointer to the cache on success, NULL on failure.
 299 */
 300struct kmem_cache *
 301kmem_cache_create_usercopy(const char *name,
 302                  unsigned int size, unsigned int align,
 303                  slab_flags_t flags,
 304                  unsigned int useroffset, unsigned int usersize,
 305                  void (*ctor)(void *))
 306{
 307        struct kmem_cache *s = NULL;
 308        const char *cache_name;
 309        int err;
 310
 311        get_online_cpus();
 312        get_online_mems();
 313
 314        mutex_lock(&slab_mutex);
 315
 316        err = kmem_cache_sanity_check(name, size);
 317        if (err) {
 318                goto out_unlock;
 319        }
 320
 321        /* Refuse requests with allocator specific flags */
 322        if (flags & ~SLAB_FLAGS_PERMITTED) {
 323                err = -EINVAL;
 324                goto out_unlock;
 325        }
 326
 327        /*
 328         * Some allocators will constraint the set of valid flags to a subset
 329         * of all flags. We expect them to define CACHE_CREATE_MASK in this
 330         * case, and we'll just provide them with a sanitized version of the
 331         * passed flags.
 332         */
 333        flags &= CACHE_CREATE_MASK;
 334
 335        /* Fail closed on bad usersize of useroffset values. */
 336        if (WARN_ON(!usersize && useroffset) ||
 337            WARN_ON(size < usersize || size - usersize < useroffset))
 338                usersize = useroffset = 0;
 339
 340        if (!usersize)
 341                s = __kmem_cache_alias(name, size, align, flags, ctor);
 342        if (s)
 343                goto out_unlock;
 344
 345        cache_name = kstrdup_const(name, GFP_KERNEL);
 346        if (!cache_name) {
 347                err = -ENOMEM;
 348                goto out_unlock;
 349        }
 350
 351        s = create_cache(cache_name, size,
 352                         calculate_alignment(flags, align, size),
 353                         flags, useroffset, usersize, ctor, NULL);
 354        if (IS_ERR(s)) {
 355                err = PTR_ERR(s);
 356                kfree_const(cache_name);
 357        }
 358
 359out_unlock:
 360        mutex_unlock(&slab_mutex);
 361
 362        put_online_mems();
 363        put_online_cpus();
 364
 365        if (err) {
 366                if (flags & SLAB_PANIC)
 367                        panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 368                                name, err);
 369                else {
 370                        pr_warn("kmem_cache_create(%s) failed with error %d\n",
 371                                name, err);
 372                        dump_stack();
 373                }
 374                return NULL;
 375        }
 376        return s;
 377}
 378EXPORT_SYMBOL(kmem_cache_create_usercopy);
 379
 380/**
 381 * kmem_cache_create - Create a cache.
 382 * @name: A string which is used in /proc/slabinfo to identify this cache.
 383 * @size: The size of objects to be created in this cache.
 384 * @align: The required alignment for the objects.
 385 * @flags: SLAB flags
 386 * @ctor: A constructor for the objects.
 387 *
 388 * Cannot be called within a interrupt, but can be interrupted.
 389 * The @ctor is run when new pages are allocated by the cache.
 390 *
 391 * The flags are
 392 *
 393 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 394 * to catch references to uninitialised memory.
 395 *
 396 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 397 * for buffer overruns.
 398 *
 399 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 400 * cacheline.  This can be beneficial if you're counting cycles as closely
 401 * as davem.
 402 *
 403 * Return: a pointer to the cache on success, NULL on failure.
 404 */
 405struct kmem_cache *
 406kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 407                slab_flags_t flags, void (*ctor)(void *))
 408{
 409        return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 410                                          ctor);
 411}
 412EXPORT_SYMBOL(kmem_cache_create);
 413
 414static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 415{
 416        LIST_HEAD(to_destroy);
 417        struct kmem_cache *s, *s2;
 418
 419        /*
 420         * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 421         * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 422         * through RCU and the associated kmem_cache are dereferenced
 423         * while freeing the pages, so the kmem_caches should be freed only
 424         * after the pending RCU operations are finished.  As rcu_barrier()
 425         * is a pretty slow operation, we batch all pending destructions
 426         * asynchronously.
 427         */
 428        mutex_lock(&slab_mutex);
 429        list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 430        mutex_unlock(&slab_mutex);
 431
 432        if (list_empty(&to_destroy))
 433                return;
 434
 435        rcu_barrier();
 436
 437        list_for_each_entry_safe(s, s2, &to_destroy, list) {
 438#ifdef SLAB_SUPPORTS_SYSFS
 439                sysfs_slab_release(s);
 440#else
 441                slab_kmem_cache_release(s);
 442#endif
 443        }
 444}
 445
 446static int shutdown_cache(struct kmem_cache *s)
 447{
 448        /* free asan quarantined objects */
 449        kasan_cache_shutdown(s);
 450
 451        if (__kmem_cache_shutdown(s) != 0)
 452                return -EBUSY;
 453
 454        list_del(&s->list);
 455
 456        if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 457#ifdef SLAB_SUPPORTS_SYSFS
 458                sysfs_slab_unlink(s);
 459#endif
 460                list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 461                schedule_work(&slab_caches_to_rcu_destroy_work);
 462        } else {
 463#ifdef SLAB_SUPPORTS_SYSFS
 464                sysfs_slab_unlink(s);
 465                sysfs_slab_release(s);
 466#else
 467                slab_kmem_cache_release(s);
 468#endif
 469        }
 470
 471        return 0;
 472}
 473
 474void slab_kmem_cache_release(struct kmem_cache *s)
 475{
 476        __kmem_cache_release(s);
 477        kfree_const(s->name);
 478        kmem_cache_free(kmem_cache, s);
 479}
 480
 481void kmem_cache_destroy(struct kmem_cache *s)
 482{
 483        int err;
 484
 485        if (unlikely(!s))
 486                return;
 487
 488        get_online_cpus();
 489        get_online_mems();
 490
 491        mutex_lock(&slab_mutex);
 492
 493        s->refcount--;
 494        if (s->refcount)
 495                goto out_unlock;
 496
 497        err = shutdown_cache(s);
 498        if (err) {
 499                pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 500                       s->name);
 501                dump_stack();
 502        }
 503out_unlock:
 504        mutex_unlock(&slab_mutex);
 505
 506        put_online_mems();
 507        put_online_cpus();
 508}
 509EXPORT_SYMBOL(kmem_cache_destroy);
 510
 511/**
 512 * kmem_cache_shrink - Shrink a cache.
 513 * @cachep: The cache to shrink.
 514 *
 515 * Releases as many slabs as possible for a cache.
 516 * To help debugging, a zero exit status indicates all slabs were released.
 517 *
 518 * Return: %0 if all slabs were released, non-zero otherwise
 519 */
 520int kmem_cache_shrink(struct kmem_cache *cachep)
 521{
 522        int ret;
 523
 524        get_online_cpus();
 525        get_online_mems();
 526        kasan_cache_shrink(cachep);
 527        ret = __kmem_cache_shrink(cachep);
 528        put_online_mems();
 529        put_online_cpus();
 530        return ret;
 531}
 532EXPORT_SYMBOL(kmem_cache_shrink);
 533
 534bool slab_is_available(void)
 535{
 536        return slab_state >= UP;
 537}
 538
 539#ifndef CONFIG_SLOB
 540/* Create a cache during boot when no slab services are available yet */
 541void __init create_boot_cache(struct kmem_cache *s, const char *name,
 542                unsigned int size, slab_flags_t flags,
 543                unsigned int useroffset, unsigned int usersize)
 544{
 545        int err;
 546        unsigned int align = ARCH_KMALLOC_MINALIGN;
 547
 548        s->name = name;
 549        s->size = s->object_size = size;
 550
 551        /*
 552         * For power of two sizes, guarantee natural alignment for kmalloc
 553         * caches, regardless of SL*B debugging options.
 554         */
 555        if (is_power_of_2(size))
 556                align = max(align, size);
 557        s->align = calculate_alignment(flags, align, size);
 558
 559        s->useroffset = useroffset;
 560        s->usersize = usersize;
 561
 562        err = __kmem_cache_create(s, flags);
 563
 564        if (err)
 565                panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 566                                        name, size, err);
 567
 568        s->refcount = -1;       /* Exempt from merging for now */
 569}
 570
 571struct kmem_cache *__init create_kmalloc_cache(const char *name,
 572                unsigned int size, slab_flags_t flags,
 573                unsigned int useroffset, unsigned int usersize)
 574{
 575        struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 576
 577        if (!s)
 578                panic("Out of memory when creating slab %s\n", name);
 579
 580        create_boot_cache(s, name, size, flags, useroffset, usersize);
 581        list_add(&s->list, &slab_caches);
 582        s->refcount = 1;
 583        return s;
 584}
 585
 586struct kmem_cache *
 587kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 588{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
 589EXPORT_SYMBOL(kmalloc_caches);
 590
 591/*
 592 * Conversion table for small slabs sizes / 8 to the index in the
 593 * kmalloc array. This is necessary for slabs < 192 since we have non power
 594 * of two cache sizes there. The size of larger slabs can be determined using
 595 * fls.
 596 */
 597static u8 size_index[24] __ro_after_init = {
 598        3,      /* 8 */
 599        4,      /* 16 */
 600        5,      /* 24 */
 601        5,      /* 32 */
 602        6,      /* 40 */
 603        6,      /* 48 */
 604        6,      /* 56 */
 605        6,      /* 64 */
 606        1,      /* 72 */
 607        1,      /* 80 */
 608        1,      /* 88 */
 609        1,      /* 96 */
 610        7,      /* 104 */
 611        7,      /* 112 */
 612        7,      /* 120 */
 613        7,      /* 128 */
 614        2,      /* 136 */
 615        2,      /* 144 */
 616        2,      /* 152 */
 617        2,      /* 160 */
 618        2,      /* 168 */
 619        2,      /* 176 */
 620        2,      /* 184 */
 621        2       /* 192 */
 622};
 623
 624static inline unsigned int size_index_elem(unsigned int bytes)
 625{
 626        return (bytes - 1) / 8;
 627}
 628
 629/*
 630 * Find the kmem_cache structure that serves a given size of
 631 * allocation
 632 */
 633struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 634{
 635        unsigned int index;
 636
 637        if (size <= 192) {
 638                if (!size)
 639                        return ZERO_SIZE_PTR;
 640
 641                index = size_index[size_index_elem(size)];
 642        } else {
 643                if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
 644                        return NULL;
 645                index = fls(size - 1);
 646        }
 647
 648        return kmalloc_caches[kmalloc_type(flags)][index];
 649}
 650
 651#ifdef CONFIG_ZONE_DMA
 652#define INIT_KMALLOC_INFO(__size, __short_size)                 \
 653{                                                               \
 654        .name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,      \
 655        .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,  \
 656        .name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,  \
 657        .size = __size,                                         \
 658}
 659#else
 660#define INIT_KMALLOC_INFO(__size, __short_size)                 \
 661{                                                               \
 662        .name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,      \
 663        .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,  \
 664        .size = __size,                                         \
 665}
 666#endif
 667
 668/*
 669 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 670 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 671 * kmalloc-67108864.
 672 */
 673const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 674        INIT_KMALLOC_INFO(0, 0),
 675        INIT_KMALLOC_INFO(96, 96),
 676        INIT_KMALLOC_INFO(192, 192),
 677        INIT_KMALLOC_INFO(8, 8),
 678        INIT_KMALLOC_INFO(16, 16),
 679        INIT_KMALLOC_INFO(32, 32),
 680        INIT_KMALLOC_INFO(64, 64),
 681        INIT_KMALLOC_INFO(128, 128),
 682        INIT_KMALLOC_INFO(256, 256),
 683        INIT_KMALLOC_INFO(512, 512),
 684        INIT_KMALLOC_INFO(1024, 1k),
 685        INIT_KMALLOC_INFO(2048, 2k),
 686        INIT_KMALLOC_INFO(4096, 4k),
 687        INIT_KMALLOC_INFO(8192, 8k),
 688        INIT_KMALLOC_INFO(16384, 16k),
 689        INIT_KMALLOC_INFO(32768, 32k),
 690        INIT_KMALLOC_INFO(65536, 64k),
 691        INIT_KMALLOC_INFO(131072, 128k),
 692        INIT_KMALLOC_INFO(262144, 256k),
 693        INIT_KMALLOC_INFO(524288, 512k),
 694        INIT_KMALLOC_INFO(1048576, 1M),
 695        INIT_KMALLOC_INFO(2097152, 2M),
 696        INIT_KMALLOC_INFO(4194304, 4M),
 697        INIT_KMALLOC_INFO(8388608, 8M),
 698        INIT_KMALLOC_INFO(16777216, 16M),
 699        INIT_KMALLOC_INFO(33554432, 32M),
 700        INIT_KMALLOC_INFO(67108864, 64M)
 701};
 702
 703/*
 704 * Patch up the size_index table if we have strange large alignment
 705 * requirements for the kmalloc array. This is only the case for
 706 * MIPS it seems. The standard arches will not generate any code here.
 707 *
 708 * Largest permitted alignment is 256 bytes due to the way we
 709 * handle the index determination for the smaller caches.
 710 *
 711 * Make sure that nothing crazy happens if someone starts tinkering
 712 * around with ARCH_KMALLOC_MINALIGN
 713 */
 714void __init setup_kmalloc_cache_index_table(void)
 715{
 716        unsigned int i;
 717
 718        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 719                (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 720
 721        for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 722                unsigned int elem = size_index_elem(i);
 723
 724                if (elem >= ARRAY_SIZE(size_index))
 725                        break;
 726                size_index[elem] = KMALLOC_SHIFT_LOW;
 727        }
 728
 729        if (KMALLOC_MIN_SIZE >= 64) {
 730                /*
 731                 * The 96 byte size cache is not used if the alignment
 732                 * is 64 byte.
 733                 */
 734                for (i = 64 + 8; i <= 96; i += 8)
 735                        size_index[size_index_elem(i)] = 7;
 736
 737        }
 738
 739        if (KMALLOC_MIN_SIZE >= 128) {
 740                /*
 741                 * The 192 byte sized cache is not used if the alignment
 742                 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 743                 * instead.
 744                 */
 745                for (i = 128 + 8; i <= 192; i += 8)
 746                        size_index[size_index_elem(i)] = 8;
 747        }
 748}
 749
 750static void __init
 751new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 752{
 753        if (type == KMALLOC_RECLAIM)
 754                flags |= SLAB_RECLAIM_ACCOUNT;
 755
 756        kmalloc_caches[type][idx] = create_kmalloc_cache(
 757                                        kmalloc_info[idx].name[type],
 758                                        kmalloc_info[idx].size, flags, 0,
 759                                        kmalloc_info[idx].size);
 760}
 761
 762/*
 763 * Create the kmalloc array. Some of the regular kmalloc arrays
 764 * may already have been created because they were needed to
 765 * enable allocations for slab creation.
 766 */
 767void __init create_kmalloc_caches(slab_flags_t flags)
 768{
 769        int i;
 770        enum kmalloc_cache_type type;
 771
 772        for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
 773                for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 774                        if (!kmalloc_caches[type][i])
 775                                new_kmalloc_cache(i, type, flags);
 776
 777                        /*
 778                         * Caches that are not of the two-to-the-power-of size.
 779                         * These have to be created immediately after the
 780                         * earlier power of two caches
 781                         */
 782                        if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 783                                        !kmalloc_caches[type][1])
 784                                new_kmalloc_cache(1, type, flags);
 785                        if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 786                                        !kmalloc_caches[type][2])
 787                                new_kmalloc_cache(2, type, flags);
 788                }
 789        }
 790
 791        /* Kmalloc array is now usable */
 792        slab_state = UP;
 793
 794#ifdef CONFIG_ZONE_DMA
 795        for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 796                struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
 797
 798                if (s) {
 799                        kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
 800                                kmalloc_info[i].name[KMALLOC_DMA],
 801                                kmalloc_info[i].size,
 802                                SLAB_CACHE_DMA | flags, 0,
 803                                kmalloc_info[i].size);
 804                }
 805        }
 806#endif
 807}
 808#endif /* !CONFIG_SLOB */
 809
 810gfp_t kmalloc_fix_flags(gfp_t flags)
 811{
 812        gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
 813
 814        flags &= ~GFP_SLAB_BUG_MASK;
 815        pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
 816                        invalid_mask, &invalid_mask, flags, &flags);
 817        dump_stack();
 818
 819        return flags;
 820}
 821
 822/*
 823 * To avoid unnecessary overhead, we pass through large allocation requests
 824 * directly to the page allocator. We use __GFP_COMP, because we will need to
 825 * know the allocation order to free the pages properly in kfree.
 826 */
 827void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 828{
 829        void *ret = NULL;
 830        struct page *page;
 831
 832        if (unlikely(flags & GFP_SLAB_BUG_MASK))
 833                flags = kmalloc_fix_flags(flags);
 834
 835        flags |= __GFP_COMP;
 836        page = alloc_pages(flags, order);
 837        if (likely(page)) {
 838                ret = page_address(page);
 839                mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
 840                                    PAGE_SIZE << order);
 841        }
 842        ret = kasan_kmalloc_large(ret, size, flags);
 843        /* As ret might get tagged, call kmemleak hook after KASAN. */
 844        kmemleak_alloc(ret, size, 1, flags);
 845        return ret;
 846}
 847EXPORT_SYMBOL(kmalloc_order);
 848
 849#ifdef CONFIG_TRACING
 850void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 851{
 852        void *ret = kmalloc_order(size, flags, order);
 853        trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 854        return ret;
 855}
 856EXPORT_SYMBOL(kmalloc_order_trace);
 857#endif
 858
 859#ifdef CONFIG_SLAB_FREELIST_RANDOM
 860/* Randomize a generic freelist */
 861static void freelist_randomize(struct rnd_state *state, unsigned int *list,
 862                               unsigned int count)
 863{
 864        unsigned int rand;
 865        unsigned int i;
 866
 867        for (i = 0; i < count; i++)
 868                list[i] = i;
 869
 870        /* Fisher-Yates shuffle */
 871        for (i = count - 1; i > 0; i--) {
 872                rand = prandom_u32_state(state);
 873                rand %= (i + 1);
 874                swap(list[i], list[rand]);
 875        }
 876}
 877
 878/* Create a random sequence per cache */
 879int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 880                                    gfp_t gfp)
 881{
 882        struct rnd_state state;
 883
 884        if (count < 2 || cachep->random_seq)
 885                return 0;
 886
 887        cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
 888        if (!cachep->random_seq)
 889                return -ENOMEM;
 890
 891        /* Get best entropy at this stage of boot */
 892        prandom_seed_state(&state, get_random_long());
 893
 894        freelist_randomize(&state, cachep->random_seq, count);
 895        return 0;
 896}
 897
 898/* Destroy the per-cache random freelist sequence */
 899void cache_random_seq_destroy(struct kmem_cache *cachep)
 900{
 901        kfree(cachep->random_seq);
 902        cachep->random_seq = NULL;
 903}
 904#endif /* CONFIG_SLAB_FREELIST_RANDOM */
 905
 906#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
 907#ifdef CONFIG_SLAB
 908#define SLABINFO_RIGHTS (0600)
 909#else
 910#define SLABINFO_RIGHTS (0400)
 911#endif
 912
 913static void print_slabinfo_header(struct seq_file *m)
 914{
 915        /*
 916         * Output format version, so at least we can change it
 917         * without _too_ many complaints.
 918         */
 919#ifdef CONFIG_DEBUG_SLAB
 920        seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
 921#else
 922        seq_puts(m, "slabinfo - version: 2.1\n");
 923#endif
 924        seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
 925        seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
 926        seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 927#ifdef CONFIG_DEBUG_SLAB
 928        seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
 929        seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
 930#endif
 931        seq_putc(m, '\n');
 932}
 933
 934void *slab_start(struct seq_file *m, loff_t *pos)
 935{
 936        mutex_lock(&slab_mutex);
 937        return seq_list_start(&slab_caches, *pos);
 938}
 939
 940void *slab_next(struct seq_file *m, void *p, loff_t *pos)
 941{
 942        return seq_list_next(p, &slab_caches, pos);
 943}
 944
 945void slab_stop(struct seq_file *m, void *p)
 946{
 947        mutex_unlock(&slab_mutex);
 948}
 949
 950static void cache_show(struct kmem_cache *s, struct seq_file *m)
 951{
 952        struct slabinfo sinfo;
 953
 954        memset(&sinfo, 0, sizeof(sinfo));
 955        get_slabinfo(s, &sinfo);
 956
 957        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
 958                   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
 959                   sinfo.objects_per_slab, (1 << sinfo.cache_order));
 960
 961        seq_printf(m, " : tunables %4u %4u %4u",
 962                   sinfo.limit, sinfo.batchcount, sinfo.shared);
 963        seq_printf(m, " : slabdata %6lu %6lu %6lu",
 964                   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
 965        slabinfo_show_stats(m, s);
 966        seq_putc(m, '\n');
 967}
 968
 969static int slab_show(struct seq_file *m, void *p)
 970{
 971        struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
 972
 973        if (p == slab_caches.next)
 974                print_slabinfo_header(m);
 975        cache_show(s, m);
 976        return 0;
 977}
 978
 979void dump_unreclaimable_slab(void)
 980{
 981        struct kmem_cache *s, *s2;
 982        struct slabinfo sinfo;
 983
 984        /*
 985         * Here acquiring slab_mutex is risky since we don't prefer to get
 986         * sleep in oom path. But, without mutex hold, it may introduce a
 987         * risk of crash.
 988         * Use mutex_trylock to protect the list traverse, dump nothing
 989         * without acquiring the mutex.
 990         */
 991        if (!mutex_trylock(&slab_mutex)) {
 992                pr_warn("excessive unreclaimable slab but cannot dump stats\n");
 993                return;
 994        }
 995
 996        pr_info("Unreclaimable slab info:\n");
 997        pr_info("Name                      Used          Total\n");
 998
 999        list_for_each_entry_safe(s, s2, &slab_caches, list) {
1000                if (s->flags & SLAB_RECLAIM_ACCOUNT)
1001                        continue;
1002
1003                get_slabinfo(s, &sinfo);
1004
1005                if (sinfo.num_objs > 0)
1006                        pr_info("%-17s %10luKB %10luKB\n", s->name,
1007                                (sinfo.active_objs * s->size) / 1024,
1008                                (sinfo.num_objs * s->size) / 1024);
1009        }
1010        mutex_unlock(&slab_mutex);
1011}
1012
1013#if defined(CONFIG_MEMCG_KMEM)
1014int memcg_slab_show(struct seq_file *m, void *p)
1015{
1016        /*
1017         * Deprecated.
1018         * Please, take a look at tools/cgroup/slabinfo.py .
1019         */
1020        return 0;
1021}
1022#endif
1023
1024/*
1025 * slabinfo_op - iterator that generates /proc/slabinfo
1026 *
1027 * Output layout:
1028 * cache-name
1029 * num-active-objs
1030 * total-objs
1031 * object size
1032 * num-active-slabs
1033 * total-slabs
1034 * num-pages-per-slab
1035 * + further values on SMP and with statistics enabled
1036 */
1037static const struct seq_operations slabinfo_op = {
1038        .start = slab_start,
1039        .next = slab_next,
1040        .stop = slab_stop,
1041        .show = slab_show,
1042};
1043
1044static int slabinfo_open(struct inode *inode, struct file *file)
1045{
1046        return seq_open(file, &slabinfo_op);
1047}
1048
1049static const struct proc_ops slabinfo_proc_ops = {
1050        .proc_flags     = PROC_ENTRY_PERMANENT,
1051        .proc_open      = slabinfo_open,
1052        .proc_read      = seq_read,
1053        .proc_write     = slabinfo_write,
1054        .proc_lseek     = seq_lseek,
1055        .proc_release   = seq_release,
1056};
1057
1058static int __init slab_proc_init(void)
1059{
1060        proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1061        return 0;
1062}
1063module_init(slab_proc_init);
1064
1065#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1066
1067static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1068                                           gfp_t flags)
1069{
1070        void *ret;
1071        size_t ks;
1072
1073        ks = ksize(p);
1074
1075        if (ks >= new_size) {
1076                p = kasan_krealloc((void *)p, new_size, flags);
1077                return (void *)p;
1078        }
1079
1080        ret = kmalloc_track_caller(new_size, flags);
1081        if (ret && p)
1082                memcpy(ret, p, ks);
1083
1084        return ret;
1085}
1086
1087/**
1088 * krealloc - reallocate memory. The contents will remain unchanged.
1089 * @p: object to reallocate memory for.
1090 * @new_size: how many bytes of memory are required.
1091 * @flags: the type of memory to allocate.
1092 *
1093 * The contents of the object pointed to are preserved up to the
1094 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1095 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1096 * %NULL pointer, the object pointed to is freed.
1097 *
1098 * Return: pointer to the allocated memory or %NULL in case of error
1099 */
1100void *krealloc(const void *p, size_t new_size, gfp_t flags)
1101{
1102        void *ret;
1103
1104        if (unlikely(!new_size)) {
1105                kfree(p);
1106                return ZERO_SIZE_PTR;
1107        }
1108
1109        ret = __do_krealloc(p, new_size, flags);
1110        if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1111                kfree(p);
1112
1113        return ret;
1114}
1115EXPORT_SYMBOL(krealloc);
1116
1117/**
1118 * kfree_sensitive - Clear sensitive information in memory before freeing
1119 * @p: object to free memory of
1120 *
1121 * The memory of the object @p points to is zeroed before freed.
1122 * If @p is %NULL, kfree_sensitive() does nothing.
1123 *
1124 * Note: this function zeroes the whole allocated buffer which can be a good
1125 * deal bigger than the requested buffer size passed to kmalloc(). So be
1126 * careful when using this function in performance sensitive code.
1127 */
1128void kfree_sensitive(const void *p)
1129{
1130        size_t ks;
1131        void *mem = (void *)p;
1132
1133        ks = ksize(mem);
1134        if (ks)
1135                memzero_explicit(mem, ks);
1136        kfree(mem);
1137}
1138EXPORT_SYMBOL(kfree_sensitive);
1139
1140/**
1141 * ksize - get the actual amount of memory allocated for a given object
1142 * @objp: Pointer to the object
1143 *
1144 * kmalloc may internally round up allocations and return more memory
1145 * than requested. ksize() can be used to determine the actual amount of
1146 * memory allocated. The caller may use this additional memory, even though
1147 * a smaller amount of memory was initially specified with the kmalloc call.
1148 * The caller must guarantee that objp points to a valid object previously
1149 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1150 * must not be freed during the duration of the call.
1151 *
1152 * Return: size of the actual memory used by @objp in bytes
1153 */
1154size_t ksize(const void *objp)
1155{
1156        size_t size;
1157
1158        /*
1159         * We need to check that the pointed to object is valid, and only then
1160         * unpoison the shadow memory below. We use __kasan_check_read(), to
1161         * generate a more useful report at the time ksize() is called (rather
1162         * than later where behaviour is undefined due to potential
1163         * use-after-free or double-free).
1164         *
1165         * If the pointed to memory is invalid we return 0, to avoid users of
1166         * ksize() writing to and potentially corrupting the memory region.
1167         *
1168         * We want to perform the check before __ksize(), to avoid potentially
1169         * crashing in __ksize() due to accessing invalid metadata.
1170         */
1171        if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1172                return 0;
1173
1174        size = __ksize(objp);
1175        /*
1176         * We assume that ksize callers could use whole allocated area,
1177         * so we need to unpoison this area.
1178         */
1179        kasan_unpoison_shadow(objp, size);
1180        return size;
1181}
1182EXPORT_SYMBOL(ksize);
1183
1184/* Tracepoints definitions. */
1185EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1186EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1187EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1188EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1189EXPORT_TRACEPOINT_SYMBOL(kfree);
1190EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1191
1192int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1193{
1194        if (__should_failslab(s, gfpflags))
1195                return -ENOMEM;
1196        return 0;
1197}
1198ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1199